
Aalborg University Copenhagen
A.C. Meyers Vænge 15

2450 København SV

Secretary: Maiken Keller

Semester:
ICTE 4

Title:
Distributed Software-Defined Networking
Emulation

Project Period:
Spring Semester 2019

Semester Theme:
Master thesis

Supervisor(s):
Henning Olesen

Project group no.:
4SER 4.3

Member(s):
20145350 - Lukas Buch Jordell

Pages: 93

Finished:
June 6, 2019

Abstract:

Software-Defined Networking is an emer-
gent field within networking, which takes
a new approach to network management
over traditional networks, by abstract con-
trol logic from the forwarding functions
of network functions. The migration be-
tween the two are not withstanding is-
sues and challenges relating to the mi-
gration of Operating Support Systems,
Re-factoring application architectures and
training and technological implementation
surrounding SDN components.

In this project, the concept of network em-
ulation is introduced, and a distributed
emulated testbed is proposed. The pro-
posed prototype seeks solve for the stip-
ulated issues and challenges, by enabling
developers to implement SDN applica-
tions and test and monitor SDN controller
and OpenFlow interaction and configura-
tions, by providing a dynamically provi-
sioned and emulated data layer that these
may manage.

All group member are collectively responsible for the content of the project report. Furthermore, each group member is

liable for that there is no plagiarism in the report. Remember to accept the statement of truth when uploading the project

to Digital Exam

Distributed Software-Defined
Networking Emulation

Master Thesis

Lukas Buch Jordell

Aalborg University
Innovative Communication Technologies and Entrepreneurship

Contents

List of Figures iii

1 Introduction 1
1.1 Research Motivation . 1
1.2 Problem Space . 5
1.3 Research Objectives . 7
1.4 Research Questions . 7
1.5 Research Scope . 8
1.6 Expected outcome . 8
1.7 Methodology . 10

1.7.1 Research . 10
1.7.2 Process model . 11

2 State of the Art 12
2.1 Software-Defined Networks . 12

2.1.1 Openflow protocol and switch specifications 16
2.2 Virtual Switches . 21

2.2.1 Open vSwitch Specification . 21
2.2.2 Basic OpenFlow User-space Software Switch specification 23

2.3 SDN controllers . 24
2.4 Network Function Virtualization . 26
2.5 Internet protocol Suite and networks . 28
2.6 Network Management Technologies . 29

2.6.1 Network Monitoring . 30
2.6.2 Network Configuration . 32

2.7 Network Emulators . 34
2.8 Virtual environments and orchestration platforms 36

3 Analysis 38
3.1 Service Architecture Development . 38

3.1.1 Virtual environments . 39

i

3.1.2 Network emulation . 40
3.1.3 Network Function Virtualization . 42
3.1.4 Switch Specifications . 43
3.1.5 OpenFlow and SDN Controllers . 46

3.2 Network Monitoring and Presentation . 48
3.3 Industry interview . 50
3.4 Inspiration . 50
3.5 Requirements Specification . 51

3.5.1 Use Case diagram . 51
3.5.2 Requirements prioritization - MoSCoW 53
3.5.3 Requirements . 54

4 Conceptual Design 59
4.1 Architecture . 59

4.1.1 System Context Diagram . 61
4.1.2 Sequence Diagrams . 63

5 Implementation 66
5.1 Development Methodology . 66
5.2 Architecture . 67
5.3 Sprints . 69

5.3.1 Docker Container Provisioning and Mininet Integration 69
5.3.2 Virtual Switch Implementation . 73
5.3.3 SDN Controller implementation . 73
5.3.4 Topology Generators and Template Scripts 74
5.3.5 Network Visualization . 76
5.3.6 Network monitoring and Data Representation 77

6 Discussion 79
6.1 Agile process approach . 79
6.2 Prototype approach . 80

7 Conclusion 82

Bibliography 85

ii

List of Figures

1.1 Representative Communication Service Provider core and access network
facilities [17] . 3

1.2 A simplified overview of the SDN reference architecture [21] 4
1.3 Expected outcome of the project and preliminary architecture 9
1.4 Project methodology . 11

2.1 A logical view of the basic SDN architecture and components [37] 14
2.2 OpenFlow-enabled switch architecture and its constituent components [20] . 17
2.3 The main components of a flow entry in a flow table of an OpenFlow switch

[20]. 18
2.4 The main components of a group entry in the group table of an OpenFlow

switch [20]. 19
2.5 The main components of a meter entry in the meter table of an OpenFlow

switch - Proposed in the OpenFlow switch specification [20]. 19
2.6 A flow diagram of the OpenFlow pipeline processing [20]. 20
2.7 The high-level architecture of Open vSwitch [44][20]. 22
2.8 The high-level architecture of BOFUSS [47] . 23
2.9 Table detailing a comparison of open source SDN controllers 25
2.10 The relationship between NFV and SDN [55] 26
2.11 The Network Functions Virtualisation architectural framework [58] 27
2.12 The basic architecture of TCP/IP (Internet protocol suite) [62] 29
2.13 Comparison of network monitoring protocols and technologies 32
2.14 Comparison of network configuration protocols and technologies 34
2.15 Comparison of open source SDN-capable network emulators 36
2.16 Architectural comparison of containers and virtual machines [76]. 37

3.1 Mininet BOFUSS namespace implementation - inspired by [96] 44
3.2 System Use Case Diagram . 52
3.3 Activity diagram detailing the flow of the use case diagram 53

4.1 Context diagram with system terminators. 61
4.2 Sequence diagram for retrieving and displaying network flows 63

iii

4.3 Sequence diagram for creating, starting and viewing topology configurations 65

5.1 Agile development methodology . 67
5.2 System architecture . 68
5.3 Instances and host configuration . 70
5.4 Container default values, dictionaries and lists 71
5.5 Container creation, inspection and start up . 72
5.6 Controller sub-classing with POX l2 learning example [89] 74
5.7 Customized tree topology subclass [89] . 75
5.8 Mininet function block script for creating a topology 76
5.9 Subset of flow and counter calculations . 78

iv

Chapter 1

Introduction

1.1 Research Motivation

Information and Communication Technologies (ICT) profoundly impact and permeate
multiple aspects of modern day life, such as facilitating the convergence and transforma-
tion of social, economic and educational sectors, as well as creating new divergent markets.
Meanwhile, inter-connectivity is growing at an exponential rate with a continued shift in
the number and variants of devices and connections, as the world is moving towards the
implementation of fifth generation (5G) network technologies [1].

Here, IPv6 and Low-Power Wide Area Network (LPWAN), among others, are technolo-
gies enabling Internet-of-Thing (IoT) connectivity and machine-to-machine (M2M) appli-
cations across industries [2], further accelerating IoT growth [3]. A development that is
occurring alongside broadband developments [4] and an escalating demand for various
resource intensive services, e.g. asymmetric application traffic growth associated with
the advent of Over-The-Top (OTT) multimedia Content Delivery Networks (CDN), cloud-
based platforms and application services, e.g. Google, Facebook and Amazon [5]. Within
the area of operational sustainability (CAPEX/OPEX) and service reliability (QoS/QoE),
there is an objective to minimize the Total Cost of Ownership (TCO) of network infrastruc-
ture and Return Of Investment (ROI).

Many concurrent traditional Transmission Control Protocol/Internet Protocol (TCP/IP)-
based internet architectures, have not been in a state to effectively meet these drastically
developing demands with its established best-effort end-to-end communications model
between network endpoints [6]. Moreover, the Internet architecture has become complex
as networks vary significantly in the respective capabilities and functions provided. This is
exacerbated, as each implement varied proprietary hardware, software and middle-boxes,
e.g. application-specific gateways or proxy servers, necessary to cater to newer and more
demanding applications supported by modern systems [7][8]. A development furthered by
contending market actors, e.g. Communication Service Providers (CSP) navigating multi-
vendor environments. All of these contribute to a static and complex state of operation, a

1

phenomenon known as Internet ossification [9].
This outlined situation has been leading to vendor lock-in, complexity and lack of flex-

ibility related to core provisioning of new network components on various scales [9]. The
resulting outcome thereof is the introduction of higher barriers to entry for insurgent mar-
ket actors, whilst further constituting a hindrance to the adoption of new and disruptive
network technologies and services for incumbent market actors. Situations that can be
debated as being inherent obstacles in enabling innovation in the provisioning and man-
agement of the respective networks, in order to meet increasing business and network
requirements [7].

To address such challenges, CSPs started to embrace the concept of network abstrac-
tions through virtualization of their respective networks. This trend is largely inspired
by the overwhelming success of virtualization within the field of cloud computing, where
it addresses similar challenges [10]. Virtualizationn is the key enabler for various cloud-
based service models, e.g. Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS) [10]. These, and orchestration solutions, such as Ku-
bernetes [11], OpenShift [12], Docker [13] and OpenStack [14], have largely lead to the
proliferation and re-factoring of application service orchestration through innovation in
provisioning and management of virtual resources and service elements, e.g. computer,
storage and network over underlying Commercial Off-The-Shelf (COTS) hardware [10][3].
This have hailed the logical evolution from Monolithic architectures to Service-Oriented
Architectures (SOA) to Micro-Service Architectures (MSA) [15]. A change that can be ob-
served in many enterprises and research articles, where containers and virtual machines
are being employed to host applications and virtual network functions.

Networks are typically constituted by a larger number of computational networking
nodes and storage devices. These components are the network service functions associated
with routers, switches, firewalls, load balancers, Domain Name System (DNS) servers and
other dedicated network equipment in core and access networks, e.g. customer premises
equipment [4][3]. Displayed in figure 1.1 is a representative high-level overview of the dif-
ferent networking domains that may be associated with a typical CSP network. Here, CSPs
are moving to virtualize network functions to enable faster deployment and scalability of
the constituent networks [16].

As a step towards virtualization, most CSPs have implemented overlay networks based
on a series encapsulation techniques, which use tunneling, tagging, and labeling proto-
cols, e.g. Generic Routing Encapsulation (GRE), Point-to-Point Tunneling Protocol (PPTP),
Layer 2 Tunneling Protocol (L2TP), Virtual Extensible Local Area Network (VXLAN) and
Multiprotocol Label Switching (MPLS), in order to enhance software control over network
functions. While this approach enables innovation by distinct network services, e.g. Vir-
tual Private Networks (VPNs), it does not change the underlying infrastructure character-
istics. Thus, it realizes only the short-term benefits of network virtualization [3]. To realize
the potential of network virtualization in solving stated challenges, there is a necessity in
enabling the virtualization of network functions over whitebox hardware and software [3].

2

Figure 1.1: Representative Communication Service Provider core and access network facilities [17]

With that in mind, more recent developments within the field of network development
and management, are displaying new trends and approaches to network virtualization
and management. Among these approaches, Software-Defined Networking (SDN) is at the
forefront of concurrent research topics and application in the networking community. A
technology that have a potential to significantly impact operational sustainability [18][19].

With regards to the high-level overview of the SDN reference architecture illustrated
in figure 1.2, the core concepts behind SDN technological approach to network manage-
ment is the software abstraction of control logic from the forwarding mechanisms of net-
work functions. By decoupling the data forwarding mechanisms of the data layer from
the control mechanisms of the control layer, the network functions can become directly
programmable. This allows traffic flows to be adjusted from a central logical software con-
troller, thus simplifying network-wide operations. The SDN controller maintains a view
of the network state and may alter forwarding function using the OpenFlow protocol [20],
in order to meet changing network requirements. In the data layer, the network elements
may be comprised of both hardware- and software-based network functions, e.g. core
and edge switches presented in figure 1.1. These network functions can be programati-
cally modified via SDN applications in the application layer, relating to the automation,

3

configuration and management, monitoring and troubleshooting of network resources, in
order to provide end-to-end solutions. Because the SDN architecture is based on open
source software, open standards and a central logical controller, it appears more like cloud
computing than traditional network management. It addresses many of the challenges
described in the above sections [21].

Figure 1.2: A simplified overview of the SDN reference architecture [21]

Dynamic Service Function Chaining (SFC) deployment and provisioning of network
functions achievable through the centralized logical control functions of SDN and prolif-
eration of cloud-based execution and automation environments, i.e. Infrasture-as-a-Servce
(IaaS) and Platform-as-a-Service (PaaS), have enabled new opportunities regarding these
topics. Particularly prominent SDN use cases feature linking physical hardware and vir-
tual network functions, providing virtual service for carrier networks, e.g. virtual Evolved
Packet Core (vEPC) and deploying virtual customer edges, i.e. virtual Customer Premises
Equipment (vCPE) [16] - refer to figure 1.1.

This development lines up both challenges and opportunities as applications grow in
complexity, compelling CSPs to innovate their business models in regards to their available
network resources and service components. Network virtualization and programmability

4

delivers flexibility over existing legacy architectures that can enable the aforementioned
service reliability and operational sustainability. Arguably an important objective, stand-
ing on the verge of the 5G era [16].

Moving to SDN-enabled networks is not withstanding certain challenges, i.e. con-
verting from traditional systems to software-defined and virtualized systems involves the
restructuring of existing architectures and networking environments. In the case of Mo-
torola, refer to appended interview, this involves re-factoring of enterprise applications
into a Micro-Service Architecture and considerations on the functional modelling of or-
chestration systems, i.e. Kubernetes [11] and OpenShift [12] and constituent SDN con-
trollers, i.e. Cilium [22] and Juniper contrail [23][24].

As such, it can be stipulated that a number of challenges must be confronted by CSPs
along that process, including decisions on personnel training, performance modelling and
evaluation of orchestration systems and SDN controllers, service availability and reliability,
vendor interoperatibility and more. Furthermore, in many cases, SDN architectural com-
ponents must interact with legacy components introducing further complexity [25][26].

1.2 Problem Space

During the preliminary research phase, it was found that there is a general consensus
among standard organizations, specification organizations, open source organizations and
commercial vendors that SDN solves for challenges posed by increasing internet ossifi-
cation. Progress achievable through key attributes such are programmability, openness,
heterogeneity, and maintainability [25]. It has further been recognized as a key enabling
component in future 5G and IoT networks, by organizations such as The 5G Infrastructure
Public Private Partnership (5GPPP) [1], Next Generation Mobile Networks (NGMN) [27],
Groupe Spéciale Mobile Association (GSMA) [28], European Telecommunications Stan-
dards Institute (ETSI) [29], Open Networking Foundation (ONF) and the Broadband Fo-
rum (BF) [26]. All of the above sees the standardization of technology as essential for the
global success of future solutions and ecosystems.

However, it is also recognized that SDN have yet to reach standardized maturity, which
enables the multi-vendor interoperatiblity, economies of scale and clear interfaces needed
for SDN to be widely adopted [27]. In a report by Cartesian, made in collaboration with
the Broadband Forum (BF), several immediate issues and long term challenges has been
identified as an obstruction for widespread implementation. Technological, operational
and organizational issues and challenges that needs to be addressed [26][25]. The primary
findings show that:

• Technological - While many CSPs does want to migrate to SDN, it has been widely
acknowledged that the technologies are still in their infancy. This is in part targeted
at concerns surrounding reliability and interoperatibility of existing ETSI and ONF
specifications, in regards to integration issues tied into existing vendor and legacy

5

domains, e.g. lack of concise boundary functions. Further in part by the multi-
ple standards, specifications and open source organizations [30] and initiatives and
vendors leading to software incompatibilities [26].

• Operational - The operational migration from legacy to hybrid to open virtual sys-
tems require a significant resource investment, as complexity and requirements is
added for CSPs, e.g. new orchestration and service management, multi-vendor envi-
ronments and training needs to be taken into account. As a result, updating legacy
processes and systems to integrate with SDN is causing a bottleneck [26].

• Organizational - Digital transformation strategies can in of itself not be solely fo-
cused on technological implementations, i.e. organizations are posed with challenges
in regards to industry-wide knowledge and practical experience scarcity [26].

The report in mention concludes that there are significant benefits, but also challenges
to overcome for CSPs in migrating to open SDN systems. It further proposes a outlines a
series of recommendations, supported by ONF [25][31], which CSPs can follow to ease the
transitional period between system states in production environments, as it is prospective
that it will constitute an extended period of time [26].

Among these recommendations are considerations towards creating a comprehensive
strategic plan for SDN deployment in existing architectures and ecosystems, as Operations
Support Systems (OSS)/ Business Support System (BSS) and service models needs to be
reconsidered [26]. In short network transformation should happen by acquiring the nec-
essary proficiency and resources to do so [26], e.g. functional change may be performed
in phases [25][31].

Research and interviews have indicated that it is common practice for SDN controllers
to come packaged or as plug-ins in orchestration platforms, such as Kubernetes, OpenShift,
Mesos [32], etc., which provide functional models for network operation and orchestration,
where policy engines may be employed to achieve a desired service. However, the inner
workings and performance models of SDN controllers are often not exposed.

This is supported by an emergent variety of network emulators that have been de-
veloped to aid the research community and CSPs in provisioning, testing and analyzing
potential network deployments and service models [33][34]. As mentioned, within these
there are two perspectives that should be considered. These are the functional and perfor-
mance models associated with implementing SDN orchestration and architectures.

It is then evident that there are challenges and that these are multi-faceted, e.g. may
entail the process of transition, vendor compatibility for software and hardware, network
management for rapid traffic growth rates, standard maturation, insufficient deployment
knowledge and expertise, linking OSS/BSS with virtual networks and more [26][35].

This poses an opportunity for the development of an emulated testbed that may be em-
ployed as a development environment for the planning of network architectures, the im-
plementation and testing of SDN controller and OpenFlow mechanisms and development
of SDN applications, before these are potentially deployed into a production environment.

6

1.3 Research Objectives

Therefore, the main research objective for this thesis becomes the realization of an emu-
lated testbed. The focus is on enabling the provisioning a distributed emulated network
that can constitute the data layer for implementing SDN component functionality, i.e. SDN
controller and SDN application. Ultimately, this is to assist in solving potential network
ossification issues, through innovation and testing of these components in an emulated
environment. From this main objective the following objectives are derived:

• Identify the related work and research in the field of networking relating to SDN,
network protocols technologies and implementations.

• To Identify the relevant network technologies and architectures and compare these
to each other.

• To propose an implementation approach and its methodology to realize the research
question for this thesis.

1.4 Research Questions

Based on preliminary research and stipulated research objectives, the following main re-
search question can be deduced:

• How can network emulation and monitoring technologies be employed to
investigate the interaction between data and control layers components in
an emulated SDN architecture?

In order to answer this research questions, sub-questions have been formulated and
sought to be discussed throughout the report. Each sub-questions is formulated in per-
spective to primary research questions and seek to provide insight into the underlying
problems. From the primary research questions, the following sub-questions can be de-
duced:

• How may network emulation technologies be employed to provision a network topology?

• How can network control and monitoring be implemented in an emulated testbed?

• How may network control and data flow metrics be displayed to the user?

• How can a provisioned network topology be visualized?

7

1.5 Research Scope

In order to delimit the scope of the thesis, some limitations have been stipulated for the
project. These are set out as the fields of Software-Defined Networking are considerable
and continuously evolving. These limitations include:

• The thesis will be focusing on the development a emulated testbed that can provision
isolated and distributed network functions.

• The primary purpose of the emulated testbed is to observe SDN controller and Open-
Flow interactions in a switching fabric with associated end-host and subsequent per-
formance modelling.

• Discussing performance modelling, the thesis does not focus on how to incorporated
functional modelling.

• A full analysis of all possible integrated SDN and NFV architectures in research and
commercial settings will no be investigated.

• Closed sourced or black box solutions will not be taken into consideration due to
operational uncertainty. In line with the SDN reference architecture, the proof of
concept prototype will solely be based on open-source code and vendor-neutral pro-
tocols.

• A limited proof of concept prototype will be implemented, with additional reflec-
tions on functionality regarding the future perspective of the prototype.

1.6 Expected outcome

This section outlines the expected outcome of the master thesis project. It contains the
envisioned preliminary design of the proposed proof of concept prototype. The prototype
will be reflected upon in chapter 6.

As delineated in prior sections, the expected outcome of the thesis project is the de-
velopment of a network emulation testbed. A tool that can be employed for rapid and
dynamic provisioning of an emulated network topology without the need for networking
hardware. An emulated network that developers can work on independently and share be-
tween them, in order to perform testing and monitoring of SDN controller and OpenFlow
interactions. The Proof prototype is comprised of seven functional objectives:

• The prototype should be able to provision singular or multiple connected emulated
network topologies.

• The prototype should be able to host network emulators on virtual environments.

8

• The prototype should be able to provision standard or customized network templates
from repositories to recreate network topologies.

• The prototype should be able to monitor network traffic and SDN controller func-
tions and behaviour.

• The prototype should be able to visualize a provisioned network topology and dis-
play monitored network metrics

• The prototype should be able to perform performance modelling to observe SDN
controller and OpenFlow interactions.

• The network provisioned by the prototype should be able to be managed through a
Command-Line Interface, but may be supported by Graphical User Interface (GUI)
functionality.

Figure 1.3: Expected outcome of the project and preliminary architecture

To realize this, the proof of concept prototype should be able to be hosted on a IaaS,
where a master node will handle incoming client requests. This master should further

9

handle the subsequent provisioning of virtual environments, e.g. containers or Virtual
Machines (VMs) from a constituted provider. Additionally, the master node may handle
the allocation of SDN controller and network templates and OS images. As these are
changed, they should be saved to the system for allocation at a later date, e.g. if a network
worker node is deleted.

The system presented to the client will be comprised of a GUI dashboard and a CLI
that should entail the provisioning and allocation of network worker nodes per the above-
mentioned functionality. It should further be able to visualize currently operational net-
work worker nodes and network topologies. The client should be able to program the
network nodes to construct specific network scenarios. A preliminary system architecture
is depicted in figure 1.3.

1.7 Methodology

This section introduces the approach taken and the methods used, in order to gather
data and develop a proof of concept prototype that attempts to solve for the questions
introduced in section 1.4. The research techniques employed in the data gathering process
are detailed together with the project process model.

The primary motivation behind the thesis originates from extended interests within the
field of routing and switching and how the lines between software development and net-
work engineering is becoming increasingly blurred. This thesis aims at making progress
in the direction of the delineated State-of-the-Art research within the field of networking,
which is presented and discussed in Chapters 2 through 6.

1.7.1 Research

The immediate approach to the topic was to employ research methods that are suited for
exploring new and emergent areas within the networking discipline. To this extend an
exploratory research paradigm was employed to study the problem space thoroughly, as
to establish methodological priorities in the shape of research questions - Research ques-
tion intended to determine the scope of the thesis together with the imposed limitations
delineated in section 1.5 and section 6.2.

For this purpose the thesis, the approach predominately relied on secondary research.
To elicit the relevant evidence to answer the research questions, a set of sources must be
selected to perform the search. Therefore, the following web search engines was selected:
ACM, Digital Library, IEEE Xplore, Science Direct, Springer Links and more. A set of
keywords and filter criteria was employed in this search to determine content and con-
tent types. This search was supplemented by whitepapers and specifications authored by
industry organizations, e.g. ONF and ETSI and market leading actors, e.g. Cisco and
Juniper. This was carried out in order to determine the applied technological processes
necessary to construct a conceptual design and answer specified research questions.

10

1.7.2 Process model

The thesis project adopts an agile methodological approach to developing the project - An
overview is displayed in figure 1.4. The approach borrows several elements from SCRUM
method [36]. The approach is centered around exploring and analyzing the State-of-the-
Art field associated with the problem space.

As is experienced with prior projects, there will be overlapping research and design
phases, as the analysis of technologies or new insight provided by industry interviews,
necessitates additional investigation into technologies, code, studies, etc.. This approach is
largely in line with the agile methodological ideology.

Figure 1.4: Project methodology

The various cycles throughout the project is based on four constituent phases; Research,
Analysis, Design and Feedback. First, research is carried out to provide a general overview,
which can then be analyzed to determine the project design. Lastly, this is submitted for
feedback, which is employed together with the next cycle. These cycles are planned in
two week intervals, although the length may vary depending on appointed tasks and
schedules. Here, it should be noted that this methodological approach runs in parallel to
the development methodology described in chapter 5.

The research methodology used throughout this thesis is abductive in nature, as it
starts from the point of view of currently existing and developing technologies and spec-
ifications within the problem space. The aim is trying to find a solution to challenges
associated with these, as specified in section 1.2. It is not the intention of this thesis to find
a be-all-end-all solution to the challenges associated with SDN implementations, such as
discussed in the limitations set in section 1.5 and 6.2.

11

Chapter 2

State of the Art

As delineated in the previous chapter, the problem space of the thesis encompasses the in-
corporation of virtualization techniques and technologies that can be employed to develop
the proof of concept prototype. This leads into the overall objective on how a emulated
testbed may be developed to test and monitor SDN controller and OpenFlow interac-
tions over underlying emulated network topologies. An sub-objective is how this may
be employed to facilitate the transition from traditionally monolithic to software-defined
infrastructures.

However, in order to achieve that objective, it necessitate that one understand the prob-
lem space within which SDN operate and how these and existing technologies apply in
solving concurrent challenges faced by CSPs and what can potentially be built upon. The
aim of this chapter is therefore to presents technologies and existing solutions related to
SDN. It serves as the reference frame for subsequent chapters, by establishing the princi-
ples and terminology associated with these.

In that regard, there are three distinct fields that are relevant to the proposed prototype;
virtualization and emulation of networking nodes, network technologies and protocols
and measurement statistics. In this context, the State-of-the-Art architectures, frameworks
and technologies and existing solutions that are relevant to the the expected outcome, are
briefly discussed in terms of their operational constituent functions. These are summarily
compared and analyzed, in order to develop a corresponding implementation strategy.
The implementation strategy and development methodology, is presented in chapter 5 -
Implementation.

2.1 Software-Defined Networks

SDN is a network architectural paradigm that enables the network control plane logic to be
abstracted from the data forwarding plane functions embedded in network hardware and
technologies, in a centralized and programmable software platform. This platform is con-
stituted by set of virtualized software functions and open interfaces i.e. Northbound and

12

Southbound APIs that can be queried to dynamically manage network behaviour between
higher or lower layer network components. This is in direct contrast to black box middle-
ware and proprietary interfaces [37]. It is these APIs, alongside SDN controllers, that will
be used throughout the thesis project to provision and expose network services, such as,
modifying datapaths and queues, routing metrics and providing protocol and technology
extensiblility to the network emulation prototype. However, in order to understand the
inner workings of these interfaces and functions, the ONF SDN reference architecture and
commercial solutions needs to be investigated.

In relation to commercial architectural solutions, there is an preliminary generation
being put forth by vendors, e.g. Cisco, Juniper, Ericsson, Huawei, Oracle and Verizon,
supporting technological and standardization bodies, e.g. ETSI, OpenStack, ONF and
3GPP [30], and orchestration platforms, e.g. Kubernetes, OpenShift and Mesos. These
market actors are expanding their service suites by innovating and adapting to the dis-
ruptive change in legacy value chains. This includes the creation and marketing of SDN
architectural platforms and Virtual Network Functions (VNF). However, while these ini-
tiatives promote the adoption and integration rate of SDN, there are still issues concerning
incompatibility between proprietary vendor VNFs and general standardization maturity
[35][38][26]. This makes it difficult to frame an architecture that can implement these. A
logical approach, as suggested by Ericsson, is to employ a common platform that em-
ploys open source initiatives, such as OpenStack and OpenDaylight to enable the reuse
of application components [16]. OpenStack can be observed to be implemented many
architectures, including Motorola - refer to interview.

These vendors offer a wider selection of competing commercial architectures and plat-
forms and these take on a variety of forms, but at its most simple, the SDN architectural
paradigm centralizes control of the network intelligence and state by abstracting appli-
cations and control logic from the underlying network elements and resources. All SDN
solutions have some version of an SDN controller. Each of these controllers typically
support three functional interface types, Northbound, Southbound and OSS/BSS manage-
ment interfaces, where some may additionally have East- and West-bound interfaces for
logically distributed architectures.

These SDN solutions are often determined at the operating Data-Controller Plane Inter-
face (D-CPI), e.g. OpenFlow Protocol, and Application-Controller Plane interface (A-CPI),
e.g. SDN applications and management interface, as well as the employed controllers, ap-
plications and plug-ins - A-CPI and D-CPI are colloquially called North- and Southbound
APIs / interfaces (NBI/SBI) in research. Furthermore, these commercial architectures also
incorporate varying degrees of NFV interoperability [39]. In general, it can be argued
that there is no single best solution or combination of SDN components that suits all use
cases, as each of them have immediate benefits and trade-offs. Thus, each respective en-
terprises have to decide on a particular SDN solution or a combination of components for
implementing SDN in their corresponding networks [26][25][37].

As briefly discussed, the SDN reference architecture may encompass multiple different

13

network technologies and resources [37][21]. These can be utilized by internal or external
SDN applications to perform tasks to expand upon network functions in a SDN environ-
ment, allowing operators to respond quickly with flexible network state changes, in order
to meet continuously evolving network requirements [40][16]. These applications may
concern network monitoring and intelligence, bandwidth management, distributed con-
trol and cloud integration and automation, orchestration, and more [16]. These may have
a profound impact on existing Operations Support Systems (OSS) and Business Support
Systems (BSS) solutions [41], whether these are situated in telecommunications, private or
commercial clouds [16]. Orchestration platforms and open source initiatives, such as the
one previously mentioned, may assist in facilitating these in the cloud.

In Figure 2.1, a logical view of the base SDN reference architecture, which is proposed
by the ONF [37], is presented. This constitutes the frame for the subsequent discussion of
SDN components.

Figure 2.1: A logical view of the basic SDN architecture and components [37]

14

SDN principles of exposing abstract network resources and state to external applica-
tions, permit SDN applications in the application plane or layer, to specify the resources
and behavior they require from the network, within the context of business and policy
agreements that has been stipulated. The NPIs connects the SDN controller to the appli-
cation plane and vice versa. An SDN application may itself support a NPI agent, which
allows for recursive application actions across functions and policies. Different levels of
application hierarchies depends on the degree of abstraction being pursued. Component
application may be structured into a service chain, e.g. Identity and Access Management
- each level may exist in a different trust domain [37]. Any SDN application(s) commu-
nicate its requirements across the NBI, i.e. it may query external services or call SDN
controllers across multiple NPI interfaces to achieve its immediate functional objectives
and operational requirements. For the management interface, the supporting OSS/BSS
and coordinator functions may expose configurations, functions and policies, as these ap-
plications require information about their operational state and roles [37]. Any Activity
across the NPIs involves queries to the state of the virtual network and invocations to alter
said state, e.g. creating or modifying network connection configurations or policy func-
tions between data plane interfaces. Here bandwidth and QoS/QoE parameters may be
specified. The NPI may also be used for implementing additional feature, e.g. may func-
tion as an access point to configure a service chain (hierarchy) through levelled services or
as an input to control virtualized network functions [37].

The SDN controller plane may be constituted by more than one SDN controller, di-
viding up the logical control plane. The SDN architecture does not specify the internal
design of an SDN controller and its logic, as such it can be viewed as a black box, but it
is generally agreed that SDN control is logically centralized (may be distributed), working
within a scope of subnets, spans physical or virtualized Network Elements (NE) and has
no resource contention with other SDN controllers [37], i.e. it can be said to be defined by
it externally observable behaviour, e.g. topology knowledge or path computation.

The SDN architectures does however conceptualize a minimum set of functional com-
ponents within the SDN controller. The Data Plane Control Function (DPCF) component
delegates the underlying NE resources currently accessible, per the instructions that has
been received from the respective OSS/BSS, coordinator or virtualizer that controls said
resources. These are represented in a so-called information model instance that is accessed
through disposed agents in a lower level. A Resource DataBase (RDB) concurrently models
the information model instance and the necessary supporting capabilities that are avail-
able. The master RDB is a repository of all resource information known to the NEs in the
accessible subnet, whether physical or virtual. This is especially needed as the scope of an
SDN controller is expected to span multiple NEs - unique SPI instance tied to each. Lastly,
the DPCF typically includes a function that operates on the aggregate NEs. This function
is commonly called application orchestration [37].

• The Coordinator is a component of any given SDN controller that acts in liason
with the manager. In order to effectively set up both client and server environments

15

and be aware and able to change network parameters, there is a need to implement
appropriate management functionality across data, control and application plane
models, so that information is available [37].

• The Virtualizer is an entity that supports the information model instance at a given
NPI. It outlines the trust domain boundary between the different level and the asso-
ciated application agents. This agent represents the application view of the informa-
tion model instance. A virtualizer is instantiated by the OSS/BSS or coordinator for
each of the application in play [37]. Any number of NBI instances may be concur-
rently supported by one or more SDN controllers. This is typically carried out when
multiple applications are being serviced by one of the SDN controllers.

• The agent in any given SDN controller and at any given hierarchical level, repre-
sents the resources and queryable actions available to a given SDN application. A
controller-agent model described the relation and status between NEs and SDN con-
trollers. This can be summarily noted from the previously mentioned recursive ap-
plication hierarchy roles [37].

As described, the control plane is abstracted from the data forwarding plane. The data
plane is tasked with implementing routing and switching decisions concluded in the above
controller plane. In principle, this plane does not make autonomous forwarding decisions
and would need to be directly configured to take any autonomous actions. An example
thereof is that the controller plane may configure the data plane to respond autonomously
to certain events tied to certain applications [37]. This may be changing to a fallback data
forwarding route if one of the the primary logical links fails in a network slice.

The SBI interface between data and controller planes provides feature such as, pro-
grammable control of the functions exposed by the RDB and NE capabilities advertisement
and event notification. The data plane agent is the entity that executes SDN controller in-
structions in the data plane. The data plane coordinator is the entity by which management
allocates data plane resources to various client agents and establishes policies to govern
their use. Agents and coordinators serve the same purpose in every plane of the archi-
tecture [37]. Any number of SBI instances may be supported by an SDN controller that is
associated with any number of NEs.

2.1.1 Openflow protocol and switch specifications

As delineated in the previous section, the SDN Controller is the primary logical operat-
ing entity in most given SDN-based network. This is in charge of relaying information to
and from underlying physical or virtualized NEs. As further discussed, standardization
organizations and specification bodies have been promoting the federation of SDN archi-
tectures and controllers. This entails the use of standard application interfaces. This has
lead to the OpenFlow protocol and Open Virtual Switch DataBase (OVSDB) management
protocol being de-facto standards for many SDN network operations. As such, any node

16

that wants to interconnect with an SDN-enabled network, i.e. the SDN controller through
the SPI, must support the OpenFlow protocol [20]. As such OpenFlow compliant switches
come in two variants, OpenFlow-only and OpenFlow-hybrid. The latter supports addi-
tional switching protocols, e.g. MPLS, and can be argued to be a critical component in
hybrid networks.

The OpenFlow protocol, or OpenFlow Switch Protocol, is a communications protocol
that gives a SDN controller access to the datapath of a set of given NE within a net-
work through a Openflow channel interface, connecting a OpenFlow-enabled switch to an
OpenFlow (SDN) controller via a connection URI. This enables a logically seperated ad-
ministration of switch flow tables through a series of message commands, e.g. by adding,
modifying or removing packet matching rules and actions in response to network events,
with a one-to-one or many-to-many channel relation between switch and controller. The
interface is implementation-specific, but needs to be formatted in accordance with RFC
3986 (URI syntax) [42] and the OpenFlow specification [20].

The OpenFlow protocol is implemented using OpenFlow messages transmitted over
the OpenFlow channel Each message type is described by a common message structure,
detailing port, header types, flow match, stats and instruction and action. Dependent
specific messages such as Switch-to-Controller, asynchronous and symmetric messages,
this structure may vary. It does however always start with the OpenFlow header of a given
message type structure [20].

Figure 2.2: OpenFlow-enabled switch architecture and its constituent components [20]

As can be seen in Figure 2.2, an OpenFlow-enabled switch consists of three primary
components. Refering to section 2.2.1 and 2.2.2, a datapath consists of a pipeline of flow

17

tables, a group table, and a meter table and ports, which presents switches with where
and how packets are to be received, forwarded and metered based on their respective
table entries. A TLS/SSL enabled control channel between the switch and its associated
controllers, where command can add, update and delete table entries to meet changing
network conditions. The OpenFlow protocol itself, which defines and a standard approach
for communication between the switch and external elements [20].

As described above, the pipeline processing, whether at ingress or egress, of packet
involves a series of flow tables, each with their respective entries that can is used to perform
packet look-ups, forwarding and modifications. Packets traverse the flow tables starting
at flow table 0. Figure 2.3 presents the primary component of flow entries in the pipeline
of flow tables within a OpenFlow logical switch. Figure 2.3 and the subsequent figures
2.4 and 2.5 presents the primary elements, which are important to understand the inner
workings of the Open vSwitch and the Basic OpenFlow User-space Software Switch and
employ these as part of the proposed prototype, e.g. feedback statistics. These will be
elaborated upon in the subsequent sections.

Figure 2.3: The main components of a flow entry in a flow table of an OpenFlow switch [20].

As seen in figure 2.3, each flow entry in the flow table consist of a series of instruction
fields that prescribe how packets should be handled. These are uniquely identified by the
match and priority fields. The Match Fields can match incoming packet header fields, in-
cluding specified ingress port(s) and general metadata values in other processed pipeline
flow entry fields with incoming packets. The Priority field describes the order in which
incoming packets are matched to the flow entries in the flow table, in descending order.
The Counter is one of the main elements in the OpenFlow specifications statistical capa-
bilities, typically counting packets and bytes at specified port or flow entry check points.
Instructions or instruction sets are attacked to a flow entry to prescribe how processing
should be carried out for incoming packets, i.e. it either modifies or adds actions to the
lists of actions being concurrently applied, thus altering pipeline processing. Timeouts
define the allowed maximum or idle time before a specific flow entry expires. Cookies is
used by the external controller for flow entry filtering through flow requests, where Flags
alter the way flow entries are managed [20].

The OpenFlow pipeline processing further involves a group table with its associated
group entries. Flow entries in flow tables can point to these during pipeline process to pre-
scribe additional methods of forwarding, e.g. flooding, multi-path and ling aggregation.
Each group entry in a group table consists of four instruction fields - the counter has been
omitted. The group identifier uniquely identifies a group via a 32-bit value and the group
type determines the syntax. The action bucket is a set of actions that are aggregate ap-
plied, e.g. modifying a packet and forwarding it to an egress port. These may be chained.

18

In figure 2.4, the main components of a group entry in the group table of an OpenFlow
switch [20].

Figure 2.4: The main components of a group entry in the group table of an OpenFlow switch [20].

Furhermore, the OpenFlow pipeline processing involves a meter table with its associ-
ated meter entries. Flow entries in flow table can point to these during pipeline processing
to trigger QoS policing operations on ingress packets. Each meter entry in a meter table
consists three instruction fields - counters are omitted. The meter identifier is a 32-bit
unique integer identifying the meter. The meter band is an aggregate list of meters, where
each meter band specifies the rate of packets and how these should be processed when
attached to a flow entry. Each meter band is further identified by its band type, rate, coun-
ters, and type specific arguments. In figure 2.5, the main components of a meter entry in
the meter table of an OpenFlow switch is shown [20].

Figure 2.5: The main components of a meter entry in the meter table of an OpenFlow switch - Proposed in
the OpenFlow switch specification [20].

The OpenFlow pipeline processing can be further illustrated by a flow diagram. This
figure provides a describing over the operation logic, which is the different actions, sets
of actions and action buckets that are being applied to a packet and how the different
tables, entries and counters relate to each other, providing an understanding of the inner
workings of OpenFlow-enabled switches as a packet traverses it. In Figure 2.6, a flow
diagram of the OpenFlow pipeline processing [20] is presented. Here is should be noted
that OpenFlow v1.4 introduced bundles, which is a sequence of modification requests from
the controller that is applied as a single operation. Furthermore, that all processing was
done in the context of the input port up until OpenFlow version v1.5, which introduces
Egress Tables, enabling processing to be done in the context of the output port [20].

The OpenFlow specification does not stipulate data structures and algorithms to imple-
ment the pipeline of the switches that support the protocol. As long as the implementation
follows the described behavior, there is freedom to define the structure of components. An
example of this is OVS employing the OVSDB management protocol instead of OF-Config.
These capabilities are also being implemented in many of the network emulators described
in section 2.7.

19

Figure 2.6: A flow diagram of the OpenFlow pipeline processing [20].

20

2.2 Virtual Switches

As the prototype is concerned with emulating network infrastructure topologies at the
data layer in the SDN reference architecture, with a focus on switching fabrics. It is then
necessary to investigate the functionality of openflow-capable virtual switches.

2.2.1 Open vSwitch Specification

The Open vSwitch (OVS) is an open source implementation of a virtual multi-layer switch,
which is compatible as a software switching node for linux-based virtualized environments
and as a control stack across physical servers, providing flexibility for virtual and physical
platform implementations. It is specifically designed to enable large scale network au-
tomation, through remotely programmable software extensions and control of forwarding
functions. Network integration is achieved by exposing its standard control and visibility
interfaces to external platforms, service and technologies [43][44], e.g. OpenFlow-based
SDN controllers and OVSDB management protocol[45]. This allows for OpenFlow to be
embedded in networks and achieve the benefits of SDN. OVS is meant to be controlled
and managed by third party controllers and orchestration solutions. Furthermore, it sup-
ports industry standard configuration and management interfaces and protocols, e.g. Net-
Flow/IPFIX, SNMP, SPAN, port mirroring and CLI [43]. These will be presented in greater
detail in subsequent chapters.

The OVS is supported by multiple hypervisors and Linux-based kernel and user-space
solutions, both commercial and open source, almost becoming the de-facto virtual switch
for the majority of network emulators for research and development, e.g. the Mininet
network emulator implements the kernel space OVS for prototyping of SDN architectures
[46]. In Figure 2.7, a high-level overview of the OVS architecture is shown.

As described and can be seen in Figure 2.9, the OVS can be ported to both software
and hardware platforms, i.e. any type of data plane (NIC). As illustrated above the OVS
architecture consists of a series of components that enables the aforementioned function-
ality. The ovs-vswitchd is the daemon, i.e. user-space program, which implements the
OVS switch alongside companion Linux kernel modules (libraries) that enables flow-based
switching. This daemon can query a network state database, the ovsdb-server, over an
Inter-Process Communication (IPC) channel to obtain a desired OVS configuration, which
it passes to the ofproto library. It may further pass statistics back to the ovsdb-server. The
ovsdb-server consists of configuration details concerning bridge, interface, tunnel configu-
rations and OpenFlow controller URI [43][45]. It can be remotely configured by an OVSDB
manager via the OVSDB management protocol - elaborated upon in section 2.6.2.

OVS and OVSDB provides a series of base commands (script extensible) that can be
used for querying, updating and deleting configurations, OpenFlow-enabled switches,
datapaths and OVS daemons. The most commonly applied are vsctl, ofctl, dpctl and
appctl [43][20].

21

The ofproto library implements OpenFlow interfaces and communicates with Open-
Flow controllers and external software through an ofproto provider. For virtual imple-
mentations, the ofproto provider (dpif provider) consists of the ofproto-dpif library that is
used for manipulating datapaths or dpif (flow table entries). On packet ingress the dpif
library performs a look up and perform designated actions - this functionality is often
delegated to the ofproto-dpif. This task may also be passed to a OpenFlow controller -
refer to figure 2.6 for reference [43].

The netdev library is a module that operates over the netdev provider, it abstracts
ethernet interfaces. Where the netdev provider implements the actual interface, specific
to the Operating System (OS). Both of these are critical to fulfilling OpenFlow functional
requirements [43].

Figure 2.7: The high-level architecture of Open vSwitch [44][20].

22

2.2.2 Basic OpenFlow User-space Software Switch specification

BOFUSS is an open source programmable virtual switch, developed with the main objec-
tive of maintaining simplicity across its core functions. As such it has a limited suite of
features compared to OVS, but remain relevant for learning purposes. The design and
implementation of components are limited to the OpenFlow protocol and switch specifi-
cation. As many of the functional features of BOFUSS, i.e. Openflow, has been described
in section 2.1.1 and 2.2, components will be referenced by name, but will not be elaborated
upon further [47]. In Figure 2.8, the high-level architecture of BOFUSS is shown.

Figure 2.8: The high-level architecture of BOFUSS [47]

The Oflib module library converts OpenFlow messages to a BOFUSSS network data
structure format (packing) and conversely when relaying statistics (unpacking). These
are commonly bit-wise operations to avoid system resource hogging, but may be more
complex depending on the message and associated functions. Ingress pipeline packet has

23

its header field check by the packet parser component, akin to the OVS ofproto-dpif, where
they are matched against flow entries in a flow table with its associated instructive actions.
The group table enables different action buckets to be set up to handle specified events,
e.g. port fail-over and link aggregation. Meter table connected to flow tables can perform
per flow QoS-related operations, e.g. rate-limiting [47].

The Secure Channel is a external function that handles TLS/SSL setup between the
virtual BOFUSS switch and the SDN (OpenFlow) controller URI. This is dissimilar to how
it is handled in OVS, as the OpenFlow protocol and switch specification does not specify
a connection method, i.e. protocol. Lastly, the BOFUSS switch presents a CLI tool, Dptcl
that enables simple configuration and monitoring commands to add, update or delete
table entries, in order to check and modify the current state of the switch [47].

2.3 SDN controllers

As the potential candidates for the data layer switching fabric has been established, it is
then logical to investigate the control layer and which SDN controller candidates there
are and what functionality they provide. Because these controllers have to integrate with
an emulated environment, it is a requirement that these are open sourced and supports
the OpenFlow protocol. Multiple market actors have developed and implemented these
controllers, either as standalone or as part of orchestration platforms.

• OpenDaylight (ODL) - The OpenDaylight project is an open source platform that
uses open protocols to provide centralized, programmatic control and network de-
vice monitoring. It has a micro-services application architecture (Apache Karaf OSGI
components) with support for a wide and growing range of network configuration
protocols, e.g. NETCONF, OVSDB management protocol and SNMP [48].

• Floodlight - Is a OpenFlow controller. It realizes a set of common functionality
to control a OpenFlow-capable network, while packaged applications on top of it
realize different features. The applications are built as Java modules compiled with
Floodlight the REST API. This enables extraction of topology views, routing metrics,
bandwidth statistics, etc. [49].

• Nox - Nox Classic and NOX is the original OpenFlow controller. It serves as a
network control platform core that supports control methods, such as network packet
process and process threading and OpenFlow event engine, in addition to OpenFlow
APIs [50].

• Pox - POX is a Python-based open source OpenFlow Controller variant of the NOX
controller. It is intended to be used as a learning tool. The POX framework contains
a series of stock components, core APIs and event handlers that allows for quick
deployment [51]. It and Nox comes pre-installed in many SDN-capable network
emulators.

24

• Beacon - Beacon is a Java-based OpenFlow controller, which has served as the foun-
dation for the Floodlight controller. It was built on an OSGI framework and leverages
open source libraries. It has multiple reference applications that builds upon its core
platform, adding additional device management, topology view, link and routing
computation and web-UI APIs [52].

• Ryu - Ryu is a component-based SDN framework. Ryu provides software compo-
nents and REST/RPC APIs that allows for quick development of network manage-
ment and control SDN applications. These components include link aggregation and
traffic monitoring APIs. Ryu supports various network configuration protocols, e.g.
Netconf and OpenFlow-config [53]

• ONOS The ONOS controller is implemented as a collection of OSGi Java applications
(Apache Karaf components) that interact through Java APIs and REST APIs. ONOS
provides instruments for developing new SDN applications, including templates for
integration into its CLI and GUI. It provides two main northbound interfaces: the
global network topology view and the intent (policy) framework [54], .

Figure 2.9: Table detailing a comparison of open source SDN controllers

Figure 2.9 presents an overview over the different features that are natively supported
by the delineated open source SDNcontrollers. Here it should be noted that functionality

25

and capability of these can be extended extensively through the employment of third party
modules and solutions. These open source controllers contain a collection of open modules
and interfaces that can be manipulated and queried to perform different actions in respect
to integrating them with the network emulators described in section 2.7.

2.4 Network Function Virtualization

As the thesis concerns itself with employing virtualization technologies and emulated en-
vironments, and having in so far explored SDN, OpenFlow and virtual switch architectural
components, there is merit in investigating how these can be employed together with NFV,
or if the logical approach can be implemented similarly in an emulated environment. To
do so, the Network Function Virtualization (NFV) architecture will be illustrated in figure
2.11 and described shortly.

An example of how these components can be employed, is among the Network Func-
tion Virtualization Infrastructure (NFVI), as this is a common approach for providing con-
nectivity and packet steering among Virtualized Network Functions (VNF), substituting
Management, Automation and Network Orchestration elements to accelerate deployment
[39].

Figure 2.10: The relationship between NFV and SDN [55]

SDN and NFV are highly complementary technologies, but both architectures are in-
dependent of each other and can be implemented as standalone service architectures.
However, there is a myriad of commercial and open source implementations across both
technologies, as the interconnection between these provide compelling opportunities for
CSP networks, e.g. SDN enables policy-based network forwarding automation and provi-
sioning, where NFV ensures network service availability across a virtualization layer work-
ing on infrastructure and orchestration platforms [56]. Thus providing increased network

26

resource flexibility and efficiency across lower and higher layers, while also counteracting
vendor lock [39]. As such, a logically combined integration of both concepts allows for
open innovation across CSP networks and can enable eased integration of the respective
technologies [55].

The NFV architecture is presented in figure 2.11. It is consists of three main functional
blocks and its associated interconnected interfaces, as detailed below.

• Virtual Network Functions (NFV) - A specific virtualized network function, e.g.
router, firewall or load balancer, running within a Virtual Machine (VM) or con-
tainer. These may be constituted by one or more VNF Components (VNFC), which
is packaged functions enabling a implementation specific VNF. These components
are connected to the NFVI block through the external Vn-nf execution environment
reference point, which is the VM container logical interface, through which instanti-
ating of VNFs occur. The VNFs and EMs are connected to the VNF Manager (VNFM)
through the Ve-vnfm interface [57].

Figure 2.11: The Network Functions Virtualisation architectural framework [58]

• NFV Infrastructure (NFVI) - Comprises the hypervisor, compute and networking in-
frastructure domains required to deploy, operate and monitor VNFs, within which

27

the virtualization layer abstracts software functions from underlying hardware re-
sources through the internal Vi-Ha execution environment reference point. This
layer may for example be composed by OpenFlow and OVS. It is connected to the
NFV Management and Orchestration block through the external management and
orchestration reference point between agents in the respective domains and the Vir-
tual Infrastructure Manager (VIM) functions between which requests for hypervisor
services occur [57].

• NFV Management and Orchestration (MANO) - Is comprised of the VIM which
controls the interaction between VNFs and underlying physical resources, i.e.. allo-
cation. The VNFM which handles the instantiating of NFVs, i.e. initialization and
termination. The NFV Orchestrator (NFVO) which handles registration of network
services through the Or-VI interface and subsequent VIM functionality, i.e. opera-
tions and performance management [57][59].

As mentioned through the past sections, OpenStack is commonly employed by orches-
tration systems presented market actors. Here it is often employed in conjunction with
NFV in data centers to deploy cloud services, by enabling CSPs to deploy VNFs using
COTS hardware. Notably, both the ETSI OpenSource Mano (OSM) [60] and the Linux
Foundation Open Platform for NFV (OPNFV) [61] have used OpenStack as their VIM [16].

In theory it should be possible to connect a given network emulator, if the emulated
network can be exposed to the internet, to the OpenStack service to through Openstack
Quantum and Openstack Nova Compute APIs. The latter provides an approach for pro-
visioning virtual computational environments and instances, i.e. containers and virtual
machines. However, the support for containers is limited [14].

2.5 Internet protocol Suite and networks

As most integration of SDN- and NFV-enabled architectures will either be hybrid solutions
or require a prolonged migration period in which existing technologies are supported
[25][31], there is an inherent need to support the implementation and employment of
protocols that can be utilized together with or instead the OpenFlow protocol for the
management of non-OpenFlow-enabled network forwarding functions and mechanics. In
the case of the thesis, this pertains to switches within the data center switching fabric. The
integration of these with SDN controllers may be achieved through Westbound, Eastbound
or the Southbound interface. Many protocols and mechanisms, such as MultiProtocol
Label Switching (MPLS), Border Gateway Protocol (BGP), SNMPv3 and NETCONF/IPFIX,
are concurrently being used together with SDN and NFV technologies in existing networks
and hybrid solutions [17].

28

Figure 2.12: The basic architecture of TCP/IP (Internet protocol suite) [62]

The TCP/IP (Transmission Control Protocol/Internet Protocol) is the most commonly
used model used to represent the IP suite and will be referred to consecutively throughout
the report. The IP suite is a set of communications protocols that define the networking
model for inter-connected networks, of which several SDN and NFV components build
upon. It follows a layered architecture involving the grouping of protocols into layers
based on their generic functionality - the layers are abstracted through encapsulation. It
consists of four layers of abstraction [63][64], which corresponds with the 7 abstraction
layers defined in the OSI model. In Figure 2.11, the basic model of the TCP/IP and its
correspondence with the OSI model, and a subset protocols is shown.

2.6 Network Management Technologies

Any of the chosen SDN Controller will support OpenFlow for the Southbound interface.
However, many controllers may support network management protocols, i.e. network con-
figuration protocols for administrative configuration of the management plane, or network
monitoring protocols for relaying network performance and statistics - The available pro-
tocol extensions depend on the respective SDN controller. These may extend or support
the information available for subsequent aggregation and analysis. In this context, the
State-of-the-Art network management technologies that are applicable in SDN Controller
Southbound APIs and to the proposed prototype are briefly discussed and compared.
As with SDN and NFV, the proposed prototype aims to promote an open architecture,
prompting vendor-neutral remote network configuration and monitoring technologies to
become increasingly relevant.

29

2.6.1 Network Monitoring

Network monitoring technologies can be classified based on the level of granularity and
features provided in terms of network traffic monitoring and analysis.

Simple Network Management Protocol (SNMP) version 3

SNMPv3 is a network management protocol used to configure and monitor network el-
ement functions. SNMP provides a neutral connection method for network elements to
relay management data within multi-vendor environments. Through simple get and set
command functions between network devices and the management system, it can report
on concurrent network metrics. SNMP functions follows a synchronous communication
model. There are three main components in an SNMP-enabled network [65][66]:

• SNMP Agent - Function runs on the equipment being monitored, collecting data
metrics. When queried by a SNMP manager, the agent sends said metrics back to
the NMS. An agent may proactively notify the NMS if an error event occurs. Most
devices come with an SNMP agent pre-installed [65][66].

• SNMP manager / Network Management System (NMS) - Central logical console. It
queries agents for updates at regular intervals. Data processing capabilities depends
on the NMS [65][66].

• SNMP Management Information Base (MIB) - This database is a text file (.mib)
describing all objects used by a device that can be controlled using SNMP. Must be
loaded into the NMS so that it can monitor the status of these properties. Each MIB
item is assigned an object identifier (OID) [65][66].

Internet Protocol Flow Information Export (IPFIX)

IPFIX is a network monitoring protocol used for defining how flow data should be for-
matted and transported. Flow data is sets of IP packets passing an observation point -
inter-operable with OpenFlow flow table and entries. Analysis of said flow data is imple-
mentation specific [67][68].

IPFIX defines a general architecture. This entails formatting, i.e message data frame
formats, data encoding and information models and a transport protocol based on said
format. In short, the architecture specifies three types of processes and associated nodes
[67][68]:

• Metering Processes (MP) - During packet observation packets are captured from
an observation point (flow probe) and formatted. This is typically carried out by
a Network Interface Card (NIC) or network node. Within the Metering Process,
packets are aggregated into flows [67][68].

30

• Exporting Processes (EP) - Terminated flows, i.e. flow records within a specified
interval, are exported by the Exporting Process, i,e, the flow is sent from the obser-
vation point to a collection point (flow collector) [67][68].

• Collecting Processes (CP) - Entails reception, storage and formatting, e.g. aggre-
gation, filtering and encoding of flow data generated by the previous processes.
Analysis may be automated or manually implemented [67][68].

Sampled Flow (sFlow)

sFlow is a packet sampling protocol for monitoring traffic flows. It can be configured
using the SNMP management framework [66]. The sFlow monitoring system consists of
an sFlow Agent, a central data collector, or sFlow Analyzer and a sflow MIB [69]:

• sFlow Agent - Sampling mechanism situated within a network node for monitoring
flows. It combines interface counters and flow samples into sFlow datagrams that
are sent in a sFlow datagram to an sFlow Analyzer - central logical console[69].

• sFlow Analyzer - Centrallized data collection node, i.e. a central server running
sFlow function that analyzes and reports on network traffic [69].

• sFlow Management Information Base (MIB) - Functions similarly to a SNMP MIB
[65]. Defines a control interface for an sFlow Agent. This interface provides a stan-
dard mechanism for remotely controlling and configuring an sFlow Agent [69].

Switched Port Analyzer (SPAN) / Port Mirroring

SPAN, sometimes called Port Mirroring, copies flows and forwards it to a SPAN port for
analysis by a Network Analyzer, i.e traffic can be monitored on a switch port by forwarding
incoming and outgoing traffic to another port for data collection and analysis. SPAN is
native to most commercial switches [70].

• Remote SPAN (RSPAN): An extension that allows traffic monitoring from source
ports distributed over multiple switches - Enables flow capture centralization. It
works by mirroring flows from multiple switch source ports of a RSPAN session
onto a dedicated trunked VLAN. On the switch that contains the destination port
for the session, traffic from the RSPAN session VLAN is mirrored out the destination
port[70].

• Encapsulated Remote SPAN (ERSPAN): Encapsulated Remote SPAN (ERSPAN) em-
ploys Generic Routing Encapsulation (GRE) on all captured traffic and allows it to
be extended across layer 3 domains[70].

31

Figure 2.13: Comparison of network monitoring protocols and technologies

As presented in figure 2.13, each of the described network monitoring protocols and
technologies have different approaches and capabilities. There is no single available best
solution for network monitoring that fits all use cases. Moreover, there are quite a few
proprietary vendor-specific network monitoring solutions that are based on and variants
of the stated network monitoring technologies, but none of them are relevant for achieving
an open network architecture.

2.6.2 Network Configuration

In regards to network configuration protocols and technologies, these can typically be clas-
sified based on the flexibility they provide in relation to configuring networking nodes.
Relating to SDN controllers (section 2.3), virtual switches (section 2.2), orchestration plat-
forms (section 2.8.) and network emulators (section 2.7), current practices have the user
employing a variety of Command Line Interfaces (CLIs) or web-based GUIs for network
configuration. This imposes immediate challenges in terms of cross-integrating. Gathering
the aforementioned functionality in one CLI or GUI could be argued to be advantageous.

Given the scope of the problem domain, there are necessary requirements to consider
in relation to the implementation of network configuration protocols and technologies.
These are that they should be vendor-neutral and open source. Therefore, in extension of
OVS, BOFUSS and OpenFlow, the Open vSwitch Database (OVSDB) Management Protocol
is presented together with SNMPv3 and NETCONF, as these fulfill the criteria stipulated
above - they allow for vendor-neutral and remote configuration of virtual switches through
extensible interfaces. An approach that is required to integrate these with the network
emulators presented in section 2.7.

32

Network Configuration (NETCONF) Protocol

The Network Configuration Protocol (NETCONF) defines a simple architecture for net-
work device management and configuration that allows new or existing configuration
information to be uploaded and modified. It achieves this through a series of message
command using Remote Procedure Calls (RPC). Communication between a network client
and server is handled through XML-encoded RPCs over a TLS/SSL connection. NET-
CONF was designed as the evolution of SNMP and CLI [71]. The protocol that defines
configuration datastores and a set of Create, Retrieve, Update, Delete (CRUD) operations
that can be used to access these datastores. There are three NETCONF datastores – candi-
date, running and start-up [71]:

• Configuration datastore - Datastore holding the complete set of configuration infor-
mation required to boot a device from its initial default configuration into a specified
operational configuration, allowing for state-wise transition [71].

– Candidate configuration datastore - A datastore that can be manipulated with-
out impacting current configurations across networking nodes. Changes to said
datastore can be pushed to the running configuration datastore [71].

– Running configuration datastore - A datastore holding the given configuration
currently active on the device. The running configuration datastore is essential
to the operational state of NETCONF [71].

– Startup configuration datastore - A datastore holding the boot configuration
loaded to network device upon startup. Only required on networking nodes
with separate startup configuration requirements to the running configuration
datastore [71].

Open vSwitch Database (OSVDB) Protocol

The Open vSwitch Database (OVSDB) is a database server that is accessible by network
client nodes through a JSON-encoded RPCs communication protocol [72]. It supports
three service models, i.e. standalone, active-backup, and clustered. These service models
introduces compromises across consistency, availability, and partition tolerance in database
deployments. As such, their use depends on the specific use case [45].

• Standalone - Standalone databases run on a single server. If the server operational
state is disconnected or data corruption occurs, the database and its contents becomes
inaccessible [45].

• Active-backup - Active-backup databases run on two parallel servers, with one being
the roll-over safety. One is designated in active role state and the other in backup
role state. Active servers function similarly to standalone servers [45].

33

• Clustered - Clustered databases runs across three or more parallel servers. Servers
dedicated to a cluster automatically synchronize write-over between the allocated
servers. The fault tolerance of the cluster depends on the quantity of active dedicated
servers [45].

The OVSDB management protocol is employed to ensure state synchronization be-
tween networking nodes, as it enables each respective networking node client to monitor
the designated database(s). Upon operational state change, i.e. added, deleted or modi-
fied entries, the database servers push said changes to the client. This allows networking
clients with continuous updates to the operation state of the network [45][72].

The OVSDB management protocol has multiple uses within OVS, with the primary
use being configuring and monitoring the OVS daemon mentioned in section 2.2, using
OVS configuration and monitoring schemas. OVS includes an OVSDB server that supports
other network monitoring protocols through its extensions. It furthermore includes a CLI
OVSDB client and OVSDB client libraries [45].

A comparison of between the presented vendor-neutral and open source network con-
figuration protocols and technologies is presented in Figure 2.14.

Figure 2.14: Comparison of network configuration protocols and technologies

2.7 Network Emulators

As the prototype seeks to emulate data layer functionality in virtual environments, i.e.
containers or virtual machines, in an SDN architecture, in order to test and monitor the in-

34

teraction and performance of SDN elements with the ultimate goal of aiding technological
decision-making. There is an inherent need to investigate open source network emulators
and how these may be integrated with the virtual environments, to avoid having to pro-
vision real networks for testing. This approach is dissimilar to network simulation, where
mathematical traffic models are applied.

Network emulation is a virtualization technique employed for testing performance
metrics of network applications over an emulated network, either as part of research de-
velopments or as test cases before deploying these to production environments. As such,
the operational objectives of such emulators are to observe and analyze performance met-
rics and the operational effects of changing network architectures and conditions. All
these presented objectives are aligned with the requirements constituting the proposed
prototype and is situated at the core of the functional architecture.

A multitude of network emulators exists. Each of these have different distinct purposes
and performance prioritization in regards to how they are intended to be deployed. Emu-
lators that do not support SDN and integration of Open vSwitch and Openflow reference
switches will not be considered. As open source projects, these network emulators pro-
vide opportunities integration with different Openflow protocol versions, OVS and SDN
controllers. These further allow for programmatic changes of API libraries needed to re-
alize the proposed prototype. Furthermore, these can be run inside virtual machines or
containers.

• Common Open Research Emulator (CORE) - CORE is a network emulation system
for emulating network topologies across multiple VMs or containers. CORE consists
of a GUI for configuring network topologies and API library modules for scripting
network emulation. CORE can be connected with existing networks [73].

• IMUNES - IMUNES is a network emulator framework that can be employed topol-
ogy configuration and management and presents a GUI application. IMUNES net-
work emulation is facilitated through partitioning of lightweight VMs based on a
modified FreeBSD kernel. These VMs can be connected via kernel-level links.

• Mininet - Mininet is a network emulation orchestration system. It creates virtual
hosts by employing lightweight virtual containers that are built around a Linux ker-
nel. It contains a network namespace mechanism for separating network interface
and table [46].

• NetKit - NetKit is a lightweight network emulator environment based on User-Mode
Linux variant of the Linux kernel employed in most other emulators. Network
topologies and configuration files can be created through a GUI or a XML-based
(NetML) language.

Figure 2.15, presented on the next page, summarizes and compares the emulators in
term of the virtualization libraries and technologies, as well as their presented interfaces,

35

remote control capabilities, communication overhead and link emulation that each respec-
tive emulator provides. These features presents the core considerations related to the
proposed prototype and will be discussed in section 3.1.2.

Figure 2.15: Comparison of open source SDN-capable network emulators

2.8 Virtual environments and orchestration platforms

As mentioned, the prototype seeks to enabled a distributed data layer architecture by
deploying and packaging emulated networking nodes inside isolated and encapsulated
containers or virtual machines. Here, it should be noted that there is a potential for nested
deployments, e.g. containers in a virtual machines.

As presented in figure 2.16, containers and virtual machines presents two different
approaches to managing computing or workload environments for the applications hosted
on them. Virtual machine software employ hypervisors, which acts as an agent, akin to an
SDN agent, providing a partitioning abstraction layer between the virtual machine guest
operating system environment and the underlying host operating system and hardware
- allowing for different operating systems and bins/libraries across applications on the
same node [74]. Alternatively, containers hosts is isolated and encapsulated virtualization
software that is run within its own address space. It packages control group, namespaces,
bins/libraries and other dependencies for hosted applications. It effectively virtualizes the
host operating system by leveraging the kernel [74][75].

Deploying multiple containers or virtual machines to implement applications or net-
working node is an essential functional requirement in the development of the prototype.
This process can be optimized through orchestration, becoming increasingly valuable the
larger the number of virtual environment become. The subsequently mentioned PaaS
solutions, include a number of features, including: Instantiating of environment and pro-
visioning of hosts, scaling clusters, re-scheduling environments, automating networking,
e.g. creating (SDN) overlay networks and exposing external plug-ins and services. Each
of these provide different feature sets in regards to the services that can be supported in
relation to virtual machines and containers, but share many of these same high-level fea-
tures, e.g. all of the presented platforms can employ OpenStack. Each platform has its
own respective learning curve.

36

Figure 2.16: Architectural comparison of containers and virtual machines [76].

• Docker swarm - A Docker native platform that is tightly integrated with the Docker
API, making it well-suited for use with Docker CLI. The same commands that ap-
plied to a single host docker cluster may be employed with Swarm [13].

• Kubernetes - A portable, extensible platform for managing virtualized workloads,
e.g. micro (Kubevirt) VMs and containers. It has a large, rapidly growing ecosystem.
Kubernetes APIs are widely available. [11].

• OpenShift - A platform that offers a layered architecture that includes and builds
upon Docker clusters and Kubernetes. These assist in deployment of lightweight
LXC-based containers and images, where Kubernetes assists in the orchestration and
management across hosts [12].

• CloudFoundry - A Platform where applications are deployed, scaled and maintained
by BOSH. It employs Docker images, buildpacks and cloud controllers to quickly
deploy versioned software in a virtual environment [77].

• MESOS - A platform designed to scale very large clusters. Mesos supports di-
verse kinds of workloads such as Hadoop, Kafka and Spark tasks. Can be extended
through Marathon, Mesosphere DC/OS, Chronos or Apache Aurora [32].

37

Chapter 3

Analysis

Chapter 2, the State-of-the-Art, presented a series of architectures, frameworks, specifica-
tions, protocols and technologies, which are either core theoretical or mechanical concepts
within the SDN, NFV and cloud-based networking fields or concurrently being employed
by CSPs. These concepts are required to elicit possible ways to construct and interconnect
a distributed emulated testbed for SDN controller and OpenFlow implementation and test-
ing. Penultimately, this implementation may be embedded as part of a software solutions
that can be readily available for employees, researchers or students working with SDN.
Thus indirectly being leveraged by CSPs or other networking enterprise in facilitating the
conversion between traditional and software-defined network architectures. Ultimately
looking to solve for technological, organization and operational challenges mentioned in
chapter 1.

3.1 Service Architecture Development

This section seeks to analyze the candidate technologies, or components therein, among
the proposed concepts that may be feasibly employed for an initial proof of concept de-
ployment. It further provides an limited assessment on how these candidates or compo-
nents may be compounded in a conceptual design for subsequent implementation. The
full description of the proof of concept prototype is presented in the conceptual design and
implementation chapters - chapters 4 and 5 respectively. These processes are presented in
a step-by-step approach, where each subsection connects to the next and summarily pro-
vides an overall analytic perspective on how a potential architecture could be structured.
The chapter concludes in an associated requirements specification, derived from the ana-
lytical process, stipulated scenarios and industry interviews.

38

3.1.1 Virtual environments

As the prototype deals with computing environments and emulating network service func-
tions, there are certain consideration that needs to be made in regard to the utilization of
hardware resources and minimizing virtual overhead, in order to be able to provide an as
accurate representation as possible of real network performance scenarios. To that extent,
this section presents an analysis of containers and virtual machine workload environments
and how these can be used in unison with network emulators presented in the subsequent
section.

Between virtual machines and containers, containers have lower resource overhead
through not requiring operating system images for operation or hypervisors for instruc-
tion translation. Container images are still required, but these are typically lightweight and
may be easily shared and layered between container hosts, allowing them to re-scheduled
or terminated quickly and efficiently reproduce research or development results [78][79].
The mentioned parameters naturally also affect boot or startup times for the respective
environments, which is an elemental concern when considering scaling cloud native ap-
plications [80]. Both Virtual machines and containers have a high degree of portability
between operating environments, providing both ample opportunity to be moved between
development and production, public and private cloud, environments. Although virtual
machines may require more setup time and complex orchestration methods in comparison
to containers [74][75].

Container technology provide flexibility and efficient when deploying and scheduling
lightweight software functions. This have lead to the employment of containers having
garnered increased attention and development efforts from both market and research ac-
tors [74]. While the mentioned parameters make containers seem like the ideal candidates
for the type of prototype being developed, i.e. deploying network emulators and network
function virtualization, the workload performance between the two separate approaches
still needs to be investigated.

Zhange et. al. presents a comparative experimental study between virtual machines
and Docker containers using an Apache Spark environment [81], measuring deployment
convenience, boot-up efficiency and application performance. They concluded that setup
behind constructing clusters are shorter for container due to image sharing, noting that
this is a soft value depending on the tester. More importantly it was concluded that with
different workloads containers elicited better scalability in terms of boot and execution
time, while with the same workload containers achieves higher CPU, i.e. I/O performance
and memory write utilization, but notes that the difference in overhead between virtual
machines and containers is negligible. Conclusions that are supported in similar studies
carried out by Morabito et al. [82] and Bhimani et. al. [83].

One approach to bridging this gap, could be to employ mini virtual machines, e.g.
KubeVirts. However, these do not achieve the same widespread integration as Docker
containers has in the solutions mentioned in section 2.8. It is due to this integration into
open source solution that Docker containers make a strong candidate. These were chosen

39

as the go to multi-host networking option for the proof of concept prototype, partly due
to being able to scale out CPU and memory resource availability over a IaaS infrastructure
and partly due to the support for interconnection options presented by Docker.

A decision that is supported by the fact that many of the network emulators presented
in section 2.7 make use of LXC and Virtual Ethernet (Veth) pairs for connecting emulated
nodes in different Linux networking namespaces. The Linux namespaces provide isolation
for running processes, e.g. switches, controllers and hosts. This should allow for Docker
hosts to be employed for any given virtual network function process [84]. A similar ap-
proach is proposed by Xu et. al. [85].

This decision is further supported by Docker containers being able to support Virtual
Extensible Local Area Network LAN (VXLAN), similarly to OpenStack [14], for creating
layer 2 overlay networks over layer 3 infrastructure [13]. These options should allow for
the connection of distributed networking root namespaces (switches and controllers) and
namespaces (hosts) either through Veth and or the use of V(X)LAN functionality for the
creation of SDN overlay networks and the establishment of links through Point-to-Point
Protocols (PPP), e.g. GRE, PPTP, LT2P - features that are required for setting up and
connecting a distributed containerized emulation environment.

Using Docker containers, it further could be argued that to employ Docker Swarm as
the primary orchestration solution for the project would be an ideal approach within the
available time-frame, as the commands and APIs are similar, while also being integrated
with Docker Engine and Compose. Furthermore, the swarm manager could be employed
to automatically assigns addresses to deployed containers on a created overlay network
when it initializes or updates the containers, thus saving time on setup and boot time.
Lastly, DockerHub allows for easy distribution of images between these deployed contain-
ers, allowing for images to be reused to emulate network functions.

3.1.2 Network emulation

As mentioned in the chapter introductory paragraph, the core tenants of the elected ap-
proach seeks to minimize virtualization overhead and learn-ability and as such this weighs
in when selecting a open source SDN-capable network emulator. While remote procedure
calls and multi-instancing are part of the consideration for all of the listed network em-
ulators, there is a possibility for implementing these features, if they are not part of the
native suite of features, either through third party solutions. It would however increase
implementation time. As such these features weighs in lessened degree. As summarized
on figure 2.15, each network emulator have different approaches to supporting and man-
aging communication overhead, node virtualization, link emulation, remote control capa-
bilities and availability and openness of API libraries. Furthermore, the decision to employ
Docker containers also need to be taken into consideration. All of the presented emula-
tors presents some degree Graphical User Interfaces (GUI), which can simplify topology
presentation and modification and lower barriers to employment of UNIX-based systems.

In a emulated virtual testbed it may be required to perform duplicating operations on

40

packet flows between virtual nodes or kernel and userspace, in order to simulate switching
behaviour. This methodology can be found in the CORE (implementation-specific - may
be omitted) and NetKit emulators. Logically, this detail incurs a computational penalty
in terms of overall CPU and memory performance. Furthermore, the representation of
different isolated and encapsulated network nodes may be achieved by different virtual-
ization techniques. NetKit employs virtual machines, e.g. full virtualization to generate
separated networking nodes, this incurs a penalty similar to that described in the para-
graphs concerning virtual machines, i.e. higher CPU and memory usage, thus limiting
such approaches to be employed for testing smaller network topologies. IMUNES, CORE
and Mininet leverage compartmentalization techniques on operating system kernels and
network stack virtualization to constitute separate emulated networking nodes within a
emulated testbed. These approaches have less overhead and as such have a lessened im-
pact on CPU and memory utilization [86]. On this basis NetKit is discounted.

IMUNES presents a monolithic virtualization library with limited options for changing
classes and functions and initial probing showed it to be too comprehensive to modify to
the extend needed to fit the requirements of the proposed prototype, within the allowed
time-frame of the project. The CORE emulator is a fork of the IMUNES emulator and
can employ FreeBSD containers, as IMUNES, or Linux Containers (LXC) network stack
(namespace) functionality for virtualization of networking nodes. The apparent issue with
employing the latter option together with Docker containers is that this implementation
has duplicate communication overhead. which would as previously stated be an impair-
ment to the overall emulated performance. Mininet was ultimately chosen as the employed
network emulator candidate as it is directly developed towards deploying and testing SDN
networks and because it includes standard UNIX/Linux network applications, i.e. Linux
kernel and network stack. As such the network namespaces that are similar to how Docker
manages its, allowing these to be used as isolated and encapsulated emulated hosts. The
Docker Swarm COE allows for rapid deployment of multi-host networking as a result. Ul-
timately, this should allow for custom topology scripts and configurations to transferred
to production environments [46].

Further research also suggests that Mininet is able to perform accurate performance
modelling that is considered to be adequately suited for performance experiments in SDN
and OpenFlow architectures, as it has been used to reproduce a larger series of research
results within the field of SDN [87]. This has subsequently lead to significant support
within the open source and research community (ONF) [88], especially in regards to the
development and verification of the performance metrics of SDN controllers and architec-
tures. This is in large part due to the open extensible CLI and Python API library and
modular nature of the Mininet classes, methods, functions and variables. Together with
Mininet’s employment of Linux networking namespaces, this should prove highly benefi-
cial for patching Mininet with Docker. This can further provide exclusive details on links,
e.g. addresses, interfaces and ports, and routing tables of each container host.

Furthermore, this should enable the creation of python automation scripts that can is-

41

sue commands using the Docker and Mininet CLI when a specific class method is invoked.
The Mininet API further enables the implementation of custom provisioning scripts [89].
These can be configured via a text editor, potentially either via a web server or manu-
ally. Regardless of implementation, these can be free distributed and booted in separate
environments.

Additionally, related work indicate that initial steps has been taken to support for dis-
tributed network environments and clusterization across several physical hardware ma-
chines, as suggested by the concurrent state of Mininet Cluster Edition [90] and Maxinet
[91]. As mentioned, while these focus on deploying Mininet across multiple physical ma-
chines, they present a logical foundation on which to improve and be inspired, as part
of the process of building a distributed emulated testbed for deploying and testing SDN
controller and Openflow setups, performance and behaviour. It would be possible to use
separate process spaces with Linux containers (Docker), but currently Mininet does not do
that [46].

3.1.3 Network Function Virtualization

As previously mentioned, the Docker Engine employs container-based virtualization to
create multiple isolated container that can run natively in most environments. Each of
these containers can be employed as hosts to function as encapsulation environments for
emulated processes. These may then be connected by Virtual Ethernet (Veth) pairs sep-
arated by hierarchical levels (0-2) of namespaces. This is achievable by extending the
Mininet API, creating the option to boot up Docker containers as Mininet hosts. Because
the data layer is encapsulated in containers, it should be feasible to employ IaaS solutions
to automatically scale the available resources needed to dynamically create variable-size
topologies. DockerHub allows for easy distribution of images between these, enabling im-
ages to be reused across containers to create emulate environments and reduce overhead,
as per section 3.1.1.

The Docker and Mininet API libraries can be employed to respectively emulate and
configure a series of switches that can be used to constitute a switching fabric, e.g. tree
and star, as well as simulate traffic-generating hosts and parametric links (performance
modelling), for a given compatible SDN controller - discussed in chapter 5. It can be
argued that these will function as a micro-service architecture, where the distributed em-
ulated processes can be deployed inside isolated and encapsulated containers that can be
on a IaaS solution, as previously mentioned.

While it is not employing the NFV architecture, it builds on many of the same prin-
ciples, by deploying emulated network functions in Docker containers over a general in-
frastructure - It employs containers instead of virtual machines to host emulated network
functions. In prospect, these can potentially be employed by SDN platforms to build Net-
work Service Chaining and Service Chain Provisioning setups or develop and test SDN
applications and controllers over an emulated data layer. This can eventually be used if
or when the functionality of the proposed proof of concept prototype can be extended to

42

include additional network functions such as routers, firewalls and load balancers - the
Mininet API would have to be extended substantially to support this.

Similar approaches for employing containers to enable improvements in provisioning
and performance of VNFSs have been proposed in research literature. For example, Cziva
et al. presents a series of studies on how container-based NFV for SDN can be employed
for switching networks [92][93][94]. While these approaches are primarily aimed towards
the creation of virtual middleboxes for SDN networks, a similar perspective can be adopted
for constructing and provisioning network functions over a distributed container architec-
ture within an emulated testbed.

It is plausible to expose Mininet to the internet by adding a new interface to a Virtual-
Box VM as a bridge adapter, allowing it to communicate with a DHCP server on a LAN or
by making a bare-metal installation on a local host or IaaS. This should in theory enable
any Mininet host on a Docker container to communicate with external service, although
enabling Docker networking for Mininet hosts breaks emulated link functionality. A plau-
sible option around this problem would be to define Python modules that could translate
API end-point requests and responses to provide PaaS and IaaS solutions the capability
to interact and manage with Docker containers inside the emulated testbed, enabling the
option to integrate NFV solutions such as OpenStack.

Such PaaS implementations, as mentioned in section 2.8, and solutions such as OPNFV
and OSM, can be employed to set up VNFs, based on either OpenStack Quantum or Neu-
tron API configurations together with services such as OpenStack Nova, Heat, Keystone or
Glance to establish Points of Presence (PoPs), as it allows for virtual machines to function
as hosts, while also establishing either VXLAN or GRE connections between these [14].
In regards to the proposed proof of concept prototype, inspiration has been taken from
how these can be employed as orchestration platforms to provision and manage PoPs and
support SDN controller platform capabilities.

3.1.4 Switch Specifications

Both SDN data plane switches presented in section 2.2 are featured with programmable
OpenFlow interfaces that can be exposed to the SDN controller platforms presented in
2.3. With respect to the previous section, Mininet typically employs a default Linux bridge
or Open vSwitch (OVS) [43] running in either kernel or user space mode, depending on
the use case, for network packet switching. There is still another open source switch that
requires mention, i.e. the Basic OpenFlow Userspace Software Switch (BOFUSS) [95]. Both
OVS and BOFUSS have unique properties and features that make them suitable for differ-
ent types of use cases in terms of constituted production and research objectives. On one
side, the OVS is the most popular industrial grade virtual and physical software-defined
switch, which is concurrently mostly seen being employed in SDN-capabable datacenters
and to a certain extend carrier-grade networks. On the other side of the spectrum, BOFUSS
is popularly employed as a software switch in regards to fulfilling open source research
objectives, controller evaluation, and proof of concept implementations within the field of

43

SDN, as it, i.e. the datapath, has been specifically designed towards leveraging OpenFlow
principles and features simpler code [47]. BOFUSS has been developed iteratively, forked
and named different things throughout various research publications, i.e. CPqD switch,
ofsoftswitch13 (GIT) [95], OF13SS and OpenFlow version 1.3 software switch, Ericsson
TrafficLab 1.1 softswitch and Stanford OpenFlow 1.0 Userspace switch [47].

As briefly touched upon above, there is a general consensus that OVS elicits better
performance metrics at the inherent cost of being more constrained in terms of modifica-
tion. Where BOFUSS provides a simpler code, but with more options for extensiblility and
cutomizability through the separation of available API libraries needed for more diverse
SDN controller and OpenFlow implementations - an example implementation is provided
in figure 3.1. As such, the basic BOFUSS elicit reduced performance metrics in compar-
ison. These are typically the differences being highlighted. Evaluations that are often
done in relation to the base versions of BOFUSS and OVS and here it should be noted the
BOFUSS features a wide range of extensions to both the switch itself and the OpenFlow
protocol. This customization aspect is further one of the factors weighing in on the overall
consideration made on the subject of software switch capabilities.

Figure 3.1: Mininet BOFUSS namespace implementation - inspired by [96]

Fernandes et. al. [47] presents a comparative evaluation between OVS and BOFUSS,
which further take one of the more developed extensions into consideration as well, i.e.
BEhavioural BAsed (BEBA) forwarding [97], which is a prototype that is built on top of
BOFUSS. This extension provides stateful packet forwarding and packet generation that
are based on the OpenState project [98]. In short, this effectively means that stateful SDN

44

application components may be embedded in the data plane networking nodes, resulting
in BOFUSS being able to dynamically adapt the forwarding policies and its actions based
on ingress instruction field events, thus changing the overall flow state by matching it the
respective flow tables [98]. This does however require initial setup through the associated
SDN controller and its respective interfaces. This feature builds on the functionality il-
lustrated in the flow diagram presented in section 2.1.1. Additionally BEBA has brought
some performance improvements to the BOFUSS data plane that nominally works in the
userspace [47]. This BEBA example provides excellent insight into the customizable nature
of BOFUSS and how its pipeline processing can manipulated to leverage different features
or performance enhancements. As such, BOFUSS can be a good candidate for specific
scenarios production scenarios as well, where OVS may prove too complex to operate [99].

The comparative evaluation between these OpenFlow logical software switches is based
on two tests; Individual bench-marking of OVS, BOFUSS and BEBA using iPerf [100] and
performance metric evaluation of a data center scenario with constituting traffic, where
each network is comprised of the respective switches.

The first benchmark test of the three individual software switches showed that OVS
can sustain a throughput that is significantly higher than both BOFUSS and BEBA. OVS
can support a throughput of 51,413 Gbps, where BOFUSS can support 0,186 Gbps and
the enhanced BEBA can support 1,184 Gbps. As the results indicate, this supports the
common notion mentioned in the above paragraphs. Fernandes et. al. states that it is
important to notice how the BEBA switch surpasses 1 Gbps - a result that is considered a
reasonable throughput for a larger group of networking scenarios [47]. The second SDM
data center deployment scenario test illustrates a possible switching fabric within a given
presented network infrastructure - a spine-leaf topology. Where a traffic generator, with
two distinct flow distributions, i.e. data mining and web search patterns, that has been
derived from data center network traces [101], was employed to test each of the switching
capabilities. It presents a random distribution function of the cumulative distributions
and associated payload size classifications (small to large), and illustrates the difference in
measured throughput and flow completion time at increasing network loads. The results
indicate that OVS and BEBA perform and provide similar results for medium and large
payloads, where OVS outperforms BEBA at smaller payloads. In all cases, the BOFUSS is
outperformed by OVS and BEBA [47]. Conclusions supported by Tantayakul et. al. [102].

This comparative evaluation proves that BOFUSS extensions can attain improved per-
formance and as such can be implemented in proof of concept prototypes without being
hindered by performance of the basic BOFUSS. For network-limited experiments carried
out on a single computer, BOFUSS may also be utilized without extensions, as a collection
of software switches share CPU and memory resources. It is suggested in such cases to
limit link capacity to 10-100Mpbs - well within the limit of BOFUSS.

As mentioned in section 1.7, this is thesis takes an exploratory approach to understand
and learn how to employ SDN application and OpenFlow mechanics within a SDN archi-
tecture. As such there is merit in employing the BOFUSS for learning to utilize OpenFlow

45

and SDN controllers, as these are ingrained in its inherent software architecture, and test
the feasibility of the chosen implementation strategy, before delving into learning and in-
tegrating the more complex OVS. Such an approach should also prove that both software
switches can be employed in the prototype.

The Mininet emulator does provide support for the older OpenFlow 1.0 userspace
switch from Stanford. Since BOFUSS is an upgraded version of said switch it is possi-
ble to install and run it within the emulator with minimum workaround [103]. To avoid
confusion, the ofsoftswitch13 github code repertoire is intended for initial reference imple-
mentation for the proposed proof of concept prototype to test whether the containerized
distribution approach for Mininet images could be employed - This code base is the same
as the base version of the BOFUSS.

3.1.5 OpenFlow and SDN Controllers

As with OVS and BOFUSS, each SDN controller presented in section 2.4 has varying levels
of support for the different versions of the OpenFlow protocol - ranging from 1.0 to 1.4,
where 1.5 is largely unsupported or in the experimental stages of development. Only the
latest version of OVS (2.8) has default support for 1.4, where 1.5 has to be user-enabled
and has multiple missing features [43]. Mininet concurrently only support 1.3. Kspviswa
presents an illustrated overview of the suite of features implemented across the different
version of OpenFlow [104]. The baseline version that is safe to employ across both OVS,
BOFUSS and the majority of the presented SDN controllers remain 1.3. As a result that
poses a minimum functional requirement for support within the proposed prototype.

As illustrated in figure 2.9 and discussed in section 2.1 and 2.4, because the North-
bound APIs are tied to the application layer, they must provide support for a wide array
of application and their associated network requirements. Therefore, each of the Represen-
tative SDN controller platforms have Northbound REpresentational State Transfer (REST)
APIs. This is a logical approach as these presents the abstraction of network services
and functions and interface exposed to SDN application seeking to communicate their
network requirements to the SDN controller platform(s). While REST does impose archi-
tectural standards in terms of the data formats and operations that can be employed by
said platforms in the facilitation of those requirements and services, there are still differ-
ent functional groupings of SDN controllers, i.e. variety of vertical functionality provided
by a SDN controller, from different organizations and vendors, some of them proprietary,
and instances where the API is required at different hierarchical level. This is perhaps
best illustrated by figure 1 in the ONF Nortbound Interface charter for SDN Controller
platforms [105].

As illustrated in figure 2.9, the Southbound API in SDN controller platforms are sig-
nificantly more varied in terms of supported OpenFlow protocol versions, the concurrent
network monitoring and configuration protocols presented in 2.7.1 and 2.7.2 respectively,
and more. Summarily this at odds with SDN and NFV principles until API consolidation
occurs, as it is difficult to code against. Furthermore, it poses significant challenges in

46

regards to the envisioned expected outcome.
Each of the different SDN controller platforms described in section 2.4 present differ-

ent advantages and disadvantages, as they are built towards fulfilling requirements within
different scenarios and use cases, i.e. datacenter, WAN, carrier, research or campus. En-
tailing that some are better suited for production environment, while others are better for
research and development. There is not one SDN controller platform that is best suited for
all use cases, an argument based on the various degrees of network functions and service
abstraction layer functionality provided, e.g. plug-in management, capability abstractions,
flow programming and mapping, etc in each of the SDN controller platforms.

As the inherent goal is to presents a proof of concept prototype and the thesis focuses
on developing a modular approach to implementing open source SDN controller plat-
forms over an emulated switching topology, any of the described SDN controllers may be
employed in a test scenario. However, for initial implementation, there are a few SDN
controllers that stand out. These are the Pox and ONOS controller. The decision for these
controllers to be part of the initial development of the prototype is substantiated by the de-
gree of open source community support and concurrently available documentation. Also,
POX is one of the SDN controllers that are natively supported in Mininet, which allows
for easy testing during the prototyping phase and that ONOS and Mininet are both sup-
ported by ONF and may therefore be easily connected using the ONOS.py library [106].
Further, POX is designed for centralized SDN architectures, where ONOS is designed for
distributed, providing an interesting perspective in terms of implementation. Both can be
in accordance with a provisioned Mininet network topology.

The limit of two SDN controllers, for initial implementation, is based on the notion that
it is a proof of concept prototype, where two was deemed a substantial number to prove
the functionality of said prototype and save development and implementation time. An
approach for providing insight into the workings of SDN controller platforms is to look at
the behaviour of different SDN controllers and how these operate within specific classes
of topologies and workloads. How the different operating characteristics and statistics of
the respective SDN controller within different scenarios can be extracted is discussed in
section 3.2.

As described in section 1.6 and above, the expected outcome was to be able to support
different SDN controller platform templates that a given user could deploy easily within
a custom or standard topology. While Mininet does support a wide selection of these
controllers, these do however need to be configured individually to interconnect properly
with the emulated container hosts, i.e. where the SDN controller can support dynamic
network programmability by providing templates that enable the creation of scriptable
CLIs, these are still required to be setup accordingly. There are two possible approaches
to solving this challenge and the challenges associated with Northbound and Southbound
APIs described above; Change Mininet custom topology scripts or as previously men-
tioned, individually configure the SDN controllers in the emulated development testbed
once this has been booted. An approach to solving these challenges could be to provide

47

standard topology templates, by booting previously configuring custom topology scripts
from a database. These would however need to be re-configured if a change would be to
be made to the switching fabric or any of the associated protocol parameters. This same
feature should allow developers to transfer configurations between different computers or
cloud environments.

3.2 Network Monitoring and Presentation

As observations on network parameters from different data sources is the basis for analy-
sis and subsequent decision making processes. This section seeks to analyze how network
monitoring may be performed and how features for SDN controller platforms and Open-
Flow interaction may be presented to a user in a detailed overview. This is carried out in
order to display the behaviour of a given SDN-enabled network over an interval period of
time and to provide insight into the performance and interaction, while taking the selected
software components into account.

In general, there are a few different approaches that can be taken in eliciting observa-
tions, i.e. parameters and features from the different data sources available within an em-
ulated SDN network needed represent network statistics to a user. Observations represent
raw data that is retrieved from from SDN controller platform northbound and southbound
APIs, extensible network monitoring protocols and packet capture and data analysis tools.
An example of such observations could be flow table entries at a specific node within the
provisioned network or the current transmission count of packets at a given switch port.

There a many different data sources that can be interacted with, but as the proposed
proof of concept prototype is centered around dynamically provisioning and implement-
ing SDN functionality within an emulated environment, the Northbound and Southbound
APIs of the selected candidate SDN controller platforms and network element agents will
logically be considered the primary sources for deriving network observations.

Any SDN application can employed the Northbound REST API of the constituted SDN
controllers. However, to further support the development of SDN applications using the
emulated testbed, a monitoring application may be developed that would continuously
execute queries to agents in networking nodes, in order to elicit concurrently available
measurements on the monitored network. These observations would need to be made
available to the SDN applications in question. In regards to vendor-neutral network moni-
toring protocols and technologies mentioned in section 2.6.1, there are a few considerations
to be made

Based on available support, its capabilities to employed both as a network monitoring
and configuration protocol and its support in switches, SNMP looks to be an ideal can-
didate. It is however currently facing incompatibility issues with OVS kernel switches in
Mininet. Where the functionality provided by port mirroring can largely be carried out by
the respective integrated SDN controllers and Mininet functionality.

In regards to the sFlow protocol, this may be integrated with sFlow-RT [107]. An an-

48

alytics engine that can aggregate and expose network metrics through REST APIs. This
could potentially supplement the SDN controller REST APIs for the development of SDN
applications. While IPFIX provides similar methods of exporting flow records to monitor-
ing solutions, logging flow records may be considered limited in relation to the function-
ality provided by sFlow and sFlow-RT.

As the Northbound and Southbound APIs of the different SDN controller platforms
varies in their implementation, i.e. various interfaces exist in different places through-
out the SDN control stack, it is possible that distinct functions may be needed for some.
However, as the Northbound APIs are all defined as REST interfaces, it should be feasi-
ble to construct a common implementation that can measure a core set of performance
measurements and management information across controllers. Here, it should be noted
that many of the SDN controller presented in section 2.4 already have GUIs in place that
represents these measurements, i.e. flow, port, group, meter and queue statistic services.

Similarly for the Southbound API, it can be noted that all of the chosen SDN controller
platform and Mininet support Openflow 1.3, which should allow for common implemen-
tation to be defined across these. Working with one protocol version makes it inherently
easier to work with the Southbound API, and together with the Northbound API, also to
query for aggregate network node, port, link, flow and packet statistics. Where the link is
the connection between two ports where a flow may be active.

A further way to get insight into the behaviour of the network would be to employ
packet capture and data analyzer tools, i.e. Wireshark as it has an OpenFlow dissector
extension. This can possibly be run on the side, but it is likely that a wrapper would be
required to implementing this functionality, unless a Secure Shell (SSH) can be established
inside the Mininet environment. Additionally, such tools require an initial selection of
network parameters before they can be initialized properly and subsequently produce
large amount and scalability issues can be stipulated [108]. These two approach are also
not directly integrated in SDN architectures, meaning that they can not exploit the benefits
of a centralized logical controller, but they may provide network-wide observations.

These observations may be presented in the same form as they are collected, but com-
monly, granted the volume of the representative data, it would be necessary for this asso-
ciated data to be be pre-processed, parsed and categorized in order for it to make coherent
sense, i.e. mapping multiple measures or sampling time stamps into an aggregated for-
mat, such as per packet or per flow. In-line with web-based SDN controller GUIs and
available REST APIs, this may be achieved through a separate web application centered on
JavaScript (Node.js), HTML and CSS with jQuery and Bootstrap shortening deployment
time. Its immediate purpose would be to call a pre-defined set of requests and display
or store the results in a data structure format that can be easily presented or manipulated
further. Lastly, as this data should be presented in an easy to understand manner, there
will be a need to present the data in different report formats, e.g. per flow or intervals, to
facilitate visualization of the data. A variety of list views and graph tools can be employed
to display changes over time. There are different open source libraries that may assist in

49

the development of the above-mentioned.
To provide a more dynamic view of the network components, it may be feasible too

provide an individual view of the representative nodes within the network, by letting
a user choose one of the nodes in the topology to expand and show its configurations,
associated statistics and how the node-specific performance is in this given case. If the
time permits, implementing a comparative feature for the SDN controllers, would provide
valuable insight.

3.3 Industry interview

In an interview with Motorola, it was described that both traditional network hardware
and virtual network functions are employed. In the case of the former, a network man-
agement system is employed to perform network configurations of external ports and
addresses. In the case of the latter, VMware vSphere [109] has been employed to per-
form server virtualization, where virtual server has an isolated logical switching fabric for
connecting provisioned virtual machines.

Motorola has brought a subset of services into the cloud, where Kubernetes together
with Cilium [22] are employed as the SDN solution. The SDN controller is implicit in
this architecture, as in controllers certified by Kubernetes may be chosen. The functions
in these are defined via APIs and policies. Considerations regarding the integration of
Juniper contrail is currently underway. In most cases the cloud is employed for testing,
with less emphasis on local testing. For local testing, MiniKube [110] and MiniShift [111]
is utilized to run Kubernetes and OKD clusters locally. Similarly, the SDN controller is a
constituent part of these solutions.

In summary, focus is not on the SDN controller performance modelling, but on the pro-
vided functionality, i.e. suite of features that can be supported for functional modelling
of services. In Motorola, SDN is employed to facilitate and orchestrate connectivity be-
tween application components in a micro-service architecture, as the number of interfaces
and links increase drastically. The migration from monolithic applications to micro-service
applications is noted as being a tremendous task.

An identified issue is that debugging and logging output is typically forwarded to the
employed provider, e.g. Microsoft Azure and insight into the performance and interaction
of SDN controllers may be limited as a result thereof.

3.4 Inspiration

As touched upon and as presented in a review of integrated SDN and NFV architecture
by Bonfim et. al. [39], there are wide differences in implementation approaches among
the design architectures concurrently being put forth. Research into testbeds for SDN ar-
chitectures revealed that solutions such as OpenSDNcore [56], SoftFire [112] and AARNet
[113] expose very little that can be employed. SoftFIRE, does however provide limited

50

middleware that enables Docker container provisioning using Docker Compose [114][13]
and OpenStack[14].

As these testbed solutions are closed sourced or black box systems, it makes it in-
herently difficult to take these into consideration. The only open source git repositories
available based on secondary research, were that of the network emulators discussed in
section 2.4 and 3.1.2. As such these where looked to as the foundation for constructing
an emulated testbed. Research studies put forth by Cziva et. al. [92][93][94], Xu et. al.
[85] and blogs [115][116], served as inspiration for extending the Mininet API through
subclassing, altering class variables and parameters and Python extensible CLI commands
to interact with Docker.

The differences presented by Bonfim et. al. [39] range from framework design, em-
ployed virtualization tools and computing environments, SDN Northbound and South-
bound APIs, placement of SDN elements with NFV frameworks and use of SDN con-
trollers. All of these architectures and the orchestration platforms presented in section 2.8,
have different general objectives and all have associated advantages and disadvantages as
a result [39].

Presenting a prototype that can dynamically encompass all of these approaches is un-
fortunately beyond the scope of the thesis. Therefore limitations are imposed in section 1.5.
As presented in section 1.6, the focus is on implementing an emulated testbed that can dy-
namically provision data layer network elements and to test and visualize SDN controller
and OpenFlow interactions and implementation. Programming the emulated testbed as
python class extensions to the Mininet API allows for further implementation or tweaking
of integrated functionality. This could be carried out in order to meet requirements of
more complex scenarios in a full scale deployment.

3.5 Requirements Specification

The requirements specification section seek to define and prioritize a series of functional
and non-functional requirements in order to determine the scope of the proposed system
design and architecture. As such, defining system or component functionality in terms
of input, processing and output behaviour, as well as imposing system constraints on the
conceptual design and implementation. The prioritization is conducted employing the
MoSCoW analysis framework. Each of the presented requirements will be numbered in
accordance with their requirement category to be used as points of reference in chapter 4
and 5 respectively. Based on section 1.6, 3.1 and 3.2, a number of use cases has been defined
to encompass the envisioned functionality of the proposed proof of concept prototype.

3.5.1 Use Case diagram

This section introduces the use cases that has been derived from the aforementioned sec-
tions. These seek to outline the lists of actions and events that define the interactions

51

between the user and the system. These will later be described in terms of functional and
non-functional requirements. The flow between these actions and events are depicted in an
activity diagram - figure 3.2. The presented activity diagram is further illustrated through
a series of more detailed sequence diagrams described in chapter 4.

Figure 3.2: System Use Case Diagram

Activity and Flow Diagram

This activity diagram shows the visualized general flow of the proposed proof of concept
prototype. The diagram presents two main points of interaction that can initialize the im-
plemented functionality, these are presented as the Dashboard and Topology view menus.
These menus point to different groups of actions and associated events. In short terms,
the dashboard relates to the import and provisioning of specified topologies, while the
topology view relates to the management of the emulated environment.

52

Figure 3.3: Activity diagram detailing the flow of the use case diagram

3.5.2 Requirements prioritization - MoSCoW

MoSCoW is employed due to the timely nature of the project. While the elicited require-
ments are all important to achieve the intended suite of functionality, they need to be
prioritized to ensure delivery of the most immediate requirements and core functions.
In accordance with MoSCoW, Must have requirements are the requirements that will be
striven to be implemented first, where Should and could are selected in descending order.
Should the timescale shift, these will be de-selected in ascending order. Won’t have re-
quirement will not be implemented [117]. The described requirements relate to the initial
implementation. A full scale implementation would feature additional requirements.

53

3.5.3 Requirements

This section presents an ordered list of the functional and non-functional requirements that
has been classified in accordance with the MoSCoW schema. Each requirement contain a
unique name and number, a brief summary and a reference.

Functional Requirements

ID FR#1 - The system must be able to create and terminate docker
containers.

Description To provide isolated and encapsulated process environment
with low computational overhead, the system must be able to
create containers and inherently also terminate unused or run-
away containers.

Source 1.6, 3.1.1, 3.4
MoSCoW Must

ID FR#2 - The system must be able to configure Docker containers
at run time.

Description To provide a given user the option to modify a given topology
without restarting the emulation scenario, the Docker contain-
ers must be able to be configured at run time.

Source 3.1.1, 3.1.2, 3.4
MoSCoW Must

ID FR#3 - The system must be able to employ docker containers
as network emulation hosts.

Description To provide the system the means to emulate cloud infrastruc-
ture, it must be able provision new networking nodes at run
time.

Source 1.6, 3.1.2, 3.4
MoSCoW Must

ID FR#4a - The system must be able to connect with networking
nodes

Description To provide network functionality, the system must be able to
connect to isolated Linux processes and issue commands

Source 1.6, 2.7, 3.1.2, 3.1.4
MoSCoW Must

54

ID FR#4b - The system must be able to establish links between
emulated emulated nodes

Description To inherently provide emulated network functionality, the sys-
tem must be able to establish links between networking nodes

Source 1.6, 3.1.2, 3.3
MoSCoW Must

ID FR#5 - The system must be able to provision emulated network
topologies using template scripts.

Description To provide the user the options to share and quickly provision
network topologies across different machine or instances, the
system must be able to import and boot template scripts.

Source 1.6
MoSCoW Must

ID FR#6 - The system must be able to capture and represent net-
work traffic data and control flows.

Description To provide the user with an understanding of network control
and data traffic flows, the system must be able to capture and
present these in a GUI.

Source 3.2
MoSCoW Must

ID FR#7 - The system must be able to create and update custom
topology template scripts.

Description To provide the user with an easy way to create and update
template scripts, a GUI would provide a better overview of the
topology template script.

Source 1.6
MoSCoW Must

ID FR#8 - The system must be able to connect the emulated net-
work with open source SDN controllers

Description To provide the user with a larger set of options in regards to
employed SDN controllers, the system must be able to integrate
open source SDN controllers

Source 1.6, 3.3
MoSCoW Must

55

ID FR#9 - The system must be able to conduct performance mod-
elling over the network

Description To generate traffic and create specific networking scenarios, the
system must be able to conduct performance modelling over
the networking nodes and links

Source 1.6, 3.3
MoSCoW Must

ID FR#10 - The system should be able to present a graphical rep-
resentation of networking nodes.

Description To provide the user with an overview over the provisioned net-
work topology, the system should be able display the provi-
sioned network topology in a GUI.

Source 1.6, 3.2
MoSCoW Should

ID FR#11 - The system should be able to integrate two or more
SDN controller in a single network topology

Description To provide the user with a options for constructing specific net-
working scenarios, the system should be able to support mul-
tiple SDN controller platforms in a single provisioned network
topology.

Source 2.3, 3.1.5
MoSCoW Should

ID FR#12 - The system could be able to be hosted at an IaaS
provider

Description The system requires a UNIX-based OS (Linux) for it to function.
Most IaaS providers enables instances to be loaded with most
OSs. Therefore, the prototype could be hosted in most.

Source 3.1.4
MoSCoW Could

ID FR#13 - The system could be able to be provide pre-configured
SDN controllers.

Description To provide the user with increased testbed flexibility and mod-
ularity, the system could come with pre-packaged and config-
ured controllers.

Source 3.3
MoSCoW Could

56

ID FR#14 - The system could be able to be integrated with Open-
Stack

Description To implement NFV features, the system could be able to inte-
grate with OpenStack and utilize the exposed API endpoints
and infrastructure

Source 2.8, 3.3
MoSCoW Could

ID FR#15 - The system could be able to be employed for functional
modelling.

Description The system could be able to support development of SDN ap-
plications that may interact with the integrated SDN controllers
and provisioned emulated data layer

Source 3.3
MoSCoW Could

ID FR#16 - The system could be able to integrate with the orches-
tration platforms mentioned in section 2.8

Description To enable functional modelling, it could be integrated with the
orchestration platforms mentioned in 2.8 and their respective
feature suites

Source 2.8, 3.3
MoSCoW Could

Non-Functional Requirements

ID NFR#1 - The system components pertaining to Mininet must
be written in Python

Description As Mininet is at the core of the constituted functionality, the
system components pertaining to network emulation must be
written in a compatible programming language.

Source 3.1.2
MoSCoW Must

ID NFR#2 - The system pertaining to the companion web applica-
tion must be written in JavaScript

Description As SDN controllers and monitoring technologies exposes their
resources through REST APIs and JavaScript methods, the com-
panion web application must be written in JavaScript

Source 3.2
MoSCoW Must

57

ID NFR#3 - The system must be able utilize Linux network names-
paces and cgroups

Description To provide the the system with the functionality required to
emulate network nodes and integrate Docker and Mininet, the
system must be able to support Linux kernel features.

Source 3.1.2
MoSCoW Must

ID NFR#4 - The system must support OpenFlow v.1.3 as a mini-
mum

Description Based on the OpenFlow versions that are supported by the pre-
sented SDN controllers and Mininet support, the system must
be able to support v1.3 as a minimum

Source 3.1.5
MoSCoW Must

ID NFR#5 - The system must support Open vSwitch
Description As the Open vSwitch is considered the de-facto standard within

the field of virtual switches, the system must be able to support
it

Source 3.1.4
MoSCoW Must

ID NFR#6 - The system must be able to support the Unix shell
command-line interpreter or shell

Description As the system employ the Mininet emulator, it must be able to
support the UNIX shell to enable command execution

Source 2.7, 3.1.2.
MoSCoW Must

ID NFR#7 - The system must employ able to use and integrate
Mininet and Docker CLIs and APIs

Description As the Mininet CLI is the at the core of network operations, the
Docker CLI should be able to be connected with it.

Source 3.1.1, 3.1.2.
MoSCoW Should

58

Chapter 4

Conceptual Design

This chapter seeks to discuss the conceptual design considerations that was made based
on the State-of-the-Art and the Analysis chapter. The focus for the conceptual designs is
to encompass and fulfill the requirements set forth in section 3.5.3. It lays the groundwork
for the subsequent implementation chapter, where each requirement will be highlighted
and referred to by their respective identifiers.

4.1 Architecture

Various architectural considerations were made throughout chapter 3. This section seeks
to bring these together to constitute a more coherent architecture. The approach to this
is to present a series of diagrams that can provide an overview concerning the system
terminators, operational flow and structure of the proposed proof of concept prototype.

As discussed, the architectural components of the proposed emulated testbed will con-
sist of variety of virtual and emulated components that has been configured and modi-
fied, so that any given user may construct an as-close-to-realistic-as-possible networking
topology scenario within a short amount of time. The implementation process is further
delineated in chapter 5. In short summary, these components are [89][46]:

• Docker containers - Nodes within Mininet API reference architecture that has been
tweaked to be represented by Docker containers - Achievable by creating a subclass
that can inherit properties and methods from the Mininet object class. In the case of
nodes, these are simply hosts in the case of Mininet. As such the Docker containers
can be used as Mininet hosts. As Python is an Object Oriented Programming lan-
guage, objects can be passed around with their respective associated parameters and
methods by creating inheritance relations between Node, Host and Docker classes.
These node are for a large part OpenFlow-capable switches. This allows for the
option initiate a custom Docker class for creating and using Docker containers as
Mininet hosts, by calling a series of defined function blocks that are used to set up

59

the Docker client, pull an image from Docker Hub, create a host configuration, cre-
ate the containers, start the containers and update the Docker entrypoint and CMD
fields [118]. As these have been called, methods in the original mininet.node.NODE
superclass can be initiated to create and start shell processes [119]. This enables
the core functionality of employing provisioned Docker containers as switches and
end-hosts.

• Isolated hosts - The aforementioned nodes provide abstractions for interaction with
the emulated network elements, that has been distributed across the emulation envi-
ronment. These distributed networking nodes or hosts are presented in the form of
shell processes [119]. The Linux network namespaces and cgroups can be employed
for granting these specific network states, i.e. individual or multiple networking
nodes may get assigned addresses, interfaces, ports and routing and ARP tables and
resource limitations. Interaction can be established and subsequent CLI commands
can be sent by using the UNIX shell with Python pipes[120]. A pipe is basically a
buffer memory block (filename) in the Linux kernel that may be read from or written
to by shell processes [120]. In Mininet, hosts share the root file system, which should
make it easier to share configurations [89].

• Emulated links - Each networking node can be assigned Virtual ethernet (Veth) inter-
faces. As with physical patch cables, each Veth pair can connect to virtual interfaces
and ports, allowing packets to traverse the hosts. To all configured emulated network
elements and SDN controllers, these appear as fully functionally Ethernet ports, al-
lowing for the integration of network monitoring protocols mentioned in section 2.7
and 3.2. It further enables options invoking to measure bandwidth, latency, queues,
TCP traffic and CPU usage in Mininet. The parametric values of each of these links,
i.e. delay and throughput, is enforced by Linux Traffic Control (TC) function, which
may employ a traffic scheduler for performance modelling over the network at con-
figured rates [89].

• Web application - The sFlow network monitoring protocol is employed to embed
sFlow agents in the emulated network to relay telemetry to the sFlow-RT Analyt-
ics Engine. Querying the sFlow-RT REST API, the client-side web application may
display network performance metrics in graphs. The web application may further
read .csv files exported from Wireshark and present these in HTML tables using
client-side AJAX jQuery methods.

• Emulated SDN controllers - If installed and configured properly, both the ONOS
and OpenDaylight SDN controller platforms can be integrated with Mininet. There
are multiple options in regards to how the connection between the SDN controller
and the Mininet topology may be connected. The approach taken within the thesis
is to employ the Mininet extensible CLI together with the GUI presented by ONOS
and OpenDaylight.

60

• Emulated switches - As mentioned in chapter 3, Mininet supports different virtual
switches and bridges. The ones chosen are Open vSwitch and the userspace switch,
or BOFUSS. These may either be run in kernel or user-space mode. Typically the
latter is chosen, as it is easier to modify these, but this does comes at a net perfor-
mance loss. These may be booted in default configured states and would require
configuration to change settings. An overview of the BOFUSS implementation with
emulated links, pipes and Linux network namespaces is presented in figure 3.1.

4.1.1 System Context Diagram

Based on the above components, a systems context diagram can be constructed. The pur-
pose of this diagram is to illustrate a high level overview of the boundaries of the system,
showcasing the different entities, APIs, applications, solutions and so forth that interact
with the system or the system may perform actions with or upon. These boundaries are
presented in the form of terminators.

Figure 4.1: Context diagram with system terminators.

61

Terminators Description
T1 - Docker API The Docker Engine API is required for the emulated testbed

application to access the Docker Command Line to perform ac-
tions on Docker Compose, Dockerfile and Docker Swarm to
create and manage Docker containers. The Docker.py [118]
Python library for the Docker Engine API allows the emulated
testbed to execute Docker commands within the Python appli-
cation.

T2 - Mininet API The Mininet emulator API is required for the emulated testbed
application to elicit functionality from the Linux kernel. This
includes features such as lightweight para-virtualization of
networking nodes in kernel and user spaces, access to the
Linux Network stack, network namespaces and control groups
(cgroups). The Mininet API is supported by a range of Python
libraries.

T3 - SDN con-
trollers

There are different options when integration SDN controllers
with the Mininet emulation environment. Concurrently it de-
pends on which SDN controllers that are going to be integrated
into the Mininet topology. Mininet natively supports the NOX,
POX, OVScontroller and RYU controllers which can be struc-
tured as custom controller classes, where as other controllers,
such as Beacon, ONOS, OpenDaylight and Floodlight, can be
configured on a server or local machine and be integrated using
the Mininet CLI.

T4 - switches There are different options when running OVS and BOFUSS
switches and bridges. These can be run in either kernel or
user space mode. These, as well as end-hosts as deployed as
processes run on a Linux kernel. These implement switching
functionality through datapaths, virtual Ethernet ports and em-
ulated links, flow tables and so forth.

T5 - sFlow-RT The sFlow-RT analytics engine receives a continuous teleme-
try stream from sFlow Agents embedded in network nodes
and converts them into actionable metrics, accessible through a
RESTful API.

T6 - Web applica-
tion

The companion web application makes a series of requests to
the sFlow-RT API to get access to the Analytics Engine. Based
on the telemetry that can be derived from the sFlow agents in
the emulated networking nodes, it may display different for-
mats. The web application may further read Wireshark ex-
ported .csv files pertaining to OpenFlow control messages.

62

4.1.2 Sequence Diagrams

Figure 4.2: Sequence diagram for retrieving and displaying network flows

When comparing the use case diagram, the activity diagram and context diagram it can
be deduced that there are two key component flows. There are many different classes that
are initiated and subsequent methods and functions that are invoked in order implement
the intended expected functionality. The extent of the Mininet source code makes it dif-
ficult to generate class diagrams that provide some coherent sense of a system overview.

63

Therefore a series of sequence diagrams have been constructed to provide an overview of
the functional flow of the prototype to further elaborate the diagrams presented in section
3.5.1 and section 4.1.1.

As mentioned in sections 1.6, 2.6 and 3.2, being able to elicit metrics concerning the
data and control flows across the emulated network can be considered one of the pri-
mary criteria in the development network configuration and monitoring solutions such as
the proposed prototype. There is a variety of approaches to configuring, retrieving and
displaying these flows.

Figure 4.2, seeks to outline the flow behind retrieving and displaying these flows. It
does not include the software utilities packaged in Mininet, but these may be employed
in the CLI to get command output prints. The proposed prototype takes three different
approaches to eliciting and displaying these flows. It employs Wireshark and OpenFlow
dissector, SFlow and sFlow-RT, and SDN controller and OpenFlow.

Wireshark may be continuously run in the background. The intention with employing
this together with the OpenFlow dissector plug-in, is to capture network-wide OpenFlow
control messages, e.g. Flow-Mod, Group-Mod and Meter-Mod. This data may be exported
from Wirehark in a variety of formats, where .csv a the format that may easily manipulated
by a web application and represented in an HTML table format.

sFlow is compatible with Mininet and OVS and agents may be embedded in switches
and end-hosts to perform packet-based flow and time-based counter sampling that can be
relayed to the sFlow-RT analytics engine, in so that the metrics may be queried through the
REST API by the companion web application or any SDN application in the application
layer.

Any of the selected SDN controllers can employ OpenFlow READ STATE messages to
elicit statistical data on flows, groups, meters, etc. and expose these via their respective
Northbound REST APIs. Together with sFlow-RT, these APIs may be employed in the
development of SDN application over the container-emulated data layer in the prototype
testbed, e.g. load balancing.

Figure 4.2 seeks to provide an overview of the conceptual design for creating, starting
and displaying a network topology. Illustrated is a series of methods and functions that
are invoked, in order to provision distributed Docker container, emulated networking
nodes, end-hosts and links, needed to interconnect an emulated data layer in the prototype
testbed. The custom topology template script for implementing this is presented in section
5.3.4.

64

Figure 4.3: Sequence diagram for creating, starting and viewing topology configurations
65

Chapter 5

Implementation

Chapter 4 sought to describe the conceptual design behind the proposed virtual testbed
prototype application. This chapter seeks to describe the implementation process behind
this and highlight functional blocks of code that enable the creation of a low-cost emu-
lated testbed that can be dynamically provisioned and scaled to test SDN controller and
OpenFlow performance and interaction. During this thesis, the original Mininet API ref-
erence architecture was extended and a companion web application constructed, in order
to incorporate new features.

5.1 Development Methodology

Together with the project methodological process model, a development methodology was
employed to guide the implementation process. This methodological approach is iterative
in nature and borrows elements from Extreme programming [121] and SCRUM [36]. The
process is detailed in figure 5.1. The argument behind this approach is based on the
exploratory nature of the project - continually evolving requirements, fixed deadline and
time frame, subjectively and objectively new technologies and implementations.

It builds on continuous development in two-to-three week sprints, which each con-
sists of five distinct phases: research related work and technologies, analyze feasible ap-
proaches for implementation, outline functionality and conceptual design, implement re-
quired functionality and test functionality. Potential discrepancies may be carried over to
the next sprint

66

Figure 5.1: Agile development methodology

5.2 Architecture

As mentioned, the thesis project seeks to construct a distributed SDN emulated testbed
with a focus on implementing component features that are associated with the control
layer and the data layer, as well as establishing interconnection between these and the
application layer, so that they may be employed by a given user.

In regards to emulating the data layer, the prototype employs Docker containers to
represent Mininet host, the process behind this is described in section 5.3.1. Where the
basic division of labor is that networking node (switches) processes execute commands,
interfaces (basic Iintf or bandwidth limited TCIntf FR9) are assigned and configured and
links connect networking nodes together, typically through using Veth pairs (may also
tunneled links) FR4a. These are handled using Mininet classes and custom sub-classes.
sFlow instrumentation is employed within the emulated environment to sample flows and
counters that may be relayed to the sFlow Analytics Engine and exposed through its REST

67

API.
The focus in control layer is predominantly centered on the SDN controller that user

has installed and configured and wishes to test and monitor the SDN controller and Open-
Flow functionality and traffic through the Southbound API. Here, the topology and control
and data network metrics may be visualized by the SDN controllers’ GUI, third party soft-
ware, e.g. Gephi or the companion web application via Wireshark exports and sFlow-RT.
As mentioned, the OpenFlow v1.3 is currently the supported version that may be em-
ployed NFR4.

In reference to figure 1.1, 1.2 and 2.1, the system architecture illustrated in figure 5.1
describes how the different components of the proposed prototype fit together across the
different layers.

Figure 5.2: System architecture

68

The intention with the application layer is to expose the SDN controller Northbound
REST API and sFlow Analytics Engine REST API or JavaScript methods, so that developer
may develop and test SDN application functionality in a development environment before
it is implemented in a production setting FR15. In relation to section 1.2 and 3.3, this is
envisioned to facilitate the migration of OSSs to SDN-capable networks. The prototype
may be run on a Linux OS, e.g. IaaS instance, virtual machine or local host [46]FR12. IaaS
instances have the added benefit that computational resources may be scaled as CPU and
RAM requirements increase for larger network topologies.

5.3 Sprints

As delineated in section 5.1, the development of the proposed proof of concept prototype
was carried out over a series of sprints. The focus of each sprint was centered around a
set of must functional requirements that could be aggregated into a coherent core feature.
This section seeks to presents some of the code implementation highlights during these,
each with their associated requirement ID references.

5.3.1 Docker Container Provisioning and Mininet Integration

As previously stated, the proposed emulated testbed seeks to employ Docker containers
to represent Mininet hosts needed to emulate networking nodes within a given topology.
Before a Docker container can be employed as a Mininet hosts, there is a series of config-
uration steps that has to be taken, as mentioned on section 4.2, in order to provide this
functionality. The code examples seek to present some of the programmatic logic behind
this process.

The approach to setting up Docker containers is to use Docker instructions, Docker
CMD and ENTRYPOINT from Dockerfile to configure the instructions employed to provi-
sion a Docker container. Using the Docker.py Python library [118], it is possible to execute
these from within a Python application NFR1. Allowing the emulated testbed to deploy
and manage Docker container, as well as expose container configurations, resources, bind-
ings, mappings and fields to the Mininet API FR1. By exposing container resources to the
Mininet API, it is possible to impose CPU and memory resource limitations and visualize
concurrent resource usage - latter is discussed in section 5.2.7. Together with the variable
link parameters (limits to bandwidth, delay, loss and max queue length) and performance
modelling features of Mininet, it is possible to create custom network scenarios [89][87]
FR9.

Figure 5.2 details part of Docker class and associated functions and methods, which is
used deploy and configure Docker containers. The initialization (contructor) function is
employed to dynamically assign value to object properties, such as **kwarqs, self, name,
dockerimage and Dockercmd. Here the objects are separate instances, which each can
be employed to execute the required functionality that has been defined within the class,

69

i.e. perform the series of functions required for configuring a Docker container. The self
parameter is a reference pointer to instances within the class.

Figure 5.3: Instances and host configuration

By employing the Docker CLI, the Docker client can be set up. It is a required step
before further commands can be issued NFR7. The next step is checking for an image
that is to be employed to run the Docker container. This image is required to implement
Mininet emulations over. The image may be pulled from Dockerhub or locally using tags.
However, before a Docker container can be created, a host configuration and resources
needs to be specified. Network mode will be set to None, as it will be configured for
Mininet network setup, hence why the privileged mode is set to true. Binds/volumes
are required mechanisms for mounting persisting data generated by and used by Docker
containers through mount points. Furthermore, it is necessary to employ port bindings
to publish all the ports the Dockerfile exposes and further supply each container with a
prefixed hostname and DNS configuration, in order to connect the containers FR1, FR2.

In python, default parameter values are evaluated when a function definition is ex-
ecuted, meaning that expressions are evaluated when the function is called. Figure 5.3
details that the Docker class function parameters associated with the creation of Docker
containers may have default values. Mutable objects such as lists [] and dicts will be
appended new elements, e.g. when creating host configurations and containers, with the
inherent default being modified as a result, which makes sense for values such as port
bindings, ports and DNS. For some values this will not work and as a result the keyword
’None’ is employed. These can values can be saved in the dockerfile and the keyword ar-
guments allows these default values to be modified at run time, which an important part
for adding, updating and deleting networking nodes FR2.

70

All container resources are stored in a dictionary so they can be accessed through the
Mininet API later. These resources are employed for setting resources limitations and
checking container states.

Figure 5.4: Container default values, dictionaries and lists

Figure 5.4 details process of creating and starting a container. The hostname and name
prefixes for the container needs to be defined so that the containers can be logically sepa-
rated. The image needs to be pulled from the repository, so that actions may be performed
on the CMD and ENTRYPOINT instruction command fields. This is achieved by inspect-
ing the image. The CMD and ENTRYPOINT fields are defined as lists, so that these may
be modified, i.e. overridden. CMD is employed to define default arguments that may
be passed to an ENTRYPOINT when a container is created. In this case the container is
treated as an executable file. CMD is also employed for issuing ad-hoc commands in a
given container [13]. Both CMD and ENTRYPOINT are core tool in defining and running
the emulated testbed as a multi-container Docker application FR1, FR2.

Further, Docker enables the storage of configuration settings and external resource
addresses in environment variables. Environment variables are variables that are exposed
to processes running inside of Docker containers. These can be set in the dockerfile and
modified at run time [13] FR2. This assists in realizing multi-container docker environment
setups.

Docker supports much of the same functionality as Mininet, and utilize Process Iden-
tifier (PID) namespaces, control groups (cgroups) and Linux kernel resource sharing, etc..

71

By default, all Docker containers have the PID namespace enabled. [13]. As illustrated on
figure 3.1, the separation of system process and namespaces hierarchies allow Mininet to
provide distinct subnets and isolated network views for the Mininet hosts - an approach
that can be mirrored when employed Docker containers as Mininet hosts NFR3.

Figure 5.5: Container creation, inspection and start up

The Docker API is primarily based on REST, but the HTTP connection can be used to
transport input/output (I/O) standard streams, i.e. (stdin) and output (stdout). These I/O
streams are opened for shell commands when they are run to enable input and output
functionality for the Docker CLI NFR7. Furthermore, working with Linux, to handle
terminal access the pseudo-tty (PTY) allocated to the docker container needs to be enabled.
Technically this emulates a master-slave relationship between a terminal process and text
terminal.

By employing standard streams and PTY it is possible to interact with the container
process in a session by using Unix pipes - UNIX shell filename piping functionality. In
regards to Mininet, the UNIX shell is employed both as a command and scripting lan-
guage to control shell processes FR4b, NFR6. This is facilitated by the use of the Python
subprocess module, mainly its constituent popen class function and associated object in-
stances. On success, popen returns a pointer to an open stream that can be used to read
or write to a specified pipe [122][120]. These provide the necessary support for chaining
shell processes in the Linux network namespace and cgroups. These elements allows the
system to execute commands inside Docker containers by using the Mininet CLI [13][118]
FR4b, NFR3, NFR7.

72

5.3.2 Virtual Switch Implementation

While the Docker container integration was achieved by subclassing the Mininet Node and
Host classes. The Switch superclass and the OVS kernel switch subclass function as they
do in Mininet. As mentioned in section 3.1.4, Mininet supports the Stanford Userspace
switch, with BOFUSS being an upgraded version of said switch. The BOFUSS git repos-
itory provides a bash shell script for installing BOFUSS code components on top of the
Userspace switch class. This partially solves a significant issue with the Userspace switch,
in that it did not allow datapath operation to enable QoS slicing. As a result, this feature
is disabled by default. Implementing the switch subclass as a leaf node and changing
a dpopts=” string literal in the extended BOFUSS class enables this feature, but it is a
patchwork solution, as it and Mininet are conflict over Traffic Control (TC) queuing at
TC interfaces [95][103]. In relation to datapaths, a SDN controller may issue a series of
modify-state and read-state messages to alter these over multiple switches.

In Mininet, both the OVS Kernel and the Userspace switches employ dpctl as a manage-
ment utility tool for querying and configuring switch parameters, e.g. tables and ports. In
extension of section 2.1.1, it may be used to send queries for statistics, description, feature
and modification of group, meter and flow tables, and ports. In short summary, creating,
modifying and deleting datapaths. In regards to the OVS kernel switch, Mininet sup-
ports ovs-vsctl and ovs-ofctl for querying and updating the configuration of ovs-vswitchd
via the OVSDB protocol and server, and controlling OpenFlow switches and controllers
respectively [119][89]. Concurrently, Mininet works best with userspace datapaths [89]
NFR5.

5.3.3 SDN Controller implementation

As discussed in section 3.1.5, the two chosen controllers that have been decided to work
with for the initial implementation and testing, are the POX and ONOS controllers, as one
is supported by Mininet and one is a remote controller. This requires varied techniques for
controller setup and implementing these into an emulated topology. For SDN controllers
to integrate with Mininet, it needs to know the IP-address and Port, to enable connectivity
and OpenFlow capabilities FR8.

Remote controller Setup

As mentioned in section 2.3 there is a multitude of SDN controllers that can be employed.
For the proof of concept prototype, The ONOS controller project has employed for ini-
tial tests, because the project has developed a Python module (ONOS.py) [123] that can be
employed to create a complete ONOS network by using the Mininet network emulator. Be-
cause this integrates with Mininet and is written in Python, it is possible to import classes
and sub-classes and use these via the Mininet API. This allows for relatively easy setup
and testing. The module introduce does however introduce new prefixes for certain classes

73

to specialize arguments [106], but by defining default literals command incompatibilities
may be circumvented.

Unfortunately, it has not been possible to define SDN controllers within the scope of the
node controller class and as such these can concurrently not be represented by a Docker
container.

Controller Sub-classing

If the Mininet() constructor is invoked in a script without specifying a controller class, by
default it will use the Controller() class to create an instance of the OpenFlow reference
controller [46]. However, it is possible to create a controller subclass and pass it to Mininet.
For example, a user-defined subclass, i.e. mininet.controller.POX() can invoke a set of
modules passed in as options. Figure 5.6 presents an example of how a custom POX
controller subclass may be structured.

Figure 5.6: Controller sub-classing with POX l2 learning example [89]

5.3.4 Topology Generators and Template Scripts

As discussed in the two prior sections, the switch and controller implementations can be
employed together with an emulated network topology consisting of the aforementioned
controllers and switches, as well as emulated links and end-hosts.

There are different approaches to creating and provisioning a new topology. As with
controller subclassing, it is possible to create custom subclasses to the Topo and Mininet
classes and import the created Docker class to have the switches and end-hosts be repre-
sented by Docker containers. This approach can be employed to create emulated network
representation for structured multi-tree topologies with given depth and fanout FR7. The
primary drawback to this approach is that the links and any given controller needs to be

74

added and configured manually once the tree topology has been provisioned. The sec-
ondary drawback is that this can only defined network architectures with a given depth
and fanout limits its applicability in networking scenarios.

Figure 5.7: Customized tree topology subclass [89]

Another approach is employing the MiniEdit python module. MiniEdit is a simple
network editor for Mininet, which implements a GUI canvas for adding nodes, i.e. con-
trollers, switches and end-hosts, and interfaces and links for these FR4a. The canvas setup
can be compiled in to a topology template script similar in design to figure 5.8, which
can then be provisioned by Mininet FR7. In so far, it has not been possible to implement
Docker functionality into this process, leading to this having to be manually added to the
script. However, it may still be employed to map controllers, switches, end-hosts and any
intermediary interfaces and links (with built in configuration menu).

An unfortunate detail with either approach is that all Mininet native networking nodes
will be booted in default modes, which entails that some configuration is required if a
given user seeks to perform custom switching. Further, remote controllers largely require
manual configuration before these can be connected with a Mininet topology. For these
controllers to be connected in the script, these do need to be supplied with a pre-defined
IP address and port FR8. Controller sub-classing may alleviate part of this process. Figure
5.7 presents a custom topology template scripts with a ONOS remote controller, two OVS
switches and four end-hosts FR5. This script has been tested with the OpenDaylight and
Floodlight controllers as well.

75

Figure 5.8: Mininet function block script for creating a topology

5.3.5 Network Visualization

As mentioned, network visualization is an important asset to an emulated testbed, in
that it aids in creating an overview over the provisioned network. As mentioned in the
previous Section, the MiniEdit GUI can assist in this assist in this before a topology is
booted, but preferably the implemented SDN controllers should be employed in eliciting
topology views once a topology has been emulated.

Given the emulated switches, links and end-hosts, an emulated network topology may

76

be discovered by a SDN controller through a variety of means, e.g. OpenFlow for con-
figured switches, Address Resolution Protocol (ARP) and Dynamic Host Configuration
Protocol (DHCP). Per section 2.6.2, depending on the protocol used to establish this con-
nection, further information, such as device capability and number of ports, may be con-
veyed to the controller. For any controller to see the end-hosts in Mininet, it is necessary
to perform a ping-all command or conduct a ping regression test.

• SDN controllers with web-based GUI - As displayed in figure 2.9, ONOS, OpenDay-
light, Beacon and Floodlight have implemented web-based GUI that can be employed
to provide a topological view of the network FR10.

• SDN controllers that require third party software - Other SDN controllers, NOX,
POX and RYU, requires that a third party software tool, such as Gephi [124], be
employed to visualize the topological view FR10.

Because sFlow agents in the emulated switches can relay information in sFlow data-
grams and packets concerning the interface index, ipsource, ipdestination, macsource,
macdestination and packet-based flows and time-based counters associated with interface
and links, these may be queried from the sFlow-RT REST APIs FR6. This information
allows the companion web application, using the vis.js library [125], to display dynamic
generated and automatically organized network views. These network views may display
the switches and links in relation to the flow size. Alternatively the topological views from
Gephi may be parsed using the vis.js library FR10.

An alternative approach is employing a third party solution called Narmox [126]. Nar-
mox can construct a topology view by importing print outputs from mininet>dump and
mininet>links commands. This does however require manual input and it does not dy-
namically update when the topology changes. Nor does it include any metrics.

5.3.6 Network monitoring and Data Representation

As mentioned in section 3.2, there are multiple ways of eliciting network statistics and
resource usage from an emulated network topology, in order to evaluate the interaction
between SDN controllers, OpenFlow and networking nodes.

Mininet provides a suite of functionality, such as checking flow tables and port statistics
using dptcl commands, and tools for checking bandwidth (Bandwidth Monitor NG, eth-
stats), latency (ping), queues (TC), TCP Congestion Window statistics (TCP probe), CPU
usage (global / CPU Accounting (CPUAcct)) [46].

Where most SDN controllers, including POX and ONOS, can provide flow, port, group,
meter and queue statistic services about the network they are controlling. The primary
approach to eliciting these throughout the project has been to employ cURL to test SDN
controller REST API endpoints, but the output may be viewed in SDN controllers with
web-GUIs as well.

77

As presented in section 2.7.1, there is variety of network monitoring protocols that can
assist in providing statistic services for a given emulated network. As delineated in section
3.2, sFlow may be and has been employed to monitor and analyze the network flow and
counters. A companion web application written in JavaScript, HTML and CSS, has been
developed with the purpose of providing chart capabilities trough the use of the Vis.js
library and sFlow-RT REST API FR6, NFR2. Figure 5.9 showcase the flowcount function,
which provide a subset of the flow and counter calculations and an interval handler needed
to dynamically update Vis charts. This enables a user to visually monitor data network
traffic in a GUI.

Figure 5.9: Subset of flow and counter calculations

Concurrently, it is possible to check two different overview modes. These are port in-
terfaces statistics in bytes per second and flow statistics in bytes per second. The intend is
to extend this to include a visual overview of the service statistics provided by SDN con-
trollers. This has been prioritized lower, as some controllers already provides a graphical
overview using the same REST API calls.

Mininet end-hosts can run any command or application that is available to the un-
derlying system, as a result thereof, it is possible to host an iPerf server on one end-host
and an iPerf client on another to test the available capacity between the two end-host [46].
iPerf and ping regression tests have been employed to provide data for the sFlow-RT web
application FR9.

The basic packet capture and extended OpenFlow Wireshark dissector tool has been
employed extensively throughout the project to check the OpenFlow protocol and control
traffic. These captured packets may be exported in a Comma Separate Value (.csv) file,
which can be manipulated using an AJAX jQuery method and HTML scripting on the
client-side, so that it may be displayed in a HTML table FR6.

78

Chapter 6

Discussion

The goal of this project was to perform a study on the development of SDN technologies
and how they are and can be applied in CSP networks and to further see how this may be
implemented and function in an emulated testbed. How such a testbed may function and
how the architecture may be implemented has been the primary objective of the thesis.
However, due to time and resource constraints, certain limitations had to be imposed on
the project. As a result thereof, this section seeks to evaluate the process and prototype.

6.1 Agile process approach

The project methodology is described in sections 1.7.2 and 5.1 respectively. These delineate
the primary approach to writing the report and implementing the prototype, and served
as an overall overview and guide. In hindsight, an agile methodological approach to
investigating the constituent fields of the report and implementing associated features,
functioned well. This conclusion is made on the basis that it enabled greater degrees of
flexibility in relation to implementing and changing features or researching and updating
chapters when new observations were made. It is further made in regards to, how the
selected topic proved to be substantial and required an extensive period of time from the
allotted time-frame, to be dedicated to research into the domain fields.

As a result thereof, a larger amount of time was employed gathering domain knowl-
edge than was originally intended, in order to understand the premises behind these fields
and their associated solutions, before actual development and implementation could occur.
In order to alleviate this impact, efforts should be made to approach domain knowledge
gathering and analysis from a more structured approach, with shorter intervals between
meetings to facilitate research direction and efforts. Overall, despite the described fluc-
tuations, the selection of process models may be deemed successful, albeit with room for
improvement regarding the preliminary research phase.

79

6.2 Prototype approach

The prototype presented in chapter 4 and 5, is technically a complete system within itself,
based solely on open source elements. As mentioned, the purpose of the emulated testbed
prototype is to allow developers to gain insight into SDN controller and OpenFlow interac-
tions with the underlying data layer. These interactions are enabled through the emulation
of virtual switches and end-hosts represented by isolated Docker containers, which may
interact with the deployed SDN controller and sFlow network monitoring protocol. With
regards to the application layer, this open source approach should enable developers to
construct SDN applications and test functionality in the emulated development environ-
ment before this is deployed in a production setting.

Because everything is based on open source solutions, technologies and protocols and
the prototype is written in extensible Python (emulation testbed) and JavaScript (compan-
ion web application), this enables any developer to further introduce or tweak presented
functionality to accommodate for more complex use cases, such as integrating other net-
work configuration and monitoring protocols or legacy switches and routers.

The open source nature of the proposed prototype does however impose certain limi-
tations in regards to which proprietary solutions, technologies and protocols that may be
concurrently deployed together with the emulated testbed without requiring privileged
access to the source code of these elements. As a case, Motorola’s desire to migrate to Ju-
niper’s Contrail controller. Further, because it is open source, it does not support the entire
super set of the wide range of virtual network functions that are concurrently available,
e.g. UML switch.

One of the limitations in regards to presented functionality is that the proposed pro-
totype does not integrated with OpenStack and orchestration platforms, e.g. Kubernetes,
OpenShift, CloudFoundry and Mesos. A result of Mininet not being able to directly in-
tegrate with respective API end-points. However, it should be noted that this may be
alleviate through python modules that may translate input and output between the emu-
lated testbed and the mentioned solutions to present API-like interfaces.

Another limitation in regards to the presented functionality is that the companion web
application does not have the functionality to query the separate REST APIs associated
with the various SDN controllers that may be integrated with the emulated testbed, simply
as a result of the REST APIs having differentiated URLs and commands. An approach to
solving in the immediate future would be to implement extensive switch statements that
can be used to perform different actions and requests based on changing conditions, i.e use
switch statements to select and execute code blocks. This may have fallback functionality
through the use of the default keyword and code block.

A further limitation is that the emulated testbed, in extension of it being based upon
the network emulator framework of Mininet, concurrently can only support OpenFlow
v1.3. While this version has most of the core functionality that may be employed with
OpenFlow, it does not enable synchronized tables and (scheduled) bundles for configuring

80

multiple switches at the same time and it does not include egress table functionality.
The employment of containerization in the emulated testbed does come with certain

disadvantages when up-scaling network represent large fat tree topologies. There can
be a distinct loss of accuracy with regards to network traffic capacity and flow metrics,
when conducting performance modelling over such a scale. As networking node density
is increased substantially, the pressure on random access memory can result in adverse
and irregular effects during high node count scenario experiments. This is an issue that is
recognized by Mininet. However, for the the vast majority of deployment scenarios, there
will be minuscule impact to be observed.

In regards to Southbound API protocols, the primary focus has been on implementing
and monitoring OpenFlow operations within the emulated testbed. As illustrated in figure
2.9 and further described in section 2.6.2, some SDN controllers, such as ONOS and Open-
Daylight support a wider array of network configuration protocols that they may employ
to configure the underlying switches. This become increasingly relevant when deploying
scenarios that consists of OpenFlow-capable and legacy switches in one network topology.
In hindsight, more effort should have gone towards testing the operations behind these.

As mentioned in section 5.3.4, template generation tools, such as MiniEdit.py does not
concurrently support the Docker functionality that has been implemented in node classes
of Mininet. It therefore requires manual setup in the compiled script. A large step towards
facilitating the deployment process would be to ensure that the node classes in MiniEdit
automatically provision a container when they are added to the canvas.

81

Chapter 7

Conclusion

The instigated challenge for this project was to find an approach for performing network
emulation to replicate data layer switch topologies with associated end-hosts, as to con-
duct performance modelling on the emulated network to test and observe SDN controller
and OpenFlow interaction and implementation. An approach that could assist in the fa-
cilitation the migration from traditional networking to Software-Defined Networking, by
allowing the development of SDN applications in a portable emulated environment. Based
on this, primary and secondary research questions were defined.

How can network emulation and monitoring technologies be employed to in-
vestigate the interaction between data and control layers components in an emu-
lated SDN architecture?

By employing Docker containers and the Mininet emulator as Linux-based paravirtu-
alization techniques, it is possible to emulate scalable and encapsulated network elements,
such as the User- and Kernal-space Open vSwitch, and end-hosts in a network topology.
As Mininet hosts can run any command or application that is available to the underlying
OS (Linux) and its file system, it is further possible to conduct performance modelling via
iperf or regression tests and parametric emulated links. By integrating a SDN controller
and the OpenFlow protocol into this emulated network topology with modelled traffic,
the interaction between the SDN controller, OpenFlow and emulated switches can be in-
vestigated. As discussed, this can be achieved in different ways. The proposed prototype
makes use of a companion web application to query, import and display control and data
network metrics. These metrics are captured using the sFlow monitoring protocol and the
Wireshark OpenFlow dissector, which are both compatible with Mininet.

As stipulated in section 1.4, in order to answer the primary research question, each
sub-questions seek to provide insight into the underlying problems behind a potential
implementation.

82

How may network emulation technologies be employed to provision a network topology?

Mininet uses process-based virtualization (network namespaces) to provide individual
processes with separate network interfaces, routing and ARP tables, allowing it to emulate
networking nodes over a Linux kernel. As discussed, Docker containers may represent
Mininet hosts. This enables the emulated testbed built on the Mininet emulator, to pro-
vision, scale, limit (CPU, memory, disk I/O, network - using cgroups) and delete isolated
containers at run time. This approach effectively, allows the emulated testbed to be em-
ployed as small-scale emulated cloud infrastructure, in which computational resources
may be delegated. This is achievable because Docker and Mininet employ many of the
same Linux kernel features.

As Mininet and the Docker containers are based on Linux kernel processing, these are
heavily dependent on the available computational resources to scale to larger topologies.
Therefore, hosting the prototype on a IaaS platform, may enable those computational
resources to be scaled dynamically, as it may be required by provisioned network topology.
It may also be employed on a desktop or laptop with certain computational restrictions.

How can network control and monitoring be implemented in an emulated testbed?

With the emulated data layer in place, SDN controllers can be installed on a local
host or IaaS instance, to discover and perform network control and monitoring on the
provisioned network using the OpenFlow protocol. Connection between the controller
and the emulated testbed is established by pointing to the IP-address and port of the SDN
controller, e.g. 127.0.0.1 and 6633. The SDN controller may employed a combination of
OpenFlow messages to configure and elicit emulated switches in the network, e.g. read
state and modify state messages. The observed data is exposed through the respective
controllers’ Northbound REST APIs.

As the sFlow protocol may be integrated with Mininet and OVS, it has been employed
to substantiate this process, by capturing packet-based flows and time-based counters.
This telemetry may be aggregated by the sFlow Analytics engine and converted to action-
able metrics that is exposed through its REST APIs in a JSON format. These APIs can be
queried by a companion web application, to retrieve and display data flows in graphs.

To further substantiate these processes, the Wireshark packet capture software tool and
the OpenFlow dissector plug-in, has been employed to capture, filter and inspect packets.
While this can be used to sniff both data and control traffic, it has mainly been employed
to filter for the OpenFlow protocol.

83

How may network control and data flow metrics be displayed to the user?

The integrated SDN controllers that have a web-GUI for visualizing REST API output,
e.g. Flow, Group, Meter and Port, enables statistics to be view directly. Alternatively,
cURL or the companion web application may be employed to represent the output. This
is more predominantly employed for NOX, POX and RYU controllers that require third
party software to visualize REST API outputs.

The sFlow protocol and sFlow-RT Analytics Engine may be employed to relay and
convert flows and counters to a JSON format that may be retrieved via the sFlow REST
API. These can can be rendered in graphs or charts by the companion web application
using the Vis.js browser-based visualization library and HTML scripts. Furthermore, as
Wireshark may export captured packets in a .csv format, the companion web application
may convert these to a HTML/CSS table using client-side methods.

How can a provisioned network topology be visualized?

Similarly to how statistics services may be visualized in SDN-controller web-GUIs, so
may the discovered topology be visualized by employing SDN controller topology views.
As sFlow agents is embedded in the network topology and sFlow-RT receives Interface
Index, ipsource, ipdestination, macsource, macdestination and packet-based flows and
time-based counters, it is possible to visualize the links between the switches using the
aforementioned Vis.js library and HTML scripts.

84

Bibliography

[1] 5G-PPP - Vision on Software Networks and 5G. https://5g-ppp.eu/wp-content/
uploads/2014/02/5G- PPP_SoftNets_WG_whitepaper_v20.pdf. (Accessed on
03/01/2019). 2017.

[2] Keshav Sood, Shui Yu, and Yong Xiang. “Software-defined wireless networking
opportunities and challenges for Internet-of-Things: A review”. In: IEEE Internet of
Things Journal 3.4 (2016), pp. 453–463.

[3] Wenfeng Xia et al. “A survey on software-defined networking”. In: IEEE Communi-
cations Surveys & Tutorials 17.1 (2015), pp. 27–51.

[4] Mao Yang et al. “Software-defined and virtualized future mobile and wireless net-
works: A survey”. In: Mobile Networks and Applications 20.1 (2015), pp. 4–18.

[5] Cisco Visual Networking Index: Forecast and Trends, 2017–2022. https://www.cisco.
com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/white-paper-c11-741490.pdf. (Accessed on 02/19/2019). 2018.

[6] Giorgos Papastergiou et al. “De-ossifying the internet transport layer: A survey
and future perspectives”. In: IEEE Communications Surveys & Tutorials 19.1 (2017),
pp. 619–639.

[7] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road to SDN: an intellec-
tual history of programmable networks”. In: ACM SIGCOMM Computer Communi-
cation Review 44.2 (2014), pp. 87–98.

[8] Bruno Astuto A Nunes et al. “A survey of software-defined networking: Past,
present, and future of programmable networks”. In: IEEE Communications Surveys
& Tutorials 16.3 (2014), pp. 1617–1634.

[9] Akram Hakiri et al. “Software-defined networking: Challenges and research oppor-
tunities for future internet”. In: Computer Networks 75 (2014), pp. 453–471.

[10] Y. Yuhong Q. Duan and V. Athanasios. “A survey on service-oriented network
virtualization toward convergence of networking and cloud computing”. In: IEEE
Transactions on Network and Service Management 9.4 (2012), pp. 373–392.

[11] Kubernetes Documentation - Kubernetes. https://kubernetes.io/docs/home/. (Ac-
cessed on 04/04/2019).

85

https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP_SoftNets_WG_whitepaper_v20.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.pdf
https://kubernetes.io/docs/home/

[12] Home | Red Hat OpenShift Documentation. https://docs.openshift.com/. (Ac-
cessed on 04/04/2019).

[13] Docker Documentation | Docker Documentation. https://docs.docker.com/. (Ac-
cessed on 04/04/2019).

[14] OpenStack Docs: Rocky. https://docs.openstack.org/rocky/?_ga=2.12862581.
356515881.1554585408-1837668940.1548626759. (Accessed on 04/06/2019).

[15] Mark Richards. Microservices vs. service-oriented architecture. O’Reilly Media, 2015.

[16] The programmable network cloud – enriching the cloud with NFV and SDN. https :
//www.ericsson.com/assets/local/news/2016/03/wp- the- programmable-
network-cloud.pdf. (Accessed on 04/08/2019). 2016.

[17] Mani Prashanth Varma Manthena et al. “An SDN-based Architecture for Network-
as-a-Service”. In: Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft). IEEE. 2015, pp. 1–5.

[18] Arsany Basta et al. “A virtual SDN-enabled LTE EPC architecture: A case study
for S-/P-gateways functions”. In: 2013 IEEE SDN for Future Networks and Services
(SDN4FNS). IEEE. 2013, pp. 1–7.

[19] Next-Generation Architecture for Cable Operator Networks: SDN and Network Func-
tion Virtualization White Paper. https://www.cisco.com/c/en/us/solutions/
collateral/service- provider/cable- access- solutions/white- paper- c11-
732736.pdf. (Accessed on 02/27/2019).

[20] OpenFlow Switch Specification - Version 1.5.1 (Protocol version 0x06). https://www.
opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.
pdf. (Accessed on 03/04/2019). 2015.

[21] Software-Defined Networking (SDN) Definition - Open Networking Foundation. https:
//www.opennetworking.org/sdn-definition/. (Accessed on 03/04/2019).

[22] Cilium. https://cilium.io/. (Accessed on 06/03/2019).

[23] SDN and NFV: Transforming the Service Provider Organization. https://www.juniper.
net/assets/us/en/local/pdf/whitepapers/2000579- en.pdf. (Accessed on
02/27/2019).

[24] Software-Defined Networking (SDN) - Juniper Networks. https://www.juniper.net/
us/en/products-services/sdn/. (Accessed on 02/27/2019).

[25] ONF - SDN migration considerations and use cases. https://www.opennetworking.
org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf. (Accessed
on 03/01/2019). 2014.

[26] Massimo Fatato Ron Angner Michael Dargue and Shahed Mazumder. “The Fu-
ture of Networks Report: Dealing with Transformation in a Virtualized World”. In:
Broadband Forum, 2017, pp. 1–12.

86

https://docs.openshift.com/
https://docs.docker.com/
https://docs.openstack.org/rocky/?_ga=2.12862581.356515881.1554585408-1837668940.1548626759
https://docs.openstack.org/rocky/?_ga=2.12862581.356515881.1554585408-1837668940.1548626759
https://www.ericsson.com/assets/local/news/2016/03/wp-the-programmable-network-cloud.pdf
https://www.ericsson.com/assets/local/news/2016/03/wp-the-programmable-network-cloud.pdf
https://www.ericsson.com/assets/local/news/2016/03/wp-the-programmable-network-cloud.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/cable-access-solutions/white-paper-c11-732736.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/cable-access-solutions/white-paper-c11-732736.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/cable-access-solutions/white-paper-c11-732736.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
https://cilium.io/
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000579-en.pdf
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000579-en.pdf
https://www.juniper.net/us/en/products-services/sdn/
https://www.juniper.net/us/en/products-services/sdn/
https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf

[27] Next Generation Mobile Alliance - 5G White Paper. https://www.ngmn.org/fileadmin/
ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf. (Ac-
cessed on 03/01/2019).

[28] Emeka Obiodu and Mark Giles. The 5G era: Age of boundless connectivity and intelli-
gent automation. https://www.gsmaintelligence.com/research/?file=&download.
(Accessed on 03/01/2019). 2017.

[29] European telecommunications Standards Institute. Network Operator Perspectives on
NFV priorities for 5G. https://portal.etsi.org/nfv/nfv_white_paper_5g.pdf.
(Accessed on 03/01/2019). 2017.

[30] Resources - IEEE Software Defined Networks. https://sdn.ieee.org/outreach/
resources. (Accessed on 03/01/2019).

[31] ONF - SDN Use Cases and Migration Methods. https://www.opennetworking.org/
images/stories/downloads/sdn- resources/use- cases/Migration- WG- Use-
Cases.pdf. (Accessed on 03/03/2019). 2014.

[32] Apache Mesos - Documentation Home. http://mesos.apache.org/documentation/
latest/. (Accessed on 04/06/2019).

[33] Lindinkosi L Zulu, Kingsley A Ogudo, and Patrice O Umenne. “Simulating Soft-
ware Defined Networking Using Mininet to Optimize Host Communication in a
Realistic Programmable Network”. In: 2018 International Conference on Advances in
Big Data, Computing and Data Communication Systems (icABCD). IEEE. 2018, pp. 1–6.

[34] Chandan Pal et al. “Implementation of simplified custom topology framework in
Mininet”. In: 2014 Asia-Pacific Conference on Computer Aided System Engineering (AP-
CASE). IEEE. 2014, pp. 48–53.

[35] PowerPoint Presentation. https : / / www . juniper . net / assets / us / en / local /
pdf/nxtwork/alliance- perspective- challenges- and- best- practices- for-
deploying-nfv-sdn-redhat.pdf. (Accessed on 04/08/2019).

[36] What is Scrum? https://www.scrum.org/resources/what-is-scrum. (Accessed on
06/03/2019).

[37] SDN architecture. https://www.opennetworking.org/wp-content/uploads/2013/
02/TR_SDN_ARCH_1.0_06062014.pdf. (Accessed on 03/04/2019). 2014.

[38] Deployment Case Study of SDN and NFV Transformation. https://www.cisco.com/c/
dam/global/en_au/assets/ciscolive/pdfs/deployment-case-study-of-sdn-
and-nfv-transformation.pdf. (Accessed on 04/09/2019).

[39] Michel S Bonfim, Kelvin L Dias, and Stenio FL Fernandes. “Integrated NFV/SDN
architectures: A systematic literature review”. In: arXiv preprint arXiv:1801.01516
(2018).

87

https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/images/news/ngmn_news/NGMN_5G_White_Paper_V1_0.pdf
https://www.gsmaintelligence.com/research/?file=&download
https://portal.etsi.org/nfv/nfv_white_paper_5g.pdf
https://sdn.ieee.org/outreach/resources
https://sdn.ieee.org/outreach/resources
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
http://mesos.apache.org/documentation/latest/
http://mesos.apache.org/documentation/latest/
https://www.juniper.net/assets/us/en/local/pdf/nxtwork/alliance-perspective-challenges-and-best-practices-for-deploying-nfv-sdn-redhat.pdf
https://www.juniper.net/assets/us/en/local/pdf/nxtwork/alliance-perspective-challenges-and-best-practices-for-deploying-nfv-sdn-redhat.pdf
https://www.juniper.net/assets/us/en/local/pdf/nxtwork/alliance-perspective-challenges-and-best-practices-for-deploying-nfv-sdn-redhat.pdf
https://www.scrum.org/resources/what-is-scrum
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.cisco.com/c/dam/global/en_au/assets/ciscolive/pdfs/deployment-case-study-of-sdn-and-nfv-transformation.pdf
https://www.cisco.com/c/dam/global/en_au/assets/ciscolive/pdfs/deployment-case-study-of-sdn-and-nfv-transformation.pdf
https://www.cisco.com/c/dam/global/en_au/assets/ciscolive/pdfs/deployment-case-study-of-sdn-and-nfv-transformation.pdf

[40] What’s Software-Defined Networking (SDN)? - SDxCentral. https://www.sdxcentral.
com/networking/sdn/definitions/what-the-definition-of-software-defined-
networking-sdn/. (Accessed on 03/04/2019).

[41] Impact of SDN and NFV on OSS/BSS - ONF Solution Brief. https://www.opennetworking.
org/wp-content/uploads/2014/10/sb-OSS-BSS.pdf. (Accessed on 05/29/2019).

[42] Uniform Resource Identifier (URI): Generic Syntax. https://www.ietf.org/rfc/
rfc3986.txt. (Accessed on 04/10/2019). 2005.

[43] Open vSwitch Documentation - Release 2.6.0. https://media.readthedocs.org/pdf/
ovs-reviews/latest/ovs-reviews.pdf. (Accessed on 03/05/2019). 2017.

[44] GitHub - Openv sSwitch: tracking http://openvswitch.org/. https : / / github . com /
homework/openvswitch. (Accessed on 03/17/2019).

[45] OVSDB — Open vSwitch 2.11.90 documentation. http://docs.openvswitch.org/en/
latest/ref/ovsdb.7/. (Accessed on 03/21/2019).

[46] Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet. http:
//mininet.org/. (Accessed on 03/05/2019).

[47] Eder Leao Fernandes et al. “The Road to BOFUSS: The Basic OpenFlow User-space
Software Switch”. In: arXiv preprint arXiv:1901.06699 (2019).

[48] OpenDaylight Project. OpenDaylight Documentation - Release Beryllium. https://
media.readthedocs.org/pdf/opendaylight/stable-beryllium/opendaylight.
pdf. (Accessed on 03/16/2019). 2017.

[49] Documentation « Floodlight OpenFlow ControllerProject Floodlight. http://www.projectfloodlight.
org/documentation/. (Accessed on 03/16/2019).

[50] J. Parrott. Nox Documentation - Release 0.17.0. https://media.readthedocs.org/
pdf/nox/stable/nox.pdf. (Accessed on 03/16/2019). 2017.

[51] M. McKerns. Pox Documentation - Release 0.2.6.dev0. https://media.readthedocs.
org/pdf/pox/latest/pox.pdf. (Accessed on 03/16/2019). 2019.

[52] Quick Start - Beacon - Confluence. https : / / openflow . stanford . edu / display /
Beacon/Quick+Start.html. (Accessed on 06/06/2019).

[53] Ryu Development Team. Ryu Documentation - Release 4.30. https://media.readthedocs.
org/pdf/ryu/latest/ryu.pdf. (Accessed on 03/16/2019). 2018.

[54] ONOS - Development Guide. https : / / wiki . onosproject . org / display / ONOS /
Guides. (Accessed on 03/16/2019).

[55] Network Functions Virtualisation - An Introduction, Benefits, Enablers, Challenges and
Call for Action. https://portal.etsi.org/nfv/nfv_white_paper.pdf. (Accessed
on 03/04/2019). 2012.

[56] OpenSDNCore | Virtualisation Testbed for NFV/SDN Environment. https://www.
openSDNcore.org/. (Accessed on 05/04/2019).

88

https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.opennetworking.org/wp-content/uploads/2014/10/sb-OSS-BSS.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/sb-OSS-BSS.pdf
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc3986.txt
https://media.readthedocs.org/pdf/ovs-reviews/latest/ovs-reviews.pdf
https://media.readthedocs.org/pdf/ovs-reviews/latest/ovs-reviews.pdf
https://github.com/homework/openvswitch
https://github.com/homework/openvswitch
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
http://mininet.org/
http://mininet.org/
https://media.readthedocs.org/pdf/opendaylight/stable-beryllium/opendaylight.pdf
https://media.readthedocs.org/pdf/opendaylight/stable-beryllium/opendaylight.pdf
https://media.readthedocs.org/pdf/opendaylight/stable-beryllium/opendaylight.pdf
http://www.projectfloodlight.org/documentation/
http://www.projectfloodlight.org/documentation/
https://media.readthedocs.org/pdf/nox/stable/nox.pdf
https://media.readthedocs.org/pdf/nox/stable/nox.pdf
https://media.readthedocs.org/pdf/pox/latest/pox.pdf
https://media.readthedocs.org/pdf/pox/latest/pox.pdf
https://openflow.stanford.edu/display/Beacon/Quick+Start.html
https://openflow.stanford.edu/display/Beacon/Quick+Start.html
https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf
https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf
https://wiki.onosproject.org/display/ONOS/Guides
https://wiki.onosproject.org/display/ONOS/Guides
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://www.openSDNcore.org/
https://www.openSDNcore.org/

[57] GS NFV-INF 004 - V1.1.1 - Network Functions Virtualisation (NFV); Infrastructure; Hy-
pervisor Domain. https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/
01.01.01_60/gs_nfv-inf004v010101p.pdf. (Accessed on 04/12/2019).

[58] GS NFV 002 - V1.2.1 - Network Functions Virtualisation (NFV); Architectural Frame-
work. https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/
gs_nfv002v010201p.pdf. (Accessed on 03/06/2019). 2014.

[59] GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Management and
Orchestration. https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/
01.01.01_60/gs_nfv-man001v010101p.pdf. (Accessed on 04/13/2019).

[60] OSM Public Wiki. https://osm.etsi.org/wikipub/index.php/Main_Page. (Ac-
cessed on 05/31/2019).

[61] OPNFV Documentation — Hunter documentation. https://docs.opnfv.org/en/
stable-hunter/. (Accessed on 05/31/2019).

[62] Network Basics: TCP/IP Protocol Suite. https://www.dummies.com/programming/
networking/network-basics-tcpip-protocol-suite/. (Accessed on 06/06/2019).

[63] Network Working Group - IETF. Requirements for Internet Hosts – Communication
Layers. https://www.ietf.org/rfc/rfc1122.txt. (Accessed on 03/16/2019). 1989.

[64] Network Working Group - IETF. Requirements for Internet Hosts – Application and
Support. https://www.ietf.org/rfc/rfc1123.txt. (Accessed on 03/16/2019).
1989.

[65] Network Working Group - IETF. Simple Network Management Protocol (SNMP). https:
//tools.ietf.org/html/rfc1157. (Accessed on 03/16/2019). 1990.

[66] Network Working Group - IETF. Architecture for SNMP Frameworks. https://www.
ietf.org/rfc/rfc2571.txt. (Accessed on 03/18/2019). 1999.

[67] Network Working Group - IETF. Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information. https://tools.ietf.org/
html/rfc5101. (Accessed on 03/16/2019). 2008.

[68] Rick Hofstede et al. “Flow monitoring explained: From packet capture to data anal-
ysis with netflow and ipfix”. In: IEEE Communications Surveys & Tutorials 16.4 (2014),
pp. 2037–2064.

[69] Network Working Group - IETF. InMon Corporation’s sFlow: A Method for Monitoring
Traffic in Switched and Routed Networks. https://www.ietf.org/rfc/rfc3176.txt.
(Accessed on 03/16/2019). 2001.

[70] Understanding SPAN,RSPAN,and ERSPAN - Cisco Community. https://community.
cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/
ta-p/3144951. (Accessed on 06/05/2019).

[71] Network Working Group - IETF. Network Configuration Protocol (NETCONF). https:
//tools.ietf.org/html/rfc6241. (Accessed on 03/16/2019). 2011.

89

https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_nfv-inf004v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/004/01.01.01_60/gs_nfv-inf004v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://osm.etsi.org/wikipub/index.php/Main_Page
https://docs.opnfv.org/en/stable-hunter/
https://docs.opnfv.org/en/stable-hunter/
https://www.dummies.com/programming/networking/network-basics-tcpip-protocol-suite/
https://www.dummies.com/programming/networking/network-basics-tcpip-protocol-suite/
https://www.ietf.org/rfc/rfc1122.txt
https://www.ietf.org/rfc/rfc1123.txt
https://tools.ietf.org/html/rfc1157
https://tools.ietf.org/html/rfc1157
https://www.ietf.org/rfc/rfc2571.txt
https://www.ietf.org/rfc/rfc2571.txt
https://tools.ietf.org/html/rfc5101
https://tools.ietf.org/html/rfc5101
https://www.ietf.org/rfc/rfc3176.txt
https://community.cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/ta-p/3144951
https://community.cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/ta-p/3144951
https://community.cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/ta-p/3144951
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241

[72] Network Working Group - IETF. The Open vSwitch Database Management Protocol.
https://tools.ietf.org/html/rfc7047. (Accessed on 03/16/2019). 2013.

[73] CORE IPC API - verion 1.23. https://downloads.pf.itd.nrl.navy.mil/docs/
core/core_api.pdf. (Accessed on 04/16/2019).

[74] Martin Taylor. THE APPLICATION OF CLOUD NATIVE DESIGN PRINCIPLES TO
NETWORK FUNCTIONS VIRTUALIZATION. http : / / info . metaswitch . com /
hubfs / PDFs / the - application - of - cloud - native - design - principles - to -
network-functions-virtualization-white-paper.pdf. (Accessed on 04/20/2019).

[75] Qi Zhang et al. “A comparative study of containers and virtual machines in big
data environment”. In: arXiv preprint arXiv:1807.01842 (2018).

[76] Are Containers Replacing Virtual Machines? - Docker Blog. https://blog.docker.com/
2018/08/containers-replacing-virtual-machines/. (Accessed on 05/31/2019).

[77] Cloud Foundry Docs. https://docs.cloudfoundry.org/. (Accessed on 06/01/2019).

[78] Carl Boettiger. “An introduction to Docker for reproducible research”. In: ACM
SIGOPS Operating Systems Review 49.1 (2015), pp. 71–79.

[79] Paolo Di Tommaso et al. “The impact of Docker containers on the performance of
genomic pipelines”. In: PeerJ 3 (2015), e1273.

[80] David Bernstein. “Containers and cloud: From lxc to docker to kubernetes”. In:
IEEE Cloud Computing 1.3 (2014), pp. 81–84.

[81] Apache Spark - Unified Analytics Engine for Big Data. https://spark.apache.org/.
(Accessed on 04/23/2019).

[82] Roberto Morabito. “Power consumption of virtualization technologies: an empirical
investigation”. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC). IEEE. 2015, pp. 522–527.

[83] Janki Bhimani et al. “Accelerating big data applications using lightweight virtu-
alization framework on enterprise cloud”. In: 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE. 2017, pp. 1–7.

[84] Docker Bridge Networking Deep Dive – Peng Xiao – Medium. https://medium.com/
@xiaopeng163/docker-bridge-networking-deep-dive-3e2e0549e8a0. (Accessed
on 05/14/2019).

[85] Yiming Xu, V Mahendran, and Sridhar Radhakrishnan. “SDN docker: Enabling
application auto-docking/undocking in edge switch”. In: 2016 IEEE conference on
computer communications workshops (INFOCOM WKSHPS). IEEE. 2016, pp. 864–869.

[86] A network testbed for commercial telecommunications product testing. http://imunes.
net/dl/papers/softcom_2014.pdf. (Accessed on 04/24/2019).

90

https://tools.ietf.org/html/rfc7047
https://downloads.pf.itd.nrl.navy.mil/docs/core/core_api.pdf
https://downloads.pf.itd.nrl.navy.mil/docs/core/core_api.pdf
http://info.metaswitch.com/hubfs/PDFs/the-application-of-cloud-native-design-principles-to-network-functions-virtualization-white-paper.pdf
http://info.metaswitch.com/hubfs/PDFs/the-application-of-cloud-native-design-principles-to-network-functions-virtualization-white-paper.pdf
http://info.metaswitch.com/hubfs/PDFs/the-application-of-cloud-native-design-principles-to-network-functions-virtualization-white-paper.pdf
https://blog.docker.com/2018/08/containers-replacing-virtual-machines/
https://blog.docker.com/2018/08/containers-replacing-virtual-machines/
https://docs.cloudfoundry.org/
https://spark.apache.org/
https://medium.com/@xiaopeng163/docker-bridge-networking-deep-dive-3e2e0549e8a0
https://medium.com/@xiaopeng163/docker-bridge-networking-deep-dive-3e2e0549e8a0
http://imunes.net/dl/papers/softcom_2014.pdf
http://imunes.net/dl/papers/softcom_2014.pdf

[87] Reproducing Network Research | network systems experiments made accessible, runnable,
and reproducible. https : / / reproducingnetworkresearch . wordpress . com/. (Ac-
cessed on 04/24/2019).

[88] MININET - Open Networking Foundation. https : / / www . opennetworking . org /
mininet/. (Accessed on 04/29/2019).

[89] Introduction to Mininet · mininet/mininet Wiki · GitHub. https : / / github . com /
mininet/mininet/wiki/Introduction-to-Mininet. (Accessed on 04/25/2019).

[90] Cluster Edition Prototype - Mininet/mininet Wiki - GitHub. https://github.com/
mininet/mininet/wiki/Cluster-Edition-Prototype. (Accessed on 04/24/2019).

[91] MaxiNet: Distributed Network Emulation. https://maxinet.github.io/. (Accessed
on 04/24/2019).

[92] Richard Cziva et al. “Container-based network function virtualization for software-
defined networks”. In: 2015 IEEE symposium on computers and communication (ISCC).
IEEE. 2015, pp. 415–420.

[93] Richard Cziva, Simon Jouet, and Dimitrios P Pezaros. “Gnfc: Towards network
function cloudification”. In: 2015 IEEE conference on network function virtualization
and software defined network (NFV-SDN). IEEE. 2015, pp. 142–148.

[94] Richard Cziva and Dimitrios P Pezaros. “Container network functions: bringing
NFV to the network edge”. In: IEEE Communications Magazine 55.6 (2017), pp. 24–
31.

[95] GitHub - CPqD/ofsoftswitch13: OpenFlow 1.3 switch. https://github.com/CPqD/
ofsoftswitch13. (Accessed on 04/25/2019).

[96] Bob Lantz, Brandon Heller, and Nick McKeown. “A network in a laptop: rapid pro-
totyping for software-defined networks”. In: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. ACM. 2010, p. 19.

[97] Open Source - BEBA EU Project. http://www.beba- project.eu/open- source.
(Accessed on 04/26/2019).

[98] GitHub - OpenState-SDN/ofsoftswitch13: OpenState switch implementation based on CPqD/ofsoftswitch13.
https://github.com/OpenState-SDN/ofsoftswitch13. (Accessed on 04/26/2019).

[99] Martin Nagy et al. “Integrating mobile openflow based network architecture with
legacy infrastructure”. In: Information and Communication Technology-EurAsia Confer-
ence. Springer. 2015, pp. 40–49.

[100] iPerf - The TCP, UDP and SCTP network bandwidth measurement tool. https://iperf.
fr/. (Accessed on 04/27/2019).

[101] Mohammad Alizadeh et al. “Data center tcp (dctcp)”. In: ACM SIGCOMM computer
communication review 41.4 (2011), pp. 63–74.

91

https://reproducingnetworkresearch.wordpress.com/
https://www.opennetworking.org/mininet/
https://www.opennetworking.org/mininet/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype
https://maxinet.github.io/
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
http://www.beba-project.eu/open-source
https://github.com/OpenState-SDN/ofsoftswitch13
https://iperf.fr/
https://iperf.fr/

[102] Kuljaree Tantayakul et al. “Experimental analysis in SDN open source environ-
ment”. In: 2017 14th International Conference on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology (ECTI-CON). IEEE. 2017, pp. 334–
337.

[103] Frequently Asked Questions - CPqD/ofsoftswitch13 Wiki - GitHub. https://github.
com/CPqD/ofsoftswitch13/wiki/. (Accessed on 05/17/2019).

[104] OpenFlow Version RoadMap. http://kspviswa.github.io/OpenFlow_Version_
Roadmap.html. (Accessed on 04/28/2019).

[105] NB-API-Charter-v1.1. https://www.opennetworking.org/images/stories/downloads/
working-groups/charter-nbi.pdf. (Accessed on 04/30/2019).

[106] onos/onos.py at master - opennetworkinglab/onos - GitHub. https : / / github . com /
opennetworkinglab/onos/blob/master/tools/dev/mininet/onos.py. (Accessed
on 05/23/2019).

[107] sFlow-RT. https://sflow-rt.com/. (Accessed on 06/03/2019).

[108] Wireshark · Documentation. https : / / www . wireshark . org / docs/. (Accessed on
05/06/2019).

[109] VMware Docs Home. https://docs.vmware.com/. (Accessed on 06/03/2019).

[110] Running Kubernetes Locally via Minikube - Kubernetes. https://kubernetes.io/docs/
setup/minikube/. (Accessed on 06/03/2019).

[111] Minishift - Containerized OKD Cluster. https://www.okd.io/minishift/. (Accessed
on 06/03/2019).

[112] Testbeds – SoftFIRE. https://www.softfire.eu/testbed/. (Accessed on 05/13/2019).

[113] SDN Testbed | AARNet. https://www.aarnet.edu.au/network-and-services/
advanced-network-services/sdn-testbed. (Accessed on 05/13/2019).

[114] GitHub - softfire-eu/docker-softfire. https : / / github . com / softfire - eu / docker -
softfire. (Accessed on 05/13/2019).

[115] Docker Container as Mininet Host | Tech and Trains. https://techandtrains.com/
2014/08/21/docker-container-as-mininet-host/. (Accessed on 05/14/2019).

[116] Guide On Using Docker Containers As Mininet Hosts | Talentica Blog. https://www.
talentica.com/blogs/using-docker-containers-as-mininet-hosts/. (Accessed
on 05/14/2019).

[117] MoSCoW Prioritisation | Agile Business Consortium. https://www.agilebusiness.
org/content/moscow-prioritisation. (Accessed on 05/05/2019).

[118] GitHub - docker/docker-py: A Python library for the Docker Engine API. https : / /
github.com/docker/docker-py. (Accessed on 05/15/2019).

[119] Mininet Python API Reference Manual: Main Page. http://mininet.org/api/index.
html. (Accessed on 05/15/2019).

92

https://github.com/CPqD/ofsoftswitch13/wiki/
https://github.com/CPqD/ofsoftswitch13/wiki/
http://kspviswa.github.io/OpenFlow_Version_Roadmap.html
http://kspviswa.github.io/OpenFlow_Version_Roadmap.html
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
https://github.com/opennetworkinglab/onos/blob/master/tools/dev/mininet/onos.py
https://github.com/opennetworkinglab/onos/blob/master/tools/dev/mininet/onos.py
https://sflow-rt.com/
https://www.wireshark.org/docs/
https://docs.vmware.com/
https://kubernetes.io/docs/setup/minikube/
https://kubernetes.io/docs/setup/minikube/
https://www.okd.io/minishift/
https://www.softfire.eu/testbed/
https://www.aarnet.edu.au/network-and-services/advanced-network-services/sdn-testbed
https://www.aarnet.edu.au/network-and-services/advanced-network-services/sdn-testbed
https://github.com/softfire-eu/docker-softfire
https://github.com/softfire-eu/docker-softfire
https://techandtrains.com/2014/08/21/docker-container-as-mininet-host/
https://techandtrains.com/2014/08/21/docker-container-as-mininet-host/
https://www.talentica.com/blogs/using-docker-containers-as-mininet-hosts/
https://www.talentica.com/blogs/using-docker-containers-as-mininet-hosts/
https://www.agilebusiness.org/content/moscow-prioritisation
https://www.agilebusiness.org/content/moscow-prioritisation
https://github.com/docker/docker-py
https://github.com/docker/docker-py
http://mininet.org/api/index.html
http://mininet.org/api/index.html

[120] cpython/pipes.py at 2.7 · python/cpython · GitHub. https://github.com/python/
cpython/blob/2.7/Lib/pipes.py. (Accessed on 05/15/2019).

[121] Extreme Programming: A Gentle Introduction. http : / / www . extremeprogramming .
org/. (Accessed on 06/03/2019).

[122] cpython/subprocess.py at 3.7 - python/cpython - GitHub. https://github.com/python/
cpython/blob/3.7/Lib/subprocess.py. (Accessed on 05/19/2019).

[123] Mininet and onos.py workflow - ONOS - Wiki. https://wiki.onosproject.org/
display/ONOS/Mininet+and+onos.py+workflow. (Accessed on 05/18/2019).

[124] Visualizing software defined network topologies using POX and Gephi | Open-Source
Routing and Network Simulation. https://www.brianlinkletter.com/visualizing-
software-defined-network-topologies-using-pox-and-gephi/. (Accessed on
05/24/2019).

[125] vis.js - A dynamic, browser based visualization library. https://visjs.org/. (Accessed
on 06/05/2019).

[126] SDN Narmox Spear. http://demo.spear.narmox.com/app/?apiurl=demo!/mininet.
(Accessed on 05/24/2019).

93

https://github.com/python/cpython/blob/2.7/Lib/pipes.py
https://github.com/python/cpython/blob/2.7/Lib/pipes.py
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
https://github.com/python/cpython/blob/3.7/Lib/subprocess.py
https://github.com/python/cpython/blob/3.7/Lib/subprocess.py
https://wiki.onosproject.org/display/ONOS/Mininet+and+onos.py+workflow
https://wiki.onosproject.org/display/ONOS/Mininet+and+onos.py+workflow
https://www.brianlinkletter.com/visualizing-software-defined-network-topologies-using-pox-and-gephi/
https://www.brianlinkletter.com/visualizing-software-defined-network-topologies-using-pox-and-gephi/
https://visjs.org/
http://demo.spear.narmox.com/app/?apiurl=demo!/mininet

	English title page
	Front page
	List of Figures
	Introduction
	Research Motivation
	Problem Space
	Research Objectives
	Research Questions
	Research Scope
	Expected outcome
	Methodology
	Research
	Process model

	State of the Art
	Software-Defined Networks
	Openflow protocol and switch specifications

	Virtual Switches
	Open vSwitch Specification
	Basic OpenFlow User-space Software Switch specification

	SDN controllers
	Network Function Virtualization
	Internet protocol Suite and networks
	Network Management Technologies
	Network Monitoring
	Network Configuration

	Network Emulators
	Virtual environments and orchestration platforms

	Analysis
	Service Architecture Development
	Virtual environments
	Network emulation
	Network Function Virtualization
	Switch Specifications
	OpenFlow and SDN Controllers

	Network Monitoring and Presentation
	Industry interview
	Inspiration
	Requirements Specification
	Use Case diagram
	Requirements prioritization - MoSCoW
	Requirements

	Conceptual Design
	Architecture
	System Context Diagram
	Sequence Diagrams

	Implementation
	Development Methodology
	Architecture
	Sprints
	Docker Container Provisioning and Mininet Integration
	Virtual Switch Implementation
	SDN Controller implementation
	Topology Generators and Template Scripts
	Network Visualization
	Network monitoring and Data Representation

	Discussion
	Agile process approach
	Prototype approach

	Conclusion
	Bibliography

