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Introduction

In most if not all everyday situations, we encounter sounds which are either un-
wanted or uninteresting to us. These sounds are generally regarded as noises, which
are interfering with the sounds that do have an immediate interest. An example
hereof is a noisy car cabin. Here, the sounds generated by the car engine may be
regarded as noise, whereas a GPS with voice navigation enabled may be the sound
of interest. A crowded cafeteria is another example, where background chatter and
clinking cutlery constitute the noise and an on-going conversation is the sound of
interest. The noise can also originate from the desired sound itself, e.g. in highly
reverberant environments, where the direct path of the sound of interest is concealed
by late reflections of itself. In any case, the noise may cause issues for the listener if
the listening conditions are particularly adverse.

Although the human auditory system has a remarkable capability to block out noises
and focus the attention on the sounds of interest, it remains a challenging task in
audio signal processing [2, 3]. The process of using signal processing tools for attenu-
ating noise while preserving the desired signal (usually speech) is known as noise re-
duction, and has received a considerable amount of attention and research in the past
several decades [4]. Noise reduction has applications in a variety of speech processing
systems, including telecommunications [73], automatic speech recognition systems
(ASR) [56] and hearing assistive devices [9]. These systems often operate in noisy
environments, similar to the examples mentioned above, where noise-contaminated
speech signals are recorded for e.g. transmission, processing or playback. For human
listeners the purpose may be to improve the intelligibility or perceptual quality of
the speech signal; for machine listeners the goal may be to improve ASR performance.

Noise reduction is generally a difficult task for various reasons. For once, the acous-
tic environment is often ever changing, which requires the design of a method that
performs well in most situations. This usually requires a way of tracking the noise
and/or the desired signal. Additionally, when designing a method for noise reduc-
tion, one is met with a trade-off between effective noise attenuation and introduced
speech distortion [15]. This choice will be application specific; a speech recognition
system may perform better when attenuating a competing speaker at the cost of
minor speech distortion. On the other hand, speech distortion may be less tolerant
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2 Introduction

in systems made for human listening, e.g. a hearing aid.

A variety of methods exists for noise reduction. Linear filters are a common approach,
where filter weights are specifically designed to achieve some goal, e.g. attenuate un-
wanted signal components. Linear filters are popular because of their simplicity,
which makes them desirable from a computational point of view. Among linear fil-
ters is the minimum variance distortionless response (MVDR) beamformer, which
is specifically designed to leave the desired signal undistorted. Another filter is the
Wiener filter, which is derived from finding the optimal solution in the minimum
mean squared error (MMSE).

Other approaches are based on computational auditory scene analysis (CASA) [77],
which itself is based on the principles of the auditory scene analysis (ASA) [10].
CASA aims to develop speech separation algorithms which mimic the human auditory
system. In [10], it is suggested that the human auditory system segregates mixed
sound sources in two stages; segmentation and grouping. In the first stage, the
acoustic mixture is decomposed into time-frequency segments. These segments are
then grouped in the second stage using grouping cues such as periodicity, harmonicity
and onset/offset synchrony [76]. One of the main computational goals of CASA is
to estimate the ideal binary mask, which specifies which units in the time-frequency
domain are predominantly speech or noise [46]. The estimated ideal binary mask
can then be used directly as a gain function to attenuate noise-dominated tiles, or
be used for further processing of the signal.

Scope of the Project
The objective of this thesis is to explore methods for own-voice retrieval in hear-
ing assistive devices. Specifically, we utilize traditional beamforming techniques in
combination with deep learning architectures to obtain an estimate of a hearing aid
wearer’s own voice. With a time-frequency mask as the computational goal, noise re-
duction can be cast as a supervised learning problem, for which deep neural networks
are particularly suitable for due to their strong learning capabilities. In this thesis
we explore methods of estimating a time-frequency mask for use in conjunction with
traditional beamforming algorithms.

The purpose of the deep learning model is to extract spectral and learn the classifi-
cation rule for discriminating between time-frequency bins with high and low SNRs.
A sub-objective is to explore the possibilities of learning to specifically extract own-
voice in the presence of competing speakers.



Chapter 1

System modeling

The purpose of this chapter is to develop a model for the output signal of the re-
ceiving microphone array in a hearing aid (HA). Using this model, the problem of
estimating the desired own-voice speech signal from the noisy observations is formu-
lated. Furthermore, assumptions regarding the model and their validity is discussed.
At last, various performance measures are presented, which will be used for evalua-
tion in the subsequent chapters.

1.0.1 Design and Evaluation Implications

Designing advanced signal processing algorithms for use in HAs poses several chal-
lenging tasks. For example, many HA devices are designed to be concealed behind
or in the ear. As a result, HAs are often quite small in size, which means that the
microphone configurations available are severely limited. Another concern is power
consumption. Ideally, the power consumption should be low enough to keep the user
from having to replace the batteries several times a day. The processing power is
also limited. If the computational complexity becomes too high, a noticeable de-
lay will be introduced in the system. In [66] a qualitative study was carried out to
investigate the perception of delayed playback in HAs for own-voice signals. Test
subjects started rating the experience as ‘disturbing’, when the processing delay ex-
ceeded 20-40 ms. Delays this long would certainly be unacceptable in any application
where listening comfort is important. Even though a full implementation on a HA
is beyond the scope of this thesis, these practical concerns should still be taken into
consideration when assessing the performance of various de-noising algorithms in the
following chapters.

3



4 Chapter 1. System modeling

1.1 Observation Model
In this thesis we consider the set-up depicted in Figure 1.1, where a HA wearer is
equipped with multiple microphones and is situated in a noisy acoustic environment.
When the HA wearer speaks, a noise-corrupted speech signal is received at the micro-
phone arrays. The objective is then to recover the clean speech signal by suppressing
the noise.

The noise environment may be composed of several noise sources, and each of these
can either be diffuse noise (e.g. car interior) or localised noise impinging from a cer-
tain direction (e.g. a noisy fan). But since the individual noise sources are generally
not of interest, they will be treated as a single entity.

The speech source is modelled as a point source, which is an infinitesimally small
volume emitting spherical waves. These waves are characterised by having a con-
stant sound pressure on spherical surfaces centered around the source, which makes
them independent of direction [38, Sec 1.2]. Point sources approximate several real-
world acoustic sources and will be a convenient model in the following section [65,
Sec. 2.4.1].

The focus of this thesis is on noise reduction rather than dereverberation. For this
reason, will consider the case of an (almost) free-field propagation environment with
the HA wearer’s head being the only obstacle.

1.1.1 Time-Domain Observation Model

Presume the HA wearer speaks and we measure a signal ym[n] at them’th microphone
at time index n ∈ Z. The signal is assumed to consist of; (1) the clean speech
signal s[n] (convolved with the mouth-to-mic impulse response hm[n] between the
speech source and the m’th microphone); and (2) an additive noise term vm[n],
which accounts for the surrounding noise. The observation model is

ym[n] = (s[n] ∗ hm[n]) + vm[n]
= xm[n] + vm[n], for m = 1, 2, . . . ,M, (1.1)

where hm[n] is the impulse response, s[n] is the clean speech signal and ∗ denotes the
usual convolution. The noise term vm[n] models both inherent noise in the system
(e.g. thermal noise) and interference (such as competing speakers or background
noise).

We make the following assumptions regarding the set-up:

1. The target speech signal s[n] and the noise signal v[n] are statistically uncor-
related.
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Figure 1.1: The acoustic scene. The HA wearer is equipped with four microphones (marked with
red), and the target signal is the speech signal leaving the wearers mouth (marked with green).
Except for the head, the signals are assumed to propagate in free field.

2. The signals in (1.1) are real and zero-mean.

3. The head-related impulse responses between the HA wearer and each of the
microphones are known.

Regarding the validity of the above assumptions, we add the following comments.
Assumption (1) is valid for many types of noise encountered in realistic set-ups, where
the event producing the noise is unrelated to the person speaking. The assumption
breaks, however, if e.g. the target speaker is fond of singing along to the car stereo.
Another example is conversation, where the target speaker may be negatively cor-
related with the interfering speaker. Assumption (2) is valid since the signals are
acoustic signals. Regarding Assumption (3), the head-related impulse response can
be measured or estimated. And since the microphone array and target speech source
are in fixed positions, the impulse response is not expected to change significantly
as time progresses. The room impulse response, however, is dependent on an ever
changing acoustic scene, thus it can not possibly be known in advance. Fortunately,
late reflections of the target speech (those impinging 50-95 ms after the direct path)
do not contribute to speech intelligibility, and can be considered as interference [12]
[9, Sec. 1]. But the early reflections constitute a source of correlated noise, and these
should be considered a part of the target speech signal.

Note that since the HRIR, h[n], is assumed to be known, it suffices to obtain just
one of the clean (but convolved) speech signals xm[n] in (1.1). Without loss of gen-
erality, we will choose microphone m = 1 as the reference microphone. Hence, x1[n]
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constitutes our desired signal. In practice, the microphone having the highest SNR
can be selected as the reference microphone.

In the subsequent chapters, we will design de-noising filters which are based on the
signal model in (1.1). Clearly, the performance of the filter is expected to improve
by increasing the number of microphones in (1.1), since more measurements will be
available for processing. However, this comes at the cost of increased requirements
for the DSP chip, and possibly the need of a communication link between the two
HAs to allow transmission of audio signals. For simplicity, we will therefore only
consider the monaural case, corresponding to a single HA, equipped with two micro-
phones. As we will see later, increasing the number of microphones in the algorithms
is straight-forward, and thus is only a practical concern.

The signals in (1.1) are likely to be highly non-stationary. As a result, the signal
statistics are going to be time dependent. This is an issue for obtaining accurate esti-
mates of e.g. the covariance matrices of the signals, since these are often acquired by
temporal averaging. The estimates may simply never converge. To overcome this, the
signal can be segmented into smaller frames of samples in which the signal statistics
are assumed to not change significantly. This property is called quasi-stationarity,
and it turns out that this assumption is particularly valid for speech, where intervals
of about 20 milliseconds ensure approximate stationarity [48].

Another approach is to solve the noise reduction problem in the STFT domain.
Similarly to the time-domain approach, the signal is segmented into smaller frames
using e.g. a sliding windowing function to appropriately handle the frame edges.
The frames are then transformed into the frequency domain using a DFT, where
the noise filtering is applied on the transform coefficients. Finally, the enhanced
time-domain speech signal is synthesized from the estimated clean speech spectrum
using the inverse DFT followed by an overlap-and-add method [6, Ch. 1]. This is the
approach we will pursue in this thesis.

Besides being more computationally efficient than the time-domain approach [6,
Ch. 1] [62], the STFT also acts as a decorrelator providing transform coefficients
which are approximately uncorrelated in time and frequency [25, Ch. 2]. This allows
processing the coefficients independently of each other. And although this assump-
tion is often a gross simplification, it is nevertheless commonly used for convenience
[25, Ch. 2]. Finally, while other transform domains can be used (e.g. Gabor wavelets
[47], Karhunen-Loève expansions [4]), the STFT domain is particularly compelling
because of the efficient FFT implementation [18], which makes the transform com-
putationally cheap to use.
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1.1.2 STFT-domain Observation Model

For a time-domain signal y[n], we define the STFT as

Y (k, l) ,
N−1∑
n=0

y[n+ kD]w[n] exp−2πik 1
N , (1.2)

where N denotes the DFT length, D is the filterbank decimation factor and w[n] is a
windowing function. For more on the STFT, see [20]. Assuming it exists, the STFT
of (1.1) is

Ym(k, l) = S(k, l)Hm(k) + Vm(k, l) (1.3)
= Xm(k, l) + Vm(k, l), (1.4)

where each term is the corresponding STFT-domain representation of the terms in
(1.1), and k, l denote the frequency bin and time frame, respectively. Note that we
drop the time frame indexing for Hm, since it is assumed to be time invariant. For
convenience, we adopt the following vector notation

Y (k, l) = S(k, l)H(k) + V (k, l) = X(k, l) + V (k, l), (1.5)

where the terms are stacked inM×1-dimensional vectors across channels, that is, we
define Y (k, l) := [Y1(k, l), . . . , YM (k, l)]> and similarly forH(k), V (k, l) andX(k, l).
By further defining the vector

d(k) :=
[
1, H2(k)
H1(k) , . . . ,

HM (k)
H1(k)

]>
= H(k)
H1(k) , (1.6)

we get another formulation of the observation model

Y (k, l) = X1(k, l)d(k) + V (k, l), (1.7)

provided that H1(k) 6= 0. The elements of the vector d ∈ CM can be interpreted
as the relative transfer functions between the reference microphone (where m = 1)
and the remaining microphones [6, Sec. 4.1]. Using (1.7), the task of noise reduction
is then to recover X1(k, l) given the noisy observations Y (k, l). Methods for doing
exactly this are presented in Ch. 2.

1.2 Performance Measures
In order to compare and evaluate performance of the presented methods for own-voice
retrieval, several performance measures are employed. The performance measures are
divided into three categories: those related to (1) effective noise reduction, (2) speech
quality and (3) speech intelligibility.
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Segmental SNR

A widely used performance measure from the first category is the time-domain seg-
mental signal-to-noise ratio (SEG-SNR). In this thesis, SEG-SNR will be used to
measure the degree of noise reduction. For unprocessed and enhanced signals, x[n]
and x̂[n], is computed by averaging frame level SNR estimates as follows

SNRSEG ,
10
M

M−1∑
m=0

log10

∑Nm+N−1
n=Nm x2[n]∑Nm+N−1

n=Nm (x[n]− x̂[n])2
, (1.8)

whereM is the number of frames in the signal, and N denotes frame length (typically
chosen in the range of 15-20 milliseconds) [45, Sec. 3]. By framing the signal, one
can choose to discard frames in the computation of the sum which contain very low
speech energy (e.g. those during speech pauses), and thus have very large negative
SNRs. By doing so, one avoids the bias in the measure associated with these frames.
Likewise, frames above 35 dB do not reflect large perceptual differences. For these
reasons, we choose to limit the values in the outer sum of (1.8) to the range of
[−10, 35] dB, as is commonly done [23]. Although widely used, SEG-SNR has been
shown to correlate poorly with speech quality [45, Sec. 3.6].

PESQ

Another widely used performance measure for speech is Perceptual Evalution of
Speech Quality (PESQ) [57]. PESQ is a test methodology for automated assess-
ment of the speech quality. It compares a degraded signal to a reference signal,
which in our case are either the unproccesed or processed noisy signal and the clean
speech signal, respectively. The output of the PESQ algorithm is a value on a Mean
Opinion Score (MOS) scale taking values between −0.5 (worst) and 4.5 (best). PESQ
has been shown correlate greatly with speech quality and correlate moderately with
speech intelligibility [45, Sec. 3.6]. For this reason, PESQ is chosen as the main
indicator of speech quality1. For more information regarding the PESQ algorithm,
see [57].

STOI and ESTOI

For speech intelligibility we employ two objective measures: short-time objective
intelligibility (STOI) [67] and extended STOI (ESTOI) [33]. STOI measures the
temporal correlation of short-time envelopes between the reference and degraded
signals, and these correlations are then averaged across time and frequency bands to
produce a single score in the range of −1 (worst) to 1 (best). STOI has been shown
to be highly correlated with human speech intelligibility score [44, Sec. 11.4]. ESTOI
is an extension of STOI and was proposed to address the finding that STOI performs
poorly for certain signals [33, 72].

1Specifically the ITU-T standard p.862 version of PESQ



Chapter 2

Spatial Filtering

Many speech processing systems operate in noisy environments, where a desired
speech signal is received together with interfering signals. Examples of interfering
signals are competing speakers (or other acoustic noise sources), electromagnetic
noise and reverberation effects from the surroundings. These interfering signals are
generally unwanted and may negatively impact the perceived speech quality and in-
telligibility. For systems involving automatic speech recognition, the accuracy may
also suffer [56].

In single-microphone setups, various filtering methods exists for speech enhancement
[5]. Usually, the objective involves estimating the desired speech signal while attenu-
ating the unwanted signals. However, if the desired signal and the interfering signals
occupy the same spectro-temporal frequency bands, then temporal filtering cannot
separate the two signals [74].

In contrast to single-microphone filtering, an array of microphones can be employed
to capture the impinging signals, leading to a multi-microphone setup. The ar-
ray offers an additional dimension (space), which enables the use of spatial filtering
methods. These methods can be used in conjunction with spectro-temporal filtering
methods. The use of an array can be seen as capturing samples in space, and these
samples are generally correlated. If the desired signals and the interference signals
originate from different spatial locations, one can utilize the spatial information to
separate the signals [37, p. 67-68].

In this chapter, we introduce two methods of utilizing a multi-microphone setup for
speech enhancement: the minimum variance distortionless response (MVDR) beam-
former and the multi-channel Wiener filter (MWF). These beamformers constitute
the main body of the speech enhancement system proposed in this thesis. The
chapter is structured as follows: first, the necessary theory behind spatial filtering
is presented briefly. Then the MVDR and MWF are derived and compared. And
finally, some details regarding the implementation of the beamformer are given.

9



10 Chapter 2. Spatial Filtering

2.1 Beamforming
A beamformer is formulated as a spatial filter, which uses the output of a sensor array
to form a beam in a desired shape and direction. The beam can be considered as a
directional pattern, which attenuates signals coming from other directions [37, 74].
In the previous chapter, we arrived at the following observation model of the noise-
corrupted microphone signals in the STFT-domain

Y (k, l) = S1(k, l)d(k) + V (k, l)
= X(k, l) + V (k, l),

(2.1)

where k and l denote the frequency bin and time frame, respectively. In the STFT do-
main, beamforming is carried out by computing the dot product between a complex-
valued weight vector W (k, l) = [W1(k, l), . . . ,WM (k, l)]> and the array output

Z(k, l) = WH(k, l)Y (k, l)
= WH(k, l) [S1(k, l)d(k) + V (k, l))]
= Xfd(k, l) + Vfn(k, l),

(2.2)

where Xfd(k, l) = WH(k, l)X(k, l) is the filtered desired signal, and Vfn(k, l) =
WH(k, l)V (k, l) is the filtered noise signal. After filtering, the time-domain audio
signal can be recovered by applying the inverse STFT.

The specific choices of the weighting vector W depends on the chosen beamforming
method. In this thesis, we consider the class of statistically optimal beamformers,
which are derived from optimizing some objective function, e.g. minimize the output
noise power. The solutions incorporate signal statistics of the observed data, which
are generally unknown and time-varying, and therefore the solutions are only optimal
in a statistical sense. For this reason, the performance is largely dependent on how
well the signal statistics are estimated and subsequently tracked [37, p. 72].

Invoking the assumption of uncorrelatedness, the variance of the beamformer output
(2.2) is

CZZ(k, l) = E [Z(k, l)Z∗(k, l)]
= WH(k, l)CXX(k, l)W (k, l) +WH(k, l)CV V (k, l)W (k, l)
= CXfdXfd

(k, l) + CVfnVfn
(k, l),

where

CXX(k, l) , E
[
X(k, l)XH(k, l)

]
= S1(k, l)d(k)dH(k) (2.3)

is the rank-one covariance matrix of the convolved speech signal, and

CV V (k, l) , E
[
V (k, l)V H(k, l)

]
,

CXfdXfd
(k, l) , E [Xfd(k, l)Xfd

∗(k, l)] ,
and CVfnVfn

(k, l) , E [Vfn(k, l)Vfn∗(k, l)]

(2.4)
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are the respective (co)-variances of V , Xfd and Vfn [22, Sec. 9.2].

In the following sections, we will assume that the noise is not fully coherent across
the microphones, which is a valid assumption in real-world setups due to sensor self-
noise. As a result, CV V (k, l) will be full-rank and thus its inverse exists [22, Sec. 9.2].
We now introduce the MVDR beamformer.

2.1.1 Minimum Variance Distortionless Response

The MVDR weights are obtained by minimizing the output power subject to a sin-
gle linear constraint — that the array response has unity gain in the desired ‘look
direction’ [21], i.e.

WH(k, l)d(k) = 1, (2.5)
where d(k) is the steering vector evaluated in the look direction. For the sake of
readability, we will omit the time-frequency indices in the following. The power of
the array response is

E
[
ZZH

]
= E

[
WHY Y HW

]
= WHCY YW ,

(2.6)

and the full optimization problem is

min
W
WHCY YW subject to WHd = 1. (2.7)

The solution to (2.7) can be found by forming the complex Lagrangian

L(W ;λ) = WHCY YW + λ(WHd− 1) + λ∗(dHW − 1),

where λ is the Lagrange multiplier [1, 16]. Then by taking the derivative with respect
to W ∗, equating it zero and imposing the unity gain constraint

∂

∂W ∗L(W ;λ) = CXXW + λd , 0 s.t WHd− 1 = 0, (2.8)

we get the optimal weight in terms of the Lagrange multipliers

WMVDR , −λC−1
Y Y d.

The solution to the optimization problem (2.7) is [16]

WMVDR ,
CV V

−1d

dHCV V
−1d

, (2.9)

where

d(k) :=
[
1, H2(k)
H1(k) , . . . ,

HM (k)
H1(k)

]>
= H(k)
H1(k) (2.10)

is the relative transfer functions between the reference microphone (m = 1) and the
remaining microphones.
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Steering vector estimation

The MVDR solution (2.9) depends on the steering vector d(k), which in turn depend
on the incident angle of the received signals. Thus the direction of arrival must be
known to effectively suppress the output power in the other directions. In the case of
a mismatch between the estimated DOA and the true DOA, the desired signal will
end up being attenuated.

Instead, we choose to compute the steering vectors directly from the speech covari-
ance matrix, CXX as follows. By the assumption of a single directional speaker
source in X(k, l), CXX(k, l) is rank-one and hence has at most one non-zero eigen-
value. Hence it can be decomposed as

CXX(k, l) = E
[
|S(k, l)|2d(k)dH(k)

]
. (2.11)

We now apply the eigenvalue decomposition to obtain

CXX(k, l) = QΛQ−1, (2.12)

where Q contains the eigenvectors and Λ is a diagonal matrix containing the eigen-
values. The eigenvector corresponding to the non-zero eigenvalue is then the vector
d(k). Assuming in practice that CXX is well-estimated, it would be close to a sym-
metric rank-one matrix. And in such case, the principal eigenvector has been shown
to be a good estimate of the steering vector [78, 82]. In the following section we
derive the multi-channel Wiener filter.

2.1.2 Multi-channel Wiener filter

Another method for multi-microphone noise reduction is the multi-channel Wiener
filter (MWF). As we will see later, the MWF can be considered as an extension to the
MVDR by post-filtering the beamformer output with a single-channel Wiener filter.
For this reason, we expect the further filtering to only improve the noise suppression,
at the cost of violating the constraint in the MVDR formulation.

The MWF, as proposed in [14], can be seen as an extension of the single-channel
Wiener filter. Recall the output of the beamformer as the product between a weight
vector and the array output

Z(k, l) = WH(k, l)Y (k, l) (2.13)

with
Y (k, l) = X(k, l) + V (k, l). (2.14)

Define the error signal E(k, l) as the difference between the desired signal and the
filter output, that is

E(k, l) , Xm(k, l)− Z(k, l). (2.15)
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By minimising the mean-squared error (MSE) of the error signal (2.15), the Wiener
solution is obtained

WMWF(k, l) = arg min
W

E
[
|E(k, l)|2

]
. (2.16)

We now want to expand the MSE expression. By using

CY Y (k, l) = E [Ym(k, l)Ym∗(k, l)] , power of Ym
CY Z(k, l) = E [Y (k, l)Z∗(k, l)] , cross-covariance vector of Y and Z

CY Y (k, l) = E
[
Y (k, l)Y H(k, l)

]
, auto-covariance matrix of Y

the MSE can be rewritten as

E
[
|Xm − Z|2

]
= E

[
(Xm −WHY )(Xm

∗ − Y HW )
]

= CXX −WHCYX −CYX
HW +WHCY YW ,

(2.17)

where the indices k and l have been omitted. Note that the MSE (2.17) is real-
valued and non-negative for all k. By assuming uncorrelatedness across frequency
bins, minimising the sum of errors for all k corresponds to minimising the error for
each frequency bin individually [9, Sec. 3.2]. Thus the frequency bins can be treated
individually. Furthermore, the left-hand side is a quadratic function of W . This
means that the optimal solution can be obtained by setting the gradient of (2.17)
with respect to W equal to zero, that is

∂

∂W
E
[
|Xm − Z|2

]
= −2CYX + 2CY YW , 0, (2.18)

where 0 is the M × 1 null vector. The solution is found from the multi-channel
Wiener-Hopf equations [9, Sec. 3.2]

CY Y (k, l)WMWF(k, l) = CYX(k, l)
=⇒ WMWF(k, l) = CY Y

−1(k, l)CYX(k, l). (2.19)

It should be emphasised that the above solution does not depend on the array con-
figuration or DOA of the signals. It does, however, require knowledge of the desired
signal Xm(k, l) (through CYX(k, l)), which is unknown. The filter is therefore not
realisable in its current form. Instead we invoke the assumption of the desired signal
and noise signal being uncorrelated, which enables us to write the solution as

WMWF(k, l) = CY Y
−1(k, l) [CY Y (k, l)−CV V (k, l)] I, (2.20)

where i is an M -dimensional unit vector with a ‘1’ at the m’th entry corresponding
to the reference channel. A method for obtaining CY Y (k, l) and CV V (k, l) is pre-
sented in Sec. 2.2. In the following section, we compare the MWF with the MVDR
beamformer for speech enhancement and show a resemblance between the two.
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2.1.3 Comparing the MVDR and the MWF

The MWF can be factored into a MVDR beamformer and a single-channel WF by
using the Sherman-Morrison1 matrix identity. Recall from the observation model
that

Y (k, l) = X(k, l) + V (k, l) = X1(k, l)d+ V (k, l). (2.21)
For ease of notation, we will omit the frequency bin and time frame indices, k and
l, in the following derivation. By the assumption of desired speech and noise being
uncorrelated, we get

CYX1 = CX1X1d (2.22)
andCY Y = CX1X1dd

H +CV V . (2.23)

Using the above, the MWF solution may now be written

WMWF = CY Y
−1CXX ,=

[
CX1X1dd

H +CV V

]−1
CX1X1d. (2.24)

For a square matrix A ∈ RM×M and column vectors u, v ∈ RM , the Sherman-
Morrison matrix identity [52, Sec. 3.2] states that[

A+ uvT
]−1

= A−1 − A
−1uvTA−1

1 + vTA−1u
, (2.25)

provided that A and A+uvT are invertible. By using this result with the following
substitutions

A = CV V , u = v =
√
CX1X1d, (2.26)

we can write (2.24) as

WMWF =
[
CV V

−1 − CX1X1CV V
−1ddHCV V

−1

1 + CX1X1d
HCV V

−1d

]
CX1X1d (2.27a)

=
[
1− CX1X1d

HCV V
−1d

1 + CX1X1d
HCV V

−1d

]
CX1X1CV V

−1d (2.27b)

=
[

CX1X1

1 + CX1X1d
HCV V

−1d

]
CV V

−1d (2.27c)

= CV V
−1d

dHCV V
−1d︸ ︷︷ ︸

MVDR

CX1X1

CX1X1 + (dHCV V
−1d)−1︸ ︷︷ ︸

Single-channel WF

, (2.27d)

where the matrix identity (2.25) is applied in Eq. (2.27a), and CV V
−1 is moved

outside the brackets in Eq. (2.27b). In Eq. (2.27c), we use that dHCV V
−1d is a

real-valued scalar. Thus the optimal filter can be factorized into a MVDR part and
a single-channel MWF.

1This is a special case of the Woodbury matrix identity.
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2.2 Estimating the Necessary Signal Statistics
In the preceding sections, we arrived at optimal solutions to the noise reduction
problem which depend on estimates of the speech- and noise covariances. Since the
speech and noise signals are not known in isolated forms, obtaining accurate esti-
mates of these covariances can be difficult. Furthermore, we are generally limited to
just a single realization of the noisy process.

In order to estimate the covariance matrix of e.g. the noise, we need a method of
obtaining samples hereof. In the observation model (1.7), noise is always assumed
present. Speech, on the other hand, contains natural pauses in which only the noise
term V (k, l) is observed, i.e. Y (k, l) = V (k, l). Hence by identifying the time-
frequency units of noise-only, samples of V (k, l) can be obtained in isolation. Using
these samples, CV V (k, l) can be estimated by e.g. the sample covariance [63]

ĈV V (k, l) = 1
Card(L)

∑
`∈L
Y (k, `)Y H(k, `), (2.28)

where ` ∈ L denotes the time frames containing noise-only and Card(L) is the car-
dinality of this set.

The speech-and-noise and noise-only time-frequency units can conveniently be speci-
fied using a mask defined as follows. Let Xm(k, l) and Vm(k, l) be defined as in (1.4),
where k = 0, 1, . . . ,K denotes frequency bin, l = 0, 1, . . . , L denotes time frame and
m ∈ {1, 2} denotes channel. The ideal binary mask (IBM) for the m’th channel is
defined as the K × L matrix whose entries are

IBM(k, l) =
{

1 if |Xm(k, l)| > τ |Vm(k, l)|
0 else

, (2.29)

where τ ∈ R+ is a threshold value. The threshold τ controls what constitutes a
speech-and-noise unit, for example, stetting τ high means only high SNR time-
frequency units are discarded for the purpose of estimating ĈV V (k, l). In com-
putational auditory scene analysis (CASA), a threshold corresponding to 0 dB (i.e.
τ = 1) is commonly used, however slightly higher or lower thresholds may also be
beneficial [42]. It should also be noted that the mask requires explicit knowledge
of Xm(k, l) and Vm(k, l), and must therefore be estimated. In Figure 2.1, a noisy
speech signal and an ideal binary mask is shown for τ = 1.

As the theoretical covariance matrix may change over time, the sample covariance
(2.28) relies on continuously being replenished with new samples to accurately track
changes. In order to do so, the estimate can be initialized using a handful of samples
and then be updated using an online estimation scheme as more observations become
available. One way of doing this is by using recursive smoothing

ĈV V (k, `+ 1) = νV ĈV V (k, `) + (1− νV )Y (k, `)Y H(k, `), (2.30)
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Figure 2.1: Example of a noisy speech signal (left) and the corresponding ideal binary mask (right).

where ` and ` + 1 denote consecutive noise-only units and νV ∈ [0, 1] is the forget-
ting factor associated with V [55, Sec. 1.3]. In a similar manner, ĈY Y (k, l) can be
estimated except Y (k, l) is always observed. Finally, a covariance matrix estimate
of X(k, l) is obtained as ĈXX(k, l) = ĈY Y (k, l)− ĈV V (k, l). Though, it should be
noted that during speech-and-noise, ĈV V (k, l) is not updated even though V (k, l) is
observed. This is a problem for noise with rapidly changing statistics, since ĈY Y (k, l)
may at times be estimated using past samples (say 100 ms ago). Because of this,
it is commonly assumed that the noise statistics are not changing too rapidly, such
that an estimate from the recent past still valid at the current time [25, Ch. 2].

The forgetting factor in (2.28) controls how fast the covariance matrix adapts to
changes and should be chosen carefully. On the one hand, it cannot be too small;
otherwise the estimate will then largely depend on the new samples, which may make
the estimate fluctuate a lot and possibly degrade the performance of the beamformer.
On the other hand, a very large factor makes the estimate incapable of tracking short-
term changes, which may also degrade performance [4, Sec. 7.4.2]. Different noise
types may also have different optimal parameter choices: for example, a stationary
noise type may require a very slow decay since the signal statistics are constant,
whereas highly non-stationary noise will require fast adaptation.

Experiments were carried out in order to select the forgetting factors, for which
νy = νv = 0.99 gave decent results in terms of the four objective performance mea-
sures (see Sec. 1.2). This corresponds to averaging the covariance matrices over

1
1−ν = 100 time frames, corresponding to 1.616 seconds. Inspired by [24, 43], we
choose a DFT size of of 512 samples for the STFT (corresponding to 32 ms of au-
dio) with 50% overlap between consecutive frames. On the one hand, a sufficiently
high frequency resolution is necessary to separate desired speech and noise. On the
other hand, a frequency resolution too high may degrade the reliability of the spatial
covariance matrix estimates, since it may take a long time before sufficiently many
observations of speech are observed [24]. Furthermore, the signal is downsampled
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to 16 kHz and a square-root Hann window is applied prior to transformation. In
Fig. 2.2, a noisy speech signal is enhanced using a MVDR and MWF beamformer.

Although better performance may be achieved using different pairs of forgetting
factors for each type of noise, it is beyond the scope of this thesis. Instead we
choose to determine a one-fits-all pair across multiple noise types and keep it fixed
for the remaining of the thesis. The results obtained using these forgetting factors
will therefore also serve as the theoretical upper limit of the full own-voice retrieval
system (assuming a perfectly estimated binary mask).
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Figure 2.2: Noisy speech signal enhancement using the MVDR (bottom left) and MWF (bottom
right) beamformer with νy = νv = 0.99. The signals are synthesized according to App. A.1.





Chapter 3

Deep Neural Networks

The beamformers derived in the previous chapter depend on accurate signal statistics
estimates, and in order to obtain these, a machine learning model is employed. The
purpose of the model is not to estimate these statistics directly, but rather to learn
the complicated mapping between noisy time-frequency representations and the cor-
responding ideal binary masks (see Eq. (2.29)). The entries of the estimated mask
can be interpreted as the posterior probability of a given time-frequency tile being
speech-dominated. Using this information, the desired covariance matrices required
for beamforming can be computed.

The goal of this chapter is to design a deep neural network capable of estimating
the desired ideal binary mask, which will be used as part of the full system in the
proceeding chapters. Before presenting the proposed model, we briefly summarize
relevant theory regarding deep neural networks and training hereof. For a more in-
depth cover of deep learning and practical methodology, the reader is referred to [19].

The chapter is structured as follows: In Sec. 3.1, a brief introduction to deep neural
networks are given. In Sec. 3.2 we motive and discuss the design choices of the
proposed model. Lastly, we carry out experiments for hyperparameter optimization
and model selection.

3.1 Deep Neural Networks
When designing machine learning models, the goal is usually to approximate some
unknown function f∗. For example, in a classification problem, one seeks a function
f∗, which maps an input vector x ∈ Rd to a category y ∈ RK . Typically, the un-
known function is approximated using a parameterized model y = f(x;θ), where θ
is a vector of adjustable parameters belonging to some vector space Θ. The parame-
ters θ are then learned by the model through an iterative method using a pre-defined
set of input vectors x accompanied by the corresponding desired categories y. This
is typically accomplished using gradient descent via the back-propagation algorithm

19
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[8][60]. The procedure of inferring a mapping using labelled data is called supervised
learning [19, Ch. 6].

The type of parametric models considered in this thesis are called deep feedforward
networks. These are composed of a chain of functions f (j), called layers, which
themselves may consist of multiple functions. For a network consisting of J layers,
we have

f(x;θ) = f (J)(f (J−1)(. . . (f (1)(x))), 1 ≤ j ≤ J, (3.1)

where f (j) : RKj−1 → RKj and K1,K2, . . . ,KJ−1 are the dimensions of the so-called
hidden layers [8]. A common layer consists of an affine linear transformation followed
by a non-linear transformation (which operates component-wise)

f (j)(x(j−1)) = h(j)
(
W (j)>x(j−1) + b(j)

)
, (3.2)

where W (j) ∈ RKj−1×KJ and b(j) ∈ RKj are the parameters, h(j) : RKj → RKj

denotes a non-linear transformation (called an activation function), x(j−1) is the
output of the previous layer and superscript (j) denotes affiliation with layer j. The
role of the activation function is to introduce non-linearity in the model, which en-
ables learning of more complex functions. Common choices are sigmoidal functions
or variants of the rectified linear unit (ReLU) [7, Ch. 5][8].

Feedforward refers to the uni-directional flow of information; x is propagated through
the network from the first layer to the last. The number of layers J is referred to
as the depth of the model, and models with more than a few layers are called deep
learning models. The mapping (3.1) can conveniently be represented as a weighted
acyclic directed graph (see Fig. 3.1). Specifically, instead of thinking of a layer as
representing a single vector-to-vector mapping, it can be thought of as consisting
of many nodes (also called neurons), each representing a vector-to-scalar function,
that acts in parallel [19, Ch. 5]. Each node is interconnected only with nodes in the
adjacent layers. For example, the nodes in (3.2) each compute

x
(j)
k = h(j)

Kj−1∑
i

w
(j)
ki x

(j−1)
i + b

(j)
k

 , k = 0, 1, . . . ,Kj , (3.3)

where i = 0, 1, . . . ,Kj−1 is the number of in-going connections to the k’th node in
layer j.

3.1.1 Learning From Data

When fitting the model to data, we seek to approximate f∗ by essentially providing
the model with function values of f∗ evaluated at discrete training points. That is,
for each vector xn in a training dataset of N feature-label pairs, X = {(xn,yn)}Nn=1,
the model is optimized to match the corresponding label yn ≈ f(xn;θ) by tuning the
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Figure 3.1: Feedforward neural network represented as an acyclic directed graph with nodes ar-
ranged in hierarchical layers. (green) input layer, (yellow) hidden layers, (blue) output layer.

parameters θ [19, Ch. 6]. A loss function is used to measure the disparity between
the network predictions and the labels, which typically is used to guide a gradient-
based optimization algorithm. For binary classification tasks, a popular loss function
is the binary cross-entropy [7, Ch. 4] defined as follows

J(θ) = − 1
N

N∑
n=1

yn logx(J)
n + (1− yn) log(1− x(J)

n ). (3.4)

where x(J)
n is the network prediction and yn is a vector encoding the true label. The

training loss is defined as the average of the losses (3.4) computed over the entirety
of the training dataset. Although being the primary measure of how well the model
fits the data, the training loss is a bad indicator of true model performance, since it
can be made arbitrarily small by allowing the model to essentially “memorize” the
dataset. This is the extreme case of the concept known as overfitting. Instead, the
learned model should be evaluated based on performance on unseen data, since this
resembles how the model performs when deployed in the real world. For this reason,
an additional testing dataset can be introduced for the sole purpose of evaluating the
learned model. Here, it is particularly important that the disjoint test set is not used
in any way to infer the hyperparameters. Alternatively, a third validation dataset
can be introduced for the purpose of choosing hyperparameters or deciding between
trained models. This is to ensure that the testing set is disjoint from the training set
to better represent an accurate estimate of performance on unseen data [19, Ch. 5].
In the remaining chapters, special attention will be made paid to ensure overfitting
does not occur.

Deep learning models belong to a class of methods called representative learning
methods. These methods are able to learn the discriminative representations re-
quired for e.g. classification from raw data. In contrast to conventional machine
learning models, which often require hand-crafted features, much of the feature ex-
traction stage is incorporated into the model, where the relevant transforms are
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learned by the layers. As the number of layers increase, so does the abstraction level
of the later layers, which more selectively can amplify the discriminative aspects
while suppressing irrelevant information [41]. Although circumventing the need for
carefully designed features is convenient, domain knowledge can still be applied to
potentially accelerate learning by using relevant pre-processing transforms on the
input. For example, DNNs operating on time-frequency domain features have been
shown to outperform similar networks operating on time-domain features [26][75].

Neural networks have remarkable modelling capabilities. In fact, several theorems
exist stating that even two-layer neural networks can approximate a variety of func-
tion classes arbitrarily well [13, 30]. For this reason, they are often coined the term
universal approximators [7] and make a compelling choice for solving the problem of
mapping time-frequency representations of noisy speech to the corresponding ideal
binary masks. In the following section, we introduce a special class of feed-forward
neural networks.

3.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized type of neural networks
which utilize the convolution operator in at least one of their layers [19, Ch. 9]. They
were originally proposed to overcome some of the limitations of fully-connected DNNs
when dealing with image data, such as the topology of the input data not being uti-
lized and no built-in invariance in respect to translations or local distortions of the
input data [39]. In addition to image data, CNNs are also commonly used for other
types of data having a known grid-like topology, for example time series [11] or
spectral representations of speech [75]. In this section we specifically focus on two-
dimensional spectrogram data, although similar formulations exist for data of other
dimensions.

In a CNN, the neurons are arranged into feature maps in which the neurons share the
same parameters. Instead of being fully-connected, each neuron is connected only to
a small neighbourhood of the previous layer, named the receptive field of the neuron.
The neurons in a feature map all perform the same operation on the layer input:
a convolution between a learned kernel and their respective receptive field. This is
done by essentially shifting a small context window sequentially over the input data,
thereby computing a set of outputs. The local connectivity of the neurons is one of
the key features in obtaining shift-invariance of recognizable patterns. For example,
may be desirable to recognize a certain energy pattern in a spectrogram regardless
of its position in time. By using local receptive fields, the neurons learn to detect
low-level features, and by shifting the kernel across the input data, features are de-
tected regardless of position [39, Sec. 2][71].
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Following the notation of (3.3), the neurons in a feature map each compute

x(j)
p,q = h(j)

(∑
u

∑
v

w
(j)
p+u,q+vx

(j−1)
p,q

)
, (3.5)

where x(j)
p,q is the p, q’th output of the j’th layer [19, Ch. 9]. Note that there are differ-

ent ways of handling the convolutions near the edges of the input data. For example,
one can choose to exclude the neurons (3.5) which use invalid indices in the summa-
tions. This leads to a reduction in dimensions for the resulting feature map. Another
way is to zero-pad the input data accordingly, such that the dimensions are preserved.

Convolutional layers sometimes also contain pooling operations, which can further
reduce the dimensions of the internal representations. Pooling serves to reduce the
dimensions of the feature maps by combining multiple outputs from a region into a
single output. Other than downsampling the input data, the pooling layer further
promotes invariance to small shifts and distortions. This invariance is particularly
useful in image recognition, where the position of a detected feature is important
only in relation to other features and not in the image as a whole [39, Sec. 2]. For
more on pooling, see [19, Ch. 9].

We end this section with some common practices regarding convolutional layers.
Since each kernel can be interpreted as a feature extractor, it is common to use mul-
tiple kernels in each convolutional layer, resulting in collections of two-dimensional
feature maps [7, Sec. 5.5]. Furthermore, due to small receptive fields, an overview of
the entire input data is lost. This may complicate learning of higher-level features
over larger regions. A common way to prevent this is by sequentially stacking mul-
tiple convolutional layers, such that the effective receptive fields of the neurons are
progressively increased. Finally, convolutional layers are commonly placed earlier
in the chain of transformations to act as feature extractors for e.g. fully-connected
layers deeper into the network. In the following section, we motivate and discuss the
use of CNNs for solving the problem at hand.

3.2 Model Design Choices
In order to successfully apply the beamformers for own-voice retrieval introduced in
the previous chapter, we need a classifier capable of discriminating between target
speech-dominated and noise-dominated time-frequency units. We choose to employ
a CNN, which is a suitable model for numerous reasons:

• CNNs are representative learning methods [41], which are capable of learning
discriminative features of complicated signals such as speech.

• Parameter-sharing means a smaller memory footprint, which is desirable for
worn devices like hearing aids.
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• Time-frequency representations of speech tend to have a strong local structure,
where coefficients are highly correlated with the adjacent coefficients.

• CNNs are robust to translations of the input, which aids generalization across
different speakers and speaking-styles.

Other reasonable choices of machine learning models include recurrent neural net-
works (RNN). These models are designed to process sequential data and capture
temporal context [19, Ch. 10], and since audio is inherently serial these could be very
valuable in modelling longer temporal dependencies. One variant of RNNs in partic-
ular, the bi-directional long short-term memory (BLSTM) network, has successfully
been applied to solve various speech enhancement tasks [17, 27, 64]. In future work,
the use of RNNs or perhaps a combined CNN/RNN approach utilizing the advantage
of both models could be investigated.

The remaining of this chapter covers the design and hyperparameter optimization
of the proposed CNN. As more layers are added to the network, the hyperparam-
eter search space quickly becomes too vast for exhaustive searches to be practical.
Therefore we choose to only investigate certain hyperparameters, while the remain-
ing are chosen based on presumptions or preliminary experiments not reported here.
In the following sections we discuss and motivate some of these presumptions, while
experiments are conducted in Sec. 3.3.

Network Input and Training Targets

Although there exists many high-level acoustic features showing superior performance
in various audio processing tasks [75], we choose to simply use the log-magnitude
STFT coefficients as input to the CNN. The reason for this is three-fold: First of all,
the beamformer operates in the time-frequency domain. Thus using non-invertible
transformations like e.g. mel-frequency transformations would require a problematic
inverse transformation - either learned internally in the trained network or as a post-
processing step - in order for the estimated mask to be usable. Secondly, we expect
the CNN to be capable of learning the relevant representations itself which are needed
for discrimination. Finally, it should also be noted that magnitude spectrograms do
not carry phase information. And although phase potentially is a discriminative
feature, the structure in phase spectrograms is less clear than that of log-magnitude
spectrograms (see Fig. 3.2). Therefore, we presume it is difficult for the network
to learn discriminative features from operating directly on the phase spectrograms.
The purpose of the logarithm is to compress the amplitudes, which serves to partially
equalize the importance of loud and quieter sounds. For these reasons we choose the
commonly used and perceptually motivated log-magnitude spectrograms.

Since speech signals are inherently serial, knowledge of past observations can aid
the prediction of the future due to short-term correlations. In order to incorporate
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Figure 3.2: Magnitude and phase spectrograms of an utterance. The structure in the phase
spectrogram may seem less obvious.

temporal context in the model, the input will consist of multiple consecutive time-
frequency frames. The number of time frames is specified by the parameter lcontext,
which is named the context window. To reduce the algorithmic delay and enable
online processing, the ideal mask is estimated for one time frame at a time. This
means that the binary mask of frame index l is estimated using the matrix

Y (l) = [Y (l − lcontext − 1),Y (l − lcontext − 2), . . . ,Y (l)] ∈ CK×lcontext , (3.6)

where
Y (l) = [Y (K, l), Y (K − 1, l), . . . , Y (0, l)]> ∈ CK ,

omitting the logarithm and magnitude for a moment. Future frames can also be
used, however doing so will introduce a delay in the system for it to remain causal.
Specifically for hearing assistive devices, delays exceeding 20−30 ms were found to be
disruptive or disturbing due to asynchronicity in the sensory stimuli [66] (e.g. a per-
ceptually noticeable delay between the aid-conducted sound and the bone-conducted
sound or the visual stimuli). In an attempt to keep the delay low, the temporal con-
text will solely consist of past frames. In literature [28, 43, 50], a temporal context of
100−700 ms has commonly been used, and inspired by this we set lcontext = 7 context
frames, which corresponds to 128 ms of audio. In Figure 3.3, a context window is
depicted.

In order to make the CNN fully utilize the microphone array, we need a way of in-
corporating the information from the secondary microphone in the mask estimation
process. One way of doing this is by processing the channels jointly by expanding
the dimensions of the input - similar to how color channels are stacked in image data.
Alternatively, the channels can be processed separately using a generic network, re-
sulting in M masks for M channels. The masks can then be combined into a single
mask using e.g. the mean or median operator, as was proposed in [27]. Since we
only consider M = 2 channels, we choose to explore methods of jointly processing
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Context window

�(�)

Figure 3.3: The input of the CNN consists of a concatenation of the current frame with lcontext
past frames, resulting in a K × lcontext matrix. In the figure, l = 7 and lcontext = 7.

the channels.

Three sets of input features of increasing sizes are compared. The first set consists
of the reference channel only, and serves as a computationally lighter set. On a
hearing aid, the reference microphone is likely to be the frontmost microphone, which
has the shortest distance to the mouth and thus has the highest SNR. Thus spatial
information is completely disregarded, which effectively makes the network monaural.
In the second feature set, the secondary channel is included by stacking the channels
along a third dimension. The inclusion of the secondary channel is expected to
improve performance, but comes at the cost of increasing the number of required
computations in the input layer. The final feature set was proposed in [68] as a way
to incorporate phase correlations between the channels without explicitly passing the
phase information. With a slight abuse of notation, let |Y m(l)| denote a magnitude
spectrum excerpt of the m’th channel, as defined in (3.3). The authors suggested
using the magnitude spectra of the channels (i.e. |Y 1(l)| and |Y 2(l)|) combined
with the magnitude sum and difference of the channel spectra (i.e. |Y 1(l)+Y 2(l)|
and |Y 1(l)-Y 2(l)|). These spectra are then stacked to what essentially becomes
a four-channel input. In Sec. 3.3, experiments are carried out to determine the
potential performance increase in relation to the computational requirements of the
three feature sets.
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3.2.1 Choosing an Architecture

The proposed network is depicted in Fig. 3.4 and will consist of a number of con-
volutional layers (see Eq. (3.5)), followed by a number of fully-connected layers (see
Eq. (3.3)). Here, the convolutional blocks are meant as feature extractors, whereas
the fully-connected block acts as the classifier. Unless otherwise stated, the convolu-
tional operations are sufficiently zero-padded at the edges such that the dimensions
of the input is preserved.

Although pooling layers are a fundamental part of CNNs [41], they were not im-
proving performance of the network configurations considered in this study. For this
reason pooling is not used.

Convolutional layers Fully-connected layers T-F MaskStackingInput

Time

Fr
eq

ue
nc

y

Feature maps

Figure 3.4: An overview of the proposed architecture.

Activation Functions and Optimization Algorithms

Variants of the rectified linear unit (ReLU) activation functions have risen in popu-
larity in the recent years to the point where the use of sigmoidal functions is almost
obsolete [19]. The authors in [32] found that the use of rectified activation functions
is the single most important factor for improving accuracy in classification tasks. For
these reasons, we choose to use the ReLU activation functions in the hidden layers,
but choose to use a sigmoid function in the output layer to bound the prediction to
the interval [0, 1].

Regarding optimization algorithms, preliminary experiments were carried out using
various set of parameters for the algorithms: Adam [34], stochastic gradient descent
[58] and Adadelta [80]. Among the three, Adam led to the highest network accura-
cies in about half the convergence time of the other two algorithms. For this reason,
Adam is chosen as the optimization algorithm in the remaining sections.
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Regularization

To improve the generalization capabilities of the network, we will utilize dropout
during training [29]. Dropout introduces perturbations to the network by randomly
excluding a certain percentage of the network for each training example. By doing
so, complex co-adaptations are prevented from being learned, where some neurons
are only helpful in the context of certain other neurons. Instead, each neuron learns
to detect a feature which is more generally helpful for producing the correct answer.
Dropout has been shown to significantly reduce overfitting on smaller datasets and
improve performance in a variety of supervised learning tasks [29].

Another recently proposed method is batch normalization [31]. Batch normalization
can be employed to mitigate changes in the input distributions to the individual
layers as learning takes place. Specifically, as parameters change in a layer, so will
the input distributions of the preceding layers. This change in distribution presents
a problem because the layers need to adapt to continuously changing distributions
[31]. In order to mitigate this, it is proposed to normalize the propagated data vector
before each non-linearity using running estimates of the mean and standard devia-
tion of the input distribution in each layer. In addition to normalization, an affine
transformation with learned parameters is applied subsequently to ensure that the
inserted transformations can represent the identity transform (i.e. the normalization
operation can be inverted if needed).

Batch normalization has been shown to largely improve training speed by allowing
higher learning rates, and in some cases also improved performance [31]. For these
reasons, we choose to utilize batch normalization.

3.2.2 Selecting a Kernel Size

In image processing literature [81], small and square kernels are commonly used (e.g.
3 × 3 or 5 × 5) with the intention that the first convolutional layers should learn
low-level features like edges and corners. The kernels are symmetric, because the
axes represent similar things (i.e. position).

However, convolutional layers designed to extract relevant features for image pro-
cessing may not transfer well to other types of data, such as audio spectrograms. In
fact, the design choices are suboptimal for a couple of reasons:

Different Meaning of Axes

For regular images, the kernel dimensions carry the same meaning. The same is not
true for spectrograms, where the axes represent time and frequency. Thus there is
little reason to believe that symmetric kernels of small dimensions are well-suited for
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time-frequency representations of audio. For example, wider kernels are capable of
learning longer temporal dependencies, since more temporal information is available.
And on the other hand, using taller kernels may better capture spectral patterns
of speech [53, 54]. In the extreme cases, one may choose to do one-dimensional
convolutions only, e.g. only along the time axis. Note that although a convolutional
layer is incapable of learning frequency dependencies this way, layers deeper in the
network are still capable of this by combining outputs from the neurons. Accordingly,
non-symmetric kernel shapes are included in the search space when optimizing kernel
sizes.

Sounds Are Transparent

Most pixels in image data can be attributed to a single object. In spectrograms,
however, each coefficient represents the sum of energy at that specific time and fre-
quency. Hence multiple audio sources may contribute to a single energy density and
we only observe the accumulated effect, including any phase cancellations that might
occur. Due to this, it may be difficult to accurately detect and discriminate between
audio sources occupying the same time-frequency tiles. Furthermore, many sources
of audio encountered in the real world are wideband, meaning that the signal energy
is distributed over a large range of frequencies. For example, the harmonics of voiced
speech are regularly spaced in frequency. And as a sound is raised in pitch, not only
are the harmonics shifted in frequency, but so is the spatial extend [59, 79]. In or-
der to better handle these issues, we choose to explore network architectures having
several convolutional layers with larger kernels and many feature maps.

3.3 Hyperparameter Experiments
In this section, experiments are carried out for optimizing the following hyperparam-
eters of the CNN: number of convolutional layers, size of convolutional kernels and
choice of input features. Performance will be assessed using the validation set error
as metric.

To speed up the parameter search, a reduced training set is considered, corresponding
to 90000 training examples or approximately 190 minutes. It is then presumed that
a well-performing network architecture found this way is going to perform similarly
when trained on the full dataset. This is assuming the architecture has the learning
capacity to accommodate the increased dataset size, such that the model does not
underfit.

The noisy speech signals are synthesized according to App. A.1. The training and
validation set are generated collectively and then split into the respective sets using a
87.5%-12.5% segmentation. The input features are generated by concatenating con-
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Num. of layers Validation loss Num. of parameters (M)

2 0.195 1.061
3 0.188 1.262
4 0.186 1.463
5 0.180 1.664
6 0.181 1.865
7 0.180 2.066

Table 3.1: Validation set error for various number of convolutional layers.

Height

Width 3 5 7 9 11

3 0.184 0.185 0.186 0.180 0.185
5 0.187 0.179 0.181 0.185 0.184
7 0.185 0.181 0.181 0.179 0.182

Table 3.2: Validation set error for various kernel sizes. The axes denote width (along the time
axis) and height (along the frequency axis).

secutive TF units according to (3.6) followed by taking the element-wise magnitude
and logarithm. Before applying the logarithm, a small constant is added to avoid
excessively small magnitudes.

The network is trained by minimizing the binary cross-entropy (see Eq. (3.4)) between
the network output and the ideal binary mask. Network training will be terminated
when the validation set error or starts to decline, known as early stopping. This is
implemented to prevent overfitting. Specifically, if the validation set error has not
improved in the ten most recent epochs, training stops and the model is rolled back
to the best performing epoch. Finally, the hyperparameter configuration resulting in
the lowest validation set error is selected as the final model.

In the first experiment, six networks are trained with increasing number of layers.
The results are shown in Table 3.1. To keep the memory requirements low, we choose
to use five convolutional layers. In this experiment, the kernel sizes of the convo-
lutional layers are determined. The experiment is motivated by the discussion in
Sec. 3.2.2. Note that since the input data consists of 7 time-frames, we do not inves-
tigate kernel sizes above 7 along the time axis. The results are shown in Table 3.2.
Here, the difference between the best performing kernel sizes are negligible (≤ 0.002),
hence we choose the smallest among these which is 5× 5. In the final experiment we
investigate different types of input feature sets. The results are shown in Table 3.3.
Here, ‘Ref channel only’ represents the monaural feature set, ‘Two-channel’ repre-
sents the two-channel feature set and ‘Two-channel + inter-channel’ represents the
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Type of input Validation loss FLOPS (G)

Ref. channel only 0.184 585.628
Two-channel 0.165 588.622
Two-channel + inter-channel 0.150 594.609

Table 3.3: Validation loss and floating-point operations per second (FLOPS) for three sets of input
features. The sets correspond to the ones discussed in Sec. 3.2.

four-channel set.

By examining Table 3.3, the validation loss improves considerably when introducing
the secondary channel, and a further reduction is seen when including the inter-
channel features. Furthermore, the increase in FLOPS by processing additional
channels is negligible (≈ 0.5% and ≈ 1.5% for the models, respectively). For these
reasons, we choose to use the four-channel feature set combining intra-channel and
inter-channel features. The proposed architecture is summarized in Table .3.4.
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Layer Configuration Output dimensions

Convolution 7× 7 @ 64 257× 7× 64
Batch Normalization
ReLU

Convolution 7× 7 @ 64 257× 7× 64
Batch Normalization
ReLU

Convolution 7× 7 @ 64 257× 7× 64
Batch Normalization
ReLU

Convolution 7× 7 @ 64 257× 7× 64
Batch Normalization
ReLU

Convolution 7× 7 @ 64 257× 7× 64
Batch Normalization
ReLU

Frame stacking 1799

Fully-connected 1799 units 512
ReLU

Fully-connected 512 units 257
Sigmoid

Table 3.4: Architecture of the proposed CNN. Dropout is applied to all hidden layers with a
probability of 0.3.



Chapter 4

System Evaluation and Results

In this chapter, numerical experiments are conducted to evaluate the system perfor-
mance. First, an analysis of the classification capabilities of the proposed CNN is
given. Then the full own-voice retrieval system is assessed and results are presented.

4.1 Receiver Operating Characteristic Analysis
Although the target mask is binary, the output of the DNN will be a soft mask
consisting of numeric values in the range of [0, 1]. The entries of this mask can
be interpreted as specifying to which degree each TF unit is speech-dominated - as
deemed by the classifier. In order to map these values to decisions (i.e. whether
to update the noise covariance matrix or not), we need to specify what comprises a
speech-dominated and noise-dominated unit. Assuming the classifier is more likely to
assign high values to speech-dominated units than noise-dominated units, a cut-off
value c ∈ [0, 1] can be defined to determine a decision rule as follows: units with
values below c are predicted as being noise-dominated, and units with values above
c are predicted as being speech-dominated. Selecting a cut-off value is a trade-off:
setting c too small increases the rate of correctly classifying speech-dominated time-
frequency units, while decreasing the rate of correctly classifying noise-dominated
units. Setting c too large accomplishes the opposite. These quantities are often
called the true positive rate (TPR) and true negative rate (TNR). Ideally, the cut-off
value is optimal in some sense, e.g. it maximizes the rate of successful classification.

A receiver operating characteristic (ROC) curve is a two-dimensional depiction of
classifier performance, in which the true positive rate (TPR) is plotted as a function
of the false positive rate (FPR). The FPR represents the ratio of correctly classified
negative (i.e. noise-dominated) TF units to the total number of TF units [69]. The
ROC curve depicts the relative trade-off between true positives and false positives.
AUC refers to the area under the curve, a statistic commonly used for summarizing
ROC curves[69]. The ROC curve for the proposed DNN is shown in Fig. 4.1.

33
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Figure 4.1: Receiver operating characteristic (ROC) curve of the DNN. The dashed red line is the
chance line where tpr = fpr.

If the cost of wrongly classifying speech- and noise-dominated units is known, as
well as the prevalence of either case, a cost function can be formulated, from which
a statistical optimal cutoff value can be determined [69]. The cost and prevalence
quantities are, however, unknown and are beyond the scope of this thesis. Instead,
what is commonly done [51] is to maximize Youden’s J statistic defined as

J = max
c

TPR + TNR− 1. (4.1)

This equates to J = 0.409, hence c = 0.409 is chosen for the remaining of this
chapter.

4.2 System Evaluation
In this section the performance of the full own-voice retrieval system is assessed using
the performance measures described in Sec. 1.2. An overview of the system is shown
in Figure 4.2.

It should be noted that the amount of information retained in the IBM is dependent
on the SNR of the mixture. For example, a mixture with very low SNR will have
few time-frequency tiles with desirable local SNRs, whereas a high SNR mixture will
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primarily consist of speech-dominated time-frequency tiles. Because of this, the LC
should be chosen in relation to the SNR. In [35], it is instead suggested to use the
relative criterion, defined as the difference between the LC and SNR, which makes
the IBM invariant to changes in SNR. Inspired by this, we choose a relative criterion
of - 3 dB in order to preserve additional speech information.

Figure 4.2: System overview. Noisy observations are STFT-transformed and features are extracted.
From these, a CNN estimated the IBM, which in turn is used to update the covariance matrix
estimates. A beamformer solution is then computed and applied, and the filtered signal is inverse
STFT-transformed using the noisy phase.

Performance across noise types

As a first step, we examine performance across the noise types described in App. A.1.
The results are shown in Fig. 4.3 and 4.4 for the MVDR and MWF beamformer, re-
spectively. Comparing Fig. 4.3 with Fig. 4.4, it is seen that the oracle MVDR
beamformer achieves a considerably higher PESQ score across all noise types. The
oracle MWF beamformer, however, achieves a much higher Seg-SNR. When exam-
ining the performance of the estimated mask, it is seen that the MVDR beamformer
improves the scores for PESQ, STOI and ESTOI across all noise types, except for ssn
which remains mostly unaltered. The same is not true for the MWF beamformer,
where STOI and ESTOI scores are worse than the unprocessed signal, and scores are
mostly unaltered for ssn and str. Additionally, the PESQ score remains the same
for bus and ped. Ignoring Seg-SNR for a moment, the largest improvements are seen
in ESTOI and PESQ for bbl and caf.

Performance across SNRs

Next, we examine performance across SNRs. The results are shown in Fig. 4.5 and
4.6. Looking at PESQ first, neither beamformer are capable of matching the ora-
cle performance for high SNR. Additionally, slightly higher PESQ score is achieved
by the MVDR beamformer. Regarding STOI and ESTOI, the MVDR bemformer
achieves scores near that of the oracle MVDR. The MWF, on the other hand, only
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Figure 4.3: Results for full system using MVDR for various noise types.
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Figure 4.4: Results for full system using MWF for various noise types.

performs well in low SNRs, and degrades the signals below the score of the un-
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processed signals for high SNRs. Finally, the Seg-SNR only improves in low SNRs
and falls below the unprocessed Seg-SNR for high SNR. Specifically for the MWF
beamformer, the Seg-SNR seems constant across SNRs.
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Figure 4.5: Results for full system using MVDR for various SNRs.
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Figure 4.6: Results for full system using MWF for various SNRs.



Conclusion

In this thesis, a deep learning-based beamformer has been implemented and evalu-
ated for own-voice retrieval in additive background noise. The core of the own-voice
retrieval system is the beamforming system, which relies on accurate estimates of
the spatial covariance matrices of the noise and own-voice signals. Inspired by the
recent success of RNNs and CNNs in estimating ideal masks, a CNN is employed to
estimate the ideal binary mask from noisy time-frequency features, which in turn is
used in the computation and continually tracking of the signal statistics required for
beamforming. We show that the MVDR and MWF beamformer depend solely on
the spatial covariance matrices.

Although a monaural CNN is capable of estimating ideal binary masks, the inclusion
of the secondary channel improved performance considerably. Additionally, when
including inter-channel features, further improvement was seen. This indicates that
the CNN is capable of utilizing multi-channel input for more accurate estimation.

The results show considerable improvements in terms of PESQ, STOI and ESTOI
for selected noise types. The challenging noise types were babble noise and diffuse
speech-shaped noise. Even for low SNRs (-3 to 0 dB) there were substantial improve-
ments. For high SNRs (6 to 9dB), the gains were smaller. Comparing the MWF and
MVDR beamformer, the MVDR came out ahead as being more robust to noise type
and SNR.

Part of the goal was to find a memory- and computationally efficient method, which
can be implemented on future embedded systems such as hearing aids. Arguably,
the CNN is quite inefficient with 1.371 million parameters and 594.608 MFLOPS
compared to other non-deep learning approaches. However, with the increasing com-
putational capabilities of hearing assistive devices, the use of CNNs may be feasible
solutions in the future.

As future work, one could explore methods for reducing the memory and computa-
tional requirements by e.g. exploring shallow architectures. Additionally, since the
majority of the parameters are occupying the fully-connected layers, methods such as
parameter pruning can potentially reduce the model size tremendously by removing
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unimportant parameters. For example, [70] reported a 94.72% reduction in model
size for a generic three-layer DNN trained to classify the MNIST [40] dataset before
the accuracy drops below 1%.
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Appendix A

Acoustic Environment
Simulation

In this chapter, the data generation process is described for simulating acoustic
environments and generating datasets.

A.1 Signal Generation
In order to train a CNN and subsequently assess the performance of the own-voice
retrieval system, a large amount of noisy speech signals is needed. These signals are
generated by summing randomly selected waveforms from two data sets containing
clean speech and noise. Following the observation model in (1.1), let the own-voice
speech and noise sequences of the m’th channel be denoted by sm[n] and wm[n],
respectively. To simulate the setup depicted in Figure 1.1, the sequences are con-
volved using two sets of impulse responses. The first set contains the head-related
impulse responses (HRIR), each describing the acoustic path between a fixed point
in space and one of the two microphones on a HA. These impulse responses are
measured using a circular array of 16 loudspeakers, which are placed equidistantly
spaced around a real person with a diameter of 3 meters at eye-height. The other set
contains the own-voice impulse responses (OVIR), which describe the acoustic path
between the HA-wearer’s own voice and one of the microphones on a HA. Both sets
were measured in a listening room. By letting hHRIR

m denote the HRIR and hOVIR
m

denote the OVIR mentioned impulse responses, respectively, the noisy observations
ym[n] are constructed as

ym[n] = s[n] ∗ hOVIR
m [n] +

∑
w

[n] ∗ hHRIR
m [n]

= xm[n] + vm[n], (A.1)

where m ∈ N denotes channel. By comparing the power of each sequence in (A.1), a
gain g ∈ R can be introduced to appropriately scale one of the sequences to simulate
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a desired SNR situation, that is

g(SNRdB) =
√

10
−SNRdB

10
σx
σv
, (A.2)

where σx and σv denote the variances of xm[n] and vm[n], respectively. The signal
generation is depicted in Figure A.1.

OVIR

ΣHRIR

SNR

Noise signal

Speech signal

v[n]

x[n]

y[n]

Figure A.1: Generation of noisy speech signals by scaling and summing the waveforms of the
convolved noise and speech sequences.

Speech data

The speech data used for training and testing is extracted from the TIMIT speech
corpus [61]. TIMIT contains 630 different readers of eight major dialects of American
English, each reading ten phonetically rich sentences. The dataset is not gender-
balanced, being 70% male readers and 30 % female. For training and validation, the
predefined TRAIN subset will be used. For testing, the DR1 dialect of the TEST will
be used with a total duration of 259 seconds.

Noise data

Six different noise types are considered: on the bus (bus), cafeteria (caf), street
junction (str) and pedestrian area (ped) from the CHiME3 dataset [2], together with
speech shaped noise (ssn) from [36] and babble (bbl) noise generated by the author.
The total duration of the signals is 270 minutes, from which 12 minutes are kept
separate for testing purposes only. The noise types was chosen to cover a range of
acoustic environments a HA wearer might be situated in.

A.2 Simulating Acoustic Environments

In [49] it was shown that the performance of the MVDR beamformer strongly de-
pends on the incident angle of the desired source. For diffuse noise, it achieves the
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optimal SNR gain in the endfire direction, whereas for point-source noise the per-
formance depends on the angular separation between the point noise and desired
source. This suggests that the simulated data should reflect different real-world sce-
narios with many different direction of arrivals.

The simulation of a noise point source is straight-forward from (A.1), where hHRIR
m

represents the impulse response from a single point in space to the m’th micro-
phone. However, real-world acoustic environments rarely consist of just a single
point source, but rather the cumulative effect of multiple sources impinging from
different directions. In an attempt to accurately simulate this, vm[n] is modelled as
a sum of multiple noise signals convolved with differently located HRIRs in space.
Specifically, we model the six noise types in one of three ways. Speech-shaped noise
(ssn) is modelled as a diffuse sound field, where a number of HRIRs equidistantly
spaced on the circular speaker array are convolved with different realizations of the
speech-shaped noise. Babble (bbl) noise is simulated as the sum of utterances from
ten unique readers the TRAIN subset, each being convolved with a randomly chosen
HRIR. Finally, the noise data from the CHiME3 dataset is modelled as a wavefront
impinging the microphone array from a randomly chosen direction. Starting as the
contribution of a single HRIR, the wavefront is simulated by including the contribu-
tion from nearby HRIRs as the wavefront passes the points from which the HRIRs
were measured from. The contributions are synced in time by computing the delay
in samples between the HRIRs, assuming the speed of sound is 314 m/s. When
the wavefront reaches the microphone array, the remaining HRIRs are skipped. The
concept is illustrated in Fig. A.2
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� = 0

� = 1

� = 2

Delay	in	samples

Wavefront

Figure A.2: A wavefront impinges from a randomly chosen direction. At t = 0, vm[n] consists of
a single HRIR (marked with green) convolved with a single noise signal. At t = 1, the simulated
wavefront passes two additional HRIRs, hence vm[n] is computed as the sum of three HRIRs and
noise signals, which have been delayed accordingly. HRIRs marked with red are not used.
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