
Deep Neural Network for Alzheimer’s disease
detection

Aalborg University

M.Sc. Innovative Communication Technologies and Entrepreneurship

Raquel Cacho Zurrunero

June 2019

Title:
A Deep Neural Network for Alzheimer's disease detection

Project Period:
Spring Semester 2019

Semester Theme:
Master Thesis

Supervisor:
Per Lynggard

Project group no.:
Non applicable

Members:
Raquel Cacho Zurrunero

Copies:
1

Page numbers:
62

Date of completition:
June 6, 2019

Abstract:

The purpose of this thesis is to develop a system
that shows how deep learning can be used to
improve the diagnosis of Alzheimer's disease.
The project will be based on the literature review
of the disease and the research of the most recent
machine learning techniques in order to perform
the analysis of a possible solution.
As a result of this analysis, a conceptual design of
the system is proposed. The proposed solution
will be based on a Multilayer Perceptron
architecture that allows to predict the probability
of having the disease based on the patient's
clinical data.
Finally, the solution will be implemented and
tested, achieving an accuracy of 82.61%.

Aalborg University Copenhagen
A.C. Meyers Vænge 15
2450 København SV

Semester Coordinator: Henning
Olesen

Secretary: Maiken Keller

Contents

List of acronyms and abbreviations 1

1 Introduction 2

1.1 Problem formulation . 3

1.2 Limitations . 4

1.3 Methodology . 5

1.3.1 Gantt Chart of the report . 5

1.3.2 Agile realization of the project . 6

1.4 Structure of the report . 7

2 State of the Art 9

2.1 Alzheimer disease . 9

2.1.1 Causes . 10

2.1.2 Diagnosis . 11

2.1.3 Summary . 14

2.2 Machine Learning . 14

2.2.1 Classification in Deep Learning . 16

3 Analysis 19

i

3.1 Identification of the required data . 19

3.2 Defining the classifier . 22

3.3 Model hyperparameters . 23

3.3.1 Number of layers and neurons . 24

3.3.2 Activation functions . 25

3.4 Evaluation metrics . 26

3.5 Programming languages and libraries . 29

3.6 Requirements . 31

3.6.1 Functional requirements . 31

3.6.2 Non-Functional requirements . 32

4 Conceptual Design 35

4.1 System overview . 35

4.2 Required data input . 37

4.2.1 Description of the NACC Database 38

4.2.2 Analysis of the required characteristics 39

4.3 Data collection and pre-processing module 41

4.4 Neural Network . 42

4.5 Testing and visualization of results . 43

4.6 Summary . 44

5 Implementation 46

5.1 Data collection and pre-processing . 46

5.2 Neural Network . 49

6 Testing 53

ii

6.1 Accuracy and confusion matrix . 53

6.2 Receiver operating characteristic (ROC) . 55

6.3 Analysis of learning curves . 56

7 Conclusions 60

7.1 Future perspectives . 62

Bibliography 63

A Methodology - Gantt Chart 77

B Methodology - Agile Chart 79

C DSM-IV Diagnosis Criteria 81

D List of selected variables for the model 83

E Python code of the solution 85

F Script 1 - Tuning the number of neurons 94

G Script 2 - Tuning the activation function 97

H Script 3 - Tuning the optimizer 100

I Script 4 - Tuning batch size and number of epochs 103

iii

List of acronyms and abbreviations

AD Alzheimer’s Disease
ADCs Alzheimer’s Disease Centers
ADGC Alzheimer’s Disease Genetics Con-

sortium
ADNI The Alzheimer’s Disease Neuroimag-

ing Initiative
ADRDA Alzheimer’s Disease and Related

Disorders Association
APP Amyloid Precursor Protein
AUC Area Under the Curve
CNN Convolutional Neural Network
CPAD The Critical Path for Alzheimer’s

Disease
CSF Cerebrospinal Fluid
CSV Comma-Separated Values
CT Computed Tomography
DL Deep Learning
DNN Deep Neural Network
fMRI Functional MRI
FNR False Negative Rate
FPR False Positive Rate
FTLD Frontotemporal Lobar Degeneration
LBD Lewy Body Disease
MDS Minimum Data Set

ML Machine Learning
MLP Multilayer Perceptrons
MMSE Mini-Mental State Exam
MRI Magnetic Resonance Imaging
NACC The National Alzheimer’s Coordi-

nating Center
NCRAD National Centralized Repository

for Alzheimer’s Disease
NIAGADS National Institute on Aging Ge-

netics of Alzheimer’s Disease Data
Storage Site

NINCDS National Institute of Neurological
and Communicative Disorders and
Stroke

NP Neuropathology Dataset
OASIS The Open Access Series of Imaging

Studies
PET Positron Emission Tomography
RDD Researcher’s Data Dictionary
RNN Recurrent Neural Network
ROC Receiver operating characteristic
TNR True Negative Rate
TPR True Positive Rate
UDS The Uniform Data Set

1

Chapter 1

Introduction

Alzheimer’s Disease (AD) is a neurological disorder that causes the death of nerve cells in
the human brain. AD usually begins gradually and its first symptoms may be attributed to
the increment of the age or common forgetfulness. As the disease progresses, the patient’s
cognitive abilities deteriorate, including the ability to make decisions and carry out daily
tasks. Currently there is no cure for the disease, only a series of guidelines can be followed
to perhaps delay the progress of it. For this reason, an effective diagnosis will be a key factor
in order to improve the quality of life of their patients.

The motivation for the creation of innovation to support the battle against Alzheimer’s
disease is evident, not only from an ethical perspective but also due to the continuous
proliferation of Alzheimer’s cases in our society. Today, 50 million people worldwide live
with dementia, where two-thirds of them have Alzheimer’s disease [1]. Alzheimer’s cases
have overtaken cancer ones to become the most feared disease in the United States, with
a new case appearing every three seconds in the world [2]. At the moment the diagnosis
of this disease is made by combining an analysis of the patient’s medical history, different
cognitive tests and various clinical tests, such as photographic scans of the brain. But is all
this enough given the importance of an early diagnosis in the treatment of the disease?

Nowadays, through Machine Learning, it is possible to analyze data on a large scale and
with different algorithms, detecting patterns and models in a very short period of time. In
this way, there is a significant improvement in diagnostic methods using techniques which are
even imperceptible to human experience and reasoning. On the top of that, these days the
world of Machine Learning is more advanced than ever before, thanks to the newest deep neu-
ral networks. Simply explained, deep neural networks enable the creation of systems which

2

are powerful enough to represent any finite deterministic mapping between any given set of
inputs and a set of corresponding outputs. These networks allow powerful data processing,
allowing processes as complex as image identification or natural language processing.

In view of all the aforementioned, the aim of this project will be to analyze the possible
connection between an improvement in the diagnosis of AD and the latest deep learning
techniques. The number of variables that can influence the appearance or not of Alzheimer’s
disease are numerous and above all uncertain, being the human capacity a bounded resource
to detect early cases of the disease with confidence. So, would it be possible to analyze
all these variables through different deep learning techniques in order to offer a result that
indicates the probability of developing such disease? Perhaps technology can be united once
again with the medicine to discover new methods that allows to reveal the most determining
parameters in the presence of the disease.

1.1 Problem formulation

As has been mentioned, AD is a growing problem in our society. More and more cases of AD
are being found, and there is still no cure. Currently the area of machine learning is on the
rise, developing projects in all sorts of areas of society. This learning allows predicting an
output from different variables, being very useful for different clinical diagnostic processes
[3].

The aim of this project will be to find the link between these two areas: the diagnosis of
Alzheimer’s disease and machine learning techniques. To do so, each of these areas will be
studied separately, obtaining a critical view of the current situation. This vision will allow
to initiate an elaborated analysis, where once understood the present problem, the presence
or not of a possible solution through machine learning techniques can be analyzed.

The final objective of the report is presented below in the form of a research question.
In order to address this goal, different sub-questions have also been elaborated. These sub-
questions will enable to structure the way towards a final solid solution.

How could machine learning techniques be used to improve the diagnosis of
Alzheimer’s disease?

• Which data will be necessary in order to train the system successfully?

3

• Which is the most suitable architecture and parameters to achieve an accurate result?

• What level of accuracy can be achieved?

• What framework could be used to implement and test the selected model?

1.2 Limitations

The realization of this project will be affected by different limitations. These limitations
will present what is not expected to be addressed with the implementation of the project,
or various factors that have influenced the implementation of it.

In the first place, given the academic objective of the report, the time available for the
realization of the project will be limited. This will directly affect the complexity of the
system. Given the time constraints for research and training in various machine learning
technologies, it will not be possible to address all the current techniques. This will make us
discard the most complex techniques, such as image processing or sound through machine
learning systems.

Aspects such as the security or privacy of the system will not be analyzed. The present
project will present a solution in which the possible factors that provide security and privacy
in the processing of the information have not been examined. In the case that the project
will be used with potential real patients, these aspects would have to be analyzed and
implemented.

In the same line, the economic viability or possible business value of the system will not
be evaluated. A business model and possible cases of use will not be discussed. For this
reason, in the situation of a real implementation of the system in society, the value proposal
of the system and its possible costs should be analyzed too.

Finally, the data set used for the implementation of the system represents a bias of the
world population. It does not represent all possible countries, therefore, it will be difficult
to generalize the results to all the geographic regions.

4

1.3 Methodology

The methodology used in the elaboration of the project will be presented below. This
methodology will allow us to address the research question and organize the way of working.
Two ways of approaching the project have been used. In the first place, a preliminary plan
has been drafted based on the time constraint for the realization of the report. This plan
is illustrated in the form of a Gantt Chart, and will represent a time-plan to follow that
has as its goal the resolution of our research question in the time available. Secondly, a
schema that represents the current way of working will be presented. This scheme will be an
Agile representation of the elaboration of the project, where different loops are represented
in which the feedback received by the academic supervisor is continuously applied.

Both schemas are illustrated on Appendix A and B.

1.3.1 Gantt Chart of the report

As it has been previously mentioned, due to the time constraint on the realization of the
project, the first thing that has been made is a time planning of the elaboration of the report.

Figure 1.1: Gantt Chart representing the realization of the project

5

To do so, different ideally milestones has been established with the goal of delivering on
time the present project. As it can be seen on Figure 1.1, each of the milestones corresponds
with the realization of different parts of the report.

The realization of this graph has been very useful to establish each one of the parts or
chapters necessary in the elaboration of the project. At the same time, it is also of great
utility when organizing the optimal time to use in each one of them, offering a global vision
of each one of the maximum times available for every stage of the project. The full Gantt
Chart can be found on the Appendix A.

1.3.2 Agile realization of the project

Figure 1.2: Agile process of the project

Although the creation of a Gantt Chart is very useful for organizing the project on a
temporary basis, it does not address the daily way of working in the execution of the project.
For this reason, an Agile schema has been produced representing the implementation of a
system that allows to approach the research question presented in Chapter 1.

As it can be seen on Figure 1.2, this Agile process begins with a State of the Art phase.
During this phase, the required knowledge regarding the AD topic and machine learning
techniques should be acquired.

6

Once knowledge has been gathered in both areas, the Analysis phase will begin. This
phase aims to build the requirements of the system through a critical view of the knowledge
previously acquired. During this phase a first loop can be observed. In this loop it is possible
to go back to the first phase to gain additional information and then include it in the analysis.

When the analysis has been completed, the Design and implementation of the system
will begin. During this phase there may also be a need for new insights or more detailed
analysis, which is why different loops are presented.

The results obtained will then be evaluated in the Testing phase. Finally, the entire
system development process will be discussed through the Reflection and Future perspectives
phase.

A full description of this process can be found on Appendix B. It is important to under-
stand the reasons behind the choice of this working method. Although a static goal-oriented
plan, such as that presented in Section 1.3.1, is necessary in order to organize resources and
limited time, it is not sufficient to reflect the day-to-day work in implementing the project.
This is why an agile methodology has been chosen that allows to improve the results return-
ing to previous phases if necessary. This methodology also represents very well the feedback
received by the academic supervisor, improving initial versions of the project until a final
result is reached.

1.4 Structure of the report

The structure of this report will be presented below. This structure represents the flow made
for the elaboration of the system, so that the reader can analyze in a sequential way each
one of the necessary steps for the elaboration of such system.

An introduction to the project has been presented in the first chapter. Its motivation,
limitations, methodology and the problem to be solved have been elaborated. In this chap-
ter, the research question has been been presented, which will be analyzed throughout the
elaboration of the project. Also, the methodology used along the implementation of the
system has been exposed. This methodology will represent the plan to address the research
question and each of the steps that have been decided to implement.

The second chapter, State of the Art, presents a theoretical introduction in each of the
topics to be addressed in this report. First, the current situation of Alzheimer’s disease

7

will be presented, focusing on its diagnostic methods. Secondly, different concepts necessary
to understand the future realization of a machine learning system will be explained. This
theoretical base will allow the future analysis and implementation of the system.

The discussion of each of the elements necessary to approach the research question pre-
sented in chapter one, Introduction, will be carried out in the third chapter, Analysis. This
chapter will be based on the knowledge acquired on the second chapter and will conclude
with the presentation of the requirements of the system.

The fourth chapter of the project, Conceptual Design, will present the conceptual design
of the system. This solution will be based on the fulfillment of the requirements established
in chapter three, Analysis.

The implementation of the system will be addressed in chapter five, Implementation. It
will be based on the conceptual design presented in chapter four, Conceptual design, and
will be evaluated through chapter six, Testing.

In chapter six, Testing, the system will be proved. This will serve to analyze the overall
result of the report.

Finally, the conclusions of the project will be presented in chapter seven. This chapter
will recapitulate all the work done and will answer the research question presented at the
beginning of the report.

8

Chapter 2

State of the Art

In this chapter the basic concepts for understanding Alzheimer’s disease will be introduced,
addressing its main causes, symptoms and diagnostic methods. In the second part of the
chapter, the basis to perform a definition of machine learning will be presented. The types
of problems that can be solved with such technology and its architecture will be explained.

All this theoretical background will be the first step in order to confront the research
question presented on Chapter 1 and represents the foundations needed in order to start an
analysis on Chapter 3.

2.1 Alzheimer disease

Dementia is defined as the deterioration acquired in cognitive abilities that interferes with
the satisfactory performance of activities of daily living . Alzheimer’s Disease (AD) is a type
of progressive dementia that has memory deficit as one of its earliest and most pronounced
symptoms [4].

As a general rule the patient progressively deteriorates, exhibiting perceptual, language,
and emotional problems as the disease progresses. This deterioration is due to the fact that
the nerve cells, or neurons, that allow cognitive function in the brain have been damaged and
no longer function normally. In addition, Alzheimer’s disease usually occurs in combination
with other types of dementia, which is called mixed dementia.

AD has become a major social problem for millions of families and national health systems

9

worldwide. It is one of the most important causes of death in developed countries, behind
cardiovascular disease and cancer [5]. This dementia have such a strong impact on the health
system and society. Not only for its irreversible nature and the lack of curative treatment,
but also due to the huge burden that the disease impose on the family of the patients.
Although the most prevalent symptom of AD is the gradual loss of the ability to remember
new information, the following ones are also common of the disease [6]: difficulties planning
activities or solving problems; challenges completing familiar tasks at home, work or at
leisure; confusion about time or place; problem of knowing the current day of the week or
where they are; speech or writing difficulties; decreased ability to organize personal items
and remember where they are located; apathy or depression, including drastic personality
or mood changes.

The appearance of these symptoms as well as the progression of the disease, varies greatly
from one individual to another, making his diagnosis a difficult and laborious labor on each
patient.

2.1.1 Causes

Although the exact causes of Alzheimer’s disease and why it occurs are still unclear, abnormal
presences of two proteins have been identified in the brains of the patients of AD [7]. It is
know that the brain is made of neurons, which are interconnected to form a vast network.
Such connections, named as synapses, enables the transmission of information from one
neuron to another. In the case of the patients of AD, two main brain lesions are formed
which affects directly to those connections in their brains.

The first one is produced by the beta-amyloid protein, or commonly called amyloid.
This protein tends to accumulate in form of plaques in the brains of AD patients. Such
aggregates, which disrupt the interconnection between neurons, are called senile plaques or
amyloid plaques. Senile plaques are irreversible, meaning that once they are formed, their
disappearance is no longer possible. Elderly individuals suffering from Down’s syndrome,
are particularly prone to develop insoluble amyloid deposits which results on the probable
development of AD [8]. The reason behind this risk factor is the additional copy of the
Amyloid Precursor Protein (APP) gene on individuals with Down syndrome. This gene
usually increases the production of beta amyloid protein, triggering the chain of biological
events leading to Alzheimer’s disease.

The second protein that is linked with the presence of the diasease is the tau protein.

10

When a neuron communicates with another, a signal goes from the body connection, knows
as soma, to the neuron’s synapse to transfer the information. The signal passes through the
skeleton of the neuron which is composed by microtubules. These microtubules are stabilized
by the tau protein. In healthy neurons, tau normally binds to and stabilizes microtubules.
In AD however, tau protein becomes defected and detaches from the microtubules sticking to
other tau molecules [9]. Thus, the skeleton of the neuron disassociates since his microtubules
are not longer maintained by the tau protein. Without the skeleton the neuron degenerates,
loosing all his connections with the rest of the neurons and generating neurofibrillary tangles
which causes sooner or later his dead.

Neurofibrillary tangles and senile plaques do not follow the same pathway in the brain
over time. Neurofibrillary tangles first develop in a region called the hippocampus, which is
the responsible of learning and memory functions. The progression involves brain atrophy,
being reflected in memory problems, speech difficulties, recognition or incapacity to perform
organized tasks. Senile plaques develop differently, they are initially observed in the cortex,
secondly in the hippocampus to eventually reach the whole brain following a central pattern
movement. Their progression does not usually corresponds to the symptoms of the disease.
And, even if these brain abnormalities are common causes of the AD, what is still a challenge
to be solved is the reason behind these unusual levels of both proteins. Currently, the few
theories that attempt to explain the unusual behavior of these proteins are disparate, from
possible genetic, hereditary causes or the patient’s lifestyle. In addition, amyloid plaques
and neurofibrillary tangle formation may occur on different time scales. Amyloid concen-
tration is thought to develop first during the long preclinical phase, while the development
of neurofibrillary pathology accelerates slightly before the appearance of the symptomatic
phase of AD [10].

As a result, even if the cause of AD remains controversial and is incompletely understood,
the presence of senile plaques and neurofibrillary tangles constitute the major neuropatho-
logical characteristics of AD resulting in an important area to continue the research [11].

2.1.2 Diagnosis

The criteria for the clinical diagnosis of Alzheimer’s Disease (AD) were established by a
National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and
Alzheimer’s Disease and Related Disorders Association (ADRDA) workgroup in 1984 [12].
This initial criteria were designed with the expectation that in most cases, subjects who man-

11

ifest the common symptoms of the disease would have the AD pathology. However, in the
following years of research it has become clear that this clinical-pathological correspondence
is not always consistent. For example being possible for a patient to present amyloid plaques
in the absence of any obvious symptoms [13]. Nowadays, the diagnosis of the AD can be
divided in two main areas depending on whether it is oriented into the different qualitative
and quantitative clinical expressions of disease or in the pathophysiological process that un-
derlies the syndrome. As a result, the actual criteria combines clinical and neuropathological
patterns assigning three different level of diagnosis, "possible AD", "probable AD" or "definite
AD" [12].

Pathophysiological diagnosis Biomarkers are parameters - physiological, biochemical
or anatomic - that can be measured in vivo that reflect specific features of the disease
related to pathophysiological processes [14]. In the case of Alzheimer’s disease, biomarkers
are measured by image scanning, blood analysis or lumbar puncture tests. But in order to
use a biomarker as core of a diagnostic, it should be validated beforehand. This requires
multiple studies in large groups of people establishing if the biomarker accurately and reliably
indicates the presence of disease. Unfortunately, this is not the current situation of the
Alzheimer’s biomarkers, which can not offer an accurate and standardized threshold that
indicates the presence of the disease. As a result, is important to highlight that most of
the diagnostics of AD dementia are based in clinical processes, being the pathophysiological
diagnosis a complementary method for the medical practitioner.

The first biomarker that can help in the diagnosis of the AD is the Cerebrospinal Fluid
(CSF) examination. Due to the free transport of proteins between the brain and the the
body through the CSF, beta-amyloid and tau levels are reflected in the CSF analysis which
can be significant even at an early stage of disease [15]. However, the association between
CSF biomarkers and the concentrations of deposited amyloid or neurofibrillary tangles in
the brain remains unclear. It has been proposed that the generation of amyloid plaques
in the brain may results in a reduction of amyloid level in the CSF analysis. Whereas the
presence of neurofibrillary tangles will be represented by high tau protein levels on the CSF
results [16]. But not all scientific studies affirm these hypotheses, making such a biomarker
an inconsistent test with uncertain value [17][18].

Neuroimaging is among the most promising areas of research focused on early detection
of Alzheimer’s disease. Structural imaging provides information about the shape, position or
volume of the brain. Structural techniques include Magnetic Resonance Imaging (MRI) and

12

Computed Tomography (CT). Through those image analysis are focused on the identification
of a possible atrophy in the hippocampus or in the entorhinal cortex, which is associated
with a decline in memory function and an increased risk of AD [19]. However, scientists
have not yet agreed upon standardized values of the brain volume that would establish
an accurate prevalence of the disease. In the case of functional imaging, it reveals how
well cells in various brain regions are working by measure their sugar and oxygen levels.
Functional techniques include Positron Emission Tomography (PET) and Functional MRI
(fMRI). Functional imaging research suggests that those with Alzheimer’s typically have
reduced brain cell activity in certain regions. For example, studies with fluorodeoxyglucose
in PET analysis indicate that Alzheimer’s is often associated with reduced use of glucose in
brain areas important in memory, learning and problem-solving [20]. However, as always,
there is not yet enough information to translate these general patterns of reduced activity
into standardized diagnostic information of the disease.

In resume, biomarkers are mainly used to detect anomalies in the brain related with
the amyloid or tau accumulations or as a tool to discard other possible diseases. But there
is important to understand, again, that although sophisticated image and CSF analysis
methods do exist, should not be used as the only procedure for the diagnosis of AD [12]. The
reasons behind this limitations are firstly, that the core clinical criteria provide an accurate
diagnostic in most of the patients. Secondly, the need of more research to be done in order
to establish standardized biomarker’s results and methods. And finally the limitation that
not every medical institution across the world has access to such sophisticated tests.

Clinical diagnosis Regarding the clinical diagnosis of the AD. A comprehensive physical
examination of the patient should be performed. It includes a brief neurological and mental
status evaluation, a review of the lifetime medical history and an analysis of the patient’s
lifestyle.

In order to test the mental status of the patient, the most common symptoms of the
disease will be evaluated through a cognitive examination. The cognitive capacity of the
patient is evaluated based on a combination of two methods. Firstly, a personal interview
with the patient and close family members will be performed. And secondly, a brief cognitive
exam which reflects the mental state of the patient. The Mini-Mental State Exam (MMSE)
is one of the most commonly used screening tests to evaluate cognitive functioning [21]. The
MMSE is a brief, structured test that takes about 10 minutes to complete. The test also
includes the evaluation of variables such as the gender of the patient, his age, his educational

13

level or various risk factors such as diabetes or hypertension.

Finally the physician should discard other similar diseases as a diagnosis of mild cognitive
impairment (MCI), fronto-temporal dementia, Lewy body disease or vascular dementia [22].

As a result of this cognitive examination, the physician will be able to apply the stan-
dardized DSM-IV Criteria for the Diagnosis of Alzheimer’s disease, resulting on a clinical
diagnosis of the dementia [23]. The complete version of the DSM-IV Criteria for the Diag-
nosis of Alzheimer’s can be found in Appendix C. This diagnosis is defined as impairment
in two or more cognitive domains which corresponding with the memory domain, and one
or more of the following: aphasia (language problems), apraxia (impaired motor ability),
agnosia (failure to recognize known objects), or deterioration in executive function.

2.1.3 Summary

As a summary of all the information gathered on the previous sections, the following list
offers the main points that can be highlighted from a medical prespective of the disease:

• The AD is characterized by affecting the cognitive function of the patients, specially
to the memory domain.

• The abnormal presence of beta-amyloid and tau proteins produces senile plaques and
neurofibrillary tangles, respectively. Although they have been identified as the main
neuropathological characteristics of the disease, the cause behind the unusual behavior
of these proteins is still uncertain.

• The diagnosis of the disease can be divided in two main areas:

– Pathophysiological diagnosis: based on the measure of biomarkers (CSF, MRI,
PET .. etc).

– Clinical diagnosis: based on the medical history of the patient, an analysis of his
lifestyle or habits and cognitive/metal evaluation.

2.2 Machine Learning

Arthur Samuel in 1959 defined Machine Learning (ML) as the “field of study that gives
computers the ability to learn without being explicitly programmed”. Nowadays machine

14

learning can be understood as a combination of several disciplines such as statistics, infor-
mation theory or functional analysis.

Depending on the type of learning task to perform, ML can be subdivided into two
different fields, supervised or unsupervised learning. Supervised learning requires a priori
knowledge of what the result should be [24]. Pairs of data inputs and data outputs have to
be presented to the ML system during the learning phase. The learning process will be focus
on trying to guess the output for a particular input which, later on, will be contrasted with
the real output. Therefore the ML system will learn with the computation of this process
for each corresponding input. On the other hand, unsupervised learning is based on the
clustering approach. In this type of learning there is no tagged information. There is no
distinction between data input or output, being just a sum of different information. In this
case the learning will be focused on the searching of patterns, resulting in the creation of
different clusters or classifications among the information [25].

Approaching the different ML techniques to the present project, the following sections
can be addressed towards supervised learning. This is because the objective will be to
determine a specific output, the presence or not of Alzheimer’s disease for a given patient.
This output will be determined by the combination of different medical input data, being the
objective of the project to generate a model which could generate an accurate result when
new information is presented to the system.

Supervised problems can be categorized into regression and classification problems, de-
pending if the output is continuous or discrete. In this project, the focus is set in a clas-
sification problem, where the goal is to learn a mapping from inputs x to outputs y, where
y ε {1, ..., C} , C being the number of classes to whom y may belong [26]. As a result, the
output will be a class probability vector which is limited to only two values in the case of
binary classifications, C = 2. In this case, like it is the case for this project, the result will be
each of the probabilities for a certain input x to belongs (y = 1) or not (y = 0) to a certain
group.

In order to understand the learning process of a classification problem, it is important to
notice that the supervised keyword comes from the idea of having a previously labelled and
classified data set, that is, having a sample set which is already known to which group, value
or category the examples belong. With this group of data, called training data, a model is
designed to predict future outputs. The algorithm learns to classify the input samples by
comparing the result of the model, and the real label of the sample, making the respective
compensations to the model according to each error in the estimation of the result.

15

To measure the efficiency of learning, it should be tested if the generated model can,
from the trained examples, generalize the learned behavior so that it is good enough on data
not seen a priori. The most common way to measure this accuracy is by saving some of
the initial examples to be used later as validation of the learned machine. The correctness
of a classification can be evaluated by computing the number of correctly recognized class
examples (true positives), the number of correctly recognized examples that do not belong
to the class (true negatives), and examples that either were incorrectly assigned to the class
(false positives) or that were not recognized as class examples (false negatives) [27]. These
four measures can be represented on the confusion matrix.

2.2.1 Classification in Deep Learning

Even ML technology powers many different supervised issues in the society, his ability to
process natural data in their raw form will be limited [28]. For decades, constructing a
pattern-recognition or machine-learning system required careful engineering and considerable
domain expertise to design a feature extractor that transformed the raw data, such as the
pixel values of an image, into a suitable internal representation or feature vector from which
the learning system could work with [29]. The big drawback of ML methods reside in this
handmade feature selection which will be needed in order to identify and remove unneeded,
irrelevant and redundant attributes from data that do not contribute to the accuracy of a
predictive model.

Deep Learning (DL) allows to receive raw data as input of the system, being able to au-
tomatically discover all the necessary relations to perform the classification. This is possible
building a layered structure composed by different simple modules which are able to learn
by themselves and compute non-linear mappings, known as Deep Neural Network (DNN)
[28].

DNN is a mathematical representation of the human neural architecture [30]. A neural
network is composed of a series of nodes, or neurons, which are organized in layers. It is
formed by an input layer with as many neurons as features has the input, as many hidden
layers as the models requires and an output layer. In the case of binary classification, the
output layer has only one unit that outputs the probability to belong to the positive class.
Each cell of the network has an output that is transmitted to other neurons in the network.
At the same time, each neuronal connection has a coefficient called weight, by whom the
outputs are multiplied. Thus, each neuron receives as input, the weighted outputs of the

16

previous neurons. If the value of this sum is above a threshold, it fires, sending its output
to the next neurons. The weighted inputs are summed and passed through an activation
function, which is a simple mapping of summed weighted input to the output of the neuron.
If the summed input was above a threshold, for example 0.5, then the neuron would output
a value of 1.0, otherwise it would output a 0.0. In addition, a single bias node is added for
the input layer and every hidden layer, which typically will produce constant value 1 [31].
This bias node is going to be weighted too, being possible to transform it into negatives or
positive values, allowing the output of an activation function to be shifted [32].

Figure 2.1 illustrate one of the simplest example of a DNN with two input neurons a[1]
1

and a
[1]
2 , a hidden layer with two neurons a[2]

1 and a
[2]
2 , and a single output neuron a

[3]
1 .

Both input neurons a[1]
1 and a

[1]
2 correspond to the input feature vector x, which in this

case only has two features, being x = {x1, x2}. An activated function is applied by the
neurons in the hidden layers to the weighted inputs a[2]

1 (x) = φ(za[2]
1 (x)), being za[2]

1 (x) =
θ

[1]
11a

[1]
1 + θ

[1]
12a

[1]
2 + 1× θ[1]

10 where θ[1]
11 and θ[1]

12 are weights and 1× θ[1]
10 the bias term. Similarly,

the output neuron applies an activation function to the weighted output of the hidden layer
where zo(x) = θ

[2]
31a

[2]
1 (x) + θ

[2]
32a

[2]
2 (x) + 1× θ[2]

10 .

Figure 2.1: Example of neural network with one hidden layer

The learning process The DNN finds the correct mathematical manipulation to turn
the input into the desired output, whether it be a linear or non-linear relationship. As it
has been mentioned before, each of the connections between neurons is defined by a synaptic
weight, which indicates the strength of that specific connection. The learning process is
achieved by changing iteratively the values of the connection weights, trying to find the best
hypothesis between the input and output of the network. This learning process, known as

17

the training of the network, is based on different training algorithms which minimize the
difference between the network output and the desired result [33].

Trying to map it into mathematical expressions, the model uses a training dataset con-
stituted by pairs input-target, D = {xi, yi} where xi is a vector of features an yi are the
expected outputs. Let θ denote the weights of the model and y represent the output value.
The aim is to find a combination of θ that maximizes the likelihood of the output and
the target. The training process starts making the samples go through the network and
computing the error, which is called the forward pass phase . After the forward pass, the
error is calculated and propagated backwards so as to optimize the θ. This method is called
back-propagation, and is one of the most common training algorithms [34][35].

Thus, the training of a neural network by back propagation takes place in three stages:
feed forward of the input information, calculation and back propagation of the associated
error and adjustments of the weights. The process of forward pass and back-propagation is
repeated until the gradient converges to an optimal solution. Thus, back propagation takes
the error computed for the output of the network and propagates it backwards to all the
neurons [36]. It calculates the error associated with each unit from the preceding layer and
continue until the input layer is reached. These error measurements for each unit can be
used to calculate the partial derivatives in every node (or neuron). These partial derivatives
are used to minimize the cost function and update the weights. It is important to notice
that bias nodes do not receive input from previous layer,thus, they should not be included
in back propagation optimization algorithm [37].

As a result, DL can be understood as a type or evolution of different ML techniques,
allowing to learn very complex functions through their layered structure. But this ability to
perform such a difficult tasks has a price, the computational cost of training these complex
networks [38]. In addition, DNN requires significant volumes of data to reach a decent level
of accuracy, being not possible to apply DL architectures to small datasets [39]. Finally,the
complexity of an architecture with so many layers makes it difficult to interpret all the
intermediary operations. Thus, the algorithm which maps input and expected output is not
as straightforward as ML techniques, being difficult to predict the consequences of small
changes on the whole network.

18

Chapter 3

Analysis

In this chapter each of the key aspects in the implementation of a machine learning system
that allows the diagnosis of AD will be analyzed. This analysis will be focused on each of
the challenges exposed through the research question at the beginning of the report. The
concepts learned in Chapter 2 will be taken into consideration, adding the critical vision
that allows us to combine the field of AD with Machine Learning technology. Through this
analysis it will be examined the ideal characteristics for a dataset candidate, the bases of
the classifier architecture and the main programming languages and frameworks that can be
applied in the project.

3.1 Identification of the required data

One of the key aspects to create value by means of automatic learning system is to collect the
right input data to work with. In the case of this project, the information should be focused
on all the data that are commonly used by the professional practitioners in the diagnosis of
Alzheimer’s disease.

As explained in the section 2.1, two major sources of information can be distinguished
depending on the different methods used for the diagnosis of the disease. All the information
that the doctor can obtain from the patient without external tests, or on the other hand,
data obtained from specific tests such as brain scans or CSF examination. These last tests
require a complex and professional exploration, such as the analysis of the images scanned.
And although this analysis can be carried out through a deep learning system, as it have been

19

Risk factors analyzed Medical report
Age [44] [45] [46]
Female gender [44] [46]
Low education level [44] [45] [46]
Family history of AD [44]
Presence of APOE4 gen [45] [46]
High blood pressure [44] [45] [46]
Heart disease [44] [45]
Diabetes [44] [45] [46]
Smoking [44] [45] [46]
Frequent consume of alcohol [44] [45] [46]
High cholesterol [44] [46]
Depression [44]
Head injuries [44] [45]
Vitamin B12 deficit [46]
Obesity [44] [45] [46]

Table 3.1: Risk factors under scope for different medical researches

stated on Section 1.2, due to the time constraint and given its initial complexity, the project
will be restricted to already processed quantitative data instead of images. In addition, the
study of the disease based on the use of the analysis of MRI images by means of automatic
learning algorithms or Machine Learning, is a field that in the last decade has given rise to a
significant amount of scientific studies [40–43]. Being able to be, in the future, a complement
to the present project in order to improve the performance of his outcome. Consequently,
the search for a future database will be oriented only to that information that comprise the
clinical diagnosis, such as medical history of the patient, age, sex or the presence of different
risk factors. Also, any mental status evaluation such as the MMSE or any similar test, will
be also valuable data since they are summarized in a standardized numerical score being
easy to interpret.

In order to determine the necessary features that a dataset should contain, related works
have been analyzed. Firstly, focusing on a medical point of view, a research about different
medical investigations of probable risk factors has been conducted. Table 3.1 shows each
of the parameters that have been analyzed through these medical studies to conclude their
influence on the presence of the disease. On the other hand, an analysis of the selected
features by similar machine learning projects has been performed showing the results on
Table 3.2. As a result, merging the medical perspective of the main risk factors of the
disease and the feature decision of different machine learning projects, the ideal dataset

20

Selected features Machine learning projects
Age [47] [48] [49]
Gender [47] [48] [49]
Education level [49]
Family history of AD [48]
Vision/hearing deficiency [49]
Hypertension [47] [48] [49]
Heart disease [47] [48] [49]
Diabetes [47] [48] [49]
Smoking [47] [48] [49]
Frequent consume of alcohol [47] [48] [49]
Depression [49]
Vitamin B12 deficit [49]
Obesity [47] [48] [49]
MMSE score or related cognitive tests [47] [48] [49]

Table 3.2: Selected features by related machine learning projects

should contain, ideally, the maximum of the parameters mentioned in Tables 3.1 and 3.2.

However, not only the quality of a dataset will be enough to reach good results. Also, the
available amount of data will be a key factor to consider in the selection of an appropriate
dataset. Being useless to find a set of data that includes all the desired parameters if it is
limited only to a small number of samples [39]. The system will need many samples from
different patients in order to learn and deliver reliable results. Making a research about
similar projects, a threshold value in the minimum size of the dataset can be 8.000 samples.
This value is based on the projects exposed on 3.2, which are trying to solve a similar problem
having 9.000, 5.432 and 22.594 samples respectively in each of them.

Likewise, it is important to emphasize the fact that these data must be labeled, linking
the information collected from each patient to the outcome of his diagnosis. Since, at it was
explained in 2.2 section, this labeled information allows the system to learn the desired output
being able to guess in a future a likely label from an input unlabeled data. Furthermore, the
variety of such information will also be another aspect to consider. Two types of results will
be needed, those patients who have been diagnosed with AD and those who have not, and,
the amount of information comprising each of these two groups should ideally be balanced
[50]. A dataset will be considered as balance if it contains the same number of patients with
AD as without the disease. But, as can be understood, if the search is focused on a database
of patients who have gone through the possible diagnosis of the disease, most of the time the

21

cases of AD will predominate against those who have not, being impossible to find a fully
balanced database.

3.2 Defining the classifier

Even there are many different machine learning paradigms to design a classifier: logistic
regression, decision trees or support vector machines among others [51]. As it has been
mentioned in Section 2.2, deep learning solutions provides a more powerful and flexible
framework for supervised learning problems. By adding more layers and more units within
a layer, a deep network can represent functions of increasing complexity which depends on a
huge number of features. This flexibility on working with complex problems and non-linear
situations, will be one of the main points to choose a DNN solution rather than traditional
ML algorithms.

In addition, Deep Learning machines usually work better than traditional ML tools be-
cause they also learn the feature extraction part. In the case of the present project, the data
input will be composed by a large amount of features that can influence in the presence or
not of the disease. Due to this, the design of a DNN makes even more sense rather than
the implementation of traditional ML algorithms where the engineering of that amount of
features could be a really tedious work. This feature engineering not only implies a laborious
task, it also requires a huge domain knowledge in order to select the most relevant features
for the model [52]. Due to the lack of this medical knowledge, again the selection of a DNN
rather traditional ML methods become even more clear than before.

But once that the DL path has been taken, the immediately next step to consider is the
selection of the most appropriate type of DNN. There is no general rule about which type
of DNN is the best for each specific problem, since most of the times, the same problem
can be solved by different approaches. However, it is important to understand the data that
will feed the model and the type of problem that is trying to be solved in order to, at least,
discard some types of DNN which usually offer poor results under those situations.

Three main presentations of DNN has been analyzed to evaluate their possible applica-
tions to the project: Multilayer Perceptrons (MLP), Recurrent Neural Network (RNN) and
Convolutional Neural Network (CNN). Recurrent Neural Network (RNN) are neural net-
works which have a backward connection between hidden layers creating directed cycles in
memory [53]. As a result of introducing feedback into the network structures, it is possible

22

to accumulate information and use it later. This type of DNN are the preferred ones for
sequential data, as time series, audio or video [54]. But approaching the present project,
RNN were discarded due to the reason that they are designed to work with time dependent
prediction problems. In the case of the project, the input data will be composed by different
patient’s parameters that, usually, can be obtained on the first medical session. Therefore, it
will be beyond the scope of the project to analyse the evolution of these parameters over time,
definitively eliminating the time dependency of the data and consequently, the possibility of
using a RNN solution.

Multilayer Perceptrons (MLP), also known as feed-forward neural networks, consists of
a large number of simple neuron-like processing units, organized in layers. Is a feed-forward
layered network of artificial neurons, where the data circulates in one way, from the input
layer to the output layer [55]. Thus, every cell in the layer is connected to all the cells in
the previous one but has no link with the neurons of the same layer. Due to the reason that
MLP are suitable for classification prediction problems where inputs are assigned a class or
label [56], it will be one of our preferred candidates. In addition, MLP are one of the simplest
architectures to implement, being a very good choice in order to build a first version of the
project.

However, the main problem of MLP architectures is that these networks do not scale well
with image data as input [57]. Thus, Convolutional Neural Network (CNN) were created
in order to face those difficulties working with multidimensional inputs, as images or sound
processing [58]. The benefit of using CNN is their ability to develop an internal representation
of a two-dimensional image using, instead of the normal activation functions, convolution
and pooling functions through their hidden layers. As a result CNN are mostly used to work
with multidimensional data, since at his proper name suggest, the convolution operation will
be performed on the data which only makes sense for spatial information. Therefore, due to
the reason that the input information of the present project will not be composed by images
or any other multidimensional data, the use of a CNN architecture will not be one of the
preferred choices.

3.3 Model hyperparameters

In order to implement a solution based on a neural network architecture, different parameters
should be defined.

23

In a standard MLP there is a layer of input nodes, a layer of output nodes, and one
or more intermediate layers. As a remider, a single-layer neural network can only be used
to represent linearly separable functions. This means very simple problems where the two
classes of the classification problem can be neatly separated by a line. This is not the case
of the domain of the project, where most of the times, it can be found outliers defined by
different patients with specific characteristics. Having an architecture composed by more
than one layer allows to build more complicate functions that can fit with the solution of
these complex problems, as the case of a MLP.

3.3.1 Number of layers and neurons

But, how many intermediate layer should be needed? And, by how many neurons should
the layer be composed? These will be first issues to analyze for the implementation of the
present system.

Even that there is not a fixed solution about the most appropriate number of intermediate
layers, usually one or two hidden layer are sufficient to solve most of the non linear complex
problems [59]. Regarding the number of neurons the most common rule-of-thumb methods
are the following:

• The number of hidden layer neurons are 2/3, or between 70-90%, of the size of the
input layer [60].

• The number of hidden layer neurons should be less than twice of the number of neurons
in input layer plus the number of neurons in the output one [61].

• The size of the hidden layer neurons is between the input layer size and the output
layer size [62].

It must be considered that all the information previously presented are suggestions in the
design of the architecture, and none of them has been proven to be the correct one in all
domains. It will be for this reason that, in a future design of the system, these references
can be used as a base on the initial design but it will convenient to continue using the trial
and error method to establish the best number of layers and nodes for a particular model.
In addition, even though in machine learning there is the theorem of "No Free Lunch", which
comes to mean that a solution cannot be generalized to any type of problem. As an extra
reference it is possible to observe the architecture of similar projects, that is to say, with

24

the same source of data or similar and the same objective. In these projects, [49] [63] , an
architecture with 2 and 1 hidden layers respectively has been implemented, obtaining an
accuracy greater than 90%.

3.3.2 Activation functions

Another important aspect to analyze is which activation function will be used for each of the
layers. The most common activation function used in MLP is Sigmoid activation function
[64]. It takes a real valued input varied from −∞ to +∞ and saturates it to a bounded
range between 0 and 1, which are the values used to represent the output class for a binary
classification problem. In particular, large negative numbers become 0 and large positive
numbers become 1. It is a useful activation function for the output layer of a binary classifier
as its output can be interpreted as the probability of the input to belong to the positive class
(y = 1). However networks using activation functions whose derivatives tend to be very close
to zero, such as the Sigmoid function, are especially susceptible to the vanishing gradient
problem [65]. The vanishing gradient problem can occur in artificial neural networks trained
using gradient descent with backpropagation. When training such a network, the gradient of
the loss function is used to adjust the weights of the network on each iteration. The vanishing
gradient problem occurs when the gradient is sufficiently small so as to effectively prevent
weights from updating during training, blocking the network from learning [66]. Also, the
Sigmoid output is not zero-centered, which can lead to undesirable zig-zagging dynamics in
the gradient updates for the weights [67] .

Other of the most common activation function used in backpropagation learning is Hy-
perbolic tangent, or Tanh, activation function. Hyperbolic tangent activation function is
similar to Sigmoid activation function but it transform the input to an output between -1
and +1 instead 0 and +1 [68]. Like the Sigmoid function, its activations saturate, but its
output is zero-centered.

While Sigmoid and Tanh have been commonly used activation functions, Relu provide
faster and more effective learning of deep neural networks on complex and high-dimensional
data [69]. Relu function works by thresholding values at 0. It outputs 0 when x < 0, and
conversely, it outputs a linear function when x ≥ 0 [70]. As it has a linear, non-saturating
form, it was found that it greatly accelerates the convergence of the stochastic gradient
descent, compare to the Sigmoid and Tanh. Also, compared to Tanh or Sigmoid neurons
that involve expensive mathematical operations, Relu function can be implemented by simply

25

Mathematical
expression Advantages Disadvantages

Sigmoid hθ(x) = 1
1 + e−x

– Produce binary output,
in range (0,1) [67]

– Suitable for binary clas-
sification output layer
[71]

– Saturates and kills
gradients [65]

– The result of the out-
puts is not zero cen-
tered [67]

Tanh hθ(x) = 2
1 + e−x + 1

– Output zero centered, in
range (-1,1) [65]

– Saturates and kills
gradients [65]

Relu hθ(x) = max(0, x)

– Greatly accelerate the
convergence, due to its
linear, non-saturating
form [67]

– Non computational ex-
pensive [65]

– Dead neurons, once
the gradient is zero
the neuron will never
activate on any data-
point again [72]

Table 3.3: Comparison between Activation functions

thresholding a matrix of activation at zero. However, it has an important drawback, Relu
units are prone to die during training once that the gradient has reached the zero value.

As a resumen, in the Table 3.3, it can be found a comparison between the previous
activation functions, including their mathematical expressions.

3.4 Evaluation metrics

The most commonly used metric to measure the performance of an automatic learning model
is its accuracy [73]. This metric will not only be used to evaluate the overall performance
of the system, but will also be the reference when selecting between different model hyper-
parameters. In this way, the combination of parameters that offer greater accuracy can be
chosen.

In this subsection different metrics and evaluation techniques will be presented for two
different objectives. The first one will concern all those metrics that allow to choose the

26

most suitable parameters for the model. These metrics mainly include cross-validation tech-
niques for the choice of model hyperparameters [74] and the use of a validation set for the
identification of under-fitting or over-fitting situations [75]. On the other hand, the main
techniques for evaluating the final results of a classification model will be introduced. These
metrics will be the accuracy of the model, its confusion matrix or its Receiver operating
characteristic (ROC) curve [76].

The concept of cross validation will be necessary to be able to evaluate the functioning
of our model with different parameters. Different models, with different parameters, will be
trained through the training set and their performance will be validated with the validation
set. This set will be necessary because if we use the test subset to validate the different
models and choose the most appropriate one, then this test will have already been seen by
our final model and will not be valid for the final evaluations.

Cross Validation or k-fold validation consists of dividing the training set into k subsets
and, at the time of training, each k subset will be taken as the model’s test set, while the rest
of the data will be taken as the training set [77]. This process will be repeated k times, and
in each iteration a different test set will be selected, while the remaining data will be used,
as mentioned, as a training set. The performance will be the average of the performance in
each iteration. This technique will be very useful when a small dataset is available. Another
way to perform cross validation will be through the hold-out method. This method differs
from the previous one in that the dataset is directly divided into training and validation
subsets. This method will be much less computationally expensive, but will require a larger
dataset size [74].

Comparing the two methods, the k-fold method has the advantage that all data are used
to train and validate, so more representative results are obtained a priori. On the contrary,
by means of the hold-out technique it is possible to have bad luck when making the a priori
division between training and validation which may result in no representative samples of the
dataset. For this reason, even if the dataset is not small, if there is sufficient computational
capacity, it will always be better to perform a k-fold method instead of a hold-out [78].

K-fold validation process is used to select the model hyperparameters, repeating this
process for each of the candidates. Thus, the precision and error are calculated for each
of the models produced so that they can be easily compared and a finalist with the best
results can be chosen. This technique will be very useful when a small dataset is available,
but on the contrary, the great disadvantage of this technique will obviously be its great
computational expense [79].

27

When training the model, it will be necessary to analyse the possible presence of two
possible typical phenomena in machine learning: over-fitting and under-fitting situations. A
model is going to be over-fitted when it performs well with training data, but its accuracy
is noticeably lower with test data; this is because the model has memorized the data it has
seen and could not generalize the rules to predict the data it has not seen [80]. On the other
hand, under-fitting occurs when there is an excess of generalization of the model, which
practically ignores all or most of the training samples.

It will be necessary to find a middle point in the learning of our model in which we are not
under-fitting or over-fitting, and for this purpose the validation set will be used. By training
our model with the training set and validating it at the same time through the validation
set, the evolution can be seen along the training epochs. This evolution will be represented
by its learning curve, which show the relationship between training set size and its error rate
on the training and validation sets. They can be an extremely useful tool when diagnosing
the performance of your model, as they can reveal whether the model is suffering from bias,
under-fitting, or variance, over-fitting, problems.

On the other hand, once we have chosen the right parameters for our model and trained
it, its results will be evaluated with new input data that will result in different metrics.
As mentioned above, the most common metric to evaluate the model will be its accuracy.
Accuracy simply measures how often the classifier makes the correct prediction. It is the
ratio between the number of correct predictions and the total number of predictions. But the
main limitation of the accuracy metric is that it assumes equal cost for both kinds of errors
[81] [76]. In the area of application of the project it will be relevant to identify the errors
of each type of class, since it will not have the same impact to diagnose a patient with AD
erroneously, than not diagnose a patient with AD when he or she had AD. For this reason,
it will be necessary to represent the confusion matrix of the model. A confusion matrix is
a table that categorizes predictions according to whether they match the actual value in
the data [82]. One of the table’s dimensions indicates the possible categories of predicted
values while the other dimension indicates the same for actual values. Therefore, through
this confusion matrix, the correctness of a classification can be evaluated by computing
the number of correctly recognized class examples (true positives), the number of correctly
recognized examples that do not belong to the class (true negatives), and examples that
either were incorrectly assigned to the class (false positives) or that were not recognized as
class examples (false negatives) [27].

Finally, the classifier’s ability to avoid a false classification can be measured with the ROC

28

curve, created by plotting True Positive Rate (TPR) versus its False Positive Rate (FPR)
[83]. The true-positive rate is also known as sensitivity, recall and the false-positive rate is
also known as the fall-out. Hence, the ROC curve shows the trade-off between sensitivity
and specificity: the closer the curve is to the diagonal, the less accurate the test is. ROC
provides tools to compare and select the most optimal models and it is considered an effective
method of evaluating the quality or performance of diagnostic tests [83].

3.5 Programming languages and libraries

Currently there are a variety of programming languages that can be used for the implemen-
tation of DL systems. Therefore, one of the first issues that has been faced is which of these
languages is the most appropriate for the present project. Before choosing one language or
another, it is necessary to establish different selection criteria, seeing which language is the
most suitable for each type of scenario. The analysis has been focused on two criteria, per-
formance and ease of use. The performance criteria has been chosen due to the importance
of reliable and fast results. Also, due to the limitation of time for the realization of the
project, the ease of use will be an important aspect to analyze too.

Performance indicates that the model is executed as quickly as possible. This criterion is
important, since many artificial intelligence applications must work and provide results in an
acceptable time, otherwise they can be considered totally useless. In this case, the languages
that offer the best performance are those with the lowest level, such as C or C++ [84]. The
second criterion is the ease of use, or learning-ability, of the programming language. This
criterion is not only affected by the programming language itself, but also by the number
of libraries available. The programming languages with the fastest learning curve are those
of the highest level, such as Python or R [85]. In the case of this project, given the limited
time for its realization, the ease of learning and use of the programming language will be the
most important criterion. Focusing the search on this approach two candidates have been
analyzed, Python and R.

Python can be used both to structure data and to generate DL algorithms. One of the
most remarkable features of Python is that it is an interpreted language, this means that
it is not compiled unlike other languages such as Java or C/C++, but is interpreted at
runtime [86]. It has a very extensive library catalog, and although many of these packages
are being ported to R the machine learning libraries are more predominant for Python [87]
[88]. R is one of the best languages for analyzing and manipulating data, because it was

29

designed for statistical and mathematical purposes [89]. R has special features that make it
especially versatile for handling statistical elements, specifically for operations with matrices
and vectors, which facilitates the manipulation of datasets. The great advantage of R will
be its visualization possibilities, offering more complete packages than Python. As against
R, its learning curve tends to be slower and more complicated if we compare it with Python.

In the case of the present project, prevalence more the amount of libraries and community
of users with respect to the possibilities of visualization or previous manipulation of the
data. For this reason, it has been decided to focus the project on the Python programming
language.

Subsequently, it has been decided to analyze the most famous frameworks for the im-
plementation of DNN in Python. As Andrej Karpathy, famous machine learning research
scientist, stated on the Figure 3.1, the most mentioned frameworks on DL projects during
the 2018 are: Tensorflow, Keras, Caffe and Pytorch.

Figure 3.1: Most mentioned Machine lerning frameworks on academic papers. Source:
Andrej Karpathy

Caffe is designed to build deep learning solutions in a very high level way of working,
almost without writing any code [90]. This is a great advantage, as a solution concept can
be reached in a very short time. But given the academic objective of this project, this
framework has been discarded. Consequently, from now on, the analysis will focus on a
comparison between Tensorflow, Keras and Pytorch. Keras is a high-level API for neural
network development written in Python. It uses other libraries internally such as Tensorflow.
Precisely because of this, it was developed with the purpose of facilitating and speeding up
the development and experimentation with neural networks, offering the same results as
TensorFlow but at a higher level of abstraction. But when a neural network becomes more
complex, with many layers and parameters, the Keras framework may be limited. Here is

30

where TensorFlow is introduced, a numerical computation library that allows the neural
network to be completely adapted to the user’s needs, reaching a lower and deeper level of
detail as compared to Keras. Pytorch, on the other hand, is a lower-level API focused on
direct work with array expression. Pytorch offers the best performance, with a short training
duration. Also PyTorch is much easier and simpler to debug than TensorFlow [91]. However,
in terms of data visualization, Tensorflow is the most advanced one [92]. As a result, Keras is
characterised by its ease of use, Tensorflow by its flexibility, level of detail and visualizations
and Pytorch by its performance and facility to debug. Once again, given the purpose of the
present project and the time limitation, its realization will focus on the simplest solution of
use. This does not mean that in the future or in a professional context, a possible change
will be considered to a lower level of abstraction, as Pytorch or Tensorflow, where better
results or level of detail can be found.

3.6 Requirements

The following section can be understood as a result of all the analysis performed through this
chapter. This requirement specification will be an important starting point on the design of
the system, since it summarizes the main relevant aspects that the solution should complain.

They have been divided into functional – ones describing what the system should do
- and non-functional requirements – ones describing what a system should be. Most of
the functional requirements has been obtained from the 2.1 section, based on the actual
procedures for the diagnosis of the disease. Non-functional requirements are based on the
learning obtained from Section 2.2 and the analysis performed in Sections 3.1, 3.2 and 3.5. All
of them are listed in the following tables, Table 3.4 and Table 3.5. Also, the requirements
are prioritized using the MoSCoW prioritization technique. MoSCoW is an acronym for
Must, Should Could and Would [93]. The categorization and meaning of categories in the
MoSCoW technique are described in Table 3.6 .

3.6.1 Functional requirements

As described before, functional requirements are the ones that characterize what a system
should do. Most of the time, they are functions which user can directly perceive and try.
The list of functional requirements can be seen in Table 3.4.

31

ID Description Prioritisation Reference

#1 The system should be able to process tab-
ular information regarding the clinical his-
tory of the patient, habits, lifestyle or results
from different cognitive evaluations as data
input for future predictions.

M Sections 2.1 and 3.1

#2 The system should clean and preprocess the
training data.

S Section 3.1

#3 The system should offer accurate results on
the diagnosis of AD.

M Section 2.1

#4 The system should present relevant metrics
in order to evaluate the accuracy of the re-
sults.

S Sections 2.2

Table 3.4: List of functional requirements gathered for the system.

3.6.2 Non-Functional requirements

Non-functional requirements, on the other hand, are the ones which users cannot directly
perceive, but they describe what a system should be. Usually, the fulfillment of these re-
quirements can be measured and evaluated. The list of non-functional requirements can be
seen in Table 3.5.

32

ID Description Prioritisation Reference

#5 The dataset used by the system should be big
enough, at least 9.000 samples, to be processed by
the deep learning architecture.

S Section 3.1

#6 The dataset used by the system should be labeled,
offering a field with the diagnosis provided by the
doctor.

M Section 3.1

#7 The dataset used by the system should be balanced,
containing both types of diagnosis: AD and non-AD
.

M Section 3.1

#8 The dataset used by the system should contain rele-
vant features which allows to perform accurate pre-
dictions. It should contains the maximum number
of features mentioned in Tables 3.1 and 3.2

M Section 3.1

#9 The architecture of the system should be based a
MLP.

S Section 3.2

#10 The architecture of the system can be upgraded into
a CNN if there is time left.

C Section3.2

#11 The system should be evaluated through his accu-
racy, confusion matrix and ROC curve.

S Section 3.4

#12 Learning curves of the system should be analyzed,
identifying the presence or not of a bias or variance
problem

S Section 3.4

#13 Model hyperparameters should be tuned through
cross-validation techniques

S Section 3.4

#14 The main programming language should be Python. S Section 3.5
#15 The preferred framework to build the system should

be Keras.
S Section 3.5

Table 3.5: List of non-functional requirements gathered for the system, with the reference
where the given requirements was gotten from.

33

Prioritization
group Description

MUST Minimum requirements for the
system to function.

SHOULD

Desired requirements. The sys-
tem will function without them,
however, they have a high prior-
ity

COULD Requirements that could be con-
sidered if there is time left

WOULD

Requirements that can be consid-
ered maybe in a future. Some-
times these requirements are
listed here but are infeasible to
achieve within the constraints of
the project.

Table 3.6: Description of MoSCoW prioritisation

34

Chapter 4

Conceptual Design

The Conceptual Design chapter places all pieces, described and analyzed before, together
in order to create a design of the system. To do so, all the decisions presented below will
be based on the fulfilment of the requirement list exposed on Section 3.6. In first place,
the chapter will introduce the general system overview, where the chosen system’s parts are
presented and the rationale for choosing them is given. Once that a general overview of the
solution has been understood, the following sections will go through each of the modules that
compose the system. Their required functionalities, interfaces or expected outputs will be
defined. At the end of the chapter, a summary section is provided which allows to understand
precisely which are the different functionalities to be implemented by each module in the
following chapters of the report in order to answer the research question presented on Chapter
1.

4.1 System overview

This section presents the general architecture of the system. The architecture has been
divided into smaller parts, to be able to tackle in a simpler manner each one of the func-
tionalities required by the system. These parts will be independent modules, in charge of
implementing specific functions. At the same time, these modules must be able to connect
to each other, since the result of one will be the input of data from another. In figure 4.1, the
overview of the solution can be appreciated. The system is divided into three main modules:
Data collection and pre-processing, Neural Network and Testing. The data flow will run
through each of the modules, presenting a final result through the last of them. In addition,

35

Figure 4.1: System overview

each of the modules makes use of different libraries that provide them with predetermined
functions. In case a specific function needs to be implemented, that is not implemented by
default by a library, the function will appear as a sub-module providing a specific function-
ality to its parent module. Likewise, it is important to understand each one of the interfaces
required by each module, in order to transform the data flow to a format supported by it.

Starting from the left, the first part of the system will be composed by the input data.
The selection of the appropriate dataset will meet the non-functional requirements #5, #6
, #7 and #8 and will be presented as a Comma-Separated Values (CSV) file to the system.
This input information will feed the first module.

The Data collection and pre-processing module will be in charge of modifying the data
to be clean and ready for the next one. Also, different simple statistical analysis will be
performed by this module in order to understand possible relations between variables. This
module will be in charge to fulfill functional requirements #1 and #2, and non-functional
requirements #7.

In the following module the development of the neural network will be conducted. Param-
eters such as the number of layers, activation function or number of neurons in the network
will be decided as it was stated in requirement #13. This module will represent the core of
our system. It will be based on the results obtained from the first module and will generate
a result that will be interpreted later by the last part of the system. It is designed to meet

36

functional requirement #3 and non-functional requirements #9, #13 and #10.

The last module will allow us to evaluate the performance of the system. Therefore,
it will be powered by the results obtained in the previous module, as it was presented on
requirements #11 and #12. These findings will serve to improve the proposed solution
and detect possible issues on the performance of the model, being also in compliance with
functional requirement #4. At the same time, as defined in the non-functional requirements
#11 and #12, the implementation of the entire architecture will be programmed in Python
and using the Keras library.

As it has been explained previously through each of the modules, the decision of this
architecture is justified by the fulfillment of the requirements presented in section 3.6. At
the same time, it will also be based on a literature review of several machine learning projects,
where it has been observed that most of the projects address each of the modules presented
above: data preparation, model implementation and testing [94] [95] [96].

In the following subsections each of the interfaces, functionalities and components of each
module are described in more detail.

4.2 Required data input

One of the first requirements for the development of our system will be to find a good set
of data to work with. In Section 3.6 different requirements about the ideal dataset can be
found, as non-functional requirements #5, #6, #7 and #8. So, the outcome exposed in this
section has been the result of an intensive search based on those parameters.

As a reminder of the requirements defined in previous chapters, it should be noted that:
the chosen dataset must contain the maximum number of features defined in Tables 3.2 and
3.1; it must be labelled, with a field representing the diagnostic result; and it must be large
enough, containing at least 9.000 entries.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database collects, validates
and utilizes data, including MRI and PET images, genetics, cognitive tests, CSF and blood
biomarkers as predictors of the disease. It is one of the most common datasets used in
machine learning projects in the field of Alzheimer’s disease, being present in a lot of projects
[97–101]. In the same manner, The Open Access Series of Imaging Studies (OASIS) database
can be commonly found as data entry for many artificial intelligence projects [102–105].

37

These databases contain information on a large number of patients, offering the result of
their diagnosis. But they will not be valid for the present project since they are only based
on different external medical tests - such as MRI, CSF examinations or PET scans - not
fulfilling the features requirement demanded in Section 3.6.

At this point, narrowing the search to the project features requirement, all databases that
are not oriented to merely clinical data have been discarded. Based on the research conducted
by Arthur W. Toga, Priya Bhatt, and Naveen Ashish about the databases currently available
on Alzheimer’s disease [106] , The Critical Path for Alzheimer’s Disease (CPAD) and The
National Alzheimer’s Coordinating Center (NACC) databases can be highlighted as the two
closest to the requirements outlined above. The CPAD is a unified clinical trial database
with primary focus is on AD, created and maintained by the Critical Path Institute of
London. CPAD has a mission to develop new technologies and methods to accelerate the
development and review of medical products for neurodegenerative diseases. On the other
hand, the NACC database collects data from different Alzheimer’s disease centers across the
United States maintaining a large relational database of standardized clinical research data.
Both of them are characterized by containing a lot of the features required by the Section 3.6.
But even that the CPAD database contains features about the demographic data, medical
history of the patient or MMSE cognitive results, it does not contain information about
the patient lifestyle as smoking habits, alcohol abuse or years of patient’s education. In
addition, the NACC database contains around 35000 patients against the 7000 stored by
CPAD database, and the number of machine learning projects implemented with those data
inputs is significantly larger in the case of NACC database [107].

As a result of the analysis performed through different databases that can fit into the
system requirements, the NACC will be the selected one.

4.2.1 Description of the NACC Database

The chosen dataset belongs to NACC of Washington University. The National Alzheimer’s
Coordinating Center was established by the National Institute on Aging/NIH in 1999 to
facilitate collaborative research. Using data collected from the Alzheimer’s Disease Centers
(ADCs) across the United States, NACC has developed and maintains a large relational
database of standardized clinical and neuropathological research data. In partnership with
The Alzheimer’s Disease Genetics Consortium (ADGC), The National Centralized Repos-
itory for Alzheimer’s Disease (NCRAD), and The National Institute on Aging Genetics of

38

Alzheimer’s Disease Data Storage Site (NIAGADS), NACC provides a valuable resource
for both exploratory and explanatory Alzheimer’s disease research. The NACC database is
made up of three research datasets defined as follows: The Minimum Data Set (MDS), The
Uniform Data Set (UDS) and The Neuropathology Dataset (NP).

The collection of data started in 1984 with the creation of the Minimum Data Set (MDS).
It was the first attempt on the creation of the dataset ending on 2005 with implementation
of the UDS. The Uniform Data Set (UDS) collects all the data submitted by the ADCs
from September 2005. The centers use the UDS Forms to collect standardized clinical data
from subjects who are evaluated on an approximately annual basis. Since 2005, the UDS
forms have undergone two major revisions to reflect advances in the science and incorporate
new diagnostic criteria. To combine data across the three versions, a Researcher’s Data
Dictionary (RDD) was created. From the beginning of February 2012, the UDS contains
a Frontotemporal Lobar Degeneration (FTLD) Module. It is composed by detailed clinical
information related to frontotemporal lobar degeneration but it is only provided by a subset
of UDS subjects. Also, from August 20017, the UDS also contains a Lewy Body Disease
(LBD) module. At centers participating in this voluntary effort, subjects with suspected
LBD and/or controls are evaluated with the LBD Module in addition to the standard UDS
Forms. In adittion, a subset of UDS subjects have one or more MRI available to download
as zip files. And, a very small subset of UDS subjects also have one or more amyloid PET
scans available to download. It is important to understand that only a minor part of all the
UDS users provides also data to the FTLD and LBD modules or MRI images.

The last module is the Neuropathology Dataset (NP). It contains subjects who have died
and consented to autopsy. The NP data-collection form has undergone numerous revisions
to reflect advances in the science and incorporate new diagnostic criteria. To combine data
across versions, also a RDD was created.

4.2.2 Analysis of the required characteristics

In order to validate our dataset, each of the requirements defined in Chapter 3 will be referred
to, seeing if the NACC datasets complies with them.

One of the first requirements refers to the search for a data set containing the maximum
relevant features defined in the 3.1 and 3.2 Tables.

As explained above, the NACC dataset is very broad and complete and can be very

39

difficult for a new user to understand. For this reason, the University of Washington offers
researchers a consultation service and help in the creation of a personalized dataset. This
service has been of great help, as a specialist in the database has provided help via e-mail
in the choice of the most appropriate parameters.

The database chosen was the UDS dataset, as it contains most of the features stated
on the non-funcional requirement #8. At the same time, the possible incorporation of the
NP dataset was also interesting as it offers an error-free diagnosis based on autopsies. But
finally the use of NP dataset was discarded, since although it can offer a quality diagnostic
variable, not all the required clinical data of the living patient can be related.

As a result, the input information of the system will be based on UDS dataset as a
combination of the required features and their corresponding clinical diagnostic variables. In
Appendix D, each of the final features of the dataset can be observed, being able to notice a
high match with the desired features defined on the Section 3.6. The data source will sum a
total of 25 variables, a unique identifier for the patient and the result of his diagnosis. Again,
it is essential to emphasize the great support offered by the NACC of Washington, since an
extensive documentation about the meaning of each one of the variables and their possible
values has been provided through the website.

The other requirements that have been taken into consideration for validating the dataset
are: the presence of labelled results, to be a balanced dataset and to have a sufficiently large
number of records.

Referring to the requirement of tagged data, it can be observed that the information
obtained in NACC dataset offers fields with the results of the clinical diagnosis. These
variables provide a positive or negative result in the presence of the disease, being perfectly
adequate to what was being looked for. But the presence of both cases will not be enough
to fullfill the non-functional requirement #7, the dataset should be also balanced. Although
the NACC dataset provides data on the two types of patients, the number of cases of each
of them is not fully balanced. This will not be a problem, as it will be something to bear in
mind in the implementation of the system to process the information properly to achieve a
balanced data set and correctly meet the requirement.

Finally, the non-functional requirement #5 makes reference to the necessary large amount
of data. This condition will also be covered, as the total amount of information gathered
will be 30990 records representing each of them, an unique patient .

40

4.3 Data collection and pre-processing module

The first of the modules that compose the system will be in charge of processing the input
dataset. As input to the module there will be unprocessed information in tabular form,
ideally in Comma-Separated Values (CSV) format. As it has been exposed at the beginning
of the chapter, the goal of this module will be to meet functional requirements #1 and #2,
and non-functional requirements #7. The pre-processing and cleaning of this input flow
of information will be an essential task, since without quality input data the effectiveness
of a future automatic learning would be drastically affected. This will allow to fulfill the
requirements exposed above, processing the information, cleaning the data and balancing
the dataset. The first step will be to carry out a small exploratory analysis of the dataset,
that is to say, to apply statistical readings and modifications in the variables together with
some visualizations to understand a better the data available. Below are presented each of
the problems that must be addressed in this analysis and pre-processing, providing reliable
data input to the next module of the system:

• Identify and treat possible null values.

• Analyze the individual value ranges for each field, identifying. possible erroneous or
anomalous entries

• Check the number of cases for every classification class, and balance the dataset if
necessary.

• Mix the information, randomly presenting each of the user entries. This will avoid, for
example, locating all non-AD cases at the beginning of the dataset and all entries for
patients with AD at the end.

• Normalize the input data if necessary, establishing a range of values or similar scale
for all variables.

In order to define each of the previously described steps, the procedures most commonly
used by the majority of machine learning projects in their dataset cleaning and preparation
phase have been used as a reference [108] [109]. In addition, such steps are the result of
meeting the requirements described in section 4.1 for this module.

All the functionalities of this module, like the rest of the system, will be programmed
in Python as it was stated on Section 3.6 through the non-funcional requirement #14. The

41

implementation of the functionalities are supported by three libraries: Pandas, Matplotlib
and Seaborn. Seaborn and Matplotlib will be in charge of data visualization, leading to the
analysis of possible relationships between variables. Pandas library, will enable to import
the tabular information in a dataframe, allowing to make all the analysis and preprocessing
of the information in a fast and simple way.

4.4 Neural Network

Once the input data has been processed and analyzed, the information is ready to be com-
puted by a neural network. The neural network will be in charge of learning from these data
to be able to make predictions on new input data in the future. To do so, the implemen-
tation of a MLP will be addressed, meeting the non-functional requirement #9 exposed on
Section 3.6. One of the first things to be done in this module will be the separation of the
dataset into several subsets. These sets will be: a training set, a validation set and a test
set. Generally speaking, the first of the subsets will serve to train our network, the second to
choose the most appropriate hyperparameters for the model and the last to test the results.
The selection of the most appropiate features will be an important phase of the project,
since it will be the basis of the fullfilment of the non-functional requirement #3 offering
accurate results for future predictions. The implementation of the present module will be
programmed in Python and supported by Keras library as it was stated on non-functional
requirements #14 and #15.

Once that the flow information obtained from the previous module has been divided into
different sets, it is time to create the structure of the neural network. It will be based on
a Sequential model, which can be defined as a stack of layers. As it has been mentioned
before, the selection of this specific model will be aimed by the requirement about the MLP
architecture. Thus, different layers will be added specifying their activation functions, num-
ber of neurons and input data. When the structure is created, the model will be compiled.
Compilation requires specifying a set of parameters: the optimization algorithm to be used
to train the network and the loss function used to evaluate the network that is minimized
by the optimization algorithm.

When the compilation of the model has been done, the network will be trained. To do
so, training data must be provided as input. Validation data can also be provided in order
to analyse the evolution of the training. As parameters, it will be necessary to define the
batch size (number of records to use in each iteration) as well as the number of epochs (how

42

many times is going to cross the whole set of data to train).

All the parameters that has been mentioned in the compiling and training phase should
be tuned beforehand, as the best activation function, optimization algorithm or batch size
fulfilling non-functional requirement #13. Doing it, accurate results will be achieved and
the fulfilment of the non-functional requirement #3 will be made.

At this point, the neural network has been trained and its behavior should be evaluated
with new input data. For this purpose, each of the metrics specified above in the compilation
of the model will be processed by the following module. Figure 4.2 summarizes all the steps
to be implemented in this module. In this figure it can be seen that the required input data
will be the dataframe values of the previous module, and the output generated will be the
training response of the model. This response will be analyzed and processed by the next
section of the system.

Figure 4.2: Design of the implementation of the neural network

4.5 Testing and visualization of results

Although the most commonly used metric for model evaluation is its accuracy, the purpose
of this last module will be to present a deeper and more solid analysis of the model as it
was stated on functional requirement #4 and specified through non-functional requirements
#11 and #12. Also, the evaluation of the model through these different metrics will allow
to fulfill requirement #3.

One of the first metrics to be represented by this section of the system will be its confusion

43

matrix. This matrix will allow to analyze the types of correct and incorrect predictions made
by the model in each of its categories. The tool enables the evaluation of false positives, when
the result is incorrectly classified as positive when it turns out to be negative, as well as false
negatives, when the result is positive and is incorrectly classified as negative. The analysis of
the matrix will be very meaningful given the scope of this project. Since there can be many
ethical and moral discussions about the importance of false positives or negatives in the
detection of Alzheimer’s disease. Also the creation of the Receiver operating characteristic
(ROC) curve of the model will be really valuable, since it summarize the trade-off between
the true positive rate and false positive rate for a predictive model using different probability
thresholds.

On the other hand, as a result of the model metrics defined in its computation the final
result of its accuracy can be obtained. This will be a static result, corresponding to the final
result of the whole training. But it will also be interesting to be able to analyze the evolution
of the model throughout the training phase. The easiest way to analyze this progression is
to use a graph. This graph will represent the evolution of the error throughout the training
periods. In this way it is possible to see if, for example, the model can tend to continue
learning if we increase the number of times, or if, on the contrary, the learning had reached
its limit. Therefore it will also be interesting, and the objective of this module, to represent
these learning curves for each of the subsets of data: training and validation. Plotting the
evolution also in the validation set allows to also evaluate the generalization capacity of the
model. This will allow us to discuss possible cases of over-fitting or under-fitting as it was
mentioned on non-functional requirement #12.

4.6 Summary

As a result of everything explained in the previous points, this section offers a recapitulation
of each one of the functionalities to be implemented by the solution in order to meet the
requirements exposed in Chapter 3. To do this, it has been decided to use a table that
gathers each of the functionalities required in each module, as well as their input and output
data. In table 4.1 all this information can be observed, and it will be the basis and guide for
the implementation of the system.

44

Input Functionalities Output

Data col-
lection
and pre-
processing

Unprocessed
dataset (.csv)

– Exploratory analysis: nulls
values, valye ranges, bal-
ance data, shuffle and nor-
malization

– Analysis of correlation be-
tween variables

– Visualization of data

Processed
pandas
dataframe

Neural
network Dataframe.values()

– Split the data

– Create the model

– Tune hyperparameters

– Compile the model

– Train the model

History
and met-
rics of the
model

Testing
and visu-
alization
of results

Metrics provided
on compilation and
history object of
the model

– Confusion matrix, ROC

– Learning curves

Analysis
of the
solution

Table 4.1: Summary table of each of the modules that compose the system

45

Chapter 5

Implementation

This chapter will describe the implementation of the system based on the conceptual design
presented in Chapter 4. The implementation will be always oriented to meet the requirements
exposed on Chapter 3, aiming to be useful to answer the research question presented at the
beginning of the report on Section 1.1.

The chapter will be composed as the explanation of each of the steps performed in the
implementation of the data collection and pre-processing module and neural network one.
The output of this implementation will be used as input of the last module, Testing, which
will be exposed on Chapter 6.

5.1 Data collection and pre-processing

Once the dataset is available in CSV format, different aspects of it should be analyzed in
order to conclude that the dataset is ready to be input information for the neural network.
As it has been stated on Section 4.3, the first aspect that has been approached is a simple
statistical exploration of each one of the fields. To do this, the CSV file has been imported
into a dataframe. This has been done through the Pandas library.

In the quick analysis of each variable is included, for example, the identification of max-
imum values, minimum values or calculation of the mean. Thanks to this short exploration,
it has been possible to observe that most of the values of each variable are more or less
within the same range. Being the variables with more disparate values the MMSE, from 0
to 30, years of education, from 0 to 36 and age of the patient, from 18 to 109. The rest of

46

values are in a range between 0 and 10, which made us discard the need to normalize the
values in a first instance.

Next, the presence of null values has been analyzed. In the case of the present project,
the dataset does not contain null values, so it will not be necessary to deal with this problem.
This is probably due to the high quality of data collection required by the NACC dataset.

The possible correlation between variables was then analysed. In Figures 5.1, 5.2 and
5.3 there are three graphs representing these investigations. In order to perform them, the
Matplot and Seaborn libraries have been used.

Figure 5.1: Relation between gender and AD variables

Figure 5.1 has studied the possible relationship between the different gender of the pa-
tients and their tendency to have or not have the disease. And as can be observed, the graph
indicates that women are more likely to develop the dementia than men. Figure 5.2 shows
the relationship between the score obtained in the MMSE and the result of the diagnosis.
Clearly, non-AD group got much more higher MMSE scores than AD group. Finally, Figure
5.3 represents the correlation between patient age and the disease. There is a higher con-
centration of 70-85 years old in the AD patient group than those in the non-AD patients,
which may reveal certain critical age ranges for the develop of the Alzheimer disease.

47

Figure 5.2: Relation between MMSE and AD variables

Figure 5.3: Relation between age and AD variables

One of the requirements established in Chapter 3 is to have a balanced data set. To
do this, the same number of samples of each class will be taken. Even though this means
losing number of records, the total amount of information is still more than enough. It is
important to bear in mind that when the two subsets of data (AD cases and non-AD cases)
are put together again, they will not be placed randomly. All cases in one category would
be presented first and then the other. This is not positive for the future implementation of
the model, since seeing only cases of one category for a long time does not allow the model
to learn. Therefore, it will be important in the last place to shuffle the information. In the
Figure 5.4 it can be observed the entire process mentioned above, that is, the balancing and
subsequent shuffling of the records.

As a result, the implementation of the module satisfies all the required functionalities
exposed on the Chapter 4 - Conceptual Design. And, at the same time, following those
guidelines the functional requirements #1 and #2 and non-functional requirements #7 can
be considered successfully implemented.

48

Figure 5.4: Python code to balance and shuffle the dataset

5.2 Neural Network

As a reminder of the goal of this module, a reference can be made to Section 4.4. That section
exposed the conceptual design needed to be implemented by the neural network module in
order to complain with the requirements presented on Section 3.6.

The implementation of the module starts retrieving the information processed by the
data collection and pre-processing part of the system. This data will be obtained from the
Pandas dataframe making use of the dataframe.value method.

Afterwards, as defined in Section 4.4, the dataset will be divided into two parts: training
and test. It has been partitioned by the train test split method resulting in 20% test data
and 80% training data. This last subset will be split again, giving rise to the validation data
set, which will be composed by a 10% of the training subset.

The first issue that should be addressed for the creation of the model will be the appro-
priate choice of each of the model hyperparameters. Regarding its architecture, the most
adequate number of layers, neurons and their respective activation functions have to be de-
fined. Also, the most suitable optimizer should be chosen in order to compile the system.
And finally, it will be necessary to establish the most optimal number of epochs and batch
size to optimize the future training of the model.

In order to be able to choose these parameters properly, as it can be seen on 5.1, four
independent scripts have been implemented based on the research done by PhD. Jason
Brownlee [110]. Inside of each script, different models based on different values of these
parameters have been created, presenting the result of the accuracy of all of them. The
implementation done by these scripts is the result of the analysis exposed on Section 3.3,

49

Parameter to be
tuned Options presented Result

Script_1 Number of neurons
in the hidden layer 10, 15, 20, 25, 30, 35, 40, 45, 50 25

Script_2 Activation function Softmax, Relu, Tanh, Sigmoid Tanh

Script_3 Optimizer
SGD, RMSprop, Adagrad,
Adadelta, Adam, Adamax,
Nadam

Adamax

Script_4 Batch size and
number of epochs

– Batch size: 800, 2000, 5000,
10000, 13000, 15000

– Epochs: 600, 800, 1000,
1200, 1400, 1600

Batch size of
5000 and 1600
epochs

Table 5.1: Table exposing each of the scripts implemented in order to tune the
hyperparameters of the model

where it was exposed that the most appropriate manner to choose the parameters of a model
was to directly try them. Therefore, these scripts will allow us to choose the most suitable
number of neurons, their activation function, number of epochs, batch size and optimizer.

But before trying to tune all those complex model hyperparameters, some assumptions
have been resulted from the analysis done on Section 3.3:

• The number of hidden layers will be one, since at it has been exposed on the Chapter
3, in most of the cases has been exposed as enough to achieve a good accuracy.

• The number of neurons in the input layer will be 26, being the equivalent to the number
of input variables in the data [91].

• The number of neurons in the output layer will equal to the number of outputs asso-
ciated with each input, 2 [111].

• Considering that the model is oriented to a classification problem, as it has been
analyzed also in Section 3.3, the Sigmoid function will be the selected one for the
output layer.

In figure 5.5 the output of one of the scripts used to tune the rest of the model hyperpa-
rameters can be seen, where it is indicated that the optimizer with the best accuracy result

50

for our model is the Adamax optimizer. At the same manner, as a result of the rest of the
scripts the choice of the remaining hyperparameters of the model has been reached, being:

• 25 neurons in the hidden layer

• Tanh as activation function for the hidden layer

• 5000 as batch size

• 1600 number of epochs

The reason behind the implementation of these independents scripts will be to obtain
higher accuracy results. This will be an important goal for the system, since it will allow
to fulfill the requirement #3 exposed on Section 3.6. This has been implemented by means
of the Grid search model hyperparameter optimization technique. This technique can be
used though the GridSearchCV class inside of the Scikit-learn library. When constructing
this class, a dictionary of hyperparameters to evaluate in the param grid argument have
to be provided. By default, accuracy is the score that is optimized, but other scores can
be specified in the score argument of the GridSearchCV constructor. The GridSearchCV
process will then construct and evaluate one model for each combination of parameters and
cross-validation is used to evaluate each individual model with 3-folds as default [112]. The
complete Python code of all these scripts can be found on Appendix F, G, H and I.

Figure 5.5: Output of the optimizer tuning script

Once that the model parameters have been selected, it is turn to build the core of the
neural network. To do so, the guidelines exposed on Section 4.4 have been followed. Firstly,
in order to fulfill the requirement #9 and #11 a Sequential model through the Keras library
has been built. This model will be characterized by being a MLP composed by one input
layer, one hidden layer and one output layer, as it can be seen on Figure 5.6.

Before training a model, it will be needed to configure the learning process, which is
done via the compile method. In this method the optimizer previously defined, Adamax

51

Figure 5.6: Summary of the model composed by: the input layer, one hidden layer and the
output layer

optimizer, will be provided as parameter. Also the loss function that the model will try to
minimize and the metric to evaluate the process.

Once that the model has been compiled, the neural network is ready to be trained. To be
able to train the model, two last parameters should be provided: batch size and number of
epochs. These two parameters will be really important in the fulfilment of the requirement
#3, since at it will be seen on Chapter 6, they will affect directly to different the over-fitting
or under-fitting situation of the model.

As a resume, in the Figure 5.7 it can be seen the creation, compilation and training of
the model based on all the hyperparameters previously selected. With the implementation
of this module, the ideas exposed on Section 4.4 will be satisfied and the requirements #3,
#9, #11 and #12 executed.

Figure 5.7: Creation, compilation and training of the model

52

Chapter 6

Testing

This chapter will explain and expose the results obtained from the last module of the system
which allows to answer the research question of Section 1.1 in the conclusions Chapter. Thus,
this module will be in charge of the evaluation and testing of the model. It will follow the
guidelines defined on Section 4.5 and it will aim to fulfill requirements #3, #4, #11 and #12.
At the beginning of the chapter the evaluation of the accuracy and the confusion matrix of
the model will be presented. After, the ROC curve will be illustrated, exposing his results.
In addition, at the end of the chapter the learning process of the model will be analyzed in
order to study the presence or not of over-fitting or under-fitting problems.

6.1 Accuracy and confusion matrix

As a reminder of the output obtained in the last module, reference can be made to Section
5.2. In this section, the model was created, compiled and trained obtaining a system ready
to make future predictions about new data.

But before making new predictions, one of the most immediate metrics to evaluate will
be its accuracy. To do this, the model will be evaluated with the test dataset. This group
of data was divided at the beginning of the code, and it is important to emphasize that it
has never been before seen by the model. Figure 6.1 illustrates how the model has been
evaluated based on these test data input, to then obtain its performance according to the
accuracy metric. The result obtained is 82.61%, being the percentage of predictions that the
model made correctly with respect to the total number of predictions to be made.

53

Figure 6.1: Python code to evaluate the accuracy of the model

But at it was stated on requirement #11, the accuracy of a model will not be suffi-
cient to evaluate properly his performance. Due to his, also the confusion matrix has been
represented. The confusion matrix gives an insight not only into the errors being made
by a classifier, but more importantly the types of errors that have being made. To do so,
sklearn.metrics offers a simple and fast manner to represent the confusion matrix of a model
based on his predictions. As it can be seen on Figure 6.2, the correct outputs of the pre-
dictions should be provided. In this manner, the confusion matrix can evaluate how well
the predictions have been made. Also, an independent function to plot the confusion matrix
has been implemented. This function, plot_confusion_matrix, can be seen on Appendix E
where all the Python code used to implement the system is presented [113].

Figure 6.2: Python code to represent the confusion matrix of the model

As a result, the Figure 6.3 illustrates the confusion matrix of the system. Analyzing the
content of the matrix, the upper left quadrant represents the number of correct predictions
of subjects who do not have AD. This is referred as the True Negative Rate (TNR), being
1486 cases in our system. The upper right quadrant shows the number of positive predictions
when the value should be negative. These errors are called False Positive Rate (FPR), being
in our model 309 cases. In the case of the bottom right quadrant, the number of predictions
of people with AD are represented. Being 1488 cases which are called True Positive Rate
(TPR). And finally, the number of negative predictions when the value would really have
to be positive is represented in the bottom left quadrant. These errors are referred to False
Negative Rate (FNR), being in our model 317 cases.

Fortunately, the number of incorrect predictions is much lower than the correct ones.

54

Within these incorrect predictions, it should be noted that there are more false negatives
than false positives. This result will be something to take into account in possible users of
the system. Since it will not mean the same morally and ethically to diagnose by mistake a
person who does not have AD, than not to diagnose AD to a patient who really suffers it.

Figure 6.3: Confusion matrix of the model

6.2 Receiver operating characteristic (ROC)

The classifier’s ability to avoid a false classification can be measured with the Receiver
operating characteristic (ROC), created by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings. The true-positive rate is also
known as sensitivity, or recall and the false-positive rate is also known as the fall-out. Thus,
the ROC chart is a two-dimensional graph in which the sensitivity is drawn on the Y-axis,
or vertical, and the fall-out on the X-axis, or horizontal.

The Area Under the Curve (AUC) will be an additional measure that indicates the two-
dimensional area below the complete ROC curve. One model whose predictions are 100%
incorrect has an AUC of 0.0; the other whose predictions are 100% correct has an AUC of

55

1.0. This measure will be very useful when several models are to be compared, since trying
to visually confront two very similar ROC curves can sometimes be complex.

To plot this ROC curve, the sklearn.metrics library has been used again. Through this
library, as it can be seen on Figure 6.4, the roc_curve and auc functions can be used to
obtain all the necessary values to build the graph.

Figure 6.4: Python code to generate the Receiver operating characteristic (ROC) of the
model

The best possible prediction method for a machine learning classifier would yield a point
in the upper left corner or coordinate (0,1) of the ROC space, representing 100% sensitivity
(no false negatives) and 100% specificity (no false positives). This (0,1) point is also called
a perfect classification.

As a result, in Figure 6.5, the ROC curve of the model is illustrated. Since the curve is
very close to the upper left corner of the graph, it can be concluded that the model correctly
distinguishes between the two classes. In addition, the value of AUC is 0.87 being a value
very close to 1.0.

6.3 Analysis of learning curves

All the metrics presented in previous sections have made it possible to evaluate the classifier’s
performance. While those metrics provide a static evaluation of the final performance of the
model, this section on the contrary, will evaluate the evolution of the model throughout its

56

Figure 6.5: Receiver operating characteristic (ROC) of the model

training process.

As it was explained on Section 3.4, illustrating the learning curve of a model show his
performance on training and validation sets as a function of the number of training iterations.
This means that plotting the learning curve allows to analyze the evolution of the model,
since it depends on the number of iterations.

As it can be seen through different machine learning projects [114–117], to illustrate the
learning curve of a model is a powerful tool to diagnose over-fitting or under-fitting issues.
The learning curve will expose the time or experience on the x axis and the improvement on
the y axis. The manner to show the improvement of the model will be to plot its loss as the
dimension of the y axis. It is important to understand that both, training and validation
sets, should be illustrated. Each of them will provide different insights: the training dataset
will give an idea of how well the model is learning and the validation dataset will show how
well the model is generalizing. If the evolution of the two error scores is plotted, two curves
will be obtained. These are called the learning curves, and in general terms, the goal will be
to minimize the loss function since the best model is the one that has the least error.

The loss function of the model is illustrated in Figure 6.6. As it can be seen it decreases
over the time, being almost constant between 1400 and 1600 epochs. This suggests that the
learning process has reached its limit, meaning that even if the model is trained during more
epochs the result will not be improved.

57

Figure 6.6: Loss function in respect to the number of epochs

This plot will present valuable insights into the amount of over-fitting or under-fitting
in the model. In the case of a over-fitted classifier, the training loss will be low and the
validation loss will be higher presenting a gap between both of them. The gap between the
training and validation loss ratio indicates the amount of over-fitting: the bigger, the worse.
Although this model might perform really well on the training data, its performance on the
test data will be much worse. In other words, the model will suffer from high variance, which
means that it will not be good at making predictions on data it has never seen before.

On the contrary, a model is said to under-fit when the training loss is high and the
validation accuracy is high as well. A model is under-fitted when it performs poorly on the
training data, and consequently, also on the validation data. The model is unable to capture
the relationship between the input examples and the target values.

As a result, the goal will be to obtain a decreasing loss ratio along the number of iterations
with an small gap between the validation and training sets. Taking a look again to the Figure
6.6 it can be seen that the graph does not present a huge gap between both set, and achieves
a low loss ratio value. As such, it can be said that the model is working properly.

In order to be able to plot the graph, an independent function has been programmed in
Python that will have as input object the result of the training of the model [118]. In this

58

training, as can be seen in Figure 5.7, a fixed percentage of the dataset was reserved as a
validation subset allowing the comparison of the learning process of the two datasets through
the learning curve. The implementation of the plot_history function can be consulted in the
Appendix E [118].

59

Chapter 7

Conclusions

The objective of the present project was to answer the research question presented on Section
1.1. For this purpose, an analysis of the possible improvement on the diagnostic process of
AD by means of deep learning techniques has been addressed through the implementation
of the project. It is for this reason that, during this last chapter, an answer to this question
will be exposed explaining its conclusions and future improvements of the system.

As a resume, the result of the analysis was to build a classifier able to discriminate data
from patients with AD or not. To do so, the first step was to collect the data needed to
train the classifier. But before that the data can be used, the data had to be cleaned and
pre-processed. Once the data was ready to use to train a model, an appropriate model
architecture had to be selected to build the classifier. Thus, a deep neural network was
designed. In order to do so, a MLP architecture was selected. Different design considerations
were tested, as the proper selection of the model hyperparameters or the analysis of the
learning process. Finally, the performance of the model has been evaluated through his
accuracy, confusion matrix and ROC curve based on previously unseen data.

In order to answer properly the research question, firstly, its sub-questions have to be
addressed.

• Which data will be necessary in order to train the system successfully? The NACC
dataset has been the one selected. It has been proved as being relevant, variate and
big enough obtaining an accuracy of 82.61%.

• Which is the most suitable architecture and parameters to achieve an accurate result?
But not only a good dataset is enough to achieve accurate results, as it can be seen

60

through the analysis and testing chapter the proper selection of the parameters of the
model will be a key aspect to consider. The best architecture will differ from case to
case, but given the dataset selected and the problem to be solved, the most suitable
architecture has result in a multilayer percepton with one hidden layer and 25 neurons.
The sum of model parameters which provides best accuracy results was Adamax as
optimizer, Tanh as activation function, 5000 as batch size and 1600 as number of
epochs.

• What level of accuracy can be achieved? As it has been seen on Chapter 6, the system
achieved 82.61% of accuracy, being the percentage of predictions that the model made
correctly with respect to the total number of predictions to be made. This result can
be defined as successful, since the accuracy values obtained by similar projects on the
field are between 60% and 90%.

• What framework could be used to implement and test the selected model? The pro-
gramming language used to implement the system was Python, making use of Keras,
Pandas, Matplot and Seaborn libraries. These libraries offer the best trade-off between
performance and easy to use, being the best option for the present project.

To conclude, it has been demonstrated that it is possible to measure the probability of
having AD by means of combining clinical history, lifestyle habits and cognitive examinations
presenting an accuracy result of 82.61%. Moreover, it has been demonstrated that even
though this type of data has been medically claimed to be insufficient to confidently diagnose
the disease, adequate results can be obtained. Across the report it has be shown that this
can be achieved with intensive data cleansing and the selection and design of the right model.

Moving back to the research question presented at the beginning of this project: How
could automatic learning techniques be used to improve the diagnosis of Alzheimer’s disease?
His answer can be summarized in the implementation of a deep neuronal network that
will be based on a correct selection of input data and proper design of the parameters
and architecture of the model, achieving a precise discrimination, 82.61% accurate, between
patients with AD or not.

61

7.1 Future perspectives

What has been presented in this project is a proof of concept. There are further improvements
needed to create a real-time classifier that could be used as tool to help the diagnosis of AD
patients. Here, some suggestions are presented that could be beneficial to the future system:

• The different influence of each of the features on the model accuracy can be analyzed,
optimizing the data input.

• A more precise parameter selection can be done, considering the analysis of extra
hyperparameters as the learning rate.

• In order to be closer to a real medical diagnosis procedure, the data that feeds the
system can be complemented with MRI images or other bio-markers.

• To increase the complexity of the solution, and to be able to process images as data
input, a future implementation of a CNN should be considered.

• In addition, the inclusion of data from different sources will improve the robustness of
the model. In this manner, a robust transfer learning can be achieved, in which the
model will transfer not only his performance but also robustness from a source model
to a target domain.

• The business value of the system should be analyzed, evaluating different cases of use
and adapting the solution to the final user needs. At the same time, aspects as the
security, reliability or performance of the system must be considered as a priority in
the case of a real use of the system with a medical purpose.

62

Bibliography

[1] Dementia statistics - Alzheimer’s diasease international. url: https://www.alz.
co.uk/research/statistics.

[2] Christina Patterson. World Alzheimer Report 2018 The state of the art of dementia
research: New frontiers. Tech. rep. Alzheimer’s Disease International (ADI), London.,
2018. doi: 10.1111/j.0033-0124.1950.24{_}14.x. url: https://www.alz.co.
uk/research/WorldAlzheimerReport2018.pdf?2.

[3] J. Manyika et al. Big data: The next frontier for innovation, competition and produc-
tivity. Tech. rep. May. 2011. url: https://www.mckinsey.com/~/media/McKinsey/
Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%
20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.
ashx.

[4] Warren W. Barker et al. “Relative Frequencies of Alzheimer Disease, Lewy Body,
Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of
Florida Brain Bank”. In: Alzheimer Disease & Associated Disorders 16.4 (Oct. 2002),
pp. 203–212. issn: 0893-0341. doi: 10.1097/00002093- 200210000- 00001. url:
https://insights.ovid.com/crossref?an=00002093-200210000-00001.

[5] Melonie Heron. “National Vital Statistics Reports Volume 67, Number 5 July 26,
2018”. In: National Vital Statistics Reports 67.6 (2018), pp. 1–15. issn: 1551-8922.
url: https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_06.pdf.

[6] Joseph Gaugler et al. “Alzheimer’s Association Report”. In: Alzheimer’s and De-
mentia 11.3 (2015), pp. 332–384. issn: 15525279. doi: 10.1016/j.jalz.2016.
03.001. url: http://dx.doi.org/10.1016/j.jalz.2015.02.003%20https:
//ac.els- cdn.com/S1552526015000588/1- s2.0- S1552526015000588- main.
pdf ? _tid = d7c35d3a - 03bb - 4b42 - a93a - 11fa491d3599 & acdnat = 1550351168 _
f7ed67e075417bdf021d44889920839c.

63

https://www.alz.co.uk/research/statistics
https://www.alz.co.uk/research/statistics
https://doi.org/10.1111/j.0033-0124.1950.24{_}14.x
https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf?2
https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf?2
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://doi.org/10.1097/00002093-200210000-00001
https://insights.ovid.com/crossref?an=00002093-200210000-00001
https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_06.pdf
https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.1016/j.jalz.2016.03.001
http://dx.doi.org/10.1016/j.jalz.2015.02.003%20https://ac.els-cdn.com/S1552526015000588/1-s2.0-S1552526015000588-main.pdf?_tid=d7c35d3a-03bb-4b42-a93a-11fa491d3599&acdnat=1550351168_f7ed67e075417bdf021d44889920839c
http://dx.doi.org/10.1016/j.jalz.2015.02.003%20https://ac.els-cdn.com/S1552526015000588/1-s2.0-S1552526015000588-main.pdf?_tid=d7c35d3a-03bb-4b42-a93a-11fa491d3599&acdnat=1550351168_f7ed67e075417bdf021d44889920839c
http://dx.doi.org/10.1016/j.jalz.2015.02.003%20https://ac.els-cdn.com/S1552526015000588/1-s2.0-S1552526015000588-main.pdf?_tid=d7c35d3a-03bb-4b42-a93a-11fa491d3599&acdnat=1550351168_f7ed67e075417bdf021d44889920839c
http://dx.doi.org/10.1016/j.jalz.2015.02.003%20https://ac.els-cdn.com/S1552526015000588/1-s2.0-S1552526015000588-main.pdf?_tid=d7c35d3a-03bb-4b42-a93a-11fa491d3599&acdnat=1550351168_f7ed67e075417bdf021d44889920839c

[7] James C. Vickers et al. “The cause of neuronal degeneration in Alzheimer’s disease”.
In: Progress in Neurobiology 60.2 (2000), pp. 139–165. issn: 03010082. doi: 10.1016/
S0301-0082(99)00023-4. url: https://ac.els-cdn.com/S0301008299000234/
1 - s2 . 0 - S0301008299000234 - main . pdf ? _tid = 7722ae13 - f4d5 - 451f - a6e5 -
98ed91385196&acdnat=1550351534_af1b85fcb126558384dfef49b5240cbe.

[8] Richard J. O’Brien and Philip C. Wong. “Pathological Cascade”. In: Archives of
Medical Research 12.3 (2012), pp. 173–189. issn: 01406736. doi: 10.1146/annurev-
neuro-061010-113613.Amyloid. url: http://dx.doi.org/10.1016/j.arcmed.
2012.11.008%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174086/
%5Cnhttp://dx.doi.org/10.1016/S0140-6736(12)62145-X.

[9] J. P. Brion. “Neurofibrillary tangles and Alzheimer’s disease”. In: European Neurology
40.3 (1998), pp. 130–140. issn: 00143022. doi: 10.1159/000007969.

[10] Clifford R. Jack et al. “Serial PIB and MRI in normal, mild cognitive impairment
and Alzheimers disease: Implications for sequence of pathological events in Alzheimers
disease”. In: Brain 132.5 (2009), pp. 1355–1365. issn: 14602156. doi: 10.1093/brain/
awp062. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677798/pdf/
awp062.pdf.

[11] A Klug. “Topographical relationship between f8-amyloid and tau protein epitopes in
tangle-bearing cells in Alzheimer disease”. In: 87.May (1990), pp. 3952–3956. url:
https://www.pnas.org/content/pnas/87/10/3952.full.pdf.

[12] Guy M. McKhanna et al. “The diagnosis of dementia due to Alzheimer’s disease:
Recommendations from the National Institute on AgingAlzheimer’s Association work-
groups on diagnostic guidelines for Alzheimer’s disease”. In: 7.3 (2011), pp. 263–269.
doi: 10.1016/j.jalz.2011.03.005.The. url: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3312024/pdf/nihms363310.pdf.

[13] Joseph L Price and John C Morris. “Tangles and Plaques in Nondemented Aging and
“ Preclinical ” Alzheimer ’ s Disease”. In: (1999), pp. 358–368. url: https://pdfs.
semanticscholar.org/c9b0/c1a767d9b056c3d3ec30ff106cf54b1b8932.pdf.

[14] Clifford R Jack Jr et al. “Introduction to Revised Criteria for the Diagnosis of
Alzheimer’s Disease: National Institute on Aging and the Alzheimer Association
Workgroups”. In: 7.3 (2011), pp. 257–262. doi: 10.1016/j.jalz.2011.03.004.
Introduction. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096735/
pdf/nihms284298.pdf.

64

https://doi.org/10.1016/S0301-0082(99)00023-4
https://doi.org/10.1016/S0301-0082(99)00023-4
https://ac.els-cdn.com/S0301008299000234/1-s2.0-S0301008299000234-main.pdf?_tid=7722ae13-f4d5-451f-a6e5-98ed91385196&acdnat=1550351534_af1b85fcb126558384dfef49b5240cbe
https://ac.els-cdn.com/S0301008299000234/1-s2.0-S0301008299000234-main.pdf?_tid=7722ae13-f4d5-451f-a6e5-98ed91385196&acdnat=1550351534_af1b85fcb126558384dfef49b5240cbe
https://ac.els-cdn.com/S0301008299000234/1-s2.0-S0301008299000234-main.pdf?_tid=7722ae13-f4d5-451f-a6e5-98ed91385196&acdnat=1550351534_af1b85fcb126558384dfef49b5240cbe
https://doi.org/10.1146/annurev-neuro-061010-113613.Amyloid
https://doi.org/10.1146/annurev-neuro-061010-113613.Amyloid
http://dx.doi.org/10.1016/j.arcmed.2012.11.008%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174086/%5Cnhttp://dx.doi.org/10.1016/S0140-6736(12)62145-X
http://dx.doi.org/10.1016/j.arcmed.2012.11.008%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174086/%5Cnhttp://dx.doi.org/10.1016/S0140-6736(12)62145-X
http://dx.doi.org/10.1016/j.arcmed.2012.11.008%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174086/%5Cnhttp://dx.doi.org/10.1016/S0140-6736(12)62145-X
https://doi.org/10.1159/000007969
https://doi.org/10.1093/brain/awp062
https://doi.org/10.1093/brain/awp062
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677798/pdf/awp062.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677798/pdf/awp062.pdf
https://www.pnas.org/content/pnas/87/10/3952.full.pdf
https://doi.org/10.1016/j.jalz.2011.03.005.The
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312024/pdf/nihms363310.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312024/pdf/nihms363310.pdf
https://pdfs.semanticscholar.org/c9b0/c1a767d9b056c3d3ec30ff106cf54b1b8932.pdf
https://pdfs.semanticscholar.org/c9b0/c1a767d9b056c3d3ec30ff106cf54b1b8932.pdf
https://doi.org/10.1016/j.jalz.2011.03.004.Introduction
https://doi.org/10.1016/j.jalz.2011.03.004.Introduction
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096735/pdf/nihms284298.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096735/pdf/nihms284298.pdf

[15] O Hansson et al. “Prediction of Alzheimer’s Disease Using the CSF Aβ42/Aβ40
Ratio in Patients with Mild Cognitive Impairment”. In: 23 (2007), pp. 316–320. doi:
10.1159/000100926.

[16] R. Zinkowski et al. “CSF phosphorylated tau protein correlates with neocortical neu-
rofibrillary pathology in Alzheimer’s disease”. In: Brain 129.11 (2006), pp. 3035–
3041. issn: 0006-8950. doi: 10.1093/brain/awl269. url: https://watermark.
silverchair.com/awl269.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_
9Cf3qfKAc485ysgAAAkYwggJCBgkqhkiG9w0BBwagggIzMIICLwIBADCCAigGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfbVRa_
qQ4EU7t8PPAgEQgIIB-ZvrZmJI6e7hKVPqkN4ETZcgH6Ii5J2C0N1hI-J0VVXnNobN.

[17] Katharina Buerger et al. “No correlation between CSF tau protein phosphorylated at
threonine 181 with neocortical neurofibrillary pathology in Alzheimer’s disease [2]”.
In: Brain 130.10 (2007), pp. 180–181. issn: 14602156. doi: 10.1093/brain/awm140.
url: https://watermark.silverchair.com/awm140.pdf?token=AQECAHi208BE49Ooan9kkhW_
Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkUwggJBBgkqhkiG9w0BBwagggIyMIICLgIBADCCAicGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMXVnnIQAbOwPt7U4dAgEQgIIB-
LjP_CVwGD7wVhbPjbgzJAj6yWe-o49LUqJmLELPoglhXDoB.

[18] Sebastiaan Engelborghs et al. “No association of CSF biomarkers with APOEε4,
plaque and tangle burden in definite Alzheimer’s disease”. In: Brain 130.9 (2007),
pp. 2320–2326. issn: 14602156. doi: 10 . 1093 / brain / awm136. url: https : / /
watermark.silverchair.com/awm136.pdf?token=AQECAHi208BE49Ooan9kkhW_
Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkQwggJABgkqhkiG9w0BBwagggIxMIICLQIBADCCAiYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMvfmg6tDaba-
eQLmCAgEQgIIB904dv4d93qAZAV8vEUYgMWEf83w9ww5AcShtB_XD4K7z5mrW.

[19] LG Apostolova, RA Dutton, and D Dinov. “Conversion of Mild Cognitive Impairment
to Alzheimer Disease Predicted by Hippocampal Atrophy Maps”. In: 63.5 (2006),
pp. 693–699. doi: 10.1001/archneur.63.5.693.

[20] Ann D. Cohen and William E. Klunk. “Early detection of Alzheimer’s disease using
PiB and FDG PET”. In: (2014). issn: 15250008. doi: 10.1056/NEJMcibr1012075.
Rosiglitazone. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226742/
pdf/nihms604166.pdf.

[21] Aaron D. Benson et al. “Screening for Early Alzheimer’s Disease: Is There Still a
Role for the Mini-Mental State Examination?” In: Primary care companion to the
Journal of clinical psychiatry 7.2 (2005), pp. 62–69. issn: 1523-5998. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1079697/pdf/i1523-5998-7-2-
62.pdf.

65

https://doi.org/10.1159/000100926
https://doi.org/10.1093/brain/awl269
https://watermark.silverchair.com/awl269.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkYwggJCBgkqhkiG9w0BBwagggIzMIICLwIBADCCAigGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfbVRa_qQ4EU7t8PPAgEQgIIB-ZvrZmJI6e7hKVPqkN4ETZcgH6Ii5J2C0N1hI-J0VVXnNobN
https://watermark.silverchair.com/awl269.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkYwggJCBgkqhkiG9w0BBwagggIzMIICLwIBADCCAigGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfbVRa_qQ4EU7t8PPAgEQgIIB-ZvrZmJI6e7hKVPqkN4ETZcgH6Ii5J2C0N1hI-J0VVXnNobN
https://watermark.silverchair.com/awl269.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkYwggJCBgkqhkiG9w0BBwagggIzMIICLwIBADCCAigGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfbVRa_qQ4EU7t8PPAgEQgIIB-ZvrZmJI6e7hKVPqkN4ETZcgH6Ii5J2C0N1hI-J0VVXnNobN
https://watermark.silverchair.com/awl269.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkYwggJCBgkqhkiG9w0BBwagggIzMIICLwIBADCCAigGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfbVRa_qQ4EU7t8PPAgEQgIIB-ZvrZmJI6e7hKVPqkN4ETZcgH6Ii5J2C0N1hI-J0VVXnNobN
https://doi.org/10.1093/brain/awm140
https://watermark.silverchair.com/awm140.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkUwggJBBgkqhkiG9w0BBwagggIyMIICLgIBADCCAicGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMXVnnIQAbOwPt7U4dAgEQgIIB-LjP_CVwGD7wVhbPjbgzJAj6yWe-o49LUqJmLELPoglhXDoB
https://watermark.silverchair.com/awm140.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkUwggJBBgkqhkiG9w0BBwagggIyMIICLgIBADCCAicGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMXVnnIQAbOwPt7U4dAgEQgIIB-LjP_CVwGD7wVhbPjbgzJAj6yWe-o49LUqJmLELPoglhXDoB
https://watermark.silverchair.com/awm140.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkUwggJBBgkqhkiG9w0BBwagggIyMIICLgIBADCCAicGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMXVnnIQAbOwPt7U4dAgEQgIIB-LjP_CVwGD7wVhbPjbgzJAj6yWe-o49LUqJmLELPoglhXDoB
https://doi.org/10.1093/brain/awm136
https://watermark.silverchair.com/awm136.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkQwggJABgkqhkiG9w0BBwagggIxMIICLQIBADCCAiYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMvfmg6tDaba-eQLmCAgEQgIIB904dv4d93qAZAV8vEUYgMWEf83w9ww5AcShtB_XD4K7z5mrW
https://watermark.silverchair.com/awm136.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkQwggJABgkqhkiG9w0BBwagggIxMIICLQIBADCCAiYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMvfmg6tDaba-eQLmCAgEQgIIB904dv4d93qAZAV8vEUYgMWEf83w9ww5AcShtB_XD4K7z5mrW
https://watermark.silverchair.com/awm136.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkQwggJABgkqhkiG9w0BBwagggIxMIICLQIBADCCAiYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMvfmg6tDaba-eQLmCAgEQgIIB904dv4d93qAZAV8vEUYgMWEf83w9ww5AcShtB_XD4K7z5mrW
https://watermark.silverchair.com/awm136.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAkQwggJABgkqhkiG9w0BBwagggIxMIICLQIBADCCAiYGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMvfmg6tDaba-eQLmCAgEQgIIB904dv4d93qAZAV8vEUYgMWEf83w9ww5AcShtB_XD4K7z5mrW
https://doi.org/10.1001/archneur.63.5.693
https://doi.org/10.1056/NEJMcibr1012075.Rosiglitazone
https://doi.org/10.1056/NEJMcibr1012075.Rosiglitazone
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226742/pdf/nihms604166.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226742/pdf/nihms604166.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079697/pdf/i1523-5998-7-2-62.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079697/pdf/i1523-5998-7-2-62.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079697/pdf/i1523-5998-7-2-62.pdf

[22] D S Knopman et al. Practice parameter: Diagnosis of dementia (an evidence-based
review). Tech. rep. 2001, pp. 1–11. url: https://pdfs.semanticscholar.org/
285f/6bf80dfcbe83444d4dcbcd8512a505f7ca0a.pdf.

[23] Dilip V Jeste, Jane S Paulsen, and Ronald C Petersen. “NIH Public Access”. In:
19.3 (2013), pp. 205–210. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3076370/pdf/nihms-273128.pdf.

[24] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Vol. 9781107057. 2013, pp. 22–23. isbn: 9781107298019. doi:
10 . 1017 / CBO9781107298019. url: https : / / www . cs . huji . ac . il / ~shais /
UnderstandingMachineLearning / understanding - machine - learning - theory -
algorithms.pdf.

[25] Zoubin Ghahramani. Unsupervised Learning. Tech. rep. 2004, pp. 3–4. doi: 10.1007/
978-3-540-28650-9{_}5. url: http://www.inf.ed.ac.uk/teaching/courses/
pmr/docs/ul.pdf.

[26] Manfred Borovcnik, Hans-Joachim Bentz, and Ramesh Kapadia. A Probabilistic Per-
spective. 2011, pp. 62–63. isbn: 9780262018029. doi: 10.1007/978-94-011-3532-
0{_}2. url: https://doc.lagout.org/science/Artificial%20Intelligence/
Machine%20learning/Machine%20Learning_%20A%20Probabilistic%20Perspective%
20%5BMurphy%202012-08-24%5D.pdf.

[27] Marina Sokolova and Guy Lapalme. “A systematic analysis of performance measures
for classification tasks”. In: Information Processing and Management 45.4 (2009),
pp. 427–437. issn: 03064573. doi: 10.1016/j.ipm.2009.03.002. url: http:
//dx.doi.org/10.1016/j.ipm.2009.03.002%20http://atour.iro.umontreal.
ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf.

[28] Bram van Ginneken. “Fifty years of computer analysis in chest imaging: rule-based,
machine learning, deep learning”. In: Radiological Physics and Technology 10.1 (2017),
pp. 23–32. issn: 18650341. doi: 10.1007/s12194-017-0394-5.

[29] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Tech. rep. 7553.
2015, pp. 436–444. doi: 10.1038/nature14539. url: https://www.cs.toronto.
edu/~hinton/absps/NatureDeepReview.pdf.

[30] Y. Bengio. Learning Deep Architectures for AI. Vol. 2. 1. 2009, pp. 1–127. isbn:
2200000006. doi: 10.1561/2200000006. url: https://www.iro.umontreal.ca/
~bengioy/papers/ftml_book.pdf.

66

https://pdfs.semanticscholar.org/285f/6bf80dfcbe83444d4dcbcd8512a505f7ca0a.pdf
https://pdfs.semanticscholar.org/285f/6bf80dfcbe83444d4dcbcd8512a505f7ca0a.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076370/pdf/nihms-273128.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076370/pdf/nihms-273128.pdf
https://doi.org/10.1017/CBO9781107298019
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://doi.org/10.1007/978-3-540-28650-9{_}5
https://doi.org/10.1007/978-3-540-28650-9{_}5
http://www.inf.ed.ac.uk/teaching/courses/pmr/docs/ul.pdf
http://www.inf.ed.ac.uk/teaching/courses/pmr/docs/ul.pdf
https://doi.org/10.1007/978-94-011-3532-0{_}2
https://doi.org/10.1007/978-94-011-3532-0{_}2
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Probabilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Probabilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning_%20A%20Probabilistic%20Perspective%20%5BMurphy%202012-08-24%5D.pdf
https://doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/j.ipm.2009.03.002%20http://atour.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf
http://dx.doi.org/10.1016/j.ipm.2009.03.002%20http://atour.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf
http://dx.doi.org/10.1016/j.ipm.2009.03.002%20http://atour.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf
https://doi.org/10.1007/s12194-017-0394-5
https://doi.org/10.1038/nature14539
https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf
https://doi.org/10.1561/2200000006
https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
https://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

[31] Erkam Guresen and Gulgun Kayakutlu. “Definition of Artificial Neural Networks with
comparison to other networks”. In: Procedia Computer Science 3 (2011), pp. 426–433.
issn: 18770509. doi: 10.1016/j.procs.2010.12.071. url: http://dx.doi.org/
10 . 1016 / j . procs . 2010 . 12 . 071 % 20https : / / core . ac . uk / download / pdf /
82123892.pdf.

[32] J. M. Benítez, J. L. Castro, and I. Requena. “Are artificial neural networks black
boxes?” In: IEEE Transactions on Neural Networks 8.5 (1997), pp. 1156–1164. issn:
10459227. doi: 10.1109/72.623216.

[33] Daniele Ravi et al. “Deep Learning for Health Informatics”. In: American Journal of
Hematology 83.1 (2007), pp. 1–3. issn: 03618609. doi: 10.1002/ajh.21033.

[34] Vladislav Skorpil and Jiri Stastny. “Neural Networks and Back Propagation Algo-
rithm”. In: Electronics. Bulgaria, Sozopol (2006), pp. 20–22. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.578.4231&rep=rep1&type=pdf.

[35] Jianfang Cao et al. “Big data: A parallel particle swarm optimization-back-propagation
neural network algorithm based on MapReduce”. In: PLoS ONE 11.6 (2016), pp. 1–
18. issn: 19326203. doi: 10.1371/journal.pone.0157551. url: http://dx.doi.
org/10.1371/journal.pone.0157551.

[36] CS231n Winter 2016: Lecture 5: Neural Networks Part 2 - YouTube.

[37] Anne Solberg. Lecture : Backpropagation – learning in neural nets (Reading material).
2017. url: https://www.uio.no/studier/emner/matnat/ifi/INF5860/v17/
undervisningsmateriale/in5860_lecture7_nnet2.pdf.

[38] Daniel Justus et al. “Predicting the Computational Cost of Deep Learning Models”.
In: (2018). url: http://arxiv.org/abs/1811.11880.

[39] Charu C. Aggarwal. Neural networks and deep learning : a textbook. 2018, p. 453.
isbn: 9783319944630. doi: 10.1111/j.1464-5491.2005.01480.x.

[40] Silvia Basaia et al. “Automated classification of Alzheimer’s disease and mild cognitive
impairment using a single MRI and deep neural networks”. In: NeuroImage: Clinical
21.December 2018 (2018), p. 101645. issn: 22131582. doi: 10.1016/j.nicl.2018.
101645. url: https://doi.org/10.1016/j.nicl.2018.101645.

67

https://doi.org/10.1016/j.procs.2010.12.071
http://dx.doi.org/10.1016/j.procs.2010.12.071%20https://core.ac.uk/download/pdf/82123892.pdf
http://dx.doi.org/10.1016/j.procs.2010.12.071%20https://core.ac.uk/download/pdf/82123892.pdf
http://dx.doi.org/10.1016/j.procs.2010.12.071%20https://core.ac.uk/download/pdf/82123892.pdf
https://doi.org/10.1109/72.623216
https://doi.org/10.1002/ajh.21033
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.578.4231&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.578.4231&rep=rep1&type=pdf
https://doi.org/10.1371/journal.pone.0157551
http://dx.doi.org/10.1371/journal.pone.0157551
http://dx.doi.org/10.1371/journal.pone.0157551
https://www.uio.no/studier/emner/matnat/ifi/INF5860/v17/undervisningsmateriale/in5860_lecture7_nnet2.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF5860/v17/undervisningsmateriale/in5860_lecture7_nnet2.pdf
http://arxiv.org/abs/1811.11880
https://doi.org/10.1111/j.1464-5491.2005.01480.x
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1016/j.nicl.2018.101645

[41] Jyoti Islam and Yanqing Zhang. “Brain MRI analysis for Alzheimer’s disease diag-
nosis using an ensemble system of deep convolutional neural networks”. In: Brain
Informatics 5.2 (2018). issn: 21984026. doi: 10.1186/s40708-018-0080-3. url:
https://doi.org/10.1186/s40708-018-0080-3%20https://braininformatics.
springeropen.com/track/pdf/10.1186/s40708-018-0080-3.

[42] Peter J Goadsby, Tobias Kurth, and Alice Pressman. “A review on neuroimaging-
based classification studies and associated feature extraction methods for Alzheimer’s
disease and its prodromal stages”. In: 35.14 (2016), pp. 1252–1260. issn: 0959-437X.
doi: 10.1177/0333102415576222.Is. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5511557/pdf/nihms874419.pdf.

[43] Kun Hu et al. “Multi-scale features extraction from baseline structure MRI for MCI
patient classification and AD early diagnosis”. In: Neurocomputing 175.PartA (2015),
pp. 132–145. issn: 18728286. doi: 10.1016/j.neucom.2015.10.043. url: http:
//dx.doi.org/10.1016/j.neucom.2015.10.043.

[44] Alzheimer Society of Canada. “Risk Factors”. In: (2019). doi: 10.1016/B978-0-
12 - 804000 - 3 / 00002 - 8. url: https : / / www . ehs . iastate . edu / services /
occupational/ergonomics/risk-factors.

[45] Joan Lindsay et al. “Risk factors for Alzheimer’s disease: A prospective analysis from
the Canadian Study of Health and Aging”. In: American Journal of Epidemiology
156.5 (2002), pp. 445–453. issn: 00029262. doi: 10.1093/aje/kwf074.

[46] M. Panpalli Ates et al. “Analysis of genetics and risk factors of Alzheimer’s Dis-
ease”. In: Neuroscience 325 (2016), pp. 124–131. issn: 18737544. doi: 10.1016/j.
neuroscience.2016.03.051. url: http://dx.doi.org/10.1016/j.neuroscience.
2016.03.051.

[47] Noel O Kelly. “Use of machine learning technology in the diagnosis of alzheimer’s
disease”. In: September (2016), p. 91. url: http://doras.dcu.ie/21356/1/Noel_
s_Master_s_thesis__Copy_%281%29.pdf.

[48] Ezedin Wangoria and Henok Wordoffa. “Alzheimer’s Disease Stage Prediction using
Machine Learning and Multi Agent System”. In: September (2012). url: http://
bth.diva-portal.org/smash/get/diva2:829245/FULLTEXT01.pdf.

[49] Tingyan Wang, Robin G. Qiu, and Ming Yu. “Predictive Modeling of the Progression
of Alzheimer’s Disease with Recurrent Neural Networks”. In: Scientific Reports 8.1
(2018), pp. 1–12. issn: 20452322. doi: 10.1038/s41598-018-27337-w. url: http:
//dx.doi.org/10.1038/s41598-018-27337-w.

68

https://doi.org/10.1186/s40708-018-0080-3
https://doi.org/10.1186/s40708-018-0080-3%20https://braininformatics.springeropen.com/track/pdf/10.1186/s40708-018-0080-3
https://doi.org/10.1186/s40708-018-0080-3%20https://braininformatics.springeropen.com/track/pdf/10.1186/s40708-018-0080-3
https://doi.org/10.1177/0333102415576222.Is
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511557/pdf/nihms874419.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511557/pdf/nihms874419.pdf
https://doi.org/10.1016/j.neucom.2015.10.043
http://dx.doi.org/10.1016/j.neucom.2015.10.043
http://dx.doi.org/10.1016/j.neucom.2015.10.043
https://doi.org/10.1016/B978-0-12-804000-3/00002-8
https://doi.org/10.1016/B978-0-12-804000-3/00002-8
https://www.ehs.iastate.edu/services/occupational/ergonomics/risk-factors
https://www.ehs.iastate.edu/services/occupational/ergonomics/risk-factors
https://doi.org/10.1093/aje/kwf074
https://doi.org/10.1016/j.neuroscience.2016.03.051
https://doi.org/10.1016/j.neuroscience.2016.03.051
http://dx.doi.org/10.1016/j.neuroscience.2016.03.051
http://dx.doi.org/10.1016/j.neuroscience.2016.03.051
http://doras.dcu.ie/21356/1/Noel_s_Master_s_thesis__Copy_%281%29.pdf
http://doras.dcu.ie/21356/1/Noel_s_Master_s_thesis__Copy_%281%29.pdf
http://bth.diva-portal.org/smash/get/diva2:829245/FULLTEXT01.pdf
http://bth.diva-portal.org/smash/get/diva2:829245/FULLTEXT01.pdf
https://doi.org/10.1038/s41598-018-27337-w
http://dx.doi.org/10.1038/s41598-018-27337-w
http://dx.doi.org/10.1038/s41598-018-27337-w

[50] Haibo He and EA Garcia. “Learning from imbalanced data”. In: Ieee Transactions
on Knowledge and Data Engin 21.9 (2009), pp. 1263–1284. issn: 1041-4347. doi:
10.1109/TKDE.2008.239. url: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5128907.

[51] Hinmikaiye J. O et al. “Supervised Machine Learning Algorithms: Classification and
Comparison”. In: International Journal of Computer Trends and Technology 48.3
(2017), pp. 128–138. issn: 22312803. doi: 10.14445/22312803/ijctt-v48p126.

[52] Liyanaarachchi Lekamalage Chamara Kasun et al. “Representational learning with
ELMs for big data”. In: 4 (2013), pp. 1–4. url: https://pdfs.semanticscholar.
org/8df9/c71f09eb0dabf5adf17bee0f6b36190b52b2.pdf.

[53] Ivan Nunes da Silva et al. Artificial Neural Networks. 2017, p. 24. isbn: 9783319431611.
doi: 10.1007/978-3-319-43162-8.

[54] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: (2014), pp. 1–9. issn: 09205691. doi: 10.1007/s10107-014-
0839-0. url: http://arxiv.org/abs/1409.3215.

[55] S. Ben Driss et al. “A comparison study between MLP and convolutional neural
network models for character recognition”. In: Real-Time Image and Video Processing
2017 10223 (2017), p. 1022306. doi: 10.1117/12.2262589. url: https://hal-upec-
upem.archives-ouvertes.fr/hal-01525504/document.

[56] Youssef Ghanou et al. “Multilayer Perceptron: Architecture Optimization and Train-
ing”. In: International Journal of Interactive Multimedia and Artificial Intelligence 4.1
(2016), p. 26. doi: 10.9781/ijimai.2016.415. url: https://pdfs.semanticscholar.
org/7b79/cccc8de41d76a2ca20eacc3d39f7b45bff5f.pdf.

[57] Josh Patterson and Adam Gibson. Deep Learning: A Practitioner’s Approach. 1st
Editio. O’Reilly Media, 2017, Chapter 4: Major Architectures of Deep Networks.
isbn: 978-1491914250.

[58] Ashwin Bhandare et al. “Applications of Convolutional Neural Networks”. In: In-
ternational Journal of Computer Science and Information Technologies 7.5 (2016),
pp. 2206–2215. url: http://ijcsit.com/docs/Volume%207/vol7issue5/ijcsit20160705014.
pdf.

[59] Saurabh Karsoliya. “Approximating Number of Hidden layer neurons in Multiple
Hidden Layer BPNN Architecture”. In: International Journal of Engineering Trends
and Technology 3 (2012). url: http://www.internationaljournalssrg.org.

69

https://doi.org/10.1109/TKDE.2008.239
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5128907
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5128907
https://doi.org/10.14445/22312803/ijctt-v48p126
https://pdfs.semanticscholar.org/8df9/c71f09eb0dabf5adf17bee0f6b36190b52b2.pdf
https://pdfs.semanticscholar.org/8df9/c71f09eb0dabf5adf17bee0f6b36190b52b2.pdf
https://doi.org/10.1007/978-3-319-43162-8
https://doi.org/10.1007/s10107-014-0839-0
https://doi.org/10.1007/s10107-014-0839-0
http://arxiv.org/abs/1409.3215
https://doi.org/10.1117/12.2262589
https://hal-upec-upem.archives-ouvertes.fr/hal-01525504/document
https://hal-upec-upem.archives-ouvertes.fr/hal-01525504/document
https://doi.org/10.9781/ijimai.2016.415
https://pdfs.semanticscholar.org/7b79/cccc8de41d76a2ca20eacc3d39f7b45bff5f.pdf
https://pdfs.semanticscholar.org/7b79/cccc8de41d76a2ca20eacc3d39f7b45bff5f.pdf
http://ijcsit.com/docs/Volume%207/vol7issue5/ijcsit20160705014.pdf
http://ijcsit.com/docs/Volume%207/vol7issue5/ijcsit20160705014.pdf
http://www.internationaljournalssrg.org

[60] Z. Boger and H. Guterman. “Knowledge extraction from artificial neural network
models”. In: (2002), pp. 3030–3035. doi: 10.1109/icsmc.1997.633051. url: https:
//pdfs.semanticscholar.org/d907/5d3b920cd5bf7eba470c7d841c24a60ef353.
pdf.

[61] M.J.A. Berry and G. Linoff. Data Mining Techniques, NY: John Wiley & Sons. Tech.
rep. 1997.

[62] A. Blum. Neural Networks in C++: An Object-Oriented Framework for Building Con-
nectionist Systems. John Wiley & Sons, Inc. New York, 1992. isbn: 0471552011.

[63] Sandhya Joshi et al. “Classification and Treatment of Different Stages of Alzheimer’S
Disease Using Various Machine Learning Methods”. In: International Journal of
Bioinformatics Research 2.1 (2014), pp. 44–52. issn: 09753087. doi: 10.9735/0975-
3087.2.1.44-52.

[64] I. S. Isa et al. “Suitable MLP network activation functions for breast cancer and
thyroid disease detection”. In: Proceedings - 2nd International Conference on Com-
putational Intelligence, Modelling and Simulation, CIMSim 2010 (2010), p. 41. doi:
10.1109/CIMSiM.2010.93.

[65] Andrej Karpathy. Cs231n - Convolutional neural networks for visual recognition. 2016.
url: http://cs231n.github.io/neural-networks-1/.

[66] Roger Grosse. Lecture 15 : Exploding and Vanishing Gradients. 2017. url: http:
/ / www . cs . toronto . edu / ~rgrosse / courses / csc321 _ 2017 / readings / L15 %
20Exploding%20and%20Vanishing%20Gradients.pdf.

[67] Dominik Lewy. ANN - Activation function comparison. 2016. url: http://www.
mini.pw.edu.pl/~mandziuk/2017-11-08.pdf.

[68] Farnoush Farhadi and Andrea//Partovi Nia Lodi Vahid. “Learning activation func-
tions in deep neural networks”. In: Département de mathématiques et de génie indus-
triel (2017), p. 58. url: https://publications.polymtl.ca/2945/.

[69] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “2011glorot_DeepSparseRectifierNeuralNetworks.pdf”.
In: 15 (2011), pp. 315–323. issn: 15324435. doi: 10.1.1.208.6449. url: http:
//proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[70] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In: 1
(2018), pp. 2–8. url: http://arxiv.org/abs/1803.08375.

[71] Steve Renals. “Multi-Layer Neural Networks”. In: February (2014), p. 3. url: https:
//www.inf.ed.ac.uk/teaching/courses/asr/2013-14/asr08a-nnDetails.pdf.

70

https://doi.org/10.1109/icsmc.1997.633051
https://pdfs.semanticscholar.org/d907/5d3b920cd5bf7eba470c7d841c24a60ef353.pdf
https://pdfs.semanticscholar.org/d907/5d3b920cd5bf7eba470c7d841c24a60ef353.pdf
https://pdfs.semanticscholar.org/d907/5d3b920cd5bf7eba470c7d841c24a60ef353.pdf
https://doi.org/10.9735/0975-3087.2.1.44-52
https://doi.org/10.9735/0975-3087.2.1.44-52
https://doi.org/10.1109/CIMSiM.2010.93
http://cs231n.github.io/neural-networks-1/
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf
http://www.mini.pw.edu.pl/~mandziuk/2017-11-08.pdf
http://www.mini.pw.edu.pl/~mandziuk/2017-11-08.pdf
https://publications.polymtl.ca/2945/
https://doi.org/10.1.1.208.6449
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://arxiv.org/abs/1803.08375
https://www.inf.ed.ac.uk/teaching/courses/asr/2013-14/asr08a-nnDetails.pdf
https://www.inf.ed.ac.uk/teaching/courses/asr/2013-14/asr08a-nnDetails.pdf

[72] Dabal Pedamonti. “Comparison of non-linear activation functions for deep neural
networks on MNIST classification task”. In: 3 (2018). url: http://arxiv.org/abs/
1804.02763.

[73] Information Technology and Information Technology. “A REVIEW ON EVALU-
ATION METRICS FOR DATA CLASSIFICATION EVALUATIONS”. In: Inter-
national Journal of Data Mining & Knowledge Management Process (IJDKP) 5.2
(2015), pp. 1–11. url: https://pdfs.semanticscholar.org/6174/3124c2a4b4e550731ac39508c7d18e520979.
pdf.

[74] Chul Kee Park and Dong Gyu Kim. “Historical background”. In: Current and Future
Management of Brain Metastasis 25 (2012), pp. 1–12. doi: 10.1159/000331070. url:
http://leitang.net/papers/ency-cross-validation.pdf.

[75] Lutz Prechelt. “Early stopping - But when?” In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7700 LECTU (2012), pp. 53–67. issn: 03029743. doi: 10.1007/978-
3-642-35289-8-5. url: https://page.mi.fu-berlin.de/prechelt/Biblio/
stop_tricks1997.pdf.

[76] Alice Zheng. Evaluating Machine Learning Algorithms. 2015, pp. 7–14. isbn: 9781491932469.
url: https://pindex.com/uploads/post_docs/evaluating-machine-learning-
models(PINDEX-DOC-6950).pdf.

[77] Christopher A. Ramezan, Timothy A. Warner, and Aaron E. Maxwell. “Evalua-
tion of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine
Learning Classification”. In: Remote Sensing 11.2 (2019), p. 185. doi: 10.3390/
rs11020185.

[78] Ll Pérez-Planells et al. “Análisis de métodos de validación cruzada para la obtención
robusta de parámetros biofísicos”. In: Revista de Teledeteccion 2015.44 (2015), pp. 55–
65. issn: 19888740. doi: 10.4995/raet.2015.4153. url: https://core.ac.uk/
download/pdf/71051261.pdf.

[79] Chao Hu, Byeng D. Youn, and Pingfeng Wang. “Ensemble of Data-Driven Prognostic
Algorithms With Weight Optimization and K-Fold Cross Validation”. In: (2011),
p. 3. doi: 10.1115/detc2010-29182. url: https://www.phmsociety.org/sites/
phmsociety.org/files/phm_submission/2010/phmc_10_025.pdf.

71

http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
https://pdfs.semanticscholar.org/6174/3124c2a4b4e550731ac39508c7d18e520979.pdf
https://pdfs.semanticscholar.org/6174/3124c2a4b4e550731ac39508c7d18e520979.pdf
https://doi.org/10.1159/000331070
http://leitang.net/papers/ency-cross-validation.pdf
https://doi.org/10.1007/978-3-642-35289-8-5
https://doi.org/10.1007/978-3-642-35289-8-5
https://page.mi.fu-berlin.de/prechelt/Biblio/stop_tricks1997.pdf
https://page.mi.fu-berlin.de/prechelt/Biblio/stop_tricks1997.pdf
https://pindex.com/uploads/post_docs/evaluating-machine-learning-models(PINDEX-DOC-6950).pdf
https://pindex.com/uploads/post_docs/evaluating-machine-learning-models(PINDEX-DOC-6950).pdf
https://doi.org/10.3390/rs11020185
https://doi.org/10.3390/rs11020185
https://doi.org/10.4995/raet.2015.4153
https://core.ac.uk/download/pdf/71051261.pdf
https://core.ac.uk/download/pdf/71051261.pdf
https://doi.org/10.1115/detc2010-29182
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2010/phmc_10_025.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2010/phmc_10_025.pdf

[80] Haider Khalaf Jabbar and Rafiqul Zaman Khan. “Methods to Avoid Over-Fitting and
Under-Fitting in Supervised Machine Learning (Comparative Study)”. In: December
2014 (2015), pp. 163–172. doi: 10.3850/978-981-09-5247-1{_}017. url: https:
//www.researchgate.net/profile/Haider_Allamy/publication/295198699_
METHODS_TO_AVOID_OVER-FITTING_AND_UNDER-FITTING_IN_SUPERVISED_MACHINE_
LEARNING_COMPARATIVE_STUDY/links/56c8253f08aee3cee53a3707.pdf.

[81] Rich Caruana. Performance Measures for Machine Learning - Advanced Topics in
Machine Learning. 2006. doi: 10.2307/1269333. url: http://www.cs.cornell.
edu/courses/cs678/2006sp/performance_measures.4up.pdf.

[82] Luigi Cerulo. Machine Learning Model Evaluation. 2018. doi: 10.1007/978-1-4842-
4215-5{_}7. url: http://www.bioinformatics-sannio.org/wordpress/wp-
content/uploads/2015/12/ML09-model-evaluation.pdf.

[83] Seong Ho Park, Jin Mo Goo, and Chan Hee Jo. “Receiver operating characteristic
(ROC) curve: Practical review for radiologists”. In: Korean Journal of Radiology 5.1
(2004), pp. 11–18. issn: 12296929. doi: 10.3348/kjr.2004.5.1.11. url: https:
//synapse.koreamed.org/Synapse/Data/PDFData/0068KJR/kjr-5-11.pdf.

[84] Nazish Fatima and Saudi Arabia. “Performance Comparison of Most Common High
Level Programming Languages”. In: International Journal of Computing Academic
Research (IJCAR) 5.5 (2016), pp. 246–258. url: http://www.meacse.org/ijcar/
archives/109.pdf.

[85] Stephen J. Humer Elvis C. Foster. “A Comparitive Analysis Of The C++, Java, And
Python Languages”. In: December 2014 (2014). url: http://www.elcfos.com/
papers-in-cs/index/entry/id/7/title/Comparative-Analysis-of-the-C-
Java-and-Python-Languages.

[86] Python programming language. url: https : / / www . python . org / doc / essays /
blurb/.

[87] Suryansh Singh and Saikumar Allaka. “R vs Python , why you should learn both ?” In:
(). url: https://www.quadratyx.com/assets/resources/Featured_Insights/R_
vs_Python_Why_learn_both.pdf.

[88] Heikki Huttunen. Machine Learning in Python. 2015. doi: 10.1002/9781119183600.
url: http://doi.wiley.com/10.1002/9781119183600.

[89] Christina B. Madsen et al. “Python for Big Data Analytics and the Role of R”. In:
(2014). url: http://www.seagate.com/de/de/tech- insights/python-for-
analytics-and-the-role-of-r-master-ti/.

72

https://doi.org/10.3850/978-981-09-5247-1{_}017
https://www.researchgate.net/profile/Haider_Allamy/publication/295198699_METHODS_TO_AVOID_OVER-FITTING_AND_UNDER-FITTING_IN_SUPERVISED_MACHINE_LEARNING_COMPARATIVE_STUDY/links/56c8253f08aee3cee53a3707.pdf
https://www.researchgate.net/profile/Haider_Allamy/publication/295198699_METHODS_TO_AVOID_OVER-FITTING_AND_UNDER-FITTING_IN_SUPERVISED_MACHINE_LEARNING_COMPARATIVE_STUDY/links/56c8253f08aee3cee53a3707.pdf
https://www.researchgate.net/profile/Haider_Allamy/publication/295198699_METHODS_TO_AVOID_OVER-FITTING_AND_UNDER-FITTING_IN_SUPERVISED_MACHINE_LEARNING_COMPARATIVE_STUDY/links/56c8253f08aee3cee53a3707.pdf
https://www.researchgate.net/profile/Haider_Allamy/publication/295198699_METHODS_TO_AVOID_OVER-FITTING_AND_UNDER-FITTING_IN_SUPERVISED_MACHINE_LEARNING_COMPARATIVE_STUDY/links/56c8253f08aee3cee53a3707.pdf
https://doi.org/10.2307/1269333
http://www.cs.cornell.edu/courses/cs678/2006sp/performance_measures.4up.pdf
http://www.cs.cornell.edu/courses/cs678/2006sp/performance_measures.4up.pdf
https://doi.org/10.1007/978-1-4842-4215-5{_}7
https://doi.org/10.1007/978-1-4842-4215-5{_}7
http://www.bioinformatics-sannio.org/wordpress/wp-content/uploads/2015/12/ML09-model-evaluation.pdf
http://www.bioinformatics-sannio.org/wordpress/wp-content/uploads/2015/12/ML09-model-evaluation.pdf
https://doi.org/10.3348/kjr.2004.5.1.11
https://synapse.koreamed.org/Synapse/Data/PDFData/0068KJR/kjr-5-11.pdf
https://synapse.koreamed.org/Synapse/Data/PDFData/0068KJR/kjr-5-11.pdf
http://www.meacse.org/ijcar/archives/109.pdf
http://www.meacse.org/ijcar/archives/109.pdf
http://www.elcfos.com/papers-in-cs/index/entry/id/7/title/Comparative-Analysis-of-the-C-Java-and-Python-Languages
http://www.elcfos.com/papers-in-cs/index/entry/id/7/title/Comparative-Analysis-of-the-C-Java-and-Python-Languages
http://www.elcfos.com/papers-in-cs/index/entry/id/7/title/Comparative-Analysis-of-the-C-Java-and-Python-Languages
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.quadratyx.com/assets/resources/Featured_Insights/R_vs_Python_Why_learn_both.pdf
https://www.quadratyx.com/assets/resources/Featured_Insights/R_vs_Python_Why_learn_both.pdf
https://doi.org/10.1002/9781119183600
http://doi.wiley.com/10.1002/9781119183600
http://www.seagate.com/de/de/tech-insights/python-for-analytics-and-the-role-of-r-master-ti/
http://www.seagate.com/de/de/tech-insights/python-for-analytics-and-the-role-of-r-master-ti/

[90] Cassius V C Reis. “Comparative Study of Caffe, Neon, Theano, and Torch for Deep
Learning”. In: Neurosurgery 62.2 (2008), pp. 294–310. issn: 15760162. doi: 10 .
1227 / 01 . NEU . 0000297044 . 82035 . 57. url: https : / / openreview . net / pdf ?
id=q7kEN7WoXU8LEkD3t7BQ.

[91] Pradeepta Mishra. PyTorch Recipes. 2019, p. 30. isbn: 9781484242575. doi: 10.1007/
978-1-4842-4258-2.

[92] Kanit Wongsuphasawat et al. “Visualizing Dataflow Graphs of Deep Learning Models
in TensorFlow”. In: IEEE Transactions on Visualization and Computer Graphics 24.1
(2018), pp. 1–12. issn: 10772626. doi: 10.1109/TVCG.2017.2744878. url: https:
//idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf.

[93] Javed Ali Khan et al. “Comparison of Requirement Prioritization Techniques to Find
Best Prioritization Technique”. In: International Journal of Modern Education and
Computer Science 7.11 (2015), pp. 53–59. issn: 20750161. doi: 10.5815/ijmecs.
2015.11.06. url: http://www.mecs-press.org/ijmecs/ijmecs-v7-n11/IJMECS-
V7-N11-6.pdf.

[94] Virginia Mato-Abad et al. “Using Artificial Neural Networks for Identifying Patients
with Mild Cognitive Impairment Associated with Depression Using Neuropsycho-
logical Test Features”. In: Applied Sciences 8.9 (2018), p. 1629. doi: 10 . 3390 /
app8091629.

[95] Yosra Kazemi. A Deep Learning Pipeline for Classifying Different Stages of Alzheimer
’ s Disease from fMRI Data. Tech. rep. 2017. url: https://core.ac.uk/download/
pdf/146505572.pdf.

[96] G. J. Awate et al. “Detection-of-Ad-From-Mri-Using-Cnn-With-Tensorflow”. In: (2018).
url: https://arxiv.org/pdf/1806.10170.pdf.

[97] Silvia Basaia et al. “Automated classification of Alzheimer’s disease and mild cognitive
impairment using a single MRI and deep neural networks”. In: NeuroImage: Clinical
21.October 2018 (2019), p. 101645. issn: 22131582. doi: 10.1016/j.nicl.2018.
101645. url: https://doi.org/10.1016/j.nicl.2018.101645.

[98] Saman Sarraf et al. “DeepAD: Alzheimer’s Disease Classification via Deep Convo-
lutional Neural Networks using MRI and fMRI”. In: bioRxiv 1.1 (2016), pp. 1–32.
doi: 10.1101/070441. url: https://www.biorxiv.org/content/biorxiv/early/
2016/08/30/070441.full.pdf.

73

https://doi.org/10.1227/01.NEU.0000297044.82035.57
https://doi.org/10.1227/01.NEU.0000297044.82035.57
https://openreview.net/pdf?id=q7kEN7WoXU8LEkD3t7BQ
https://openreview.net/pdf?id=q7kEN7WoXU8LEkD3t7BQ
https://doi.org/10.1007/978-1-4842-4258-2
https://doi.org/10.1007/978-1-4842-4258-2
https://doi.org/10.1109/TVCG.2017.2744878
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf
https://idl.cs.washington.edu/files/2018-TensorFlowGraph-VAST.pdf
https://doi.org/10.5815/ijmecs.2015.11.06
https://doi.org/10.5815/ijmecs.2015.11.06
http://www.mecs-press.org/ijmecs/ijmecs-v7-n11/IJMECS-V7-N11-6.pdf
http://www.mecs-press.org/ijmecs/ijmecs-v7-n11/IJMECS-V7-N11-6.pdf
https://doi.org/10.3390/app8091629
https://doi.org/10.3390/app8091629
https://core.ac.uk/download/pdf/146505572.pdf
https://core.ac.uk/download/pdf/146505572.pdf
https://arxiv.org/pdf/1806.10170.pdf
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1016/j.nicl.2018.101645
https://doi.org/10.1101/070441
https://www.biorxiv.org/content/biorxiv/early/2016/08/30/070441.full.pdf
https://www.biorxiv.org/content/biorxiv/early/2016/08/30/070441.full.pdf

[99] Nick Evans and Andrew Tedder. “Holographic model of hgadronization”. In: Physi-
cal Review Letters 100.16 (2008). issn: 00319007. doi: 10.1103/PhysRevLett.100.
162003. url: https://www.researchgate.net/profile/Timothy_Copeland2/
publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_
of _ Alzheimer _ Disease _ by _ Using _ 18 _ F - FDG _ PET _ of _ the _ Brain / links /
5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-
o.

[100] Ramon Casanova et al. “Alzheimer’s Disease Risk Assessment Using Large-Scale
Machine Learning Methods”. In: PLoS ONE 8.11 (2013), e77949. doi: 10.1371/
journal.pone.0077949. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3826736/pdf/pone.0077949.pdf.

[101] Ammarah Farooq et al. “A deep CNN based multi-class classification of Alzheimer’s
disease using MRI”. In: IST 2017 - IEEE International Conference on Imaging Sys-
tems and Techniques, Proceedings 2018-Janua (2018), pp. 1–6. doi: 10.1109/IST.
2017.8261460.

[102] Victor Miller, Stephen Erlien, and Jeff Piersol. “Identifying dementia in MRI scans
using machinelearning”. In: (2012), pp. 1–5. url: http://cs229.stanford.edu/
proj2012/ErlienMillerPiersol-IdentifyingDementiaInMRIScansUsingMachineLearning.
pdf.

[103] Jyoti Islam and Yanqing Zhang. “Early diagnosis of alzheimer’s disease: A neu-
roimaging study with deep learning architectures”. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition Workshops 2018-June (2018),
pp. 1962–1964. issn: 21607516. doi: 10 . 1109 / CVPRW . 2018 . 00247. url: http :
//openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w36/Islam_
Early_Diagnosis_of_CVPR_2018_paper.pdf.

[104] S K Aruna and S Chitra. “Machine Learning Approach for Identifying Dementia from
MRI Images”. In: 9.3 (2015), pp. 881–888. url: https://waset.org/publications/
10004510/machine-learning-approach-for-identifying-dementia-from-mri-
images.

[105] Rishi Yadav, Ankit Gautam, and Ravi Bhushan Mishra. “Classification of Alzheimer
Using fMRI Data and Brain Network”. In: (2018), pp. 109–119. doi: 10.5121/csit.
2018.80609. url: https://airccj.org/CSCP/vol8/csit88609.pdf.

74

https://doi.org/10.1103/PhysRevLett.100.162003
https://doi.org/10.1103/PhysRevLett.100.162003
https://www.researchgate.net/profile/Timothy_Copeland2/publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_of_Alzheimer_Disease_by_Using_18_F-FDG_PET_of_the_Brain/links/5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-o
https://www.researchgate.net/profile/Timothy_Copeland2/publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_of_Alzheimer_Disease_by_Using_18_F-FDG_PET_of_the_Brain/links/5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-o
https://www.researchgate.net/profile/Timothy_Copeland2/publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_of_Alzheimer_Disease_by_Using_18_F-FDG_PET_of_the_Brain/links/5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-o
https://www.researchgate.net/profile/Timothy_Copeland2/publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_of_Alzheimer_Disease_by_Using_18_F-FDG_PET_of_the_Brain/links/5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-o
https://www.researchgate.net/profile/Timothy_Copeland2/publication/328775405_A_Deep_Learning_Model_to_Predict_a_Diagnosis_of_Alzheimer_Disease_by_Using_18_F-FDG_PET_of_the_Brain/links/5be9808c4585150b2bb12b6f/A-Deep-Learning-Model-to-Predict-a-Diagnosis-o
https://doi.org/10.1371/journal.pone.0077949
https://doi.org/10.1371/journal.pone.0077949
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826736/pdf/pone.0077949.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826736/pdf/pone.0077949.pdf
https://doi.org/10.1109/IST.2017.8261460
https://doi.org/10.1109/IST.2017.8261460
http://cs229.stanford.edu/proj2012/ErlienMillerPiersol-IdentifyingDementiaInMRIScansUsingMachineLearning.pdf
http://cs229.stanford.edu/proj2012/ErlienMillerPiersol-IdentifyingDementiaInMRIScansUsingMachineLearning.pdf
http://cs229.stanford.edu/proj2012/ErlienMillerPiersol-IdentifyingDementiaInMRIScansUsingMachineLearning.pdf
https://doi.org/10.1109/CVPRW.2018.00247
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w36/Islam_Early_Diagnosis_of_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w36/Islam_Early_Diagnosis_of_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w36/Islam_Early_Diagnosis_of_CVPR_2018_paper.pdf
https://waset.org/publications/10004510/machine-learning-approach-for-identifying-dementia-from-mri-images
https://waset.org/publications/10004510/machine-learning-approach-for-identifying-dementia-from-mri-images
https://waset.org/publications/10004510/machine-learning-approach-for-identifying-dementia-from-mri-images
https://doi.org/10.5121/csit.2018.80609
https://doi.org/10.5121/csit.2018.80609
https://airccj.org/CSCP/vol8/csit88609.pdf

[106] Naveen Ashish, Priya Bhatt, and Arthur W. Toga. “Global Data Sharing in Alzheimer
Disease Research”. In: Alzheimer Disease and Associated Disorders 30.2 (2016), pp. 160–
168. issn: 08930341. doi: 10.1097/WAD.0000000000000121. url: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4851599/pdf/nihms724516.pdf.

[107] NACC productivity - last update 3/26/2019. url: https://www.alz.washington.
edu/cgi-bin/broker93?_service=naccnew9&_program=naccwww.pubrep1.sas&
TYPEF=DISPLAYIDS.

[108] S B Kotsiantis, D Kanellopoulos, and P E Pintelas. “Data preprocessing for Super-
vised Leaning”. In: International Journal of Computer Science 1.2 (2006), pp. 1–7.
issn: 1306-4428. doi: 10.1080/02331931003692557. url: http://www.google.
com/search?client=safari&rls=en&q=Data+Preprocessing+for+Supervised+
Leaning&ie=UTF-8&oe=UTF-8%5Cnpapers2://publication/uuid/AA4424CD-
8BE0-43AB-838B-8BBBDE502355.

[109] Jiawei Han and Micheline Kamber. Data Mining : Concepts and Techniques. 2nd.
Elsevier Editiors, 2006, pp. 47–87. isbn: 9781558609013. doi: 10.1093/nar/gku1019.
url: http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Software%20Engineering/
Data%20Mining%20-%20Concepts%20and%20Techniques%20-%202nd%20Edition%
20-%20Impressao.pdf.

[110] Ason Brownlee. How to Grid Search Hyperparameters for Deep Learning Models in
Python With Keras. 2016. url: https://machinelearningmastery.com/grid-
search-hyperparameters-deep-learning-models-python-keras/.

[111] Foram S Panchal and Mahesh Panchal. “International Journal of Computer Science
and Mobile Computing Review on Methods of Selecting Number of Hidden Nodes in
Artificial Neural Network”. In: International Journal of Computer Science and Mobile
Computing 3.11 (2014), p. 456. url: www.ijcsmc.com.

[112] Sklearn Documentation - GridSearchCV. url: http://scikit-learn.org/stable/
modules/generated/sklearn.neighbors.KNeighborsClassifier.html.

[113] plot_confusion_matrix @ github.com. url: https://github.com/scikit-learn/
scikit - learn / blob / master / examples / model _ selection / plot _ confusion _
matrix.py.

[114] Sylvia C Hewitt, Sylvia Curtis Hewitt, and Kenneth S Korach. “Estrogen Receptors
: Structure , Mechanisms and Function Estrogen Receptors : Structure , Mechanisms
and Function”. In: October 2002 (2016), pp. 193–194. doi: 10.1023/A.

75

https://doi.org/10.1097/WAD.0000000000000121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851599/pdf/nihms724516.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851599/pdf/nihms724516.pdf
https://www.alz.washington.edu/cgi-bin/broker93?_service=naccnew9&_program=naccwww.pubrep1.sas&TYPEF=DISPLAYIDS
https://www.alz.washington.edu/cgi-bin/broker93?_service=naccnew9&_program=naccwww.pubrep1.sas&TYPEF=DISPLAYIDS
https://www.alz.washington.edu/cgi-bin/broker93?_service=naccnew9&_program=naccwww.pubrep1.sas&TYPEF=DISPLAYIDS
https://doi.org/10.1080/02331931003692557
http://www.google.com/search?client=safari&rls=en&q=Data+Preprocessing+for+Supervised+Leaning&ie=UTF-8&oe=UTF-8%5Cnpapers2://publication/uuid/AA4424CD-8BE0-43AB-838B-8BBBDE502355
http://www.google.com/search?client=safari&rls=en&q=Data+Preprocessing+for+Supervised+Leaning&ie=UTF-8&oe=UTF-8%5Cnpapers2://publication/uuid/AA4424CD-8BE0-43AB-838B-8BBBDE502355
http://www.google.com/search?client=safari&rls=en&q=Data+Preprocessing+for+Supervised+Leaning&ie=UTF-8&oe=UTF-8%5Cnpapers2://publication/uuid/AA4424CD-8BE0-43AB-838B-8BBBDE502355
http://www.google.com/search?client=safari&rls=en&q=Data+Preprocessing+for+Supervised+Leaning&ie=UTF-8&oe=UTF-8%5Cnpapers2://publication/uuid/AA4424CD-8BE0-43AB-838B-8BBBDE502355
https://doi.org/10.1093/nar/gku1019
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Software%20Engineering/Data%20Mining%20-%20Concepts%20and%20Techniques%20-%202nd%20Edition%20-%20Impressao.pdf
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Software%20Engineering/Data%20Mining%20-%20Concepts%20and%20Techniques%20-%202nd%20Edition%20-%20Impressao.pdf
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Software%20Engineering/Data%20Mining%20-%20Concepts%20and%20Techniques%20-%202nd%20Edition%20-%20Impressao.pdf
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
www.ijcsmc.com
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_confusion_matrix.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_confusion_matrix.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_confusion_matrix.py
https://doi.org/10.1023/A

[115] Paras Lakhani and Baskaran Sundaram. “Deep Learning at Chest Radiography: Au-
tomated Classification of Pulmonary Tuberculosis by Using Convolutional Neural
Networks”. In: Radiology 284.2 (2017), pp. 574–582. issn: 0033-8419. doi: 10.1148/
radiol.2017162326.

[116] Andrew Ng. “Machine learning Yearning - Technical strategy for AI Engineers in the
Era of Deep Learning”. In: (2018), p. 56. url: https://www.deeplearning.ai/
content/uploads/2018/09/Ng-MLY01-12.pdf.

[117] Claudia Perlich. “IBM Research Report - Learning Curves in Machine Learning”. In:
(2009). doi: 10.1007/978-0-387-30164-8. url: http://link.springer.com/10.
1007/978-0-387-30164-8.

[118] keras-plot-history @ www.kaggle.com. url: https://www.kaggle.com/danbrice/
keras-plot-history-full-report-and-grid-search.

76

https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1148/radiol.2017162326
https://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
https://www.deeplearning.ai/content/uploads/2018/09/Ng-MLY01-12.pdf
https://doi.org/10.1007/978-0-387-30164-8
http://link.springer.com/10.1007/978-0-387-30164-8
http://link.springer.com/10.1007/978-0-387-30164-8
https://www.kaggle.com/danbrice/keras-plot-history-full-report-and-grid-search
https://www.kaggle.com/danbrice/keras-plot-history-full-report-and-grid-search

Appendix A

Methodology - Gantt Chart

77

Appendix B

Methodology - Agile Chart

79

Appendix C

DSM-IV Diagnosis Criteria

81

Reference: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision.
Washington, D.C., American Psychiatric Association, 2000.

DSM-IV Criteria for the Diagnosis of Alzheimer’s Disease

 Yes No
A. The development of multiple cognitive deficits manifested by both:

1. Memory impairment (impaired ability to learn new information or
 to recall previously learned information).

2. One (or more) of the following cognitive disturbances:

a. Aphasia (language disturbance).

b. Apraxia (impaired ability to carry out motor activities despite
 intact motor function.

c. Agnosia (failure to recognize or identify objects despite intact
 sensory function).

d. Disturbance in executive functioning (i.e., planning, organizing,
 sequencing, abstracting).

B. The cognitive deficits in Criteria A1 and A2 each cause significant
 impairment in social or occupational functioning and represent a
 significant decline from a previous level of functioning.

C. The course is characterized by gradual onset and continuing cognitive
 decline.

D. The cognitive deficits in Criteria A1 and A2 are not due to any of the
 following:

1. Other central nervous systems, conditions that cause progressive
 deficits in memory and cognition (e.g., cerebrovascular disease,
 Parkinson’s disease, Huntington’s disease, subdural hematoma,
 normal-pressure hydrocephalus, brain tumor).

2. Systemic conditions that are known to cause dementia (e.g.,
 hypothyroidism, vitamin B12 or folic acid deficiency, neurosyphilis,
 HIV infection).

3. Substance-induced conditions.

E. The deficits do not occur exclusively during the course of a delirium.

F. The disturbance is not better accounted for by another disorder (e.g.,
 major depressive disorder, schizophrenia).

Appendix D

List of selected variables for the model

83

Variable

Meaning

NACCVNUM Unique patient id
NACCAGE Age of the patient

SEX Female or male
HISPANIC Hispanic race or not

EDUC Years of education
TOBAC1OO Smoker patient or not

CVHATT Hearth attack
CVAFIB Atrial fibrillation

CVANGIO Angioplasty/endarterectomy/stent
CVBYPASS Cardiac bypass procedure

CVPACE Pacemaker
CVCHF Congestive heart failure

CVOTHR Other cardiovascular disease
CBSTROKE Stroke

PD Parkinson’s disease
SEIZURES Seizures
NACCTBI History of traumatic brain injury (TBI)
DIABETES Diabetes
HYPERTEN Hypertension

B12DEF Vitamin B12 deficiency
THYROID Thyroid disease

ABUSOTHR Abused substances
NACCMMSE MMSE score

DOWNS Down syndrome
DEP Depression

NACC_ALZ Final Alzheimer diagnosis

Appendix E

Python code of the solution

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import type_of_target
from sklearn.metrics import roc_curve, auc, roc_auc_score

fix random seed for reproducibility
seed = 7
np.random.seed(seed)

MODULE 1: DATA COLLECTION AND PRE-PROCESSING

Reading the dataset in a dataframe using Pandas

85

df = pd.read_csv("dataset.csv", sep=’;’)

A previous selection of which fields include has been made. This
selection has been done with the help of an specialist in the area.
Also, fields with a lot of null values has been discarted.

df.head(10)
df.describe()

- 31245 patients (NACCVNUM = unique id)
- No missing values in any of the fields
- NACCAGE: Min age of 18, max of 109 and mean of 72
- Sex: 1=Male 2=Female
- HISPANIC: 0=No 1=Yes 9=Unknown
- EDUC: years of education, between 0 and 36 99=Unknown
- TOBAC100: smoked more than 100 cigarretes in life 0=No 1=Yes 9=Unknown
- CVHATT: heart attack 0=Absent 1=Recent/Active 2=Remote/Inactive 9=

Unknown
- CVAFIB: atrial fibrillation 0=Absent 1=Recent/Active 2=Remote/Inactive

9=Unknown
- CVANGIO: angioplasty/endarterectomy/stent 0=Absent 1=Recent/Active 2 =

Remote/Inactive 9=Unknown
- CVBYPASS: Cardiac bypass procedure 0=Absent 1=Recent/Active 2=Remote/

Inactive 9=Unknown
- CVPACE: Pacemaker 0=Absent 1=Recent/Active 2=Remote/Inactive 9=Unknown
- CVCHF: Congestive heart failure 0=Absent 1=Recent/Active 2=Remote/

Inactive 9=Unknown
- CVOTHR: Other cardiovascular disease 0=Absent 1=Recent/Active 2=Remote

/Inactive 9=Unknown
- CBSTROKE: stroke 0=Absent 1=Recent/Active 2=Remote/Inactive 9=Unknown
- PD: Parkinsons disease (PD) 0=Absent 1=Recent/Active 9=Unknown
- SEIZURES: seizures 0=Absent 1=Recent/Active 2=Remote/Inactive 9=

Unknown
- NACCTBI: history of traumatic brain injury (TBI) 0=No 1=Yes 9=Unknown
- DIABETES: diabetes 0=Absent 1=Recent/Active 2=Remote/Inactive 9=

Unknown

86

- HYPERTEN: hypertension 0=Absent 1=Recent/Active 2=Remote/Inactive 9=
Unknown

- B12DEF: vitamin B12 deficiency 0=Absent 1=Recent/Active 2=Remote/
Inactive 9=Unknown

- THYROID: thyroid disease 0=Absent 1=Recent/Active 2=Remote/Inactive 9=
Unknown

- ABUSOTHR: abused substances 0=Absent 1=Recent/Active 2=Remote/Inactive
9=Unknown

- NACCMMSE: MMSE score between 030
- DOWNS: down syndrome 0 = No 1 = Yes
- DEP: Depression 0 = No (assumed assessed and found not present) 1 =

Yes
- NACC_ALZ: Final alzheimer diagnosis 1=Yes 0= No

df.isnull().sum()

bar drawing function
def bar_chart(feature):

AD = df[df[’NACC_ALZ’]==1][feature].value_counts()
NonAD = df[df[’NACC_ALZ’]==0][feature].value_counts()
df_bar = pd.DataFrame([AD,NonAD])
df_bar.index = [’AD’,’NonAD’]
df_bar.plot(kind=’bar’,stacked=True, figsize=(8,5))

Gender
bar_chart(’SEX’)
plt.xlabel(’NACC_ALZ’)
plt.ylabel(’Number␣of␣patients’)
plt.legend()
plt.title(’Gender␣and␣AD’)

The above graph indicates that women are more likely with dementia than
men.

MMSE : Mini Mental State Examination

87

mmse: min 0 , max 30
facet= sns.FacetGrid(df,hue="NACC_ALZ", aspect=3)
facet.map(sns.kdeplot,’NACCMMSE’,shade= True)
facet.set(xlim=(0, df[’NACCMMSE’].max()))
facet.add_legend()
plt.xlim(0.30)

The chart shows Non-AD group got much more higher MMSE scores than AD
group.

AGE
facet= sns.FacetGrid(df,hue="NACC_ALZ", aspect=3)
facet.map(sns.kdeplot,’NACCAGE’,shade= True)
facet.set(xlim=(0, df[’NACCAGE’].max()))
facet.add_legend()
plt.xlim(0,110)

There is a higher concentration of 70-85 years old in the AD patient
group than those in the non-AD patients.

df0.describe()
df1.describe()

df0 = df[df[’NACC_ALZ’] == 0]
df1 = df[df[’NACC_ALZ’] == 1]

df0 = df0.sample(8500)
df1 = df1.sample(8500)

df = pd.concat([df0, df1])

#Shuffle
df = df.sample(frac=1).reset_index(drop=True)
df.describe()

88

MODULE 2: NEURAL NETWORK

dataset = df.values
X = dataset[:,1:26]
Y = dataset[:,26]

Y=Y.astype(’int’)

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,
random_state=1)

create model
model = Sequential()
model.add(Dense(25, input_dim=25, activation=’tanh’))
model.add(Dense(25, activation=’tanh’))
model.add(Dense(1, activation=’sigmoid’))

Compile model
model.compile(loss=’mean_absolute_error’, optimizer=’Adamax’, metrics=[’

accuracy’])
model.summary()

Fit the model
history = model.fit(X_train, Y_train, validation_split=0.1, epochs=1600,

batch_size=5000, verbose=2)

MODULE 3: TESTING AND VISUALIZATION OF RESULTS

def plot_history(history):

loss_list = [s for s in history.history.keys() if ’loss’ in s and ’val’
not in s]

89

val_loss_list = [s for s in history.history.keys() if ’loss’ in s and ’
val’ in s]

if len(loss_list) == 0:
print(’Loss␣is␣missing␣in␣history’)
return

As loss always exists
epochs = range(1,len(history.history[loss_list[0]]) + 1)

Loss
plt.figure(1)
for l in loss_list:

plt.plot(epochs, history.history[l], ’b’, label=’Training␣loss␣(’ +
str(str(format(history.history[l][-1],’.5f’))+’)’))

for l in val_loss_list:
plt.plot(epochs, history.history[l], ’g’, label=’Validation␣loss␣(’

+ str(str(format(history.history[l][-1],’.5f’))+’)’))

plt.title(’Loss’)
plt.ylim(0, 1)
plt.xlabel(’Epochs’)
plt.ylabel(’Loss’)
plt.legend()
plt.show()

def plot_confusion_matrix(cm, classes,
normalize=False,
title=’Confusion␣matrix’,
cmap=plt.cm.YlOrRd):

"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting ‘normalize=True‘.
"""
plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

90

plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

if normalize:
cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]
print("Normalized␣confusion␣matrix")

else:
print(’Confusion␣matrix,␣without␣normalization’)

print(cm)

thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel(’True␣label’)
plt.xlabel(’Predicted␣label’)
plt.show()

plot_history(history)

evaluate the model
scores = model.evaluate(X_test, Y_test)

print("\n%s:␣%.2f%%" % (model.metrics_names[1], scores[1]*100))

for i,value in enumerate(Y_test):

91

print(Y_test[i])

y_pred = model.predict(X_test)
y_pred2 = np.empty([len(y_pred)], dtype=int)

for i,value in enumerate(y_pred):

#Threshold
if value>0.5:

y_pred2[i] = 1
else:

y_pred2[i] = 0

for i,value in enumerate(y_pred2):
print(y_pred2[i])

print(type_of_target(Y_test))
print(type_of_target(y_pred2))

Output of predictions

for i,value in enumerate(y_pred):
print(y_pred[i])

cnf_matrix = confusion_matrix(Y_test, y_pred2)
plot_confusion_matrix(cnf_matrix, classes=[0,1], normalize=False,

title=’Confusion␣matrix’)

false_positive_rate, true_positive_rate, thresholds = roc_curve(Y_test,
y_pred)

roc_auc = auc(false_positive_rate, true_positive_rate)

plt.xlabel(’False␣Positive␣Rate’)
plt.ylabel(’True␣Positive␣Rate’)

92

plt.title(’Receiver␣operating␣characteristic␣example’)
plt.legend(loc="lower␣right")

plt.title(’Receiver␣Operating␣Characteristic’)

plt.plot(false_positive_rate, true_positive_rate, ’darkorange’,
label=’Deep␣neural␣network␣␣ROC␣(AUC␣=␣%0.2f)’ % roc_auc)

plt.plot([0,1],[0,1],color=’slategray’,linestyle=’--’, label = ’Random␣guess
’)

plt.legend(loc=’lower␣right’)
plt.show()

93

Appendix F

Script 1 - Tuning the number of
neurons

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier

fix random seed for reproducibility
seed = 7
np.random.seed(seed)
df = pd.read_csv("dataset.csv", sep=’;’) # Reading the dataset in a

dataframe using Pandas

df0 = df[df[’NACC_ALZ’] == 0]
df1 = df[df[’NACC_ALZ’] == 1]

df0 = df0.sample(8500)
df1 = df1.sample(8500)

94

df = pd.concat([df0, df1])

#Shuffle
df = df.sample(frac=1).reset_index(drop=True)

df.head(100)
df.shape

dataset = df.values
X = dataset[:,1:26]
Y = dataset[:,26]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

random_state=1)

def create_model(neurons=1):
create model
model = Sequential()
model.add(Dense(neurons, input_dim=25, activation=’relu’))
model.add(Dense(neurons, activation=’relu’))
model.add(Dense(1, activation=’sigmoid’))
compile model
model.compile(loss=’binary_crossentropy’, optimizer=’adam’, metrics=[’

accuracy’])
return model

model = KerasClassifier(build_fn=create_model, epochs=300, batch_size=800)

define the grid search parameters
neurons = [10, 15, 20, 25, 30, 35, 40, 45, 50]
param_grid = dict(neurons=neurons)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y, verbose=0)
summarize results
print("Best:␣%f␣using␣%s" % (grid_result.best_score_, grid_result.

best_params_))

95

means = grid_result.cv_results_[’mean_test_score’]
stds = grid_result.cv_results_[’std_test_score’]
params = grid_result.cv_results_[’params’]
for mean, stdev, param in zip(means, stds, params):

print("%f␣(%f)␣with:␣%r" % (mean, stdev, param))

96

Appendix G

Script 2 - Tuning the activation
function

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier

fix random seed for reproducibility
seed = 7
np.random.seed(seed)
df = pd.read_csv("dataset.csv", sep=’;’) # Reading the dataset in a

dataframe using Pandas

df0 = df[df[’NACC_ALZ’] == 0]
df1 = df[df[’NACC_ALZ’] == 1]

df0 = df0.sample(8500)
df1 = df1.sample(8500)

97

df = pd.concat([df0, df1])

#Shuffle
df = df.sample(frac=1).reset_index(drop=True)

df.head(100)
df.shape

dataset = df.values
X = dataset[:,1:26]
Y = dataset[:,26]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

random_state=1)

def create_model(activation=’relu’):
create model
model = Sequential()
model.add(Dense(25, input_dim=25, activation=activation))
model.add(Dense(25, activation=activation))
model.add(Dense(1, activation=’sigmoid’))
compile model
model.compile(loss=’binary_crossentropy’, optimizer=’Adamax’, metrics=[’

accuracy’])
return model

model = KerasClassifier(build_fn=create_model, epochs=300, batch_size=800)

define the grid search parameters
activation = [’softmax’, ’relu’, ’tanh’, ’sigmoid’]
param_grid = dict(activation=activation)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y, verbose=0)
summarize results
print("Best:␣%f␣using␣%s" % (grid_result.best_score_, grid_result.

best_params_))

98

means = grid_result.cv_results_[’mean_test_score’]
stds = grid_result.cv_results_[’std_test_score’]
params = grid_result.cv_results_[’params’]
for mean, stdev, param in zip(means, stds, params):

print("%f␣(%f)␣with:␣%r" % (mean, stdev, param))

99

Appendix H

Script 3 - Tuning the optimizer

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier

fix random seed for reproducibility
seed = 7
np.random.seed(seed)
df = pd.read_csv("dataset.csv", sep=’;’) # Reading the dataset in a

dataframe using Pandas

df0 = df[df[’NACC_ALZ’] == 0]
df1 = df[df[’NACC_ALZ’] == 1]

df0 = df0.sample(8500)
df1 = df1.sample(8500)

df = pd.concat([df0, df1])

100

#Shuffle
df = df.sample(frac=1).reset_index(drop=True)

df.head(100)
df.shape

dataset = df.values
X = dataset[:,1:26]
Y = dataset[:,26]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

random_state=1)

def create_model(optimizer=’adam’):
create model
model = Sequential()
model.add(Dense(25, input_dim=25, activation=’tanh’))
model.add(Dense(25, activation=’tanh’))
model.add(Dense(1, activation=’sigmoid’))
compile model
model.compile(loss=’binary_crossentropy’, optimizer=optimizer, metrics=[

’accuracy’])
return model

model = KerasClassifier(build_fn=create_model, epochs=300, batch_size=800)

define the grid search parameters
optimizer = [’SGD’, ’RMSprop’, ’Adagrad’, ’Adadelta’, ’Adam’, ’Adamax’, ’

Nadam’]
param_grid = dict(optimizer=optimizer)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y, verbose=0)
summarize results
print("Best:␣%f␣using␣%s" % (grid_result.best_score_, grid_result.

best_params_))

101

means = grid_result.cv_results_[’mean_test_score’]
stds = grid_result.cv_results_[’std_test_score’]
params = grid_result.cv_results_[’params’]
for mean, stdev, param in zip(means, stds, params):

print("%f␣(%f)␣with:␣%r" % (mean, stdev, param))

102

Appendix I

Script 4 - Tuning batch size and
number of epochs

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from keras.wrappers.scikit_learn import KerasClassifier

fix random seed for reproducibility
seed = 7
np.random.seed(seed)
df = pd.read_csv("dataset.csv", sep=’;’) # Reading the dataset in a

dataframe using Pandas

df0 = df[df[’NACC_ALZ’] == 0]
df1 = df[df[’NACC_ALZ’] == 1]

df0 = df0.sample(8500)
df1 = df1.sample(8500)

103

df = pd.concat([df0, df1])

#Shuffle
df = df.sample(frac=1).reset_index(drop=True)

df.head(100)
df.shape

dataset = df.values
X = dataset[:,1:26]
Y = dataset[:,26]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2,

random_state=1)

def create_model():
create model
model = Sequential()
model.add(Dense(25, input_dim=25, activation=’tanh’))
model.add(Dense(25, activation=’tanh’))
model.add(Dense(1, activation=’sigmoid’))
compile model
model.compile(loss=’binary_crossentropy’, optimizer=’Adamax’, metrics=[’

accuracy’])
return model

model = KerasClassifier(build_fn=create_model)

define the grid search parameters
batch_size = [800, 2000, 5000, 10000, 13000, 15000]
epochs = [600, 800, 1000, 1200, 1400, 1600]
param_grid = dict(batch_size=batch_size, epochs=epochs)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X, Y, verbose=0)
summarize results

104

print("Best:␣%f␣using␣%s" % (grid_result.best_score_, grid_result.
best_params_))

means = grid_result.cv_results_[’mean_test_score’]
stds = grid_result.cv_results_[’std_test_score’]
params = grid_result.cv_results_[’params’]
for mean, stdev, param in zip(means, stds, params):

print("%f␣(%f)␣with:␣%r" % (mean, stdev, param))

105

	List of acronyms and abbreviations
	Introduction
	Problem formulation
	Limitations
	Methodology
	Gantt Chart of the report
	Agile realization of the project

	Structure of the report

	State of the Art
	Alzheimer disease
	Causes
	Diagnosis
	Summary

	Machine Learning
	Classification in Deep Learning

	Analysis
	Identification of the required data
	Defining the classifier
	Model hyperparameters
	Number of layers and neurons
	Activation functions

	Evaluation metrics
	Programming languages and libraries
	Requirements
	Functional requirements
	Non-Functional requirements

	Conceptual Design
	System overview
	Required data input
	Description of the NACC Database
	Analysis of the required characteristics

	Data collection and pre-processing module
	Neural Network
	Testing and visualization of results
	Summary

	Implementation
	Data collection and pre-processing
	Neural Network

	Testing
	Accuracy and confusion matrix
	ROC
	Analysis of learning curves

	Conclusions
	Future perspectives

	Bibliography
	Methodology - Gantt Chart
	Methodology - Agile Chart
	DSM-IV Diagnosis Criteria
	List of selected variables for the model
	Python code of the solution
	Script 1 - Tuning the number of neurons
	Script 2 - Tuning the activation function
	Script 3 - Tuning the optimizer
	Script 4 - Tuning batch size and number of epochs

