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Synopsis 

 

Electrocardiography is a widely used 

diagnostic method to detect abnormalities 

in the electrical activity of the heart. 

Although ECGs have been used for many 

years, the emergence of the T wave and 

details of associated physiological processes 

have been a matter of controversy for 

decades. The T wave genesis has been 

investigated with an array of experimental 

heart models. Particularly the wedge 

preparations from canine hearts showed 

findings contrary to classical assumptions. It 

is of interest to know, whether findings 

from the wedge preparation are concordant 

with physiological electrical behavior of 

ventricular heart tissue.  

Since the internal processes within the 

wedge are not accessible, mathematical 

modelling is used to access the underlying 

processes of the wedge preparation. The 

increase in computational power facilitates 

the use of more detailed mathematical 

models. 

The aim of this project was to develop and 

implement a mathematical bidomain model 

of a wedge of human left ventricular heart 

tissue and therewith reconstructing 

mathematically the setup of a wedge 

preparation for human tissue. 
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1 Introduction 
 

Electrocardiography is a widely used and valuable diagnostic method to detect abnormalities in the 

electrical activity of the heart [1–4]. Even though electrocardiograms (ECGs) have been indispensable 

for about a century, the exact genesis of all its waveforms is hitherto not completely determined. In 

particular, the emergence of the T wave has been a matter of controversy for decades. [3,4] 

Electrophysiological backgrounds of the T wave genesis have been investigated in human cardiac tissue 

and animal models. These models range from full heart models to wedge preparations of cardiac 

tissue. [3–6] Especially wedge preparations from canine hearts showed findings contrary to the 

classical ideas [3,5,7–10].  

However, often it is complicated or simply not possible to study ongoing processes under physiological 

conditions in a 3D manner [11]. Besides, animal models may differ from human physiology [12,13]. To 

overcome those limitations, mathematical modelling can be used  [11–13].  

Mathematical models are mostly computer-based models, hence the increase in computational power 

facilitates the use of computationally heavy detailed mathematical models. [1,14] Computer-based 

models have gained popularity in investigating physiological processes ongoing in cardiac tissue, and 

allow to deepen and broaden knowledge in electrophysiology [15–17]. It is possible to simulate various 

conditions with models in order to reconstruct experiments and compare the findings [14]. 

Since the electrical activity of the heart emerges from complex interrelations of microscopic factors, 

such as ion exchange, and macroscopic factors, such as anisotropic behaviour, a challenge in 

mathematical modelling is to affiliate different anatomical and physiological compartments of 

particular levels [14,16]. Therefore it is often required to interlink various models [14]. 

The numerical simulation of cardiac electrical activity with the bidomain model is a valid tool for 

investigation of cardiac tissue [18,19]. The bidomain model is commonly used and well suited to 

simulate electrical activity of the heart on account of its integrity. Moreover it has been validated with 

animal experiments [20]. 

The aim of this project was to develop and implement a mathematical bidomain model of a wedge of 

human left ventricular heart tissue and therewith reconstruct mathematically the setup of a wedge 

preparation for human tissue. 
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2 Background 
 

2.1 Electrical activity of the heart 
 

2.1.1 Conduction system of the heart 

 

The heart is autorhythmic and therefore initiates contractions with specialized muscle cells, so called 

pacemaker cells [1,21]. Figure 1 illustrates a cross section of a heart, with the conduction system is 

highlighted in green.  

 

 
Figure 1: Schematic cross section of a heart. The conduction system is highlighted in green. Black arrows indicate 

propagation of depolarization. (Modified [1].) 

The primary element of the conduction system is the sinoatrial node, which is located in the right 

atrium near the inlet of the vena cava superior. The sinoatrial node generates periodic stimuli in form 

of action potentials. This periodic stimulation, so called sinus rhythm, triggers depolarization, which 

proceeds through the right atrium into the left atrium and until the atrioventricular node. The 

atrioventricular node is located between the atria and the ventricles and is the only electrical 

connection of atria and ventricles. Thence the atrioventricular node is conducting the electrical activity 

to the bundle of His. [1,21] Moreover the conduction velocity is slowed down by the atrioventricular 

node to give the atria necessary time to contract [1]. 

The bundle of His divides into left and right bundle branches, running down the left and right septum 

wall respectively. The left bundle branch is passing through the membrane and dividing further into 

anterior and posterior branches. Close to the apex the bundle branches divide further into a network 

of Purkinje fibers, which spread across the surface of the endocardium and into the midmyocardium 

and pass the electrical activity on to the ventricular tissue. [1,21] Irrespective of the base, the septum 

is depolarized first [1]. Rapid conduction via the bundle branches and the Purkinje fibers enables 

almost simultaneous depolarization of the endocardium. The depolarization proceeds through the 
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ventricular walls outwardly. [1,21] Cell-to-cell activation propagates depolarization through ventricular 

tissue [21]. 

After depolarization repolarization comes to pass. Thereby no propagation occurs since the 

repolarization depends on the action potential duration of each cell and, contrary to depolarization, 

cannot be caused by neighbor cells. Since action potentials are shorter in the epicardium than in the 

endocardium, repolarization proceeds opposite to depolarization. [21]  

 

 

2.1.2 Cardiac action potential 

 

Each cardiac cell is surrounded by a cell membrane, which consists of a phospholipid bilayer. Inside the 

cell membrane is referred to as intracellular space and outside the cell membrane as extracellular 

space. In the phospholipid bilayer structure of the cell membrane proteins are integrated. These 

proteins function as ion channels for certain ions under particular conditions, resulting in selective 

permeability of the membrane. The selective permeability together with ion pumps lead to 

concentration gradients of ions and allows a potential difference across the membrane, i.e. between 

intracellular and extracellular space. Thereby the ions of major interest are K+, Na+ and Ca2+. [1,2]  

There are two forces regulating the ion flow and therewith the potential difference across the 

membrane. The chemical force is the concentration gradient, which leads to movement of ions and 

thus movement of electrical charge. This provokes an electrical gradient converse to the chemical 

gradient. An equilibrium between those two forces on one type of ion describes the Nernst potential. 

[1,2] 

The potential difference across the membrane is the transmembrane potential or membrane 

potential. In a resting state the membrane potential is around -86 mV, more or less the Nernst 

potential of K+. If a sufficing stimulus is applied and the membrane potential exceeds the threshold 

potential, an action potential is provoked. [1,2] An action potential is shown in Figure 2. 

 

Figure 2: Action potential of cardiac cell. 
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During an action potential depolarization is caused by rapid influx of Na+ into the intracellular space 

via fast opening Na+ channels (Phase 0). This is followed by efflux of K+ resulting in repolarization (Phase 

1) until Ca2+ influx, balancing K+ efflux resulting in a plateau phase (Phase 2). After termination of Ca2+ 

influx, persisting K+ efflux continues repolarization (Phase 3) until the resting potential is reached again 

(Phase 4). [1,2]  

The changes in the membrane potential due to current flow can be replicated by an equivalent electric 

circuit. Thereby the cell membrane is depicted by a capacitance in parallel with a set of resistors 

depicting ion channels incorporated in the membrane. [1] An example for this is illustrated in Figure 3. 

 

Figure 3: Electrical circuit representing the changes in membrane potential of the Hodgkin-Huxley model. 

Thereby the ionic current through the membrane is represented by the capacitance 𝐶𝑚 and the ion 

channels in parallel. The ion flow through a specific channel is given by its conductance 𝑔. This electrical 

circuit is describing the basic Hodgkin-Huxley model. [1] A more specific model is described in section 

4.2. 

 

 

2.1.3 Electrocardiogram 

 

August Desiré Waller pioneered electrocardiography in 1887 by placing his dog’s legs in buckets filled 
with saline solutions, which functioned as electrodes, and recorded the electrical activity of his dog’s 
heart [1]. A similar experiment was conducted on humans. Whereby the voltage difference between 

two electrodes was recorded as a function of time on the body surface with a capillary electrometer 

[1,2]. Therewith the electrocardiogram (ECG), a recording of the electrical activity of the heart, was 

introduced.  Einthoven, who witnessed Waller’s experiment and ECG recording, developed the method 
further [1]. He invented the string galvanometer, which was used for the first commercially available 

ECG recorders and qualitatively even comparable to contemporary devices. Einthoven wanted to 

ensure a uniform nomenclature when referring to the deflections of ECGs and named the waves of the 

ECG recording P,Q,R,S and T. [1,2] 

𝝋𝒆 
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The electrical activity of the heart can be measured on the body surface, since it propagates passively 

through the surrounding tissue in the body [1,2,21]. Hence an ECG is a non-invasive tool to measure 

and visualize the cardiac electrical function, which makes it a powerful diagnostic tool [1,2]. 

The ECG displays the depolarization and repolarization of all cardiac cells superimposed. Hence the 

ECG shows the general electrical activity of the atria and  the ventricles. [1] A normal ECG waveform is 

illustrated in Figure 4. 

 

Figure 4: Normal waveform of an ECG signal. (Modified [22] .) 

In an ECG the P wave depicts the depolarisation of the atria, and the QRS complex the depolarization 

of the ventricles [1,2]. The P wave demonstrates, compared to the QRS complex, lower magnitude 

since less cells are activated [2]. 

The T wave depicts the ventricular repolarization. The atrial repolarization is not visible in the ECG 

since it occurs simultaneously with the QRS complex, which is overlaying the atrial repolarization due 

to its greater magnitude. [1,2,21] 

 

 

2.1.4 Controversy of the T wave 

 

Although the ECG has been a valuable tool to measure the electrical activity of the heart for over a 

century by now, the exact genesis of all waveforms is not completely understood yet. Especially the 

emergence of the T wave has been vigorously contested for years. [3,4]  

General agreement is that the T wave is caused by ventricular repolarization [1–6,23,24]. Early studies 

and contemporary textbooks support the hypothesis that depolarization and repolarization proceed 

in opposite directions. Those studies found that repolarization occurs earlier at base compared to apex, 

wherefore an apico-basal gradient in repolarization has been assumed. [2,5,6,23,24] 

However Patel et al. [3] criticize this assumption by claiming that the measurement of epicardial cells 

at the apex and endocardial cells at the base represent a transmural gradient in repolarization instead. 

In the 1970s a transmural gradient in repolarization was introduced by several studies [3,25]. 

Supporting this, Franz et al. [26] found that the duration of repolarization is shorter in the epicardium 

than in the endocardium as well as earlier repolarization of later activated areas and conclude the 

presence of a predominant transmural gradient in repolarization. 

In the 1990s so called M cells were discovered and were claimed to cause a transmural gradient in 

repolarization due to increased action potential duration compared to epicardium and endocardium 
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[3,27]. However there is disagreement whether M cells exist, since they were observed in wedge 

models but not in vivo. Furthermore it is assumed that human hearts do not comprise M cells. [4]  

In the late 2000s Patel et al. [3] found in a wedge model preparation (see section 2.3) a significant 

difference in the action potential durations of endocardium and epicardium. A significant difference in 

the action potential duration of the apex and the base was not found [3]. Therewith Patel et al. [3] 

underline the presence of a transmural repolarization gradient causing the morphology of the T wave 

and conclude that the transmural gradient in repolarization is caused by the difference in action 

potential duration of endocardium and epicardium. The presence of an apico-basal gradient is not 

precluded, though considered as neglectable. On the grounds of a greater distance for the apico-basal 

gradient than for the transmural gradient it is explained that the transmural gradient in repolarization 

is of greater influence since the effect of the gradient depends on its steepness. [3] 

Whereas Moore et al. [28] stated already in 1965 that it was not possible to conclude that the 

differences in the action potential duration of endocardium and epicardium are causing the T wave 

morphology.  

Meijborg et al. [4] investigated gradients in repolarization along anatomical axes and found significant 

apico-basal and transmural gradients in repolarization. Nevertheless none of the gradients was intense 

enough to cause the T wave morphology singlehandedly, hence the gradients along all anatomical axes 

contribute [4]. 

On the same token, Opthof et al. [5] compared the percentage proportion of different gradients in 

repolarization. The results show that a transmural gradient in repolarization contributes with 13% and 

gradients along the anatomical axes contribute with 87% to the total gradient in repolarization [5]. 

Opthof et al. [5] conclude that transmural gradients are not causing the T wave morphology since other 

gradients have been found to be predominant. Consequently the apico-basal and the anterior-

posterior gradients cause dispersion in repolarization [5]. 

Patel et al. [3] claim that the wedge model preparation provides evidence for a transmural gradient in 

repolarization. According to Opthof et al. [5], the gradient in repolarization is greater parallel to the 

endocardium and the epicardium along the apico-basal axis than the transmural gradient in 

repolarization. However it was shown that isolated areas point out transmural differences [4]. 

The controversy of the significant gradient in repolarization might result from differences in models. 

For instance the wedge model preparations differentiate from whole heart preparations. [5] 

 

 

2.2 Modeling heart tissue 
 

Modelling is an extremely versatile research tool, as it enables the acquisition, deepening and 

broadening of knowledge about physiological processes [14,16]. Thus, modelling can be used to 

understand the electrophysiology of human hearts [17]. The variety of cardiac models stretches from 

molecular to whole heart. This variety is necessary since electrical activity of the heart is influenced by 

both, microscopic factors, such as ion exchange, and macroscopic factors, such as anisotropic behavior 

[14,16]. 

Generally speaking, models are simplified depictions of the complete anatomical and physiological 

structures, no matter whether considering physiological models in the form of a piece of tissue, e.g. 

the wedge model (see section 2.3), or theoretical mathematical models, e.g. the bidomain model (see 

section 4.1) [14]. Mathematical models are mostly computer-based models, hence the increase in 
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computational power facilitates the use of more detailed, but computational heavier mathematical 

models. Nonetheless, it is crucial to evaluate the necessary level of detail and the desired efficiency. 

[1,14] 

 

 

2.3 Wedge model 
 

A wedge preparation is cut from the ventricular wall of a canine heart in a way that a coronary vessel 

is parallel and vaguely equally afar from the bottom and top cutting surface [7,9,10]. The size of the 

wedge preparation varies for left ventricular tissue between 2 × 1.5 × 0.9 and 3 × 2 × 1.5 cm, for 

right ventricular tissue between 2 × 1 × 0.9 and 2.5 × 1.5 × 1.2 cm [8–10].  

Coronary arteries in the wedge preparation are perfused with cardioplegic Tyrode’s solution and 
constant pressure, which is maintained by a roller pump [8,10]. Furthermore the wedge preparation is 

placed in a physiological bath [7,10]. 

The endocardium is stimulated in the wedge model [9]. Action potentials are recorded in endocardium, 

epicardium and midmyocardium via intracellular floating microelectrodes [7,10]. Furthermore an 

electrode is placed in the bath on each side of the wedge preparation to record an ECG along the 

transmural axis [7]. Thereby the measured transmural ECG derives from a gradient between 

endocardium and epicardium [9]. 

A schematic representation of the wedge model is illustrated in Figure 5. 

 

Figure 5: Schematic representation of left ventricular wedge model. (Modified [10].) 

Besides wedge preparations of canine hearts, wedge preparations of pig, rabbit and human hearts 

were examined. However, it is advantageous for wedge models, if the ventricular tissue contains hosts 

of collateral vessels. Thus the canine heart is, in contrast to human or pig hearts, well suited in the 

wedge model. [9] 

 

 

  



Chapter 3 Objective 

10 of 40 

19gr10413 

3 Objective 
 

Although ECGs have been used for many years, the emergence of the T wave and details of 

appurtenant physiological processes are a matter of controversy for decades. [3,4] 

T wave genesis has been investigated with an array of experimental heart models [3–6]. Especially 

wedge preparations from canine hearts showed findings contrary to classical assumptions [3,5,7–10]. 

However, internal processes within the wedge are not accessible. [11] It is of interest to know, whether 

findings from the wedge preparation are concordant with physiological electrical behavior of 

ventricular heart tissue. 

Mathematical modelling is an instrument that enables the exploration, acquisition and deepening of 

knowledge about physiological processes. Thus modelling is a suitable tool to access underlying 

processes of the wedge preparation. Furthermore it is possible to simulate various conditions with 

models in order to reconstruct experiments and compare the findings. [14] 

The aim of this project was to develop and implement a mathematical bidomain model of a wedge of 

human left ventricular heart tissue and therewith reconstructing mathematically the setup of a wedge 

preparation for human tissue. 
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4 Methods 
 

4.1 Bidomain model 
 

The bidomain model describes the electrical activity of tissue, it is the most complete mathematical 

description of electrical activity and its propagation and it is validated with animal experiments [18–
20,29,30]. Therefore the bidomain model is commonly used and well suited to simulate the electrical 

activity of the heart on account of its integrity [20,31]. 

Bidomain modelling is a continuum approach, whereby the electrical activity of the heart is volume-

averaged [1,18,19,32]. The cardiac tissue is depicted by intracellular space and extracellular space, 

superimposed at each considered point [19,29,30,33]. Thus the bidomain model includes two domains, 

the intracellular domain and the extracellular domain, separated by a membrane [1,19,20,33]. Thereby 

the membrane works as an electrical insulating boundary, resulting in a volume-averaged potential 

difference between the intracellular and the extracellular domain. The bidomain model is based on 

the assumption that current merely pass over from intracellular to extracellular domain across the 

membrane. [1] Therefore a volume-averaged ionic current model has to be incorporated in the 

bidomain model to represent the ions passing through the membrane [1,31,33]. 

In order to incorporate the surroundings of the cardiac tissue and therewith outer influences, the 

bidomain model is considered to be embedded in an extramyocardial space [1,33]. In the course of 

this, the intracellular domain persist solely for active tissue, whereas the extracellular domain occurs 

in active tissue and in the surrounding space, for example a bath [1]. A scheme of a bidomain model 

and the extramyocardial space is illustrated in Figure 6. 

 

Figure 6: Scheme of bidomain model with intracellular domain (i), extracellular domain (e) and extramyocardial space (o). 

The mathematical description of the bidomain model consists of a system of coupled nonlinear partial 

differential equations [20,29,31,33]. The derivation of the so-called bidomain equations is described 

in section 4.1.1. Appurtenant boundary conditions for the bidomain model are described in section 

4.1.2. Furthermore, considerations for solving the bidomain equations are described in section 4.1.3. 

The bidomain modelling approach was used to implement a mathematical description of the left 

ventricular wedge model and to simulate the electrical activity within the wedge of heart tissue. 
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4.1.1 Mathematical formulation of the bidomain model 

 

For the mathematical formulation of bidomain model the transmembrane potential 𝑉𝑚 is used as 

starting definition. 𝑉𝑚 = 𝜑𝑖 − 𝜑𝑒  (1) 

 

Thereby 𝜑𝑖  denotes the intracellular potential and 𝜑𝑒 the extracellular potential. [1,19,34–36] 

According to Ohm’s law, current densities 𝐽 of intra- and extracellular space are given as 𝐽𝑖 = −𝜎𝑖 ∇𝜑𝑖 (2) 𝐽𝑒 = −𝜎𝑒 ∇𝜑𝑒 (3) 

 

 

Cardiac tissue is considered as isolated. Therefore the changes in the current density in the intracellular 

domain are reverse to the changes in the current density in the extracellular domain, which equals the 

transmembrane current flow. ∇ ∙ (𝜎𝑖 ∇𝜑𝑖) = −∇ ∙ (𝜎𝑒 ∇𝜑𝑒) = 𝐼𝑚 (4) 

 

Thereby 𝜎𝑖 denotes the intracellular conductivity tensor, 𝜎𝑒 the extracellular conductivity tensor and 𝐼𝑚 the transmembrane current density per unit area. [1,19,35]  

By using Eq. (4) and subtracting ∇ ∙ (𝜎𝑖 ∇𝜙𝑒) it can be written as ∇ ∙ (𝜎𝑖 ∇𝜙𝑖) − ∇ ∙ (𝜎𝑖 ∇𝜙𝑒) = −∇ ∙ (𝜎𝑒 ∇𝜙𝑒) − ∇ ∙ (𝜎𝑖 ∇𝜙𝑒) (5) 

 

With Eq. (1) in Eq. (5), it can be written as ∇ ∙ (𝜎𝑖 ∇𝑉𝑚) = −∇ ∙ ((𝜎𝑖 + 𝜎𝑒)∇𝜙𝑒) (6) 

 

Eq. (6) constitutes the first bidomain equation. [1,19,35,37]  

 

 

The transmembrane current density 𝐼𝑚 can be described with 𝐼𝑚 = 𝛽 (𝐶𝑚 𝜕𝑉𝑚𝜕𝑡 + 𝐽𝑖𝑜𝑛) (7) 

 

Thereby 𝛽 denotes the membrane’s surface to volume ratio, 𝐶𝑚 the membrane capacitance per unit 

area and 𝐽𝑖𝑜𝑛 the ionic current density. With Eq. (7) in Eq. (4), it can be written as 
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∇ ∙ (𝜎𝑒 ∇𝜑𝑒) = −𝛽 (𝐶𝑚 𝜕𝑉𝑚𝜕𝑡 + 𝐽𝑖𝑜𝑛) (8) 

 

Eq. (8) constitutes the second bidomain equation. [1,19] 

 

 

4.1.2 Boundary conditions 

 

Boundary conditions are applied to regulate the electrical behavior on the edges of domains. Within 

the bidomain model it is assumed that no current flow occurs between the intracellular domain and 

the extramyocardial space. Hence the boundary condition of the intracellular domain is written as (𝜎𝑖 ∇𝜑𝑖) ∙ 𝑛 = 0          𝑥 ∈  𝜕𝐻 (9) 

 

Thereby 𝑛 denotes a unit vector normal to the tissue boundary and 𝜕𝐻 denotes the outer area of 

cardiac tissue. [1,19,20,32,34,38,39] 

Since the intracellular potential 𝜑𝑖  is not included in the two bidomain equations (6) and (8), Eq. (9) 

can be written as follows by use of Eq. (1) [1,20,38]. (𝜎𝑖 ∇𝑉𝑚) ∙ 𝑛 = (𝜎𝑖 ∇𝜑𝑒) ∙ 𝑛          𝑥 ∈  𝜕𝐻 (10) 

 

Another boundary condition of the bidomain model is the equilibrium of current flow between the 

extracellular domain and the extramyocardial space. (𝜎𝑒 ∇𝜑𝑒) ∙ 𝑛𝑒 = −(𝜎𝑜 ∇𝜑𝑜) ∙ 𝑛𝑜          𝑥 ∈  𝜕𝐻 (11) 

 

Thereby 𝜎𝑜 denotes the extramyocardial conductivity tensor and 𝜑𝑜 the extramyocardial potential.  𝑛𝑒 

denotes the outward unit normal vector from the extracellular domain and 𝑛𝑜 denotes the outward 

unit normal vector from the extramyocardial space, pointing in the opposite direction, hence the sign 

indicates the direction of current flow. [1,32,38–40] 

Furthermore the potential field of the extracellular domain and the extramyocardial space coincide 

[1,19,20,32,39]. 𝜑𝑒 = 𝜑𝑜          𝑥 ∈  𝜕𝐻 (12) 

 

Thus, the extramyocardial space, represented by a conductive bath, can be regarded as an add-on to 

the interstitial (extracellular) fluid [20]. 

The setup of the model influences the boundaries on the outer edges, i.e. to boundary points next to 

an electric insulator the no flux, Neumann, boundary condition is applied. [20,33,34,38,40–42] (𝜎𝑒 ∇𝜑𝑒) ∙ 𝑛 = 0          𝑥 ∈  𝜕𝐻 (13) 
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Moreover, the Dirichlet boundary condition is applied to the extracellular potential, which is set to 

zero [19,34,41]. 𝜑𝑒 = 0          𝑥 ∈  𝜕𝐻 (14) 

 

 

4.1.3 Solving bidomain equations 

 

To solve the bidomain equations (6) and (8) ∇ ∙ (𝜎𝑖 ∇𝑉𝑚) = −∇ ∙ ((𝜎𝑖 + 𝜎𝑒)∇𝜙𝑒) (6) ∇ ∙ (𝜎𝑒 ∇𝜑𝑒) = −𝛽 (𝐶𝑚 𝜕𝑉𝑚𝜕𝑡 + 𝐽𝑖𝑜𝑛) (8) 

 

finite difference method is used, since it is well suited for the simple geometry of the wedge model 

[34]. The finite difference method is a simple, but exact approach, which requires low memory and is 

fast to solve [34,41,43].  

A finite difference grid is used to represent the tissue and discretize it in order to solve Poisson’s 
equations of the bidomain equations [34,41]. The potential at each point is a function of its neighbor 

points [41].  For homogeneous conductivity applies 

∇ ∙ (𝜎∇𝜑) = 𝜎∇2𝜑 = 𝜎𝑥 𝜕2𝜑𝜕𝑥2 + 𝜎𝑦 𝜕2𝜑𝜕𝑦2 + 𝜎𝑧 𝜕2𝜑𝜕𝑧2  (15) 

 

The finite difference method approximates the solution of differential equations by using the finite 

differences of the neighboring node points [34,41,44]. This is implemented by a Laplacian matrix, 

which constitutes the operator ∇ ∙ (𝜎∇). In the Laplacian matrix anisotropy is considered and the 

boundary conditions are included. [37] The influence of the neighboring grid points in the finite 

difference method is illustrated in Figure 7. 

 

Figure 7: Illustration of the influence of neighboring points by using the finite difference method. In order to approximate the 

solution of a node point, finite differences of all 6 neighbor points are considered. (Modified [45].) 
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A linear system of algebraic equations arises from the spatial discretization, which needs to be solved 

at each time step [31]. Sufficient three-dimensional discretization commonly requires a large quantity 

of node points, as the node points should be approximately 0.1 to 0.2 mm distant. This, in turn, 

requires greatly increased memory and therewith more processing power. Hence, the feasible size as 

well as the simulation time of the model is limited by the available computational resources, in spite 

of its low computational requirements, as compared with, e.g., finite element method. 

[18,20,30,31,41] Therefore sparse matrixes were employed to alleviate computational demands.  

The system of linear algebraic equations resulting from the finite difference method may be solved by 

any standard approach, which is suitable for sparse matrixes [41]. Direct solvers are more accurate 

than iterative methods, however direct solvers have larger memory requirements [20,42]. I.e. large 

matrixes in linear algebraic systems are an issue for the efficiency of direct solvers, since the number 

of operations accelerate with rising number of entries per row. The largest bidomain models solved 

directly were solely composed of a few millions of node points in total. [20] That is, considering the 

necessary spatial discretization, a relatively small number. Hence, with an increasing number of node 

points iterative approaches become necessary, as direct solvers are not efficient enough with respect 

to memory and time. Iterative solvers approximate the solution by minimizing the residual. [42] 

Since iterative solvers are necessary to solve a descriptively sized bidomain model efficiently, but 

provide less accurate solutions, the solver must be chosen wisely. Therefore the backslash operator, a 

direct solver, was used for a low scale grid bidomain model. The preconditioned conjugate gradient 

method and the biconjugate gradient stabilized method were used for the same low scale grid 

bidomain model. The solutions of those iterative solvers were compared to the accurate solution. The 

decision was made based on discrepancy from the accurate solution. 

 

 

4.2 Ionic current model 
 

Cardiac cell models are used to provide insight into the electrical activity of single cells across the 

membrane [1,12,13]. The governed action potential displays the potential gradient across the cell 

membrane. Cardiac cell models range from simple models to biophysical detailed models. [1] 

Simplified models provide action potentials with low computational cost. This is possible as the 

underlying physiological processes are neglected, and solely the fundamental properties of the action 

potential are considered. [1,46]  

Biophysical detailed models on the other hand describe the electrical activity of a cardiac cell more 

accurately by including the underlying mechanisms of the potential gradient across the membrane, 

like the ion flow via pumps, channels or exchangers. An example for this is the Ten Tusscher model, 

which includes detailed description of the major ionic currents and intracellular calcium, sodium and 

potassium dynamics, governed from measurements of human hearts. [1,12,47] A schematic 

representation of the ionic dynamics in the Ten Tusscher model is illustrated in Figure 8. 
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Figure 8: Schematic representation of ionic currents, exchangers and pumps in the Ten Tusscher model. 

INa: Na+ current; IbNa: background Na+ current; IbCa: background Ca2+ current; IpCa: sarcolemmal Ca2+ pump current; Ito: 

transient outward curret; IpK: plateau K+ current; IK1: inward rectifier K+ current; IKs: slow delayed rectifier current; IKr: rapid 

delayed rectifier current; INaK: Na+-K+ pump current; INaCa: Na+/Ca2+ exchanger current; ICaL: L-type Ca2+ current; Ixfer: diffusive 

Ca2+ current between subspace and cytoplasm; Irel: Ca2+- induced Ca2+ release current; Iup: sarcoplasmic reticulum Ca2+ pump 

current; Ileak: sarcoplasmic reticulum Ca2+ leak current. 

 

For applicability of the bidomain model, an ionic current model must be incorporated to describe 

membrane dynamics of modeled tissue [18,20].  As mentioned above, an ionic current model describes 

the chemical and electrical gradients across the cell membrane of a single cardiac cell by simulating 

the subcellular processes as the selective permeability of the cell membrane for distinct ions under 

different conditions. However, by incorporating an ionic current model into the bidomain model, it 

must be taken into account that the units might differ between both. [1] 

The chosen model in order to incorporate ionic currents in the bidomain model was the Ten Tusscher 

model, which models the major ionic currents based on experimental data [12,47]. Since it is describing 

subcellular ionic dynamics like ionic currents and pumps in single human epicardial, midmyocardial 

and endocardial ventricular cells, the Ten Tusscher model is suitable to incorporate into the bidomain 

model [1,12,47]. 

Admittedly the bidomain model is extremely computational heavy due to the necessary discretization 

and the detailed incorporated ionic current model [18,31,42]. Therefore simplification in the form of 

the reduced Ten Tusscher model was applied until complete implementation of the bidomain model 

in order to use the available computational power more efficient. 

The reduced version of the Ten Tusscher model is of less detailed and therefore computationally four 

times more efficient than the full model. Similar to the full model, the reduced version describes 

changes of ionic currents and ion channels. Nevertheless, the reduced Ten Tusscher model shows a 

similar action potential morphology and is equally suited for ionic simulations. [13] 
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4.3 Simulating the electrical activity of wedge of heart tissue 
 

The experimental wedge model (see section 2.3), is reconstructed mathematically. Therefore a wedge 

of left ventricular tissue is described with the bidomain model. The wedge of heart tissue is surrounded 

by a conductive bath. A schematic description of the setup is illustrated in Figure 9. 

 

Figure 9: Configuration of the bidomain model for simulating wedge preparations. 

 

A stimulus current is applied in one node point in the endocardial tissue. The development and 

progression of the electrical activity, triggered by the stimulus, is simulated with the bidomain model. 

An ECG is calculated across the wedge and compared to the ones recorded from a wedge preparation. 
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5 Results 
 

5.1 Bidomain model 
 

The bidomain model for simulating the electrical activity of a wedge of heart tissue, surrounded by a 

conducting bath, was implemented in MATLAB. It enables to gauge the membrane potentials in each 

node point of the tissue, and the extracellular potentials in all node points of the bath and the tissue. 

The work flow of the model is illustrated by the flowchart in Figure 10 and explained in detail down 

below. 

 

Figure 10: Work flow of the implemented bidomain model. Here TT abbreviates Ten Tusscher model. 

Start 

Calculate 𝐽𝐼𝑜𝑛 with TT 

Stimulus on? 

Calculate 
𝜕𝑉𝑚𝜕𝑡  with Eq. (8) 

including 𝐼𝑆𝑡𝑖𝑚 

Calculate 𝜑𝑒 with Eq. (6) 

Set parameters for simulation, 

tissue, bath and stimulus 

No 

End 

Yes 

Simulation over? 

No Yes 

Update 𝑉𝑚 

Calculate 
𝜕𝑉𝑚𝜕𝑡  with Eq. (8) 

excluding 𝐼𝑆𝑡𝑖𝑚 



Chapter 5 Results 

19 of 40 

19gr10413 

The parameters for bath and tissue are initialized. Thereby properties of endocardial, midmyocardial 

and epicardial cells are considered, in order to mimic ventricular tissue appropriately. Furthermore the 

simulation time as well as the stimulus point and duration are edited. Sparse Laplacian matrixes are 

set to facilitate solving the linear algebraic systems originating form the finite difference method 

approach. The parameter setting is listed in Table 1. 

 

Table 1: Parameter setting of implemented bidomain model. 

Parameter Description Value ∆𝑡 Size of time step (temporal discretization) 0.02 𝑚𝑠 ℎ Distance between node points (spatial discretization) 0.2 ∗ 10 −3𝑚 𝜎𝑖,𝑥 Intracellular conductivity along fibers 0.2 𝑆𝑚 𝜎𝑖,𝑦 Intracellular conductivity perpendicular fibers 0.02 𝑆𝑚 𝜎𝑖,𝑧 Intracellular conductivity perpendicular fibers 0.02 𝑆𝑚 𝜎𝑒,𝑥 Extracellular conductivity along fibers 0.2 𝑆𝑚 𝜎𝑒,𝑦 Extracellular conductivity perpendicular fibers 0.08 𝑆𝑚 𝜎𝑒,𝑧 Extracellular conductivity perpendicular fibers 0.08 𝑆𝑚 𝜎𝑏 Conductivity of bath 0.2 𝑆𝑚 𝛽 Surface area to volume ratio 3 ∗ 105  1𝑚 𝐶𝑚 Membrane capacitance per unit surface area 10−2 𝐹𝑚2 𝑉𝑚,𝑡=0 Initial membrane potential − 86,2 ∗ 10−3 𝑉 𝐼𝑆𝑡𝑖𝑚 Stimulus current 150 𝑚𝐴𝑚2  

 

The Ten Tusscher model was incorporated to yield the ionic current density 𝐽𝐼𝑜𝑛. The parameters 

thereof are not listed in Table 1, since relevant details can be found in the original publication of Ten 

Tusscher et al. [47]. 

The first bidomain equation (6) is used to calculate the extracellular potential 𝜑𝑒. This linear algebraic 

system is solved with the biconjugate gradient stabilized method, which was chosen after an accuracy 

test. The obtained extracellular potential 𝜑𝑒 is used to calculate 
𝜕𝑉𝑚𝜕𝑡  with the second bidomain 

equation (8). If the stimulus is still on, the stimulus current 𝐼𝑆𝑡𝑖𝑚 is included in the calculation. Obtained 𝜕𝑉𝑚𝜕𝑡  is used to update the membrane potential 𝑉𝑚 with the Euler method. Until the end of the 

simulation is reached, this is repeated for every time step from calculating the ionic current density 𝐽𝐼𝑜𝑛 to updating the membrane potential 𝑉𝑚. 
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The full MATLAB script of the bidomain model for simulating the electrical activity of a wedge of left 

ventricular heart tissue can be found in Appendix A. 

 

 

5.2 Simulating the electrical activity of wedge of heart tissue 
 

Unfortunately, the implemented bidomain model failed to simulate the electrical activity in the setup 

of a wedge preparation for human tissue. In fact, electrical activity was generated, however the 

generated action potentials did not amount to physiological electrical behavior. The obtained action 

potentials are illustrated in Figure 11. 

 
Figure 11: Membrane potentials in stimulus point and three adjacent points after stimulation. 

 

The blue graph illustrates the membrane potential in the stimulus point. Red, yellow and purple graphs 

illustrate the membrane potentials in the node points one, two and three adjacent to the stimulus 

point. Electrical activity can be observed in all displayed points. The delay in the changes of the 

membrane potentials are due to propagation through the tissue. However, obtained membrane 

potentials do not fulfill the expectations of a physiological action potential. Those membrane 

potentials mimic the general shape of an action potential in a fraction of the physiological action 

potential duration. Hence it is assumed that the implemented bidomain model contains an error, 

causing the non-physiological behavior of the membrane after excitation. In order to determine the 

source of the error, several tests were conducted. 
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It has been reviewed, if both bidomain equations and the Laplacian matrixes have been implemented 

correctly. Different solvers for linear algebraic system, backslash operator, biconjugate gradient 

stabilized method and preconditioned conjugated gradient method, were compared. The influence of 

the boundary conditions and the surrounding bath were tested. Furthermore, it was tested, if the 

model is working without coupling the neighboring cells. Thereby a stimulus was applied to one single 

cell and a proper action potential, as illustrated in Figure 12, was generated.  

 
Figure 12: Membrane potential in the stimulus point after decoupling neighboring cells. 

 

It was revised, if the units throughout the bidomain model coincide. Moreover, it was switched to the 

monodomain model (see Appendix B), which is solely considering the intracellular domain. Finally, 

various possible values for the parameters, presented in Table 1, were examined. 

In order to examine whether the occurring error is caused by the Ten Tusscher model, another ionic 

model, the Beeler-Reuter model, was incorporated into the monodomain model. With the 

incorporated Beeler-Reuter model electrical activity was generated, however the generated electrical 

activity did not amount to physiological electrical behavior. The obtained action potentials are 

illustrated in Figure 13. 
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Figure 13: Membrane potential in stimulus point and three adjacent points after stimulation. 

 

The blue graph illustrates the membrane potential in the stimulus point. Red, yellow and purple graphs 

illustrate the membrane potentials in the node points one, two and three adjacent to the stimulus 

point. Electrical activity can be observed in the stimulus point and marginally in the node points one 

and two next to the stimulus point. The delay in the start of the electrical activity is due to its 

propagation through the tissue. However, the obtained electrical activity does constitute a 

physiological action potential.  

Since the implemented model with incorporation of the Ten Tusscher model generated a proper action 

potential after decoupling the neighboring cells, it was tested, if the model with incorporation of the 

Beeler-Reuter model shows the same behavior after decoupling the neighboring cells. A stimulus was 

applied to one single cell and generated a proper action potential, as illustrated in Figure 14.  
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Figure 14: Membrane potential in the stimulus point after decoupling neighboring cells, generated with a monodomain 

model with incorporated Beeler-Reuter model. 

 

It can be observed that this model generates a different action potential morphology than the 

incorporation of the Ten Tusscher model. The reason for this is solely the differences within the ionic 

current models. 

In the monodomain model with the incorporation of the Beeler-Reuter model, too, different 

parameter settings were examined. 

However, all measures did not improve the performance of the implemented model. 
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6 Discussion 
 

6.1 Bidomain model 
 

A bidomain model was implemented to mathematically reconstruct the setup of a wedge preparation 

for human tissue and simulate the electrical activity in the wedge. Bidomain models, solved by finite 

difference method, are a suitable approach to model the electrical activity of tissue. However a 

limitation of the bidomain model are its computational needs, which is limiting the size of the feasible 

finite difference grid and therewith the size of the model [33,41]. 

Furthermore larger tissue wedges engender an extensive linear system, which cannot be solved with 

the accurate direct solvers. The use of less accurate iterative methods may affect the conciseness of 

the simulated electrical activity. 

In literature, there is no concordance of the applied parameters, for instance the intracellular and 

extracellular conductivity values as well as the unit surface area to volume. Resulting variations might 

also affect the conciseness of the simulated electrical activity. 

 

 

6.2 Simulating the electrical activity of wedge of heart tissue 
 

Against expectation, the implemented bidomain model failed to simulate the electrical activity in the 

setup of a wedge preparation for human tissue. Either propagation of electrical activity through the 

tissue or a proper action potential could be achieved, but not both at the same time. Since the Ten 

Tusscher model incorporated in the bidomain as well as in the monodomain model, and the Beeler-

Reuter model incorporated in the monodomain model were able to generate action potentials in the 

case of uncoupled neighboring cells, but were not able to generate action potentials in the case of 

coupled neighboring cells, it is assumed that the coupling of the neighboring cells is the source of the 

error. The question arises, whether a coupling variable is necessary. However, studies which combined 

the bidomain model with the Ten Tusscher or the Beeler-Reuter model do not indicate this. 

Sambelashvili et al. [48] state that it is possible to shorten the action potential by accelerating the slow 

inward calcium current in the Beeler-Reuter model. In the course of unit testing the reversion of this, 

i.e. inhibiting of the calcium current was examined. As a result of this, the shape of the action potential 

in the stimulus point improved, but not in terms of propagation. Those observations strengthen the 

suspicion that the coupling of the neighboring cells is causing the error. 

One might claim, that the coupling is implemented wrong. The Laplacian matrixes, which are used to 

calculate the finite differences of the neighboring points and therewith determining the coupling, have 

been revised and found correctly implemented. Thus, again the question arises, whether there is a 

coupling variable necessary. But as mentioned before, studies which combined the bidomain model 

with the Ten Tusscher or the Beeler-Reuter model do not indicate this. 
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7 Conclusion 
 

The implemented mathematical bidomain model of a wedge of human left ventricular heart tissue 

failed to simulate the electrical activity in the setup of a wedge preparation for human cardiac tissue. 

Either propagation of electrical activity through the tissue or a proper action potential could be 

achieved, but not both simultaneously. It is assumed that the coupling of the neighboring cells in the 

bidomain model is causing this present problem. 

Thus further investigation is necessary, in order to eliminate the source of error and improve the 

coupling of the neighboring cells. Therewith a full working order of the bidomain model of a wedge of 

human heart tissue can be achieved, and the electrical activity in the setup of a wedge preparation of 

human tissue can be simulated. 
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Appendix A 

Full MATLAB code of the bidomain model for simulating the electrical activity of a wedge of left 

ventricular human heart tissue. 

%% 3D model - bidomain - TT 
  
clc 
clearvars; 
  
%% Tissue Grid 
Tx = 50;        % grid length in x direction 
Ty = 50;        % grid length in y direction 
Tz = 50;        % grid length in z direction 
TS = Tx*Ty*Tz;  % Tissue size 
ht = 0.2e-3;    % distance between tissue grid points [m] 
  
endo = Tx*Ty*(1e-3/ht);        % last grid point of endocardial tissue 
myo = endo+Tx*Ty*(8e-3/ht);    % last grid point of mid-myocardial tissue 
epi = myo+Tx*Ty*(1e-3/ht);     % last grid point of epicardial tissue 
  
%% Bath grid (on two sides of tissue) 
Bx = Tx;        % grid length in x direction 
By = Ty;        % grid length in y direction 
Bz = 10;        % grid length in z direction 
BS = Bx*By*Bz;  % Bath size (on each side of tissue) 
hb = 0.2e-3;       % distance between bath grid points [m] 
  
%% Time steps 
t_simulation = 300;         % simulation time [ms] 
delta_t = 0.02;             % size of time step [ms] 
N = t_simulation/delta_t;   % number of time steps 
  
%% Stimulus 
Stimulus = 150;   % stimulus current [mA/m^2] 
t_stim_on = 5;      % sart of stimulus [ms] 
t_stim = 1;         % stimulus duration [ms] 
t_stim_on =t_stim_on/delta_t; 
t_stim = t_stim/delta_t; 
  
x = 10;     % x position of stimulus point 
y = 7;     % y position of stimulus point 
z = 4;      % z position of stimulus point 
  
P = x+(y-1)*Tx+(z-1)*Tx*Ty; % calculation of stimuluspoint number 
Istim = zeros(TS,1); 
Istim(P,1) = Stimulus; 
  
%% Membrane parameters 
Cm = 1e-2;      % capacitance [F/m^2] 
beta = 3e5;     % surface to volume ratio [1/m] 
  
% Conductivity 
sigmax_i = 0.2;     % intracell. along fibre (x dir.) [S/m] 
sigmay_i = 0.02;    % intracell. vertical to fibre (y dir.) [S/m] 
sigmaz_i = 0.02;    % intracell. vertical to fibre (z dir.) [S/m] 
sigmax_e = 0.2;     % extracell. along fibre (x dir.) [S/m] 
sigmay_e = 0.08;    % extracell. vertical to fibre (y dir.) [S/m] 
sigmaz_e = 0.08;    % extracell. vertical to fibre (z dir.) [S/m] 
sigmax_b = 0.2;    % bath in x direction [S/m] 
sigmay_b = 0.2;    % bath in y direction [S/m] 
sigmaz_b = 0.2;    % bath in z direction [S/m] 
  
% Laplacian Matrixes 
% If simulations with the same grid size are conducted several times, 
% it is suggested to save the matrixes and only load them. 
% Boundary conditions are included in the matrixes. 
  
% Laplacian matrix for sigma_i in tissue and bath 
BigM_i = spalloc(TS+2*BS,TS+2*BS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+6*(Tx-2)*(Ty-2)*(Tz-2)+2*BS); 
for n = 1:BS 
    BigM_i(n,n) = 1; 
end 
for n = BS+1:BS+TS 
    BigM_i(n,n) = 1; 
    if n < BS+Tx*Ty+1 
        for k = 1:Ty-2 
        if n > BS+k*Tx+1 && n < BS+(k+1)*Tx 
        BigM_i(n,n) = (-2*sigmax_i-2*sigmay_i)/ht^2; 
        BigM_i(n,n-1) = sigmax_i/ht^2; 
        BigM_i(n,n+1) = sigmax_i/ht^2; 
        BigM_i(n,n-Tx) = sigmay_i/ht^2; 
        BigM_i(n,n+Tx) = sigmay_i/ht^2; 
        end 
        end 
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    end 
    for kk = 1:Tz-2 
        for k = 1:Ty-2 
            if ((n > BS+kk*Tx*Ty+k*Tx+1) && (n < BS+kk*Tx*Ty+(k+1)*Tx)) 
                BigM_i(n,n) = (-2*sigmax_i-2*sigmay_i-2*sigmaz_i)/ht^2; 
                BigM_i(n,n-1) = sigmax_i/ht^2; 
                BigM_i(n,n+1) = sigmax_i/ht^2; 
                BigM_i(n,n-Tx) = sigmay_i/ht^2; 
                BigM_i(n,n+Tx) = sigmay_i/ht^2; 
                BigM_i(n,n-Tx*Ty) = sigmaz_i/ht^2; 
                BigM_i(n,n+Tx*Ty) = sigmaz_i/ht^2; 
            end 
        end 
    end 
end 
for n = BS+TS:TS+2*BS 
    BigM_i(n,n) = 1; 
end 
  
% Laplacian matrix for sigma_e in tissue 
M_e = spalloc(TS,TS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+6*(Tx-2)*(Ty-2)*(Tz-2));    
for n = 1:TS 
    M_e(n,n) = 1; 
    if n < Tx*Ty+1 
        for k = 1:Ty-2 
        if n > k*Tx+1 && n < (k+1)*Tx 
        M_e(n,n) = (-2*sigmax_i-2*sigmay_i)/ht^2; 
        M_e(n,n-1) = sigmax_i/ht^2; 
        M_e(n,n+1) = sigmax_i/ht^2; 
        M_e(n,n-Tx) = sigmay_i/ht^2; 
        M_e(n,n+Tx) = sigmay_i/ht^2; 
        end 
        end 
    end 
    for kk = 1:Tz-2 
        for k = 1:Ty-2 
            if ((n > kk*Tx*Ty+k*Tx+1) && (n < kk*Tx*Ty+(k+1)*Tx)) 
                M_e(n,n) = (-2*sigmax_e-2*sigmay_e-2*sigmaz_e)/ht^2; 
                M_e(n,n-1) = sigmax_e/ht^2; 
                M_e(n,n+1) = sigmax_e/ht^2; 
                M_e(n,n-Tx) = sigmay_e/ht^2; 
                M_e(n,n+Tx) = sigmay_e/ht^2; 
                M_e(n,n-Tx*Ty) = sigmaz_e/ht^2; 
                M_e(n,n+Tx*Ty) = sigmaz_e/ht^2; 
            end 
        end 
    end 
end 
  
% Laplacian Matrix for (sigma_i + sigma_e)in tissue and bath 
BigM_ie = spalloc(TS+2*BS,TS+2*BS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+... 
    6*(Tx-2)*(Ty-2)*(Tz-2)+2*BS+12*(Bx-2)*(By-2)*(Bz-2));  
for n = 1:BS 
    BigM_ie(n,n) = 1; 
    for kk = 1:Bz-1 
        for k = 1:By-2 
            if ((n > kk*Bx*By+k*Bx+1) && (n < kk*Bx*By+(k+1)*Bx)) 
                BigM_ie(n,n) = (-2*sigmax_b-2*sigmay_b-2*sigmaz_b)/hb^2; 
                BigM_ie(n,n-1) = sigmax_b/hb^2; 
                BigM_ie(n,n+1) = sigmax_b/hb^2; 
                BigM_ie(n,n-Bx) = sigmay_b/hb^2; 
                BigM_ie(n,n+Bx) = sigmay_b/hb^2; 
                BigM_ie(n,n-Bx*By) = sigmaz_b/hb^2; 
                BigM_ie(n,n+Bx*By) = sigmaz_b/hb^2; 
            end 
        end 
    end 
end 
for n = BS+1:BS+TS 
    BigM_ie(n,n) = 1; 
    if n < BS+Tx*Ty+1 
        for k = 1:Ty-2 
        if n > BS+k*Tx+1 && n < BS+(k+1)*Tx 
        BigM_ie(n,n) = (-(sigmax_e+sigmax_b)-(sigmay_e+sigmay_b)-sigmaz_e-sigmaz_b)/ht^2; 
        BigM_ie(n,n-1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n+1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n-Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
        BigM_ie(n,n+Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
        BigM_ie(n,n-Tx*Ty) = sigmaz_b/hb^2; 
        BigM_ie(n,n+Tx*Ty) = sigmaz_e/ht^2; 
        end 
        end 
    end 
    for kk = 1:Tz-2 
        for k = 1:Ty-2 
            if ((n > BS+kk*Tx*Ty+k*Tx+1) && (n < BS+kk*Tx*Ty+(k+1)*Tx)) 
                BigM_ie(n,n) = (-2*(sigmax_i+sigmax_e)-2*(sigmay_i+sigmay_e)-2*(sigmaz_i+sigmaz_e))/ht^2; 
                BigM_ie(n,n-1) = (sigmax_i+sigmax_e)/ht^2; 
                BigM_ie(n,n+1) = (sigmax_i+sigmax_e)/ht^2; 
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                BigM_ie(n,n-Tx) = (sigmay_i+sigmay_e)/ht^2; 
                BigM_ie(n,n+Tx) = (sigmay_i+sigmay_e)/ht^2; 
                BigM_ie(n,n-Tx*Ty) = (sigmaz_i+sigmaz_e)/ht^2; 
                BigM_ie(n,n+Tx*Ty) = (sigmaz_i+sigmaz_e)/ht^2; 
            end 
        end 
    end 
    if n > BS+Tx*Ty*(Tz-1) 
        BigM_ie(n,n) = (-(sigmax_e+sigmax_b)-(sigmay_e+sigmay_b)-sigmaz_e-sigmaz_b)/ht^2; 
        BigM_ie(n,n-1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n+1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n-Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
        BigM_ie(n,n+Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
        BigM_ie(n,n-Tx*Ty) = sigmaz_e/ht^2; 
        BigM_ie(n,n+Tx*Ty) = sigmaz_b/hb^2; 
    end 
end 
for n = BS+TS+1:TS+2*BS 
    BigM_ie(n,n) = 1; 
    for kk = 1:Bz-1 
        for k = 1:By-2 
            if ((n > BS+TS+(kk-1)*Bx*By+k*Bx+1) && (n < BS+TS+(kk-1)*Bx*By+(k+1)*Bx)) 
                BigM_ie(n,n) = (-2*sigmax_b-2*sigmay_b-2*sigmaz_b)/hb^2; 
                BigM_ie(n,n-1) = sigmax_b/hb^2; 
                BigM_ie(n,n+1) = sigmax_b/hb^2; 
                BigM_ie(n,n-Bx) = sigmay_b/hb^2; 
                BigM_ie(n,n+Bx) = sigmay_b/hb^2; 
                BigM_ie(n,n-Bx*By) = sigmaz_b/hb^2; 
                BigM_ie(n,n+Bx*By) = sigmaz_b/hb^2; 
            end 
        end 
    end 
end 
  
neg_BigM_ie = -BigM_ie; % makes bicstabl applicable (positive definiteness) 
  
%% Parameters from the Ten Tusscher model 
% Electrophysiological parameters 
Ko  = ones(TS,1)*5.4;   % Extracellular K concentration [mM] 
Cao = ones(TS,1)*2.0;   % Extracellualr Ca concentration [mM] 
Nao = ones(TS,1)*140.0; % Extracellular Na concentration [mM] 
  
Vc  = ones(TS,1)*0.016404;      % Volume of the cytoplasm [mm^3] 
Vsr = ones(TS,1)*0.001094;      % Volum of sarcoplasmatic reticulum [mm^3] 
Vss = ones(TS,1)*0.00005468;    % Volume of the subspace [mm^3] 
  
Capacitance = ones(TS,1)*0.185; % Cellular capacitance [nF] 
  
Bufc   = ones(TS,1)*0.2;    % Cytoplasmic Ca buffer concentration [mM] 
Kbufc  = ones(TS,1)*0.001;  % Cai, half-saturation constant for cytopl. buffer [mM] 
Bufsr  = ones(TS,1)*10.0;   % Sarcoplasmic Ca buffer concentration [mM] 
Kbufsr = ones(TS,1)*0.3;    % CaSR half-saturation constant for SR buffer [mM] 
Bufss  = ones(TS,1)*0.4;    % Subspace Ca buffer concentration [mM] 
Kbufss = ones(TS,1)*0.00025;% CaSS half-saturation constant for SS buffer [mM] 
  
Vmaxup = ones(TS,1)*0.006375;   % Maximal Iup conductance [mM/ms] 
Kup    = ones(TS,1)*0.00025;    % Half-saturation constant of Iup [mM] 
  
Vrel   = ones(TS,1)*0.102;   % Maximal Irel conductance [mM/ms] 
k1_    = ones(TS,1)*0.15;    % Irel transition rate R to O and RI to I [1/mM^2*ms] 
k2_    = ones(TS,1)*0.045;   % Irel transition rate O to I and R to RI [1/mM*ms] 
k3     = ones(TS,1)*0.06;    % Irel transition rate O to R and I to RI [1/ms] 
k4     = ones(TS,1)*0.005;   % Irel transition rate I to O and RI to I [1/ms] 
  
EC     = ones(TS,1)*1.5;    % CaSR half-saturation constant of kCaSR [mM] 
maxsr  = ones(TS,1)*2.5;    % Maximum value of kCaSR (dimensionless) 
minsr  = ones(TS,1);        % Minimum value of kCaSR (dimensionless) 
  
Vleak  = ones(TS,1)*0.00036;    % Maximal Ileak conductance [mM/ms] 
Vxfer  = ones(TS,1)*0.0038;     % Maximal Ixfer conductance [mM/ms] 
  
R = 8314.472;       % Gas constant [mJ/K*mol] 
F = 96485.3415;     % Faraday constant [C/mol] 
T = 310;            % Temperature [K] 
RTonF = ones(TS,1)*(R*T/F); 
  
% Parameters for ion currents 
GKr = ones(TS,1)*0.153;     % Maximal IKr conductance [nS/pF] 
GKs = ones(TS,1)*0.392;     % Maximal IKs conductance [nS/pF] 
GKs(1:endo) = 0.392;        % Maximal IKs conductance endocard [nS/pF] 
GKs(endo+1:myo) = 0.098;    % Maximal IKs conductance midmyocard [nS/pF] 
GKs(myo+1:epi) = 0.329;     % Maximal IKs conductance epicard [nS/pF] 
GK1 = ones(TS,1)*5.405;     % Maximal IK1 conductance [nS/pF] 
Gto = ones(TS,1)*0.294;     % Maximal Ito conductance [nS/pF] 
Gto(1:endo) = 0.073;        % Maximal Ito conductance endocard [nS/pF] 
Gto(endo+1:myo) = 0.294;    % Maximal Ito conductance midmyocard [nS/pF] 
Gto(myo+1:epi) = 0.294;     % Maximal Ito conductance epicard [nS/pF] 
GNa   = ones(TS,1)*14.838;  % Maximal INa conductance [nS/pF] 
GbNa  = ones(TS,1)*0.00029; % Maximal background-INa conductance [nS/pF] 
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KmK   = ones(TS,1); 
KmNa  = ones(TS,1)*40.0; 
knak  = ones(TS,1)*2.724; 
pKNa  = ones(TS,1)*0.03; 
GCaL  = ones(TS,1)*0.0000398; 
GbCa  = ones(TS,1)*0.000592; 
knaca = ones(TS,1)*1000; 
KmNai = ones(TS,1)*87.5; 
KmCa  = ones(TS,1)*1.38; 
ksat  = ones(TS,1)*0.1; 
n     = ones(TS,1)*0.35;     % Voltage dependence parameter of INaCa 
GpCa  = ones(TS,1)*0.1238; 
KpCa  = ones(TS,1)*0.0005; 
GpK   = ones(TS,1)*0.0146; 
  
% Initial conditions  for state variables 
inverseVcF   = 1./(Vc*F); 
inverseVcF2  = inverseVcF./2; 
inverseVssF2 = 1./(2*Vss*F); 
svolt  = ones(TS,1)*-86.2; 
Cai    = ones(TS,1)*0.00007; 
CaSR   = ones(TS,1)*1.3; 
CaSS   = ones(TS,1)*0.0007; 
Nai    = ones(TS,1)*7.67; 
Ki     = ones(TS,1)*138.3; 
sm     = zeros(TS,1); 
sh     = ones(TS,1)*0.75; 
sj     = ones(TS,1)*0.75; 
sxr1   = zeros(TS,1); 
sxr2   = ones(TS,1); 
sxs    = zeros(TS,1); 
sr     = zeros(TS,1); 
ss     = ones(TS,1); 
sd     = zeros(TS,1); 
sf     = ones(TS,1); 
sf2    = ones(TS,1); 
sfcass = ones(TS,1); 
sRR    = ones(TS,1); 
sOO    = zeros(TS,1); 
% End of Electrophysiological parameters 
  
%% MODEL 
Vm = ones(TS,N)*-86.2e-3;    
Vhelp = zeros(TS+2*BS,1);   % V for calculating phi_e in bath and tissue 
Vhelp(BS+1:BS+TS) = Vm(:,1); 
phi_e = zeros(TS,N); 
Big_phi = zeros(TS+2*BS,1); 
neg_Big_phi = -Big_phi; 
  
  
for i = 1:N-1 
     
    % TEN TUSSCHER PART 
    VmTT = Vm(:,i)*1000; % TT requires Vm in [mV] -> helping variable 
     
    % Parameters needed to calculate ion currents 
    EK  = RTonF .* log(Ko./Ki); 
    ENa = RTonF .* log(Nao./Nai); 
    EKs = RTonF .* log((Ko+pKNa.*Nao)./(Ki+pKNa.*Nai)); 
    ECa = 0.5*RTonF.*log(Cao./Cai); 
    AK1 = 0.1./(1+exp(0.06*(VmTT-EK-200))); 
    BK1 = (3*exp(0.0002*(VmTT-EK+100)) + exp(0.1*(VmTT-EK-10))) ./ ... 
        (1+exp(-0.5*(VmTT-EK))); 
    rec_iK1  = AK1./(AK1+BK1); 
    rec_iNaK = 1 ./ ... 
        (1+0.1245*exp(-0.1*VmTT./RTonF)+0.0353*exp(-VmTT./RTonF)); 
    rec_ipK = 1 ./ (1+exp((25-VmTT)./5.98)); 
     
    % Calculate ion currents 
    INa  = GNa.*(sm.^3).*sh.*sj.*(VmTT-ENa); 
    svolt_etc = 2*(VmTT-15)./RTonF; 
    ICaL = GCaL.*sd.*sf.*sf2.*sfcass.*2.*F.*svolt_etc .* ... 
        (0.25.*exp(svolt_etc).*CaSS-Cao) ./ (exp(svolt_etc)-1); 
    Ito = Gto.*sr.*ss.*(VmTT-EK); 
    IKr = GKr.*sqrt(Ko/5.4).*sxr1.*sxr2.*(VmTT-EK); 
    IKs = GKs.*sxs.*sxs.*(VmTT-EKs); 
    IK1 = GK1.*rec_iK1.*(VmTT-EK); 
    INaCa = knaca.*(1./((KmNai.^3)+(Nao.^3))).*(1./(KmCa+Cao)).* ... 
        (1./(1+ksat.*exp((n-1).* VmTT./RTonF))).* ... 
        (exp(n.*VmTT./RTonF).*(Nai.^3).*Cao-exp((n-1).*VmTT./RTonF).* ... 
        (Nao.^3).*Cai*2.5); 
    INaK = knak.*(Ko./(Ko+KmK)).*(Nai./(Nai+KmNa)).*rec_iNaK; 
    IpCa = GpCa.*Cai./(KpCa+Cai); 
    IpK  = GpK.*rec_ipK.*(VmTT-EK); 
    IbNa = GbNa.*(VmTT-ENa); 
    IbCa = GbCa.*(VmTT-ECa); 
    Iion = IKr+IKs+IK1+Ito+INa+IbNa+ICaL+IbCa+INaK+INaCa+IpCa+IpK; 
     
    % Update concentrations 
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    kCaSR = maxsr-(maxsr-minsr)./(1+(EC./CaSR).^2); 
    k1    = k1_./kCaSR; 
    k2    = k2_.*kCaSR; 
    dRR   = k4.*(1-sRR)-k2.*CaSS.*sRR; 
    sRR   = sRR+delta_t*dRR; 
    sOO   = k1.*CaSS.*CaSS.*sRR./(k3+k1.*CaSS.*CaSS); 
    Irel  = Vrel.*sOO.*(CaSR-CaSS); 
    Ileak = Vleak.*(CaSR-Cai); 
    Iup   = Vmaxup./(1+(Kup./Cai).^2); 
    Ixfer = Vxfer.*(CaSS-Cai); 
    CaCSQN = Bufsr.*CaSR./(CaSR+Kbufsr); 
    dCaSR  = delta_t*(Iup-Irel-Ileak); 
    bjsr   = Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; 
    cjsr   = Kbufsr.*(CaCSQN+dCaSR+CaSR); 
    CaSR   = (sqrt(bjsr.*bjsr+4*cjsr)-bjsr)/2; 
    CaSSBuf = Bufss.*CaSS./(CaSS+Kbufss); 
    dCaSS   = delta_t.*(-Ixfer.*(Vc./Vss)+Irel.*(Vsr./Vss)+(-ICaL.*inverseVssF2.*... 
        Capacitance)); 
    bcss    = Bufss-CaSSBuf-dCaSS-CaSS+Kbufss; 
    ccss    = Kbufss.*(CaSSBuf+dCaSS+CaSS); 
    CaSS    = (sqrt(bcss.*bcss+4*ccss)-bcss)./2; 
    CaBuf = Bufc.*Cai./(Kbufc+Cai); 
    dCai  = delta_t.*((-(IbCa+IpCa-2*INaCa).*inverseVcF2.*Capacitance)- ... 
        (Iup-Ileak).*(Vsr./Vc)+Ixfer); 
    bc    = Bufc-CaBuf-dCai-Cai+Kbufc; 
    cc    = Kbufc.*(CaBuf+dCai+Cai); 
    Cai   = (sqrt(bc.*bc+4*cc)-bc)./2; 
    dNai = -(INa+IbNa+3*INaK+3*INaCa).*inverseVcF.*Capacitance; 
    Nai  = Nai + delta_t*dNai; 
    dKi = -(IK1+Ito+IKr+IKs-2*INaK+IpK).*inverseVcF.*Capacitance; 
    Ki  = Ki + delta_t*dKi; 
     
    % Calculate steady state values and time constants (gating parameters) 
    AM    = 1./(1+exp((-60-VmTT)/5)); 
    BM    = 0.1./(1+exp((VmTT+35)/5))+0.1./(1+exp((VmTT-50)/200)); 
    Tau_M = AM.*BM; 
    M_Inf = 1./((1+exp((-56.86-VmTT)/9.03)).^2); 
     
    for k = 1:TS 
        if VmTT(k)>-40 
            AH(k,1)  = 0; 
            BH(k,1)  = 0.77./(0.13*(1+exp(-(VmTT(k)+10.66)/11.1))); 
        else 
            AH(k,1)  = (0.057*exp(-(VmTT(k)+80)/6.8)); 
            BH(k,1)  = 2.7*exp(0.079*VmTT(k))+3.1e5*exp(0.3485*VmTT(k)); 
        end 
        if VmTT(k)>-40 
            AJ(k,1)  = 0; 
            BJ(k,1)  = (0.6*exp((0.057)*VmTT(k))./(1+exp(-0.1*(VmTT(k)+32)))); 
        else 
            AJ(k,1)  = (((-2.5428e4).*exp(0.2444.*VmTT(k))-(6.948e-6).* ... 
                exp(-0.04391.*VmTT(k))).*(VmTT(k)+37.78)./ ... 
                (1+exp(0.311.*(VmTT(k)+79.23)))); 
            BJ(k,1)  = (0.02424.*exp(-0.01052.*VmTT(k))./ ... 
                (1+exp(-0.1378.*(VmTT(k)+40.14)))); 
        end 
    end 
    Tau_H = 1./(AH+BH); 
    Tau_J = 1./(AJ+BJ); 
    H_Inf = 1./((1+exp(VmTT+71.55)/7.43)).^2; 
    J_Inf = H_Inf; 
     
    Xr1_Inf = 1./(1+exp((-26-VmTT)/7)); 
    axr1    = 450./(1+exp((-45-VmTT)/10)); 
    bxr1    = 6./(1+exp((VmTT+30)/11.5)); 
    Tau_Xr1 = axr1.*bxr1; 
     
    Xr2_Inf = 1./(1+exp((VmTT+88)/24)); 
    axr2    = 3./(1+exp((-60-VmTT)/20)); 
    bxr2    = 1.12./(1+exp((VmTT-60)/20)); 
    Tau_Xr2 = axr2.*bxr2; 
     
    Xs_Inf  = 1./(1+exp((-5-VmTT)/14)); 
    Axs     = 1400./(sqrt(1+exp((5-VmTT)/6))); 
    Bxs     = 1./(1+exp((VmTT-35)/15)); 
    Tau_Xs  = Axs.*Bxs+80; 
     
    R_Inf = 1./(1+exp((20-VmTT)/6)); 
    Tau_R = 9.5*exp(-((VmTT+40).^2)/1800)+0.8; 
    S_Inf(1:endo,1) = 1./(1+exp((VmTT(1:endo)+28)/5)); 
    S_Inf(endo+1:myo,1) = 1./(1+exp((VmTT(endo+1:myo)+20)/5)); 
    S_Inf(myo+1:epi,1) = 1./(1+exp((VmTT(myo+1:epi)+20)/5)); 
    Tau_S(1:endo,1) = 1000*exp(-((VmTT(1:endo)+67).^2)./1000)+8; 
    Tau_S(endo+1:myo,1) = 85*exp(-((VmTT(endo+1:myo)+45).^2)/320)+... 
        5./(1+exp((VmTT(endo+1:myo)-20)/5))+3; 
    Tau_S(myo+1:epi,1) = 85*exp(-((VmTT(myo+1:epi)+45).^2)/320)+... 
        5./(1+exp((VmTT(myo+1:epi)-20)/5))+3; 
     
    D_Inf = 1./(1+exp((-8-VmTT)/7.5)); 
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    Ad    = 1.4./(1+exp((-35-VmTT)/13))+0.25; 
    Bd    = 1.4./(1+exp((VmTT+5)/5)); 
    Cd    = 1./(1+exp((50-VmTT)/20)); 
    Tau_D = Ad.*Bd.*Cd; 
     
    F_Inf = 1./(1+exp((VmTT+20)/7)); 
    Af    = 1102.5*exp(-((VmTT+27).^2)/225); 
    Bf    = 200./(1+exp((13-VmTT)/10)); 
    Cf    = (180./(1+exp((VmTT+30)/10)))+20; 
    Tau_F = Af+Bf+Cf; 
     
    F2_Inf = 0.67./(1+exp((VmTT+35)/7))+0.33; 
    Af2    = 600*exp(-((VmTT+25).^2)/170); 
    Bf2    = 31./(1+exp((25-VmTT)/10)); 
    Cf2    = 16./(1+exp((VmTT+30)/10)); 
    Tau_F2 = Af2+Bf2+Cf2; 
    FCaSS_Inf = 0.6./(1+400*CaSS.*CaSS)+0.4; 
    Tau_FCaSS = 80./(1+400*CaSS.*CaSS)+2; 
     
    % Update gates 
    sm     = M_Inf-(M_Inf-sm).*exp(-delta_t./Tau_M); 
    sh     = H_Inf-(H_Inf-sh).*exp(-delta_t./Tau_H); 
    sj     = J_Inf-(J_Inf-sj).*exp(-delta_t./Tau_J); 
    sxr1   = Xr1_Inf-(Xr1_Inf-sxr1).*exp(-delta_t./Tau_Xr1); 
    sxr2   = Xr2_Inf-(Xr2_Inf-sxr2).*exp(-delta_t./Tau_Xr2); 
    sxs    = Xs_Inf-(Xs_Inf-sxs).*exp(-delta_t./Tau_Xs); 
    ss     = S_Inf-(S_Inf-ss).*exp(-delta_t./Tau_S); 
    sr     = R_Inf-(R_Inf-sr).*exp(-delta_t./Tau_R); 
    sd     = D_Inf-(D_Inf-sd).*exp(-delta_t./Tau_D); 
    sf     = F_Inf-(F_Inf-sf).*exp(-delta_t./Tau_F); 
    sf2    = F2_Inf-(F2_Inf-sf2).*exp(-delta_t./Tau_F2); 
    sfcass = FCaSS_Inf-(FCaSS_Inf-sfcass).*exp(-delta_t./Tau_FCaSS); 
     
    %  BIDOMAIN PART 
    neg_Big_phi(:,i) = bicgstabl(neg_BigM_ie,(BigM_i*Vhelp)); 
    Big_phi(:,i) = -neg_Big_phi(:,i); 
    phi_e(:,i) = Big_phi(BS+1:BS+TS,i); 
     
    if i <= t_stim 
%         dVmdt = (-*M_e*phi_e(:,i)+ Istim)/((beta*Cm)/1000)-(Iion*2e-2)/Cm; 
        dVmdt = (-0*M_e*phi_e(:,i)+ Istim)/((beta*Cm)/1000)-(Iion*2e-2)/Cm; 
    else 
%         dVmdt = (-*M_e*phi_e(:,i))/(beta*Cm)-(Iion*2e-2)/Cm; 
        dVmdt = (-0*M_e*phi_e(:,i))/(beta*Cm)-(Iion*2e-2)/Cm; 
    end 
     
    for kz = 1:Tz 
        dVmdt((kz-1)*Tx*Ty+1:(kz-1)*Tx*Ty+Tx+1,1) = 0; 
        dVmdt((kz-1)*Tx*Ty+(Ty-1)*Tx:(kz-1)*Tx*Ty+Tx*Ty,1) = 0; 
        for ky = 2:Ty-2 
            dVmdt((kz-1)*Tx*Ty+ky*Tx:(kz-1)*Tx*Ty+ky*Tx+1,1) = 0; 
        end 
    end 
     
    Vm(:,i+1) = Vm(:,i)+dVmdt*(delta_t/1000); 
    Vhelp(BS+1:BS+TS) = Vm(:,i+1); 
     
    disp(i); 
end 
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Appendix B 

Full MATLAB code of the monodomain model with incorporated Ten Tusscher model. 

%% ACTIVE MONODOMAIN 3D - Versuch 
% Run und dann folgendes plotten: 
% figure;plot((0:N-1)*delta_t,Vm(P,:)); 
% hold on;plot((0:N-1)*delta_t,Vm(P+1,:)); 
% hold on;plot((0:N-1)*delta_t,Vm(P+2,:)); 
% hold on;plot((0:N-1)*delta_t,Vm(P+3,:)); 
  
clc 
%clear all; %close all; 
  
%% Tissue Grid 
Lx = 50;     % grid length in x direction 
Ly = 50;     % grid length in y direction 
Lz = 20;     % grid length in z direction 
h = 0.2e-3;  % distance between grid points [m] 
  
%% Time steps 
delta_t = 0.02; % size of time step [ms] 
N = 1000;       % number of time steps 
  
%% Stimulus 
Stimulus = 500;     % stimulus current[A/m^2] 200 without coupling 
t_stim_on = 5;      % sart of stimulus [ms] 
t_stim = 1;         % stimulus duration [ms] 
t_stim_on =t_stim_on/delta_t; 
t_stim = t_stim/delta_t; 
  
x = 30;        % x position of stimulus point 
y = 30;        % y position of stimulus point 
z = 15;        % z position of stimulus point 
  
P = x+(y-1)*Lx+(z-1)*Lx*Ly;     % calculation of point number 
Istim = zeros(Lx*Ly*Lz,1); 
Istim(P,1) = Stimulus; 
  
%% Membrane parameters 
Cm = 1e-2;      % 3e-2 capacitance [F/m^2] 
beta = 3e5;     % surface to volume ratio [1/m] 
  
% Conductivity 
sigmax_i = 0.2;     % intracell. along fibre (x dir.) [S/m] 
sigmay_i = 0.02;    % intracell. vertical to fibre (y dir.) [S/m] 
sigmaz_i = 0.02;    % intracell. vertical to fibre (z dir.) [S/m] 
sigmax_e = 0.2;     % extracell. along fibre (x dir.) [S/m] 
sigmay_e = 0.08;    % extracell. vertical to fibre (y dir.) [S/m] 
sigmaz_e = 0.08;    % extracell. vertical to fibre (z dir.) [S/m] 
  
%intracellular 
M_i = spalloc(Lx*Ly*Lz,Lx*Ly*Lz,2*Lx*Ly+2*(Ly-2)*(Lz-2)+6*(Lx-2)*(Ly-2)*(Lz-2)); 
for n = 1:(Lx*Ly*Lz) 
    M_i(n,n) = 1; 
    for kk = 1:Lz-2 
        for k = 1:Ly-2 
            if ((n > kk*Lx*Ly+k*Lx+1) && (n < kk*Lx*Ly+(k+1)*Lx)) 
                M_i(n,n) = (-2*sigmax_i-2*sigmay_i-2*sigmaz_i)/h^2; 
                M_i(n,n-1) = sigmax_i/h^2; 
                M_i(n,n+1) = sigmax_i/h^2; 
                M_i(n,n-Lx) = sigmay_i/h^2; 
                M_i(n,n+Lx) = sigmay_i/h^2; 
                M_i(n,n-Lx*Ly) = sigmaz_i/h^2; 
                M_i(n,n+Lx*Ly) = sigmaz_i/h^2; 
            end 
        end 
    end 
end 
  
%extracellular 
M_e = spalloc(Lx*Ly*Lz,Lx*Ly*Lz,2*Lx*Ly+2*(Ly-2)*(Lz-2)+6*(Lx-2)*(Ly-2)*(Lz-2)); 
for n = 1:(Lx*Ly*Lz) 
    M_e(n,n) = 1; 
    for kk = 1:Lz-2 
        for k = 1:Ly-2 
            if ((n > kk*Lx*Ly+k*Lx+1) && (n < kk*Lx*Ly+(k+1)*Lx)) 
                M_e(n,n) = (-2*sigmax_e-2*sigmay_e-2*sigmaz_e)/h^2; 
                M_e(n,n-1) = sigmax_e/h^2; 
                M_e(n,n+1) = sigmax_e/h^2; 
                M_e(n,n-Lx) = sigmay_e/h^2; 
                M_e(n,n+Lx) = sigmay_e/h^2; 
                M_e(n,n-Lx*Ly) = sigmaz_e/h^2; 
                M_e(n,n+Lx*Ly) = sigmaz_e/h^2; 
            end 
        end 
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    end 
end 
  
%intra+extracellular 
M_ie = spalloc(Lx*Ly*Lz,Lx*Ly*Lz,2*Lx*Ly+2*(Ly-2)*(Lz-2)+6*(Lx-2)*(Ly-2)*(Lz-2)); 
for n = 1:(Lx*Ly*Lz) 
    M_ie(n,n) = 1; 
    for kk = 1:Lz-2 
        for k = 1:Ly-2 
            if ((n > kk*Lx*Ly+k*Lx+1) && (n < kk*Lx*Ly+(k+1)*Lx)) 
                M_ie(n,n) = (-2*(sigmax_i+sigmax_e)-2*(sigmay_i+sigmay_e)-2*(sigmaz_i+sigmaz_e))/h^2; 
                M_ie(n,n-1) = (sigmax_i+sigmax_e)/h^2; 
                M_ie(n,n+1) = (sigmax_i+sigmax_e)/h^2; 
                M_ie(n,n-Lx) = (sigmay_i+sigmay_e)/h^2; 
                M_ie(n,n+Lx) = (sigmay_i+sigmay_e)/h^2; 
                M_ie(n,n-Lx*Ly) = (sigmaz_i+sigmaz_e)/h^2; 
                M_ie(n,n+Lx*Ly) = (sigmaz_i+sigmaz_e)/h^2; 
            end 
        end 
    end 
end 
  
%% Parameters TT 
% Electrophysiological parameters 
Ko  = ones(Lx*Ly*Lz,1)*5.4;     % Extracellular K concentration [mM] 
Cao = ones(Lx*Ly*Lz,1)*2.0;     % Extracellualr Ca concentration [mM] 
Nao = ones(Lx*Ly*Lz,1)*140.0;   % Extracellular Na concentration [mM] 
  
Vc  = ones(Lx*Ly*Lz,1)*0.016404;   % Volume of the cytoplasm [mm^3] 
Vsr = ones(Lx*Ly*Lz,1)*0.001094;   % Volum of sarcoplasmatic reticulum [mm^3] 
Vss = ones(Lx*Ly*Lz,1)*0.00005468; % Volume of the subspace [mm^3] 
  
Capacitance = ones(Lx*Ly*Lz,1)*0.185; % Cellular capacitance [nF] 
  
Bufc   = ones(Lx*Ly*Lz,1)*0.2;     % Cytoplasmic Ca buffer concentration [mM] 
Kbufc  = ones(Lx*Ly*Lz,1)*0.001;   % Cai, half-saturation constant for cytopl. buffer [mM] 
Bufsr  = ones(Lx*Ly*Lz,1)*10.0;    % Sarcoplasmic Ca buffer concentration [mM] 
Kbufsr = ones(Lx*Ly*Lz,1)*0.3;     % CaSR half-saturation constant for SR buffer (mM] 
Bufss  = ones(Lx*Ly*Lz,1)*0.4;     % Subspace Ca buffer concentration [mM] 
Kbufss = ones(Lx*Ly*Lz,1)*0.00025; % CaSS half-saturation constant for SS buffer [mM] 
  
Vmaxup = ones(Lx*Ly*Lz,1)*0.006375;% Maximal Iup conductance [mM/ms] 
Kup    = ones(Lx*Ly*Lz,1)*0.00025; % Half-saturation constant of Iup [mM] 
  
Vrel   = ones(Lx*Ly*Lz,1)*0.102;   % Maximal Irel conductance [mM/ms] 
k1_    = ones(Lx*Ly*Lz,1)*0.15;    % Irel transition rate R to O and RI to I [1/mM^2*ms] 
k2_    = ones(Lx*Ly*Lz,1)*0.045;   % Irel transition rate O to I and R to RI [1/mM*ms] 
k3     = ones(Lx*Ly*Lz,1)*0.06;    % Irel transition rate O to R and I to RI [1/ms] 
k4     = ones(Lx*Ly*Lz,1)*0.005;   % Irel transition rate I to O and RI to I [1/ms] 
  
EC     = ones(Lx*Ly*Lz,1)*1.5;     % CaSR half-saturation constant of kCaSR [mM] 
maxsr  = ones(Lx*Ly*Lz,1)*2.5;     % Maximum value of kCaSR (dimensionless) 
minsr  = ones(Lx*Ly*Lz,1);     % Minimum value of kCaSR (dimensionless) 
  
Vleak  = ones(Lx*Ly*Lz,1)*0.00036; % Maximal Ileak conductance [mM/ms] 
Vxfer  = ones(Lx*Ly*Lz,1)*0.0038;  % Maximal Ixfer conductance [mM/ms] 
  
R = 8314.472;     % Gas constant [mJ/K*mol] 
F = 96485.3415;   % Faraday constant [C/mol] 
T = 310;          % Temperature [K] 
RTonF = ones(Lx*Ly*Lz,1)*(R*T/F); 
  
% Parameters for ion currents 
GKr = ones(Lx*Ly*Lz,1)*0.153;       % Maximal IKr conductance [nS/pF] 
GKs = ones(Lx*Ly*Lz,1)*0.392;       % Maximal IKs conductance [nS/pF] 
GK1 = ones(Lx*Ly*Lz,1)*5.405;       % Maximal IK1 conductance [nS/pF] 
Gto = ones(Lx*Ly*Lz,1)*0.294;       % Maximal Ito conductance [nS/pF] 
GNa   = ones(Lx*Ly*Lz,1)*14.838;    % Maximal INa conductance [nS/pF] 
GbNa  = ones(Lx*Ly*Lz,1)*0.00029;   % Maximal background-INa conductance [nS/pF] 
KmK   = ones(Lx*Ly*Lz,1); 
KmNa  = ones(Lx*Ly*Lz,1)*40.0; 
knak  = ones(Lx*Ly*Lz,1)*2.724; 
pKNa  = ones(Lx*Ly*Lz,1)*0.03; 
GCaL  = ones(Lx*Ly*Lz,1)*0.0000398; 
GbCa  = ones(Lx*Ly*Lz,1)*0.000592; 
knaca = ones(Lx*Ly*Lz,1)*1000; 
KmNai = ones(Lx*Ly*Lz,1)*87.5; 
KmCa  = ones(Lx*Ly*Lz,1)*1.38; 
ksat  = ones(Lx*Ly*Lz,1)*0.1; 
n     = ones(Lx*Ly*Lz,1)*0.35;       % Voltage dependence parameter of INaCa 
GpCa  = ones(Lx*Ly*Lz,1)*0.1238; 
KpCa  = ones(Lx*Ly*Lz,1)*0.0005; 
GpK   = ones(Lx*Ly*Lz,1)*0.0146; 
  
% Initial conditions  for state variables 
inverseVcF   = 1./(Vc*F); 
inverseVcF2  = inverseVcF./2; 
inverseVssF2 = 1./(2*Vss*F); 
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svolt  = ones(Lx*Ly*Lz,1)*-86.2; 
Cai    = ones(Lx*Ly*Lz,1)*0.00007; 
CaSR   = ones(Lx*Ly*Lz,1)*1.3; 
CaSS   = ones(Lx*Ly*Lz,1)*0.0007; 
Nai    = ones(Lx*Ly*Lz,1)*7.67; 
Ki     = ones(Lx*Ly*Lz,1)*138.3; 
sm     = zeros(Lx*Ly*Lz,1); 
sh     = ones(Lx*Ly*Lz,1)*0.75; 
sj     = ones(Lx*Ly*Lz,1)*0.75; 
sxr1   = zeros(Lx*Ly*Lz,1); 
sxr2   = ones(Lx*Ly*Lz,1); 
sxs    = zeros(Lx*Ly*Lz,1); 
sr     = zeros(Lx*Ly*Lz,1); 
ss     = ones(Lx*Ly*Lz,1); 
sd     = zeros(Lx*Ly*Lz,1); 
sf     = ones(Lx*Ly*Lz,1); 
sf2    = ones(Lx*Ly*Lz,1); 
sfcass = ones(Lx*Ly*Lz,1); 
sRR    = ones(Lx*Ly*Lz,1); 
sOO    = zeros(Lx*Ly*Lz,1); 
% End of Electrophysiological parameters 
  
%% Model 
Vm = ones(Lx*Ly*Lz,N)*-86.2e-3; 
%phi_e = zeros(Lx*Ly*Lz); 
  
  
for i = 1:N-1 
     
    VmTT = Vm(:,i)*1000; 
     
    % Parameters needed to calculate ion currents 
    EK  = RTonF .* log(Ko./Ki); 
    ENa = RTonF .* log(Nao./Nai); 
    EKs = RTonF .* log((Ko+pKNa.*Nao)./(Ki+pKNa.*Nai)); 
    ECa = 0.5*RTonF.*log(Cao./Cai); 
    AK1 = 0.1./(1+exp(0.06*(VmTT-EK-200))); 
    BK1 = (3*exp(0.0002*(VmTT-EK+100)) + exp(0.1*(VmTT-EK-10))) ./ ... 
        (1+exp(-0.5*(VmTT-EK))); 
    rec_iK1  = AK1./(AK1+BK1); 
    rec_iNaK = 1 ./ ... 
        (1+0.1245*exp(-0.1*VmTT./RTonF)+0.0353*exp(-VmTT./RTonF)); 
    rec_ipK = 1 ./ (1+exp((25-VmTT)./5.98)); 
     
    % Calculate ion currents 
    INa  = GNa.*(sm.^3).*sh.*sj.*(VmTT-ENa); 
    svolt_etc = 2*(VmTT-15)./RTonF; 
    ICaL = GCaL.*sd.*sf.*sf2.*sfcass.*2.*F.*svolt_etc .* ... 
        (0.25.*exp(svolt_etc).*CaSS-Cao) ./ (exp(svolt_etc)-1); 
    Ito = Gto.*sr.*ss.*(VmTT-EK); 
    IKr = GKr.*sqrt(Ko/5.4).*sxr1.*sxr2.*(VmTT-EK); 
    IKs = GKs.*sxs.*sxs.*(VmTT-EKs); 
    IK1 = GK1.*rec_iK1.*(VmTT-EK); 
    INaCa = knaca.*(1./((KmNai.^3)+(Nao.^3))).*(1./(KmCa+Cao)).* ... 
        (1./(1+ksat.*exp((n-1).* VmTT./RTonF))).* ... 
        (exp(n.*VmTT./RTonF).*(Nai.^3).*Cao-exp((n-1).*VmTT./RTonF).* ... 
        (Nao.^3).*Cai.*2.5); 
    INaK = knak.*(Ko./(Ko+KmK)).*(Nai./(Nai+KmNa)).*rec_iNaK; 
    IpCa = GpCa.*Cai./(KpCa+Cai); 
    IpK  = GpK.*rec_ipK.*(VmTT-EK); 
    IbNa = GbNa.*(VmTT-ENa); 
    IbCa = GbCa.*(VmTT-ECa); 
    Iion = ((IKr+IKs+IK1+Ito+INa+IbNa+ICaL+IbCa+INaK+INaCa+IpCa+IpK)); 
     
    % Update concentrations 
    kCaSR = maxsr-(maxsr-minsr)./(1+(EC./CaSR).^2); 
    k1    = k1_./kCaSR; 
    k2    = k2_.*kCaSR; 
    dRR   = k4.*(1-sRR)-k2.*CaSS.*sRR; 
    sRR   = sRR+delta_t*dRR; 
    sOO   = k1.*CaSS.*CaSS.*sRR./(k3+k1.*CaSS.*CaSS); 
    Irel  = Vrel.*sOO.*(CaSR-CaSS); 
    Ileak = Vleak.*(CaSR-Cai); 
    Iup   = Vmaxup./(1+(Kup./Cai).^2); 
    Ixfer = Vxfer.*(CaSS-Cai); 
    CaCSQN = Bufsr.*CaSR./(CaSR+Kbufsr); 
    dCaSR  = delta_t*(Iup-Irel-Ileak); 
    bjsr   = Bufsr-CaCSQN-dCaSR-CaSR+Kbufsr; 
    cjsr   = Kbufsr.*(CaCSQN+dCaSR+CaSR); 
    CaSR   = (sqrt(bjsr.*bjsr+4*cjsr)-bjsr)/2; 
    CaSSBuf = Bufss.*CaSS./(CaSS+Kbufss); 
    dCaSS   = delta_t.*(-Ixfer.*(Vc./Vss)+Irel.*(Vsr./Vss)+(-ICaL.*inverseVssF2.*... 
        Capacitance)); 
    bcss    = Bufss-CaSSBuf-dCaSS-CaSS+Kbufss; 
    ccss    = Kbufss.*(CaSSBuf+dCaSS+CaSS); 
    CaSS    = (sqrt(bcss.*bcss+4*ccss)-bcss)./2; 
    CaBuf = Bufc.*Cai./(Kbufc+Cai); 
    dCai  = delta_t.*((-(IbCa+IpCa-2*INaCa).*inverseVcF2.*Capacitance)- ... 
        (Iup-Ileak).*(Vsr./Vc)+Ixfer); 
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    bc    = Bufc-CaBuf-dCai-Cai+Kbufc; 
    cc    = Kbufc.*(CaBuf+dCai+Cai); 
    Cai   = (sqrt(bc.*bc+4*cc)-bc)./2; 
    dNai = -(INa+IbNa+3*INaK+3*INaCa).*inverseVcF.*Capacitance; 
    Nai  = Nai + delta_t*dNai; 
    %if i<=t_stim 
    %   dKi = -(Istim/2e-2+IK1+Ito+IKr+IKs-2*INaK+IpK).*inverseVcF.*Capacitance; %DELETED ISTIM HERE 
    %else 
    dKi = -(IK1+Ito+IKr+IKs-2*INaK+IpK).*inverseVcF.*Capacitance; 
    % end 
    Ki  = Ki + delta_t*dKi; 
    % Calculate steady state values and time constants (gating parameters) 
    AM    = 1./(1+exp((-60-VmTT)/5)); 
    BM    = 0.1./(1+exp((VmTT+35)/5))+0.1./(1+exp((VmTT-50)/200)); 
    Tau_M = AM.*BM; 
    M_Inf = 1./((1+exp((-56.86-VmTT)/9.03)).^2); 
    for k = 1:Lx*Ly*Lz 
        if VmTT(k)>-40 
            AH(k,1)  = 0; 
            BH(k,1)  = 0.77./(0.13*(1+exp(-(VmTT(k)+10.66)/11.1))); 
        else 
            AH(k,1)  = (0.057*exp(-(VmTT(k)+80)/6.8)); 
            BH(k,1)  = 2.7*exp(0.079*VmTT(k))+3.1e5*exp(0.3485*VmTT(k)); 
        end 
        if VmTT(k)>-40 
            AJ(k,1)  = 0; 
            BJ(k,1)  = (0.6*exp((0.057)*VmTT(k))./(1+exp(-0.1*(VmTT(k)+32)))); 
        else 
            AJ(k,1)  = (((-2.5428e4).*exp(0.2444.*VmTT(k))-(6.948e-6).* ... 
                exp(-0.04391.*VmTT(k))).*(VmTT(k)+37.78)./ ... 
                (1+exp(0.311.*(VmTT(k)+79.23)))); 
            BJ(k,1)  = (0.02424.*exp(-0.01052.*VmTT(k))./ ... 
                (1+exp(-0.1378.*(VmTT(k)+40.14)))); 
        end 
    end 
    Tau_H = 1./(AH+BH); 
    Tau_J = 1./(AJ+BJ); 
    H_Inf = 1./((1+exp(VmTT+71.55)/7.43)).^2; 
    J_Inf = H_Inf; 
     
    Xr1_Inf = 1./(1+exp((-26-VmTT)/7)); 
    axr1    = 450./(1+exp((-45-VmTT)/10)); 
    bxr1    = 6./(1+exp((VmTT+30)/11.5)); 
    Tau_Xr1 = axr1.*bxr1; 
     
    Xr2_Inf = 1./(1+exp((VmTT+88)/24)); 
    axr2    = 3./(1+exp((-60-VmTT)/20)); 
    bxr2    = 1.12./(1+exp((VmTT-60)/20)); 
    Tau_Xr2 = axr2.*bxr2; 
     
    Xs_Inf  = 1./(1+exp((-5-VmTT)/14)); 
    Axs     = 1400./(sqrt(1+exp((5-VmTT)/6))); 
    Bxs     = 1./(1+exp((VmTT-35)/15)); 
    Tau_Xs  = Axs.*Bxs+80; 
     
    R_Inf = 1./(1+exp((20-VmTT)/6)); 
    Tau_R = 9.5*exp(-((VmTT+40).^2)/1800)+0.8; 
    S_Inf = 1./(1+exp((VmTT+20)/5)); 
    Tau_S = 85*exp(-((VmTT+45).^2)/320)+5./(1+exp((VmTT-20)/5))+3; 
     
    D_Inf = 1./(1+exp((-8-VmTT)/7.5)); 
    Ad    = 1.4./(1+exp((-35-VmTT)/13))+0.25; 
    Bd    = 1.4./(1+exp((VmTT+5)/5)); 
    Cd    = 1./(1+exp((50-VmTT)/20)); 
    Tau_D = Ad.*Bd.*Cd; 
     
    F_Inf = 1./(1+exp((VmTT+20)/7)); 
    Af    = 1102.5*exp(-((VmTT+27).^2)/225); 
    Bf    = 200./(1+exp((13-VmTT)/10)); 
    Cf    = (180./(1+exp((VmTT+30)/10)))+20; 
    Tau_F = Af+Bf+Cf; 
     
    F2_Inf = 0.67./(1+exp((VmTT+35)/7))+0.33; 
    Af2    = 600*exp(-((VmTT+25).^2)/170); 
    Bf2    = 31./(1+exp((25-VmTT)/10)); 
    Cf2    = 16./(1+exp((VmTT+30)/10)); 
    Tau_F2 = Af2+Bf2+Cf2; 
    FCaSS_Inf = 0.6./(1+400*CaSS.*CaSS)+0.4; 
    Tau_FCaSS = 80./(1+400*CaSS.*CaSS)+2; 
     
    % Update gates 
    sm     = M_Inf-(M_Inf-sm).*exp(-delta_t./Tau_M); 
    sh     = H_Inf-(H_Inf-sh).*exp(-delta_t./Tau_H); 
    sj     = J_Inf-(J_Inf-sj).*exp(-delta_t./Tau_J); 
    sxr1   = Xr1_Inf-(Xr1_Inf-sxr1).*exp(-delta_t./Tau_Xr1); 
    sxr2   = Xr2_Inf-(Xr2_Inf-sxr2).*exp(-delta_t./Tau_Xr2); 
    sxs    = Xs_Inf-(Xs_Inf-sxs).*exp(-delta_t./Tau_Xs); 
    ss     = S_Inf-(S_Inf-ss).*exp(-delta_t./Tau_S); 
    sr     = R_Inf-(R_Inf-sr).*exp(-delta_t./Tau_R); 
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    sd     = D_Inf-(D_Inf-sd).*exp(-delta_t./Tau_D); 
    sf     = F_Inf-(F_Inf-sf).*exp(-delta_t./Tau_F); 
    sf2    = F2_Inf-(F2_Inf-sf2).*exp(-delta_t./Tau_F2); 
    sfcass = FCaSS_Inf-(FCaSS_Inf-sfcass).*exp(-delta_t./Tau_FCaSS); 
     
    %     mp = -(M_i*Vm(:,i)); 
    %     phi_e(:,i) = M_ie\mp; 
    mv(:,i) = M_i*Vm(:,i); 
    for kz = 1:Lz 
        mv((kz-1)*Lx*Ly+1:(kz-1)*Lx*Ly+Lx+1,i) = 0; 
        mv((kz-1)*Lx*Ly+(Ly-1)*Lx:(kz-1)*Lx*Ly+Lx*Ly,i) = 0; 
        for ky = 2:Ly-2 
            mv((kz-1)*Lx*Ly+ky*Lx:(kz-1)*Lx*Ly+ky*Lx+1,i) = 0; 
        end 
    end 
    mv(1:Lx*Ly,i)=0; 
    mv(Lx*Ly*(Lz-1)+1:Lx*Ly*Lz,i) = 0; 
    if i <= t_stim 
        dVmdt(:,i) = mv(:,i)/(beta*Cm)+Istim/((beta*Cm)/1000)-Iion*2e-2/Cm; 
%                 dVmdt(:,i) = (Istim)/((beta*Cm)/1000)-Iion*2e-2/Cm; 
    else 
        dVmdt(:,i) = mv(:,i)/(beta*Cm)-Iion*2e-2/Cm; 
%                 dVmdt(:,i) = (0)/(beta*Cm)-Iion*2e-2/Cm; 
    end 
    %     dVmdt(1:Lx*Ly,i) = 0; 
    %     dVmdt(Lx*Ly*(Lz-1):Lx*Ly*Lz,i) = 0; 
    %     for kz = 2:Lz-1 
    %         dVmdt((kz-1)*Lx*Ly+1:(kz-1)*Lx*Ly+Lx+1,i) = 0; 
    %         dVmdt((kz-1)*Lx*Ly+(Ly-1)*Lx:(kz-1)*Lx*Ly+Lx*Ly,i) = 0; 
    %         for ky = 2:Ly-2 
    %             dVmdt((kz-1)*Lx*Ly+ky*Lx:(kz-1)*Lx*Ly+ky*Lx+1,i) = 0; 
    %         end 
    %     end 
    for kz = 1:Lz 
        dVmdt((kz-1)*Lx*Ly+1:(kz-1)*Lx*Ly+Lx+1,i) = 0; 
        dVmdt((kz-1)*Lx*Ly+(Ly-1)*Lx:(kz-1)*Lx*Ly+Lx*Ly,i) = 0; 
        for ky = 2:Ly-2 
            dVmdt((kz-1)*Lx*Ly+ky*Lx:(kz-1)*Lx*Ly+ky*Lx+1,i) = 0; 
        end 
    end 
    dVmdt(1:Lx*Ly,i)=0; 
    dVmdt(Lx*Ly*(Lz-1)+1:Lx*Ly*Lz,i) = 0; 
     
    Vm(:,i+1) = Vm(:,i)+dVmdt(:,i)*(delta_t/1000); 
    disp(i); 
end 

 

 

 


