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Synopsis:

This project concerns itself with the mod-
eling, control and workspace restriction
of a collaborative and redundant indus-
trial manipulator. The manipulator used
in this work is the KUKA LBR iiwa, for
which the designed solution is verified in
simulation as well as on the real manipu-
lator The kinematics and dynamics of the
KUKA LBR iiwa are modeled based on
the screw theory approach. The KUKA
LBR iiwa is controlled via an energy-
aware impedance control. Furthermore,
the project describes a method to which
restricts the Cartesian workspace with the
help of virtual walls and wrenches. In ad-
dition to these Cartesian boundaries, the
project describes the implementation of
the avoidance of joint boundaries with a
feature called joint limit avoidance. The
overall control strategy was for simulation
purposes implemented in MATLAB and in
the real world with the help of KUKAs
own Fast-Research-Interface. The energy-
aware impedance control was verified to
work as intended. Furthermore, it was
concluded that it is possible to restrict
the Cartesian and Joint workspace of the
KUKA LBR iiwa, with the help of poten-
tial fields, while it being in a compliant
state.





Abstract

Dette projekt handler om modellering, kontrol og arbejdsområde begrænsning af en
kollaborativ og redundanten industri robot. Robotten, som bliver brugt i dette projekt
er den så kaldte KUKA LBR iiwa, som bliver styret via en energibesparende impedans
kontroller. Kinematiken og dynamiken af KUKA LBR iiwaen er modelleret baseret
på skrue-teori. Desuden beskriver projektet en metode, som begrænser det kartesiske
arbejdsområde ved hjælp af virtuelle vægge og skuenøgler. Udover disse kartesiske grænser
beskriver projektet implementeringen af undgåelse af KUKA LBR iiwaens led grænser
med en funktion kaldet Joint Limit Avoidance. Den overordnede kontrolstrategi blev for
simuleringsformål implementeret i MATLAB og i den virkelige verden ved hjælp af KUKAs
eget Fast-Research-Interface. Den energibesparende impedans kontrol blev verificeret og
fungere som ønsket. Endvidere blev det konkluderet, at det er muligt at begrænse det
kaskesiske- og led-arbejdsområde i KUKA LBR iiwa ved hjælp af Potential Fields, mens
det er i en kompatible tilstand.
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Preface

This report was written in the spring of 2019, by Sebastian Schleisner Hjorth and
documents the Master Thesis of the Control and Automation study at Aalborg University.
It concerns the modeling of a robotic manipulator with help of screw theory, the
implementation and validation of an Energy- and Power-based Impedance Controller and
Cartesian workspace restriction on the KUKA LBR iiwa.
In order to understand the thesis a fundamental knowledge in Linear Algebra, Calculus,
kinematic and dynamic modeling of serial manipulators is needed. Furthermore, a basic
understanding of Lie groups in a robotics context is useful, although a short introduction
to the most important theorems is given in this work.

The KUKA LBR iiwa was modeled, as well as the overall control strategy was tested in
MATLAB®. The implementation of the control strategy on the real KUKA LBR iiwa was
realized via a KUKA FRI Client written C++. The 3D model of the KUKA LBR iiwa
which was used in some of the plots was taken from the Robotic System Toolbox from
MATLAB® and the model-specific data (e.g. Inertia Tensor, link mass, center of mass,
etc.) which was used to create an own model of the KUKA LBR iiwa was taken from an
URDF file provided by https://github.com/kuka-isir/iiwa_description. With parts
of section 2.1, 3.2 and Appendix C,?? being taken from previous work done by the student
in [1].
With the MATLAB code is available until 1st of July 2019 under the following link,
https://gitlab.com/Hjorth/lbr_iiwa_matlab_lib. All source references throughout
the report follow the IEEE referencing method, hence the references are stated by a number
placed inside of square brackets (e.g.[1]). Important notation and abbreviations used in
this work can be found after the preface.
A special thanks are given to the Professors Ole Madsen and Casper Schou, for giving me
access to the KUKA LBR iiwa and their support during the project.

Sebastian Schleisner Hjorth

5

https://github.com/kuka-isir/iiwa_description
https://gitlab.com/Hjorth/lbr_iiwa_matlab_lib




Nomenclature

List of Notation

ξ, ξ̃ ∈ R6 body Twist and spatial Twist represented as a column vector

ξ̂,
̂̃
ξ ∈ R6×6 body Twist and spatial Twist in matrix form

ω ∈ R3 Screw axis of the respective twist in form of a unit column vector

ω̂ ∈ R3×3 Screw axis of the respective twist in form of a skew-symmetric matrix

V, Ṽ ∈ R6 body and spatial Cartesian Velocity in represented as a column vector

V̂ ,
̂̃
V ∈ R6×6 body and spatial Cartesian Velocity in matrix-form

J Jacobian matrix

W ∈ R1×6 Wrench represented as a row vector

f , m ∈ R1×3 Cartesian force and momentum represented as a row vector

E, T ,U Total, kinetic and potential energy in kg·m2

s2

P Power in kg·m2

s3

qi, q̇i Joint state and velocity of the ith joint in rad, rad
s

τi Joint torque of the ith joint in Nm

pij ∈ R3 position vector between frame i and j

Ri
j ∈ R3×3 Rotation matrix between frame i and j

Hi
j ∈ R4×4 Homogeneous transformation matrix between frame i and j

AdHi
j

∈ R6×6 Adjoint transformation between frame i and j

M Mass matrix

mi Mass of the ith link in kg

I ∈ R3×3 Inertia Tensor

B Damping matrix in Joint space

β Damping scaling ratio

λ Energy scaling ratio

v Linear velocity in m
s

Q Configuration manifold

as() Gives the skew-symmetric part of a square matrix

tr() Tensor trace operator

In ∈ Rn×n Identity matrix

7



List of Abbreviations

HRI Human-Robot-Interaction

COM Center of Mass

DOF Degree of Freedom

LBR Leicht-Bau-Roboter

iiwa intelligent industrial work assistant

FK Forward Kinematic

FRI Fast Research Interface

KRC KUKA Robot Controller

KLI KUKA Line interface

KONI KUKA Option Network Interface
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Introduction 1
When the first industrial manipulators were introduced to the world in the early 1960s [2].
They were only capable of completing simple pick and place or welding tasks. Since then a
lot has changed, robotic solutions have revolutionized our way of living and are an essential
part of our daily life. Most of them being serial manipulators in an industrial environment
(e.g. production facilities) are also known under the phrase of industrial manipulators.

These industrial manipulators have come a long way since they were introduced to the
world and applied in an industrial setting. Nowadays they are capable of completing a
complex task with a velocity and an accuracy a human could never achieve. And the way
how and where these manipulators are applied is already changing again.
In recent years the development of Collaborative serial manipulators, like the KUKA LBR
iiwa (Figure 1.1), has been a hot topic in the industry. Previously industrial manipulators
were restricted to operate in a static and well-defined environment behind a fence.

Figure 1.1: KUKA LBR iiwa 1

These Collaborative robots or Co-bots are designed and controlled in such a way, that they
are capable of sharing their workspace with the an autonomous quantity like a human. This
change to the application environment brings new challenges and opportunities to the ways
how a manipulator interacts with its environment.
The main challenges being the occurrence of unplanned interaction in the form of a collision
or physical input by an autonomous quantity. In order to be able to cope with these kinds of
interaction, so-called reactive control schemes can be implemented. These control schemes
use the current state of the robot and the task description at each time step as input for
the computation of the joint forces applied in the next time step.[3]

1https://de.wikipedia.org/wiki/Datei:KUKA_LBR_iiwa.jpg
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1. Introduction

Which compared to traditional robot control schemes (e.g. position and velocity con-
trol) is capable of dealing with a deviation between the manipulators current position and
its planned trajectory, in case of an unplanned interaction introduced by an autonomous
quantity, takes place. However, due to this freedom in its movement, the manipulator can
collide with any objects in its reach. This is of course unwanted, as it could damage tools
or products.
This raises the question, how can the manipulator be hindered from colliding with an
object in its reach when being forced away from its pre-planned trajectory? One solution
would be to limit the Cartesian workspace of a collaborative manipulator in such a way,
that it can not collide with objects within its dexterous workspace.

The overall question the project tries to answer is:
How to restrict the Cartesian workspace of a redundant serial manipulator controlled by a
reactive control scheme?

1.1 Concept/Use Case

The idea behind restricting the Cartesian workspace of a manipulator serves the purpose
of being able to implement a manipulator in areas in which it can not utilize all of its
dexterous workspace. One should imagine a production facility, in which the production
line is already implemented and the company decides to support a worker in a specific task
with the implementation of a Co-Bot like the KUKA LBR iiwa.
However as the production line already exists, one would have to redesign parts of the
production line, in order to facilitate the manipulator. This would result in a substantial
increase in cost. A visual representation of this problem can be seen in Figure 1.2, where
for example there are machinery, floor, work-platform or simply the workspace of another
robot in the manipulator’s dexterous workspace.

restriced area

restriced area

Figure 1.2: Illustrates an abstract visualization of a scenario in which there are fixed
limitation/obstacle in the manipulator’s dexterous workspace. The green area represents
the part of the manipulator’s dexterous workspace, in which it is allowed to move freely.
With the red area representing the area of the robots dexterous workspace in which it is
not allowed to move in.
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1.1. Concept/Use Case Aalborg University

The previously mentioned increase in cost might not be sustainable for the company. One
might argue, that the above-stated problem might not occur, while the manipulator is
following a preplanned trajectory. As the trajectory can be planned in such a way that
the manipulator moves collision free within its workspace.
However, the application for the manipulator is to support the worker in its job, which
means the worker has to interact with the manipulator. This raises the question, how
should the Human-Robot-Interaction (HRI) be handled from a control point of view. The
most intuitive approach for handling these interactions between the worker and the manip-
ulator would be if the worker could freely interact with the manipulator without having to
follow a predefined procedure (e.g. pressing a button). Such an approach can be realized
by implementing a reactive control scheme for the control of the Co-bot.
However as the Worker interacts with the manipulator be it by pulling/pushing it away
from its preplanned trajectory it might collide with one of the above-stated obstacles or
reaches a joint limit, which would bring the robot to a standstill. In case one of the just
described scenarios occur, valuable time is lost as the manipulator has to be reinitialized,
the possible damage has to inspected and in the worst case components have to be re-
placed.
A more simple and cost-efficient solution for avoiding collisions with objects within the
manipulator’s dexterous workspace would be to restrict its the Cartesian workspace with
help virtual walls. A abstract visualization of this concepts can be seen in Figure 1.3.

restriced area

restriced area

virtual wall

Figure 1.3: Illustrates an abstract of a scenario in which there are fixed limitation/ob-
stacle in the manipulator’s dexterous workspace. Where a predefined virtual wall is placed
between the manipulator and the restricted area, with a Cartesian damper being placed
between these to entities.

In which a predefined virtual wall is placed between the manipulator and the restricted
area, between which a Cartesian damper is being placed. This damper forces manipulators
link away from the constraint and thereby hindering the link from reaching the restricted
area. When combining the concepts of Cartesian workspace restriction with the help of a
virtual wall, a reactive control scheme and joint limit avoidance for the individual joints, it
should be possible to avoid any of the above-stated scenarios while having an intuitive HRI.
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1. Introduction

1.2 Report Outline

The remain of this report is structured as follows:

• Chapter 2 elaborates on the main concepts needed for the mathematical modeling of
a serial manipulator with screw theory. It contains a small summary of the general
concepts within screw theory as well as the mathematical derivation of the kinematic
and dynamic model.

• Chapter 3 focuses on the mathematical description of the in section 1.1 introduced
concept, description of the chosen control scheme and on the concept of joint limit
avoidance. This covers the design of simple virtual walls, their repelling force, a
detailed description of the reactive control scheme used in this project and a detailed
inside into the control strategy used for joint limit avoidance.

• Chapter 4 the reader is presented with the tests, which were conducted for the
verification of the concept and its mathematical approach described in section 1.1
and chapter 3 respectively.

• Chapter 5 summaries the finding of the work and what conclusion can be drawn
from them. As well as gives a short summary of some of the topics, which could be
investigated in future projects.
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Mathematical modelling of
a Serial Manipulator 2

In this chapter, the reader is introduced to the main concepts for the mathematical
modeling of the kinematic and dynamic behavior of the KUKA LBR iiwa. The modeling
in this work is described with the help of screw theory, which as a concept was developed
in [4] and used in the context of robotic application in [5, 6, 7]. The chapter is structured
in the following way: Kinematics(2.1); Dynamics(2.2).

2.1 Kinematic model

This section discusses the theory behind the geometrical representation of the manipula-
tor’s motion without taking the applied forces into account.[8]
By first giving an overview of the basic concepts needed for describing the kinematic model
of a serial manipulator with screw theory in subsection 2.1.1. Followed by the description
of Forward Kinematic model in subsection 2.1.2 and Differential Kinematic model in sub-
section 2.1.3.

2.1.1 General Kinematic Concepts

It is well known in the fields of robotics, that in general any point pj in a frame Ψj can
be expressed relative to another frame Ψi with the help of a homogeneous transformation
Hi
j as shown in Equation 2.1.[

pi

1

]
=

[
Ri
j pij

0 1

]
︸ ︷︷ ︸

Hi
j

[
pj

1

]
(2.1)

The homogeneous transformation matrix Hi
j belongs to the Lie Group called Special

Euclidean Group SE (3) Equation 2.2

SE (3) =

{(
R p

0 1

)
: R ∈ SO(3), p ∈ R3×1

}
(2.2)

where pji is the position and Rj
i the rotation of Frame Ψi with respect to frame Ψj . It

is important to note that Rj
i is a member of the Special Orthogonal Group SO(3) (2.3),

which is also a Lie Group.[9]

SO(3) = {R ∈ R3×3 : R−1 = R>,det(R) = 1} (2.3)
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2. Mathematical modelling of a Serial Manipulator

The motion between these frames can be described with the Charles theorem, which states
the following: "Any rigid body motion can be accomplished by means of a rotation about a
unique geometrical line in space, followed by a translation along the same line." [10, 6, 5].
Where the mentioned line is the so-called screw axis ω and the resulting motion around
the screw axis is referred to as the screw motion.

An infinitesimal screw motion is called a twist ξ, which describes the instantaneous velocity
of this rigid body in terms of its linear and angular component.[6] In case the twist ξ
describes a purely rotational displacement about its screw axis ω, it has the vector format
and matrix-format as shown respectively in Equation 2.4 and Equation 2.5[5]. The vector
can also be referred to as twist coordinates.

ξ =

[
ν

ω

]
=

[
−ω × u
ω

]
(2.4)

ξ̂ =

[
ω̂ ν

0 0

]
=

[
ω̂ −ω × u
0 0

]
(2.5)

The mentioned linear and angular components of the instantaneous velocity ξ are
respectively represent as the vectors v ∈ R3 and ω ∈ R3. Where ω is a unit vector
and ν is defined as the cross product between the screw axis ω and a point u on ω with
respect to its reference frame, as seen in Figure 2.1.

{
Ψ
} ω

u

Figure 2.1: Shows an abstract visualization of the placement of a twist with in a
rotational joint, in reference to a fixed frame Ψ.

In order to describe a relative motion of a rigid body, the expression in Equation 2.6 can
be used. This expression describes the ridig bodies relative motion based on its initial and
the twists exponential. A visualization of the mapping can bee seen in Figure 2.2

H(q) = eξ̂qH(0) (2.6)

Where eξ̂q ∈ SO(3) is the exponential of the twist ξ, which for a purely rotational joint
has the structure seen in Equation 2.7 and is dependent on the angle of rotation q ∈ R.

eξ̂q =

[
eω̂q

(
I− eω̂q

)(
ω × ν

)
0 1

]
(2.7)

In which eω̂q, is the exponential map for a relative rotational motion from its initial to its
final orientation around the screw-axis ω. As mentioned before ω ∈ R3 is a unit vector
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2.1. Kinematic model Aalborg University

specifying the direction of rotation and q ∈ R being the angle of rotation around this
axis.[6]

eω̂q = I + qω̂ +
q2

2 !
ω̂2 +

q3

3 !
+ . . . (2.8)

The exponential map shown in Equation 2.8, is defined as an infinite series describing the
integral action of ω× q from time 0 to t. An alternative and computational more efficient
formulation for this exponential map is shown in Equation 2.9, which in [6] and [5] is
referred to as Rodrigues formula.

eω̂q = I + ω̂ sin q + ω̂2
(
1− cos q

)
(2.9)

In other words eω̂q, which describes the rotation around an axis ω by an angle q is equivalent
to a rotation matrix R(ω, q) = eω̂q for R ∈ SO(3).[6]

Ψ0

ω

u

Ψi(o)

Ψi(t)

Figure 2.2: Shows an abstract visualization of relative motion of an rigid body from it
initial configuration to its configuration at time, for a rotational joint, in reference to a
fixed frame Ψ0.

The above discussed concept concerned itself with the motion of rigid bodies in relation to
a reference frame. Another important general concept for the screw-theory based modeling
of an serial manipulator is: How to express twists in another frame?
This change of coordinates can be achieved by pre- and post-multiplying the twist ξ̂ by
the respective homogeneous transformation matrix as seen in Equation 2.10.

ξ̂j,ii = Hj
i ξ̂
i
iH

i
j (2.10)

However it can also be achieved by an adjoint transformation as shown in Equation 2.11.

ξji = Ad
Hj
i
ξii (2.11)

Where Ad
Hj
i
∈ R6×6 (Equation 2.12)is the so called adjoint transformation matrix for the

homogeneous transformation Hj
i between frame Ψj and Ψi.

Ad
Hj
i

=

[
Rj
i p̂jiR

j
i

0 Rj
i

]
(2.12)

In other words Ad
Hj
i
describes the relation between twists expressed in different frames.
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2. Mathematical modelling of a Serial Manipulator

2.1.2 Forward Kinematics

The Forward Kinematics, also known as the Direct Kinematics of a serial-
manipulator, describes the geometric configuration of the end-effector/tool center point
given the relative positions and orientations of each pair of adjoint links of the
manipulator.[9]
The above-explained general concept in subsection 2.1.1 for describing the orientation and
position of an arbitrary point pj in another frame Ψi can be used to express the motion
of a serial-manipulators link in relation to each other.
In case of a n-link open-chain manipulator as seen in Figure 2.3, where the pose of each
link is represented by a frame Ψi, with the base-frame Ψ0 being fixed.

Figure 2.3: Illustrates an abstract representation of a serial kinematic chain. [11]

In order to describe the motion of each frame in reference to the base-frame Ψ0 the chain
rule is applied as seen in Equation 2.13.

H0
n(q1, . . . , qn) = H0

1(q1)H1
2(q2) . . .Hn−1

n (qn) (2.13)

The translational and rotational motion of a rigid body described along the axis of a twist
ξ is given by Equation 2.14, where Hi−1

i (0) is the reference configuration of the ith joint
and eξ̂iq (2.7) represents the motion along ξ.

Hi−1
i (q) = eξ̂

i−1,i−1
i qiHi−1

i (0) (2.14)

By substituting each homogeneous transformation in Equation 2.13 with its equivalent
part from Equation 2.14 the motion of each link is described by the twists of each joint.

H0
n(q1, . . . , qn) = eξ̂

0,0
1 q1H0

1(0)︸ ︷︷ ︸
H0

1(q1)

eξ̂
1,1
2 q2H1

2(0)︸ ︷︷ ︸
H1

2(q2)

. . . eξ̂
n−1,n−1
n qnHn−1

n (0)︸ ︷︷ ︸
Hn−1
n (qn)

(2.15)

Now in order to describe each links motion in reference to the Ψ0-frame. The identity
property of H is used to express the relation between the sequential links in the Ψ0-frame
as seen in Equation 2.16.

18



2.1. Kinematic model Aalborg University

In Equation 2.16 the homogeneous transformations between each of its neighbouring link
are mapped to the Ψ0-frame by using the identity property of H, resulting in Equation 2.17
the so called Brockett’s product of exponential formula[6][9].

H0
n(q1, . . . , qn) = eξ̂

0,0
1 q1︸ ︷︷ ︸

eξ̂
0,1
2 q2

H0
1(0)eξ̂

1,1
2 q2

I︷ ︸︸ ︷
H1

0(0)︸ ︷︷ ︸
eξ̂

0,2
3 q3

H0
1(0) H1

2(0)eξ̂
2,2
3 q3H2

3(0)

I︷ ︸︸ ︷
H3

0(0)H0
3(0)

. . . ︸ ︷︷ ︸
ξ̂
0,n−1
n qn

eξ̂
n−1,n−1
n qnHn−1

n (0)

I︷ ︸︸ ︷
Hn

0 (0)H0
n(0) (2.16)

H0
n(q1, ..., qn) = eξ̂

0,0
1 q1eξ̂

0,1
2 q2eξ̂

0,2
3 q3 . . . eξ̂

0,n−1
n qnH0

n(0) (2.17)

Where eξ̂
0,n−1
n qn is the transformation matrix between in Ψn−1 and Ψn expressed in the

Ψ0. For the LBR iiwa the homogeneous transformation of the Ψtcp-frame expressed and
seen in the 0-frame H0

tcp, in its initial position can be seen in Equation 2.18.

H0
tcp =


1 0 0 0

0 1 0 0

0 0 1 1266

0 0 0 1

 (2.18)

A visualization of the placement of the frames for the KUKA LBR iiwa can be seen in
Figure 2.4. With the general Rotation-matrix R0

tcp (??) and position-vector p0
tcp (??) of

the LBR iiwa, as well as the spatial twist to calculate them can be found in ??.

Ψ0

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5 Ψ6

Ψ7/tcp

Figure 2.4: A visualiztions of the KUKA LBR iiwa with its body frames, where the blue
arrow represents the frames z-axis, green its x-axis and red its y-axis.

2.1.3 Differential Kinematics

The subsection 2.1.2 presented the reader on how to calculate the end-effector frame’s
position and orientation for a given joint configuration of a serial-manipulator. This section
discusses the relationship between the Cartesian velocities and joint velocities of a serial
manipulator via the so-called Jacobian.

19



2. Mathematical modelling of a Serial Manipulator

General

The Differential Kinematics of a manipulator can be derived with the help of one of the two
following approaches, the geometric Jacobian and the most commonly known analytic
Jacobian.
These two approaches are fundamentally different in their derivation. The geometric
Jacobian is based on the manipulator’s geometrical structure, which is represented with
twists from the previously mentioned screw theory. Whereas, the analytic Jacobian is
derived by taking the time-derivative of the joint coordinates q ∈ Rn, which are found by
differentiating the Forward Kinematics of the manipulator.[5]
In this work, the geometric approach is used as it is directly related to the approach used in
subsection 2.1.2. The geometric Jacobian can be split into two different kinds, the spatial
Jacobian J̃ and body Jacobian J. The body Jacobian describing the links velocity in
reference to its body frame and the spatial Jacobian describing the links spatial velocity
in reference to the base-frame.

Spatial Jacobian

In this section the relationship between a joint velocity q̇ and the end-effector’s spatial
velocity given by the twist ξ̃ is discussed.
The velocities q̇i in joint space are expressed as the end-effector instantaneous spatial
velocity Ṽn by mapping them with the spatial Jacobian J̃(q) ∈ R6×n as seen in
Equation 2.19. In other words we look at the end-effectors Cartesian velocity in respect
to the fixed inertial frame Ψ0 and the joint velocities q̇ ∈ Rn×1, with n being equal to the
number of joints.

Ṽn = J̃n(q)q̇ (2.19)

Where the ith column of J̃(q) Equation 2.20 is the ith joint spatial twist ξ̃i of the
manipulators current configuration.

J̃n(q) =
[
ξ̃1, ξ̃2, . . . , ξ̃n

]
Where ξ̃i = ξ0,i−1

i = AdH0
i−1
ξi−1,i−1
i (2.20)

One might see that the spatial twists described in Equation 2.20 are the same as used in
Brockett’s product of exponential in Equation 2.17, which means that is the ith column of
the spatial Jacobian represents the ith joint twist, mapped to the current configuration of
the serial-manipulator.[6]
Giving it the property of finding the initial joint twists by inspection only. A visual
representation of the initial joint twists can be seen in Figure 2.5 and as mentioned in
subsection 2.1.2 the spatial twists can be found in ??.
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Figure 2.5: Illustrates the placement of the spatial screw-axis ω̃i of the initial spatial
joint twists ξ̃i.[12]

2.1.4 Body Jacobian

The body Jacobian Jn (Equation 2.21) is described by the body twist ξ, which describe
the instantaneous Cartesian velocity of a point represented in the end-effector frame in its
current configuration.[6]

Vn = Jn(q)q̇ (2.21)

As the body Jacobian Jn as well as the spatial Jacobian J̃ describe the instantaneous
Cartesian velocity of the end-effector just from a different reference frame, it is possible
to derived body Jacobian from the spatial Jacobian. This means that the spatial twist
and body twist can be related to each other with an Adjoint transformation as seen in
Equation 2.22.

Jn(q) = AdHn
0 (q)J̃n(q) Where ξi = AdHi

0(0)ξ̃i (2.22)

This relation is important and will be used later in this work for the derivation of the
dynamic model described in section 2.2.

2.2 Dynamic model

This section concerns itself with the formulation of the dynamics of a serial-manipulator.
In a general sense, dynamics concerns itself with how the motion of rigid mechanisms is
generated/influenced by applying forces to the mechanism.[13]
The section will first give an overview of the basic concepts needed for describing the
dynamic model of a serial manipulator with screw theory in subsection 2.2.1. Followed
by the derivation of the general equitation of motion with the Newton-Euler approach in
subsection 2.2.2, which is based on concepts introduced in [5, 7].
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2.2.1 General Dynamic Concepts

Previously in subsection 2.1.1 the reader was introduced to the general concept of screw
theory for describing the kinematic model of an open-chain manipulator. In this section,
the reader will be introduced to the general concept for describing the dynamic model an
open-chain manipulator with screw theory.

In screw theory, the forces acting on a rigid body can be represented by a single force
along the screw-axis in combination with a momentum [6]. This force is called a wrench
W = [f,m] ,which is dual to the twists.[14]
The dual only states that the theorems applied to twist can also be applied to wrenches
[6]. This dual is described with the so-called Poinsot’s theorem, which shows that every
wrench is equivalent to a force f ∈ R1×3 and momentum m ∈ R1×3 applied along the same
screw axis as the twist.[6, 4]
Due to this theorem, it is possible to map a Wrench into joints torques, which can be
described with the help of the transposed Jacobian as seen in Equation 2.26.
The relation between wrenches and torques can be derived by looking at the work W
(Equation 2.23) generated due to the displacement of the end-effector through an applied
wrench over the time interval t ∈ [t1, t2].

W =

∫ t2

t1

WV dt (2.23)

Where V is the Cartesian velocity of the body and the work performed due to the wrench
is assumed to be frictionless. However the work W can also be expressed in joint space in
terms of the joint velocities q̇ and joint torques τ ∈ R1×n as seen in Equation 2.24.∫ t2

t1

τ q̇ dt = W =

∫ t2

t1

WV dt (2.24)

As the relationship between the joint-space and Cartesian-space holds for any time interval,
they must be equal can therefore (2.24) can be rewritten like in (2.25).[6]

τ q̇ = WV

⇓
τ q̇ = W

(
J(q)q̇

)
⇓(

τ q̇
)>

=
(
W
(
J(q)q̇

))>
⇓

q̇>τ> =
(
J(q)q̇

)>
W>

⇓
q̇>τ> = q̇>J(q)>W>

(2.25)

From Equation 2.25 one can derived Equation 2.26, as q̇ only specifies the magnitude
and direction and therefore has no influence on the location of the applied torque or
wrench.[6][5]

τ> = J(q)>W> (2.26)
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Note that wrenches can like the twists introduced in subsection 2.1.1, be expressed in refer-
ence to different frames. The ones being in reference to the fixed base-frame are denotated
as W̃ and the ones in reference to the respective body-frame as W . Where W̃ is known as
spatial wrench and W as body wrench.

Therefore the just described relation between the body wrench W and the torques τ also
holds for the relation between the spatial wrench W̃ and τ . Furthermore, W and W̃

are related to each other by an adjoint transformation as seen in Equation 2.27, which
describes a change of coordinates.

W> = Ad>HW̃
> (2.27)

This relation means that as W̃ and W describe the same force acting on the same rigid
body the Work W generated by the pair W̃ and Ṽ , is equal to the work generated by W
and V . As they only differ in their point of reference. In other words the τ> computed in
Equation 2.26 is equal to the one resulting from J̃(q)>W̃>.

2.2.2 General Equation of Motion

The previous section introduced the reader to general concepts within dynamic modeling,
in the following section these concepts will be used to describe the derivation of the general
equation of motion of the KUKA LBR iiwa.
The general equation of motion for a n-link serial manipulator can be represented in joint
space, as a non-linear second-order differential equation in the canonical form seen in
Equation 2.28.[14]

M(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = τ> (2.28)

With q,q̇ and q̈ ∈ Rn being the generalized joint position, velocity and acceleration respec-
tively, M(q) ∈ Rn×n is the mass matrix in from of a symmetric positive-definite matrix,
C̄(q, q̇)q̇ ∈ Rn the centrifugal and Coriolis torques, Ḡ(q) the gravitational torques and τ>

the equivalent torques in the joint space.[5, 15, 8]

The general equation of motion in Equation 2.28 is typically derived by either the energy-
based Lagrangian formalism or the force-balance-based Newton-Euler formalism.
As mentioned above the Euler-Lagrangian formulation derives the general equation of mo-
tion from the kinetic and potential energy of the manipulator, as seen in Equation 2.29.[5,
15, 8]

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= 0 Where L(q, q̇) = T (q, q̇)− U(q) (2.29)

With T (q, q̇) and U(q) being the total kinetic and potential energy of the manipulator and
q ∈ Rn the general coordinates in form of the manipulators joint variables. However, as
mentioned in [5] the derivation of Equation 2.28 quickly becomes computational demand-
ing as the complexity of manipulator increases. For this reason, it was decided to use the
Newton-Euler approach described in [5].
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Opposed to the Lagrangian formalism, the Newton-Euler approach is a recursive algo-
rithm. And is used for calculation of the inverse dynamics for a serial manipulator. This
algorithm is split up into the following two stages:

• Stage 1 Forward iteration: Computes the Cartesian velocity and acceleration of
each link, starting from the base-frame Ψ0 and iterating to the end-frame Ψtcp.

• Stage 2 Backwards iteration: Computes the Wrenches applied to each link,
starting from the end-frame Ψtcp and iterating to the base-frame Ψ0.

The remaining of this section will be split into the two separate parts for the above listed
Stages 1and 2.

Forward iteration

At first a body/link-specific reference frame Ψi (i = 1 . . . n) is attached at the CoM of
each link, where the base-frame and end-frame are denoted as Ψ0 and Ψn+1. In which the
Inertia of the ith link Mci is defined as shown in Equation 2.30, with mi being the mass
and Ii Inertia tensor of the link.

Mci =

[
miI3 0

0 Ii

]
(2.30)

In the next step, one has to express the twist of the ith joint in the body-specific reference
frame Ψi, which denoted as ξi. This can achieved by using the relation described in
Equation 2.22, where it is stated how ξi is directly related to the spatial expression of the
same joint ξ̃i. The body twist ξi is then used to calculate the homogeneous transformation
Hi
i−1(q) in Equation 2.31.

Hi
i−1(q) =

(
Hi−1
i (q)

)−1 =
(
Hi−1
i (0)eξ̂iqi

)−1 (2.31)

With the help this expression it is now possible to compute the instantaneous Cartesian
velocity Vi. As seen in Equation 2.32, Vi is defined as the sum of the instantaneous
Cartesian velocity of the previous link denoted as Vi−1 and instantaneous Cartesian velocity
introduced by the joint-rate q̇i around the twist ξi.

Vi = AdHi
i−1(q)Vi−1 + ξiq̇i (2.32)

In the last step of the forward iteration is the calculation of the instantaneous Cartesian
acceleration V̇i (Equation 2.33).[5] The exact derivation of can be found in Appendix A.
In Equation 2.33, V̇i is defined as the sum of the joint-acceleration q̈ around the twist ξi,
the instantaneous Cartesian acceleration of the previous link denoted as Vi−1 mapped into
the Ψi frame and

V̇i = ξiq̈i + AdHi
i−1(q)V̇i−1 + [Vi, ξiq̇i]

= ξiq̈i + AdHi
i−1(q)V̇i−1 + adViξiq̇i

(2.33)

With the operator [·,·] found in Equation 2.34 being the so called Lie Bracket operator,
which can be seen as a generalization of the cross-product on R3 to a twists in R6.

[Vi,Vj ] = ViVj − VjVi = adViVj Where adVi =

[
ω̂i ν̂i
0 ω̂i

]
(2.34)

Where adVi describes the twist Vi in form of 6×6 matrix. A derivation of this generalization
can be found in [6] and [5].
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Backwards iteration

After the twists V and accelerations V̇ for each link are computed, the algorithm calculate
recursively the wrenches applied at each link and the resulting joint torques by iterating
backward from the end-effector to the base.
The first step of each iteration is to calculate the spatial momentum Xi of the link, is
defined as seen in Equation 2.35.

Xi = MciVi (2.35)

Followed by the computation of the wrench acting on the ith-link given the twists Vi and
accelerations V̇i in Equation 2.36, which describes the dynamic equations for a single rigid
body.

W>i = Mci V̇i − ad>Vi (Xi)
= Mci V̇i − ad>Vi (MciVi)

(2.36)

The next step computes the total wrench Wi acting on the ith link. To achieve this, one
has to include the wrench, which is applied by the previous link i + 1 on the ith-link
(Equation 2.37).

Mci V̇i − ad>Vi (MciVi) = W>i −Ad>
Hi+1
i
W>i+1 (2.37)

This equation then solve for Wrench Wi as seen in Equation 2.38, in order to describe the
total wrench acting on the ith-link. Which after the reformulation is defined by the sum
of the wrench being applied to the link through the previous joint i + 1 and the wrench
resulting from the twist Vi and acceleration V̇i, those wrenches being expressed in Ψi.

W>i = Mci V̇i − ad>Vi (MciVi) + Ad>
Hi+1
i
W>i+1 (2.38)

The result of Equation 2.38 is then multiplied by the body twist of the respective link ξi,
as in Equation 2.39, resulting the joint torques acting on the ith-joint.

τi = ξiW
>
i (2.39)

A visualization of the velocities, acceleration and Wrenches applied to a link by it’s
neighbouring links is given in Figure 2.6.

Ψi+1

Ψi−1

Ψi

−W i
i+1

W i−1
i

Vi

V̇i

ith Joint

Figure 2.6: Shows an abstract visualization of the working wrenches and resulting twists
on the links.

From this it is possible to derive the canonical form as described in Equation 2.28, which
the interested reader can find in Appendix B

This concludes the derivation of the Mathematical modeling of an open-chain manipulator
and we can focus on how to control such a system.
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As mentioned in chapter 1, the aim of this project was to investigate the possible use of
a reactive control scheme for the KUKA LBR iiwa in combination with the Cartesian
workspace restriction in form of virtual walls.
In the previous chapters, the reader got introduced to the general concept of virtual walls
(subsection 3.1.1) and the approaches used to mathematically model the KUKA LBR iiwa
(chapter 2).

The reader will furthermore get an detailed insight into the mathematical description of
the previously introduced concept (subsection 3.1.1) in section 3.1, as well as the chosen
control strategy in section 3.2, the concept of joint limit avoidance in section 3.5 and the
computation of the final control input in section 3.6.

3.1 Cartesian Constraint Control

As mentioned previously this section will discuss the description of the previously
introduced concept of Cartesian workspace restriction with the help of virtual walls. This
section will provide the reader with a more detailed overview of the in section 1.1 described
concept. Followed by the mathematical description of the virtual walls (subsection 3.1.2),
the placement of the Cartesian damper (subsection 3.1.3) and the definition of the repelling
force generated to keep the manipulator its boundaries in subsection 3.1.4.

3.1.1 Overview

In this part of the section, the reader is introduced to the general mathematical
interpretation of the above-described concept. In pursuance of keeping the manipulator
within the set boundaries, it is of great importance to know:

1. How are the Constraints/Virtual Walls defined?

• In general virtual walls can be described by any smooth manifold, however,
in this work, it was decided to model the virtual walls as 2D-planes. The
mathematical description can be found in subsection 3.1.2.

2. What distance do the restricted links of the manipulator have to the Constraints at
time t?

• This distance can be found by projecting the point position of the manipulator’s
links onto the constraint.

3. How should the manipulator approach the constraints?

• The repelling force from the constraints should be introduced gradually to the
affected links, in order to minimize abrupt behavior.
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From these questions, it is possible to define a more precise interpretation of the in ??
previously defined concept. As mentioned above the virtual walls are defined as 2D-planes
within 3D-workspace of the manipulator. With the knowledge of the position of this plane
and the position of each link relative to the manipulator’s world frame; it is possible to
find position and distance between these two entities. From there it is possible to define
a function, which gradually increases the gain of the repelling force of the constraint.
As mentioned previously this is done in pursuance of minimizing the non-linear behavior
of the repelled link, when encountering a constraint. However it the movements of the
manipulator should not be affected by the constraint as long as it is outside a certain
perimeter. A visual representation of this interpretation can be seen in Figure 3.1.

virtual wall

x1

x2

Figure 3.1: Visualizes an abstract visualization of the Concept with its main variables
and features. Where xj are the activation distances of the respective constraints the lines
attached to the second are the projection of link onto the constraints.

Where the crosshatched areas are representing virtual constraints, the blue dashed lines
and crosses visualize projection-line and the projected points of the manipulators link onto
the constraints. With the red dotted line being the distance to the constraint at which the
repelling force of the constraint (represented as damper) is activated/deactivated. In the
remaining of this section, the mathematical description of the above-described concept is
being given.

3.1.2 Constraints/Virtual Walls

The following section gives a generalized mathematical description of the creation of
Cartesian constraints in the form of virtual walls. In general virtual walls can be described
by any smooth manifold C ∈ R3. As mentioned earlier, in this work the virtual walls will
be described in the form of 2D-planes in the Cartesian workspace. In order to create such
a plane one has to chose three independent points P1, P2, P3 ∈ R3, which span a vector
space Cj ∈ R3. From these 3 independent points one derives the normal vector ~n as seen
in Equation 3.1, which then in combination of a chosen origin Po is used to described any
point on this plan (Equation 3.2). A sensible choice for the origin would be any of these
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three points P1, P2, P3 as they are known to be ∈ Cj .

~nj =
−−−→
P1P2 ×

−−−→
P1P3 =

njxnjy
njz

 (3.1)

This vector space can be described with Equation 3.2

njxx+ njyy + njzz + ~nj · Po = 0 (3.2)

With being able to describe with Equation 3.2 any point on the plane/constraint. The
next step is to find the point of representing links point position on this plane, which is
done by projecting this point position onto the plane.

3.1.3 Projection

The projection of any arbitrary point pi in space, onto the plane Cj can be described by
Equation 3.3. Which describes the projection pi,Cj on the plane by the sum of the point
pi and the product of the normalized normal vector of the plane ~nj and the Scalar t.

pi,Cj = pi + ~njt =

pixpiy
piz

+

njxnjy
njz

 t (3.3)

Where t can be seen as a form of distance measure between the point pi and the plane Cj .
Which can be found as seen in Equation 3.4, by substituting x, y, z in Equation 3.2 by the
xyz-coordinates of pi,Cj as defined in Equation 3.3.

0 =njx
(
pix + njxt

)
+ njy

(
piy + njy t

)
+ njz

(
piz + njz t

)
+ ~nj · Po

0 =njxpix + njxnjxt+ njypiy + njynjy t+ njzpiz + njznjz t+ ~nj · Po
0 =t

(
njxnjx + njynjy + njznjz

)
+ njxpix + njypiy + njzpiz + ~nj · Po

t =−
njxpix + njypiy + njzpiz + ~nj · Po

n2
jx

+ n2
jy

+ n2
jz

(3.4)

The resulting value of t is then simply inserted into Equation 3.3, which results in the
projected point pi,Cj of point pi on the plane Cj , a visualization of this can be seen in
Figure 3.2.

ñj

pi

pi,Cj

Figure 3.2: Visualizes an arbitrary constraint Cj in form of a plane, with its normal
vector ~nj and the projection pi,Cj onto the plane of position of an arbitrary point pi.
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In order to put the above described mathematical derivation into context to an
manipulator, the following changes in notation are necessary. Therefore for the remainder
of this work, pi will be referred to as p0

i , which describes the position of the ith link in
R3 in reference to the manipulators base-frame. In addition pi,Cj will be referred to p0

i,Cj

and describes the projection of the ith link onto the jth constraint C in reference to the
manipulators base-frame.

3.1.4 Approach function

In this work, the enforcement of the above-defined constraints is done by the help of a
modified version of an artificial repulsive potential field. Firstly introduced in [16] by
O.Khatib for real-time obstacle avoidance of industrial manipulators. The general concept
behind the artificial potential field approach can be summarized by the following statement
made by Khatib in [16]: "The manipulator moves in a field of forces. The position to be
reached is an attractive pole for the end-effector, and obstacles are repulsive surfaces for
the manipulator parts.". It has the beneficial properties of being real-time applicable
as well as describing the approach towards a constraint by a non-negative and smooth
function. These are important properties as it makes it possible to gradually decrease
the manipulator’s motion and thereby being able to meet the manipulator’s stability
conditions.[16]
As the work does not focuses on the path planning itself, but rather on the limitation of the
manipulator’s Cartesian workspace, while being in a compliant state; the focus within the
topic of artificial potential field approach will be limited to repulsive potential fields for the
remaining of the work. The repulsive potential field is defined by the potential function as
described by Equation 3.5, which in this application serves as a transition function between
the free and restricted motion. This function is defined as a non-negative smooth surface
for any given joint configuration q. The resulting potential UCj ,i(q) (Equation 3.5) increase
towards infinity as the ith constraint link of the manipulator approach the constraint Cj .

UCj ,i(q) =


κj
γ

(
1

di,Cj (q) −
1
xj

)γ
if di,Cj (q)) ≤ xj

0 if otherwise
(3.5)

Where κj > 0 is a scaling factor for the potential generated by γ > 0, di,Cj (q) is the
shortest euclidean distance between the points p0

i and p0
i,Cj
∈ Cj and where xj is the

distance at which the constraint activates. The repelling force introduced to keep the link
way from the restricted area can be defined as a Wrench W i,i

Cj
acting on the respective

link can be derived as seen in Equation 3.6. Where its derivation is based on the concepts
described in [17].

W i,i
Cj

>
=

 f i,iCj>
mi,i
Cj

>

 (3.6)

where f i,iCj ∈ R3 (3.8)and mi,i
Cj
∈ R3 (3.9) represent the force and momentum applied by

the constraint Cj onto the ith body [13]. The potential UCj ,i is then used to calculate the
gain Qti which represents the co-stiffness for a translational repelling force and is used for
the computation of the repelling force W i,i

Cj
described in Equation 3.8 and Equation 3.9.

Qti(q) = I3UCj ,i(q) (3.7)
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As it is not necessary to generate a repelling force for the rotational part, Qri and Qci

are set equal to 0. This results in that W i,i
Cj

solely represents a repelling force due to a
translational displacement.

f̂ i,iCj = −as
(
Qti(q)R

i
Cj p̂

Cj
i R

Cj
i

)
−Ri

Cjas
(
Qti(q)p̂

Cj
i

)
R
Cj
i (3.8)

m̂i,i
Cj

= −as
(
Qti(q)R

i
Cj p̂

Cj
i p̂

Cj
i R

Cj
i

)
(3.9)

In order to express the wrench W i,i
Cj

in the inertial reference 0-frame with the coordinate
transformation Ad>

Hi
0
(3.11), seen in Equation 3.10

W 0,tcp
Cj

>
= Ad>

Htcp
0
W tcp,tcp
Cj

>
(3.10)

Ad>Hi
0

=

[
R0
i 0

p̂0
iR

0
i R0

i

]
(3.11)

Now where the wrench is expressed in the inertial reference frame, the importance behind
this change of reference will be seen later in subsection 3.3.1.

This concludes the mathematical description of the constraints, in the remaining of this
chapter the reader will be introduced to the implemented reactive control scheme.

3.2 Reactive control

As previously mentioned a traditional robot control schemes like position and velocity
controllers are divided into two subsequent stages: motion planning and motion execu-
tion. Where during the motion planning, the desired position and orientation for the
end-effector frame is described by a function of time and reference coordinates, which then
is transformed into joint angles. These "pre-calculated" joint angles/velocities form a joint
trajectory, which is first executed when the planning is finished.[15]
However reactive control schemes merge the planning and execution phase [18]. Reactive
control schemes use the current state of the robot and the task description at each time
step as input for the computation of the joint forces applied in the next time step. This
control scheme provides greater flexibility for the robot during the execution of the task
compared to traditional control schemes and will, therefore, be investigated closer. One of
these reactive control schemes is the so-called impedance controller.[3]

In other words, the benefit of an Impedance controller over a position/velocity controller
is that a dynamic relationship between the different state variables is made by controlling
the impedance of the manipulator, instead of controlling just a single state variable.[3]
In general, one can describe an impedance control controlled manipulator by a mass-spring-
damper system with adjustable parameters [14]. The interaction with such a system can
be described as an energy exchange between the manipulator and its environment [13].
This energy exchange is described as the mapping from the flow (i.e motion) to effort (i.e
force).[13, 19]
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In other words, the manipulator’s controller reacts to the deviation between the end-
effectors motion and desired motion by generating forces countering the deviation of
motion.[19] A visualization of general setup of the implemented control strategy can be
seen in Figure 3.3.

Figure 3.3: Visualizes virtual springs and dampers of the control strategy. Where K
represents the Cartesian spring between the tool center point of the robot and the desired
transformation. The damping is represented in the Cartesian damping B and the damping
for each individual joint b1, . . . , b5.[20]

In this work, an Energy/Power-aware Impedance controller which was first introduced in
[9] is used. This control strategy includes methods like Energy shaping and Damping
injection. These methods minimize/counter-act autonomously the non-linear behavior of
a normal Impedance controller, by observing the energy introduced to the manipulator
and power the manipulator is able to exchange with its environment.
The remainder of this section will elaborate on the Energy/Power-aware Impedance
controller mentioned above.

3.3 Motion Springs

This section describes derivation of τmotion, which as mentioned above and visualized in
Figure 3.3 is generated through a spring. The section will elaborate on the modeling of the
mentioned spring in subsection 3.3.1 and the concept of energy scaling in subsection 3.3.2.

3.3.1 Mathematical description of a Spring

This section concerns itself with the mathematical description of the motion generating
spring in an impedance controller. The 6 dimensional spring illustrated in Figure 3.3, which
generates the motion of the end-effector from its current transformation H0

tcp towards it
goal transformation H0

d is modeled as the Wrench W tcp,tcp
K as seen in Equation 3.12.[13]
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The reason behind modeling the spring as a wrench can be referred back to the discovery
of Poinsot, which states that any forces acting on a rigid body, can be expressed as a single
force and momentum acting along a line.[4]

W tcp,tcp
K

>
=

[
f tcp,tcpK

>

mtcp,tcp
K

>

]
=

[
Kt Kc

K>c Kr

]
︸ ︷︷ ︸

K

∆χ; Kr,t,c ∈ R3x3 (3.12)

Where ∆χ> =
[
∆θtcp,tcpK

>
∆qtcp,tcpK

>
]

expresses an infinitesimal twist displacement,

which is in relation to an relative configuration Hi
j numerically expressed as ∆ξ = Ḣtcp

d Hd
tcp

[13]. The elements Kt,Kr represent the stiffness for translation, rotation of the spring
respectively. As proven in [21], Kc is the maximal decoupling between the translational
and rotational terms, in other words it defines how much the translational and rotational
springs influence each other. It to note that entries of K can be freely chosen.

In pursuance of describing W tcp,tcp
K purely in terms of energy, which is essential for

being able to use the concept of energy scaling which will be introduced in later in
subsection 3.3.2, the force f tcp,tcpK (3.14) and momentum mtcp,tcp

K (3.13) can be formulated.
A more detailed derivation of f tcp,tcpK and mtcp,tcp

K can be found in [13].

m̂tcp,tcp
K = −2as

(
GrR

d
tcp

)
− as

(
GtR

tcp
d p̂dtcpp̂

d
tcpR

d
tcp

)
− 2as

(
Gcp̂

d
tcpR

d
tcp

)
(3.13)

f̂ tcp,tcpK = −Rtcp
d as

(
Gtp̂

d
tcp

)
Rd
tcp − as

(
GtR

tcp
d p̂dtcpR

d
tcp

)
− 2as

(
GcR

d
tcp

)
(3.14)

Where the Gr,t,c are the co-stiffnesses for translation, rotation and the coupling springs and
as() the operator returning the anti-symmetric part of a square matrix. The co-stiffnesses
are introduced for the convention between ∆χ and the Rotation matrices R.

Gr,t,c =
1

2
tr
(
Kr,t,c

)
I−Kr,t,c (3.15)

In order to express the elastic wrench W tcp,tcp
K in the inertial reference 0-frame with the

coordinate transformation Ad>
Htcp

0
(3.17), seen in Equation 3.16

W 0,tcp
K

>
= Ad>

Htcp
0
W tcp,tcp
K

>
(3.16)

Ad>
Htcp

0
=

[
R0
tcp 0

p̂0
tcpR

0
tcp R0

tcp

]
(3.17)

Now where the elastic wrench is expressed in the inertial reference frame (3.16) and due
to the dual nature of force and motion mentioned above in subsection 2.2.1. [4, 6], the
driving joint torques τmotion can be computed by Equation 3.18.
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Where the joint torques τmotion result from the combination of the elastic wrench W 0,tcp
K

>

and the wrench generated by the constraint W 0,i
Cj

(3.6). This is only possible because they
are described both described in the same refernce frame.

τ>motion = J̃>(q)
(
W 0,tcp
K

> −
n∑
i=1

( z∑
j=1

W 0,i
Cj

>))
(3.18)

Where n is equal to the number of joints and z equal to the number of constraints.

3.3.2 Energy shaping

Energy shaping is a form of passivity-based control: The controller is a passive Port-
Hamiltonian System, so it can inject only a finite amount of energy [22]. By shaping the
energy of the system in order to assign a strict minimum in the desired configuration.[23]

The energy based safety metric demands a limit on the total energy of the system (3.19)
and this can be achieved by regulating the amount of potential energy in the spatial springs
of the control system [24].

Etotal = Ttotal + Utotal (3.19)

The kinetic energy in the system is described in Equation 3.20 and total potential energy
stored in the springs are defined by Equation 3.21.

Ttotal(q, q̇) =
1

2
q̇>M(q)q̇ (3.20)

Utotal(R
d
tcp, p

d
tcp) = Ur(R

d
tcp) + Ut(R

d
tcp, p

d
tcp) + Uc(R

d
tcp, p

d
tcp) (3.21)

Where Ur, Ut and Uc (see Equation 3.22) are the potential energy stored in the rotational,
transnational and Coupling spring respectively.

Ur(R
d
tcp) = − tr

(
GrR

d
tcp

)
Ut(R

d
tcp, p

d
tcp) = −1

4
tr
(
p̂dtcpGtp̂

d
tcp

)
− 1

4
tr
(
p̂dtcpR

d
tcpGrR

tcp
d p̂dtcp)

Uc(R
d
tcp, p

d
tcp) = tr(GcR

tcp
d p̂dtcp)

(3.22)

In which the tr() operator is used to sum the potential energy along each axis together.
Based on the total energy stored of the system with the initial stiffness’s Etotal and a
chosen maximum energy Emax which the system is allowed to store. A scaling parameter
is computed λ as in Equation 3.23.

λ =

{
1 if Etotal 6 Emax
Emax−Ttotal

Ucur
otherwise

(3.23)

Where the second line in Equation 3.23 can be seen as a linear factor between the maximal
allowed potential energy stored in the springs and the current potential energy stored in
the springs (3.24).

Emax − Ttotal

Ucur
=
Umax

Ucur
(3.24)
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As the potential energy stored in the spatial springs (3.22) are proportional to the
Co-stiffness Gr,t,c [25], it is possible by proportionally scaling Gr,t,c by λ as seen in
Equation 3.25) to scale the potential energy in the system.

Gr,t,c← λGr,t,c (3.25)

By limiting the potential energy stored in the spatial springs, the energy injected by
the controller is limited and thereby guaranteeing that only a finite amount of energy is
introduced to the system.

3.4 Design of Damping

Generally it is not a good choice to choose B ∈ Rn×n as a constant and diagonal matrix, as
dynamics of the system is state depended. This is why it was chosen to make the damping
B(q) ∈ Rn×n dependent on the change of the state of the Manipulator.
The resulting damping torques are for any of the following approaches calculated by
Equation 3.26.

τ>Damping = B(q)q̇ (3.26)

3.4.1 Joint space damping

As mentioned in the beginning of this chapter, choosing the values of B to be a constant
is in general not the ideal choice. For this reason, B is made depended on the state of the
system, the most obvious way to do this is by multiplying it by the diagonal elements of
the M(q), Mdiag(q) as seen in Equation 3.27.

B(q) = Mdiag(q)B (3.27)

Where

Mdiag(q) =


M1,1(q) 0 . . . 0

0 M2,2(q)
. . .

...
...

. . . . . . 0

0 . . . 0 Mn,n(q)

 (3.28)

This has the advantage, that B(q) is not only depended on the velocity of the individual
joints but also mass-inertia of each link. In this section the derived damping matrix B(q)

will be from now referred to as Binit(q).

3.4.2 Damping injection

In the previous section it was discussed how to limit the energy introduced to the robot
by the controller, but not the energy which the robot can exchange with its environment.
In order to limit this energy exchange the so called damping injection method is used.
The power in (3.29) consist out of an gravitational part and motion part, which are defined
as seen in Equation 3.30 and Equation 3.31.

Pctrl = Pmotion + PGravity (3.29)
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Where gravitational power represents the power the controller transferred to the robot for
the compensation of the gravitational forces.

PGravity = Ḡ(q) · q̇ (3.30)

The energy the robot would exchange with an obstacle at the occurrence of an uncontrolled
contact/collision is defined in Equation 3.31.

Pmotion =
(
J̃(q)>W 0,tcp

K

> −B(q)initq̇
)>
q̇ (3.31)

In order to limit this exchanged energy the intial damping term of the controller (3.27) is
scaled up by a scaling parameter β (3.33) as seen in Equation 3.32. This the scaling takes
place whenever Pmotion exceeds the user defined maximal power threshold Pmax. As only
the power, which is exchange in the direction of the desired configuration H0

d is of interest,
the following statment must be fulfilled Pmotion > 0 inorder increase the damping term.
This ensures that only the motions towoards the desired configuration are punished if it
exceeds the power based satfy metric. The reason for only increasing the damping in this
direction is twofold: Firstly the spring which pulls end-effector towards the goal already
has an damping effect for motions away from the desired configuration. Secondly in case
of an interaction, where the manipulator is forced away, for example when pushed away
from an hazardous interaction, its movement should not be punished.

B(q) = βBinit(q) (3.32)

Where

β =

1 if Pmotion 6 Pmax(
J̃(q)>W 0,tcp

K

>)>
q̇−Pmax

q̇>Binit(q)q̇
otherwise

(3.33)

With the new calculated damping term described in Equation 3.32 the following equation
for the damping torques τDamping (3.34) can be derived.

τ>Damping = βBinit(q)q̇ (3.34)

This concludes the mathematical description of the reactive control scheme used in
this project, in the following section will the reader be introduced to the mathematical
description of concept of joint limit avoidance.

3.5 Joint limit avoidance

As the controller in its compliant state does not follow any pre-planned trajectory, the risk
for the manipulator reaching a joint limit increases drastically. This has the consequence
that the KUKA LBR iiwa will go into a backlog, in which the manipulator stops is
movement and must be reinitialized.

For this reason, it was decided to implement in addition to the Cartesian constraint, so-
called Joint constraint which serves the purpose of hindering the manipulator to reach its
joint limit. In order to keep the manipulators joint within its set constraint, the method
of joint limit avoidance which was firstly introduced in [16] is implemented.
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The concept of joint limit avoidance is similar to the way how the manipulator’s links
are kept within its respective Cartesian constraints (section 3.1), by generating a torque
τ>q ∈ Rn that forces the joint to stay within the defined constraint. For the remainder
of this section, the mathematical description of this control scheme will be described for
a single joint. The function, which generates a torque into the opposite direction of the
active constraints depends on the difference between the ith joints current joint position qi
and its lower/upper joint limits q

i,limit/q̄i,limit as seen inEquation 3.35.

τq
i
(q) =


Ω
q2
i

(
1
q
i

− 1
q
i,J

)
if q

i
≤ q

i,J

0 otherwise

τq̄i(q) =

−
Ω
q̄2i

(
1
q̄i
− 1

q̄i,J

)
if q̄i ≤ q̄i,J

0 otherwise

(3.35)

As seen in Equation 3.35, the repelling torques τq
i
and τq̄i are not only depended on the

distance between qi and its minimal/maximal bounds, but also q
i,J

/q̄i,J a distance at which
the constraints turns active and a scaling factor Ω > 0. Where q

i
and q̄i are calculated as

seen in Equation 3.36.

q
i

= qi − qi,limit

q̄i = q̄i,limit − qi
(3.36)

Equation 3.35 can be summarized into Equation 3.37.

τqi(q) =


Ω
q2
i

(
1
q
i

− 1
q
i,J

)
if q

i
≤ q

i,J

− Ω
q̄2i

(
1
q̄i
− 1

q̄i,J

)
if q̄i ≤ q̄i,J

0 otherwise

(3.37)

A conceptual visualization of this feature is illustrated in Figure 3.4.

Ω

qi,J

qi

qi

qi,limit

q
i,limit

q
i

Figure 3.4: Visualizes the joint limit avoidance concept in an active state at the upper
bound, based on the description in this section. Where the area colored in red is the area
in which the joint of the manipulator can physically not reach, the dotted black line marks
the midpoint of the joint and the dashed line in orange is the distance to the upper limit
at which the constraint is active.

This concludes the mathematical description of the implemented joint limit avoidance for
the individual joints.
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3.6 Control Torques

This section briefly summarizes the main highlights of this chapter and describes the
resulting torques τ , which are used to control the manipulator.

In section 3.1 the reader was introduced to the mathematical description of simple
Cartesian Constraints in form of 2D plane in R3 as well as to the description the derivation
of wrench W 0,i

Cj
which repelling the affected link from the violated constraint.

The reader was introduced in section 3.2 to the concept of reactive control schemes and
their advantages over classic control schemes. In this section also a energy-aware impedance
control strategy was described from which the torques τmotion and τDamping were derived.
And lastly, an inside into the concept and mathematical description of a joint limit
avoidance strategy and the generated torque τ>q was given in section 3.5.
From the above-mentioned torques, one can formulate the torques τ , which are used to
control the manipulator as shown in Equation 3.38.

τ> = τ>motion − τ>Damping︸ ︷︷ ︸
τ>ctrl

+τ>q + τ>Coriolis︸ ︷︷ ︸
C̄(q,q̇)q̇

+ τ>Gravity︸ ︷︷ ︸
Ḡ(q)

(3.38)

With τ>Coriolis and τ>Gravity being the torques representing the compensation Coriolis and
gravitational force acting on the manipulator, which is extracted from the mathematical
model described in section 2.2 and their derivation can be found in Appendix B.

This concludes the mathematical description of the implemented control strategy used in
this work, in the following chapter the conducted experiments and their results will be
described.
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In chapter 1 the reader was introduced to one of the main challenges collaborative
robots face when interacting with an autonomous quantity, namely the collision with
objection within its dexterous workspace. Furthermore, the reader was introduced in
section 1.1 to a scenario and a proposed concept which should mitigate this problem. This
concept aims to keep the manipulator within its free Cartesian workspace by setting up
Cartesian constraints and improving its maneuverability within this constraint workspace
by implementing a feature called joint limit avoidance.
This chapter describes the validation of the implemented control strategies capabilities for
fulfilling the above-mentioned concept. For this a set of requirements were defined, which
are listed in Table 4.1.

Requirements:

1 The KUKA LBR iiwa should stay within the set safety metrics when interacted with:
1.1 With the end-effecotor being displaced by at least 0.2m in terms of position
1.2 With the end-effecotor being displaced by at least 40°

2 The KUKA LBR iiwa should stay within the set Cartesian constraints:
2.1 When encountering two differnt constraints at different time instances.
2.2 When encountering two differnt constraints at the same time instances.
2.3 variable force

3 The KUKA LBR iiwa should not exceed the jointspecific limits:
3.1 For both the upper and lower limit of a joint.
3.2 When approaching multiple joint limits at the once

Table 4.1: Lists the requirements set for the test.

Based on these requirements a set of tests were conducted, which tests the compliance of
the chosen reactive control scheme, the capability to stay within the restricted Cartesian
Workspace and ability to avoid joint limits the manipulator might violate during the
interaction.
The remainder of this chapter will describe the experiments conducted in this work and
will be structured in the following way.

• Test 1: Compliance under interaction (section 4.1)
• Test 2: Cartesian Constraints (section 4.2)
• Test 3: Joint constraint (section 4.3)

The above stated tests will be conducted with the in Table 4.2 defined control parameter
and the general hardware setup together with the description of the implementation can
be found in Appendix C.
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Control variables Ktx,y,z Krx,y,z Kcx,y,z Emax in J Pmax in W b
2000 100 0 2 0.5 5

Table 4.2: Control variables used during the different experiments.

4.1 Test 1: Compliance under interaction

This section describes the test, which was conducted to verify and evaluate the LBR iiwas
behaviour when encountering an unplanned interaction (e.g. collision, user input). The
main focus of this test is the reactive control scheme, which was implemented in this work
and described in section 3.2. The test was conducted by having the LBR iiwas end-effector
holding a Cartesian configuration H0

d, from which it is forced away by an upwards motion
at a random point in time. As soon as the end-effector has reached a displacement of at
least 0.2m along the z-axis the end-effector is released. At which point the end-effector
should move back to H0

d. A visual representation of the test can be seen in Figure 4.1.

Figure 4.1: Visualizes the concept of "Compliance under interaction" test.

4.1.1 Position Displacement

This section examines the displacement between the reference position p0
d and current

position p0
tcp of the end-effector. When inspecting Figure 4.2 it can be seen that the

interaction begins at time t = 1.3s and reaches its maximum displacement of 0.33m along
the z-axis and 0.24m along the y-axis at t = 2.3s and t = 2.5s respectively. As the end-
effector is release at t = 2.3s and no external force is longer applied, it starts to move back
towards reference configuration H0

d.
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Figure 4.2: Shows the displacement between p0
d and p0

tcp along each axis.

4.1.2 Angular Displacement

In this section the angular displacement ∆θ between the reference frame and current end-
effector frame is examined. As seen in Figure 4.3 the angular displacement shows a similar
behavior as already observed in subsection 4.1.1. The angular displacement ∆θ increases as
the end-effector is forced away from its reference frame and reaches its maximum deviation
of 59° at time t = 2.5s. A visualization of this configuration can be seen in Figure 4.1.
After the end-effector has reached its reference position p0

d it can be seen that there is
a minor orientational offset of 1.2°. This can be related back to the small value which
was chosen for the rotational spring stiffness Ko. As the force, which is generated by the
displacement ∆θ and stiffness Ko is not big enough to force the end-effector to its reference
orientation R0

d.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55

60

time in s

∆θ

in
°

Figure 4.3: Shows the angular displacement between the reference and end-effectors
orientation.
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4.1.3 Energy Scaling

This section examines the energy introduced to the system and the effect which the reactive
control schemes energy scaling feature (subsection 3.3.2) has on this energy. The reason
for looking at the energy introduced to the system rather on the force is due to the fact
that it is not possible to measure the force of a virtual spring, hence one looks at the
potential energy injected to the system.
When looking at Figure 4.4 one can observe how the energy introduced to the system
increases as energy stored in the virtual springs Etotalinit increase as the displacement
between the reference frame and current end-effector frame increases. If one would release
the end-effector with such a large amount of energy stored in the springs, the system would
most likely get into an unstable and hazardous state. The energy scaling feature of the
reactive control scheme mitigates this, by limiting the energy which can be introduced to
the system to a set level Emax. This is done by downscaling the spring stiffnesses by the
scaling factor λ as soon as Etotalinit exceeds Emax, which results in a new energy Etotalscaled .
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Figure 4.4: Shows the Energy Etotalinit , Etotalscaled and the energy scaling parameter λ.

4.1.4 Power

Another important quantity in the field of compliant control strategy is the power Pmotion,
which system can exchange with its environment. In this section, this power is examined
as well as the effect the damping injection feature of the implemented control scheme
(subsection 3.4.2) has on this power is examined.
As seen in the first plot of Figure 4.5, the power increases in negative direction, as the
system is injected with an external energy due to the external force applied during the
interaction.
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Figure 4.5: Shows the Power Pmotion, Pmotionscaled and the damping injection parameter
β.

It can also be seen that as soon as the external force is no longer applied that the direction
of the power exchange is reversed. In other words the system exerts the energy into the
environment. As this exchange can be harmful and dangerous for objects and humans in
the manipulators environment, it is important to limit this power to a "safe" threshold
Pmax.
In this control scheme this is done with previous mentioned damping injection feature,
where Pmotion is limited by increasing the joint damping by the scalar β. The influence
β has on the Pmotion can be seen Figure 4.5, as Pmotion exceeds Pmax, β increases which
results in Pmotionscaled . This new power does not exceed the set Threshold Pmax as one can
observe in the second plot of Figure 4.5.

4.1.5 Test evaluation

As mentioned earlier this test was conducted for the purpose of confirming the behavior
of the implemented reactive control scheme and its capability to handle unplanned
interaction. The test has shown, that even though the displacement of end-effector
exceeded the set requirements of 0.2m and 40°, the reactive control scheme was capable
of keeping the KUKA LBR iiwa within the set safety metric. Thereby fulfilling the
Requirement 1 as listed in Table 4.1.

4.2 Test 2: Cartesian Constraints

The following sections describe the test of the LBR iiwas behavior when encountering a
Cartesian constraint in simulation and in the real world. The test was conducted by having
the LBR iiwa following a preplanned trajectory H0

d, which is designed in such a way that
it violates the Cartesian constraints C1 and C2. These two constraints/virtual walls are
placed in front and above the LBR iiwa and are defined as 2D planes in the Cartesian
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Workspace of the manipulator as described in section 3.1. Where the virtual wall C1 is
placed in front and C2 is placed above the LBR.

This test setup serves the purpose of simulating the scenario described in section 1.1, in
which the human co-worker pushes/pulls the robot towards a constraint. This test was
conducted in simulation as well as on the real-world LBR iiwa. A visualization of this test
setup can be seen in Figure 4.6. Where the function describing the trajectory and the test
specific Parameters can be found in section D.1 and Table 4.3 in respectively.

Parameters C1 vertices C2 vertices d0,c1/2 in m γ κ1/20.5
1
0

,
0.5

1
0.9

,
0.5
−1
0

,
0.5
−1
0.9

 0.5
1

0.9

,
0.5

1
0.9

,
−1
−1
0.9

,
−1

1
0.9

 0.05 5 5

Table 4.3: Lists the "Cartesian Constraints" test specific parameters.

The vertices for the virtual walls C1 and C2 were implemented in such a way that the pre-
planned trajectory violates both constraints. This was done so that the behaviour of LBR
iiwa could be investigated for the following scenariors: When the manipulator encounters
different constraints at different point in time. When the manipulator encounters multiple
constraints at the same time. The activation distance d0,c1/2 of the Constraints C1 and C2

was chosen to be 0.05m in order to have an sufficient buffer such that the constraint is not
being violated. The exponential of the transition function γ described in section 3.1 was
set equal to 2, as it was stated in [16, 15] to be a reasonable choice. The scaling factor for
the potential generated κ1/2 was chosen to be is an equal to 5 as early testing has shown
that it is sufficient value to keep the manipulator within the Cartesian constraints. It is
to note that the parameters listed in Table 4.3 can be freely chosen by the user.

Figure 4.6: Visualizes the setup of the "Cartesian Constraints" test.
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4.2.1 Reference tracking

As mentioned previously the test described in this section, was done by having the manip-
ulators end-effector follow an pre-planned trajectory, which violates a set of virtual walls.
This section discusses the reference tracking of the LBR iiwa. The x, y, z-components of
trajectory p0

d and the end-effector p0
tcp position for the simulation and real-world test over

time t is shown in Figure 4.7/4.8.
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Figure 4.7: Shows the trajectory and end-
effector postion for the simulation test.
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Figure 4.8: Shows the trajectory and end-
effector postion for the real-world test.

By inspecting Figure 4.7/4.8, it can be seen that the virtual wall C1 only restrict the
movements of the end-effector along the x-axis of the base frame. Whereas the constraint
C2 only the movements along the base frames z-axis and the movement along the base
frames y-axis has no restriction. When looking at Figure 4.7/4.8 it can be seen that the
end-effector encounters the virtual wall C2 by coming within the constraints activation
distance dtcp,c2 at time t = 2s. At this point a repelling wrench W 0,tcp

C2
is gernerated, which

forces the end-effector to stay within the set Cartesian boundaries. While the end-effector
follows the trajectory along the constraint C2, it encounters the constraint C1 at time
t = 5.5s for the simulation and t = 5s for the real-world test. At time t = 8s the trajectory
no longer violate the virtual wall C2 and end-effector rejoins the trajectory. However the
end-effector is only able to track the trajectory with an offset, until the trajectory no
longer violates the constraint C1 at t = 15s and t = 14s for the simulation and real world
test respectively. This behaviour results from the implemented energy scaling described in
subsection 3.3.2 and will be elaborate on in subsection 4.2.4.

4.2.2 Position Displacement

This section examines the difference ∆p between the desired and the current position of
the end-effector in relation to the origin frame. As seen in Figure 4.9/4.10 the resulting
displacement between p0

d and p0
tcp is like in subsection 4.2.1 visualized separately for the

x, y, z-components. As already mentioned in subsection 4.2.1 one can clearly see, that
as soon as the end-effector encounters either one of the virtual walls C1 and C2, the
displacement along the restricted axes increases. When looking more closely on the z-axis
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of both test one is able to observe more clearly how the displacement along this axis ∆p first
matches the reference as the trajectory no longer violates the constraint C1. As mentioned
previously in subsection 4.2.1 this has to do with the nature of the energy scaling, which
will be discussed in more detail in subsection 4.2.4.
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Figure 4.9: Shows the displacement in po-
sition ∆p between the end-effectors desired
position p0

d(t) and its real position p0
tcp(t) for

the simulation test.
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Figure 4.10: Shows the displacement
in position ∆p between the end-effectors
desired position p0

d(t) and its real position
p0
tcp(t) for the real-world test.

When shifting the focus on the y-axis one might observe a small discrepancy in the behavior
between the simulation and real-world test in the time interval t ∈ [4, 6.5], which can
be related back to the difference between the modeled and the real LBR iiwa. The
displacement ∆pz increases as the end-effector is forced away at time t = 1s the error
increases along each axis and decreases again as soon as the trajectory no longer violates
this constraint.

4.2.3 Angular displacement

In Figure 4.11/4.12 the angular displacement between the reference orientation R0
d(t) and

R0
tcp(t) is illustrated. In this test the orientations reference R0

d(t) ∀t was chosen to be
static. When comparing both figures, it can be seen that the LBR iiwa behavior in the
real world is more sensitive to the disturbance in its motion during the transition phase
when encountering or leaving a constraint, than in the simulation environment. However,
outside these transition phases, its behavior is close to identical.
It can also be observed that the angular displacement ∆θ is at its maximum at the point in
time, in which also the overall displacement is at its maximum. This is due to the nature of
the energy scaling, which will be briefly elaborated on in subsection 4.2.4 and the response
seen in Figure 4.13/4.14. With this stated it has to be said that this response would not
occur in the scenario described in section 1.1, as the reference frame would not be on the
opposite side of a constraint and the manipulator would already be in a compliant state
before encountering the first constraint.
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Figure 4.11: Visualizes the angular dis-
pacement between the desired and current
orientation of the end-effector over time for
the simulation test.
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Figure 4.12: Visualizes the angular dis-
pacement between the desired and current
orientation of the end-effector over time for
the real-world test.

4.2.4 Energy

This section evaluates the effect which the energy scaling described in subsection 3.3.2 has
on energy of the system. As already described in section 4.1, the total energy introduced to
the system increases as the end-effector is forced away from its reference configuration H0

d.
This behaviour can be seen in Figure 4.13/4.14, where Etotalinit increases as the end-effector
encounters the constraints C2/C1 and the displacement between H0

d and H0
tcp increases.

However asthe displacement increases also the scaling parameter λ increases inorder to
keep Etotalscaled within the maxmial threshold of 2J. As earlier mentioned, this is achieved
by scaling the co-stiffenesses by λ, however as the co-stiffnesses decrease also the precision
and responsiveness of the manipulator decreases.This results in the angular displacement
∆θ and position displacement ∆py(Figure 4.9/4.10).
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Figure 4.13: Visualizes the total energy
Etotal of the system over time for the
simulation.
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Figure 4.14: Visualizes the total energy
Etotal of the system over time for the real-
world test.
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4.2.5 Power

This section evaluates the effect the damping injection has on the system. As already
described in section 4.1 the damping injection serves the purpose of limiting the energy
the manipulator can exchange with its environment in case of an unplanned interaction.
When comparing Figure 4.15 and Figure 4.16 with each other one can see that they behave
similar to each other, where the Pmotioninit exceeds the set power limit Pmax in two time
instances. The first violation takes place at the beginning of the movement and the second
as the end-effector rejoins the trajectory, for both instances, it is assumed that they take
place due to the discrepancies between the real LBR iiwa and the created model for the
simulation.

However, besides these two minor discrepancies in the simulation, both the simulation and
real-world test do not exceed the set power threshold Pmax, which means the damping
injection does not influence the motion of the LBR iiwa. When considering how the test
was conducted the results are logical, as the end-effector keeps following the trajectory
along the constraint and as it cannot move towards the desired configuration H0

d and
exchanges close to no energy with the environment.
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Figure 4.15: Visualizes the Pmotion over
time for the simulation test.
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Figure 4.16: Visualizes the Pmotion over
time for the real-world test.

4.2.5.1 Constraint gains

The following section examines the behaviour of the in subsection C.2.2 described approach
function for the Cartesian constraint. As stated earlier in subsection 4.2.1, the LBR iiwa
behavior when encountering a virtual wall, resulted from the repelling wrenchW 0,tcp

C1/2
which

is generated when the end-effector comes within a predefined threshold dtcp,c1/2 . The
approach function which generates this repelling wrench W 0,tcp

C1/2
depends on the distance

between manipulators end-effector and the Constraint. This function describes a potential
which increases as the end-effector gets closer to the Constraint. In Figure 4.17 and 4.18 one
can observe this behavior as the gain of the repelling wrench increases as the end-effector
approaches the Constraints C1 and C2, as well as how they decrease as the end-effector
distances itself from the constraints.
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Figure 4.17: Shows the gains of the
repelling force of the constraints C1 and C2

for the simulation.
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Figure 4.18: Shows the gains of the
repelling force of the constraints C1 and C2

for the real-world test.

When examing Figure 4.17/4.18 the following observation can be made. Firstly, even
though the gains of the simulation and the real-world follow the similar behavior as the
gains in the simulation are significantly higher than the ones in the real world. it is assumed
that this is due to the differences between the derived model and the real LBR iiwa, as it
can be seen that the individual joint torques of the simulation are higher as well as the
end-effector being able to get closer to the constraints than the real LBR iiwa.
Secondly the gains generating the repelling force increase whenever the end-effector either
encounters or leaves a constraint. This behavior correlates with the displacement between
the end-effectors current and the desired configuration, which result in the earlier discussed
energy scaling. As one might recall, the stiffnesses of the elastic wrench W 0,tcp

K are scaled
down as the energy introduced by the springs to the system exceeds a threshold. This
energy is proportional to the displacement, hence are the stiffnesses of the springs closer
to their initial value the smaller the displacement and thereby the elastic wrench W 0,tcp

K

bigger. This results in the end-effector being able to get closer to the constraint and
thereby increasing the repelling wrench W 0,tcp

C1/2
significantly.

4.2.6 Joint space behaviour

This section examines the Joint space behavior of the LBR iiwa in terms of joint positions
and torques for the simulation and real-world test in subsubsection 4.2.6.1 and 4.2.6.2.

4.2.6.1 Joint postions

In Figure 4.19 one can see the joint position for each individual joint for both the simulation
and real-world test. This figure in a more general sense has no significant value for
evaluating the performance of the implemented reactive scheme. As this scheme does not
control the individual joints separately in order to follow a cartesian reference but generates
joint torques based on the cartesian displacement between H0

d and H0
tcp. Which means

that the nullspace of the manipulator can be freely moved within its constraint without
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effecting the end-effectors configuration. However, this figure can be used to evaluate the
performance of the implemented joint limit avoidance and can be taken as a quantitive
measure for the evaluation of the LBR iiwas model which was created for the simulation.
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Figure 4.19: Illustrates the joint postion qi for the simulation and real-world, with the
upper/lower joint limits q̄i,limit/qi,limit marked with a red dashed line and the upper/lower
joint limit thresholds q̄i,J/qi,J marked with a green dashed line.
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When looking at Figure 4.19 on can see how closely the joint positions of the simulation
and real-world test follow each other, this can be taken as indication that the model created
for the simulation is in coherence with the real LBR iiwa. It can also be seen that all joint
positions qi stay with in its joint limits, with q4 reaching within the joints lower joint limit
threshold q

4,J
at t = 11s. However as the joint limit avoidance takes effect at this point

and generate a torque τq4 in the opposite direction and thereby forcing q4 to stay within
its boundaries. A more elaborate explanation and evaluation of this feature will begiven
in section 4.3.

4.2.6.2 Joint torques

In Figure 4.20 and Figure 4.21 the motion generating joint torques from the simulation
and real-world are visualized. When comparing these two figures it can clearly be seen
that the torques from the real manipulator have more frequent and higher fluctuation as
the ones in the simulation. This has mainly to do with the discrepancy between the real
world LBR iiwa and the model created for the simulation.
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Figure 4.20: Shows the joint specifc torques during the simulation of this test.
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However, a comparison between them can be drawn as they show similar behavior,
especially at the time instances at which the manipulator encounters/leaves a constraint.
It is to note, that only the interaction after the first encounter of the constraint C2 up until
the point at which the manipulator is not in contact with either one of the constraints is
relevant for the evaluation of this test and is marked in red.
The reason for this is that the control strategy for the encounter of cartesian constraints
(section 3.1), was designed for the purpose of keeping the LBR iiwa within the set
boundaires while being already in the compliant mode. Therefore only the area marked
in red is representative of the behavior along the constraints. When focusing on the area
marked in red one can see minor oscillations as in the time interval t ∈ [5, 7], which is
the same interval in which the LBR iiwa encounters both constraints at the same time
and is pulled into the area in which both constraints join. As the LBR iiwa is already
in a compliant state, with the scaled down elastic force pulling the end-effector into the
constraints and the repelling force of the constraint simply overwhelms this elastic force.
This behavior could be minimized by generating a smaller repelling force. However, as
seen in Figure 4.19 this behavior has close to no effect on the joint positions qi and as
mentioned earlier the real use case does not see the end-effector being pulled towards a
constraint but pushed against constraint by an external force.
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Figure 4.21: Shows the joint specifc torques during the real-world test.
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4.2.7 Test evaluation

As mentioned earlier this test was conducted for the purpose of examining the behavior
of the implemented Cartesian constraint control strategy when encountering a virtual wall
when the LBR iiwa is in a compliant state. It was shown that the reactive control strategy
is capable of handling the additional force generated by the virtual wall while the LBR iiwa
is in a complaint. The test also showed that the implemented Cartesian constraint control
strategy was capable of keeping the LBR iiwa within different Constraints at different time
instances as well as then being subject to multiple constraints at the same time. It was
also shown how the repelling force is gradually increased as the constraint link approaches
the constraint instead of applying an abrupt force. Thereby fulfilling the Requirement 2
as listed in Table 4.1.

4.3 Test 3: Joint Limit avoidance

The following section describes the test of the robot’s behavior when encountering a joint
constraint. As the purpose of this feature is to keep the manipulator reaching one of
its joint limits while being in a compliant state, it was decided to conduct the test of
this feature in the following way: Firstly LBR iiwa is forced into its compliant state,
followed by maneuvering it towards the upper and lower joint limit of joint 2 and finally
maneuvering it towards joint limits of joint 2,4 and 6 at the same time. The test was
conducted by putting the LBR iiwa into a compliant state and maneuvering different links
towards their individual joint limits. A visualization of the LBR in a none constraint versus
a constratin configuration can be seen in Figure 4.22 and test specific parameter can be
found in Table 4.4

Figure 4.22: Visualises the intial and joint limit configration for joint 2, 3 and 4 of the
LBR iiwa.
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Parameters q̄i,J in rad q
i,J

in rad Ω

0.2 0.2 0.025

Table 4.4: Lists the "Joint limit avoidance" test specific parameters.

The upper and lower threshold or activation distance (q̄i,J , qi,J) of each joint were for ease
of implementation set for all joint equaly.

4.3.1 Joint limits

As mentioned earlier in this section the two different tests were conducted for the validation
of the implemented joint limit avoidance. WIth the first one examining the behavior of
this feature at both the upper and lower limit of the 2nd joint. When looking at the
Figure 4.23 one can see how the 2nd joint is first maneuvered towards the upper joint limit
q̄2,limit marked in red followed by a movement towards the lower joint limit q

2,limitmarked
in grey. In both cases one can see how a torque gradually increasing τq2 in the opposite
direction of the joint limit is generated, as q2 is forced towards the constraint and violates
the respective thresholds q̄2,J , q2,J

.
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Figure 4.23: Shows the joint position of joint 2 and the torques generated by implemented
joint limit avoidance feature.

In addition to the above-described test, it was also tested what happens when the
manipulator is maneuvered towards the joint limits of joint 2, 4 and 6 at the same time.
The result of this test is visualized in Figure 4.24, where it can be seen that it was not
possible to force at least one of the joints into its limit, even though a significant force was
applied.
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Figure 4.24: Shows the joint position of joint 2,4,6 and the torques gernerated by
implemented joint limit avoidance feature.

4.4 Test evaluation

As mentioned earlier this test was conducted for the purpose of examining the behavior
of the implemented joint limit avoidance strategy when approaching one or multiple joint
limits. It was shown that the implemented joint limit avoidance strategy is capable of
keeping the joints of the LBR iiwa within its limit, even when a significant force is applied.
The test also showed how the torques which keep the manipulators joint within its limits
gradually increase as it approaches a joint limit. Thereby fulfilling the Requirement 3 as
listed in Table 4.1.
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Summary 5
5.1 Conclusion

The aim of this thesis was to investigate and implement Cartesian workspace restrictions
in form of virtual walls in combination with an energy-aware Impedance controller and
joint limit avoidance on the KUKA LBR iiwa.

The work does not only describe the implementation of the overall control strategy, but
also a detailed description of the mathematical modeling of the KUKA LBR iiwas kine-
matics and dynamics using screw theory.
Where kinematics model of the KUKA LBR iiwa covers the derivation of the forward, as
well as the differential kinematics. The dynamics of the KUKA LBR iiwa were modeled
with the Newton-Euler approach. This model was then used to test the overall control
strategy in simulation, before implementing it on the real manipulator.

The overall control strategy was verified by investigating the control strategies subparts
behavior based on different test. The investigation of the reactive control scheme capabil-
ity to handle unplanned interaction it was concluded that it is capable of handling such
interactions. As it is able to autonomously adjust the stiffnesses of the spring and the joint
damping, in order to stay within the set safety metrics.
The evaluation of the behavior and performance of the implemented the Cartesian con-
straint control concluded, that it is possible to keep the KUKA LBR iiwa stable and within
the constraint even when encountering multiple constraints at the same time.
The investigation into the behavior of the KUKA LBR iiwa when encountering one or mul-
tiple joint limits and its capability of avoiding the violation of those joint limits, resulted
in the KUKA LBR iiwa being able to staying within the the upper or lower joint limits,
even when it is forced into multiple limits at once while being in a compliant state.

The overall conclusion which can be drawn from this is; that the overall implemented
control strategy is capable of handling unplanned interaction, staying within the Carte-
sian constraints as well as avoiding the violation of the LBR iiwa’s joint limits.
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5.2 Future Work

This chapter gives recommendation for topics, which could be looked into in future works.
As the controller implemented in this work has shown, it is possible to control the KUKA
LBR iiwa with energy and springs, as well as the limiting its Cartesian workspace with
virtual walls when the manipulator is in a compliant state.
This opens up the possibility of looking into:

• Virtual wall design - In this work, the virtual walls used to restrict the Cartesian
workspace of the LBR iiwa were defined as a simple 2D plane. However this is not
a must, one could also define a virtual wall in form of any smooth manifold M ∈ R3

within the Cartesian workspace of the LBR iiwa.
• Workspace optimization - In this work, the virtual walls were defined as simple

2D planes and placed at locations which were specific for the test. A future
research topic could be how to use the previously mentioned virtual wall design
and maximize the restricted Cartesian workspace of the LBR iiwa. Thereby limiting
the maneuverability of the LBR iiwa in its compliant state by a minimum.
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Cartesian Acceleration A
This appendix covers the derivation of the initial equation of the instantaneous acceleration
V̇i. introduced in subsection 2.2.2.
The starting point being the representation of V̇i in its matrix form ˙̂

V i seen in Equation A.1.

˙̂
V i = Ḣi−1

i (q)V̂i
(
Hi−1
i (q)

)−1+Hi−1
i (q)

˙̂
V i

(
Hi−1
i (q)

)−1+Hi−1
i (q)V̂i

(
Ḣi−1
i (q)

)−1+ ξ̂iq̈i (A.1)

Where the time derivative of Ḣi−1
i (q) and its inverse is defined as in Equation A.2 and

Equation A.3, respectively.
With Ḣi−1

i (q) being defined as the homogeneous transformation Hi−1
i (q) times the joint

rate around the body twist of the ith-joint.

Ḣi−1
i (q) = Hi−1

i (0)ξ̂ie
ξ̂iqi q̇i = Hi−1

i (0)eξ̂iqi︸ ︷︷ ︸
Hi−1
i (q)

ξ̂iq̇i (A.2)

The inverse of Ḣi−1
i (q) is derived by pre- and post-multiplying the homogeneous

transformation Hi
i−1(q) in order to achieve the change of coordinates in which the motion

is represented in.(
Ḣi−1
i (q)

)−1 = −
(
Hi−1
i (q)

)−1︸ ︷︷ ︸
Hi
i−1(q)

Ḣi−1
i (q)

(
Hi−1
i (q)

)−1︸ ︷︷ ︸
Hi
i−1(q)

= −Hi
i−1(q)

(
Hi−1
i (0)eξ̂iqi︸ ︷︷ ︸
Hi−1
i (q)︸ ︷︷ ︸

I

ξ̂iq̇iH
i
i−1(q)

= −ξ̂iq̇iHi
i−1(q)

(A.3)

The resulting equation when inserting Equation A.2 and Equation A.3 in Equation A.1 is
shown in Equation A.4.

˙̂
V i = Hi−1

i (q)ξ̂iq̇iV̂iH
i
i−1(q) + Hi−1

i (q)
˙̂
V iH

i
i−1(q)

+ Hi−1
i (q)V̂i

(
− ξ̂iq̇iHi

i−1(q))
)

+ ξ̂iq̈i
(A.4)

When restructuring Equation A.4 into the format as seen in Equation A.5, one can see
that the equation can be split in to 3 separate parts. The first part describes the joint
acceleration q̈ around the respective body twist ξ̂i, the second part represents the Cartesian
acceleration of the i− 1-link represented in the ith-link and the third part being the
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generalized cross-product of two twist in matrix form.

˙̂
V i = ξ̂iq̈i + Hi−1

i (q)
˙̂
V iH

i
i−1(q) +

(
Hi−1
i (q)ξ̂iq̇iV̂iH

i
i−1(q) + Hi−1

i (q)V̂i
(
− ξ̂iq̇iHi

i−1(q)
))

= ξ̂iq̈i + Hi−1
i (q)

˙̂
V iH

i
i−1(q) +

(
Hi−1
i (q)V̂iH

i
i−1(q)ξ̂iq̇i − ξ̂iq̇iHi−1

i (q)V̂iH
i
i−1(q)

))
︸ ︷︷ ︸

[·,·]→Lie bracket

(A.5)

Until now the Cartesian velocity V̇i was represented in matrix form, however as the vector
form of it is needed for the calculations in subsection 2.2.2 it must be reformulated as in
Equation A.6.

V̇i = ξiq̈i + AdHi
i−1(q)

(
V̇i−1

)
+

AdHi−1
i (q)Vi−1︸ ︷︷ ︸
Vi−ξiq̇i

, ξiq̇i


= ξiq̈i + AdHi

i−1(q)

(
V̇i−1

)
+ [Vi − ξiq̇i, ξiq̇i]

= ξiq̈i + AdHi
i−1(q)

(
V̇i−1

)
+ [Vi, ξiq̇i]− [ξiq̇i, ξiq̇i]︸ ︷︷ ︸

0

= ξiq̈i + AdHi
i−1(q)V̇i−1 + [Vi, ξiq̇i]

= ξiq̈i + AdHi
i−1(q)V̇i−1 + adViξiq̇i

(A.6)
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General equation of
motion B

This appendix shows the general derivation of the Mass-matrix M(q), Coriolis and
centrifugal forces C̄(q, q̇)q̇ and potential forces Ḡ(q) in joint space from the inverse dynamic
algorithm discussed in subsection 2.2.2, based on the work done in [5, 7].
It is possible to express the recursive inverse dynamic algorithm in form of a set of matrix
equations. This is done by forming out of the different stacked vectors and block-matrices.
As starting point one defines the Cartesian Velocities and Wrenches as stacked vectors as
seen in Equation B.1 and Equation B.2.

V =

V1
...
Vn

 ∈ R6n (B.1)

W =

W1
...
Wn

 ∈ R6n (B.2)

With Ξ (Equation B.3) and Mc (Equation B.4)being defined as constant diagonal block
matrices representing the body twist coordinates and mass-inertia’s expressed and seen in
links own frame frames respectively.

Ξ =


ξ1 0 · · · 0

0 ξ2 · · · 0
...

...
. . .

...
0 · · · · · · ξn

 ∈ R6n×n (B.3)

Mc =


Mc1 0 · · · 0

0 Mc2 · · · 0
...

...
. . .

...
0 · · · · · · Mcn

 ∈ R6n×n (B.4)

And where Equation B.5,Equation B.6 and Equation B.7 are holding the adjoint
transformation of the different Cartesian velocities, body twist and transformation matrices
respectively.

adV =


adV1 0 · · · 0

0 adV2 · · · 0
...

...
. . .

...
0 · · · · · · adVn

 ∈ R6n×6n (B.5)
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adΞq̇ =


ad ξ1q̇1 0 · · · 0

0 ad ξ2q̇2 · · · 0
...

...
. . .

...
0 · · · · · · ad ξnq̇n

 ∈ R6n×6n (B.6)

S(q) =


0 0 · · · 0 0

AdH2
1

0 · · · 0 0

0 AdH3
2
· · · 0 0

...
...

. . .
...

...
0 0 · · · AdHn

n−1
0

 ∈ R6n×6n (B.7)

One then defines the Cartesian velocity of the base as Equation B.8,the Cartesian
acceleration of the base as Equation B.9 and the wrench acting on the tcp-frame as in
Equation B.10.

Vbase =


AdH1

0
V0

0
...
0

 ∈ R6n (B.8)

V̇base =


AdH1

0

(
V̇0

)
0
...
0

 ∈ R6n (B.9)

Wtcp =

 0
...

AdHn+1
n

>Wn+1

 ∈ R6n (B.10)

With the above defined matrices it is possible to represent equation of the recursive inverse
dynamic algorithm by the matrix equation seen in Equation B.11.

V = S(q)V + Ξq̇ + V0

V̇ = S(q)V̇ + Ξq̈ − adΞq̇

(
S(q)V + Vbase

)
+ V̇base

W = S>(q)W + McV̇ − ad>V

(
McV

)
+Wtcp

τ = Ξ>W

(B.11)

With S(q) being a nil-potent matrix of order n (Sn(q) = 0;n ∈ N), which has the property
of det

(
In + S(q)

)
= 1 and therefore

(
In + S(q)

)
is invertible as seen in Equation B.12.

N(q) = (I− S(q))−1 = I + S(q)) + · · ·+ I + Sn−1(q)) (B.12)
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Which results in an lower triangular block matrix as seen in Equation B.13.

N(θ) =


I 0 0 · · · 0

AdH2
1

I 0 · · · 0

AdH3
1

AdH3
2

I · · · 0
...

...
...

. . .
...

AdHn
1

AdHn
2

AdHn
3
· · · I

 ∈ R6n×6n (B.13)

With the above derived N it is possible to reformulate Equation B.11 to Equation B.14.

V = N(q)
(
Ξq̇ + Vbase

)
V̇ = N(q)

(
Ξq̈ + adΞq̇

(
S(q)V

)
+ adΞq̇

(
V base

)
+ V̇ base

)
W = N>(q)

(
McV̇ − ad>V

(
McV

)
+Wtcp

)
τ = Ξ>W

(B.14)

With these definitions it is possible to describe M(q), C̄(q, q̇)q̇ and Ḡ as seen in
Equation B.15.

M(q) = Ξ>N>(q)McN(q)Ξ

C̄(q, q̇)q̇ = −Ξ>N>(q)
(
McN(q)adΞq̇S(q) + ad>V Mc

)
N(q)Ξq̇

Ḡ(q) = Ξ>N>(q)McN(q)V̇base

(B.15)

As the matrix equation in Equation B.14 describe a recursive algorithm, the matrix
equation in Equation B.15 must also describe a recursive algorithm. Which means they
also can be calculated separately in a more time efficient manner than with the Lagrangian
formalism.
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Implementation C
This chapter describes the general setup and its components as well as the structure of
the code for the implemented controller the implementation of the controller previously
described in chapter 3.

C.1 Setup overview

This section describes the hardware setup used in this work. The content in this section
was written based on the information found in [12, 26]. A visualization of the setup used
for the implementation and testing process can be seen in Figure C.1. In the remaining of
this section, the different components of the visualized setup will be described briefly.

realtime UDP

non-realtime UDP

Figure C.1: Visualizes the used harware setup, consisting of an KUKA LBR iiwa R800,
KRC unit and two PCs used for implementation purposes.

C.1.1 KUKA LBR iiwa R800

As mentioned previously in this work, the industrial manipulator used in this work is
the KUKA LBR iiwa R800. The KUKA LBR iiwa R800 is a collaborative manipulator
and was chosen for this project as is equipped with position and torque sensors and
torque controlled motors in each joint. In addition the LBR iiwa has compared to more
conventional industrial manipulators 7 DOFs. With this extra DOF the KUKA LBR iiwa
has an increased dexterity and is able to avoid certain sinuglarties, which more conventional
industrial manipulators with only 6 DOF could encounter. The technical specification
such as range of motion and maximal joint velocity are given in Table C.1 and Table C.2
respectively.
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Range of motion in °
Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7
±170 ±120 ±170 ±120 ±170 pm120 ±175

Table C.1: Shows the range of motion for each joint of the KUKA LBR iiwa.[12]

Maximal joint velocity in °\s
Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7

98 98 100 130 140 180 180

Table C.2: Shows the maximal joint velocity for each joint of the KUKA LBR iiwa.[12]

C.1.2 Control interface

This section gives a short summary of how one can communicate with the KUKA LBR
iiwa. As seen in Figure C.1, the LBR iiwa is connected to and get its control signals
from the KUKA Robot Controller(KRC), which is connected two PCs via a real-time and
non-realtime UPD connection respectively.
The PC connected via the non-realtime connection runs Windows and KUKAs
Sunrise.Workbench programm and is used to upload Robot applications to, as well as
download data-recording from the KRC. The other PC runs Ubuntu and communicates the
with the KRC by sending and receiving the control inputs/outputs in real-time via KUKAs
Fast Research Interface (FRI). In the following sections describe the above mentioned
different communication components in greater detail.

C.1.3 KUKA Robot Controller

As mentioned above the KUKA LBR iiwa is controlled via the KUKA Robot Controller
(KRC), also known as the KUKA Sunrise Cabinet. The KRC is responsible for the
transmission control inputs as well as the reading the data of the integrated sensors.
One has two possibilities to control the LBR iiwa. Firstly one can upload a Java-based
applications onto KRC via the KUKA Line interface port (KLI), which is created in the
Sunrise.Workbench.
This controller runs on the KRC natively. Secondly one can create an FRI client application
on the Linux-based PC, which connects to the KRC via a UDP connection with a maximum
rate of 1kHz through the KUKA Option Network Interface port (KONI). In this setup,
the calculation of the control inputs is outsourced to the PC.

C.1.4 Sunrise.Workbench

As mentioned earlier the Sunrise.Workbench is a tool used to program robot applications
in Java, which are loaded onto and are executed on the KRC. With this program, it is
possible to define different motion type and patterns which the robot should execute, as
well as the integration of external libraries (e.g. sensors, FRI). It offers the possibility
to control the LBR iiwa with the following control strategies: Joint impedance Control,
Cartesian impedance control, position and velocity control.
Through which the LBR iiwa can execute following motion patterns: spline, point-to-point,
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linear and circular motions as well as holding the current position. This Software is also
used to configure the KRC as an FRI server.

C.1.5 Fast Research Interface

The Fast Research Interface (FRI) as mentioned previously provides a real-time interface
between an application FRI server application on the KRC and an FRI client application
on an external system via UDP.
However in order to take advantage of this interface, one must first load a Java application
onto the KRC via the Sunrise.Workbench. This application must be configured in such a
way that it overlays the control signal sent by the FRI C++ client. These control signals
can either be positions, torques or wrenches depending on how the user specifies the Java
application on the KRC and C++ application on the FRI Client side.

C.2 Code description

This section describes the structure of the program for the implemented control strategy
described in chapter 3. The structure of this section is the following: Firstly a general
overview over the overall program is given (subsection C.2.1) followed by a detailed
description of the different sub-parts of the program in the chronological order as
introduced in subsection C.2.1

C.2.1 Overview

The following section discusses the structure of the program of the overall program used
for computing the control input τ . It is assumed that needed parameters (e.g. constraints
Cj , stiffnesses Kt,r,c, etc.) are already defined and initialized before the following part of
the program is executed. Furthermore, it is assumed that the robot is at the beginning of
the program already in its starting configuration H0

tcp(0) and the program has a predefined
desired trajectory/configuration H0

d(t).

In Figure C.2 general structure of the program for computing the control input τ can be
seen. First Cartesian constraint control scheme computes the repelling WrenchW 0,i

Cj
for an

constraint Cj for the ith link. Secondly by the Reactive control scheme, from which the a
motion generating torque τctrl based on the displacement Htcp

d and the repelling Wrenches
W 0,i
Cj

from active constraints is computed.Followed by the computation of the torques τqi
in the opposite direction generated by the Joint limit avoidance and the computation of
the τ(q) (3.38) before sending them to the manipulator.
In the remain of this chapter the just described steps will elaborated on in greater detail
in the following sections, excluding the computation and sending of τ(q) as it is seen as
trivial.

C.2.2 Constraints

This section elaborates on the implementation of the Cartesian constraint control scheme.
As mentioned in subsection C.2.1, it is assumed that the constraint are already defined
and initialized prior to execution of the described part of the program.
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Send τ>(q)

Reactive control
scheme

Compute τ>(q)

Cartesian constraint
control scheme

Joint limit avoidance

Figure C.2: Illustrates the flowchart of overall project structure.

In the beginning of each iteration the program calculates the projection p0
i,Cj

(q) (3.3) of
the position p0

i of each constraint link onto the constraint Cj .

Output W 0,i
Cj

Compute projection p0
i,Cj (q)

Compute distance di,Cj (q)

Compute potential Ui,Cj (q)

Compute Wrench W 0,i
Cj

Figure C.3: Visualizes the different calculation steps within the Cartesian Constraint
control scheme.

Followed by the computation of the euclidean distance di,Cj (q) between these to points,
which is used as input for the calculation of the gain of the repelling Wrench W 0,i

Cj
based

on a potential function Ui,Cj (q) (3.5) for the jth constraint. A graphical representation
of Ui,Cj (q) can be seen in Figure C.4, where the euclidean distance di,Cj between each
constraint joint and their constraints is smaller then a minimum distance xj . Note that
xj is a design parameter chosen by the user, and represents the distance to the constraint
Cj , at which if violated an potential Ui,Cj (q) > 0 is calculated. Furthermore are κj and γ
design parameter the user can chose and influence the aggressiveness of Ui,Cj (q), when xj
is violated. A comprehensive description of Ui,Cj (q) is given subsection 3.1.4.
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Output Ui,Cj (q)

di,Cj (q) ≤ xj

Ui,Cj (q) =
κj
γ

(
1

di,Cj (q)
− 1

xj

)γ
Ui,Cj (q) = 0

No

Yes

Figure C.4: Illustrates the flowchart for the calculation of the potential Ui,Cj .

C.2.3 Reactive Control scheme

The following section discusses the structure of the program, dedicated for reactive control
scheme, which is visualized in Figure C.5.
In the first step of each iteration with in this part of the program is the computation of
the transformation between the frames Ψd and Ψtcp (Hd

tcp(t)). In combination with the
co-stiffness Gt,r,c of the spatial spring is Hd

tcp(t) used to compute the total potential energy
Vtotal (3.21), based on the described displacement between Ψtcp and Ψd displacement by
Hd
tcp(t). In addition the kinetic energy exerted by the system Ttotal (3.20) over time is

calculated. The calculated potential energy Vtotal, kinetic energy Ttotal and the resulting
total energy Etotal (3.19), are then used as input for the Energy Scaling function.

Energy Scaling

Compute τmotion

Damping injection

Compute W 0,tcp
K

Compute τctrl

Output τ>ctrl

Compute τ>Damping

Figure C.5: Illustrates the main structure of the reactive control scheme program.

Based on a user defined maximal energy threshold Emax, the scaling factor λ (3.23) is
computed. The scaling factor λ is then used to compute new Co-stiffnesses Gt,r,c(3.25))as
seen in Figure C.6.
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Etotal ≤ Emax

λ = 1

Yes

λ = Emax−Ttotal
q̇>B q̇

No

Gt,r,c ← λ ·Gt,r,c

Figure C.6: Illustrates the flowchart of Energy scaling.

The next step in the program is as seen in Figure C.3, the computation of the motion
generating Wrench W 0,tcp

K (3.16) with the newly calculated Co-stiffnesses Gt,r,c. The
newly calculate elastic Wrench W 0,tcp

K is then in combination with the in subsection C.2.2
described Wrenches W 0,i

Cj
(3.10) to calculate the torques τ>motion (3.18) and of power Pctrl

(3.29) which the controller is capable of transferring to the robot. This is then used as input
to Damping injection function visualized in Figure C.7 and described in subsection 3.4.2.
The Damping injection function limits Pctrl, by increasing the Damping coefficients B

with the scaling parameter β (3.33). The computation of β is based on the robots energy
exchanged with its environment due to its motion and a by the user predefined maximal
power threshold Pmax.

Pmotion ≤ Pmax

β = 1

Yes

β =
(J>(q) W 0,tcp

K )
>
q̇−Pmax

q̇>Binit(q) q̇

No

B(q) = β ·Binit(q)

Figure C.7: Shows the flowchart of Damping injection.

From this newly computed B (3.32), resulting damping torque τDamping (3.26) is computed.
The summation of τmotion and τDamping is equal to τctrl as defined in Equation 3.38.

C.2.4 Joint limit avoidance

The following section gives an inside into how the implementation of the Joint limit
avoidance, described in section 3.5 and visualized in Figure C.8. In the first step the
angular distances q̄i and q

i
, which describe the angular displacement between the joints

current angular position qi and its the upper (q̄i,limit) and lower (q
i,limit) physical limit. In

the next step it is checked if angular displacement q̄i is smaller than a user defined upper
threshold q̄i,J . If this is the case a torque τqi = τq̄i as defined in Equation 3.35 is generated.
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In case this q̄i is not smaller than q̄i,J it is check if q
i
is smaller than a user defined lower

threshold q
i,J

. If this is true a torque τqi = τq
i
as defined in Equation 3.35 is generated.

In the event that none of these two conditions no torque is generated as it does not violate
the joint constraint set by the upper and lower thresholds.

τqi(q) = 0

Compute q
i
and qi

q
i
≤ q

i,J

Output τqi(q)

qi ≤ qi,J

τqi(q) =
Ω

q2
i

(
1

q
i

− 1

q
i,J

)
τqi(q) = −Ω

q2
i

(
1

qi
− 1

qi,J

)Yes

Yes

No

No

Figure C.8: Illustrates the flowchart of Joint avoidance.
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Trajectory and Contraints D
In this part of the report the trajectory used for the validation of the implemented control
strategy (chapter 4) are described.

D.1 Cartesian Constraint Test

The trajectory chosen to verify the features of the controller described in chapter 3 is
defined as an translation p0

d(t), (D.1) and a fixed orientation defined by the Rotation
matrix R0

d(t) (D.2).

p0
d(t) =

 0.129 + 0.5 · sin (t)

0.4 · cos (t)

0.74 + 0.35 · sin (2 · t)

 (D.1)

R0
d(t) =

0 0 1

1 0 0

0 1 0

 (D.2)

When merging (D.1) and (D.2) with each other they result in the homogeneous
transformation matrix H0

d(t) (D.3).

H0
d(t) =


0 0 1 0.129 + 0.5 · sin (t)

1 0 0 0.4 · cos (t)

0 1 0 0.74 + 0.35 · sin (2 · t)
0 0 0 1

 (D.3)

This transformation is then used as an anchor point for the spring pulling on the
end-effector of the robot. An illustration of the trajectory is given in Figure D.3
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Figure D.1: Illustrated the KUKA LBR iiwa in the configuration H0
tcp at t = 0s and the

sline trajectory.

0.1
0.2

0.3
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0.6

0.7

−0.4

−0.2

0
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0.4

0.4

0.6

0.8

1

XY

Z

Figure D.2: Illustrated the sline trajectory p0
d(t).
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0.2

0.4

0.6

p0
dx

in

m

−0.4

−0.2

0

0.2

0.4

p0
dy

in

m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0.4

0.6

0.8

1

time in s

p0
dz

in

m

Figure D.3: Illustrated the x,y and z coordinate specific components of the sline
trajectory p0

d(t).
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LBR Model E
This appendix lists the symbolically solved spatial twists ξ̃, the Forward Kinematic
equation for H0

tcp and the Body Jacobian in ??,?? and ?? respectively. In this appendix
the following notation for the use of the trigonometric functions will be used used.

sin(θ1) = s1

cos(θ1) = c1

sin(θ1 + θ2) = s1,2

cos(θ1 + θ2) = c1,2

E.1 Spatial Twist

ξ0
1 =



0
0
0
0
0
0
1


ξ0

2 =



−0.340
0
0
0
0
1
0


ξ0

3 =



0
0
0
0
0
0
1


ξ0

4 =



0.74
0
0
0
0
−1
0


ξ0

5 =



0
0
0
0
0
0
1


ξ0

6 =



−1.14
0
0
0
0
1
0


ξ0

7 =



0
0
0
0
0
0
1


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E.2 Forward Kinematic

This part of the appendix shows the symbolic representation of the homogenoues
transformation from H0

tcp.

E.2.1 Rotation Matrix

R0
tcp =

r11 r12 r13

r21 r22 r23

r31 r32 r33


r11 = s7 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4)− c5 (c3s1 + c1c2s3))

− c7 (s6 (s4 (s1s3 − c1c2c3) + c1c4s2) + c6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

r12 = s7 (s6 (s4 (s1s3 − c1c2c3) + c1c4s2) + c6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

+ c7 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4)− c5 (c3s1 + c1c2s3))

r13 = c6 (s4 (s1s3 − c1c2c3) + c1c4s2)− s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3))

r21 = c7 (s6 (s4 (c1s3 + c2c3s1)− c4s1s2) + c6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

− s7 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4)− c5 (c1c3 − c2s1s3))

r22 = −s7 (s6) (s4 (c1s3 + c2c3s1)− c4s1s2) + c6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

− c7 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4)− c5 (c1c3 − c2s1s3))

r23 = s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3))− c6 (s4 (c1s3 + c2c3s1)− c4s1s2)

r31 = c7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4))− s7 (s5 (c2s4 − c3c4s2)− c5s2s3)

r32 = −c7 (s5 (c2s4 − c3c4s2)− c5s2s3)− s7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4))

r33 = s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + c6 (c2c4 + c3s2s4)

(E.1)

E.2.2 Position Vector

p0
tcp =

pxpy
pz


px = l7 (c6 (s4 (s1s3 − c1c2c3) + c1c4s2)− s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

− l5s4 (s1s3 − c1c2c3)− l2c1s2 + l8s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3))

− l8 (c6 − 1) (s4 (s1s3 − c1c2c3) + c1c4s2)− l5c1s2 (c4 − 1)

py = l8 (s4 (c1s3 + c2c3s1)− c4s1s2) (c6 − 1)

− l7 (c6 (s4 (c1s3 + c2c3s1)− c4s1s2)− s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

+ l5s4 (c1s3 + c2c3s1)− l2s1s2 − l8s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3))

− l5s1s2 (c4 − 1)

pz = l7 (s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + c6 (c2c4 + c3s2s4))− l2 (c2 − 1)

− l8 (c6 − 1) (c2c4 + c3s2s4)− l8s6 (c5 (c2s4 − c3c4s2) + s2s3s5)− l5c2 (c4 − 1)− l5c3s2s4

(E.2)
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E.3 Body Jacobian

Jb =



j11 j12 j13 j14 j15 j16 j17

j21 j22 j23 j24 j25 j26 j27

j31 j32 j33 j34 j35 j36 j37

j41 j42 j43 j44 j45 j46 j47

j51 j52 j53 j54 j55 j56 j57

j61 j62 j63 j64 j65 j66 j67


(E.3)

j11 = − (c7 (s6 (s4 (s1s3 − c1c2c3) + c1c4s2) + c6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

−s7 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4)− c5 (c3s1 + c1c2s3)))

(l9 (c6 (s4 (c1s3 + c2c3s1)− c4s1s2)− s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

−l8 (s4 (c1s3 + c2c3s1)− c4s1s2) (c6 − 1)− l5s4 (c1s3 + c2c3s1)

+l2s1s2 + l8s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)) + l5s1s2 (c4 − 1))

− (c7 (s6 (s4 (c1s3 + c2c3s1)− c4s1s2) + c6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

−s7 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4)− c5 (c1c3 − c2s1s3))) (l5s4 (s1s3 − c1c2c3)

−l9 (c6 (s4 (s1s3 − c1c2c3) + c1c4s2)− s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

+l2c1s2 − l8s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3))

+l8 (c6 − 1) (s4 (s1s3 − c1c2c3) + c1c4s2) + l5c1s2 (c4 − 1))

j12 = (s7 (s5 (s2s4 + c2c3c4) + c2c5s3)− c7 (c6 (c5 (s2s4 + c2c3c4)− c2s3s5)− s6 (c4s2 − c2c3s4)))

(l2 (c2 − 1)− l9 (s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + c6 (c2c4 + c3s2s4)) + l8 (c6 − 1) (c2c4 + c3s2s4)

+l8s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + l5c2 (c4 − 1) + l5c3s2s4)

+ l2 (s7 (s5 (s2s4 + c2c3c4) + c2c5s3)− c7 (c6 (c5 (s2s4 + c2c3c4)− c2s3s5)− s6 (c4s2 − c2c3s4)))

− (s7 (s5 (c2s4 − c3c4s2)− c5s2s3)− c7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4)))

(l2s2 − l9 (s6 (c5 (s2s4 + c2c3c4)− c2s3s5) + c6 (c4s2 − c2c3s4))

+l8 (c6 − 1) (c4s2 − c2c3s4) + l8s6 (c5 (s2s4 + c2c3c4)− c2s3s5) + l5s2 (c4 − 1)− l5c2c3s4)

j13 = l5c5s4s7 − l8c5s4s7 + l8c7s4s5 − l8c4s6s7 − l9c7s4s5 + l9c4s6s7 + l5c6c7s4s5

+ l8c5c6s4s7 − l8c6c7s4s5 − l9c5c6s4s7

j14 = l8c5c7 − l9c5c7 − l5s5s7 + l8s5s7 + l5c5c6c7 − l8c5c6c7 − l8c6s5s7 + l9c6s5s7

j15 = −s6s7 (l8 − l9)

j16 = −c7 (l8 − l9)

j17 = 0
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j21 = (s7 (s6 (s4 (s1s3 − c1c2c3) + c1c4s2) + c6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

+c7 (s5 (c4 (s1s3 − c1c2c3)− c1s2s4)− c5 (c3s1 + c1c2s3)))

(l9 (c6 (s4 (c1s3 + c2c3s1)− c4s1s2)− s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

−l8 (s4 (c1s3 + c2c3s1)− c4s1s2) (c6 − 1)− l5s4 (c1s3 + c2c3s1) + l2s1s2

+l8s6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)) + l5s1s2 (c4 − 1))

+ (s7 (s6 (s4 (c1s3 + c2c3s1)− c4s1s2) + c6 (c5 (c4 (c1s3 + c2c3s1) + s1s2s4) + s5 (c1c3 − c2s1s3)))

+c7 (s5 (c4 (c1s3 + c2c3s1) + s1s2s4)− c5 (c1c3 − c2s1s3)))

(l5s4 (s1s3 − c1c2c3)− l9 (c6 (s4 (s1s3 − c1c2c3) + c1c4s2)

−s6 (c5 (c4 (s1s3 − c1c2c3)− c1s2s4) + s5 (c3s1 + c1c2s3)))

+l8 (c6 − 1) (s4 (s1s3 − c1c2c3) + c1c4s2) + l5c1s2 (c4 − 1))

j22 = (c7 (s5 (s2s4 + c2c3c4) + c2c5s3) + s7 (c6 (c5 (s2s4 + c2c3c4)− c2s3s5)− s6 (c4s2 − c2c3s4)))

(l2 (c2 − 1)− l9 (s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + c6 (c2c4 + c3s2s4))

+l8 (c6 − 1) (c2c4 + c3s2s4) + l8s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + l5c2 (c4 − 1) + l5c3s2s4)

+ l2 (c7 (s5 (s2s4 + c2c3c4) + c2c5s3) + s7 (c6 (c5 (s2s4 + c2c3c4)− c2s3s5)− s6 (c4s2 − c2c3s4)))

− (c7 (s5 (c2s4 − c3c4s2)− c5s2s3) + s7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4)))

(l2s2 − l9 (s6 (c5 (s2s4 + c2c3c4)− c2s3s5) + c6 (c4s2 − c2c3s4)) + l8 (c6 − 1) (c4s2 − c2c3s4)

+l8s6 (c5 (s2s4 + c2c3c4)− c2s3s5) + l5s2 (c4 − 1)− l5c2c3s4)

j23 = l5c5c7s4 − l8c5c7s4 − l8c4c7s6 + l9c4c7s6 − l8s4s5s7 + l9s4s5s7

+ l8c5c6c7s4 − l9c5c6c7s4 − l5c6s4s5s7 + l8c6s4s5s7

j24 = l8c7s5 − l8c5s7 − l5c7s5 + l9c5s7 − l5c5c6s7 + l8c5c6s7 − l8c6c7s5 + l9c6c7s5

j25 = −c7s6 (l8 − l9)

j26 = s7 (l8 − l9)

j27 = 0

j31 = l2c6s2s3s4 − l2c3s2s5s6 − l5c6s2s3s4 + l5c3s2s5s6 − l5c5s2s3s6 + l5c2s4s5s6

+ l8c5s2s3s6 − l8c2s4s5s6 − l2c4c5s2s3s6 − l5c3c4s2s5s6 + l5c4c5s2s3s6 + l8c3c4s2s5s6

j32 = l2c3c6s4 − l5c3c6s4 − l5c3c5s6 + l8c3c5s6 + l2s3s5s6 − l5s3s5s6

− l2c3c4c5s6 + l5c3c4c5s6 + l5c4s3s5s6 − l8c4s3s5s6

j33 = s4s5s6 (l5 − l8)

j34 = c5s6 (l5 − l8)

j35 = 0

j36 = 0

j37 = 0

j41 = c7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4))−s7 (s5 (c2s4 − c3c4s2)− c5s2s3)

j42 = c7 (c6 (c3s5 + c4c5s3) + s3s4s6) + s7 (c3c5 − c4s3s5)
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j43 = −c7 (c4s6 − c5c6s4)− s4s5s7

j44 = −c5s7 − c6c7s5

j45 = −c7s6

j46 = s7

j47 = 0

j51 = −c7 (s5 (c2s4 − c3c4s2)− c5s2s3)−s7 (c6 (c5 (c2s4 − c3c4s2) + s2s3s5)− s6 (c2c4 + c3s2s4))

j52 = c7 (c3c5 − c4s3s5)− s7 (c6 (c3s5 + c4c5s3) + s3s4s6)

j53 = s7 (c4s6 − c5c6s4)− c7s4s5

j54 = c6s5s7 − c5c7

j55 = s6s7

j56 = c7

j57 = 0

j61 = s6 (c5 (c2s4 − c3c4s2) + s2s3s5) + c6 (c2c4 + c3s2s4)

j62 = s6 (c3s5 + c4c5s3)− c6s3s4

j63 = c4c6 + c5s4s6

j64 = −s5s6

j65 = c6

j66 = 0

j67 = 1

83


	Front page
	Titelblad
	Introduction
	Mathematical modelling of a Serial Manipulator
	Controller
	Validation
	Summary
	References
	Cartesian Acceleration
	General equation of motion
	Implementation
	Trajectory and Contraints

