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Abstract - Cardiovascular diseases (CVD) are the primary
cause of death around the world, but the methods for de-
tection still rely heavily on subjective observations during
auscultation followed by, in some cases, invasive examina-
tions. New methods based on neural network and classifiers
for automatic detection of heart disorders through phonocar-
diography (PCG) are being tested to overcome the subjec-
tive classifications within current methods. The PCG can
be used to represent the hearts state, as the mechanic nature
of CVD’s result in unique abnormal heart sounds. Opening
snaps (OS) followed by murmurs are caused by mitral steno-
sis, where the changed mechanical properties of the leaflets
cause a snapping sound followed by a murmur due to blood
turbulence. This study examines the cause of OS without
an accompanying murmur, to find if this relates to calcifi-
cation in the heart. This study implements parallel Fully
Convolutional Networks (FCN) coupled with Long Short-
Term Memory (LSTM) neural networks followed by a sup-
port vector machine (SVM) classifier to determine if an OS
is present. Three networks will operate on either a filtered
signal, Mel Frequency Cepstral Coefficients (MFCC) or Dis-
crete Wavelet Transforms (DWT), as the last mentioned fea-
tures have been proved useful for sound classification. In
contrary to other studies, analysis of the heart cycle will only
be performed on the relevant area for the specific abnormal
heart sound rather than the entire cycle. Our results show
that this approach is useful with a best average accuracy of
92% and an area under curve of 0.9288. No significant re-
sults were found for the cause of an OS without accompanied
murmurs for the factors examined in this study.
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Abstract - Cardiovascular diseases (CVD) are the pri-
mary cause of death around the world, but the meth-
ods for detection still rely heavily on subjective ob-
servations during auscultation followed by, in some
cases, invasive examinations. New methods based on
neural network and classifiers for automatic detection
of heart disorders through phonocardiography (PCG)
are being tested to overcome the subjective classifica-
tions within current methods. The PCG can be used
to represent the hearts state, as the mechanic nature of
CVD’s result in unique abnormal heart sounds. Open-
ing snaps (OS) followed by murmurs are caused by
mitral stenosis, where the changed mechanical prop-
erties of the leaflets cause a snapping sound followed
by a murmur due to blood turbulence. This study
examines the cause of OS without an accompanying
murmur, to find if this relates to calcification in the
heart. This study implements parallel Fully Convo-
lutional Networks (FCN) coupled with Long Short-
Term Memory (LSTM) neural networks followed by
a support vector machine (SVM) classifier to deter-
mine if an OS is present. Three networks will op-
erate on either a filtered signal, Mel Frequency Cep-
stral Coefficients (MFCC) or Discrete Wavelet Trans-
forms (DWT), as the last mentioned features have
been proved useful for sound classification. In con-
trary to other studies, analysis of the heart cycle will
only be performed on the relevant area for the spe-
cific abnormal heart sound rather than the entire cycle.
Our results show that this approach is useful with a
best average accuracy of 92% and an area under curve
of 0.9288. No significant results were found for the
cause of an OS without accompanied murmurs for the
factors examined in this study.

1 Introduction
The opening and closing of heart valves and blood
rushing through the heart produce sounds. These
sounds are audible to the ear without aid, but stetho-

scopes are used by physicians when evaluating pa-
tients, to aid in listening to specific sounds. During a
normal heart cycle two heart sounds are present. The
first heart sound (S1) is associated with the closing
of the left and right AV valves (mitral and tricuspid
valves) during the beginning of systole. Individually,
the sounds of the closing mitral and tricuspid valves
are denoted as M1 and T1 respectively. The second
heart sound (S2) is associated with the closing of the
aortic and pulmonary valves as the ventricles begins
to fill during diastole. The sounds are denoted A2 and
P2. [1]

Besides the four heart sounds other abnormal sounds
can be present, such as murmurs, rumbles, clicks and
snaps. These abnormal heart sounds can be present
with heart disease and can be classified into three gen-
eral groups, relating to different complications within
the mechanical function of or blood flow in the heart.
Heart murmurs will usually stem from a flow re-
lated complication, where the blood is being pushed
through a valve that has not opened or closed com-
pletely, or a narrowed blood vessel close to the heart.
This causes turbulence in the blood flow, resulting in
a longer lasting sound during auscultation. [1, 2]

Cardiovascular diseases that can produce these abnor-
mal heart sounds are the number one cause of death
on a global scale. [3, 4] Thus, many people are re-
ferred to screenings for suspected CVD based on the
presence of CVD symptoms. Of all CVDs coronary
artery disease (CAD) causing ischaemia of the heart,
is the leading cause of death [3, 4, 5].

An interesting and predominant sound is the OS,
which, when accompanied by diastolic murmurs,
have been found to appear in patients with mitral
stenosis. Here the sounds intensity correlates with
the valve mobility, until the point where the valve be-
comes immobile. The OS occurs at the point of maxi-
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mal mitral valve opening, where the decline and level
of pressure in the left ventricle affects the time differ-
ence between the sound and A2. An OS follows A2
by an interval of 30 to 150 ms and can be measured
as a high frequency signal. Stenosis of the tricuspid
valve can also be able to produce an OS. [1]

Currently used diagnostic methods in the clinical as-
sessment of CAD are expensive and invasive, and has
shown a low diagnostic yield. [6] This presents a risk
factor to the patients being unnecessarily tested. Re-
sent studies utilizing a diagnostic method based on
acoustic systems to detect CAD have reported diag-
nostic accuracies of 74% [7] and 82% [8], measured
in area under the curve (AUC), when comparing to
coronary CT angiography (CCTA) or invasive coro-
nary angiography (ICA) as golden standard. This re-
veals an interesting topic of utilizing acoustic based
systems to detect CVD.

Redlarski et al. [9] developed a system utilizing a Lin-
ear Predictive Coding algorithm for phonocardiogra-
phy (PCG) segmentation and a Support-Vector Ma-
chine (SVM) for classification of 12 different abnor-
mal heart sounds. This system achieved a 93% best
average accuracy, which is the mean of specificity and
sensitivity. [9] A study by Low et al. [10] aimed to de-
sign a convolutional neural network (CNN) and pro-
vide it with as raw a time-sequence signal of PCG as
possible to classify periodic heart sounds. The use of
a CNN on raw data overcomes the need to perform
feature extraction and achieved a 75% accuracy. [10]
These studies show that heart sounds can be classified
with good accuracy.

In recent years the use of Artificial Neural Networks
(ANN) have gained increased interest within the med-
ical field. To analyse PCGs studies by Castro et.
al [11] and Lai et. al [12] have achieved interest-
ing results in detecting heart murmurs. Castro et.
al achieved a sensitivity of 69.67% and a specificity
46.91%, while Lai et. al achieved 87% sensitivity,
and 100% specificity. This shows ANNs to be a vi-
able method for analysing PCGs.

Clifford et al. [13] states that proper detection and

classification of valve pathologies like mitral and aor-
tic stenosis still presents a challenge. The presence
of mitral stenosis is associated with the occurrence of
OS. [14, 15, 16] Development of an acoustic based
system analysing recordings of heart sounds to de-
tect and classify OSs could be an important method
in clinical evaluations of patients with suspected mi-
tral pathologies.

Thus, the projects aim is to answer the question: How
can detection of heart opening snaps be automated,
and what relation does this abnormal heart sound have
to the diagnosis of the patient?

2 Methods and Materials
This study will design and implement a combination
of NNs to use for detection and classification of OS in
a group of subjects. The group will be consisting of
subjects with and without OS. Subjects will be evalu-
ated to either have OS or not, by a manual approach
which follows criteria made based on available litera-
ture on the physiology and auscultation of OS.

Neural Networks
Convolutional Neural Networks (CNN) have been
widely used for feature extraction. [17, 18, 19] A
CNN functions by passing the input through a num-
ber of filters. With increasing number of filter lay-
ers the CNN can detect higher levels of abstract fea-
tures where the output from one filter is passed into
the next. The filter sizes determine how many inputs
are used in calculating a single feature. This functions
as a "scanning" process where features are calculated
for each filter by the following: [19]

A(x) = σ(W ∗ x+b) (1)

, where A(x) is the node output, σ is the activation
function, W is a vector of all weights, x is input and b
is bias. If the input to filters and between filters are all
connected, the network is considered fully connected.
CNNs have been widely used for analysing images,
however can also be used to analyse sequential data.
When analysing images the filters sizes are defined in
2D to create a matrix to sweep over the image to cal-
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culate features. This enables the CNN to learn to rec-
ognize features of the image like orientations of edges
and changes in colours. When analysing sequential
data the filter size would be in 1D, because the data is
only progressing in time. Still the CNN will be able
to learn to recognize features of the input. [19]

A long short-term memory (LSTM) neural network is
a type of recurrent neural network (RNN), expanding
on the basic RNN architecture to overcome shortcom-
ings of a vanishing gradient during backpropagation.
A RNN function by passing information in a hidden
node h, back to itself, thus keeping information from
prior inputs to use in later calculations. This enables
RNNs to handle varying sizes of input data, as well as
working well with sequential data. The core strength
of a RNN is the ability for it to store information, giv-
ing it the ability to find meaning in information pro-
gressing over time. [20, 21, 22]
However, the basic RNN suffers from short-term
memory, where it will gradually forget information
from earlier states as it processes more data. When
updating node weights and biases of the network dur-
ing backpropagation, the RNN will only be able to
perform the update for the latest processed data, as
it has forgotten what came earlier. The LSTM have
been invented to overcome this issue by having a sep-
arate cell state C which function as a memory. This
memory can be updated and used or ignored in later
calculations. [20] The memory is a combination of
four gates in the LSTM layer expressed as:
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, where the vectors i, f and o are controlling the in-
put, forget and output states. g is a vector used to
modify the memory content in the cell state. sigm and
so f tsign are activation functions for the gates. W is
the vector of all node weights, learnt through back-
propagation. ht and ht−1 are the current and old cell
output. b is bias. The update function for the cell state

Ct is calculated as: [21]

Ct = f ∗Ct−1 + i∗g (3)

The final output ht of the LSTM layer is as follows:
[21]

ht = o∗ tanh(Ct) (4)

Heart Sound Data
A total of 600 subjects were included in this study.
Data was granted by Acarix A/S as a dataset con-
taining information gathered from acoustic record-
ings, coronoary artery calcium score (CACS), coro-
nary computed tomographic angiography (CCTA), in-
vasive coronary angiography (ICA) and patient in-
terviews and reviews of patient medical recordings.
All patients in the dataset were referred for suspected
CAD. [8, 23]
The CADScor®System designed by Acarix A/S, con-
sists of a microphone that is fastened to the subject
using adhesive patches, and the recordings were done
at the fourth intercostal space left of the sternum.
Subjects were in a supine position during recordings,
where they were asked to hold their breath for eight
seconds four times within the three minutes of record-
ing. [24]
Recordings were done with a 8000Hz sampling rate,
and were subjected to segmentation into systolic and
diastolic parts. This enables alignment of S2 within
the subjects, leading to an easier segmentation of spe-
cific heart sounds in relation to S2 later on. The num-
ber of heart cycles varied between 5 and 30 for the
subjects, with an average of 16.8. [24]

For the labelling process both auscultation and PCGs
were examined. Based on the information on OS and
splitting of S2 the following criteria was made for the
labelling process of OS:
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• The distance between onset of A2 and a follow-
ing sound must be greater than 30ms [1]

• A2 and a following sound must be both visibly
and audibly divided [1]

• A sound following A2 must be no more than
150 ms from the onset of A2 [1]

The criteria ensures that the sounds located are OS,
and not splitting of S2 or early S3 as these sound oc-
cur close the the interval in which an OS can occur.
[1]

Both authors individually went through the entire
dataset labelling subjects to have an OS or no OS.
Afterwards all subjects labelled with OS was re-
evaluated and a final labelling was decided. Examples
of the PCGs are shown in figure 1.

Fig. 1: Examples of PCGs analysed during the labelling. The
figures show several superimposed PCGs from two dif-
ferent subjects. The topmost PCG is an example of an
OS, where S2 and the OS is easily differentiable. It is
visible that the individual PCGs vary little in timing for
the occurrence of the OS. The lower PCG is an example
of S2 splitting. Here the individual PCGs vary more over
time as the timing of the split is affected by respiration.

System Design
In order to classify these OS automatically, a system
was designed combining ideas from previous studies
into a single, complex combination of different NN’s,

classifiers and threshold functions. The system con-
sists of four steps; preprocessing, NN’s, classifier and
threshold function. The connection between these are
shown in figure 2.

To the authors knowledge, a setup like the one used in
this paper has not earlier been implemented for heart
sound classification. The setup consists of branches
of multiple parallel FCN-LSTM NN’s with various
inputs feeding probability outputs to a classifier fol-
lowed by a threshold function determining the condi-
tion based on the percentage of OS detected for the
subject. Additionally, the input is only based on the
specific part of the heart cycle where OS can occur,
rather than examining the entire cycle. This means
that instead of letting the FCN-LSTM network de-
cide what part of the cycle separates OS from normal
recordings, it was only fed data in a window from the
onset of S2 and the following 1500 samples (187 ms),
which is a change compared to other studies imple-
menting NN.

Fig. 2: Overview showing the final setup and connection through
the system of preprocessing, NN’s, classifier and thresh-
old function.

Input data was filtered with a fourth order Butterworth
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bandpass filter between 250 and 1200Hz to remove
irrelevant information and noise, as the OS is heard
up to 400Hz with murmurs varying between 30 and
400Hz. [25] This also means that the recordings com-
ply with the Nyquist theorem, ensuring a correct rep-
resentation of the chosen frequency spectrum. Fur-
ther examination through fast Fourier transform (FFT)
showed that there were no significant frequency activ-
ity above 600Hz.

The system was trained with approximately 1800
heart cycles from each group (OS and NOS), mean-
ing a total of 110 subjects distributed close to evenly
between the two groups. NN’s were trained using
approximately 1100 cycles while the classifier was
trained using 700 samples. Test data consisted of an
even number of new OS and NOS subjects, which
where not used in the training process, with approx-
imately 600 samples distributed evenly between the
two groups, which represented 36 subjects in total.
The exact numbers varied slightly depending on the
random selection of subjects, as the number of heart
cycles were not equal for every subject.

Neural Network Setup

In a study by Karim et al. [17], a LSTM and FCN
were run in parallel achieving state-of-the-art results
when analysing time-series data. The final network
design of this study combined the FCN and LSTM
networks to run in sequence to form a FCN-LSTM
model. Three such architectures were then run in par-
allel to handle the Discrete Wavelet Transform (DWT)
and Mel’s Frequency Cepstral Coefficients (MFCC)
features and the filtered signal as input data. DWT
and first five MFCC were extracted from the signal
using MATLAB’s (R2019a, MathWorks Inc.) built in
functions, and were chosen due to being useful for
classification of sound. [26, 27]

The FCN block consisted of three filter layers, respec-
tively with 80, 100 and 80 filters, with individually de-
cided filter sizes for each NN branch. The filter layers
were followed by a batch normalization layer (epsilon
of 0.00001) and a ReLU activation layer. The LSTM

block consisted of three LSTM layers with 256, 512
and 256 hidden nodes, respectively. The state activa-
tion function was softsign and gate activation function
was set to sigmoid. To combat overfitting each LSTM
layer was followed by a dropout layer with dropout
probability set at 20%. Lastly, the output from the fi-
nal LSTM layer gets passed to a fully connected layer
and a regression layer to produce a continuous prob-
ability output. This was then passed to the Support
Vector Machine (SVM) classifier. All inputs were
scaled between 0 and 1 in order to improve perfor-
mance. Every network was trained with a mini batch
size of 100 samples.

Mel’s Frequency Cepstral Coefficients Network
MFCC is a way of linearising the frequency range un-
der 1000 Hz, to mimic the human ears ability to detect
minor changes in pitch for lower frequencies. It works
by splitting the signal into segments which are then
subjected to a Fast Fourier Transform (FFT), and sub-
jected to Mel-frequency scaling through the Mel filter
bank. After this log of the power at Mel frequencies
are taken, followed by a discrete cosine transform that
transforms the signal into MFCC’s. The first coef-
ficients are good for expressing the general structure
of the signal, while higher coefficients describe less
important parts of the signal, such as noise or other
small changes. The window length was 30 samples
(approximately 4ms) with a 50% overlap to ensure a
more detailed representation of the signal. [26, 27]

After initial testing, it was found that the most rep-
resentative MFCC’s were the first and third MFCC,
whereas the other coefficients decreased performance
of the network, leading to exclusion of these. The op-
timal performance for the MFCC network was found
with an initial learn rate of 0.001 and a drop factor
of 0.8 after every fourth epoch. The filter size was
found to be the most optimal at 10 samples. Running
120 epochs resulted in an RMSE of 0.21 and a loss of
0.022.
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Discrete Wavelet Transform Network
The DWT is a rather new alternative to the FFT
when converting signals to the time-frequency do-
main, hereby creating a representation of the frequen-
cies in time. Outputs consists of two different se-
quences describing the high and low frequencies con-
tained in the signal that represent details and over-
all shape respectively. The DWT is obtained with a
finite number of wavelet transforms over the signal
obtained by moving a scalable window and calculat-
ing the spectrum for each step. This is done multiple
times with different window sizes to create the time-
frequency representation. [26, 27]

Optimizing the DWT network resulted in an initial
learning rate of 0.0005 with a learn rate drop factor of
0.8 over 4 epochs. The optimal filter size was found
to be 10 samples, which gave an RMSE of 0.19 and a
loss of 0.018 after 120 epochs.

Signal Based Network
As previously described the signal was subjected to a
bandpass filter between 250 and 1200Hz, after which
it was scaled between 0 and 1 before being fed to the
FCN-LSTM network. Optimizing the signal based
NN led to an initial learning rate of 0.0005 with a
drop factor of 0.05 every 10 epochs. The best filter
size was found to be 10 samples and after 100 epochs
the RMSE settled around 0.20 with a loss of 0.018.

Classifier
SVM classifiers are based on the principle of creat-
ing a hyperplane between the classes to separate them
with highest possible precision. The hyperplane is
created based on the support vectors, that are the data
points closest to the hyperplane. These affect the posi-
tion and shape of the plane, as the optimizer attempts
to minimize the error while increasing the margin be-
tween samples and the hyperplane. [26]

Using the Classification Learner in MATLAB a Lin-
ear SVM classifier was chosen due to its accuracy and
trained with the outputs from the three NN branches
and set to have binary output classes. Training sam-

ples were 800 heart cycles distributed equally be-
tween subjects with and without OS, while 10 fold
cross validation was implemented in order to decrease
overfitting. The classifier verification accuracy with
the chosen setup was 81.5%.

Threshold Function
At the end a threshold function was implemented, in
order to determine if the subject was supposed to be
classified with an OS. This function determines the
outcome based on the percentage of snaps in the heart
cycles for each subject, with a threshold of 50% for a
subject to be classified with a OS. This threshold has
been chosen in order to achieve the highest possible
sensitivity while keeping a reasonable specificity.

Relation between OS and subject health

The dataset used for this project contains medical in-
formation on each subject, mainly in relation to car-
diovascular pathologies. [23] This information is used
to compare the groups of OS subjects with no-OS
(NOS) subjects. The parameters chosen for compar-
ing are based on clinical characteristics affecting the
heart, like the Duke risk score (sex, age, diabetes,
tobacco use, history of myocardial infarction, and
symptoms of angina pectoris) and Morise risk score
(sex, age, diabetes, tobacco use, symptoms of angina
pectoris, hypercholesterolemia, hypertension, family
history of CAD, obesity, and estrogen status). [8, 28,
29]

A case-control study was also conducted where sub-
ject’s cardiac computerized tomography angiogra-
phies (CCTA) and echocardiographies were further
examined for details on heart pathologies. The case-
control study included a total of 83 subject divided in
two groups of OS (n = 50) and NOS (n = 33) subjects.
The groups were compared on clinical characteristics
of the mitral and tricuspid valves and for the presence
of atrial septum aneurysm.

Data of clinical characteristics were separated
into categorical or non-categorical groups. Non-
categorical data was tested for distribution using one-
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sample Kolmogorov-Smirnov test. Data of Gaussian
distribution was compared using two sample t-test.
Non-Gaussian distributed data was compared using
Mann-Whitney test (Wilcoxon rank sum). Categor-
ical data was compared using Chi-squared test. All
tests were performed with a 5% level of significance
and tests for general difference in group means (two-
sided). All statistic analyses was be performed using
MATLAB.

3 Results
The manual labelling process of subjects in the dataset
resulted in 77 subjects (12.83%) out of the total 600
subjects, were evaluated to have OS. Zero subjects
were excluded. The two groups of OS subjects (n =
77) and no-OS (NOS) subjects (n = 523) were used
for training and testing for the NNs and later compar-
isons were made between the two groups. The sub-
jects were all over 40 years of age and nearly evenly
distributed in sex. The details for the two groups are
presented in table 3.

System Accuracy
Precision of the individual networks are as described
in table 1 through AUC.

Network Features AUC
MFCC 0.7388
DWT 0.8161
Signal 0.7433

Tab. 1: Accuracy of individual NN branches measured in AUC.

The classifier accuracy is described in figure 3 with
a precision of 81.1% for single cycles, with approxi-
mately the same specificity and sensitivity.
The system accuracy can be seen in table 2, where
the optimal threshold was found to be 45% provid-
ing 94.5% sensitivity, 89.5% specificity and 92% best
average accuracy (BAC). To calculate AUC of the
threshold function, the mean of predictions for each
subject was set as the classifier output while the la-
bel for that subject was the supposed class. Thereby
the overall systems AUC was found to be 0.9288 for
the classification of a test group of 36 subjects mixed
equally between heart cycles containing OS or no OS.

Fig. 3: Confusion matrix for the classifier accuracy. These re-
sults are for the classification of whether heart beats con-
tain an OS or not, before the threshold function.

The accuracy for correctly and wrongly classified sub-
jects for the overall system can be seen in figure 4.

Fig. 4: Confusion matrix for the overall system. These results
are the classification on whether subjects have OS or not.

Threshold Sensitivity Specificity BAC
35% 94.5% 78.9% 86.7%
45% 94.5% 89.5% 92%
55% 70.6% 89.5% 80.1%

Tab. 2: System accuracy with various thresholds.

The Receiver Operator Curve (ROC) for the system
performance are shown in figure 5.
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Fig. 5: ROC for the overall system performance.

Comparison of OS and NOS subjects
The Kolmogorov-Smirnov test proved all non-
categorical characteristics to be of a non-Gaussian
distribution, thus all non-categorical data was tested
with a Mann-Whitney test (Wilcoxon rank sum). All
categorical data were tested with Chi-squared test.
The chosen characteristics are shown along with sta-
tistical results for the comparison in table 3. Non-
Gaussian distributed values are shown with a standard
deviation (±), while categorical values are reported
with frequencies (percentages). Several of the cho-
sen characteristics had missing entries in the dataset,
because not every subject have undergone the same
procedures and clinical tests. Characteristics which
have missing entries are annotated and the number of
missing entries are noted in the bottom of table 3. A
significant difference were found for age between the
groups (p < 0.05). No other significant differences
were found.

Comparison of CCTA and Echocardiography
A selection of OS and NOS subjects, who had had
CCTA and echocardiography performed, were ex-
amined for conditions and pathologies of the heart.
The Kolmogorov-Smirnov test showed that all non-

categorical values were from a non-Gaussian distri-
bution. This data was tested with a Mann-Whitney
test (Wilcoxon rank sum). Categorical data was tested
with Chi-squared test. The results are shown in table
4. Non-Gaussian distributed values are shown with
a standard deviation (±), while categorical values are
reported with frequencies (percentages). Missing en-
tries are annotated and noted at the bottom of table
4. A significant difference between the groups were
found for subjects which had been diagnosed with
mild mitral insufficiency (p < 0.05). No other sig-
nificant differences were found.

OS (n = 77) NOS (n = 523)
Age (Years) 54.42 ± 9.54* 57.38 ± 8.75*
Sex
- Female 39 (51%) 289 (55%)
- Male 38 (49%) 234 (45%)
Weight (kg) 80.75 ± 16.75 79.14 ± 14.211

Height (cm) 173.75 ± 7.67 172.06 ± 8.982

Pulse (BPM) 64.57 ± 12.05 65.45 ± 10.813

Blood pressure
(mmHg)

4

- Systolic 135.21 ± 19.72 139.06 ± 17.97
- Diastolic 82.83 ± 12.82 84.12 ± 10.90
Smoker
- Active 15 (19%) 95 (18%)
- Former 25 (32%) 182 (35%)
- Never 37 (48%) 246 (47%)
Diabetes
- Has diabetes 1 (1%) 27 (5%)
- No diabetes 76 (99%) 496 (95%)
CADScore 19.77 ± 9.185 21.02 ± 9.855

Agatston score 136.13 ± 335.61 118.70 ± 302.13
P-cholesterol
(mmol/L) 5.37 ± 0.956 5.38 ± 1.026

Tab. 3: Data is missing for several categories: 1 Weight NOS:
3, 2 Height NOS: 1, 3 Pulse NOS: 2, 4 Systolic Blood
Pressure NOS: 2, 5 CADScore OS: 1 NOS: 18, 6 P-
cholesterol OS: 7 NOS: 34.
Significant differences between the two groups are indi-
cated with * for p < 0.05 and ** for p < 0.01.

4 Discussion
The results show that it is possible to estimate OS pre-
cisely using a combination of NN’s and classifiers.

8



OS (n=50) NOS (n=33)
Mitral Plague
- No 49 (98%) 31 (94%)
- Yes 1 (2%) 2 (6%)
Mitral Valve
Thickening
- No 49 (98%) 32 (97%)
- Yes 1 (2%) 1 (3%)
MR
- No 47 (94%) 3 (6%)
- Yes 32 (97%) 1 (3%)
Mitral
insufficiency

1 1

- None 29 (66%) 13 (43%)
- Mild 12 (27%) * 17 (57%) *
- Moderate 3 (7%) 0
- Severe 0 0
Mitral stenosis 2 2

- None 45 (98%) 30 (100%)
- Mild 1 (2%) 0
- Moderate 0 0
- Severe 0 0
Mitral Restrictive 3 3

- No 44 (96%) 31 (100%)
- Yes 2 (4%) 0
Mitral Flow (m/s) 0.71±0.174 0.73±0.214

Mitral Dec (ms) 216.05±52.185 213.33±60.955

Mitral E (m/s) 0.10±0.036 0.11±0.036

Tricuspid
insufficiency

7 7

- None 22 (61%) 7 (41%)
- Mild 13 (36%) 10 (59%)
- Moderate 1 (3%) 0
- Severe 0 0
Tricuspid stenosis 8 8

- None 35 (100%) 17 (100%)
- Mild 0 0
- Moderate 0 0
- Severe 0 0
Atrial Septum
Aneurysm

9 9

- No 19 (95%) 13 (93%)
- Yes 1 (5%) 1 (7%)

Tab. 4: Data is missing for several categories: 1 Mitral insuffi-
ciency OS: 6 NOS: 3, 2 Mitral stenosis OS: 4 NOS: 3, 3

Mitral Restrictive OS: 4 NOS: 2, 4 Mitral Flow OS: 13
NOS: 12, 5 Mitral Dec OS: 13 NOS: 12, 6 Mitral E OS:
14 NOS: 11, 7 Tricuspid insufficiency OS: 14 NOS: 16,
8 Tricuspid Stenosis OS: 15 NOS: 16, 9 Atrial Septum
Aneurysm OS: 30 NOS: 19.
Significant differences between the two groups are indi-
cated with * for p < 0.05 and ** for p < 0.01.

This is done with a high accuracy when examining
only the relevant areas for the specific heart sound
rather than the entire signal. One of the leading causes
for this high accuracy could potentially be the com-
bination of three different NN’s, as this expands the
variables which can describe the OS, while also ex-
amining the different variables in specific ways, opti-
mized for each feature.

The comparisons between OS subjects and NOS sub-
jects and for the CCTA and echocardiographies did
show very little relation between the occurrence of
OS and subject health. Between OS and NOS sub-
jects a relation was found only for the age of the sub-
jects, where OS subjects are significantly (p < 0.05)
younger than NOS subjects. It is known that some
heart sounds are more present in younger subjects, as
is also the case for S3. [1]

Between CT-scans and echocardiographies for both
groups a significant difference was found for the num-
ber of subjects diagnosed with a mild case of mitral
insufficiency, where the OS group have significantly
(p < 0.05) fewer cases than the NOS group, meaning
the OS group is more healthy than the NOS group.
This find is more controversial as pathologies of the
mitral valve, specifically mitral stenosis, have been
studied and found to be connected with the presence
of OS. [14, 16] However, to indicate mitral stenosis
diastolic murmurs must also be present following the
OS. [30, 31] In this study only the OS was object
for investigation which might explain why no relation
was found between the OS group and CVDs. It raise
the question if mitral stenosis is more related to dias-
tolic murmurs than to the presence of OS.

The number of heart cycles for the subjects varied be-
tween 5 and 30 with an average of 16.8 which is a
factor to consider if this is to be implemented for eas-
ier examination of subjects in the future. A higher
number of heart cycles will most likely lead to a more
confident prediction, which could be examined in fur-
ther studies using this method to find the optimal num-
ber of heart cycles for accurate classification. Another
valid point to bring for further studies could be the se-
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lection of a specific area of the heart cycle, where the
abnormal sound occurs, rather than examining the en-
tire heart cycle.

Limitations
In this study PCGs where evaluated manually and
later used for training the NNs, and a limitation is the
level of human performance. Evaluation of the indi-
vidual heart cycles done by qualified physicians could
potentially improve the model robustness, as the cur-
rent approach, despite being systematic and based on
specific parameters, could potentially result in a few
misclassified subjects as the authors were not edu-
cated within the field of auscultation. The parameters
and classification was based on literature describing
the OS and recordings found on websites meant for
medical education within auscultation. Another limi-
tation is the amount of data made available and used
for training and testing, as NN’s improve with more
data.

The data used in this study were a subset from a larger
dataset obtained for patients referred for suspected
CAD to have coronary angiography performed. This
could be the cause for why only few subjects have

been found with OS or diastolic murmurs since these
events are not related to CAD. This can also be an im-
portant factor for why so few cases of mitral stenosis
were fund.

5 Conclusion
It can be concluded that finding OS through the use
of NN’s combined with a classifier is rather effective,
with a high AUC of 0.9288, making it an effective tool
for detecting OS. It can also be concluded that a high
accuracy can be found when examining the specific
area in relation to S2 where an OS can occur.
A relation between the presence of OS in subjects
and cardiovascular diseases cannot be drawn from this
study.
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Chapter 1. Problem Analysis

1 | Problem Analysis

1.1 The Heart
The human heart is responsible for pumping blood around the body’s circulatory system, sup-
plying the body with oxygenated blood while moving the deoxygenated blood back to the lungs.
At the same time it moves nutrients, waste products and toxins to the appropriate organs for fur-
ther processing. This makes the heart one of the most vital organs of the human body, as the
rest of the system depends on its functionality.

1.1.1 Anatomy and Physiology of the Heart

The heart has four chambers; two atriums at the superior part and two ventricles at the inferior
part of the heart. Specific chambers are referred to as the left or right atrium or ventricle, also left
or right side of the heart. Valves are located between the chambers in each side and at the base of
the pulmonary artery and base of aorta. The valves are responsible for controlling the blood flow
to only go in one direction. The tricuspid valve is located between the right atrium and ventricle
in the right side of the heart. The bicuspid, or mitral valve, is located between the atrium and
ventricle in the left side. The valves leading out of the heart at the base of the pulmonary artery
and aorta, are called the pulmonary valve and aortic valve respectively figure 1.1. The pumping
action of the heart is caused and controlled by electric impulses like the skeletal muscles of the
body. The heart muscle differs from skeletal muscles in a number of ways, most noticeably in
its metabolism as it is never rests. The heart is controlled autorhythmically by pacemaker cells.
The heart is supplied with blood by the coronary circulation consisting of the the coronary
arteries and cardiac veins. Damage to or narrowing of the arteries or veins of the coronary
circulation is a common cause of heart disease and death. [1]
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Figure 1.1: Frontal section of the heart showing chambers, valves, veins, arteries and the blood flow through the
heart marked by arrows. [1]

A heart beat, the contraction of the heart muscle, is caused by electric impulses originating
from the sinoatrial (SA) node at the top wall of the right atrium close to the superior vena cava
opening. The SA node contains pacemaker cells which establish the heart rate. The electric im-
pulse travels downwards towards the atrioventricular (AV) node at the top of the right ventricle
between the right atrium and ventricle. Activation of the AV node causes the atriums to contract
pumping blood from the atriums to the ventricles. The electric impulse travels down the AV
bundle in the interventricular septum extending towards the apex and is divided between the
bundles leading to the left and right ventricles. Reaching the apex the impulse spreads along the
Purkinje fibers going towards the base of the heart, causing the ventricles to contract from apex
and up, pushing blood into the aorta and pulmonary trunk. The spread of the electric potential
causing through the heart can be recorded using electrocardiography (ECG). [1]

1.1.2 Cardiovascular Diseases

The most common cardiovascular disease in Denmark is atherosclerosis, which is a build up
of plaque, a mix of fat and calcium, in the blood vessels. This blockage occurs in the arteries,
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meaning that it affects the flow of oxygenated blood to specific organs, such as the brain, which
can cause a stroke. If the blockages occur in the arteries supplying the heart with blood it is
called coronary artery disease and can lead to ischaemia of the heart. The build up of plaque
can result in heart attacks, which leaves the patient with a high risk of either dying or suffering
from severe complications following the event. [2, 3, 4]

The second largest group of cardiovascular patients suffer from atrial fibrilation, which is an
irregular activation of the atria, resulting in blood flowing back and forth between the chambers
of the heart. This leaves the patient with an increased risk of other cardiovascular diseases, such
as heart attacks or failure. Strokes are also common. [2, 3, 4]

Patients suffering from heart valve diseases is the third biggest group of CVD patients in Den-
mark. [2, 5] This category covers both valvular stenosis and insufficiency. The heart valves can
stiffen over time due to calcification, leading to a smaller opening of the heart valves. This puts
an additional stress on the heart, as it has to create a larger pressure over a prolonged time to
move the same amount of blood as a healthy heart. [3]

In cases of valvular insufficiency, the valves will not create a functional seal, leaving an opening
where blood can flow in the opposite direction. This will cause the blood to go back and forth,
while the heart is put under more stress to support the necessary supply to the body. The
combination of these factors will increase the risk of blood cloths and heart failure. [3]

1.1.3 Normal Heart Sounds

The opening and closing of heart valves and blood rushing through the heart produce sounds.
These sounds are audible to the ear without aid, but stethoscopes are used by physicians when
evaluating patients, to aid in listening to specific sounds. During a normal heart cycle two heart
sounds are present. The first heart sound (S1) is associated with the closing of the left and right
AV valves (mitral and tricuspid valves) during the beginning of systole. Individually, the sounds
of the closing mitral and tricuspid valves are denoted as M1 and T1 respectively.

The second heart sound (S2) is associated with the closing of the aortic and pulmonary valves
and the ventricles begins to fill during diastole. The sounds are denoted A2 and P2. A phono-
cardiogram (PCG) of a normal heart is shown at the bottom in figure 1.2. The first two heart
sounds are the easy to hear, while the third and fourth heart sounds are much more faint as they
are caused by blood flow and atrial contraction, rather than valve action. The third sound (S3)
is produced by blood flowing into the atriums and follows A2 by an interval of 120 to 200 ms
and is a low frequency event. The fourth (S4) is also of low frequency and is caused by contrac-
tion of the atriums with an onset approximately 70 ms after the P wave in the ECG. In healthy
subjects both the S3 and S4 sounds are rarely audible. [3]
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Figure 1.2: Wiggers diagram showing the pressure in the heart chambers, along with the ECG and PCG of the
heart cycle. ©Wikimedia Commons User: DanielChangMD / CC-BY-SA-2.5

1.1.4 Abnormal Heart Sounds

Besides the four normal heart sounds other abnormal sounds can be present, such as murmurs,
rumbles, clicks and snaps. These abnormal heart sounds can be present with heart disease
and can be classified into three general groups, relating to different complications within the
mechanical function of or bloodflow in the heart. Heart murmurs will usually stem from a flow
related complication, where the blood is being pushed through a valve that has not opened or
closed completely, or a narrowed blood vessel close to the heart. This will cause turbulence in
the blood flow, resulting in an often longer lasting sound during auscultation. [3, 6]

Rubs are caused by pericardial rub, where the two layers of the pericardium rub against each
other, or pleural rub, stemming from friction within the pleural cavity. These complications
often stem from inflammations in the membranes that decreases the regular level of lubrication
between the layers of the membranes. Clicks and snaps of the heart relates to the mechanical
function of the heart, where clicks are associated with the closing of valves while snaps happen
in relation to openings. [3, 6]

Opening snaps (OS) have been found to appear in patients with mitral stenosis, where the sounds
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intensity correlates with the valve mobility, until the point where the valve becomes immobile.
The OS occurs at the point of maximal mitral valve opening, where the decline and level of
pressure in the left ventricle affects the time difference between the sound and A2. An OS
follows the onset of A2 by an interval of 30 to 150 ms and can be measured as a very high
frequency signal. Stenosis of the tricuspid valves can also be able to produce an OS. [3]

The characteristics of S1 can in some cases also indicate possible complications. Examples of
this can be found in cases of severe mitral regurgitation, causing an absent or attenuation of S1.
A delay and increased intensity of M1 along with the loud OS is an indication of mitral stenosis,
where severe cases with calcific fixation of the mitral valve will soften the sound of M1 while
the OS will become absent. Acute aortic regurgitation changes the intensity of or completely
removes the M1 sound during auscultation. [3]

Change in S2 can also be an indicator of disease. The abnormal splitting of S2 can be classified
into different categories, where a short but audible split of S2 is called narrow splitting, which
relates to pulmonary hypertension. A wider interval between A2 and P2 is described as wide
splitting, often caused by a delay in the right ventricle activation, but it can also relate to pul-
monary hypertension or pulmonic stenosis. The last example of abnormal S2 split is reversed
splitting. This can be a result of left bundle branch block, where the heart activates from right
to left during septal depolarization. [3]

Another useful characteristic during auscultation are the systolic ejection sounds, that indicates
if there is an obstruction of the ventricular outflow or if the patient suffers from pulmonary
hypertension. The valvular sounds are caused by deformed aortic or pulmonic valves, where
the sudden deceleration of the blood results in vibrations of the entire system. Aortic root
ejection sounds will often be a consequence of systemic arterial hypertension, while pulmonary
root ejection sounds are mainly a result of a widened pulmonary artery. [3]

Listening for the four heart sounds and the abnormal sounds can be used as a mean to evaluate
patients heart condition and possibly diagnose patients based on the sounds produced by the
heart. [1]

1.2 Diagnostic Methods
Several methods have been developed to assess heart function and conditions. Methods used
most frequently in Denmark are here described briefly. [4]

1.2.1 Invasive Diagnostic Methods

In cases of CAD with suspected blockages and flow related complications, a coronary angiog-
raphy might be recommended. This method can provide a view of potentially weakened blood
vessels around the heart, while also showing blockages caused by deposits of calcium or fat.
This image will be created with the use of x-ray and a specialized catheter made for depositing
contrast agent at specific locations in the blood vessels. During the coronary angiography, a
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catheter will be inserted into an artery at the groin, threading it to the heart and injecting the
contrast agent in coronary arteries while recording the area with x-ray. This means the patient
risks complications such as puncture of the arteries, myocardial infarction or allergic reactions
to the contrast dye. [3]

Coronary angiography have been further developed to avoid the need for catheters by use of
computed tomography (CT) scans. CT angiography is less invasive as no catheter is used, but
still relies on the use of a contrast agent to visualize blood vessels on the scan and still expose
patients to radiation. [3]

1.2.2 Non-invasive Diagnostic Methods

The CT scan have also been used for detection of calcium deposits in the heart, especially in
the coronary arteries, to determine coronary artery calcification (CAC). Contrary to CT an-
giography, coronary CT (CCT) for coronary calcium scores (CCS) use no contrast agent and is
non-invasive. [7] The outcome of CCT is a score which determine severity of calcification based
on the Agatston score ranging from 0 to 400, where the higher the score the more calcification.
[8] Function elucidation of the heart is also possible by use of SPECT (single-photon emission
computed tomography) or cardiac Magnetic Resonance imaging (MRI) to locate possible dys-
functions. MRI provides high resolution images and enables physicians to locate specific sites
in the heart affected by disease. [4, 9]

Electrocardiography (ECG) of the heart beat is also used as an diagnostic method for detection
of heart disease. ECG is easy to measure and has low cost, however has poor accuracy in
detection of heart diseases. [10, 3]

Echocardiography is a non-invasive way to create images of the heart using ultrasound. As
the method provides a view of the hearts structures it is used to check heart structures like
valves and champers and to investigate blood flow. Echocardiography is also used in stress
echocardiography, where the heart is put under stress with either physical activity or by means
of pharmacological stress. This method is primarily used to determine blood supply to the heart
and the heart strength in relation to heart valve stenosis. [3]

Of all the current diagnostic methods used in cardiology, one of the oldest and primary di-
agnostic methods for cardiovascular diseases is auscultation of the heart. In Denmark most
patients with abnormal heart sounds are found randomly as a part of routine clinical check-ups.
Auscultation can provide basic information of heart function and can be the basis for further
examinations using above described methods. [11]

1.3 Automatic Detection of Heart Sounds
In an attempt of overcoming the problem with patients being sent in for further examination
after auscultation there has been made attempts of automatic detection of heart sounds. The
Computing in Cardiology Challenge of 2016 proved that many different combinations of fea-
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tures and classification methods can yield sensitivities around 80% and higher, with a specificity
above 80% for most of the entries in the challenge as well. The main aim for the participants
were to classify the recordings in to three groups; normal, abnormal and unsure. [9, 12]

Automatic detection technologies have also found their way into the medicinal industry, where
companies such as Acarix A/S have created a system capable of ruling out CAD with auto-
matic detection of the abnormal sounds usually related to this disease. The CADScor®System
aims to classify CAD by analysing phonocardiography recordings. A study by Winther et al.
[13] achieved a 72% diagnostic accuracy with this system, measured by Area Under the Curve
(AUC). The system functions by analysing PCG recordings made with a digital stethoscope, and
calculating four measures based on both frequency and amplitude of the heart sounds, which is
then combined to find a final CAD-score. [13]

Murmur-detection have been a focus for studies trying to create automatic detection methods
for abnormal heart sounds as well. This has been done both to detect murmurs in patients, and
to distinguish innocent and pathologic murmurs in children. Here the methods vary from neural
networks (NN) to classification and signal analysis algorithms to determine whether there is a
murmur, and if the cause is non-pathologic or caused by a cardiovascular disease. [14, 15]

Automatic detection have also been implemented to find multiple heart sounds like opening
snaps and ejection clicks simultaneously with the use of support vector machines (SVM) as in
a study by Redlarski et al. [16], while other studies focus on differentiating in classifying if
a heart sound is S3 or an OS. [17] This is relevant, as an OS accompanied by murmurs and
presence of mitral stenosis is widely believed to be connected. [18, 3, 17].

1.4 Problem definition
In Denmark most patients with heart diseases are identified at routine clinical check-ups. In
case the general practician physician suspects a patient has a heart disease, basic examination
will be conducted to make an initial assessment. This includes checking blood pressure, pulse
and respiration. The heart and lungs are examined with auscultation. If the practician physician
has further reason to suspect heart disease, the patient will be included to evaluate and decide
on the forward process of treatment. Dependent upon the suspected heart disease the patient
will be referred to the according specific cardiology department. [5]

To improve on the evaluation a practician physician makes during routine clinical check-ups, it
could be favourable to implement a method or system in the test battery. Here a system could
be implemented to assist during the auscultation process when examining the heart and lungs.
A system capable of automatically detecting and classifying abnormal heart sounds, could pos-
sibly improve on the assessment where the physician is suspecting heart disease. This would
ensure early detection of heart disease patients and sort out persons who would unnecessarily
be sent to further examinations at the hospital.

Studies by Castro et al. [14] and Lai et al. [15] have achieved interesting results in detecting
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heart murmurs using neural networks analysing PCG. Castro et. al achieved a sensitivity of
69.67% and a specificity 46.91%, while Lai et al. achieved 87% sensitivity, and 100% speci-
ficity. Similarly utilizing an acoustic system and signal processing of PCGs, Winther et al. [13]
has achieved 72% accuracy (AUC) in detecting CAD.

As mentioned in the previous section, the presence of OS and mitral stenosis is believed to be
connected. [18, 3, 17]. The use of NN to analyse PCG could be relevant in the analysis of OS
without murmurs and, in case these OS are clinically relevant, also provide a method of finding
the cause automatically.

Based on the problem analysis, this leads to the following problem definition:

How can detection of heart opening snaps be automated, and what relation does this abnor-
mal heart sound have to the diagnosis of the patient?
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2 | Methods

This study will design and implement a combination of NNs to use for detection and classifi-
cation of OS in a group of subjects. The group will be consisting of subjects with and without
OS. Subjects will be evaluated to either have OS or not, by a manual approach which follows
criteria made based on available literature on the physiology and auscultation of OS.

2.1 Data presentation
A total of 600 subjects were included in this study. Data was granted by Acarix A/S as a
dataset containing information gathered from acoustic recordings, coronoary artery calcium
score (CACS), coronary computed tomographic angiography (CCTA), invasive coronary an-
giography (ICA) and patient interviews and reviews of patient medical recordings, as stated
in [13]. Out of the 600 subjects, 77 (12.83%) were evaluated to have OS. Zero subjects were
excluded.
The CADScor®System designed by Acarix A/S consists of a microphone that is fastened to the
subject using adhesive patches, and the recordings were done at the fourth intercostal space left
of the sternum. Subjects were in a supine position during recordings, where they were asked to
hold their breath for eight seconds four times within the three minutes of recording. [19]
Recordings were done with a 8000Hz sampling rate, and were subjected to segmentation into
systolic and diastolic parts. This enables alignment of S2 within the subjects, leading to an eas-
ier segmentation of specific heart sounds in relation to S2 later on. The number of heart cycles
varied between 5 and 30 for the subjects, with an average of 16.8. [19]

2.2 Neural Network Models
Neural networks (NN) have been used to analyse big data sets. [20, 21, 22] This study will use
an approach of designing a deep neural network for detection and classification of heart OS.
The following section describes methods of three different types of NN which will all be used
in this project.

2.2.1 Fully Connected Network

Fully Connected Neural Networks are one of simpler types of NN. Fully Connected Networks
expands on the classic feedforward network, which was the first and is the simplest model of
NN to be invented. [23] The simplest types of feedforward NN only have one layer, and are
called single-layer perceptron networks. They work by taking a input and passing it through a
single layer with a function to produce a output. The function can be generalized as follows:

ŷ = f (w1 ∗ x1 +w2 ∗ x2 + ...+wnx ∗ xnx +b) (2.1)
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, where ŷ is the estimated output of the node, f is an activation function. w is weight, x is the
node input and b is bias. Often used activation functions are the squashing functions sigmoid
σ or hyperbolic tangent tanh. More layers can be introduced arranged after each other, with
interconnected nodes. This is a multi-layer perceptron (MLP) network, as shown left in figure
2.3. If every node in one layer is connected to every node in the next layer the network is a fully
connected network, hence the name. A Fully Connected Network can be seen right in figure
2.3:

Figure 2.3: Left: A simple Multi-Layer Perceptron neural network. Right: A simple Fully Connected neural
network.

2.2.2 Convolutional Network

A 2017 study by Karim et al. [21], propose a NN as a combination of a LSTM and Fully
Convolutional Network (FCN) called an LSTM-FCN. Karim et al. use a FCN part in their
network to extract features from time series data and concatenate the FCN output with the output
of a LSTM part. This type of setup produced state-of-the-art results. [21] Convolutional Neural
Networks (CNN) have been widely used for feature extraction, because its architecture gives it
an inherent ability to extract features. [21, 24, 25] A CNN functions much like a feedforward
NN, where inputs are fed forward through the network. In a CNN the input is fed through filters
of one convolutional layer, instead of the whole network. A CNN calculates features of inputs
by "scanning" inputs with a filter. The size of the filter determines how many inputs are used for
calculating a single feature. With addition of several filter layers, the calculated features of the
inputs can be passed on to a new filter layer of feature calculations. With increasing number of
filter layers the CNN can detect higher levels of abstract features. [25] The function for a CNN
layer can be expressed as in equation (2.2):

A(x) = σ(W ∗ x+b) (2.2)

, where A(x) is the node output, W is a vector of all weights, x is input and b is bias. As it can
be seen in equation (2.2) the function is very similar to the basic function of a feedforward node
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as shown in equation (2.1). Consider a one dimension fully CNN layer with a filter size of 2,
and with 2 filters, see figure 2.4. Consider an input xn. The CNN layer A in figure 2.4 have filter
size 2 and thus takes in two inputs at a time. Each filter in filter layer A will produce an feature
according to equation (2.2). These features from A are fed to filter layer B taking two inputs to
calculate a new feature based on the two previous features from A. Lastly, the outputs from B is
passed to the layer output F . The layer shown figure 2.4 is considered fully connected because
every filter node of B is connected to the layer output F . Constructing a NN with an architecture
like this would make a Fully Convolutional Neural Network (FCN). [25, 24]

Figure 2.4: A one dimension fully Convolutional Neural Network layer with eight inputs (x), a filter size of 2 and
2 filters (A and B). The output of the CNN layer is F . [25]

2.2.3 Recurrent Neural Networks and Long Short-Term Memory

Many different models of neural networks have been invented to work on different types of data.
The use of neural networks in computer vision and image analysis have had much focus in the
last decade, especially in relation to the development of self driving cars. Analysis of time
series has however not attracted as much attention as image analysis, but have been gaining
increased interest and with this NN models which work specifically with sequential data have
been developed. [21, 26]

On such model is the Long Short-Term Memory (LSTM) network. A LSTM is a type of re-
current neural network (RNN), however expanding on the basic RNN architecture to overcome
shortcomings of a vanishing gradient during backpropagation. Contrary to a feedforward NN,
which have fixed in- and output sizes, RNNs can handle input data of sequences of varying
sizes. A RNN function by passing the information in a node, back to itself, using the processed
output from the prior input to calculate the output for the next input of the sequence. The basic
architecture of a RNN can be seen in figure 2.5. The recurring structure of the RNN enables
information to persist in the network, giving it the ability to find meaning in data progressing
over time. [27, 26, 28]
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Figure 2.5: Left: the rolled structure of an RNN. Right: unrolled structure of an RNN. X is the sequence input, A
is a node and h is the output. [27]

Because the output from each node is passed onto the next step, the network lose information
from earlier steps over time. This is the issue of short-term memory resulting in a vanishing
gradient which proves a problem when backpropagating through the network. Backpropagation
is the process enabling networks to learn. This is achieved by calculating a loss function, after
data has passed through the network. A loss function calculates an error to estimate how well
the network have performed of predicting the desired output. Then the error is used to calculate
the gradients for each node in the network which are used to adjust the weights of the nodes
to minimize the loss function. This process repeats until a minimum of the loss function have
been found. Finding the global minimum for the loss function will produce the best predictions
from the network. [27]

Because basic RNNs have the problem of a vanishing gradient they are not well suited for
analysing long sequences. Luckily the LSTM have overcome this issue. The structure of a
node in a basic RNN will have only one simple function like the squashing hyperbolic tangent
function (tanh). The LSTM node is more complex having four layers with gates interacting
within the node. (See figure 2.8) The principle behind the LSTM node is that it has a cell state
C which function as a memory which can be updated and used or ignored in later calculations.
The cell state is manipulated by the four gate units in the node. [27]

Figure 2.8: Left: The inner layer of a RNN node. Right: The inner layers of a LSTM node. Modified from [27]
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The LSTM nodes first gate unit is the forget gate. Based on the earlier output (ht−1) and the
new input (xt), it calculates a value between 0 and 1 for every entry in the cell state, to decide if
this value should be forgotten or kept.
The next gate is the input gate which have two steps. First a hyperbolic tangent function (tanh)
calculates new values (C̃) to update the cell state. Second a sigmoid function (σ ) decides which
of the new values to keep or throw away. These two steps are combined in the update gate to
update the old cell state (Ct−1) to the new cell state (Ct) (see equation (2.4)).
Lastly, the output (ht) from the node is calculated. This is a combination of the the current cell
state (Ct) through a tanh function and the earlier node output (ht−1) through a sigmoid function.
(see equation (2.5)) [27, 26] The gate functions for the LSTM layer can be expressed as follows:
[26]


i

f

o

g

=


sigm

sigm

sigm

tanh

∗W ∗

 ht

hh−t

+b (2.3)

, where the vectors i, f and o are controlling the input, forget and output states. g is a vector
used to modify the memory content in the cell state. W is the vector of all node weights, learnt
through backpropagation. ht and ht−1 are the current and old cell output. b is bias. The function
for the update of the cell state (Ct) relies on the gates i, f and g and is as follows: [26]

Ct = f ∗Ct−1 + i∗g (2.4)

The final output ht of the LSTM layer is as follows: [26]

ht = o∗ tanh(Ct) (2.5)

Some variations of the LSTM NN have been developed since 1997, among others the GRU
(Gated Recurrent Unit) NN invented by Cho et al. in 2014. The GRU simplifies the LSTM
node by only having two gate units compared to four in the LSTM. [29] The GRU NN have
been gaining an increase of interest as a simpler alternative to the LSTM, however a 2017 study
by Greff et al. [30] analysed eight variants of LSTM networks, including the GRU, where they
found that none of the tested variants performed significantly better than the classic LSTM. [26,
30]

2.3 Neural Network Design
When designing a NN there are several different parameters that must be defined such as the
number of layers, nodes in the layers and possibly how the nodes are connected, as in a Fully
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Connected Network. For each model of NN there also exist hyperparameters, a set of parame-
ters used when training and optimizing the network to produce the best results.

Many of these hyperparameters are connected to the learning process of the NN. The network
learning to correctly recognize data is dependent on backpropagation. As briefly described in
section 2.2, backpropagation is initialized by calculation a loss function for the performance
of the network. Different loss functions are used for different network models dependent on
whether the network is doing classification or regression. For sequence-to-classification models
a cross entropy loss is calculated as: equation (2.6)

loss =−
N

∑
i=1

K

∑
j=1
∗ti j ∗ ln∗ yi j (2.6)

, where N is the number of samples, K is the number of classes, ti j is an indicator for the ith
sample to the jth class. yi j is the ith output for the jth class.

For sequence-to-regression models variations of a mean-square-error (MSE) loss function is
used, dependent on whether the network is doing image-to-image, image and sequence-to-one
or sequence-to-sequence regression. This project will not be working with images, thus the only
loss functions to possibly be used are for sequence-to-one or sequence-to-sequence regression.
Respectively, the functions are as follows:

loss = 1/2
R

∑
i=1

(ti− yi)
2 (2.7)

, where R is the number of responses, ti is the target output, yi is the predicted output to response
i. [31]

loss =
1

2S

S

∑
i=1

R

∑
j=1

(ti j− yi j)
2 (2.8)

, where S is the sequence length, ti j is an indicator for the ith sample to the jth class. yi j is the
ith output for the jth class. [31]

When the loss function have been calculated the networks optimizer algorithm will update
weights and bias in the network to gain a better result of the loss function for the next itera-
tion. Optimizing the network and making it learn happens through the process of updating node
weights and biases to minimize the loss function. The result of the loss function can be thought
of as a topographic map with mountains and valleys, as maximum and minimum. On this map
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there might exist several local minima, however it is the global minimum which is desired. To
find the global minimum an optimizer algorithm is used. [28]

All optimizer algorithms are based on the idea of gradient descent. Gradient descent is the
process of finding the point in the weight space (w) where the loss function has the lowest
value. This is achieved by simple steps of first choosing a random point on the loss function
and then calculating the direction of the steepest gradient for that point, and taking a step in the
other direction of that gradient, which will be towards a minima. The step size is defined by
the learning rate. Choosing a good learning rate determines how fast and well the model will
converge towards a global minimum for the loss function. Choosing a learning rate too low will
make a model which might be precise in finding a minimum as it will not miss one by stepping
over it. However, it could converge to a local minimum and it will be very slow in learning
meaning it could end up not reaching a minimum during the number of iterations. Setting the
learning rate too high will make the model unable to find a minimum as it could be stepping
over it at every iteration. An illustration of learning rates too low and high are shown in figure
2.11:

Figure 2.11: Left: Example of a learning rate too low. The model converges too slowly and does not reach a
minimum. Right: A learning rate too high. The model never reach the minimum because it continuously steps past
it.[28]

Several different optimizer algorithms exist, however, the Adam (Adaptive Moment estima-
tion) optimizer have been most widely used, as it is generally considered faster and better than
other optimizers. [28] The Adam optimizer combines the ideas of the RMSProb and Momen-
tum optimizers. From RMSProb it uses exponentially weighted averages from earlier squared
derivatives, and from Momentum it uses exponential weighted averages from earlier derivatives.
Because Adam is adaptive it enable a network to start out with a higher learning rate, which can
be adapted to the problem during the iterations. This enables the model to converge faster but
still maintain precision. [28]

A commonly used method in deep learning is the use of mini-batch size. This hyperparameter
splits the input dataset into smaller sets of batches which makes the model only perform weight
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updates after each iteration, which is when a batch have been passed through the network.
Without the use of mini batches weights and biases would only be updated after each epoch,
which is when the entire dataset have passed through the network. Not using mini batches
normally results in a more stable gradient and convergence, however the entire dataset must
then be in the computers memory, making the process slow and computationally expensive on
large datasets. With the use of mini batches the convergence is more robust and takes less time
and computations. [28]

The training period for the network is decided by the hyperparameter of number of epochs. An
epoch is when the entire dataset have passed through the network once. With the use of mini-
batches the concept of iterations is introduced. Without mini-batches, the weights and biases
update will only happen after an epoch. With mini-batches the input dataset is divided into
smaller datasets and when each of the smaller datasets have passed the network, one iteration
will have passed and weights and biases will be updated. Thus, if the input dataset has 100.000
samples and is divided into batches of 250 samples, there will be 100.000/250 = 400 iterations
per epoch. Setting the number of epochs decide for how long the network should train. It is
desirable that the network should find the highest accuracy and lowest value for the loss function
within this time. However, in some scenarios the network can begin to overfit to data. This can
happen of several reasons, one being if training for too long. [28]

2.3.1 Overcoming Overfitting

To combat a network overfitting to data there are several methods often used in deep learning.
Implementation of the hyperparameter regularization helps a network to better generalize to
new data. Regularization adds an additional term to the loss function effectively making weight
updates shift towards zero when backpropagating. This makes weights which have little effect
on the network output approach zero making them ignorable. With many weights and node
effectively being zero, they can be ignored, making the network less complex which hinders the
networks ability to overfit to data. [28] The most often used regularization is l2 regularization.
This adds the term in equation (2.9) to the loss function.

λ

2m
||W ||22 (2.9)

, where, m is the number of observations, λ is a constant regularization parameter and W is the
vector of all weights. [28]. Another method used to fight overfitting is the use of a dropout
layer, which randomly selects connections between nodes and disables them. This prevents the
network nodes to co-adapt too much and constantly use the same node connections which force
the network to generalize and not overfit. [32, 28] Stopping the training of a NN can also be used
as a means to combat overfitting by stopping the network training before overfitting becomes too
much. Early stopping can be implemented through a validation process, where, during training,
the network will validate the network output an a specified set of data for accuracy and loss. A
hyperparameter can be set to stop the training if the validation loss becomes larger than a loss
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found for a previous iteration. This can avoid overfitting and cut training time considerably if
the network is quick to converge. [28, 33]

2.4 Manual Labelling and Human-Level Performance
In supervised training a NN must have data which is already labelled. This labelling process is
most often performed by humans, who go through the data and manually analyse and evaluate
how each observation should be classified. However, it is not reasonable to expect a 0% error
rate for humans. Some observations might be too poor in quality to be able to classify and
label. When a network is trained on data where some labelling error exist, the network will
have trouble in exceeding the level of the human performance. [28]

The data used in this project contained PCGs for 600 subjects which had to be manually la-
belled. As the authors of this project had zero experience with classification of heart sounds
and PCG, this process is a weak link. To strengthen the process as much as possible and avoid
subjectivity for the manual classification the following was considered.
According to [3] an OS occurs 30 to 150 ms after S2. As described in section 1.1.3 the sec-
ond heart sound, S2, is a combination of the sounds produced by the closing of the aortic and
pulmonary valves (A2 and P2). With a normal heart cycle during expiration P2 will occur after
A2 within less than 30ms. A2 and P2 will be heard as a single sound. During inspiration the
splitting widens and both sounds become audible. However, this interval is no longer than 40
to 50ms in young subjects. After the age of 40 the interval shortens so that S2 will be a single
sound in both expiration and inspiration. [3] However, the splitting of S2 can be abnormal. Ab-
normal splitting exists in three different conditions: wide physiologic splitting, reverse splitting
and narrow physiologic splitting.
Wide physiologic splitting is an increase in the interval between the occurrence of A2 and P2. It
is caused by a delayed electrical activation of the right ventricle caused by right bundle branch
block (RBBB). It is often found in patients with pulmonic dilation, mild pulmonic stenosis and
atrial septal defect, a hole in the wall between the atriums.
Reverse splitting is where P2 will occur before A2. The delay of A2 is most commonly caused
by complete left bundle branch block (LBBB). LBBB is a condition where the left side of the
heart contracts after the right side because of a electric conduction defect. Narrow physiologic
splitting are similar to normal physiologic splitting in every way except that P2 has increased
intensity and higher frequency. A2 and P2 still occur in the normal 30 ms interval. The condi-
tion is most often found in subjects with severe pulmonary hypertension. [3]
Wide and narrow physiologic splitting present the most problems in identifying OS, as each
condition can make P2 more audible, either by extending the interval to A2 or by increasing its
intensity and frequency, making P2 more alike to an OS.

For the labelling process both auscultation and PCGs were examined. Based on the information
on OS and splitting of S2 the following criteria was made for the labelling process of OS:

• The distance between A2 and a following sound must be greater than 30ms [3]
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• A2 and a following sound must be both visibly and audibly divided

• A sound following A2 must be no more than 150 ms from A2 [3]

Both authors individually went through the entire dataset labelling subjects to have an OS or no
OS. Afterwards all subjects labelled with OS was reevaluated and a final labelling was decided.

It proved difficult to differentiate between S2 splitting and early OS when only listening to the
recordings. Noise also proved a hindrance in evaluating many subjects. Figure 2.12 shows two
PCGs from the dataset. Out of the total 600 subjects 77 was labelled with having OS.

Figure 2.12: Examples of PCGs analysed during the labelling. The figures show several superimposed PCGs from
one subject. The topmost PCG is an example of an OS, where S2 and the OS is easily differentiable. It is visible
that the individual PCGs vary little in timing for the occurrence of the OS. The lower PCG is an example of S2
splitting. Here the individual PCGs vary more over time as the timing of the split are affected by respiration.

The correct way to go about labelling of OS in the dataset would be to recruit a group of
physicians, preferably heart specialists, to achieve a higher human-level performance. This
could improve the networks training when using this data.
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2.5 Statistical Analysis
The dataset used for this project contains medical information on each patient, mainly in relation
to heart conditions and pathologies. This information is used to compare the groups of OS
subjects with no-OS (NOS) subjects. The parameters chosen for comparing are based on clinical
characteristics affecting the heart, like the Duke risk score (sex, age, diabetes, tobacco use,
history of myocardial infarction, and symptoms of angina pectoris) and Morise risk score (sex,
age, diabetes, tobacco use, symptoms of angina pectoris, hypercholesterolemia, hypertension,
family history of CAD, obesity, and estrogen status). [13, 34, 35]

A case-control study was also conducted where subject’s cardiac computerized tomography an-
giographies (CCTA) and echocardiographies were further examined for details on heart patholo-
gies. The case-control study included a total of 83 subject divided in two groups of OS (n = 50)
and NOS (n = 33) subjects. The groups were compared on clinical characteristics of the mitral
and tricuspid valves and for the presence of atrial septum aneurysm.

Data of clinical characteristics are separated into categorical or non-categorical groups. Non-
categorical data is tested for distribution using one-sample Kolmogorov-Smirnov test. Data
of Gaussian distribution will be compared using two sample t-test. Non-Gaussian distributed
data will be compared using Mann-Whitney test (Wilcoxon rank sum). Categorical data will
be compared using Chi-squared test. All tests are performed with 5%, 1% and 0.1% levels of
significance and tests for general difference in group means (two-sided). All statistic analyses
will be performed using MATLAB (R2019a, MathWorks Inc.)
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3 | Implementation

3.1 Neural Network Setup
The setup chosen for this project is a, to the authors knowledge, different setup compared to the
currently used methods for heart sound classification, as it consists of multiple parallel NN’s,
classifier steps and a threshold function. The input is based on a windowed feature extraction
for the LSTM networks and a filtered signal as an input for the FCN-LSTM combination. At
the same time this study only examines the signal within a relevant time span for the opening
snaps in relation to S2, rather than looking at the entire signal for a heart beat.

The final system consists of four steps; preprocessing, NN’s, classifier and threshold function.
The connection between these are shown in figure 3.1.

Figure 3.1: Overview showing the final setup and connection through the system of preprocessing, NN’s, classifier
and threshold function.

This shows that the preprocessed data is fed to neural networks responsible for examining dif-
ferent domains of the data, thereby giving a probability output. This is then fed to the classifier
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as three individual values, which then classifies if the specific heart cycle contains a snap. Re-
sults from the classifiers examination of single heart cycles is then collected for each patients
and subjected to the threshold function in order to determine if the patient should be classified
with a snap.

3.1.1 Initial Data Processing

The data was subjected to filtering using a Butterworth bandpass filter between 250 and 1200
Hz to remove unwanted noise and irrelevant information, as the opening snap is a high pitched
sound following S2.

In order to extract features, a multitude of different extractions were implemented. This includes
both time, frequency and time-frequency domain features, where the simple time- and frequency
based features were extracted from 100 sample windows with a 50% overlap for the first 1500
samples following S2, as this showed the most precise individual results for each NN and highest
overall precision compared to including samples representing S2 as well. The time-frequency
domain features, Mel Feature Cepstral Coefficients (MFCC) and Discrete Wavelet Transform
(DWT), were extracted from the 1500 samples using build in functions from MATLAB.

All features were normalized between 0 and 1 in relation to the measured max and min values
within the data. This is done in order to improve performance of the NN’s, as varying values
due to small variations in microphone placement and attenuation of the heart sounds through the
body can affect the amplitude of measurements, and indirectly affecting the calculated features.

3.1.2 Network Implementation

LSTM networks were chosen for the feature based NN’s, where each network has its own
responsibility for predicting the probability of a snap based on features from a certain domain.
The design was implemented with two individual NN’s for the time and frequency domain. As
the MFCC and DWT inputs are essentially transformed signal sequences, these were fed into a
LSTM FCN as an experiment, which showed significantly improvement in the RMSE compared
to LSTM networks handling these inputs, leading to this being implemented in the final system.

A higher overall accuracy of the system was seen with the implementation of frequency and
time dimension based features in two individual NN’s, rather than collecting them into one.
Therefore the overall system was built with two networks for these two dimensions.
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Input MFCC Signal DWT Frequency Domain Time Domain

Epochs 120 100 120 30 50

Mini Batch Size 100 100 100 100 100

Init. Learn Rate 0.001 0.0005 0.0005 0.0002 0.0001

Learn Rate Drop Factor 0.8 0.05 0.8 0.5 0.5

Learn Rate Drop Period 4 10 4 3 8

Filter Size 10 10 10 - -

RMSE 0.21 0.20 0.19 0.5 0.41

Loss 0.022 0.018 0.018 0.1 0.084

Area Under Curve 0.74 0.81 0.74 0.51 0.66

When implementing the signal based networks, one of the main focus points were the filters
chosen in the FCN part of the NN, as these have a high effect on the accuracy. A combination of
different filter sizes and numbers were tested, with the one yielding highest performance being
a combination of three layers consisting of 80, 100 and 80 filters with a size of 10 samples. A
higher or lower number of filters and changes in filter size resulted in a decreased performance.
The networks were trained with 1988 samples distributed between OS and NOS, and the layers
consisted of 256, 512 and 256 neurons.

3.1.3 Feature Selection

When examining the time domain features, it was found that a higher precision was found for
the network using only MAV, STD, RMS, VAR and WFL, rather than including ZC, SKW and
SSC as well. This improved RMSE for the network from 50% to 41%, while decreasing loss as
well. No changes were found when excluding specific features for the frequency domain.

The MFCC based network showed significant improvement from 50% to 21% RMSE when
excluding everything but the first and third MFCC, while loss also decreased with this design.

3.1.4 Classifier

Using the Classification Learner in MATLAB it was found that SVM classifiers outperformed
other methods, where the most effective was found to be a Linear SVM classifier. This was
trained using outputs from the five NN’s with classes being either 0 or 1 for the heart cycle
be normal or contain a snap. The classifier was trained with 994 samples distributed equally
between cycles with and without snaps using 10 fold cross validation in order to decrease over-
fitting.
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The results showed that a classifier based on the DWT, MFCC and signal based networks ex-
cluding NN’s based on simple features proved the best results with a classifier verification ac-
curacy of 81.9%. .

3.1.5 Threshold Function

At the end a threshold function was implemented, in order to determine if the patient was
supposed to be classified with an opening snap. This function determines the outcome based on
the percentage of snaps in the heart cycles for each patient, with a threshold of 50% for a person
to be classified with a snap. This threshold has been chosen in order to achieve the highest
possible sensitivity while keeping a reasonable specificity.
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4 | Results

The manual labelling process of subjects in the dataset resulted in 77 subjects (12.83%) out of
the total 600 subjects, were evaluated to have OS. Zero subjects were excluded. The two groups
of OS subjects (n = 77) and no-OS (NOS) subjects (n = 523) were used for training and testing
for the NNs and later comparisons were made between the two groups. The subjects were all
over 40 years of age and nearly evenly distributed in sex. The details for the two groups are
presented in table 4.3.

4.0.1 System Accuracy

Precision of the individual networks are as described in table 4.1 through area under curve
(AUC).

Network Features AUC
MFCC 0.7388
DWT 0.8161
Signal 0.7433

Table 4.1: Accuracy of individual NN branches measured in AUC.

The classifier accuracy is described in figure 4.1 with a precision of 81.1% for single cycles,
with approximately the same specificity and sensitivity.

Figure 4.1: Confusion matrix for the classifier accuracy. These results are for the classification of whether heart
beats contain an OS or not, before the threshold function.

The receiver operating characteristics (ROC) for the individual networks are shown in figure
4.7.
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Figure 4.7: ROC curves for the networks: MFCC, signal, DWT, frequency and time based networks are shown in
that order.
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The system accuracy can be seen in table 4.2, where the optimal threshold was found to be
45% providing 94.5% sensitivity, 89.5% specificity and 92% best average accuracy (BAC). To
calculate AUC of the threshold function, the mean of predictions for each subject was set as
the classifier output while the label for that subject was the supposed class. Thereby the overall
systems AUC was found to be 0.9288 for the classification of a test group of 36 subjects mixed
equally between heart cycles containing OS or no OS..

Threshold Sensitivity Specificity BAC
35% 94.5% 78.9% 86.7%
45% 94.5% 89.5% 92%
55% 70.6% 89.5% 80.1%

Table 4.2: System accuracy with various thresholds.

The accuracy for correctly and wrongly classified subjects for the overall system can be seen in
figure 4.8.

Figure 4.8: Confusion matrix for the overall system. These results are the classification on whether subjects have
OS or not.

The ROC curve for the threshold function is shown in figure 4.9.
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Figure 4.9: ROC curve for the threshold function.

4.0.2 Statistical Results for comparison of OS and NOS subjects

As mentioned in section 2.5 the two groups of subjects, OS subjects and no-OS subjects (NOS)
are compared on clinical characteristics affecting the heart, like the Duke risk score and Morise
risk score. [13, 34, 35] The Kolmogorov-Smirnov test proved all non-categorical characteristics
to be of a non-Gaussian distribution, thus all non-categorical data was tested with a Mann-
Whitney test (Wilcoxon rank sum). All categorical data were tested with Chi-squared test. The
chosen characteristics are shown along with statistical results for the comparison in table 4.3.
Non-Gaussian distributed values are shown with a standard deviation (±), while categorical
values are reported with frequencies (percentages). Several of the chosen characteristics had
missing entries in the dataset, because not every subject have undergone the same procedures
and clinical tests. Characteristics which have missing entries are annotated and the number of
missing entries are noted in the bottom of table 4.3. A significant difference were found for age
between the groups (p < 0.05). No other significant differences were found.

19gr10412 27



Chapter 4. Results

OS (n = 77) NOS (n = 523)
Age (Years) 54.42 ± 9.54* 57.38 ± 8.75*
Sex
- Female 39 (51%) 289 (55%)
- Male 38 (49%) 234 (45%)
Weight (kg) 80.75 ± 16.75 79.14 ± 14.211

Height (cm) 173.75 ± 7.67 172.06 ± 8.982

Pulse (BPM) 64.57 ± 12.05 65.45 ± 10.813

Blood pressure
(mmHg)

4

- Systolic 135.21 ± 19.72 139.06 ± 17.97
- Diastolic 82.83 ± 12.82 84.12 ± 10.90
Smoker
- Active 15 (19%) 95 (18%)
- Former 25 (32%) 182 (35%)
- Never 37 (48%) 246 (47%)
Diabetes
- Has diabetes 1 (1%) 27 (5%)
- No diabetes 76 (99%) 496 (95%)
CADScore 19.77 ± 9.185 21.02 ± 9.855

Agatston score 136.13 ± 335.61 118.70 ± 302.13
P-cholesterol
(mmol/L) 5.37 ± 0.956 5.38 ± 1.026

Table 4.3: Data is missing for several categories: 1 Weight NOS: 3, 2 Height NOS: 1, 3 Pulse NOS: 2, 4 Systolic
Blood Pressure NOS: 2, 5 CADScore OS: 1 NOS: 18, 6 P-cholesterol OS: 7 NOS: 34.
Significant differences between the two groups are indicated with * for p < 0.05 and ** for p < 0.01.

4.0.3 Comparison of CCTA and Echocardiography

A selection of OS and NOS subjects, who had had CCTA and echocardiography performed,
were examined for conditions and pathologies of the heart. The Kolmogorov-Smirnov test
showed that all non-categorical values were from a non-Gaussian distribution. This data was
tested with a Mann-Whitney test (Wilcoxon rank sum). Categorical data was tested with Chi-
squared test. The results are shown in table 4.4. Non-Gaussian distributed values are shown
with a standard deviation (±), while categorical values are reported with frequencies (percent-
ages). Missing entries are annotated and noted at the bottom of table 4.4. A significant differ-
ence between the groups were found for subjects which had been diagnosed with mild mitral
insufficiency (p < 0.05). No other significant differences were found.
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Chapter 4. Results

OS (n=50) NOS (n=33)
Mitral Plague
- No 49 (98%) 31 (94%)
- Yes 1 (2%) 2 (6%)
Mitral Valve
Thickening
- No 49 (98%) 32 (97%)
- Yes 1 (2%) 1 (3%)
MR
- No 47 (94%) 3 (6%)
- Yes 32 (97%) 1 (3%)
Mitral
insufficiency

1 1

- None 29 (66%) 13 (43%)
- Mild 12 (27%) * 17 (57%) *
- Moderate 3 (7%) 0
- Severe 0 0
Mitral stenosis 2 2

- None 45 (98%) 30 (100%)
- Mild 1 (2%) 0
- Moderate 0 0
- Severe 0 0
Mitral Restrictive 3 3

- No 44 (96%) 31 (100%)
- Yes 2 (4%) 0
Mitral Flow (m/s) 0.71±0.174 0.73±0.214

Mitral Dec (ms) 216.05±52.185 213.33±60.955

Mitral E (m/s) 0.10±0.036 0.11±0.036

Tricuspid
insufficiency

7 7

- None 22 (61%) 7 (41%)
- Mild 13 (36%) 10 (59%)
- Moderate 1 (3%) 0
- Severe 0 0
Tricuspid stenosis 8 8

- None 35 (100%) 17 (100%)
- Mild 0 0
- Moderate 0 0
- Severe 0 0
Atrial Septum
Aneurysm

9 9

- No 19 (95%) 13 (93%)
- Yes 1 (5%) 1 (7%)

Table 4.4: Data is missing for several categories: 1 Mitral insufficiency OS: 6 NOS: 3, 2 Mitral stenosis OS: 4
NOS: 3, 3 Mitral Restrictive OS: 4 NOS: 2, 4 Mitral Flow OS: 13 NOS: 12, 5 Mitral Dec OS: 13 NOS: 12, 6 Mitral
E OS: 14 NOS: 11, 7 Tricuspid insufficiency OS: 14 NOS: 16, 8 Tricuspid Stenosis OS: 15 NOS: 16, 9 Atrial
Septum Aneurysm OS: 30 NOS: 19.
Significant differences between the two groups are indicated with * for p < 0.05 and ** for p < 0.01.
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