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Preface

This report was written as the Master’s Thesis on 4th Semester on the Process
Engineering and Combustion Technology master of science program at Aalborg
University Esbjerg (AAU Esbjerg), 2019.

The software used to model the thermo-fluid dynamics in the heat exchanger is
OpenFOAM with FOAMExtend 4. The import and export from the model will be
done using Python 3. Optimisation will be done in Matlab.
The report is written to a reader with basic knowledge about fluid dynamics and
CFD.
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Nomenclature

Description of symbols appearing in the report. Symbols not included or duplicate
will be described at their respective equations.

Table 1: Nomenclature for symbol in the report

Symbol Description Unit

A Area m2

d Coefficient vector -
Di Inner tube diameter mm
Do Outer tube diameter mm
dx Longitudinal position of VG mm
dy Transversal position of VG mm
e Performance evaluation ratio -
f Loss coefficient -
∆ f Crowding distance -
Fp Fin pitch mm
FS Safety factor -
g Gravitational acceleration m/s2

gs Grid cell multiplication factor -
GCI Grid convergence index -
Gr Grashof number -
H Transversal tube pitch mm
h VG height mm
hc Convective heat transfer coefficient W/m2 K
j Colburn factor -
k Turbulent kinetic energy m2/s2

JF Thermal performance -
L Longitudinal tube pitch mm
l VG length mm
lim Limit
Nu Nusselt number -
p Convergence rate -
P Pressure Pa
Pr Prandtl number -
Prt Turbulent Prandtl number -

VII



VIII

Symbol Description Unit

q Fractional design level -
r Refinement ratio -
rand Random number between zero and one -
Re Reynolds number -
Ri Richardson number -
S Channel height mm
s Amount of levels -
T Temperature K
umax Average velocity at the smallest cross-sectional area m/s
ubulk Bulk velocity across the computational domain m/s
w Amount of factors -
α VG angle of attack °
β Thermal expansion coefficient 1/K
γ Temperature gradient in flow direction K/m
δ Kroneckers delta -
ε Relative error -
ε Model error -
η Distribution index -
θ VG roll angle °
λ Thermal conductivity W/m K
ν Kinematic viscosity m2/s
ξ Variable vector -
ρ Density kg/m3

σ Spread factor -
φ Solution parameter -
χ Simplex operation coefficient -
ω Turbulent frequency 1/s
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Chapter 1

Introduction

Fin and tube heat exchangers are widely used in different industries, such as pro-
cess industry, automotive, and air-conditioning, among others, as mentioned by Lei
et al. (2010). This thesis deals with a design of a heat exchanger proposed by Vestas
aircoil, where both material usage and volume are a concern. The application of in-
terest in this thesis is the cooling of the charged air from two stroke marine engines,
which utilizes water as a cooling medium. This gives a restriction in varying the
flow speed of air going into the cooler, as this parameter is set by the turbocharger.
Finding a way to optimise the design as well as streamlining the design process
can save the company resources. The common application has a working pressure
of 4 bar. An example of such a cooler can be seen in figure 1.1.

Figure 1.1: This figure shows a charged air cooler produced by Vestas aircoil A/S.

Based on the fixed inlet flow rate, the approach to increase the efficiency will be
to adjust the geometry of the cooler. The air-side of the cooler is the side with
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2 Chapter 1. Introduction

the highest thermal resistance, based on relative low convective heat transfer. As
an example, for refrigerant-air heat exchangers, the air side can account for up
to 90% of the thermal resistance of the system, according to Bacellar et al. (2016).
This makes the air-side the most promising area to optimise geometry. The overall
layout of tubes in the given cooler in figure 1.1 is fixed based on a product line. A
passive flow enhancer is, therefore, a desired way to increase the convective heat
transfer. One way to increase the efficiency of the heat exchangers is to implement
small vortex generators (VG’s) in the layout to increase fluid mixing in the bound-
ary layer, without increasing weight, but at the cost of an increase in pressure
drop. This pressure drop is the cause of the optimisation problem, as a compro-
mise between low pressure drop and high heat transfer is needed. This report
will look into optimising the implementation of VG’s in a fin-tube heat exchanger
with a staggered tube configuration. Many different variables for implementation
of VG’s in fin-tube heat exchangers have been investigated in literature, both for
staggered and inline tube configuration. The number of variables and method of
the investigations vary.

1.1 Vortex Generators

A Vortex Generator (VG) is a thin piece of material that is attached to a surface,
in this instance on the fins of the cooler. The purpose of a VG is to induce lon-
gitudinal vortices through the domain, to enhance heat transfer, by disrupting the
thermal boundary layer. According to Fiebig (1998), the increase in heat transfer
enhancement from longitudinal vortices is superior to the one from transverse vor-
tices. Another property is to direct a secondary flow into the tube wake; this can
be seen in figure 1.2
There multiple ways to produce the VG’s, but in this case, the VG’s of interest
are Delta winglet Vortex Generators (DVG) lanced from the fin, which will pro-
duce a hole in the fin afterwards. Figure 1.3 serves to illustrate a DVG with its
characteristic parameters and the hole created by the lancing procedure.
The implementation of VG’s comes side effect of an increase in pressure drop.
Therefore it is critical to determine a design that enhances heat transfer, but at
the same time keeps the pressure drop increase compared to a plain fin geometry
relatively low.

1.2 Investigated parameters

Some literature investigate the behaviour of thermal efficiency by performing a
parametric study on the same type of geometry. An aspect that all sources in this
section have in common is that they all implemented a variation in Reynolds num-
ber for their geometry. Common is also that they use a variation of the j/ f factor,
which describes the ratio of heat transfer compared to friction pressure loss, to
evaluate results. The factor will be explained further in chapter 5.
Lei et al. (2010) investigated the optimal angle of attack and wing aspect ratio on
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Figure 1.2: This figure illustrates how the VG’s generate longitudinal vortices and direct some of
the flow into the tube wake. Meanwhile, the tube itself creates transversal vortices, which are shed
behind it.

delta-winglets in a staggered configuration. This was done as a parametric study
in the CFD software ANSYS Fluent and found the given location to be best at 20°
and a winglet aspect ratio of 2. Investigation of the angle of attack and winglet
variation was also done by He et al. (2012). They looked at the effects of splitting
the VG’s into two, smaller delta-winglets in an inline configuration, and with the
holes in the lanced fin included. This was done as a parametric study in ANSYS
Fluent and found that the objective function decreased for split VG’s.
Different winglet types were also investigated by Saha et al. (2014) that also looked
at common flow up vs. common flow down configuration of the vortex gener-
ators for rectangular and delta shaped winglets. This was done by solving the
full unsteady Navier-Stokes equations using Marker and Cell algorithm. The con-
clusion was that rectangular VG’s perform better than the delta shaped ones. In
regards to the position of VG’s a common flow down configuration gave the best
results. Khanjian et al. (2017) investigated the effect of the roll angle on a rectan-
gular winglet pair in a laminar channel as a parametric study in the CFD software
STAR-CCM+. They found that the optimal angle went from 90° to 70° when in-
creasing the Reynolds number from 465 to 911.
Other authors decided to investigate both the height and length of the vortex gen-
erators, instead of looking at type or aspect ratio. One was Välikangas et al. (2018),
that investigated the potential heat transfer enhancement by the implementation
of vortex generators in herringbone fin and tube heat exchangers, with the lanced
hole in the fin included. This was done by a conjugated heat transfer CFD study
conducted in FOAM-extend 4, with k−ω SST to model turbulence. The conclusion
was that VG’s with a height equal to 0.6 times the channel height and length of
0.5 times the tube diameter, produced the highest thermal performance increase,



4 Chapter 1. Introduction

α

l
h θ

Figure 1.3: Relevant dimensional parameters for a DVG: The angle of attack α, the roll angle θ, the
length of the VG l, and the height h.

of 5.23%. This was found based on a parametric study. They also concluded that
the modelling of conjugate heat transfer is essential for accurate heat transfer pre-
dictions.
Another article was from Qian et al. (2018) that did a parametric study for rect-
angular vortex generators for a plain fin. Aside from length and height, the angle
of attack was also instigated. This was done by CFD analysis in ANSYS Fluent 13
with k− ε for turbulence modelling. The simulations were conducted on a periodic
domain. The conclusion was that longer VG’s performed better than smaller ones
and that a large angle of attack helped to disrupt the wake zone behind the tubes.
Another parameter to investigate further is the placement of the vortex generators,
which was done by Arora et al. (2016). The variables of interest were angle of attack
as well as placement of the VG’s. Twenty-two possible locations were investigated,
taking into account infeasible placements due to the angle of attack. The study was
conducted by CFD in ANSYS Fluent 14 with RNG k− ε for turbulence modelling.
The results were validated with experimental data. Results indicate that two types
of optimal setup exist, one with the lowest investigated angles, being 15° and 30°,
and one for 45° and 60°.

1.3 optimisation methods

Another category of articles looks into the problem of optimising the heat ex-
changer with many variables and data points. Some utilize the j/ f factor as well,
while others implement multi-objective optimisation, solving for both low friction
and high heat transfer.
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The Taguchi method was used by Zeng et al. (2010) to optimise delta winglet VG’s
in a staggered configuration for fin pitch, longitudinal and transversal tube pitch,
VG length and height, and angle of attack. The lanced hole in the fin was also in-
cluded. The investigation was conducted using ANSYS Fluent, and the model val-
idated through experimental data. The analysis was conducted on an L18(21 × 37)

orthogonal array.
Salviano et al. (2015) investigated a delta-winglet in staggered tube configuration,
with variable winglet position, angle of attack, and roll angle in ANSYS Fluent
with k−ω SST to model turbulence. When optimising using a Genetic Algorithm
(GA), the option of using a surrogate model as Response Surface Model (RSM)
compared to Direct optimisation (DO), showed that DO gave a better solution for
the given objective function. The response surface was generated from 385 points
from Latin Hypercube Sampling. In another article, Salviano et al. (2016) com-
pared the GA to the Nelder-Mead SIMPLEX optimisation method, adding three
variables for the shape of the winglet for the same CFD method. They found that
the SIMPLEX method converged in a third of the time, compared to GA, as well as
optimal shapes and locations for VG’s in both inline and staggered configuration.
This was again done for single-objective optimisation.
The use of a surrogate model was also investigated by other articles. Tang et
al. (2019) optimised rectangular VG’s for elliptical tube H-fin heat exchangers for
length, height, position, and angle of attack, using RSM validated through multi-
ple regression. The model was solved as multi-objective optimisation using Non-
dominating Sorted Genetic Algorithm (NSGA II), finding the Pareto optimal set of
solutions. Lemouedda et al. (2010) followed the same general procedure for delta-
winglet VG’s with both staggered and inline tube configuration, varying angle of
attack, and Reynolds number. The RSM was determined using the kriging method,
and NSGA II solved the multi-objective problem for the Pareto optimal set.

1.4 Summary

To give an overview of the literature study, articles investigating tendencies using
a parametric study include Reynolds number and 1-3 other parameters. These
include angle of attack α, roll angle θ, VG length l and height h, VG aspect ratio,
winglet type, or VG position. These approaches find tendencies and improvements
but not optimal points.
Articles implementing optimisation algorithms either take a single-objective ap-
proach, using Taguchi S/N-ratio or another combined performance evaluation cri-
teria or use a surrogate model to determine a Pareto-optimal set. These studies
vary in the number of samples used for generating surrogate models, as more
samples require proportional computational resources. Most surrogate models
were determined using less than 100 samples, except for Salviano et al. (2016),
which used 3080, along with a direct solution. The overview can also be seen in
table 1.1.

Around half of the investigated articles implemented conjugate heat transfer, which Vä-
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Table 1.1: Summary of investigated parameters in existing literature. Positioning of the VG is ab-
breviated to Pos. Middle line separates parameter studies and optimisation studies. ∗Investigated
Aspect ratio. ∗∗Investigated Fin pitch.

Source Re α θ l h Pos. Winglet type

Lei et al., 2010∗ X X
He et al., 2012 X X X
Khanjian et al., 2017 X X
Välikangas et al., 2018 X X X
Arora et al., 2016 X X X
Saha et al., 2014 X X X X
Qian et al., 2018 X X X X

Zeng et al., 2010∗∗ X X X
Salviano et al., 2015 X X X
Salviano et al., 2016 X X X X
Tang et al., 2019 X X X X
Lemouedda et al., 2010 X X

likangas et al. (2018) concluded to be essential, in their model. Salviano et al.
(2016), and Tang et al. (2019) are the articles implementing it and also investigating
optimisation. The lancing hole in the fins from the VG is not always included,
perhaps due to the production approach of the VG’s. Only three of the men-
tioned articles include them; He et al. (2012), Välikangas et al. (2018), and Zeng
et al. (2010). Of these, only Zeng et al. (2010) investigated it using an optimisation
algorithm. The applied Taguchi method is a single objective approach, meaning
that a multi-objective approach has not been attempted, according to investigated
literature. This could be an opportunity for further investigation.



Chapter 2

Problem analysis and description

This thesis seeks to optimise the design of Vortex Generators (VG’s) in the given
fin-tube heat exchanger using an OpenFOAM CFD model. Included in the model
will be the hole lanced in the fin to create the VG, as well as conjugate heat transfer
in the fluid-solid interface. optimisation will be done using a surrogate model,
allowing for multi-objective optimisation to be carried out without high computa-
tional cost. This will result in a set of Pareto-optimal solutions. The combination
of these goals is not apparent in the investigated literature. Sample solutions from
the surrogate model will then be validated in the CFD model to ensure they are
close to optimal. This leads to the following research question:

Which combination of the VG’s placement, angle, height, and length in staggered fin-tube
heat exchangers gives an optimum between maximal heat transfer and minimal pressure

drop?

2.1 Describing the problem

As mentioned in the introduction, the task given for this thesis by Vestas aircoil is
to implement VG’s to increase the heat transfer for a charged air cooler. The vortex
generators will be mounted on the fins in the cooler. Therefore it is of interest to
determine a suitable simulation domain based on the fin geometry. The domain
chosen can be seen in figure 2.1:
This choice of domain is done under the assumption of periodic behaviour and
reduces the computational domain considerably. With the domain determined, the
geometric parameters are introduced; these can be seen in figure 2.2.
Parameters that will remain constant in this thesis are as follows: Domain length L,
which is equal to two times the longitudinal tube pith, domain height H which is
equal to half of the transversal tube pitch, fin pitch Fp, channel height S, and inner
and outer tube diameter Di and Do. Parameters that will be taken as variables
are X- and Y-coordinates of the VG tip dx and dy, angle of attack α, VG height h,
and VG length l. To limit the number of available parameters, the VG’s will have
identical parameters and locations relative to their respective tube. This means
that the right half of the computational domain is similar to the left half mirrored
horizontally. The values for the parameters are listed in table 2.1:

7
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Pl
PtFlow direction

Figure 2.1: Top-down view of tube bank fin, as well as the zoomed-in view of the domain piece of
interest.

Figure 2.2: Schematic of the geometry in the computational domain.

2.1.1 Characteristic parameters

To evaluate the performance of the geometry, a couple of characteristic parameters
are introduced. To describe the flow regime, the Reynolds number is included,
to evaluate heat transfer, the Nusselt number is used, and to evaluate pressure
drop the loss coefficient f . The description and calculation of these parameters are
contained in this section.
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Table 2.1: Geometrical values for the design space

Parameter Symbol Value [mm]

Height H 20
Length L 50
Diameter, inner Di 18
Diameter, outer Do 20
Channel height S 2
Fin pitch Fp 2.2

Reynolds number

The Reynolds number is calculated based on the velocity of the lowest cross-
sectional area umax.

Re =
umax · Do

ν
(2.1)

where ν is the kinematic viscosity and the outer tube diameter Do is used as the
characteristic length.

Nusselt number

The evaluation of heat transfer is done based on the Nusselt number, which is
defined as:

Nu =
hc · Do

λ f
(2.2)

where λ f is the thermal conductivity of the fluid and hc is the convective heat
transfer coefficient
Including Newton’s law of cooling and Fourier’s law of heat conductions, to de-
scribe the relationship between heat convection and conduction yields:

hc

λ f
= −dT

dn
1

∆T
(2.3)

Substituting this into equation 2.2 gives:

Nu = −dT
dn

Do

∆T
(2.4)

The wall normal temperature gradient is calculated as an area-averaged value,
based on the tubes and fins surface area in contact with the fluid:

dT
dn

=

N
∑

i=1

(
dT
dn

)
i
Ai

N
∑

i=1
Ai

(2.5)
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where N is the total numbers of faces on the tubes and fins, and i is the face
number. The overall temperature difference ∆T can be described similarly:

∆T = Twall − Tbulk =

N
∑

i=1
Ti Ai

N
∑

i=1
Ai

−

M
∑

j=1
u1,jTj Aj

M
∑

j=1
u1,j Aj

(2.6)

where M indicates the total number of faces at the inlet and j is the face number,
the velocity component in the streamwise direction, is denoted by the subscript 1.

Loss coefficient

The loss coefficient is used as a measure to determine the pressure drop of a certain
geometry. Based on the work by Esmaeilzadeh et al. (2017) this can be expressed
as:

f =
2 · Do

ρ · ubulk

dP
dx

(2.7)

where dP/dx is the streamwise pressure gradient throughout the domain and ubulk
is the bulk velocity across the domain.

Performance evaluation ratios

The overall potential performance enhancement is determined based on the rela-
tions between Nusselt number and loss coefficient of a given design, compared to
the reference case, which for this thesis is a plain fin geometry without any vortex
generators or holes in the fin.

eNu =
Nu
Nu0

(2.8)

e f =
f
f0

(2.9)

where the subscript 0 indicates that the value is the one from the reference geom-
etry.

2.1.2 Materials and properties

For materials, the fins consist of copper, while the tubes are of Cu-Ni 90/10. Their
properties will be given at the wall temperature of 25°C. The fluid will be modelled
with the properties of dry air, treated as an ideal gas at the working pressure of
4 bar and at bulk temperature.

Temperature-dependent variables As the bulk temperature can vary, the temper-
ature dependent properties will be investigated in a temperature range from 0°C
to 100°C. Values are taken from the Engineering Equation Solver (EES) library. The
normalized properties for air can be seen in figure 2.3, where it is apparent that
the heat capacity can be taken as a constant value. The values and linear functions
describing their dependencies are shown in table 2.2.
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Change of air properties in temperature range
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Figure 2.3: Properties for air in the temperature range of 0− 100°C.

2.2 Assumptions

When setting up the CFD model, several assumptions have been made to reduce
complexity. Turbulence models may also need to be determined, depending on
the given case and computational ambition. The choices are explained in the list
below.

Fixed geometry The case in this thesis is given as optimisation of an existing
product, resulting in some of the parameters being fixed from a produc-
tion standpoint. Due to the proprietary nature of the case, parameters have
been changed and/or generalized. The fixed parameters relate to the size
and position of both the fins and tubes.

Flow regime Based on the already established tube bank design, the flow regime
is well over a Reynolds number of 10000. This sets the flow regime to be
modelled as a turbulent flow.

Steady-state Investigations done by Moulinec et al. (2004) indicate that transverse
vortices generated by the tubes can be neglected for a staggered tube config-
uration at a Reynolds number of 6000 or higher, if the following statement is
fulfilled:

Pt ≤ 2 · Do (2.10)

The geometry chosen in this work, fulfils this statement, with a transverse
pitch of 40 mm and a tube diameter of 20 mm.
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Table 2.2: Thermophysical properties for used materials. T is in unit K. Cp for Cu-Ni 90/10 is
evaluated at 16.85°C.

Parameter Value Unit

Fins (Copper)

Initial temperature 293 K
Conductivity 396.5 W/(m · K)
Density 8958 kg/(m3)
Heat capacity, cp 0.3893 kJ/(kg · K)

Tubes (Cu-Ni 90/10)

Inner tube wall temperature 293 K
Initial temperature 293 K
Conductivity 51.76 W/(m · K)
Density 8897 kg/(m3)
Heat capacity, cp 0.377 kJ/(kg · K)

Dry Air (Ideal gas)

Prandtl number 0.7338− 0.0002 · T -
Turbulent Prandtl number 0,85 -
Reynolds number ≈ 10755 -
Streamwise bulk velocity, us 1.6 m/s
Streamwise temperature gradient -50 K/m
Initial temperature 303 K
Working pressure 4 bar
Density 5.0333− 0.0136 · T kg/(m3)
Heat capacity, cp 1, 005 kJ/(kg · K)
Kinematic viscosity (3.3525 + 0.0245 · T) · 10−6 m2/s

As this case will handle larger Reynolds numbers, the assumption of no vor-
tex shedding is deemed acceptable, making it possible to approximate the
flow as steady state.

Incompressible Compressibility of flow depends on the speed at which it flows.
At a Mach number of 0.3 the density will encounter a change of around
5%. As the flow speeds, in this case, will be in the range of 2 m/s from the
established design, compressibility can be approximated to be insignificant,
and the flow will be modelled as incompressible.

Periodic behaviour As the modelling area will only be a fraction of a larger tube
bank; it is necessary to know how similar the flow can be expected to be in a
single segment. According to data from Balabani and Ylannekis (1997), flow
in a staggered tube bank starts showing periodic behaviour after 4-5 tube
rows.

Identical vortex generators As each periodic domain contains two VG’s, optimal



2.2. Assumptions 13

configurations might exist were their parameters are different. Modelling pa-
rameters individually would drastically increase the complexity of the prob-
lem, so this thesis will only look at cases where the VG’s have identical pa-
rameters.

No radiation Within each computational domain, a temperature difference of ∆T =

5 K is expected between solid and fluid. As radiation heat flux between black-
body surfaces are determined as

Q = 5.67 · 10−8 W
m2 ·K4 ·

(
T4

hot − T4
cold

)
with emissivity 1, heat transfer through radiation is seen as negligible.

No gravitational force With the given temperature difference, the influence of buoy-
ancy forces are investigated using the Richardson number in equation 2.11.

Ri =
Gr
Re2 =

gβ
(
Thot − Tre f

)
Do

u2
max

(2.11)

The value is found with gravity g, the average velocity at the smallest cross-
sectional area umax, characteristic length Do, and a thermal expansion coef-
ficient β. With a conservative estimate of β = 3.43 · 10−3K−1 at 20°C, the
Richardson number is 8.6 · 10−4. As buoyancy usually can be neglected at
Ri = 0.1, the gravity term is neglected in this work.

Turbulence model Different approaches are available when handling the mod-
elling of the turbulent flow. Available approaches are Direct Numerical Simu-
lation (DNS), Large Eddy Simulation (LES) or Reynolds Averaged Numerical
Simulation (RANS). DNS Resolves all turbulence scales, while LES resolves
large scales and models scales, and RANS only resolves the mean flow and
models all scales. The better resolution also requires a finer mesh, as well as
having a higher numerical cost. RANS is chosen due to the computational
requirement and the amount of simulations needed for optimisation. The
trade-off in accuracy is deemed acceptable.

Closure model When working with a staggered fin and tube configuration, Bhuiyan
et al. (2012) found that the use of the k-ω turbulence model best aligned with
experimental results, comparing to the k-ε turbulence models.

Heat transfer approach

To get a better description of the heat transfer problem, it is treated as a conju-
gate heat transfer problem, solving the temperature field in both the solid and
fluid phase. According to Välikangas (2016), this can be solved with faster con-
vergence using the software FOAM-extend. The solver is “a steady-state solver for
buoyancy-driven turbulent flow of incompressible Newtonian fluids with conju-
gate heat transfer, complex heat conduction and radiation.”
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Modelling of the tube bank geometry will, among others, be done with periodic
boundary conditions based on the work of Patankar et al. (1978). The method is
applicable as the temperature profile for each geometry segment is assumed to be
identical, though for a temperature difference instead of a specific temperature.
To reduce the computational cost, the water flow inside the tubes is not modelled.
Instead, the inner tube walls are assumed to be isotherm. This is done based on
the assumption that the convective heat transfer coefficient is significantly larger
than the one on the air side and this will result in an almost constant temperature.

Readers guide

To begin with, the nomenclature is presented from page VII, describing subscripts
and symbols appearing in this thesis.
As this thesis will apply two methods in investigating the problem, some chapter
can be read separately. The reading guide for the chapters can be seen in figure 2.4.
In chapter 1 the overall problem is described, along with the intended solution, as
well as state of the art studies done on this subject. Chapter 2 describes how the
problem, in this case, will be handled, and under what assumptions. In chapter 3
the bounds of the problem will be defined, as well as what parameters will be
investigated. Constraints for the optimisation problem will also be made.
The CFD modelling part of the thesis is collected in chapter 4, starting with defin-
ing the governing equations used. Afterwards, the meshing strategy for the geom-
etry is described as well as the determination of the appropriate refinement rate.
Finally the implemented boundary conditions and discretization schemes will be
listed.
The optimisation is described in chapter 5, where performance evaluation crite-
ria, as well as an optimisation algorithm, is determined. As a surrogate model
is required, ’design of experiment’ techniques are investigated, and the viability
of the chosen one is checked. Finally, the implemented optimisation algorithm is
described.
In chapter 6, models and methods from the previous chapters are validated on ei-
ther literature correlations for the CFD model or test functions for the optimisation
algorithm. Results are presented and discussed in chapter 7, both for a sample
model and the surrogate model. In the end, further studies are proposed. Finally,
the thesis is concluded in chapter 8.
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Chapter 3

Parameter space of interest

3.1 Significant variables

A large number of relevant parameters in a model helps to optimise all aspects
of an optimisation problem, but also greatly increases the number of data points
required to explore the entire design space. If computational power and time
is a limiting factor, it makes sense to omit the less significant parameters in the
investigation. As this report focuses on the application of Vortex Generators (VG’s),
parameters related to the heat exchanger, in general, will not be investigated. In
the following part, the most common parameters, in this case, will be explained:

Angle of attack, α The angle between VG and the longitudinal flow.

Roll angle, θ This is the angle between the fin and the VG.

Longitudinal position of VG, dx How far along the general flow direction the VG
will be placed.

Transversal position of VG, dy Where the VG will be placed perpendicular to the
general flow direction.

VG length, l Increasing the length gives more surface to exchange heat and direct
the flow, but also increases the pressure drop.

VG height, h The share of the channel height that the VG reaches. Most articles
find an optimum near 0.6 of the fin pitch.

VG aspect ratio This value is a combination of VG height and length in one, in
cases where the VG design is fixed.

The angles, length, and height can also be found in figure 3.1 and 2.2.
Among the listed parameters, only two of the three parameters determining the
shape and size of the VG are needed, since the aspect ratio is dependent on the
height and length. The roll angle is also a particular case, since only the article
by Khanjian et al. (2017) investigates the effect, and does so in a different geometry.
The article also found the optimal angle to be close to or at 90° at the investigated

17
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α

l
h θ

Figure 3.1: Angles and sizes of a arbitrary VG.

flow regimes. As the parameter may have some significance but will increase the
requirement for computational power, it will not be investigated in this thesis.
This leaves five parameters to be investigated as design variables: angle of attack,
position of VG tip, VG height, and VG length.

3.2 Boundaries

To make sure a feasible design is found through optimisation, proper limits must
be set up for the chosen design variables. As the variables only relate to the VG,
limits must prevent it from getting too close to the boundaries of the computational
area. This is also necessary to ensure proper mesh generation for the geometries.
Several sources have had different approaches to limiting their variables to fit the
given geometry. The limits of the selected articles can be seen in table 3.1.
For the position, Salviano et al. (2015) and Salviano et al. (2016) looked at both the
x- and y-coordinate and later expanded the design region. They also implemented
constraints as in equation 3.1, to prevent the centre of the VG from entering the
tubes. √

(dx − dx,tube)
2 +

(
dy − dy,tube

)2 ≥ [1.1− 1.6] ·
(

Do

2

)
(3.1)

The dimensions of the VG vary depending on design, rectangular- and delta-
winglet. From Tang et al. (2019) and Zeng et al. (2010), the length was bounded
due to geometry, though the height was more uniform. Salviano et al. (2016) had
a larger area for length and height.
The angle of attack, α, was investigated by the same authors, as well as Arora
et al. (2016). Most kept in the range (15° - 60°), except for Salviano et al. (2015)
and Salviano et al. (2016) that increased the range to (±75°) and (±180°) for their
optimisation.

From these sources, initial boundaries can be defined. In case most optima are
found on one of these boundaries, they can be extended with additional simula-
tions. The chosen bounds can be seen in table 3.2.
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Table 3.1: Boundaries investigated in the mentioned literature. Normalized with outer diameter, Do,
longitudinal tube pitch, L, or fin pitch, S.

Salviano et
al. (2015)

Salviano et
al. (2016)

Tang et al.
(2019)

Zeng et al.
(2010)

Arora et al.
(2016)

dx,min 1/3Do 0.0111L - - -
dx,max 7/3Do 0.99L - - -
dy,min 1/3Do 0.0111L - - -
dy,max 17/15Do 0.99L/2 - - -
l - 2/3S - 6S 0.35S - 0.6S 1.3S - 2S -
h - 0S - 0.97S 0.35S - 0.7S 0.5S - 0.7S -
α ±180° ±75° 20° - 40° 30° - 60° 15° - 60°

Table 3.2: Boundaries for the design variables.

Design variable Bounds

dx 0.1Do - 0.8Do

dy 0.1Do - 0.8Do

l 1.2S - 3.0S
h 0.4S - 0.7S
α 20° - 60°

3.3 Constraints

The geometry bounds work well to prevent the VG’s from being placed outside of
the square fin area. This cannot take the placement and size of the tube into ac-
count, so these are implemented as constraints in the same way as in equation 3.1.
To take into account the different shapes and orientations of the VG’s, constraints
will be made for the VG origin and the two opposing VG points in the fin. This
can also be shown in figure 3.2, where the three blue points representing the hole
from lancing must not cross the red boundaries representing the two tubes. For
two tubes, this results in 6 constraints, as shown in equations 3.2. The first three
equations for the top left constraint, and the other three for the lower right con-
straint.
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Boundaries defined for the design space

Figure 3.2: The boundaries for the lancing hole visualized as three blue points with constraints
shown in red and grey.

0 ≥
(

1.1 · Do

2

)2

−
[
(dx − 20)2 +

(
dy − 0

)2
]

(3.2a)

0 ≥
(

1.1 · Do

2

)2

−
[
(dx + l · cos(α)− 20)2 +

(
dy + l · sin(α)− 0

)2
]

(3.2b)

0 ≥
(

1.1 · Do

2

)2

−
[
(dx + l · cos(α) + h · cos(α− 90°)− 20)2 . . .

+
(
dy + l · sin(α) + h · sin(α− 90°)− 0

)2
]

(3.2c)

0 ≥
(

1.1 · Do

2

)2

−
[
(dx − 0)2 +

(
dy − 20

)2
]

(3.2d)

0 ≥
(

1.1 · Do

2

)2

−
[
(dx + l · cos(α)− 0)2 +

(
dy + l · sin(α)− 20

)2
]

(3.2e)

0 ≥
(

1.1 · Do

2

)2

−
[
(dx + l · cos(α) + h · cos(α− 90°)− 0)2 . . .

+
(
dy + l · sin(α) + h · sin(α− 90°)− 20

)2
]

(3.2f)
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Numerical model

To evaluate the model parameters mentioned in chapter 2, being Nusselt number,
and loss coefficient for the geometry, a conjugate heat transfer (CHT) model is used.
The model chosen, is an incompressible, three-dimensional steady-state solver, that
uses the Boussinesq’s approximation to estimate the density of the fluids based on
temperature variations. The pressure-velocity coupling is done with the SIMPLE-
algorithm; the algorithm used can be seen in appendix IV.

4.1 Governing equations

The governing equations for the model are divided into two groups, on for the
fluid and one for the solid.

4.1.1 Fluid

To describe the behaviour of the fluid through the domain, a set of five equations
are solved. These equations contain the continuity equation, three momentum
equations, and the energy equation. In this case the equation are solved for a
three-dimensional incompressible flow, and look like the following:

Continuity equation

Based on the assumptions mentioned in chapter 2 the continuity equation for the
flow can be stated as:

∂(ρui)

∂xi
= 0 (4.1)

Momentum equation

The three momentum equations for the three-dimensional problem can be ex-
pressed by the following equation:

∂

∂xi
(ρuiuj) =

∂

∂xi

(
µ

∂uj

∂xi

)
− ∂p

∂xj
+

∂P
∂x1

δ1,i (4.2)
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To consider periodic behaviour, (∂P/∂x1)δ1,i, pressure gradient source is added
to the equation. This allows specifying the desired average velocity through the
domain. Subscript 1 indicates streamwise direction, and δ1,i is Kronecker’s delta.

Energy equation

To determine the temperature in the fluid, the energy equation is added. To de-
scribe the thermal properties of the fluid, the following parameters are included:
The density ρ, the specific heat capacity Cp, f and the conductivity λ f .

∂

∂xi

(
ρCP, f · (uiT + usγ))

)
=

∂

∂xi

(
λ f

∂T
∂xi

)
(4.3)

Here u1γ is added to implement periodic heat transfer in; this is done based on
the work done by Patankar et al. (1978), where u1 is the velocity component for the
direction, where the periodic behaviour is occurring. The temperature gradient in
the flow direction is noted as γ. The implementation of the periodic heat transfer
is done to investigate the temperature distribution in the domain.

4.1.2 Solid

To determine the heat transfer through the solid, the solid is modelled only based
on heat diffusion:

∂

∂xi

(
λs,m

∂T
∂xi

)
= 0 (4.4)

where subscript s indicates solid, and m is used to describe the material number.
This is done based on the fact that the conductivity in the two materials in the solid
are different.

4.1.3 Turbulence modelling

To model turbulence, the k − ω Shear Stress Transport (SST) model is used. The
argumentation for this choice is mentioned in chapter 2. Default values for used pa-
rameters can be found in table 4.1. The equations shown are for three-dimensional
steady-state without dissipation and source terms:

k-equation

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk (4.5)

ω-equation

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω (4.6)
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where the generation of turbulence based on mean velocity is described by G and
Γ describes effective diffusivity, and is defined by:

Γk = µ +
µt

Prt,k
, Γω = µ +

µt

Prt,ω
(4.7)

where Prt indicates the respective turbulent Prandtl numbers and µ is the dynamic
viscosity.
Turbulent dynamic viscosity is defined as:

µt = a1
ρk

max(a1ω, b1F3S)
(4.8)

where S is the symmetric tensor.

Table 4.1: Default coefficients for the model.

αk1 αk2 αω1 αω2 β1 β2 γ1 γ2 β∗ a1 b1 c1 F3

0.85 1 0.5 0.856 0.075 0.0828 5/9 0.44 0.09 0.31 1.0 10.0 0

4.2 Meshing

As the optimisation will involve many different configurations, a script is made to
generate a parametric mesh of the geometry. This should be able to ease the task of
creating a good quality mesh for every required configuration of Vortex Generators
(VG’s). It is decided to have the mesh be a structured hex mesh.

4.2.1 Meshing strategy

As the thesis works with conjugate heat transfer, a mesh is required for both the
fluid part and the solid part. As the two meshes should be conformal, the same
strategy of meshing should be applied to them. To do so, the geometry is parti-
tioned into blocks, that separately can be meshed to give an overall high quality
mesh. To ease the meshing process and avoid highly skewed cells, the outer 10%
of the VG tip is removed from the geometry. This will change the triangular prism
into a hexahedron, allowing a structured mesh of only hexahedra. The trade-off in
accuracy for an overall higher mesh quality is deemed acceptable.
The partitioning in the z-direction is done as four layers. The top and bottom layer
consist of the solid fins and have the same thickness throughout. This also includes
the lanced holes for the VG’s in the fluid mesh. The middle layers, as seen on the
fluid blocks in figure 4.2, are shaped according to the placement of the VG’s. As
they are each connected to a solid fin, only their joint separation surface changes
shape. The surface starts at the smaller VG height, then increases across the VG,
and decreases towards midway through the flow path. This allows it to repeat for
the next VG, and concurrent VG’s in the periodic flow.
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Partitioning in the x- and y-direction is done, so a path runs along the flow direc-
tion, with different layers set to include VG’s depending on the position of those.
An example can be seen in figure 4.1.

Figure 4.1: Sample top view of the blocks in the solid mesh. The holes in the mesh indicate wherein
the VG is lanced.

Figure 4.2: Sample side view of the blocks in the fluid and solid mesh, respectively.

For partitioning across the flow direction, a layer for each solid tube is made, as
well as on for each VG with accompanying hole. The tubes are given a boundary
layer, and the rest is filled in with buffer layers.

Partitioning in the flow direction is done with regard to the VG. The angle that the
VG fill for the upstream tube is repeated to either side and made to fit with the
geometry boundaries. One line from each tube quarter must also be set to coincide
with the corner of the opposing VG layer, to keep the mesh as hex.

With all the blocks defined, a refinement ratio is put into the script to make sure
the meshing of the blocks gives the cells around the same size. For the given mesh,
a refinement ratio of 1 creates cells with a side length of approximately 0.25 mm
in the x- and y-direction, with no refinement ratio implemented in the z-direction.
Figure 4.3 shows the same view as figure 4.1, but with the meshing of the blocks
implemented. Some of the blocks are modified to have a minimum amount of cells
independently of the refinement ratio, as they otherwise would be too small for
more than one cell in a given direction. The meshing of the fluid block is identical,
except for the lack of tubes and the inclusion of the VG hole, hence it not being
shown.
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Figure 4.3: Sample view of the meshing of the solid. VG has an origin (7.25; 10.75), a length of 4.2
mm, a height of 1.1 mm, and angle of attack 40°. Blocks like the ones for the VG have smaller cells
to accommodate the small block size.

4.2.2 Sample mesh parameters

After the mesh has been generated, they can be checked for different quality pa-
rameters using the OpenFOAM quality utility command checkMesh. The resulting
values should be within certain guideline limits. The limits and values for the
mesh in figure 4.3 can be seen in table 4.2. The parameters skewness and non-
orthogonality are as described by Jasak (1996): An example is shown in figure 4.4
between two cells in 2D. Cell centres are indicated by I and II, while the dotted
lines meet in the centre of the joint face. Skewness is skewness error on the face. It
is defined as:

Skewness = m/d

with m and d being the length of the blue and green line, respectively. Non-
orthogonality is the deviation from 90° for the angle between the red line and the
green.

d

m
I

II

Figure 4.4: Visualization for describing skewness error on the face
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Table 4.2: checkMesh maximum values for both meshes.

Parameter Limit Solid mesh Fluid mesh

Cell count - 27,618 82,362
Aspect ratio 1000 15.2 19.6
Skewness 4 1.663 1.714
Non-orthogonality 65 50.451 50.453

4.2.3 Grid convergence index

To identify how close the simulation results, based on a given mesh, are to the
exact solution, the grid convergence index (GCI) is introduced. The method used
was proposed by Roache (1997) and builds on the Richardson extrapolation. To
determine the GCI, some parameters are needed. The first one is the refinement
ratio r, which tells how much the mesh is refined uniformly in each direction.
Based on the fact that the problem is three dimensional, r is given by:

r = 3
√

gs (4.9)

where gs is the overall multiplication of grid cells between refinements.
Taking the change in results, based on mesh refinement, into consideration, a mea-
sure for the converging speed can be obtained. This parameter is called the con-
vergence rate p. Keeping the refinement ratio constant between different meshes,
p can be described as:

p =
ln
(

φ3−φ2
φ2−φ1

)
ln(r)

(4.10)

where φ3, φ2 and φ1 are solution parameters for three different mesh sizes; coarse,
medium, and fine respectively. The solution parameters chosen for this case are
Nusselt number and loss coefficient.
The two parameters that were just introduced can now be used to describe an
estimate of the exact solution based on a generalized Richardson extrapolation:

φexact = φ1 +
φ1 − φ2

rp − 1
(4.11)

As a measurement of how far away a solution is from the asymptotic numerical
solution, the GCI is introduced. GCI should be as close as possible to zero, showing
that the solution is within the asymptotic range. Taking a look at the fine mesh,
the GCI can be expressed as:

GCI f ine =
FS|ε|

rp − 1
(4.12)

where FS is a safety factor, which is recommended to be 1.25 when comparing three
or more meshes, the relative error ε is given by:

ε =
φ2 − φ1

φ1
(4.13)
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The same procedure can be used for the medium and coarse mesh, by changing
the φ-values one index up.
Two different GCI-values can then be used to check if the solutions are within the
asymptotic range of convergence, by the following equation:

C =
GCImedium

GCI f ine · rp (4.14)

Here a C-value of unity indicates that the solutions are within the asymptotic range
of convergence.

An arbitrary mesh is chosen for this case. The refinement ratio is not entirely
consistent, with r = 1.238 between the coarse and medium mesh, and r = 1.229 be-
tween the medium and fine mesh. The solution parameters are the loss coefficient
and the Nusselt number, given in table 4.3 along with mesh size and convergence
time.

Table 4.3: Solution parameters for the GCI

Parameter Description Value

Coarse Medium Fine Exact
n Number of cells in mesh 145,980 277,268 514,708
t Time until convergence [hr] 9.5 24.4 53.9
Nu Nusselt number 67.9979 63.0155 61.4916 60.8201
ε Relative error 7.91% 3.61% 1.10% -
f Loss coefficient 0.5963 0.6510 0.6929 0.8215
ε Relative error 28.28% 21.71% 16.66% -

Nusselt number Loss coefficient
p Order of convergence 5.640 1.260
GCIfine GCI for medium and fine mesh 0.014 0.250
GCImed GCI for coarse and medium mesh 0.044 0.347
C Asymptotic range of convergence 0.976 1.064

For both solution parameters, the C-value is close to unity, which would indicate
that the solution is close to the asymptotic range. An error band can also be es-
timated using GCI, according to Roache (1994). The error band is calculated as
φexact ± φexact · GCI, and can be seen in figure 4.5 on page 28.

The GCI for the friction is higher, which may be caused by the lower order of
convergence. The medium resolution is, however, still within the error band on the
figure. For the friction, the medium mesh is deemed acceptable. When observing
the sensitivity for the Nusselt number, only the fine resolution falls within the
fine GCI error band, while the medium resolution is outside. As the GCI and
relative error are below 5% for the Nusselt number in the medium size mesh in
table 4.3, this model is also deemed acceptable. This is also caused by the fact that
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Figure 4.5: Sensitivity of the loss coefficient and Nusselt number to the grid resolution.

the computational demand for the finer mesh is infeasible within the given time
frame.
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4.3 OpenFOAM set-up

As many different options exist for using OpenFOAM, the selected are mentioned
in this chapter.

4.3.1 Discretization schemes

The applied discretization schemes are listed in table 4.4. They can also be seen
briefly be explained in Appendix B:

Table 4.4: Discretization schemes used in the OpenFOAM CFD model

Scheme type Method applied

Gradient Gauss <Interpolation>
Divergence:

U/T/k/ε/ω Gauss upwind
νe f f · devT(∇U) Gauss linear

Laplacian Gauss <Interpolation> <Surface normal gradient>
Interpolation Linear
Surface normal gradient Corrected

4.3.2 Applied solvers

For every variable, a solver can be specified. As the solver finds the solution to a
matrix set of equations, a preconditioner is used to make solutions more effective.
These are listed in table 4.5 and are explained briefly in Appendix B.

Table 4.5: Solvers used for each parameter in the OpenFOAM CFD model

Variable Solver Preconditioner

Prgh/P PCG DIC
U BiCGStab DILU
TT BiGCStab Cholesky
G PCG DIC
ε BiCGStab DILU
ω BiCGStab DILU
k BiCGStab DILU

4.3.3 Boundary conditions

For both the solid and fluid mesh, boundary conditions must be defined. The
description here is indicated in figure 4.6. The conditions are listed in table 4.6.
The fluid/solid wall will be all surfaces were the solid and fluid are in contact.
How the individual boundary conditions are set up for variables can be seen in
Appendix B.
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Table 4.6: Boundary conditions set for each type of model surface

Surface type Boundary applied

Fluid mesh

Opening Top/Bottom Symmetry plane
Hole Front/Back Periodic
Fluid/Solid wall Coupled wall
In/Out Periodic

Solid mesh

Tubes Wall
Fin Front/Back Symmetry plane
Solid Top/Bottom Symmetry plane
Fluid/Solid wall Coupled wall
In/Out Periodic

In/Out
In/OutBottom

Top

Front Back

Holes

Inlet
OutletBottom

Top

Front Back

Holes

Tubes

Figure 4.6: Boundaries defined for the fluid and solid mesh, respectively



Chapter 5

Optimisation methods

Since there are many ways to formulate an optimisation problem, there also exist
many algorithms to do the optimisation. Some methods focus more on identify-
ing relevant design parameters, such as a parametric study. These methods will
usually find a way to improve the design but are not guaranteed to find an opti-
mum. Other optimisers will be able to find an optimum, but the type will depend
on whether the optimisation problem is given as a single- or multi-objective prob-
lem. Multi-objective optimisers have a higher computational cost at a high number
of design variables, compared to those for single-objective optimisers. Because of
this, multi-objective problems are often modified to single- objective problems by
changing the performance evaluation criteria. This should be done carefully, as
details will be lost in this simplification procedure.

Performance Evaluation Criteria First of all, the Performance Evaluation Criteria
(PEC) must be determined. For a heat exchanger, interesting parameters could be
the pressure loss across the heat exchanger and the heat transfer. CFD analysis
allows these values to be determined directly, but in an academic setting, it may be
advantageous to describe these effects as dimensionless numbers, like friction fac-
tor f and Colburn factor j, as seen in equations 5.1 and 5.2. These are found using
the pressure drop ∆P, fluid density ρ, the average velocity at the smallest cross-
sectional area umax, outer diameter Do, Nusselt Number Nu, Reynolds number Re,
and Prandtl number Pr.

f =
2 · ∆P

ρ · u2
max
· Do (5.1)

j =
Nu

Re · Pr1/3 (5.2)

To further simplify the optimisation problem, the two factors can be combined
to an expression for thermal performance, like equation 5.3, changing the multi-
objective problem into a single objective one. Here the subscript 0 indicates a flow
without VG’s, and with Re and Pr set as constants, j can be replaced by Nu.

JF =
j/j0

( f / f0)1/3 =
Nu/Nu0

( f / f0)1/3 (5.3)

31
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Pareto optimality For multi-objective optimisation problems a predominant way
of defining optimal solutions is through Pareto optimality. A feasible solution is
Pareto optimal if there are no other points in the solution set that improves one
objective function without worsening another. The set of Pareto optimal solutions
is often called a Pareto frontier, and can be a line or surface depending on the
amount of objective functions.

With the PEC determined, and Pareto optimality explained, a solution method can
be sought.

Parametric study A popular and straightforward approach is to do a parametric
study, investigating different configurations of the variables and noting which con-
figuration gives the best results. This can determine a better solution but does not
guarantee an optimum.

Taguchi The Taguchi method, as explained in Arora (2017), was developed to im-
prove products and processes by reducing a loss function or maximize the Signal-
to-Noise (S/N) ratio, where the signal is the property to improve, and noise is
uncertainty. This results in a robust design. For instance, the S/N ratio can be
defined as in equation 5.4 for N samples when minimizing the loss function.

S/N = −10 · log

(
1
N

N

∑
i=1

JF2
i

)
(5.4)

In the Taguchi method, sampling is done in an orthogonal array, meaning that
it will not consider the interaction between variables. For numerical simulations,
artificial noise must be added to each data point. The solution will then be the
combination of the highest S/N ratio for each variable.

Simplex The Nelder-Mead Simplex method, which is also explained in Arora
(2017), is a direct search method for one objective function. It uses the idea of a
simplex, a figure formed of n+1 points in n-dimensional space. The values are
calculated in each vertex, and moving the figure in the direction of the optimal
point. The solution will converge at a local optimum but is not guaranteed to find
the global optimum. The relevant vertices are the best (xL), second worst (xS), and
worst (xW). Four operations are used: reflection(xR), expansion(xE), contraction(xQ),
and shrinkage. As an example, a 2D simplex is shown in figure 5.1 with points from
all operations except shrinkage. Here the original points form a triangle with the
full red line, and the line between xS and xL will be there consistently. xR shows the
figure with a dashed red line for reflection, while xQ and xE indicate the options
for expansion or contraction using a full black line. All the new points lie on the
dashed black line, indicating the direction of translation for the operations.
First, the centroid (xC) and reflection point are found with their corresponding
function value. If the reflection is better, expansion is tested, moving further along.
If reflection fails, then contraction is tested between reflection and the worst point.
This is either outside or inside contraction, depending on whether the current
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xS

xW

xC

xR

xE

xQ

xQ

xL

Figure 5.1: Different transformations explored by the Nelder-Mead Simplex Method. The original
2D simplex with reflection point is shown in red.

centroid is still in the simplex or not. If none of the other operations are successful,
the simplex is shrunk around the best point, generating a whole set of n new points.
All the operations can be seen in the equations 5.5, with χ being the individual
operation coefficients, and χS indicating the shrink factor:

xC =
1
n

n

∑
k=1

x(k) (5.5a)

xR = (1 + χR)xC − χRxW (5.5b)

xE = (1 + χE)xC − χExW (5.5c)

xQ = (1 + χQ)xR − χQxC (5.5d)

xQ = (1 + χQ)xC − χQxW (5.5e)

x(j) = xL + χS

(
x(j) − xL

)
(5.5f)

The cycle then replaces the worst point, and this continues until a stopping criteria
is met.
The solution of combining PEC to one parameter may not be sufficient in some
optimisation cases, as the solution depends heavily on which variable is weighted
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most. To prevent this, both functions have to be optimised at the same time. The
algorithm must find Pareto solutions, where the improvement of one function leads
to the degradation of the other, resulting in a Pareto optimal set of solutions. It is
then up to the operator to decide which solution to take.

Monte Carlo A method based on random sampling for solving complicated prob-
lems. For optimisation, the method is not good at giving an exact solution but is an
easy way to get a good estimate. The procedure is first to define the optimisation
problem with bounds. The method then samples solutions for randomly sampled
variables and collects them in a set. The best solution in the set is then taken as
the solution. As this method was developed in the 1940s, as told by Eckhardt
(1987), aspects of this method has later been used to develop more refined ways of
applying randomness in optimisation algorithms.

Genetic Algorithm According to Arora (2017), Genetic Algorithm (GA) takes
inspiration from nature by combining current designs to generate a new “genera-
tion” of designs, weighted in favour of the better function values and with added
random mutations to cover more of the design space. This can also be expanded
to include several PEC, allowing it to find a Pareto optimal set. As the solution is
also a set of designs, the problem of not finding a global optimum is minimal.
When deciding how to generate the next set of designs, a fitness function can be
used to give each design a value reflecting how good its function values are. An-
other way to determine is to rank the set on domination. A design is dominated
if another design exists with both function values equal or better. Non-dominated
designs are given a rank of 1 and are then removed. The new non-dominated
designs are then given a rank of 2 and removed, and this process continues un-
til all designs are ranked. The fitness is then inversely proportional to the rank.
Elitist strategy can also be implemented, where a set amount of the best designs
are carried over directly to the next set, to not lose any optimal solutions. Among
the current GA’s a popular one is the Non-dominated Sorting Genetic Algorithm
(NSGA II) which has also been apparent in relevant literature by Lemouedda et al.
(2010) and Tang et al. (2019). A problem with using GA is the amount of function
calls they require. Even though the required population and generation number
depend on the problem, several thousand function calls can be required. Given
that this report deals with CFD, an amount of designs of this order of magnitude
is inappropriate.

Response Surface Modelling To enable the use of algorithms that require many
function evaluations, the complexity of the given functions must be decreased. As
it is not reasonable to decrease the accuracy of the CFD model; a meta-model can
be made, giving similar responses at a lower computational cost. The Response
Surface Method (RSM), as explained by Arora (2017), can generate meta-models
as e.g., a linear or quadratic function of variables. A function is generated that
minimizes the error between the meta-model and sample points from the original
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model. A quadratic approximation can look like equation 5.6, with n variables, the
error ε and ai,j i, j = 0, . . . , n as coefficients.

f =a00 + a10x1 + a20x2 + · · ·+ an0xn + a11x2
1 + · · ·+ annx2

n

+ a12x1x2 + · · ·+ an−1,nxn−1xn + ε (5.6)

To generate a surface from k function evaluations, the coefficients and variables are
converted to vector form:

a00 → d0, a10 → d1, . . . , a11 → dn+1, . . . , an−1,n → dl

x1 → ξ1, . . . , x2
1 → ξn+1, . . . , xn−1xn → ξl

with l as the total number of linear and quadratic terms given as

l = 1/2n(n + 1) + n

The surface coefficients can then be calculated by solving the matrix in equation 5.7,
with ξij i = 1, . . . , k j = 1, . . . , l.
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(5.7)

One thing to note is that the number of sample points should be equal to or greater
than the number of unknown coefficients (l+1). Sampling can be done at random,
or e.g., by orthogonal arrays.

Kriging This method is also known as Design and Analysis of Computer Exper-
iments (DACE). Aside from modelling a response surface, the method also incor-
porates the statistical uncertainty in-between sample points. This allows for the
refinement of the response surface by investigating points with a high probability
of improvement. Jones (2001) describes the different aspects of response surface
optimisation, including ones that incorporate DACE. In engineering applications
DACE has found limited use. According to Simpson et al. (2001) and Simpson et al.
(1998) this might be explained by lack of readily available software, complexity in
fitting the model, or the additional effort required. Giunta (1997) found that DACE
was less accurate compared to RSM, even for highly non-quadratic test cases.

5.1 Choice of optimiser

With the given optimisation problem, it will be an advantage to be able to have the
flexibility to choose between increasing heat transfer capacity and reducing pres-
sure drop. This means that the solution strategy will have to be multi-objective.
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This will exclude optimisation algorithms like Nelder-Mead that focus on one ob-
jective function. As optimisation is desired, methods that only work to improve
will not suffice, leaving out a parametric study and the Taguchi method as well.
This leaves the Monte Carlo, GA and DACE. All of these will require RSM, as
the number of function evaluations in a CFD software will require too much time
or computational power. The Monte Carlo method may be able to find optimal
solutions, but as the process is random, it is not guaranteed, this method will
not be used. As DACE is a more complex method and does not seem to give
a proportional benefit, this report will be doing optimising using GA. As the re-
sponse surface is an approximation, solutions from the Pareto-frontier can then be
returned to the CFD model for verification of an optimum.

5.2 Design of Experiments

With multi-variable optimisation, it is essential to reduce the number of variables
and to that extent, the number of evaluated configurations, to a manageable level.
In chapter 3 it was decided that a reasonable amount of variables should be five
in this case. To reduce the number of evaluated configurations, Design of Experi-
ments (DoE) is a relevant subject to study.

5.2.1 Design methods

With the investigated parameters determined, a sampling method to efficiently
capture the entire design space will be investigated. To limit the computational cost
in acquiring the data, only model complexity up to quadratic will be investigated.
The different DoE listed below come mainly from the book by Cavazzuti (2013).

Full factorial design consists of all possible combinations of w factors for a given
s levels for each factor. This results in a design cost of:

n = sw

The method does not confound the effects of the parameters, but the sample size
grows exponentially with the amount of factors and levels. It is efficient in param-
eters when these are used for polynomial response surfaces, as a 2w design can
give a complete bi-linear design, 3w a complete bi-quadratic design, and so on. An
example of a 33 factorial can be seen in figure 5.2a

Fractional factorial design, Khan (2013) This method seeks to reduce the full
factorial design in varying degrees. For a fraction size of q, the fractional level is
1/2q. The method is confounding, meaning interaction factors cannot be separately
determined from major factors in an experiment. This reduces the amount of
design points, under the assumption that only lower order terms are significant,
by having the higher order and interaction terms confounded by the lower order
terms. If no higher order or interactions exist, this method gives the same result as
a full factorial design.

n = 2w−q
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(a) Full factorial of 3 levels and 3 factors
(
33) (b) Fractional factorial of 3 levels and 3-1 factors(

33−1)
Figure 5.2: Effect of factorial design on a cube of 3 variations (levels) of 3 design variables (factors)

The different levels are categorized in resolutions, depicted by a roman numeral,
e.g.

• a resolution III design has the main effect aliased with the 2-factors effects.
(x1 = x2 · x3)

• a resolution IV design has the main effect aliased with the 3-factors effects,
and the 2-factors effects aliased with each other. (x1 = x2 · x3 · x4 x1 · x2 =

x3 · x4)

• a resolution V design has the main effect aliased with the 4-factors effects,
and the 2-factors effects aliased with the 3-factors effects.

The higher the resolution, the better the results can be expected to be. An example
of a 33−1 design can be seen in figure 5.2b. Another example is shown in table 5.1
has the reduction of a 23 full factorial to a 23−1 fractional factorial. The interaction
between A and B is confounded as variable C, as the product of the levels gives an
identity vector. The two-factor interactions are confounded by main effects, giving
a resolution III design.

Table 5.1: Fractional factorial for a 23−1 design. The products of the levels gives the identity matrix
I.

Experiment Factor level
number x1(A) x2(B) x3 = x1 · x2(C) I = x1 · x2 · x3

1 −1 −1 +1 +1
2 −1 +1 −1 +1
3 +1 −1 −1 +1
4 +1 +1 +1 +1
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Orthogonal array, Arora (2017) An orthogonal array is represented with the no-
tation in equation 5.8, with N number of experiments, n design variable groups, si
levels, ki design variables in the ith group. As an example, L18(2137) would be 18
samples of one two-level variable and seven three-level variables.

LN

(
n

∏
i=1

swi
i

)
(5.8)

The functionality of an orthogonal array is named as such because if high, low and
neutral points are changed to 1, -1, and 0 respectively, the dot product of any two
columns in the array will be orthogonal (0). This method can significantly reduce
the number of design points, but can also omit interactions between terms. An
example of an L9(34) orthogonal array can be seen in table 5.2

Table 5.2: Orthogonal array for 4 design variables with each 3 levels −1, 0, 1.

Experiment # Design variables and levels
number x1 x2 x3 x4

1 −1 −1 −1 −1
2 −1 0 0 0
3 −1 1 1 1
4 0 −1 0 1
5 0 0 1 −1
6 0 1 −1 0
7 1 −1 1 0
8 1 0 −1 1
9 1 1 0 −1

Central composite design This design combines a two-level full factorial design
with a central point and axial points from the centre to each of the factors. The
resulting number of points required are:

n = 2w + w · 2 + 1

An advantage in this method is that it can be done as a continuation from a two-
level full factorial screening that can have determined significant parameters. The
design can be done with different distances for the axial points. Central Composite
Circumscribed (CCC) has the axial points the same distance from the centre as the
corner points. Central Composite Faced (CCF) the values remain on the same level
as the corner points. If the corner points already reach the limits of the design
space, CCF prevents the axial points from breaking these limits. An example of
CCF can be seen in figure 5.3a.

Box-Behnken design This design only has central points as well as points on the
centre of the edges of the given hypercube. For a given amount of factors, the
required Box-Behnken points can be seen in table 5.3:
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(a) Central Composite Faced design of three levels and
three factors

(b) Box-Behnken design of three levels and three fac-
tors

Figure 5.3: Additional designs reducing 33 full factorial, while still containing enough information
for a quadratic model

Table 5.3: Examples of required points in a Box-Behnken design

Factors Experiments (w. centre point) Coef. in quadratic model

3 13 10
4 25 15
5 41 21
6 49 28
7 57 36

An example of a 3-dimensional Box-Behnken design can be seen in figure 5.3b

Latin Hypercube The design space is subdivided into an orthogonal grid with N
elements of the same parameter length. Within the grid, N sub-volumes are set so
that along each dimension, only one sub-volume is found.

5.2.2 Summary of DoE Techniques

To decide on which type of DoE should be used, Cavazzuti (2013) has given a table
with an overview of the relevant applications. Mentioned techniques are shown
in table 5.4. Since this report will focus on quadratic response surface modelling,
Box-Behnken is chosen as the DoE technique, as it reduces the number of required
experiments, while still delivering the required solution of the design space.
The Box-Behnken design and Central composite methods both allow for quadratic
models with interaction, as well as requiring a low number of experiments. The
advantage of screening with Central composite does not contribute if all variables
are significant, so the number of experiments will be the main choosing criterion.
For 4 variables the number is the same, but for 5, Box-Behnken requires 41 com-
pared to Central composites 43. For this reason, Box-Behnken will be the applied
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Table 5.4: Summary of different DOE techniques

Method Number of experiments Suitable for:

Full factorial sw Computing main and interac-
tion effects, building response
surface

Fractional factorial sw−q Estimate the main and interac-
tion effects

Orthogonal Array Chosen Compute main and quadratic
effects, no interaction

Central composite 2w + 2 · w + 1 Building response surface
Box-Behnken From table 5.3 Building quadratic response

surface
Latin Hypercube Chosen Building response surfaces

DoE technique.

5.2.3 Feasibility of chosen design

To prevent the sampled designs from the Box-Behnken method from appearing in
the tubes, they are visualized with the given boundaries in figure 5.4. Here a Vortex
generator (VG) is shown in all given configuration, along with the hole acquired
from lancing, in a clockwise direction. The tubes are also shown in red, with a blue
margin of 10% extra to see if the VG will interfere with boundary meshing.
As can be seen in the figure, two designs are completely inside a tube, making
them infeasible. For the two clusters of six designs in the top left, most are barely
infeasible, while a few only infringe on the safety margin in blue. Of the mid
right designs, one infringes on the margin area. Infeasible designs should not be
removed, as this will give less information to the optimisation. Instead, the possi-
bility of moving the points elsewhere is proposed.
The infeasible clusters are moved 0.25 · Do in the X and Y direction, towards the
flow diagonal. The infeasible corner designs are moved in the same direction un-
til they are free from the infeasible zone, with 0.5 · Do for the bottom right, and
0.75 · Do for the top left. These changes can be seen in figure 5.5. Only two of
the 41 designs infringe on the safety margin, but as this is mainly put in place
for ease of meshing, they should not cause problems in manufacturing. With the
given levels and limits to variables, the applied design (with results) can be seen
in appendix A.2.
It should be noted that the new design does not guarantee the same resolution
of the objective space as the original Box-Behnken design. As the infeasible de-
signs were moved to positions of interest, the resolution should hopefully still be
satisfactory.
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BoxBehnken Design vs. Design space with 10% safety factor

Figure 5.4: All possible VG configurations for the given boundaries and Box-Behnken design method.
VG with holes are shown as black triangles, tubes in red, and safety factor in blue.

5.3 Non-dominated Sorting Genetic Algorithm II

A popular genetic algorithm that has been proposed by Deb et al. (2002) is the
NSGA II. It is based on the original NSGA from Srinivas and Deb (1994), but im-
proves it by reducing the sorting complexity, introducing elitism, and adding a
crowding distance to prevent clustering on the Pareto frontier. At the time of the
publication of the algorithm, it was found to outperform two other similar algo-
rithms; Pareto-Achieved Evolution Strategy (PAES) and Strength Pareto Evolution-
ary Algorithm (SPEA). A flowchart of the implemented algorithm can be seen in
figure 5.6. A MATLAB implementation by the name of NGPM (an NSGA-II Pro-
gram in Matlab) was found from Lin (2011) and modified to fit the current purpose
better. In the following sections, the relevant operations are explained.

5.3.1 Non-dominated Sorting Approach

To determine which solutions to promote as parents for generating the next gen-
eration of children, a ’fitness’ value must be determined for the entire solution set.
Fitness is determined by ’domination’, where one solution is dominant over an-
other if all its objective values are equal or better than the others. Each solution is
given a scalar np showing how many other solutions dominate it, and a vector sp

with the identifiers of the solutions, it dominates. Solutions with np = 0 are given
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BoxBehnken Design v2 vs. Design space with 10% safety factor

Figure 5.5: View of modified Box-Behnken design space to prevent infeasible designs. VG with hole
is shown as black triangles, tubes in red, and safety factor in blue.

the rank 1. For the rest of the set, if a solution was dominated by one of rank 1,
its np loses a counter. Solutions that now have np = 0 are given rank 2, and this
continues until the solution set is ranked.
If constraints are also included in the objective space, the number of violated con-
straints and the sum of the violations must also be used. For ranking, infeasible
solutions are dominated by feasible ones. If both solutions are infeasible, the one
with the smallest violation sum is dominating.
Each rank forms a front in the objective space that will move toward the Pareto-
front. To prevent these fronts from clustering, a crowding distance is calculated for
each rank. Solutions with the highest and lowest objective values are the endpoints
of the front and are given a crowding distance of infinity. For the rest, the distance
is the sum of the normalized distance between neighbouring solutions. An exam-
ple of how a set of feasible ranks would look like can be seen in figure 5.7. The
crowding distances ∆ f is shown for the circled individual. It is taken as the sum
of the normalized distances.
The entire population is then sorted according to the lowest rank, with the high-
est crowding distance resolving ties. The code for sorting can be found in ap-
pendix III.2.
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Figure 5.6: Flowchart of the implemented NSGA II. Dark blue boxes indicate dub-function calls.

5.3.2 Tournament Selection

With the parent solutions generated and ranked, the best are chosen for crossover
and mutation. This is done using binary tournament selection. Two random so-
lutions are compared, and the best are added to the mating pool. The evaluation
criteria are primarily rank, followed by crowding distance in case of ties. The two
parents are not removed from the set of potential parents, meaning that they can
be chosen again. This process continues until there are parent solutions equal to
the population. Constraints need not be considered here, as it is inherent in the
ranking from the nondominated sorting. Matlab code for this part can be seen in
appendix III.3

5.3.3 Crossover and Mutation

NSGA II utilizes the simulated binary crossover (SBX) operator for generating off-
spring. Crossover is set to be the major factor for generating a new set of designs,
while mutation is only a minor part to expand the search area. In this implemen-
tation, for every variable of every parent in the mating pool, there is a 90% prob-
ability of crossover, while there only is a 10% probability of mutation. Crossover
is done sequentially on the randomly sampled parent pool, taking two parents at
a time. The same is then done for mutation, for the same pool already contain-
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Figure 5.7: Different fronts generated during NSGA-II, and ranked according to domination. Crowd-
ing distance is shown for a single individual of rank one.

ing crossover results. This gives a 9% probability for both no operations and both
operations. After each operation, the solutions are compared to the variable lim-
its. Variations that exceed the design space limits are set to the limits, to prevent
solutions that violate the design space. The code used in Matlab can be seen in
appendix III.4 and III.5

Crossover The SBX Operator is set with a distribution index, ηc, of 5, where
small values generate a flatter distribution, resulting in offspring far away from
the parent solutions. Equation 5.9 and 5.10 determine the kth design variable of
each child c from parents p. The spread factor σc comes from a distribution in
equation 5.11, that is formed by ηc and sampled from a random number rand
between zero and one. The function and resulting distribution density can be seen
in figure 5.8a and 5.8b on page 46.

c1,k = 0.5 [(1 + σc) p1,k + (1− σc) p2,k] (5.9)

c2,k = 0.5 [(1− σc) p1,k + (1 + σc) p2,k] (5.10)

σc =

(2 · rand)
1

ηc+1 if rand ≤ 0.5(
1

2·(1−rand)

) 1
ηc+1

otherwise
(5.11)

Mutation Mutation is done through polynomial mutation, meaning every design
variable is changed by a random amount, with the strength determined from a
distribution with the mutation distribution index ηm of 5. Only one parent is
used, determining each design variable k using equation 5.12, with the spread
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factor σm,k, and the upper and lower variable limits limu,k and liml,k. The variation
is determined from the distribution equation 5.13, which is formed by ηm and
sampled from a random number randk between zero and one. The function and
resulting distribution density can also be seen in figures 5.8a and 5.8b on page 46.

ck = pk + (limu,k − liml,k) · σm,k (5.12)

σm,k =

{
(2 · randk)

1
ηm+1 − 1 if randk < 0.5

1− [2(1− randk)]
1

ηm+1 otherwise
(5.13)

5.3.4 Combination and culling

To make sure that elitism is implemented in the algorithm, the offspring and the
original population are added to the same intermediate set. This prevents the best
designs from being discarded. From here the intermediate set is sorted using the
same nondominated sorting method as earlier.
To keep the population at a stable number, the intermediate population is reduced
to the size of the original population. Each rank in ascending order is added to the
next population. When the size of the next rank is larger than the remaining places,
only the ones with the best crowding distance are added. A visual representation
of the elitism can be seen in figure 5.9.

After this procedure, the stopping criteria is checked, and the algorithm either
returns to generate the next generation, or it stops, saves the current generation
and plots the resulting Pareto-solutions. The current stopping criterion is that the
designated number of generations is reached.
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Chapter 6

Validation of methods

To make sure the chosen methods are applicable, they will be tested for simple
cases. The CFD model will be tested for validity on a staggered tube bank with-
out implemented Vortex Generators (VG’s). The multi-objective optimisation algo-
rithm, as well as the surrogate model, will be tested on two different test functions.
These functions are chosen to best reflect aspects of the given problem; continuous
behaviour and constraints. As the RSM gives a quadratic function to be solved, the
problem is assumed to be convex. The utilized generations and populations for
the solutions will be given for each test function.

6.1 CFD model

To validate the OpenFOAM model, a version without VG’s is constructed. The
model is then run with the same settings, and the result can be compared to ref-
erence work. The geometry, in this case, is equivalent to flow in a staggered tube
bank with continuous fins, with data for validation taken from VDI (2010). The
modelled region is shown in figure 6.1.

Figure 6.1: Velocity profile of the modelled tube bank without VG implementation.

The model indicates a bulk Nusselt number of 64.9185 for the entire region, with

49
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a friction factor of 0.6415 and at a Reynolds number of 10, 754.7. For the given
geometry size, the book indicates a Nusselt number of 62.6873. This is valid for in
a range of 103 ≤ Re ≤ 105 with an accuracy of ±10%−±25%. The numbers result
in deviance of 3.56% between the model and the reference work. A deviation of
this magnitude is deemed reasonable, as it falls within the accuracy range.

6.2 Constraint Handling

To test how constraints are handled in NSGA II for the direct solution, as well as
on a quadratic approximation, a test function is taken from Deb et al. (2002). The
function is called CONSTR and features a multi-objective optimisation problem,
which is also influenced by constraints and is shown in table 6.1.

Table 6.1: Test problem for multi-objective optimisation with constraints.

Range Objective function Constraints

x1 ∈ [0.1, 1.0] f1(x) = x1 g1(x) = x2 + 9x1 ≥ 6
x2 ∈ [0, 5] f2(x) = (1 + x2)/x1 g2(x) = −x2 + 9x1 ≥ 1

The solution is first done directly in the NSGA-II algorithm. Afterward, a response
surface is made from a full factorial design, where the new function values are
also translated into the constraints. This means that the result from the quadratic
approximation will search for another optimum under the same constraints. Both
solutions in both objective- and design space can be seen in figure 6.2 after 100
generations with a population of 50. The objective space is limited by the search
domain; the upper boundary ub and the lower boundary lb. This is also the case
for the design space, but in this case, this is determined by the plot limits.
For the direct solution on figures 6.2a and 6.2b, the Pareto frontier is found on the
constraint g1 and lb, with endpoints at the constraint g2 and ub.
The quadratic response surface solution is also within the feasible domain, but as
seen on figures 6.2c and 6.2d, the Pareto frontier is different. As lb has a different
shape in the objective space, solutions along this boundary are not included, giving
only solutions on g1. The solution also brings new bounds for the objective space,
hence the different y-axis in figure 6.2c.
The set of solutions in figure 6.2d are included in the set of solutions from fig-
ure 6.2b. This means that in this case, the response surface method can find sim-
ilar Pareto optimal solutions to a direct case, albeit not necessarily with the same
spread.

6.3 Zitzler-Deb-Thiele functions

To test Response Surface Modelling (RSM) on other functions, two test functions
from Zitzler et al. (2000) are applied, ZDT1, and ZDT2. These are generated to
make it difficult for genetic algorithms to converge. The general function descrip-
tion is shown in table 6.2, where the difference in the two functions depends on
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Figure 6.2: Solutions to the CONSTR function for a quadratic RSM and direct solver. Infeasible
regions are indicated by gray.

the description of f2. In the equations, m is the number of variables, of which there
should be 30. The analytical solutions are at g(x) = 1.

Table 6.2: Zitzler-Deb-Thiele test problems 1 and 2 for unconstrained multi-objective optimisation.

Range Objective function Subfunctions

xi ∈ [0, 1] f1(x1) = x1 g(x2, . . . , xm) = 1 + 9 ·
m
∑

i=2
xi/(m− 1)

(ZDT1) f2(x) = g · h2 h2( f1, g) = 1−
√

f1/g
(ZDT2) f2(x) = g · h2 h2( f1, g) = 1− ( f1/g)2

As a response surface of m = 30 variables has 931 coefficients, it is instead gener-
ated for m = 2. As the problem is only constrained by the design variable bounds,
constraints cannot be shown. Furthermore, an analytical solution of g(x) = 1
means that the optimal solution exists for all x1 with x2, . . . , xm = 0. This means
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that the solution is the lower design variable bound. Comparing solutions in the
design space will consequently not give much information, as x2, . . . , xm = 0 is
true for both solutions. Nonetheless, the design space is compared in figures 6.3b
and 6.4b. As there are many more variables in the direct solution, views may be
skewed.

The results are shown in figures 6.3 and 6.4. As the figures show, NSGA II con-
verges at the Pareto optimal solution in both cases. The RSM, however, cannot
capture the functions on a quadratic form, so those solutions will not coincide
with the Pareto-frontiers. Furthermore, the quadratic approximations work as in
section 6.2 in that they will have their own optimal and boundaries. This is appar-
ent from figure 6.3a and 6.4a.
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Figure 6.3: Solutions to the Zitzler-Deb-Thiele functions 1 for a quadratic RSM and direct solver.
Infeasible regions are indicated by gray.

The comparisons between the solutions in the design space show that the direct
solutions are further from the optimal of 0 after the given 700 generations. This
may be explained by the direct solution having to optimise 30 variables compared
to the response surfaces two. For ZDT in figure 6.3b, the mean of this specific set
of solutions x2, . . . , xm is 934.12× 10−6, with median value 0. The solution to ZDT2
in figure 6.4b has a mean of this specific set of solutions x2, . . . , xm of 470.75× 10−6,
also with median value 0. So while some variables are non-zero, the majority is
zero at this point.

From these test functions, it can be seen that RSM does not give an exact model
of the given function. Solving for a solution can give model solutions similar to
the direct solution method, but does not guarantee that the entire Pareto frontier is
found. As a direct optimisation is not feasible, with CFD as the objective function,
the figures show that RSM can give some solutions close to the Pareto-frontier.
CFD can then be utilized to check the validity of the RSM results.
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Chapter 7

Results and discussion

With the validation of the models done, the CFD model is run through the 41
different configurations, as indicated in table A.1, as well as with a reference case
of plain fin geometry, which has a mesh with similar characteristics to the VG-
cases. The simulation runs on a work station with a processor frequency of 3.5
GHz and 16 cores.
Relevant data from these runs can be seen in appendix A.2, with the given design
variables and the resulting performance evaluation ratios.

7.1 CFD model

The modelled fields of interest are the velocity, temperature, and pressure differ-
ence field. These can be investigated to see if the models give relevant results and
illuminate flow phenomena. As a baseline, the configuration with mean design
variables, which is number 21 in table A.1, can be investigated. Four graphical
representations are chosen to highlight the solutions; two slice- representations of
the pressure and temperature field, a velocity vector field, and the surface temper-
ature of the fin. The selected representations can be seen in figure 7.1 on page 56.

The pressure difference field does not give much information; pressure is high
where the velocity is low, and vice versa. The VG’s do not seem to generate a
significant change to the pressure difference field. From the velocity vectors, there
is a slight indication that the VG slows down the flow and directs it a bit more
behind the tubes. Slow recirculation zones appear behind the tubes, which is to be
expected. In the temperature field, the cooling from the VG’s is visible for the first
VG, where the temperature field shifts near it. When looking at the temperature
of the fins, the temperature is higher far away from the VG’s, indicating that the
VG’s may transport the exchanged heat efficiently into the fin.

Other configurations of interest are the best and worst case scenarios. These can be
found by plotting the resulting data and looking for solutions of high Nu and low
f, and low Nu and high f. For the given points, this can be seen in figure 7.2. In the
figure, some of the better solutions are configuration 5, which seems to improve a

55



56 Chapter 7. Results and discussion

Figure 7.1: Graphical representations of VG configuration 21. Shown in order are; pressure difference
field (Unit [m2/s2]), velocity vectors (Unit [m/s]), temperature field (Unit [K]), and fin temperature
(Unit [K]).

lot in both parameters, 1, which has the highest heat transfer, and 26, which has
the lowest loss coefficient. Some of the worst solutions are 17, which has the lowest
heat transfer, and 16, which has the highest loss coefficient. The difference in fields
can be highlighted to show potential trends to improve heat transfer and reduce
pressure loss, respectively.

The temperature fields of configuration 5, 17, and 1 are shown in figure 7.3 on
page 58. Solution 5 has the warm part of the stream well distributed across the
flow channel. The wakes of the VG’s are also visible and shows how they con-
tribute to cooling the fluid. Solution 17 has a higher temperature in the middle of
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Figure 7.2: Comparison of the tested design configurations, normalized to the reference case.

the flow channel but also has the hot region close to the middle part of both tubes.
Solution 1, the one with the highest Nusselt number, also has the hot region well
distributed across the flow channel. The VG’s here are larger than for configuration
5, so heat may be better exchanged at the cost of extra surface friction. The increase
in heat transfer is also apparent in the temperature of the fins, shown in figure 7.4.
Here configuration 5 and 17 are compared, and it can be seen how the placement
of the VG change how well heat is transferred to the fin. This information could
be an indicator of a good VG location.

Comparison of the velocity streamlines of configuration 5, 16, and 26 can be seen in
figure 7.5 on page 59. Configuration 5 has the smaller VG’s of the compared group.
They are located near the end of the high-velocity regions next to the side of the
tubes. The angle leads the flow behind the tubes to some degree. Configuration 16
has larger VG’s at a steeper angle to the flow direction. The VG’s are also placed
behind the tubes, with only the tip in the high-velocity region. The model would
suggest that this creates more heat transfer, but also comparatively more friction.
Configuration 26 has the VG’s inside the high-velocity region as well, but at a less
steep angle compared to the other two configurations. If the flow is affected here,
it is mostly directed toward the side of the tube. This could mean that the VG’s, in
this case, work more as a surface for heat transport than a way to direct the flow.
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Figure 7.3: Comparison of the temperature field in the middle of the geometry for configuration 5,
17, and 1. Temperature is in [K].

Figure 7.4: Comparison of the fin temperature for configuration 5 and 17. Temperature is in [K].
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Figure 7.5: Comparison of the velocity field for configuration 5, 16, and 26. Velocity is in [m/s].

7.2 Optimisation

The chosen design of experiments of a modified Box-Behnken design, combined
with the upper and lower limits of the design variables, can be seen in appendix A.2,
table A.1. To also help identify the modified part of the design, levels are shown in
parenthesis for each design variable.
The data is applied in a Response Surface Model (RSM) to give the quadratic func-
tions in equation 7.1 and 7.2.

f / f0 = 0.8396 + 0.0165 · dx + 2.6e-3 · dy + 0.0218 · l + 0.2132 · h− 1.5e-3 · α (7.1)

− 1.5e-3 · d2
x − 1.7e-3 · d2

y − 2.9e-3 · l2 − 0.1428 · h2 + 2.4e-5 · α2

+ 2.3e-3 · dx · dy + 1.4e-4 · dx · l + 1.7e-3 · dx · h− 2.1e-4 · dx · α
+ 1.1e-4 · dy · l + 8.5e-5 · dy · h + 1.5e-5 · dy · α
− 5.1e-5 · l · h− 1.2e-4 · l · α + 3.0e-3 · h · α
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Nu/Nu0 = 0.2500− 3.3e-3 · dx + 0.0315 · dy + 0.0513 · l + 0.7150 · h + 9.9e-3 · α
(7.2)

− 3.7e-4 · d2
x − 1.7e-3 · d2

y − 5.5e-35 · l2 − 0.2522 · h2 − 2.6e-5 · α2

+ 1.6e-3 · dx · dy + 1.6e-3 · dx · l − 8.0e-3 · dx · h− 1.8e-4 · dx · α
− 1.7e-3 · dy · l − 2.8e-3 · dy · h− 2.9e-4 · dy · α
+ 7.9e-3 · l · h− 3.7e-4 · l · α− 5.8e-4 · h · α

Numbers in power notation are truncated at two digits. A longer format of the
numbers can be found in Appendix A.3, table A.2, and A.3.
To check whether all of the parameters are significant, the RSM is put through
multiple regression in the open source software R. This will indicate how much
of the data set can be explained by the model, and how significant each of the
coefficients are. If some parameters are found to be very insignificant, they can be
removed to reduce the model’s complexity without the loss of significant informa-
tion. This will be monitored by looking at each new models R-square and adjusted
R-square. The regular R-square will decrease as parameters are removed, but as
the adjusted R-square is dependent on parameter count, and may increase, in the
beginning. The reduction will be applied to the most insignificant variable until
the adjusted R-square does not increase anymore. To check the predictive power
of the models, they are compared to the sampled data in figure 7.6, with model
data in Appendix A.3. The full line indicates values that are precisely estimated,
while the dashed lines indicate a 10% error margin. As all values fall within the
margin, the models are determined to be applicable. The loss coefficient model
has a multiple R-squared of 0.8747, an adjusted R-squared of 0.7494, and a p-value
of 2.98e-05. The Nusselt number mode has a multiple R-squared of 0.8315, an ad-
justed R-square of 0.6631, and a p-value of 3.851e-04.

The models are then reduced through multiple regression to remove insignificant
variables. For equation 7.1, seven interaction terms are removed, resulting in a mul-
tiple R-square of 0.8710, an adjusted R-square of 0.8089, and a p-value of 8.897e-09.
This is shown in equation 7.3.

f / f0 = 0.8280 + 0.0188 · dx + 3.7e-3 · dy + 0.0191 · l + 0.2301 · h− 1.9e-3 · α (7.3)

− 1.5e-3 · d2
x − 1.7e-3 · d2

y − 2.9e-3 · l2 − 0.1428 · h2 + 2.4e-5 · α2

+ 2.3e-3 · dx · dy − 2.1e-4 · dx · α + 3.0e-3 · h · α

For equation 7.2, four interaction terms are removed along with two quadratic
terms. This results in a multiple R-square of 0.8182, an adjusted R-square of 0.7203,
and a p-value of 2.125e-06. This is shown in equation 7.4.
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Figure 7.6: Predicted response surface model values compared to calculated data. The dashed red
lines indicate a 10% margin of error.

Nu/Nu0 = 0.4995− 6.2e-3 · dx + 0.0274 · dy + 0.0271 · l + 0.5364 · h + 5.6e-3 · α
(7.4)

− 1.3e-3 · d2
y − 3.3e-3 · l2 − 0.1743 · h2

+ 1.1e-3 · dx · dy + 1.6e-3 · dx · l − 8.8e-3 · dx · h− 1.8e-4 · dx · α
− 1.7e-3 · dy · l − 2.9e-4 · dy · α

To again check the predictive power of the models, they are also compared to
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the sampled data, seen in figure 7.7. The data for the models can be seen in
appendix A.3.
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Figure 7.7: Predicted reduced response surface model values compared to calculated data. The
dashed red lines indicate a 10% margin of error.

The friction does not seem to be significantly changed, but the reduced model for
the Nusselt number seems to be closer to the fitted line. This gives two sets of mod-
els to optimise around; the full quadratic model with the higher R-square value,
and the reduced models, that better fit the utilised data and have a higher adjusted
R-square.

These two sets of two equations are then implemented in the NSGA-II algorithm as
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the objective functions. Constraints are also implemented similar to the procedure
from 3.1. This is done with a 10% margin from the outer tube walls, resulting in
six overall constraints; three corner points for the lanced hole constrained for two
tube walls in the design space.

After some initial testing, the algorithm is set to run with a population of 200 for
1000 generations. The resulting Pareto frontiers can be seen in figure 7.8 and 7.9.
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Figure 7.8: Solution set from the NSGA-II optimisation of the full quadratic model.

From figure 7.8 it can be seen that the algorithm for the full model has a small
set of unlikely solutions, as the implementation of a VG decreases loss coefficient
and heat transfer, something not apparent from any of the modelled points. The
best solution appears at the top end of the Pareto-front. This point indicates an
improvement in Nu of ≈ 25%with an increase in f of ≈ 7%. The sectioning of the
front is likely caused by different parts of it being subject to different boundaries
on the design variables. The given Pareto set can be sectioned into four parts,
with the middle block divided at the bend around f/f0 = 1.06. Each part can then
be analysed to show which variable bounds are met if any. This is indicated in
table 7.1. The best part of the front seems to be the solutions which use the highest
allowed h and α. This could indicate that better solutions may exist beyond these
bounds.
In figure 7.9, most of the Pareto-front is spread out over the unlikely results of
the reduction in heat transfer and loss coefficient. The best solutions only seem to
indicate an improvement in Nu of ≈ 2% with an increase in f of ≈ 7% as well. This
Pareto set can be sectioned into six parts, with the bottom and top blocks block
divided at their bends around f/f0 = 0.9 and f/f0 = 1.07 respectively. Each part can
again be analysed to show which variable bounds are met if any. This is indicated
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Table 7.1: Boundaries met for the full RSM Pareto set.

part # dx dy l h α

1 - 16 (1) 6 (1) 0.8 (-1) 20 (-1)
2 - - 2.4 (-1) 0.8 (-1) 20 (-1)
3 - - - - 20 (-1)
4 - - - 1.4 (1) 60 (1)
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Figure 7.9: Solution set from the NSGA-II optimisation of the reduced model.

in table 7.2. The indication here is that both solution-sets share boundary sets in
their parts. Boundaries for part one, two, and three from the full model are the
same as part one, five, and six from the reduced model. What the reduced model
lack is the high Nu/Nu0 part four from the full model, while it has more solutions
in-between that are not so optimal.

Table 7.2: Boundaries met for the reduced RSM Pareto set.

part # dx dy l h α

1 - 16 (1) 6 (1) 0.8 (-1) 60 (1)
2 - 16 (1) 6 (1) - 60 (1)
3 16 (1) 16 (1) - 1.4 (1) 60 (1)
4 16 (1) - 2.4 (-1) 1.4 (1) 60 (1)
5 - - 2.4 (-1) 0.8 (-1) 20 (-1)
6 - - - - 20 (-1)
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As the optimisation of the full model predicts better improvements, the full quadratic
model will be used continuing forward. Select data from the Pareto solution set
can be seen in appendix A.4, table A.6.
To evaluate the solution from the optimisation algorithm, the best-predicted config-
uration is taken from the solution set and used for a CFD model. The configuration
and solution can be seen in table 7.3.

Table 7.3: Sample result from the optimisation algorithm, tested in CFD. Parameter value is indicated
in parenthesis.

Parameter Description Value Unit

dx Transversal position of VG 6.3857 (-0.3735) mm
dy Longitudinal position of VG 5.2091 (-0.5416) mm
l Length of VG 2.9018 (-0.7212) mm
h Height of VG 1.4 (1) mm
α Angle of attack 60 (1) °

fest Estimated f / f0 1.0720 -
fmod CFD modelled f / f0 1.0929 -
ε f Relative Error 1.91 %
Nuest Estimated Nu/Nu0 1.2407 -
Numod CFD modelled Nu/Nu0 1.2414 -
εNu Relative Error 0.06 %

The selected representations of the chosen solution can be seen in figure 7.10 on
page 66. The pressure difference field is again not that indicative of the influence
of the VG. It is, however, possible to see a slight increase in pressure on the front
side of the second VG. On the velocity vectors, it can be seen how the VG’s slow
down the flow, and change the direction of it visibly. This might also cause a lower
velocity near the tube walls, preventing pressure loss due to friction. The tempera-
ture field shows how the wake of the VG’s helps distribute the temperature across
the flow region. This can be seen as the central temperature switches from yellow
to green. Looking at the temperature field in the fins, it appears that the VG’s are
placed near the end of the hot region, making the upstream side colder than the
downstream one. This could also be an indication of a good VG location.

7.3 Further discussion

The solution given in figure 7.10, along with the data presented in table 7.3 indi-
cates that the optimal solution, that the algorithm found on the RSM, is very close
to the values found in the CFD model. This is a good indicator that this approach
will be able to yield better solutions to similar optimisation problems.

The validity of the CFD model was also shown to be good, as the modelled refer-
ence results were within the accuracy of applied literature. To better predict the
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Figure 7.10: Graphical representations of VG configuration in the chosen Pareto solution. Shown in
order are; pressure difference field (Unit [m2/s2]), velocity vectors (Unit [m/s]), temperature field
(Unit [K]), and fin temperature (Unit [K]).

results, a Large Eddy Simulation could have been used to resolve potential smaller
scale eddies. This would also mean another closure model, but LES would most
likely only be necessary if very precise solutions would have to be modelled, and
could also include experimental validation at that point. This is also only a possi-
bility if more computational resources are available, as this thesis found RANS to
be a suitable compromise between accuracy and computational power.
Furthermore, for meshing purposes 10% of the VG tip was removed from the ge-
ometry. Even if the impact has been insignificant, it does mean that the mesh does
not completely resemble the geometry. A different meshing strategy could allow
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for the complete geometry to be modelled.

The CFD model was run using FOAMExtend 4, as the implementation of con-
jugate heat transfer under the desired conditions was not available in the other
versions of OpenFOAM. This meant that some of the normally available schemes
and solvers were not compatible with the model. If newer versions of OpenFOAM
include conjugate heat transfer in their software, other settings could be an area
of investigation, so that this endeavour might be more easily accomplished in the
future.

The model was done under periodic assumptions, but to also reduce the amount
of variables, the two VG’s were assumed to be identical relative to their respective
tube wall. If results from Salviano et al. (2016) are to be any indicator, the VG’s
may have optimal settings that are asymmetrical. This could again be done by us-
ing more computational power. In this case, the reduction of the response surface
may be more advantageous, as the number of coefficients could increase above 100.

Roll angle is also a parameter that could have expanded the model. This would
also be in line with the modelling of the holes, as the roll angle may induce more
flow in the z-direction.

As the final modelled Pareto solution has its angle of attack and VG height at
the upper variable bound, further investigations could try to move the search area
more in this direction. This may uncover even better optimisation points, that were
outside of the scope of this thesis.

The GCI for the chosen mesh refinement was only low for the Nusselt number,
while the value for the loss coefficient was further from the Richardson extrapo-
lated one. Either a new meshing strategy or a higher rate of refinement could be
applied to make sure the mesh has the correct refinement. This would also require
higher computational power, as the cell count could increase significantly.

For the choice of optimiser, DACE was rejected due to its lack of availability and
applicability in multi-objective optimisation. Software is available for applying
DACE to data, but the possibility of implementation in genetic algorithms was not
apparent. This could have proven to be a better alternative, but as the RSM already
were at a high R-square and through the optimiser gave a result very close to the
modelled values, this might not be worth investigating in this case.

The validation of the optimisation methods shows that the NSGA-II adequately
works on the test problems. The RSM was shown not completely to represent the
functions in the objective space, but gives optimal solutions in the design space.
This trend was also more apparent in the case of a full quadratic model, compared
to a reduced one.
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7.4 Further studies

As the validation through GCI indicated, the mesh was only within the error bands
for the loss coefficient. To get the Nusselt number within these, a finer mesh was
required, which was not feasible to model with the given time frame. This could be
improved by either refining the mesh several times and invest more computational
power and time, or by investigating if other factors could prevent the solution
from converging at a reasonable rate. The investigation could look at aspect ratio
or skewness of the cells. The meshing strategy could also be reworked to include
triangular polyhedrals, allowing the VG to be modelled with the front tip as well.
When applying the DoE for the Box-Behnken design, some of those designs were
infeasible due to their placement inside the tubes. If a method of mathematical
surface transformation could be applied to properly place all the VG’s within the
feasible area while still keeping the correct spread, this could improve eventual
surrogate models in future investigations.



Chapter 8

Conclusion

This thesis sought to apply parametric optimisation and CFD modelling on the
implementation of VG’s in a fin and tube heat exchanger. This led to the problem
statement to be answered:

Which configurations of VG’s in staggered fin-tube heat exchangers give an optimum
between maximal heat transfer and minimal pressure drop?

A CFD model using conjugate heat transfer was implemented for a representative
geometry under the assumption of periodic boundary conditions. The model was
validated with reference work to be within ≈ 4% of the predicted value of the
Nusselt number, with the reference work having an accuracy of ±10%.
The NSGA-II optimisation algorithm was tested for constraint handling and op-
timisation of the Zitzler-Deb-Thiele optimisation test problems 1 and 2. Both the
constraint handling and test functions gave valid solutions within the design space.
For the given geometry, 41 different configurations were modelled, and from the
given performance evaluation parameters, response surfaces were calculated. The
models showed a multiple R-square of 0.8747 and 0.8315, with p-values of 2.98e-05
and 3.851e-04 respectively. The implementation in NSGA-II yielded a set of Pareto
optimal solutions, with a portion within optimising range.
The optimal solution from the Pareto set was implemented in the CFD model to
validate the optimisation result. Fields of interest can be seen in figure 7.10, with
configuration data in table 7.3. The CFD model showed that the optimisation had
a deviation of 1.91% on the loss coefficient and 0.06% of the Nusselt number, for a
loss coefficient increase of 1.0720 and a Nusselt number increase of 1.2407.
As a heat transfer increase of ≈ 24% at a pressure drop increase of ≈ 7% is seen as
a valuable increase in performance, this thesis can conclude that optimal configu-
rations which compromise between high heat transfer and low pressure drop can
be determined.
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Appendix A

Model data

A.1 Figures of temperature and velocity

This section contains the velocity and temperature fields, as well as the veloc-
ity streamlines, for select configurations. Fluid temperature fields are shown in
figure A.1 on page 74. The temperature distribution in the fins can be seen in fig-
ure A.2 on page 75. Velocity field of the configurations is shown in figure A.3 on
page 76. Finally, the velocity streamlines can be seen on figure A.4 on page 77

A.2 CFD Data

Data from the CFD model used for the response surface model generation. As the
table is too large to be put on the same page as this text, it can be seen on page 78.
The numbers in parenthesis indicate the design level. This can be helpful as not all
configurations fall under high (1), low (-1), or middle (0).

A.3 Multiple regression

The data from the multiple regression is shown in table A.2 and A.3.

A.3.1 Multiple regression models

A.4 Pareto Solutions

Solutions from the NSGA-II algorithm on the RSM from the DoE. (As the set is
extensive, only 20 are shown here.
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Figure A.1: Comparison of the temperature fields of configurations 1, 5, 16, 17, and 26. Temperature
is in [K]
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Figure A.2: Comparison of the fin temperature fields of configurations 1, 5, 16, 17, and 26. Tempera-
ture is in [K]
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Figure A.3: Comparison of the pressure difference fields of configurations 1, 5, 16, 17, and 26.
Pressure is kinematic pressure in [m2/s2]
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Figure A.4: Comparison of the velocity vectors of configurations 1, 5, 16, 17, and 26. Velocity is in
[m/s]
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Table A.1: Box-Behnken data from the CFD Model

# X-pos Y-pos Length Height Angle f / f0 Nu/Nu0

[-] [mm] [mm] [mm] [mm] [°] [-] [-]

1 2 (-1) 2 (-1) 4.2 (0) 1.1 (0) 40 (0) 1.0784 1.1644
2 12.5 (+0.5) 5.5 (-0.5) 4.2 (0) 1.1 (0) 40 (0) 1.0692 1.0761
3 7.25 (-0.25) 10.75 (+0.25) 4.2 (0) 1.1 (0) 40 (0) 1. 0517 1.0651
4 16 (+1) 16 (+1) 4.2 (0) 1.1 (0) 40 (0) 1.0192 0.9618
5 3.75 (-0.75) 7.25 (-0.25) 2.4 (-1) 1.1 (0) 40 (0) 1.0319 1.1436
6 16 (+1) 9 (0) 2.4 (-1) 1.1 (0) 40 (0) 1.0418 0.9741
7 3.75 (-0.75) 7.25 (-0.25) 6 (+1) 1.1 (0) 40 (0) 1.0252 1.0984
8 16 (+1) 9 (0) 6 (+1) 1.1 (0) 40 (0) 1.0391 0.9912
9 9 (0) 9 (0) 2.4 (-1) 0.8 (-1) 40 (0) 1.0729 1.0167
10 9 (0) 9 (0) 6 (+1) 0.8 (-1) 40 (0) 1.1155 0.9469
11 9 (0) 9 (0) 2.4 (-1) 1.4 (+1) 40 (0) 1.0856 1.0429
12 9 (0) 9 (0) 6 (+1) 1.4 (+1) 40 (0) 1.0701 0.0707
13 9 (0) 9 (0) 4.2 (0) 0.8 (-1) 20 (-1) 1.0586 1.0286
14 9 (0) 9 (0) 4.2 (0) 1.4 (+1) 20 (-1) 1.0519 1.0702
15 9 (0) 9 (0) 4.2 (0) 0.8 (-1) 60 (+1) 1.0922 1.0516
16 9 (0) 9 (0) 4.2 (0) 1.4 (+1) 60 (+1) 1.1567 1.0792
17 9 (0) 2 (-1) 4.2 (0) 1.1 (0) 20 (-1) 1.0470 0.9476
18 10.75 (+0.25) 14.25 (+0.75) 4.2 (0) 1.1 (0) 20 (-1) 1.0385 0.9721
19 9 (0) 2 (-1) 4.2 (0) 1.1 (0) 60 (+1) 1.0749 1.1246
20 10.75 (+0.25) 14.25 (+0.75) 4.2 (0) 1.1 (0) 60 (+1) 1.0493 1.0079
21 9 (0) 9 (0) 4.2 (0) 1.1 (0) 40 (0) 1.0855 1.0618
22 3.75 (-0.75) 7.25 (-0.25) 4.2 (0) 0.8 (-1) 40 (0) 1.0286 1.0353
23 16 (+1) 9 (0) 4.2 (0) 0.8 (-1) 40 (0) 1.0209 0.9827
24 3.75 (-0.75) 7.25 (-0.25) 4.2 (0) 1.4 (+1) 40 (0) 1.0585 1.1624
25 16 (+1) 9 (0) 4.2 (0) 1.4 (+1) 40 (0) 1.0640 1.0417
26 3.75 (-0.75) 7.25 (-0.25) 4.2 (0) 1.1 (0) 20 (-1) 1.0071 1.0295
27 16 (+1) 9 (0) 4.2 (0) 1.1 (0) 20 (-1) 1.0597 1.0364
28 3.75 (-0.75) 7.25 (-0.25) 4.2 (0) 1.1 (0) 60 (+1) 1.1033 1.1460
29 16 (+1) 9 (0) 4.2 (0) 1.1 (0) 60 (+1) 1.0626 1.0267
30 9 (0) 2 (-1) 2.4 (-1) 1.1 (0) 40 (0) 1.0469 0.9900
31 10.75 (+0.25) 14.25 (+0.75) 2.4 (-1) 1.1 (0) 40 (0) 1.0606 1.0412
32 9 (0) 2 (-1) 6 (+1) 1.1 (0) 40 (0) 1.0203 1.0308
33 10.75 (+0.25) 14.25 (+0.75) 6 (+1) 1.1 (0) 40 (0) 1.0427 1.0104
34 9 (0) 2 (-1) 4.2 (0) 0.8 (-1) 40 (0) 1.0273 1.0250
35 10.75 (+0.25) 14.25 (+0.75) 4.2 (0) 0.8 (-1) 40 (0) 1.0134 0.9620
36 9 (0) 2 (-1) 4.2 (0) 1.4 (+1) 40 (0) 1.0313 1.0426
37 10.75 (+0.25) 14.25 (+0.75) 4.2 (0) 1.4 (+1) 40 (0) 1.0196 0.9563
38 9 (0) 9 (0) 2.4 (-1) 1.1 (0) 20 (-1) 1.0580 1.0296
39 9 (0) 9 (0) 6 (+1) 1.1 (0) 20 (-1) 1.0468 1.0352
40 9 (0) 9 (0) 2.4 (-1) 1.1 (0) 60 (+1) 1.1404 1.1003
41 9 (0) 9 (0) 6 (+1) 1.1 (0) 60 (+1) 1.1118 1.0527
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Table A.2: Quadratic model of Nu/Nu0

Coef. Estimate Std. Error T-value P-value

Intercept 2.500e-01 3.756e-01 0.666 0.51329
dx -3.274e-03 1.445e-02 -0.227 0.82305
dy 3.148e-02 1.414e-02 2.226 0.03769
l 5.133e-02 5.440e-02 0.944 0.35664
h 7.150e-01 3.912e-01 1.828 0.08252
α 9.930e-03 4.699e-03 2.113 0.04734
dx:dy 1.570e-03 1.018e-03 1.543 0.13851
dx:l 1.561e-03 1.467e-03 1.064 0.29994
dx:h -8.048e-03 8.804e-03 -0.914 0.37156
dx:α -1.845e-04 1.321e-04 -1.397 0.17766
dy:l -1.746e-03 1.467e-03 -1.190 0.24808
dy:h -2.829e-03 8.804e-03 -0.321 0.75130
dy:α -2.930e-04 1.321e-04 -2.219 0.03823
l:h 7.908e-03 2.955e-02 0.268 0.79176
l:α -3.693e-04 4.433e-04 -0.833 0.41470
h:α -5.815e-04 2.660e-03 -0.219 0.82917
d2

x -3.685e-04 5.790e-04 -0.636 0.53173
d2

y -1.680e-03 5.790e-04 -2.901 0.00883
l2 -5.462e-03 4.304e-03 -1.269 0.21897
h2 -2.522e-01 1.549e-01 -1.627 0.11931
α2 -2.644e-05 3.486e-05 -0.758 0.45708
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Table A.3: Quadratic model of f/f0

Coef. Estimate Std. Error T-value P-value

Intercept 8.396e-01 1.900e-01 4.418 0.000265
dx 1.647e-02 7.310e-03 2.253 0.035661
dy 2.579e-03 7.157e-03 0.360 0.722322
l 2.177e-02 2.752e-02 0.791 0.438336
h 2.132e-01 1.979e-01 1.077 0.294322
α -1.452e-03 2.378e-03 -0.611 0.548300
dx:dy 2.333e-03 5.149e-04 4.531 0.000204
dx:l 1.397e-04 7.425e-04 0.188 0.852663
dx:h 1.744e-03 4.455e-03 0.391 0.699654
dx:α -2.124e-04 6.682e-05 -3.178 0.004728
dy:l 1.110e-04 7.425e-04 0.150 0.882644
dy:h 8.456e-05 4.455e-03 0.019 0.985044
dy:α 1.526e-05 6.682e-05 0.228 0.821637
l:h -5.114e-05 1.495e-02 -0.003 0.997305
l:α -1.211e-04 2.243e-04 -0.540 0.595331
h:α 2.967e-03 1.346e-03 2.204 0.039380
d2

x -1.485e-03 2.930e-04 -5.067 5.89e-05
d2

y -1.709e-03 2.930e-04 -5.833 1.05e-05
l2 -2.870e-03 2.178e-03 -1.318 0.202498
h2 -1.428e-01 7.840e-02 -1.821 0.083576
α2 2.368e-05 1.764e-05 1.342 0.194575
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Table A.4: Multiple regression on Nu/Nu0

Coef. Estimate Std. Error T-value P-value

Intercept 2.500e-01 3.756e-01 0.666 0.51329
dx -3.274e-03 1.445e-02 -0.227 0.82305
dy 3.148e-02 1.414e-02 2.226 0.03769
l 5.133e-02 5.440e-02 0.944 0.35664
h 7.150e-01 3.912e-01 1.828 0.08252
α 9.930e-03 4.699e-03 2.113 0.04734
dx:dy 1.570e-03 1.018e-03 1.543 0.13851
dx:l 1.561e-03 1.467e-03 1.064 0.29994
dx:h -8.048e-03 8.804e-03 -0.914 0.37156
dx:α -1.845e-04 1.321e-04 -1.397 0.17766
dy:l -1.746e-03 1.467e-03 -1.190 0.24808
dy:h -2.829e-03 8.804e-03 -0.321 0.75130
dy:α -2.930e-04 1.321e-04 -2.219 0.03823
l:h 7.908e-03 2.955e-02 0.268 0.79176
l:α -3.693e-04 4.433e-04 -0.833 0.41470
h:α -5.815e-04 2.660e-03 -0.219 0.82917
d2

x -3.685e-04 5.790e-04 -0.636 0.53173
d2

y -1.680e-03 5.790e-04 -2.901 0.00883
l2 -5.462e-03 4.304e-03 -1.269 0.21897
h2 -2.522e-01 1.549e-01 -1.627 0.11931
α2 -2.644e-05 3.486e-05 -0.758 0.45708

Table A.5: Multiple regression on f/f0

Coef. Estimate Std. Error T-value P-value

Intercept 8.280e-01 1.396e-01 5.930 2.54e-06
dx 1.882e-02 3.830e-03 4.913 3.85e-05
dy 3.749e-03 2.808e-03 1.335 0.192953
l 1.914e-02 1.609e-02 1.189 0.244796
h 2.301e-01 1.582e-01 1.454 0.157337
α -1.866e-03 1.872e-03 -0.997 0.327626
dx:dy 2.333e-03 4.496e-04 5.189 1.84e-05
dx:α -2.085e-04 5.643e-05 -3.695 0.000987
h:α 2.967e-03 1.175e-03 2.524 0.017779
d2

x -1.485e-03 2.559e-04 -5.803 3.56e-06
d2

y -1.709e-03 2.559e-04 -6.679 3.61e-07
l2 -2.870e-03 1.902e-03 -1.509 0.142918
h2 -1.428e-01 6.846e-02 -2.086 0.046604
α2 2.368e-05 1.540e-05 1.537 0.135927
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Table A.6: Pareto solutions from NSGA-II

X-pos Y-pos Length Height Angle f / f0 Nu/Nu0

[mm] [mm] [mm] [mm] [°] [-] [-]

10.2470 16.0000 6.0000 0.8000 20 0.9357 0.9008
6.3857 5.2091 2.9018 1.4000 60 1.0720 1.2407
6.6675 2.0000 2.4000 0.8000 20 1.0244 0.9058
10.6252 16.0000 6.0000 0.8000 20 0.9433 0.9058
8.2830 6.6075 2.7658 1.4000 60 1.0693 1.1996
12.0830 9.9038 3.7588 1.0178 20 1.0693 1.0310
11.4197 9.3325 2.6954 0.8816 20 1.0635 0.9951
6.9816 5.6716 2.8863 1.4000 60 1.0717 1.2281
6.9247 3.1053 2.4000 0.8000 20 1.0352 0.9265
7.7496 5.1094 2.4000 0.8000 20 1.0482 0.9529
7.3856 4.4879 2.4000 0.8005 20 1.0448 0.9468
11.9845 9.7731 3.2348 0.9451 20 1.0677 1.0149
11.3262 9.0550 2.4000 0.8000 20 1.0576 0.9718
7.3203 4.1702 2.4000 0.8000 20 1.0431 0.9421
10.3284 16.000 6.0000 0.8000 20 0.9374 0.9019
8.5268 6.3540 2.4000 0.8000 20 1.0531 0.9632
7.4619 6.3020 2.7800 1.4000 60 1.0709 1.2159
6.6402 2.0947 2.4000 0.8000 20 1.0255 0.9083
7.7526 6.3707 2.8766 1.3999 60 1.0705 1.2112
7.1640 3.9304 2.4000 0.8000 20 1.0414 0.9394
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OpenFOAM models

Here the applied methods indicated in chapter 4.3 are explained briefly.

B.1 Discretization schemes

Interpolation These are used to get face-centred quantities from cell-centred
ones. By default, it is unused but applied specifically to the gradient, divergence,
and Laplacian terms.

Gradient: Gauss The scheme calculates cell gradient using Gauss’ theorem:∫
V
(∇ · u) dV =

∮
S
(n · u) dS

Divergence: Gauss upwind & Gauss linear Upwind divergence is first-order
bounded.

ϕ f = ϕC

Linear divergence is also known as midpoint. It is first/second order unbounded.
Equal to linear for isotropic meshes. Also exists as Bounded central difference.

ϕ f = 0, 5 · (ϕC + ϕD)

Laplacian Resolution of the Laplacian is based on the Gauss theorem and needs
an interpolation scheme and a surface-normal scheme.

Surface-normal gradient: Corrected Central-difference surface-normal gradient
scheme with non-orthogonal correction. Explicit non-orthogonal correction.

∇⊥ f Q =
1

cos θ

QP −QN

|d| +

(
n̂− 1

cos θ
d̂
)
· (∇Q) f

B.2 Solvers

BiCGStab More stable version of Bi-Conjugate Gradient, which should not be
used.
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PCG Preconditioned Conjugate Gradient for symmetric matrices with good par-
allel scaling.

B.3 Preconditioners

Cholesky Incomplete Cholesky preconditioning with no fill-in.

DIC Simplified Diagonal-based Incomplete Cholesky preconditioner for symmet-
ric matrices. Parallel inconsistent.

DILU Simplified Diagonal-based Incomplete LU preconditioner for asymmetric
matrices. Parallel inconsistent.

B.4 Boundary conditions for the computational domain

Boundary conditions for the CFD model, defined for every parameter. The solid
and fluid are shown in their separate tables.

Boundary conditions for solid:

Parameter Boundary Type
Value

Initial Fixed

k internalField 100
walls chtRcThermalDiffusivity 10
Top/Bottom/Front/Back symmetryPlane
Tube zeroGradient
In/Out cyclic

Temperature internalField 293
walls chtRcTemperature 293
Top/Bottom/Front/Back symmetryPlane
Tube fixedValue 293
In/Out cyclic
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Boundary conditions for fluid:

Parameter Boundary Type
Value

Initial Fixed

Pressure internalField 0
Top/Bottom symmetryPlane
fluidWalls buoyantPressure
In/Out, Hole Front/Back cyclic

Temperature internalField 303
Top/Bottom symmetryPlane
fluidWalls chtRcTemperature 303
In/Out, Hole Front/Back cyclic

Velocity internalField (2 0 0)
Top/Bottom symmetryPlane
fluidWalls fixedValue (0 0 0)
In/Out, Hole Front/Back cyclic

k internalField 0, 24
Top/Bottom symmetryPlane
fluidWalls kqRWallFunction 0, 24
In/Out, Hole Front/Back cyclic

κE f f internalField 0, 001
Top/Bottom symmetryPlane
fluidWalls chtRcThermalDiffusivity 0, 001
In/Out, Hole Front/Back cyclic

νt internalField 0
Top/Bottom symmetryPlane
fluidWalls nutWallFunction 0
In/Out, Hole Front/Back cyclic

ω internalField 1, 78
Top/Bottom symmetryPlane
fluidWalls omegaWallFunction 1, 78
In/Out, Hole Front/Back cyclic





Supplements III

MATLAB Code

III.1 License for NGPM – A NSGA_II Program in Matlab
v1.4

Copyright (c) 2011, Song Lin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

III.2 Nondominated Sorting Approach

function [opt, pop] = ndsort(opt, pop)
% Function: [opt, pop] = ndsort(pop)
% Description: Fast non-dominated sort.
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%*************************************************************************
% 1. Initialize variables
% indi.np: number of individuals which dominate this individual
% indi.sp(:): a set of individuals that this individual dominate
%*************************************************************************
N = length(pop); %popsize
ind = repmat(struct('np',0, 'sp', []),[1,N]); %individual structure

for i = 1:N
pop(i).rank = 0;
pop(i).distance = 0;
pop(i).prefDistance = 0;

end

%*************************************************************************
% 2. fast non-dominated sort
%*************************************************************************
% Calculate the domination matrix for improving the efficiency.
nViol = zeros(N, 1);
violSum = zeros(N, 1);
for i = 1:N

nViol(i) = pop(i).nViol;
violSum(i) = pop(i).violSum;

end

obj = vertcat(pop(:).obj);
domMat = calcDominationMatrix(nViol, violSum, obj);

% Compute np and sp of each indivudal
for p = 1:N-1

for q = p+1:N
if(domMat(p, q) == 1) % p dominate q

ind(q).np = ind(q).np + 1;
ind(p).sp = [ind(p).sp , q];

elseif(domMat(p, q) == -1) % q dominate p
ind(p).np = ind(p).np + 1;
ind(q).sp = [ind(q).sp , p];

end
end

end

% The first front(rank = 1)
front(1).f = []; % There are only one field 'f' in structure 'front'.

% This is intentional because the number of individuals
% in the front is different.

for i = 1:N
if( ind(i).np == 0 )

pop(i).rank = 1;
front(1).f = [front(1).f, i];

end
end

% Calculate pareto rank of each individuals, viz., pop(:).rank
fid = 1; %pareto front ID
while( ~isempty(front(fid).f) )

Q = [];
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for p = front(fid).f
for q = ind(p).sp

ind(q).np = ind(q).np -1;
if( ind(q).np == 0 )

pop(q).rank = fid+1;
Q = [Q, q];

end
end

end
fid = fid + 1;

front(fid).f = Q;
end
front(fid) = []; % delete the last empty front set

%*************************************************************************
% 3. Calculate the distance
%*************************************************************************
if(isempty(opt.refPoints))

pop = calcCrowdingDistance(opt, pop, front);
else

[opt, pop] = calcPreferenceDistance(opt, pop, front);
end

III.2.1 Domination Matrix

function domMat = calcDominationMatrix(nViol, violSum, obj)
% Function: domMat = calcDominationMatrix(nViol, violSum, obj)
% Description: Calculate the domination maxtir which specified the domination
% releation between two individual using constrained-domination.
%
% Return:
% domMat(N,N) : domination matrix
% domMat(p,q)=1 : p dominates q
% domMat(p,q)=-1 : q dominates p
% domMat(p,q)=0 : non dominate
%*************************************************************************
N = size(obj, 1);
numObj = size(obj, 2);
domMat = zeros(N, N);

for p = 1:N-1
for q = p+1:N

%******************************************************************
% 1. p and q are both feasible
%******************************************************************
if(nViol(p) == 0 && nViol(q)==0)

pdomq = false;
qdomp = false;
for i = 1:numObj

if( obj(p, i) < obj(q, i) )
pdomq = true;

elseif(obj(p, i) > obj(q, i))
qdomp = true;
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end
end

if( pdomq && ~qdomp )
domMat(p, q) = 1;

elseif(~pdomq && qdomp )
domMat(p, q) = -1;

end
%******************************************************************
% 2. p is feasible, and q is infeasible
%******************************************************************
elseif(nViol(p) == 0 && nViol(q)~=0)

domMat(p, q) = 1;
%******************************************************************
% 3. q is feasible, and p is infeasible
%******************************************************************
elseif(nViol(p) ~= 0 && nViol(q)==0)

domMat(p, q) = -1;
%******************************************************************
% 4. p and q are both infeasible
%******************************************************************
else

if(violSum(p) < violSum(q))
domMat(p, q) = 1;

elseif(violSum(p) > violSum(q))
domMat(p, q) = -1;

end
end

end
end
domMat = domMat - domMat';

III.2.2 Crowding Distance

function pop = calcCrowdingDistance(opt, pop, front)
% Function: pop = calcCrowdingDistance(opt, pop, front)
% Description: Calculate the 'crowding distance' used in the original NSGA-II.
%*************************************************************************
numObj = length( pop(1).obj ); % number of objectives
for fid = 1:length(front)

idx = front(fid).f;
frontPop = pop(idx); % Individuals in front fid

numInd = length(idx); % Number of individuals in current front

obj = vertcat(frontPop.obj);
obj = [obj, idx']; % objctive values are sorted with ID
for m = 1:numObj

obj = sortrows(obj, m);

colIdx = numObj+1;
pop( obj(1, colIdx) ).distance = Inf; % the first one
pop( obj(numInd, colIdx) ).distance = Inf; % the last one



III.3. Binary Tournament Selection 91

minobj = obj(1, m); % the maximum of objective m
maxobj = obj(numInd, m); % the minimum of objective m

for i = 2:(numInd-1)
id = obj(i, colIdx);
pop(id).distance = pop(id).distance ...

+ (obj(i+1, m) - obj(i-1, m)) / (maxobj - minobj);
end

end
end

III.3 Binary Tournament Selection

function newpop = selectOp(opt, pop)
% Function: newpop = selectOp(opt, pop)
% Description: Selection operator, use binary tournament selection.
%*************************************************************************
popsize = length(pop); % Size of population
pool = zeros(1, popsize); % pool : the individual index selected
% 2 popsize integers between 0 and popsize
randnum = randi(popsize, [1, 2 * popsize]);

j = 1;
for i = 1:2:(2*popsize)

p1 = randnum(i);
p2 = randnum(i+1);

if(isempty(opt.refPoints))
% Crowded-comparison operator (NSGA-II)
result = crowdingComp( pop(p1), pop(p2) );

end

if(result == 1)
pool(j) = p1;

else
pool(j) = p2;

end
j = j + 1;

end
newpop = pop( pool );

function result = crowdingComp( guy1, guy2)
% Function: result = crowdingComp( guy1, guy2)
% Description: Crowding comparison operator.
% Return:
% 1 = guy1 is better than guy2
% 0 = other cases
%*************************************************************************
if( (guy1.rank < guy2.rank) || ...

((guy1.rank == guy2.rank) && (guy1.distance > guy2.distance) ))
result = 1;

else
result = 0;

end
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III.4 Crossover operation

function pop = crossoverOp(opt, pop, state)
% Function: pop = crossoverOp(opt, pop, state)
% Description: Crossover operator. All of the individuals will do crossover, but
% only "crossoverFraction" of design variables of an individual will change.
%*************************************************************************

%*************************************************************************
% 1. Check for the parameters
%*************************************************************************
% determine the crossover method
strfun = lower(opt.crossover{1});
numOptions = length(opt.crossover) - 1;
[crossoverOpt{1:numOptions}] = opt.crossover{2:end};

switch( strfun )
case 'intermediate'

fun = @crsIntermediate;
case 'sbx'

fun = @SBX;
otherwise

error('NSGA2:CrossoverOpError', 'No support crossover operator!');
end

nVar = opt.numVar;

% "auto" crossover fraction in case none given
if( ischar(opt.crossoverFraction) )

if( strcmpi(opt.crossoverFraction, 'auto') )
fraction = 2.0 / nVar;

else
error('NSGA2:CrossoverOpError', ...

'The "crossoverFraction" parameter should be scalar or "auto" string.');
end

else
fraction = opt.crossoverFraction;

end

for ind = 1:2:length(pop) % Popsize should be even number
% Create children
[child1, child2] = fun( pop(ind), pop(ind+1), fraction, crossoverOpt );

% Round
for v = 1:nVar

if( opt.vartype(v) == 2)
child1.var(v) = round( child1.var(v) );
child2.var(v) = round( child2.var(v) );

end
end

% Bounding limit
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child1.var = varlimit(child1.var, opt.lb, opt.ub);
child2.var = varlimit(child2.var, opt.lb, opt.ub);

pop(ind) = child1;
pop(ind+1) = child2;

end

III.4.1 Simulated Binary Crossover

function [child1, child2] = SBX(parent1, parent2, fraction, options)
% Function: [child1, child2] = SBX(parent1, parent2, fraction, options)
% Description: Simulated Binary crossover.
% child = 1/2 * (parent1 * (1 + rand) + parent2 * (1 - rand))
% Parameters:
% fraction : crossover fraction of variables of an individual
% options = distribution parameter
% Simulated Binary Crossover (SBX)
if( length(options)~=1 || ~isnumeric(options{1}))

error('NSGA2:CrossoverOpError', 'Crossover operator parameter error!');
end

mu = options{1};
% Copy structure from parents
child1 = parent1;
child2 = parent2;

nVar = length(parent1.var);
crsFlag = rand(1, nVar) < fraction; % Probability of crossover
for j = 1:nVar

% Generate a random number
u = rand(1);
% Find the corresponding spread in a mu dependent distribution
if u <= 0.5

bq = (2*u)^(1/(mu+1));
else

bq = (1/(2*(1 - u)))^(1/(mu+1));
end
% Generate the elements of the children
if crsFlag(j)

child1.var(j) = 0.5 * ((1 + bq) * parent1.var(j) + ...
(1 - bq) * parent2.var(j));

child2.var(j) = 0.5 * ((1 - bq) * parent2.var(j) + ...
(1 + bq) * parent2.var(j));

end
end

III.5 Mutation operation

function pop = mutationOp(opt, pop, state)
% Function: pop = mutationOp(opt, pop, state)
% Description: Mutation Operator. All of the individuals will do mutation, but
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% only "mutationFraction" of design variables of an individual will change.
%*************************************************************************

%*************************************************************************
% 1. Check for the parameters
%*************************************************************************
% mutation method
strfun = lower(opt.mutation{1});
numOptions = length(opt.mutation) - 1;
[mutationopt{1:numOptions}] = opt.mutation{2:end};

switch (strfun)
case 'gaussian'

fun = @mutationGaussian;
case 'poly'

fun = @mutationPolynomial;
otherwise

error('NSGA2:MutationOpError', 'No support mutation operator!');
end

nVar = opt.numVar;

% "auto" mutation fraction
if( ischar(opt.mutationFraction) )

if( strcmpi(opt.mutationFraction, 'auto') )
fraction = 2.0 / nVar;

else
error('NSGA2:MutationOpError',...

'The "mutationsFraction" parameter should be scalar or "auto" string.');
end

else
fraction = opt.mutationFraction;

end

% All of the individual would be modified, but only 'mutationFraction' of design
% variables for an individual would be changed.
for ind = 1:length(pop)

child = fun( pop(ind), opt, state, fraction, mutationopt);

% Rounding for integer variables
for v = 1:nVar

if( opt.vartype(v) == 2)
child.var(v) = round( child.var(v) );

end
end

child.var = varlimit(child.var, opt.lb, opt.ub);

pop(ind) = child;
end

III.5.1 Polynomial mutation

function child = mutationPolynomial(parent,opt,state,fraction,options)
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% Simulated Binary Crossover mutation
if( length(options)~=1)

error('NSGA2:MutationOpError', 'Mutation operator parameter error!');
end

nVar = length(parent.var);
mutFlag = rand(1, nVar) < fraction; % Does mutation happen?

mu = options{1};
lb = opt.lb;
ub = opt.ub;

child = parent;
% Addition of shrinkage: mutation means less as the program progresses
% shrink = 1 - 0.25 * 1 * state.currentGen / opt.maxGen;

for j = 1:nVar
r = rand(1);
if r < 0.5

delta = (2*r)^(1/(mu+1)) - 1;
else

delta = 1 - (2*(1 - r))^(1/(mu+1));
end
child.var(j) = child.var(j) + (ub(j)-lb(j))*delta*mutFlag(j);

end





Supplements IV

Conjugate heat transfer solver

This section serves to give a grief overview of how the modified conjugate heat
transfer solver in FOAM-Extend operates. Additional files that were implemented,
will also be included in this section. The SIMPLE-algorithm applied by this solver,
is shown in figure IV.1.

IV.1 Modified momentum equation:

The calculation of pressure gradient needed to correct the pressure in the do-
main is done with a pressure gradient source, which can be seen as "momen-
tumSource.Su()", below:

// Solve the momentum equation
tmp<fvVectorMatrix> UEqn
(

fvm::div(phi, U)
+ turbulence->divDevReff()
+ fvm::SuSp(-fvc::div(phi), U)
==

momentumSource.Su()
);
UEqn().relax();
solve
(

UEqn()
==

fvc::reconstruct
(

(
(
- ghf*fvc::snGrad(rhok)
- fvc::snGrad(p_rgh)

)*mesh.magSf()
)

)

);
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Step 1:
Solve discretized

momentum equations

Step 2:
Solve pressure

correction equation

Step 3:
Correct pressure

and velocities

Step 4:
Update thermal conductivity

Update
initial guess

Start:
Initial guess

Stop
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Solve all other discretized
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Convergence?

Step 6:
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Yes

No

Figure IV.1: This flowchart shows the modified SIMPLE-Algorithm that is used for the model.

IV.2 Modified energy equation

To enable preiodic heat transfer as discussed earlier, the term
"U.component(0)*gamma" is added to the energy equation of the fluid:

// Solid side
simpleControl simpleSolid(solidMesh);
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while (simpleSolid.correctNonOrthogonal())
{

coupledFvScalarMatrix TEqns(2);
fvScalarMatrix* TFluidEqn = new fvScalarMatrix
(

rho*Cp*
(

fvm::div(phi, T)
+ fvm::SuSp(-fvc::div(phi), T)

+ U.component(0)*gamma
)

- fvm::laplacian(kappaEff, T)
);
TFluidEqn->relax();
fvScalarMatrix* TSolidEqn = new fvScalarMatrix
(
- fvm::laplacian(kSolidf, Tsolid, "laplacian(k,T)")
+ fvm::SuSp(-solidThermo.S()/Tsolid, Tsolid)

);
TSolidEqn->relax();
// Add fluid equation
TEqns.set(0, TFluidEqn);
// Add solid equation
TEqns.set(1, TSolidEqn);
TEqns.solve();

}

IV.3 Calculation of pressure gradient

The code below show the implantation of the pressure gradient source.

Info<< "Creating momentum source\n" << endl;
pressureGradientExplicitSource momentumSource
(

"momentumSource",
U

);

IV.4 Temperature depended variables

The variables treated as temperature depended, are evaluated on the equations
below, where the "A"-values are the intercept for linear correlation and the "B"-
values are the slope.

dimensionedScalar nu
(

"nu",
dimensionSet(0, 2, -1, 0, 0, 0, 0),
nuA.value()+(nuB.value()*Tbulk.value())

);
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dimensionedScalar Pr
(

"Pr",
dimensionSet(0, 0, 0, 0, 0, 0, 0),
PrA.value()+(PrB.value()*Tbulk.value())

);
dimensionedScalar rho
(

"rho",
dimensionSet(1, -3, 0, 0, 0, 0, 0),
rhoA.value()+(rhoB.value()*Tbulk.value())

);

Info << "Kinematic viscosity, nu = " << nu.value() << endl;
Info << "Laminar Prandtl number, Pr = " << Pr.value() << endl;
Info << "Density, rho = " << rho.value() << endl;

IV.5 Calculation of Nusselt and Reynolds number

The calculation of Nusselt number based on the approach shown in chapter 2, is
done by the piece of code below:

label wallsID = mesh.boundaryMesh().findPatchID("fluidWalls");
label inletID = mesh.boundaryMesh().findPatchID("inOut");

dimensionedScalar num
(

"num",
dimensionSet(0, 2, -1, 1, 0, 0, 0),
gSum(T.boundaryField()[inletID]*U.boundaryField()[inletID].component(0)...

*mesh.magSf().boundaryField()[inletID])
);
dimensionedScalar den
(

"den",
dimensionSet(0, 2, -1, 0, 0, 0, 0),
gSum(U.boundaryField()[inletID].component(0)*mesh.magSf().boundaryField()[inletID])

);
dimensionedScalar Tbulk
(

num/den
);
dimensionedScalar dTdn
(

"dTdn",
dimensionSet(0, -1, 0, 1, 0, 0, 0),
gSum(T.boundaryField()[wallsID].snGrad()*mesh.magSf().boundaryField()[wallsID])
/gSum(mesh.magSf().boundaryField()[wallsID])

);
dimensionedScalar Twall
(

"Twall",
dimensionSet(0, 0, 0, 1, 0, 0, 0),
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gSum(T.boundaryField()[wallsID]*mesh.magSf().boundaryField()[wallsID])
/gSum(mesh.magSf().boundaryField()[wallsID])

);
dimensionedScalar Umax
(

"Umax",
dimensionSet(0, 1, -1, 0, 0, 0, 0),
gSum(U.boundaryField()[inletID].component(0)*mesh.magSf().boundaryField()[inletID])
/ gSum(mesh.magSf().boundaryField()[inletID])

);
Nu = dTdn*Lc/(Twall-Tbulk);

Re = (Umax*Lc)/nu;

Info << "Cyclic temperature field solved with:" << endl;
Info << "Nusselt number, Nu = " << Nu.value() << endl;
Info << "Reynolds number, Re = " << Re.value() << endl;
Info << "Average velocity at inlet, U = " << Umax.value() << endl;
Info << "Surface average temperature gradient, dT/dn = " << dTdn.value() << endl;
Info << "Characteristic length, Lc = " << Lc.value() << endl;
Info << "Surface-averaged wall temperature, Twall = " << Twall.value() << endl;
Info << "Bulk temperature, Tbulk = " << Tbulk.value() << endl;
Info << "Density, rho = " << rho.value() << endl;
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