

Semester: ICTE4

Title: Electric car fleet prediction by means of machine
learning

Project Period: 01.09.2018 – 06.06.2019

Semester Theme:
Master thesis

Supervisor(s):
Niels Koefoed
Knud Erik Skouby

Project group no.: 34SER L1

Members
(do not write CPR.nr.):

Laurentiu Narcis Zait
(20147152)

Pages: 54
Finished: 05.05.2019

Abstract:

Electric car rental companies print out
every morning a list of cars that need to be
put to recharge.
As a starting point, the prototype will
present the user with the shortest route
between the cars. This opens up the
discussion about graph theory, or to rely
on 3rd party services such as Google Maps.
On top of this route, the geographical
location of each electric charger will be
added to the route generating algorithm.
This might change the order of the cars the
person has to visit.
By adding additional data and using
machine learning on statistical data, the
prototype will try to predict where there is
a need for a rental car (which geographical
area would make more sense to place the
cars). Indirectly this could help the
company increase its revenue.
The project's prototype will be not a
consumer facing product, but a product to
be used inside a company.

Aalborg University Copenhagen
A.C. Meyers Vænge 15
2450 København SV

Secretary: Maiken Keller

All group member are collectively responsible for the content of the project report.
Furthermore, each group member is liable for that there is no plagiarism in the report.
Remember to accept the statement of truth when uploading the project to Digital
Exam

ELECTRIC CAR FLEET
PREDICTION BY MEANS OF

MACHINE LEARNING

Laurentiu Narcis Zait
Student nr. 20147152

Vapor server live link: https://driveg.vapor.cloud

Vapor server repo: https://github.com/narciszait/driveGreen
Phase 1 repo: https://github.com/narciszait/driveGreen_iOS_phase1
Phase 2 repo: https://github.com/narciszait/driveGreen_iOS_phase2
Phase 3 repo: https://github.com/narciszait/driveGreen_iOS_phase3

1. Introduction __ 1

2. Problem formulation ___ 3

Delimitations __ 3

3. Methodology ___ 4

4. State of the Art ___ 5

Graph Theory __ 5
Shortest Path __ 11
Dijkstra’s Algorithm ___ 12

Machine Learning Algorithms __ 13
Linear regression ___ 13
Logistic regression __ 14
Neural networks ___ 15

Machine learning software __ 16

5. Tools used __ 17

6. Generating data ___ 19

7. User Scenarios ___ 26

Scenario 1 - Phase 1 __ 26

Scenario 2 - Phase 2 __ 27

Scenario 3 - Phase 3 __ 27

Scenario 4 - Extras ___ 28

Scenario 5 - Other types of rentals __ 28

8. Requirements ___ 29

9. Development __ 31

Initial idea ___ 31

Server development ___ 32

Mobile application development ___ 33
Phase 1 __ 33
Phase 2 __ 38
Phase 3 __ 40

10. Security __ 40

The iOS application __ 42

Server security __ 44
SSL __ 44
Password Hashing __ 45
Token authentication ___ 45

11. Business model __ 47

12. Discussion & future improvements __ 50

13. Conclusion __ 52

14. Bibliography __ 54

 1

1. Introduction

This master thesis project has the intention of creating a prediction system for electric car rental

companies. The predictions will be focused around where the rental company should place their

cars to charge for maximum rental opportunity.

The whole project starts from the premise, that the cars transmit to a central location their

location, battery status and maybe other sensor readings (e.g. windshield cleaning liquid). Taken

this into consideration, the cars can be considered to belong to an Internet of Things scenario.

The way the cars report these readings is out of scope in this project. The cars could have their

own mobile data connection and communicate with the “home server” or the communication

could be done through the user application, in the background without the user knowing this.

 The project starts from the premise that electric car rental companies, such as DriveNow/Green

Mobility, print out every morning a list of cars that need to be put to charging. The company has

an employee (called jockey) assigned to a specific zone of the city, who will go to each car on his

list and drive them to the nearest electric charger. It is up to him to find the optimal route for him,

in order not to waste much time. Besides putting them to charge, the question that arises is

whether the charging location has enough user demand or does the jockey have to find a new

charging location with more user demand.

The aim of the project is to create a prototype of a service/platform offered to the above-

mentioned companies. It will not be a consumer facing product, but a product to be used inside

the company, enterprise application.

It will consist of a server, a machine learning service and a mobile application. Each night or at a

certain amount of time, the server would ask the DriveNow (as an example) server for the list of

addresses of the cars to be put to charge. The server retrieves that list and it will send it to the

machine learning service to have it sorted. The Machine Learning service will send it back to the

server, which will forward it to the mobile application, to be used by the employee.

 2

The employee has nothing else to do but follow the ordered list of cars and chargers presented to

him in the application.

To make things manageable and provide a structured approach to the problem, the prototype has

been split into 3 phases. This makes it much easier to tackle the problem at hand, and each

subsequent phase after phase I, builds on top of the previous one.

Phase I will contain an iOS application, where the employee has to log in to get the list of cars that

he needs to put to charge. After logging in, he will see the cars marked on a map and he will be

shown the shortest path for going through each car.

Phase II builds on top of Phase I and will add the location of the electric chargers to the map. The

route will contain the car locations and the charger locations. This will most likely change the

order the employee goes through each car.

Phase III will see the introduction of an extra property (an additional parameter) to the electric

chargers. This property will represent the number of users that have rented a car charging at that

charger. The property can be thought of representing how popular a charger is, better yet, the

popularity can be extended to a 2-3-4 hundred meter radius zone around the charger.

With this new popularity property, the aim is to create a prediction system, either powered by

manual calculations or by machine learning, to help by indicating to the jockey on where to put

the car to charger.

The underpinnings of the prediction system will be discussed throughout the report and what it

means to be powered by manual calculations or by machine learning.

 3

2. Problem formulation
 In order to better define the project’s goals, a problem formulation is to be made.

“How could an electric charger prediction system based on machine learning be a solution for

maximizing rental opportunities for an electric rental car fleet?”

Several sub questions have been devised to help answer the problem formulation:

• Why choose machine learning?

• What can be used instead of machine learning?

• What does “solution” refer to?

• What does “prediction system” mean?

The sub questions are meant to divide the main problem formulation into smaller chunks and will

be answered in subsequent chapters. By answering them, it will help create a better

understanding of the project and what it wants to achieve.

Delimitations

To better answer the problem formulation, project delimitations should be presented.

Since the prototype is intended to be used inside a company, the State of the Art chapter will not

contain any competitor application(s) analysis, that try to resolve the same problem. This is due to

the enterprise nature of the prototype, and because it is not a consumer facing product. Most

likely, similar applications are developed in-house, or under heavy NDA terms if made by outside

parties.

As it will be explained in the Generating data chapter, acquiring a valid dataset has turned out to

be a challenge that affected the development of the prototype. The outcome of this challenge is

discussed in the Development chapter.

 4

3. Methodology

The project started out with defining the idea and coming up with the problem formulation.

The next step taken was to start research. The research went into different directions: if there are

similar solutions in existence; research about machine learning service and machine learning

algorithms that could prove to be useful; research about datasets that could be used.

After the research was over, time was spent in two directions.

One direction was taken into writing drafts for the different chapters of the reports and then

finalizing them.

The other direction was taken into the development of the prototype. Time was spent sequentially

in generating the dataset, developing the iOS apps and the Vapor server.

For the project, there has been no user testing, focus groups conducted. Also no surveys were

conducted, due to the enterprise nature of the projects.

In the initial stage of the project, contact with an electric car rental company has been established.

An offer for collaboration has been given, but the company did not answer it. Upon subsequent

tries to reestablish dialogue, the company remained silent. If the collaboration succeeded, then

project would have had a different outcome for the prototype and a different conclusion of the

report.

The project adopted an agile approach throughout its evolution. Weekly or every two weeks

meetings have been arranged with the project supervisor, where chapter drafts and prototype

progress were presented. Feedback was given and taken notice of and the next chapter draft was

decided upon for the next meeting.

 5

4. State of the Art
As stated in the Delimitations subchapter, the project is an enterprise application and it has

proven hard to find equivalent projects out in the public. Therefore, the aim of the State of the Art

chapter is to present all the theories, algorithms and services that are going to be used in

developing this chapter.

Since Phases I and II deal with finding the shortest path possible for the employee to go through

each car and the pair of car-charger, graph theory, shortest path and Dijkstra’s algorithm are going

to be used.

Phase III has to do with predicting where to put the car to charge. This can be done with a hand

calculated linear regression, but it can also be optimized/automated by using machine learning.

The case for when to use manual calculation or when to use Machine Learning will be in a future

chapter. Machine learning is a very board subject and so, only a subpart of the algorithms used in

the field of machine learning will be discussed. Also, different machine learning services will be

brought into discussion, as they offer different options that could be used.

Graph Theory

In Mathematics, graphs are discrete structures that contain vertices and edges. Vertices can be

considered points and vertices are the lines that connect the points. Graph have many utilities in

everyday life, without people realizing it. Some examples of graph usage are: model

acquaintanceships between people, model telephone calls and telephone numbers, model

roadmaps. Graph can also be used to show if it is possible to walk down every street in a city,

without passing on the same street twice.

The mathematical definition of a graph is: “A graph G = (V,E) consists of V, a nonempty set of

vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with

 6

it, called endpoints. An edge is said to connect its endpoitns.” (Discrete Mathematics and Its

Applications, Kenneth H. Rosen, 2013)

The following picture shows a representation of a simple graph. A simple graph has its edges

connect to two different vertices. At a closer look, one can see that no two different edges

connect to the same pair of vertices.

Figure 1 a simple graph1

Besides the graphical representation of a graph, there are 2 other possibilities to represent a

graph: an adjacency list and an adjacency matrix.

In an adjacency list, each edge is listed and next to it, each vertice that connect to it.

1 https://www.raywenderlich.com/773-swift-algorithm-club-graphs-with-adjacency-list

 7

Figure 2 Adjacency list2

The adjacency matrix is a simple matrix, labeled with rows and columns corresponding to the

graph’s vertices, with a 1 or a 0 if the vertices are adjacent (they are neighbors in an edge).

Figure 3 Adjancecy Matrix3

In Computer Science, graphs are represented as a data structure that consists of a finite set of

vertices and a set of edges, which are references/links between the vertices. The edges are

2 https://www.raywenderlich.com/773-swift-algorithm-club-graphs-with-adjacency-list
3 http://mathworld.wolfram.com/AdjacencyMatrix.html

 8

represented as ordered or unordered pairs, depending on whether the graph is directed or

undirected.

The following graph will be used as an example for how graph are represented in Computer

science:

Figure 4. A graph example4

One way to represent the graph, as a data structure, according to the definition is by using an

edge list. For the above graph, the edge list would look like this:

[[0,1], [0,6], [0,8], [1,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5],

[3,8], [4,5], [4,9], [7,8], [7,9]]

The edge list is made up of one big array that contains smaller arrays which denote the connection

between the edges: e.g. [0,1], [0,6], [0,8] - as it can be seen from the image, the vertex 0 is

connect to vertices 1, 6 and 8.

Another way to represent the above graph is by using an adjacency matrix. This looks like the

following:

[[0, 1, 0, 0, 0, 0, 1, 0, 1, 0],

 [1, 0, 0, 0, 1, 0, 1, 0, 0, 1],

 [0, 0, 0, 0, 1, 0, 1, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 0, 0, 1, 0],

 [0, 1, 1, 1, 0, 1, 0, 0, 0, 1],

4 https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs

 9

 [0, 0, 0, 1, 1, 0, 0, 0, 0, 0],

 [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1],

 [1, 0, 0, 1, 0, 0, 0, 1, 0, 0],

 [0, 1, 0, 0, 1, 0, 0, 1, 0, 0]]

The adjacency matrix is made up of a 2D matrix, containing one big array that contains smaller

arrays. The smaller arrays are for each of the vertices and inside, they contain 0 for no edge

between the vertex and 1 if there is an edge.

Another way to represent that graph is to use an adjacency list:

[[1, 6, 8],

 [0, 4, 6, 9],

 [4, 6],

 [4, 5, 8],

 [1, 2, 3, 5, 9],

 [3, 4],

 [0, 1, 2],

 [8, 9],

 [0, 3, 7],

 [1, 4, 7]]

The adjacency list is also represented as a 2D matrix, containing one big array made up by smaller

arrays. The smaller arrays contain the adjacent/neighboring vertices.

The following is an example of how a graph can be represented, and initialized in the Swift

programming language.

public class Vertex {

 var neighbors: Array<Edge>

 init() {

 self.neighbors = Array<Edge>()

 }

}

 10

public class Edge {

 var neighbor: Vertex

 var weight: Int

 init() {

 weight = 0

 self.neighbor = Vertex()

 }

}

public class SwiftGraph {

 //declare the graph

 private var graph: Array<Vertex>

 public var isDirected: Bool

 init() {

 graph = Array<Vertex>()

 isDirected = true

 }

 //create a new vertex

 func addVertex() -> Vertex {

 //set the key

 let childVertex: Vertex = Vertex()

 //add the vertex to the graph canvas

 canvas.append(childVertex)

 return childVertex

 }

}

//add edge to source vertex

func addEdge(source: Vertex, neighbor: Vertex, weight: Int) {

 //new edge

 let newEdge = Edge()

 //establish default properties

 11

 newEdge.neighbor = neighbor

 newEdge.weight = weight

 source.neighbors.append(newEdge)

 //check condition for an undirected graph

 if isDirected == false {

 //create a new reversed edge

 let reverseEdge = Edge()

 //establish the reversed properties

 reverseEdge.neighbor = source

 reverseEdge.weight = weight

 neighbor.neighbors.append(reverseEdge)

 }

 }

Shortest Path

Graphs can be used to generate the shortest path between multiple nodes. One example could be

an airline route system, or a computer network. In order to use the shortest path, a new concept

has to be introduced: weighted graphs.

Weighted graphs have a number, be it positive or negative, assigned to each of their edges.

Figure 5 A weighted graph5

5 https://www.raywenderlich.com/773-swift-algorithm-club-graphs-with-adjacency-list

 12

To find the shortest path, one would have to find all the vertices between the two edges that he

would want to connect by the path, and from that selection, select the vertices that have the

smallest weight. Things can get complicated if there is a request to make a circuit (a smaller subset

of vertices from a graph, that have a common start and finish edge), where each vertex is visited

only once. This is known as the “travelling salesperson problem”.

Dijkstra’s Algorithm

Dutch mathematician Edsger Dijsktra came up with an algorithm on how to calculate the shortest

path in an undirected weighted graph, in 1959. The only condition that the graph needs to fulfill is

to have the weights as positive numbers.

Following is a pseudocode representation of how Djikstra’s algorithm works:

1. procedure Djikstra(G: weigthed connected simple graph, with all weights

positive)

2. /* G has vertices a = v1, v2, …., vn = z and lengths w(vi,vj) where

w(vi,vj)= ∞ if (vi,vj) is not an edge on in G */

3. for i := 1 to n

4. L(vi) := ∞

5. L(a) := 0

6. S := ∅

7. /* the labels are now initialized so that the label of a is 0 and all other

labels are ∞ and S is the empty set */

8. while z ∉ S

9. u := a vertex not in S with L(u) minimal

10. S := S ∪ |u|

11. for all vertices v not in S

12. if L(u) + w(u,v) < L(v) then L(v) := L(u) + w(u,v)

13. //this adds a vertex to S with minimal label and updated the labels of

vertices not in S

14.return L(z) // L(z) = length of a shortest path from a to z

 13

Djikstra’s algorithm finds the length of a shortest path between two vertices in a connected simple

undirected weighted graph. As it can be seen from the above pseudocode representation,

Djisktra’s algorithm uses O(n2) operations (additions and comparisons) to find the shortest path.

Machine Learning Algorithms

Linear regression

The Linear regression algorithm assumes a linear relationship between the input variables (x) and

the single output variable (y). Put in simple terms, (y) can be calculated from a linear combination

of the input (x). If (x) is a single variable, then we are dealing with a simple linear regression. The

(y) equation and a simple graph representing the equations are shown in the figure below:

Figure 6 Simple Linear regression6

When having multiple input variables, the method is called multiple linear regression. The (y)

equation looks like this:

f(x,y) = w1 * x + w2 * y

x, y are input variables; w1, w2 are the coefficient/weighs used.

They can have random values or predetermined ones at the beginning and then they can be fine-

tuned to better place the function values on the desired axis.

Linear regression is actually an algorithm borrowed from statistics. Its main use is in predictions.

6 https://github.com/Avik-Jain/100-Days-Of-ML-Code

 14

Logistic regression

Logistic regression is used for a different class of problems known as classification problems. The

aim is to predict the group to which the current object under observation belongs to. A very

simple example would be to guess the height of a person based on the person’s sex.

The algorithm measures the relationship between the dependent variable (what it being tried to

predict) and one or more independent variables (the features), by estimating probabilities. The

probabilities must have values of 0-no or 1-yes. To achieve the binary values is the task of logistic

function, called also sigmoid.

The sigmoid function is an S-shaped curve that can take any real-valued number and map it into a

range of values between 0 and 1, but never exactly at those limits. An example of a sigmoid

function’s graph can be seen below

Figure 7 A sigmoid function7

Taking a look at the above figure, it should be noted that the graph of the function will never reach

+/- 1. The above example can be a little misleading as it shows that when the z value is 8, the y

7 https://github.com/Avik-Jain/100-Days-Of-ML-Code

 15

value is 1. It is not 1, but a very close number to 1 and continues as such to infinity, while never

reaching a value of 1. The same is true for the revers (-8 as a value for z and -1 for y)

Neural networks

“Neural networks are a class of machine learning algorithms used to model complex patterns in

datasets using multiple hidden layers and non-linear activation functions. A neural network takes

an input, passes it through multiple layers of hidden neurons (mini-functions with unique

coefficients that must be learned), and outputs a prediction representing the combined input of all

the neurons.”8

The following image showcases how a neuron can be imagined:

Figure 8. Representation of a neuron9

3 things are happening here. First, each input is multiplied by a weight ■:

x1 → x1 ∗	w1

x2 → x2	∗	w2

Next, all the weighted inputs are added together with a bias b ■:

(x1 ∗	w1) + (x2	∗	w2) + b

Finally, the sum is passed through an activation function ■:

y = f(x1 ∗	w1 + x2	∗	w2 + b)

8 https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html
9 https://victorzhou.com/blog/intro-to-neural-networks/

Inputs Output

x1

x2

y

 16

The activation function is used to turn an unbounded input into an output that has a nice,

predictable form. A commonly used activation function is the sigmoid function, the one describes

above.

A neural network is a collection of neurons connected together. The following image will provide

an overview of how a neural network likes like:

Figure 9. Representation of a neural network10

As it can be seen above, the network has 2 inputs, one output and 2 hidden layers. A hidden layer

is any layer between the input and the output. There is no rule specifying how many hidden layers

can be in a neural network.

It has the name of a network because the inputs for the output o1 are the outputs from h1 and h2.

Neural networks are used in prediction systems, time series predictions, anomaly detection and

natural language processing.

Machine learning software

Machine learning has its roots in statistics. A couple of software products that are today being

used for machine learning, were initially used for statistical data, e.g. numPy, SciPy, pandas for

Python.

In recent years the interest in machine learning has exploded and companies started offering LaaS

(Learning-as-a-Service). LaaS makes all the calculations needed with the power of the cloud,

freeing companies by using local machines to do the calculations. All the user/company needs is to

have a valid set of data and an idea of what they want to achieve.

10 https://victorzhou.com/blog/intro-to-neural-networks/

Output LayerHidden LayerInput Layer

x1

x2

h1

h2

o1

 17

The following is a list of companies that offer LaaS:

• Microsoft Azure Machine Learning Studio11

• AWS Machine Learning12

• IBM Watson Machine Learning13

• Google Cloud Machine Learning Machine14 – although Google offers Tensorflow15 as well,

which can be run on a local machine

• BigML16

• Etc.

All of the above-mentioned LaaSs support the above-mentioned machine learning algorithms. One

way to differentiate between them, would to be to look at the price the service requires.

5. Tools used

To build the prototype, the following software tools and products were used:

• Server: the prototype server is done using Vapor17. Vapor is a web server architecture

written in Swift, the same programming language used to program iOS, macOS, watchOS,

tvOS applications. Vapor is open-sourced and has built a vibrant community of users and

contributors around itself. Vapor is not the only server-side Swift framework and

alternatives to server-side Swift altogether exist: Ruby on Rails, node.js, PHP, ASP.Net

• Server database: the Vapor server uses a SQLite database18, that is written to a file. There

was the possibility to have a SQLite database residing in memory, but this meant that as

long as the server is running, the database would exist. When the server shuts down, the

database would cease to exist. For the needs of the prototype, the SQLite database does

the job very well. Vapor can also interact with MySQL, PostgresQL, MongoDB and support

for other databases is constantly added.

11 https://azure.microsoft.com/en-us/services/machine-learning-studio/
12 https://aws.amazon.com/sagemaker/
13 https://www.ibm.com/cloud/machine-learning
14 https://cloud.google.com/ml-engine/
15 https://www.tensorflow.org
16 https://bigml.com/
17 https://vapor.codes
18 https://www.sqlite.org

 18

• Server dependency manager: Swift Package Manager19. “The Swift Package Manager is a

tool for managing distribution of source code, aimed at making it easy to share code and

reuse others’ code. The tool directly addresses the challenges of compiling and linking

Swift packages, managing dependencies, versioning, and supporting flexible distribution

and collaboration models.”20

• iOS mobile application programming language: Swift . “Swift is a general-purpose

programming language built using a modern approach to safety, performance, and

software design patterns”21 It was announced in 2014 by Apple, open-sourced at the end

of 2015 and it was meant to replace Objective-C.

• IDE (Integrated Development Environment): Xcode22. Xcode is developed by Apple and it is

the official IDE that includes the iOS, tvOS, watchOS, macOS SDKs so developers can build

applications for the desired platforms. Xcode can also be used for Vapor projects, since

they are also written in Swift.

• iOS dependency manager: Cocoapods23. Very similar in purpose and use to Swift Package

Manager. Cocoapods existed before Swift Package Manager and it has build a strong and

sharing community around it.

• Google Maps for iOS24. MapKit, Apple’s own Map framework could have been used, but it

does not support multi stop routes.

• IQKeyboardManager25 is a handy iOS library that takes care of the iOS keyboard not to

cover text fields or text views, so the user could see what it is written in there.

• Alamorefire26 is a HTTP networking library, written in Swift. It makes it easier for

developers to make API calls in their applications.

19 https://github.com/apple/swift-package-manager
20 https://github.com/apple/swift-package-manager
21 https://swift.org/about/
22 https://developer.apple.com/xcode/
23 https://cocoapods.org
24 https://cocoapods.org/pods/GoogleMaps
25 https://github.com/hackiftekhar/IQKeyboardManager
26 https://github.com/Alamofire/Alamofire

 19

6. Generating data

The idea of the project was to be done in collaboration with an electric car rental company. The

company has been approached, the problem and the solution were presented but no answer has

been given from the company regarding the collaboration.

Because of this the real dataset has become out of the picture. This left 2 choices:

1. To find a public dataset that could be used for this project

2. Generate an own dataset

Going with option number one, a series of concerns started to appear: Before using a public

dataset, one would have to investigate and make sure what license agreement covers the dataset

and if it can be use in university or company projects.

There exists the possibility that a specific dataset, for a specific geographical location might not

exist, but it can have another geographical location. The question that arises is how relevant the

dataset can be for the project.

One dataset that comes very close to the need for this project is available

here: https://www.kaggle.com/doit-intl/autotel-shared-car-locations. It contains geographical

locations of shared cars in Tel Aviv, Israel. The dataset has for each record the following

properties: timestamp, latitude, longitude, total_cars and carsList. The last two properties and the

timestamp would not be needed. Another obstacle in using this dataset, is the geographical

location contained inside of it: Tel Aviv, Israel, and not Copenhagen, Denmark.

Option number two: It needs a thorough planning of what the dataset should contain and how

many entries should the dataset contain initially. More data can be added later on, without a

problem. The problem is represented by the cold start and trying to figure out how the ideal

dataset for the project would look like.

Option number was the chosen path for the path – generating an own dataset, fit for the project.

An electric car would be represented by a geographical location (latitude and longitude), battery

 20

level (indicated in percentage) and interest in the car (indicated in percentage). It started out with

generating 50 random geographical locations, on a radius of 20 km around Copenhagen. For this, a

website called “Random Point Generator”27 has been used. At the time of writing, the

geographical coordinates random generator does not work anymore. Each of those 50 locations

had to be manually checked on Google Maps, to be sure that none of them are in locations

inaccessible (such as Amagerfælled or in Øresund). If that was the case, a new location would be

chosen to replace the inaccessible one. Next up, the website called random.org28 was used to

generate 50 integers, with values between 1 and 100. This batch of 50 integers would be attached

to each pair of the geographical locations previously generated. The integers would denote how

much battery a car, situated at the geographical location would have remaining. A second batch of

50 random integers was generated and attached to each car. The second integer would denote

the interest in the car, an indication of how popular/in demand that car is.

The geographical coordinates, the battery indicator and the demand for the car will be put

together into a .csv file for easier arrangement, which will be transformed into a .json file, that will

be updated to server. The explanation why this file will be residing on the server will be revealed

in a later chapter.

After having a small data collection of 50 cars around Copenhagen, the next point to tackle would

be finding the location of chargers for electric cars. The chargers exist, the municipality of

Copenhagen has been installing them for several years now and kept on expanding this network.

One solution could have been to contact the municipality and see if it is possible to get access to a

list of the locations for electric chargers. Another option would be to investigate if there are any

online websites that have a such a list.

One such website is Chargemap29. Upon opening the website, it defaults to map view over the

United Kingdom of Great Britain and Northern Ireland. It does show electric charger that are in

Denmark. Chargermap does not offer an open API that could be queried for charger locations.

They offer a subscription service and a mobile companion app that can be used.

27 http://www.geomidpoint.com/random/
28 https://www.random.org/integers/
29 https://chargemap.com/map

 21

After several searches, the Open Charge Map30 website has been found. It offers an open API, that

developers can use to query for charger locations, but it also allows to have new electric charger

locations added to the database.

The Open Charger Map API31 has different parameters that can be used when making an API

request. Of major importance for this project, are the output, country code, maximum results,

latitude, longitude, distance and distance unit parameters. Putting the parameters together and

making the call to the API32 will return a number of 87 chargers. The parameters for the API call

are:

• output=json the returned response will in a JSON format;

• countrycode=DK the country code is DK, for Denmark;

• maxresultdefaults=200 the maximum number of returned results will be 200. If left

by default it will be 100.

• latitude=55.6761 & longitude=12.5683 represent the geographical coordinate for

the center of Copenhagen

• distance=20 & distanceunit=KM used together, they denote a radius of 20 km

around the center of Copenhagen

The returned data has much more information than needed:

1. [

2. {

3. "ID": 114935,

4. "UUID": "2769C600-1486-446D-872A-B610DE6D392F",

5. "ParentChargePointID": null,

6. "DataProviderID": 1,

7. "DataProvider": {

8. "WebsiteURL": "http://openchargemap.org",

30 https://openchargemap.org/site
31 https://openchargemap.org/site/develop/api
32
https://api.openchargemap.io/v3/poi/?output=json&countrycode=DK&maxresults=200&latitude=55.6761&longitude=1
2.5683&distance=20&distanceunit=KM

 22

9. "Comments": null,

10. "DataProviderStatusType": {

11. "IsProviderEnabled": true,

12. "ID": 1,

13. "Title": "Manual Data Entry"

14. },

15. "IsRestrictedEdit": false,

16. "IsOpenDataLicensed": true,

17. "IsApprovedImport": true,

18. "License": "Licensed under Creative Commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)",

19. "DateLastImported": null,

20. "ID": 1,

21. "Title": "Open Charge Map Contributors"

22. },

23. "DataProvidersReference": null,

24. "OperatorID": 1,

25. "OperatorInfo": {

26. "WebsiteURL": null,

27. "Comments": null,

28. "PhonePrimaryContact": null,

29. "PhoneSecondaryContact": null,

30. "IsPrivateIndividual": null,

31. "AddressInfo": null,

32. "BookingURL": null,

33. "ContactEmail": null,

34. "FaultReportEmail": null,

35. "IsRestrictedEdit": null,

36. "ID": 1,

37. "Title": "(Unknown Operator)"

38. },

39. "OperatorsReference": null,

40. "UsageTypeID": 5,

41. "UsageType": {

42. "IsPayAtLocation": true,

43. "IsMembershipRequired": false,

44. "IsAccessKeyRequired": false,

45. "ID": 5,

46. "Title": "Public - Pay At Location"

 23

47. },

48. "UsageCost": "Free",

49. "AddressInfo": {

50. "ID": 115281,

51. "Title": " Q-Park Industriens Hus",

52. "AddressLine1": "H. C. Andersens Blvd. 18",

53. "AddressLine2": "",

54. "Town": "København ",

55. "StateOrProvince": "",

56. "Postcode": "1787",

57. "CountryID": 65,

58. "Country": {

59. "ISOCode": "DK",

60. "ContinentCode": "EU",

61. "ID": 65,

62. "Title": "Denmark"

63. },

64. "Latitude": 55.675114,

65. "Longitude": 12.568064,

66. "ContactTelephone1": "",

67. "ContactTelephone2": "",

68. "ContactEmail": "",

69. "AccessComments": "First to the right in parking

house ",

70. "RelatedURL": "",

71. "Distance": 0.11063224614500103,

72. "DistanceUnit": 1

73. },

74. "NumberOfPoints": 2,

75. "GeneralComments": "",

76. "DatePlanned": null,

77. "DateLastConfirmed": null,

78. "StatusTypeID": 50,

79. "StatusType": {

80. "IsOperational": true,

81. "IsUserSelectable": true,

82. "ID": 50,

83. "Title": "Operational"

84. },

 24

85. "DateLastStatusUpdate": "2019-01-20T11:15:00Z",

86. "DataQualityLevel": 1,

87. "DateCreated": "2019-01-19T16:30:00Z",

88. "SubmissionStatusTypeID": 200,

89. "SubmissionStatus": {

90. "IsLive": true,

91. "ID": 200,

92. "Title": "Submission Published"

93. },

94. "UserComments": null,

95. "PercentageSimilarity": null,

96. "Connections": [

97. {

98. "ID": 161722,

99. "ConnectionTypeID": 17,

100. "ConnectionType": {

101. "FormalName": null,

102. "IsDiscontinued": false,

103. "IsObsolete": false,

104. "ID": 17,

105. "Title": "CEE 5 Pin"

106. },

107. "Reference": null,

108. "StatusTypeID": 50,

109. "StatusType": {

110. "IsOperational": true,

111. "IsUserSelectable": true,

112. "ID": 50,

113. "Title": "Operational"

114. },

115. "LevelID": 2,

116. "Level": {

117. "Comments": "Over 2 kW, usually non-domestic

socket type",

118. "IsFastChargeCapable": false,

119. "ID": 2,

120. "Title": "Level 2 : Medium (Over 2kW)"

121. },

122. "Amps": null,

 25

123. "Voltage": 230,

124. "PowerKW": 3.7,

125. "CurrentTypeID": 20,

126. "CurrentType": {

127. "Description": "Alternating Current - Three

Phase",

128. "ID": 20,

129. "Title": "AC (Three-Phase)"

130. },

131. "Quantity": 2,

132. "Comments": null

133. }

134.],

135. "MediaItems": null,

136. "MetadataValues": null,

137. "IsRecentlyVerified": false,

138. "DateLastVerified": null

139. }

140.]

Figure 10. Example of data returned for one electric charger

Most of the information returned for one charger is not needed and it can be discarded, except for

the “AddressInfo” dictionary, which contains “Latitude” and “Longitude” keys.

The next step after having the list of chargers returned, would be to extract the desired

information. To achieve this, the returned json was transferred into a .csv file (comma separated

values). This made it much easier to manipulate the data, as the csv file would be displayed as

table with 87 entries, and 121 columns - each property of the charger object was transformed into

a column. All columns would be discarded as the next step, exact for

the Latidute and Longitude columns, that depicted the geographical location of the charger.

As used previously, Random.org, with its random integer generator was needed again to generate

two batches of 87 random integers. One batch contains integers with values between 51 and 100

and it meant to represent the rental user interest in the area near the charger. The second batch

 26

of integers contains values between 100 and 1000 and are meant to represent how many times a

car was rented in the past from that charger’s location. Putting together the chargers’

geographical coordinates, the “rental interest” and the “history” into a .json file and uploading

them to the server, was the next step.

As stated previously, an explanation on how the 2 .json files are used, will be provided in a future

chapter.

7. User Scenarios

User scenarios are a narrative way of describing how a user can interact with a piece of software,

be it either a website, a mobile or desktop application.

The following user scenarios follow John, an employee at a fictional electric car rental company

called DriveGreen.

The scenarios follow each phase of how the project is divided and each scenario builds on top of

the other, adding complexity and new functionality.

Scenarios 4 and 5 are going to be discussed in more detail in the Future Improvements Chapter.

Scenario 1 - Phase 1

John works as a jockey at DriveGreen, an electric car rental company, where people can take the

car from anywhere in the city and drop it off anywhere in the city, when they are done with it.

John’s job is to put car that have very little battery left to charge.

In the morning, when his shift starts, John opens the application on his mobile phone, logs in with

his company email and a password and after he successfully logs in, he is presented with a list of

cars that need to be put to charge. In the settings part of the application, he can enable biometric

authentication (fingerprint or facial recognition) so can spend less time typing in his email and

password.

 27

The list of cars is ordered based on the distance from where he is and then the distance between

each car.

Seeing the list, John can now start his work day.

Scenario 2 - Phase 2

An update to the application brings some changes to the application:

After successfully logging in, John can see that the list of cars is a little different.

Now the list is showing a car location and an electric charger location:

`John’s location -> car -> charger -> car -> charger -> etc.`

The charger shown on the list is the closest charger to the car.

Scenario 3 - Phase 3

After using the updated version of the application for several months, John receives a new update

to the application.

Since he started to use the application with the previous update, John started to know

approximately where he should put the car to charge.

The new update still shows the list of cars and the subsequent chargers where he should put the

cars to charge, but the charger locations are not the ones he got to know.

Sometimes the list would tell John to put a car to charge at a charger that is situated 12 minutes

away, instead of the one he got to know, that is only 3 minutes away.

John is curious and starts wondering why this new order in the car/charger list is. Talking with his

colleagues and superiors, he finds out that the suggested chargers have a higher interest rate from

the rental users and the company is trying to come to the needs/demands of the customers.

This new order in the car/charger list does affect John work day, but there is nothing he cannot

handle.

 28

Scenario 4 - Extras

The new update has been released for some time now. John got used to follow the suggestions of

the application and place the cars at the recommended chargers.

The company is pushing out a new update for the application.

The intent is to make John’s and his colleagues lives much easier.

The new update brings with it navigation instructions. From the moment John logs in, the

application gets his location using the mobile phones GPS, the locations of the cars he needs to

put to charge and the locations of the chargers where he should put the cars to charge, from a

server.

From his initial location, John will get directions on how to get to the first car, by using public

transport. Upon entering the car, John will get driving directions to the recommended charger.

From the charger to the next car he will be travelling using public transport.

`John’s location -> public transport -> car -> driving -> charger -> public transport -> car -> driving -

> charger -> etc.`

Scenario 5 - Other types of rentals

This scenario refers to the shared electric scooters companies, such as Lime, Voi, Tier.

The companies use independent contractors to pick up discharged scooters, charge them at home

and then place them again on the street.

In this scenario, the prototype would show discharged scooters belonging to a specific company.

The contractor would have to log in to see where the scooters are placed on the map. The app

would generate the shortest path between the contractor’s position and all the scooters.

Upon arriving at the scooter’s location, the contractor can confirm in the application that he took

possession of the scooter. When the contractor picks up the last scooter, the app will display a

route from his location to his house.

 29

Upon arriving home, he sets each scooter to charge. When all the scooters are charged, he should

confirm this in the application.

After confirming, he is supposed to head out and place the scooters on the street.

One possibility would be to place them at random places in the city.

Another possibility would be to have the application suggest where to place the scooters, based

on how many users have rented scooters from that area before. This idea ties in with the electric

charger prediction, where the number of how many users rented a car previously, is needed.

8. Requirements

To come up with the requirements for this project, the FURPS+ approach has been selected. This
was created by Robert Grady from HP33. FURPS comes from the initials of Functionality, Usability,
Reliability, Performance and Supportability. The + comes from a series of additional requirements:
Design, Implementation, Interface and Physical requirements.
The following table will give an overview on the requirements, to which part of the prototype they
apply to and how they can be tested. The requirements are extracted from the User scenarios
chapter.

Area Functionality Testing Server/Mobile app
Functionality Provide secure login

process
Check for a secure
connection to the
server that does not
leak

Server / Mobile app

Functionality Support biometric
login

Implement the
LocalAuthentication
framework from iOS

Mobile app

Functionality Be able to retrieve car
and charger location

Make API calls to the
server

Mobile app

Functionality Provide an overview
of the cars

Show the cars on a
map

Mobile app

Functionality Have the possibility to
update car locations

A refresh mechanism
(e.g. pull-to-refresh,
etc.)

Mobile app

Usability The application must
be easy to use

User testing, focus
group

Server / Mobile app

33 Peter Eeles, Capturing Architectural Requirements, 2005
https://www.ibm.com/developerworks/rational/library/4706.html

 30

Usability Not make it hard for
the user to retrieve
data

User testing, focus
group, app
architecture

Mobile app

Reliability

The prototype should
have an uptime of
99.9%

Server monitoring Server

Reliability

The prototype should
be tolerant to user
mistakes

Provide UI feedback Server / Mobile app

Reliability

Provide appropriate
feedback to user in
case of mistake/error

Provide UI feedback Server / Mobile app

 There will be no
offline mode

Test in case of no
connectivity

Mobile app

Performace

Must be available
24/7

Server monitoring Server

Performace

Connection should be
kept alive even in bad
mobile network
situations

Strangle the internet
connection

Server / Mobile app

Supportability

The app would be
localised in both
English and Danish

Switch the phone’s
language between
English and Danish

Mobile app

Supportability

The prototype should
be built in a way that
future improvements
could be added in a
manageable fashion

Design patterns,
Software Architecture

Server / Mobile app

Implementation

The app will be
written in Swift

Inspect the source
code

Mobile app

Implementation

The server will be
written in Swift, using
Vapor

Inspect the source
code

Server

Implementation

The app will be made
available initially for
iOS

Source code Mobile app

Interface

The prototype will
rely on APIs to ensure
communication
between different
parts of the system

Listen for traffic
between the mobile
app and server, using
Charles34

Server / Mobile app

34 https://www.charlesproxy.com

 31

9. Development

Initial idea

The prototype was envisioned to be composed of 4 components:

• The electric car rental company server

• A Vapor server

• A machine learning service

• An iOS app

Every night, a CRON job would run on the DriveGreen (a fictional electrical car rental company)

server and it will forward the locations of the almost discharged cars to the Vapor server. The

Vapor would forward the list of locations to either a Learning-as-a-Service product, or it could

trigger locally a machine learning model generation.

The LaaS, or the local ML implementation would have available beforehand the list with the

electric charger locations and it would use that together with the car locations to generate the

machine learning model. After the model is generated, it will output a list, consisting of cars and to

which charger to put the car to charge. This list would be send back to the Vapor server.

When the employee logs in in the morning, the iOS app will do an API call to the Vapor server to

retrieve the above mentioned list and then he start his work day.

The following diagram gives an overview of how the system was imagined to work:

Figure 11. Prototype diagram

 32

As discussed in the Generating data chapter, acquiring a viable dataset proved to be challenge.

The option to generate a dataset from zero was chosen. This resulted in having 2 JSON files, one

for a series of 50 cars and another one with locations of the electric chargers around Copenhagen.

The initial plan was to store and retrieve both JSON files from the Vapor server, but in the end just

the cars JSON is stored on the server, while the chargers JSON is stored in the iOS app.

Server development

Server development started with a slow tempo, as it was a new, uncharted territory. It started

from the basic template that is offered when a new Vapor project is created. This gave the

opportunity to get acquainted with how things work in the Vapor world.

In initial phase, the server was developed to provide CRUD (create, read, update, delete)

operations on users. For this to work, a User model has to be defined, with all the properties

needed for a User object.

The UserController is where the CRUD operations are defined and where the routes for the CRUD

operations are defined. It also includes the “login” route:

• Login: POST request, with the email and password in the header, encoded in base 64.

• Create User: POST request, with the email and password in the body of the request

• Read all Users: GET request, with an authorization header

• Read Specific User: GET request, with an authorization header

• Update User: PUT request, with an authorization header

• Delete User: DELETE request, with an authorization header

The following table offers a better overview of the User routes. The Security chapter is discussing

about the authorization header and the base 64 encoded pair of email and password.

API Call / Route Operation

POST vaporServer/api/users/login User login

GET vaporServer/api/users Get a list of all the registered users

GET vaporServer/api/users/:id Get a specific user, by providing the user id

PUT vaporServer/api/users/:id Update a specific user, by providing the user id

POST vaporServer/api/users Create a new user

 33

DELETE vaporServer/api/users/:id Delete a specific user, by providing the user id

The list of cars is stored in a JSON file, that the server would read from and then forward it to the

iOS application. The Car model file defines the properties of the car object and offers a class

function that reads the JSON file and it returns an array containing all the cars from the JSON file.

The CarController defines 3 routes, but only one is being used from the iOS app. The routes are

covered in the following table.

API Call / Route Operation

GET vaporServer/api/cars Returns all the cars from the JSON file, in the

order they are stored in the file

GET vaporServer/api/cars/random Randomizes the order of the cars in the array

returned from the JSON file

GET vaporServer/api/cars/:int Randomizes the order of the cars in the array

returned from the JSON file and returns the

:int (an integer) first elements of the array

The Vapor server does not have any GUI. All the request are to be made using tools like Postman,

Paw or the old-but-trusty cURL command line tool.

Mobile application development

The iOS part of the prototype consists of 3 iOS applications. It could have been done as one iOS

app with 3 targets, but to differentiate between the codebase, compiler #if statements would had

to be used and that would make the code very ugly and not easy to read.

The 3 applications are named Phase 1, Phase 2 and Phase 3. They correspond to each of the

phases described in the Introduction chapter.

Phase 1

The Phase 1 application consists of 3 screens, as it can be seen in the Storyboard screenshot

below, although the screenshot shows 5 screens. This will be explained shortly.

 34

Figure 12. Phase 1 application layout

The first screen is the Login Screen, numbered 1 in the above screenshot. This consists of 2 text

fields and a button. The 2 text fields are used for the user to write his work email and his

password. The button is used for the login action. As it can be seen from the screenshot, there is

screen that connects to the Login Screen. This is a container view, numbered 2, that plays a video

on the background of the Login screen.

Upon tapping on the login button, the app makes an API call to the Vapor server to log in the user.

The app takes the email and password values provided, concatenates them (divided by a double

colon, e.g. “email”:”password”) and encodes the concatenated string to base 64. The encoded

string is added to the Login request header. The header is further explained in the Security

chapter.

 35

Figure 13. The Login Screen

After successfully logging in, the Vapor server returns a 200 HTTP status code and among other

values, a token. This token is saved in the UserDefaults, which is “an interface to the user’s

defaults database, where you store key-value pairs persistently across launches of your app.”35.

The token value will persist until the user deletes the app, or resets the phone, or the application

rewrites the token value.

After having the token value available, the app makes a second API call to the server to retrieve

the list of cars. When the list is retrieved, screen number 4 is loaded.

35 https://developer.apple.com/documentation/foundation/userdefaults

 36

Figure 14. The Car list screen

It will display a list, containing the array of cars, sent by the server. Here, the user can select 3 cars

and upon tapping on the upper-right corner button (“Show Map”), it will redirect him to screen

number 5.

Screen number 5 contains a Google Maps View, where the selected cars are shown as pinpoints on

the map. The map also shows the user’s location, but since using the simulator, the user’s position

is simulated as being close to Vesterport Station, in Copenhagen.

 37

Figure 15. Car locations on a map

The “Show Routes” button in the upper-right corner, upon tapping, will make an API call to the

Google Maps Directions API, where it send the geographical coordinates of the cars plus those of

the user. This request will ask the Maps Directions to provide a route that will pass through all the

coordinates provided and to calculate the shortest path possible.

When the request is returned to the app, the map will display a route between the selected

coordinates. Sometimes the route will resemble a circle, but other times it would show that the

user would have to travel twice on the same road.

The shortest route suggested by Google Maps does not show an order for the user to travel.

When the user taps on one of the car markers, a small popup will appear showing how much

battery the car has remaining and also the general population’s interest in the car.

 38

Figure 16. Shortest route between the selected cars and the user's location

Upon tapping on the “Back” button, the user is taken to the previous screen, the list of cars. Here,

he can select other 3 cars and have them shown on the map.

From the application layout screenshot, one screen was not mentioned. That is screen number 3,

which can be seen it is called a Navigation Controller. This is not a screen directly seen by the user,

except for the navigation bar where the “Back” button is, present in screen number 5, the Map

screen. The Navigation Controller makes it possible to have a hierarchy of screens and in this case

it implements the List screen (number 4) and the Map screen (number 5) and makes it possible for

the user to come back to the previous screen when he is looking at the Map Screen.

Phase 2

The Phase 2 application is a copy of the Phase 1 application. It offers the same functionality,

except it also loads the location of the electric chargers and shows them on the map screen.

As it can be seen in the next screenshot, loading all 87 electric chargers clutters the map and the

selected cars are barely visible on the map

 39

Figure 17. Cars, electric chargers and the user’s locations

To clean up the map screen, 2 simple conditions were implemented:

When the chargers are loaded, the distance between each car and each charger is calculated and

if the distance is between 700 m and 1.000 m, then the charger will be shown on the map.

By having these 2 conditions, the map screen decluttered and it became cleaner.

Figure 18. Electric chargers that fulfill the 2 conditions

 40

The chargers list, as mentioned previously, is not stored on the server, but inside the iOS

application. Ideally, it should be stored on the server. Also, the calculations for the distance

between each charger and each car should be ideally done on the server and on device, but Vapor

does not include Core Location, Apple’s framework for geographical services.

Phase 3

The Phase 3 app builds on top of Phase 2.

The only addition that Phase 3 has is to add another 2 conditions to the already existing distance

conditions and those are if the charger has a rental history bigger than 500 and a general

population interest bigger than 50.

The numbers, 500 and 50, can be tweaked and have other values. The same is available for the

distance numbers.

This is not a solution generated by machine learning, but it is a very simple, manual calculation,

which have as a result one or several electric chargers that meet the desired criteria.

10. Security

By security, the intention is to refer to identity and access management. The following chapter will

look at the individual pieces of the what the prototype is composed of: the iOS, the server.

Before starting, a series of explanations is needed.

Identity and access management consists of a collection of policies, process and systems which

ensure that an individual or a system is given a set of permissions within another system. Identity

and access management contains the actions of authentication and authorisation among other

things.

Authentication is process in which someone confirms its identity, he proves to be who he claims

to be. In the physical world, this can be done by providing government issued documents such as

national id card, driving license or passports. In the online world, a common way of authentication

is through the user - password combo, but it is not limited only to that. In recent years users could

 41

use biometrics - either by using fingerprint or facial recognition - to log in to different application

or online services. In some cases, the system might require multi-factor authentication, where a

user has to provide an additional set of credentials, e.g. the user provides a username/password

combo, and the next step is to provide a pin number received through an SMS message on the

user’s mobile phone.

Authorization, in the context of cybersecurity, refers to the process of giving the user the right to

access specific functions or resources. Instead of the word authorization, it can be exchanged for

client privilege. The access to specific resources or functions can be information, files, emails,

databases, funds, etc.

Access control comes in between authentication and authorization. When the identity of the user

is confirmed, he is granted access to the system. The problem that arises is how much access can

the user have. This is solved by limiting the access through access control. “Authorization defines

the set of actions that the identity can perform after gaining access to a specific part of the

infrastructure, protecting from threats that access controls alone are ineffective against.”36

The following table gives a better overview of the 3 definitions presented above.

Category What Protects from

Authentication Confirms the identity is who it says it is The whole world

Access
Controls

Provides additional authentication /
validation to access specific resources

Compromised (stolen)
Credentials

Authorization
Determines what actions the identity can

perform on specific resources

Accidents, Compromised

Credentials, Malicious Insiders

36 https://cloudknox.io/authentication-vs-access-controls-vs-authorization/

 42

This project’s prototype is intended to be used in the enterprise medium. Therefore the data

available on the mobile application and the server must be kept private from the outside world. In

order to do so, a subset of the actions belonging authentication and authorization are included

with the prototype. Authentication is available on the iOS app and on the server, making sure that

just employees of the company can have access to car locations and battery levels, charger

locations and charger popularity. Authorization makes sure the employees who have been

described in this project have access to only the needed and desired information and nothing

more.

The data contained in the prototype as a whole (looking at the iOS app, the server and the ML

service) can be considered anonymous data. It does not contain personal identifiable information

where a real life person can be identified. As stated in the Generating data, the data refers to cars,

their location, their battery level, electric chargers, and the historical/statistical data the company

has about these chargers.

 The iOS application

In order for the employee to use the application, he will have to log in with his username/work

email and a password. Further more, the application could take advantage of the biometric log in

features, the device offers. This can be TouchID – for finger print authentication or FaceID – facial

authentication. But in order for the biometric log in to function, the employee should log in with

his username/email and password at least ones.

When exiting and coming back to the app or going to the multitasking screen on the phone, the

application will hide its content, by covering the application screenshot with a generic screen. This

way, an external user could not see the content of the application or have a glimpse of the

information offered in the application. This practice, of obfuscating the application content, is

done by banking applications (e.g. Danske Bank, e-Boks).

 43

Figure 19. iOS Apps hiding their content when in the multitasking switcher screen

Since iOS 9, Apple has forced developers to use App Transport Security37. This forces applications

to use an HTTPS connection, while returning an error for non-HTTPS connections. By having an SSL

encrypted connection between the application and the server, it avoids having a Man-in-the-

Middle type of attack.

“The Secure Enclave is a coprocessor fabricated in the Apple A7 or later A-series processor. It uses

encrypted memory and includes a hardware random number generator. The Secure Enclave

provides all cryptographic operations for Data Protection key management and maintains the

integrity of Data Protection even if the kernel has been compromised.”38

 “Communication between the processor and the Touch ID sensor takes place over a serial

peripheral interface bus. The processor forwards the data to the Secure Enclave but cannot read

it. It’s encrypted and authenticated with a session key that is negotiated using the device’s shared

37
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKe
ys.html#//apple_ref/doc/uid/TP40009251-SW33
38 iOS Security – White Paper November 2018 - https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf

 44

key that is provisioned for the Touch ID sensor and the Secure Enclave. The session key exchange

uses AES key wrapping with both sides providing a random key that establishes the session key

and uses AES-CCM transport encryption.”

Server security

SSL

SSL stands for secure socket layer, and it is a basic web security certificate, which also encrypts the

channel between User (Point A) and Web application server (Point B), regardless which direction

data is sent. Moreover, these certificates also help to authenticate the server’s identity. HTTPS,

HTTP Secure or HTTP over SSL takes advantage of SSL and it encrypts the data exchange between

the web client and the server. This way, if someone were to sniff the packet exchange, they would

not be able to see the contents. HTTPS is used to prevent Man-in-the-Middle attacks. The MITM

attack is usually available when the exchange of raw or not encrypted data being done via the

network. Attackers might monitor the network for example with packet sniffing application and

see all packets going from point A to point B. Also, attackers might force the traffic through them

and try to alter the messages on the way. MITM attack allows attackers to gain access to the

transferred data (not encrypted or damaged), and infect the data.

At the time, Vapor 3 does not support SSL certificates. According to one issue39 raised on GitHub,

the only way to do this would be by adding NGINX in front of the Vapor sever, where TLS will be

used. NGINX will act as an SSL/TLS enabled proxy.

Vapor 4, which is the yet-to-be-released next version of Vapor will add support for SSL/TLS

without requiring an SSL/TLS enabled proxy. The Vapor 4 update requires the release of Swift 5

(which is already out) and the next version of Swift NIO (which is as well yet-to-be-released).

39 https://github.com/vapor/documentation/issues/395

 45

Password Hashing

According to the OWASP Password storing cheat sheet40, there are several ways to store a

password, but the document outlines never to store password in plain-text.

One way to store a password would be by hashing the password. “Hashing performs a one-

way transformation on a password, turning the password into another String, called the hashed

password. “One-way” means that it is practically impossible to go the other way - to turn the

hashed password back into the original password. There are several mathematically complex

hashing algorithms that fulfill these needs.”41

When the password is provided, the plain text version of the password is hashed using the same

algorithm and the resulting hashed text is compared to the actual hashed valued of the password

that is stored in the database. If the two hashed strings are a match, then the provided password

is good, and the next step can commence. If they do not match, a retry of the password is asked.

This would be a typical flow when using hashed passwords, since hashing is a one-way

transformation function, as stated above.

Vapor has a package for the popular BCrypt hashing algorithm42. It is written is Swift. It offers basic

functionality to hash but also to verify.

Token authentication

To protect the Vapor server even further than hashing the user’s password, token authentication

was implemented.

For the Login API call, a basic authentication scheme was implemented. The “Basic” HTTP-

authentication scheme43 transmits the username and password, in the header of the HTTP

request, and the username/password pair is encoded using base64.

40 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
41 https://docs.oracle.com/cd/E26180_01/Platform.94/ATGPersProgGuide/html/s0506passwordhashing01.html
42 https://github.com/vapor-community/bcrypt
43 https://tools.ietf.org/html/rfc7617

 46

After a successful login, an authorization token is sent back to the client. The token is a randomly

generated string, using the Crypto package44.

In order to access any other resources from the server by making API calls, the client has to add

the token to the HTTP header, under “Authorization” and append the word “Bearer” before the

token string. This technique is inspired by RFC 675045, although that request for comments refers

to accessing OAuth 2.0 protected resources. This is not the case.

The HTTP header looks like this: “Authorization”:” Bearer HquOpAzlOaBGYGB0pxrYew==”

The following table depicts the API calls available on the Vapor server and how they are protected:

API Call Protection

GET vaporServer/ None

GET vaporServer/hello None

POST vaporServer/api/users/login “Basic” HTTP-authentication scheme

GET vaporServer/api/users Authorization Bearer token

GET vaporServer/api/users/:id Authorization Bearer token

PUT vaporServer/api/users/:id Authorization Bearer token

POST vaporServer/api/users Authorization Bearer token

DELETE vaporServer/api/users/:id Authorization Bearer token

GET vaporServer/api/cars Authorization Bearer token

GET vaporServer/api/cars/random Authorization Bearer token

GET vaporServer/api/cars/:int Authorization Bearer token

44 https://github.com/vapor/crypto-kit
45 https://tools.ietf.org/html/rfc6750

 47

11. Business model

In terms of proposed business model, the project aims to answer the following question:

How could a system that will predict where to have the cars placed to charge, for maximum
rental opportunity increment the company revenue?

The whole project is seen as service/platform offered to the above-mentioned companies. It will
not be a consumer facing product, but a product to be used inside the company, enterprise
application.
It will consist of a server, a ML service and a mobile application. Each night or at a certain amount
of time, the server would ask the DriveNow server for the list of addresses of the cars to be put to
charge. The server retrieves that list and it will send it to the Machine Learning service to have it
sorted. The Machine Learning service will send it back to the server, which will forward it to the
mobile application, to be used by the employee.

A native mobile application makes the most sense due to the fact that the employee is on the
move all day. Access to the device’s GPS is much easier from a native application than from a web
application. Also, another point for native application is battery management. If the application is
made using native SDK, the operating system can better manage the battery than a web
application.

On the next page, it can be seen how this service is envisioned to fit in with the Business Model
Canvas. After the Business Model Canvas overview, each of the 9 key points are explained.

 48

Key Partners:

- the electric charger networks (as currently there are different distributors offering electric
car charging stations) to have access to use their chargers

- municipalities – even if the electric charger networks have their own locations, the
municipality should have a 3rd party, unbiased list of these chargers

Key Activities:

- access car battery status – as stated in the explanation of the project
- plan the fastest route to a charger – driving a car to a charger is a cost and driving to the

closest charger can reduce that cost
- plan at which charger to leave the car – this is what the service wants to achieve

Key Resources:

- historical data about most user car rental areas in town – the whole service would not
function without this dataset

- up-to-date traffic maps of the city – this can be accessed from the municipalities and it is
going to help plan the fast route to the best suited charger

 49

- up-to-date charging stations map and types – not all electric cars have the same electric
socket; the map can be accessed from both the municipalities and the electric charging
networks

Value Proposition:
- Products and services - help improve charging habits; optimize car rental according to

demand
- Gain creators - rent more cars
- Pain reliever - localize cars better, more usage of cars fully charged, optimize charging

routes, avoid wasting time charging cars

Customer Relationship:

- Partnership – by partnering up with the different electric car rental companies

Channels:

- Communication channel - online, social media, through key partners, direct participation in
industry related events

- Sales channel - direct sales or sales through key partners

Customer segments:

- Electric rental cars services (DriveNow, Let’s Go, Green Mobility)
- Pains - lack of overall data analysis; lack of overview of city traffic and charger positioning;

interaction with other rental companies
- Gains - improve positioning of cars around town; optimize charging use; make cars

available when & where demand is higher
- Customer jobs - renting short term electric cars in flexible locations around town

Cost structure:

- Employee, Software licenses, server costs, 3rd party software services, coffee, insurance,
water, electricity, taxes

Revenue Streams:

- One time set up fee
- Monthly subscription fee
- Minimum guarantee - 1 year

At the end of the day, the rental company has revenue coming in when users rent/use their cars.
By trying to predict the placement of charging cars in areas where the user demand is high, it will
increase the company revenue, due to having the cars rented/used.

 50

12. Discussion & future improvements

The first thing that should be improved, or included, would be the machine learning service.

The Phase 3 app predicts the electric charger where a car should be put to charge, but it does not

do it using machine learning. It does it by using a simple “if statement” followed by 4 conditions.

This gets the job done, but it does not scale and it is not a solution where a pattern can be

observed and that pattern used in the coming future. The “if statement” solution does not scale

due to the fact that the conditions are manually specified in code. What would happen if no

charger fulfills the conditions? There will be nothing shown on the map. In that case, where would

the car go charge?

This proves the importance of the dataset. If a more convincing dialogue would had happened

when approaching one of the existing electric car rental companies, a viable dataset would have

been an important assets in this project.

Looking at the AutoTel Shared Cars Availability dataset from Kaggle46, it can be observed that

AutoTel project relies heavily on statistics to try to make the predictions. The project also uses 2

datasets to make the predictions, one for the location of the cars, containing historical locations of

the car up to several months back in time, and the other dataset contains the neighborhoods of

Tel Aviv. These 2 datasets combined help make the prediction.

At the beginning of the project, Phase 1 seemed very similar to the Travelling Salesman Problem.

Because of this similarity, the concept of graphs was introduced in the State of the Art chapter. In

the actual prototype, graphs are completely unused and instead are replaced by the Google Maps

Directions API.

As a future improvement, the Google Maps Directions API should be taken out and replaced by

graphs. The node of the graph would hold the car information (battery, interest in the car), but

also the charger information, and the edges would be the distance between the cars and the

chargers.

46 https://www.kaggle.com/gidutz/starter-autotel-shared-car-locations/notebook

 51

The graph calculations can be done on device, but this affect the user experience and can render

the mobile application unresponsive. The recommended place to perform the calculations for the

graphs is the server. The problem at the moment with the Vapor server is that it does not support

the distance calculations.

One solution to make this it work on the Vapor server would be to gather all the geographical

locations and have them forward to the Google Maps API to create a distance matrix, that will be

sent back to the server. Just like in the case of the Google Maps dependency in the iOS app, having

the distance matrix created by Google is an extra dependency.

One noticeable improvement that can be implemented in the Vapor server, would be to create a

GUI for it. At the moment, the only interactions that happens with the server is through HTTP

request using tools like Postman, Paw or cURL. A web browser can be used to make the API calls,

but the browser is not that easy to use in the case of other HTTP requests than GET.

It can be argued that by having no GUI for the Vapor server, it will be used by a set of trained

employees only, those that had a training into using the Vapor server. The absence of the GUI will

make the server inaccessible to all the company employees.

Regarding the token authentication request, this can pose a problem when combine with

biometric login on the mobile phone application. The flow follows this path: the user provides the

email and password in the application, a login API call is sent to the server, the server verifies that

the email and password are present in the user database and send back a token. The token is then

stored in the app and is subsequently used in all the following API calls.

By implementing biometric login, after the first successful login, the user is asked if the wants to

take advantage of using this login method. This entitles the user to skip providing the email and

password every time he logs in in the app. By skipping login screen, the app goes directly to the

next API call, the one where to get the list of cars.

The problem arises because the app has not received a token from the server to be used in the

header of the get list of cars request. As it is currently implemented, the token does not expire and

previous token can be reused, which solves the problem, but it is not an ideal solution.

 52

Ideally, a real authentication token should be implemented. An authentication token consists of 2

token: a bearer token that has a sooner expiration date and a refresh token that has a later

expiration date. When the user logs in, he is given both token. For all the following API requests he

uses the bearer token until it expires. When it expires, the server will refuse the connection. When

this happens, the user sends the refresh token. Upon receiving the refresh token, the server will

send a new bearer and refresh token back to the user.

13. Conclusion
The project started from the willingness to solve a problem a company is facing during day-to-day

operations.

In order to tackle it, a problem formulation has been stated:

“How could an electric charger prediction system based on machine learning be a solution for

maximizing rental opportunities for an electric rental car fleet?”

Several sub questions have been devised to help answer the problem formulation. They are shown

below but they are accompanied by a short answer:

• Why choose machine learning?

A pattern of usage can be identifies, by choosing machine learning, in the case of

the rental cars. The only condition for this to work is the availability of a viable

dataset. The pattern of usage can help the company identify unknown trends and

better act on them.

• What can be used instead of machine learning?

As it can be seen in the Phase 3 app and in the Discussion and Future improvements

chapter, machine learning can be replaced by a simple if statement containing 4

conditions. The if statement does work and gives results, but it is not a scalable

 53

solution and it requires human intervention when the results are not the desired

one.

• What does “solution” refer to?

Solution refers to the prototype. As it can be seen in the Development chapter, the

ideal solution consists of 4 elements, while the prototype consists of only 2.

• What does “prediction system” mean?

Prediction is one of the use cases of machine learning. Classical examples of

machine learning prediction refer to the sales price of a house, given that certain

properties of the house are known, and the same information is available for the

houses from the same neighborhood/area/city.

To answer the problem formulation, the project started out with just an idea and tried to come up

with a solution that can solve the problem captures by that idea. The presented solution failed to

include machine learning, but instead relies on manual calculations. The failure can be attributed

to the lack of a viable dataset, which could not be acquired.

 54

14. Bibliography

1. https://www.raywenderlich.com/773-swift-algorithm-club-graphs-with-adjacency-list - Ray

Wenderlich website, Swift Algorithm Club – Graphs, last accessed on 5.06.2019

2. Idem as number 1

3. http://mathworld.wolfram.com/AdjacencyMatrix.html - Wolfram Mathworld, last accessed

5.06.2019

4. https://www.khanacademy.org/computing/computer-science/algorithms/graph-

representation/a/representing-graphs – Khan Academy, Representing Graph, last accessed

5.06.2019

5. Idem as number 1

6. https://github.com/Avik-Jain/100-Days-Of-ML-Code – Github, 100 days of ML Code, last

accessed 5.06.2019

7. Idem as number 6

8. https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html – Neural Networks

Concepts, last accessed 5.06.2019

9. https://victorzhou.com/blog/intro-to-neural-networks/ - Introduction to Neural Networks,

last accessed 5.06.2019

10. Idem as number 9

11. https://azure.microsoft.com/en-us/services/machine-learning-studio/ - Microsoft Azure

Machine Learning Studio, last accessed 5.06.2019

12. https://aws.amazon.com/sagemaker/ - Amazon Web Service Sage Maker, last accessed

5.06.2019

13. https://www.ibm.com/cloud/machine-learning – IBM Watson Machine Learning, last

accessed 5.06.2019

14. https://cloud.google.com/ml-engine/ - Google Cloud Machine Learning Engine, last

accessed 5.06.2019

15. https://www.tensorflow.org – Tensorflow, last accessed 5.06.2019

16. https://bigml.com/ - BigML, last accessed 5.06.2019

17. https://vapor.codes – Official website for Vapor, Server-side Swift, last accessed 5.06.2019

18. https://www.sqlite.org – Official website for SQLite, last accessed 5.06.2019

 55

19. https://github.com/apple/swift-package-manager – Github, Swift Package Manager, last

accessed 5.06.2019

20. Idem as number 19

21. https://swift.org/about/ - Official Swift website, last accessed 5.06.2019

22. https://developer.apple.com/xcode/ - Xcode official website, last accessed 5.06.2019

23. https://cocoapods.org – Official Cocoapods website, last accessed 5.06.2019

24. https://cocoapods.org/pods/GoogleMaps – Google Maps on Cocoapods, last accessed

5.06.2019

25. https://github.com/hackiftekhar/IQKeyboardManager - Github, IQKeyboardManager, last

accessed 5.06.2019

26. https://github.com/Alamofire/Alamofire - Github, Alamofire, last accessed 5.06.2019

27. http://www.geomidpoint.com/random/ - Generate random geographical points, last

accessed 5.06.2019

28. https://www.random.org/integers/ - Generate random integers, last accessed 5.06.2019

29. https://chargemap.com/map – Chargermap.org, last accessed 5.06.2019

30. https://openchargemap.org/site – Openchargemap.org, last accessed 5.06.2019

31. https://openchargemap.org/site/develop/api – Openchargermap.org API, last accessed

5.06.2019

32. https://api.openchargemap.io/v3/poi/?output=json&countrycode=DK&maxresults=200&la

titude=55.6761&longitude=12.5683&distance=20&distanceunit=KM – API call for getting

all the electric chargers around Copenhagen

33. https://www.ibm.com/developerworks/rational/library/4706.html - Peter Eeles, Capturing

Architectural Requirements, 2005, last accessed 5.06.2019

34. https://www.charlesproxy.com – Charles Proxy, last accessed 5.06.2019

35. https://developer.apple.com/documentation/foundation/userdefaults – UserDefaults

documentation, last accessed 5.06.2019

36. https://cloudknox.io/authentication-vs-access-controls-vs-authorization/ - Authentication

vs access controls vs authorization, last accessed 5.06.2019

 56

37. https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistK

eyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33 - App

Transport Security, last accessed 5.06.2019

38. https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf - iOS Security – White

Paper November 2018, last accessed 5.06.2019

39. https://github.com/vapor/documentation/issues/395 – Github, Vapor SSL support issue,

last accessed 5.06.2019

40. https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storag

e_Cheat_Sheet.md – OWASP, Password Storage cheat sheet, last accessed 5.06.2019

41. https://docs.oracle.com/cd/E26180_01/Platform.94/ATGPersProgGuide/html/s0506passw

ordhashing01.html – Oracle Documentation, Password hashing, last accessed 5.06.2019

42. https://github.com/vapor-community/bcrypt – Github, Vapor Bcrypt, last accessed

5.06.2019

43. https://tools.ietf.org/html/rfc7617 - The 'Basic' HTTP Authentication Scheme, last

accessed 5.06.2019

44. https://github.com/vapor/crypto-kit – Github Vapor Crypto-kit, last accessed 5.06.2019

45. https://tools.ietf.org/html/rfc6750 - The OAuth 2.0 Authorization Framework: Bearer

Token Usage, last accessed 5.06.2019

46. https://www.kaggle.com/gidutz/starter-autotel-shared-car-locations/notebook – Kaggle,

Autotel shared car locations, last accessed 5.06.2019

