
Honeypots on AAU’s Network

Master’s Thesis

Aalborg University
Networks and Distributed Systems

[This page is intentionally left blank.]

Networks and Distributed Systems
Aalborg University

http://www.aau.dk

Title:
Honeypots on AAU’s Network

Theme:
Integrating Container Based Honeypots
on the University Network

Project Period:
Spring Semester 2019

Project Group:
Group 1024

Participant(s):

Rasmi Vlad Mahmoud

Supervisor(s):
Jens Myrup Pedersen

Page Numbers: 69

Date of Completion:
June 6, 2019

Abstract:

Aalborg University is having a large and com-
plex network in order to guarantee daily op-
erations. Due to its size and complexity is
hard to assets the threats and also to de-
termine which systems face the highest risk
of being attacked. Therefore, the necessity
of having system that can keep track of the
events is raised.
Honeypots can mimic a large variety of pro-
tocols, therefore the latest existing honeypot
technologies were investigated. Moreover, a
information security risk assessment was con-
ducted to establish the university context and
to identify the groups of attackers and their
motives. Since is desired to integrated the
honeypots with Aalborg University’s network
its structure was analyzed in order to deter-
mine honeypots’ position that can give the in-
sights into system probed.
To integrate the honeypots with the existing
AAU’s network, Docker engine was installed
on a virtual private server provided by the
university. The subnet used for the honey-
pots is located outside the university firewall
for the traffic to not be affected. Every con-
tainer is assigned an static IP address from the
available that has access to/from the Internet,
additionally honeypots are capable of track-
ing the interactions in individual log files that
can be further analyzed. Nonetheless, honey-
pots being active on AAU’s network they act
as a decoy system by attracting the attackers.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the
authors.

http://www.aau.dk

[This page is intentionally left blank.]

Preface

About

The report is written and completed as master’s thesis for MSc. of Networks and Distributed
Systems at Aalborg University.

The theme for the project is ”Integrating Container Based Honeypots on the University Net-
work”.

Report reading guide

All the referenced sources for the report can be seen in the bibliography. For the source
references the Vancouver method is used. I.e. a source will be referenced with the following
method and layout, with numbers and square brackets:

”Example text [1].”

Where the source referenced is number ”1” in the bibliography.
Sections and chapters are referenced with chapter and section numbers followed by one another:

”Example text (see section 2.3.1).”

Where the section referenced in the text is chapter 2 section 3 and subsection 1.

v

[This page is intentionally left blank.]

Acronyms

AAU Aalborg University.

BYOD Bring-Your-Own-Device.

FTP File Transfer Protocol.

GELF Graylog Extended Log Format.

HIHP High-Interaction Honeypots.

HPC High-performance computing.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

ICS Industrial control systems.

IMAP Internet Message Access Protocol.

IPS Intrusion Prevention System.

JSON JavaScript Object Notation.

LIHP Low-Interaction Honeypots.

MIHP Medium-Interaction Honeypots.

MPI Message Passing Interface.

MQTT Message Queuing Telemetry Transport.

MSSQL Microsoft SQL Server.

NIC Network Interface Card.

vii

viii Acronyms

NIDS Network Intrusion Detection System.

OS Operating System.

POP3 Post Office Protocol 3.

POP3S Post Office Protocol 3 Secure.

RDP Remote Desktop Protocol.

SIP Session Initiation Protocol.

SMB Server Message Block.

SMTP Simple Mail Transfer Protocol.

SSH Secure Shell.

TFTP Trivial File Transfer Protocol.

TTPs Tactics, Techniques and Procedures.

UI User-Interface.

UPnP Universal Plug and Play.

VM Virtual Machine.

VMM Virtual Machine Monitor.

VoIP Voice over Internet Protocol.

VPS Virtual Private Server.

Table of contents

1 Introduction 1
1.1 Contribution . 2
1.2 Report Structure Outline . 2

2 Problem analysis 5
2.1 State of the Art . 6
2.2 Risk Assessment . 10

2.2.1 Context Establishment . 11
2.2.2 Risk Identification . 12
2.2.3 Risk Analysis . 15
2.2.4 Risk Evaluation . 16

2.3 Problem Statement . 17
2.4 AAU’s Network . 17
2.5 Desired System . 19

3 System requirements 21
3.1 System Requirements . 22

3.1.1 SR1 - Configurable and Portable System . 22
3.1.2 SR2 - Integration with AAU’s Network . 22
3.1.3 SR3 - Mimic Systems and Protocols used at Aalborg University (AAU) . . 22
3.1.4 SR4 - Low/Medium Response to Requests 22
3.1.5 SR5 - Register Connections . 22
3.1.6 SR6 - Save Information in Relation with Connections 22
3.1.7 SR7 - Monitor the Connections . 23
3.1.8 SR8 - UI for Statistics . 23
3.1.9 SR9 - Extract Common Patterns . 23
3.1.10 SR10 - Track the Connections per Day . 23

3.2 Setup Concerns . 23
3.3 System Attributes . 24

ix

x Table of contents

4 System design 27
4.1 Related Architectures . 28

4.1.1 Bare Metal Servers . 28
4.1.2 Virtual Environment - Virtual Machines . 28
4.1.3 Virtual Environment - Containers . 30

4.2 Docker . 31
4.2.1 Docker Containers . 32
4.2.2 Docker Volumes . 32
4.2.3 Docker Networks . 33

4.3 System architecture . 34
4.3.1 Hosting Environment . 34
4.3.2 Honeypots Integration with Docker . 34
4.3.3 Network Design . 35

4.4 Logs Processing . 37

5 Docker Security 39
5.1 Firewall . 41

5.1.1 Netfilter - IPtables . 41
5.1.2 Iptables - settings . 42

6 Honeypots Deployment 45
6.1 Docker and IPTables . 46
6.2 From Attacker point of View . 50
6.3 From Defender point of view . 52
6.4 Logs - Processing . 53

7 Results and Observations 55
7.1 Cowrie . 57
7.2 Heralding . 57
7.3 Dionaea . 59
7.4 Rdpy and Mailoney . 59

8 Conclusion 61

List of Figures 63

List of Tables 65

Bibliography 67

CHAPTER 1

Introduction

Cyber security is a fundamental requirement for all the organizations,and this is due to the
tremendous growth of information and networks. Every institution has particular cyber security
challenges to deal with, and there are different approaches and perspectives that are used for
evaluating the risk and to manage the security across institutions.

Educational and research institutions are dealing with specific cyber security threats due to
their huge amounts of digital data, used both for the normal operation of the organization, but
also what is tagged as research data. For instance, universities carry on large variety of activities
and they cannot have the typical organizational boundaries, therefore universities are required
to establish custom security policies to accustom their needs. [32]

In the report from 2018 Cisco is focusing the public sector, and furthermore education receives
special attention and share insights from schools, high schools and universities from United
States. Over half of higher education (58%), reported that they have had experienced at least one
security breach, and this percentage is the highest over all public sector industries. This types of
breaches are most of the time identified with damage to the institution reputation, additionally
nearly 51% of the attacks resulted into lost of money, over 500,000$, for the universities . [6]

Besides, Danish Defence Intelligence Service Centre for Cyber Security (CFCS) stated in
February 2017 that foreign states are conducting acts of espionage against Danish research. The
curiosity is generated both from political and commercial motives, but nonetheless assailants
were interested also in the institution infrastructure that can be used for attacking other public
Danish institutions. [13]

Additionally, in 2018 Cisco’s report 41% of the universities claimed that budget limitations
and lack of trained personal (27%) are some of the major impediments that they are facing.
Moreover, universities report that they have employed half of the median number of security
personal that most of the enterprises have. This insufficient number of personnel results in
reduced threats’ investigation and deployment of new technologies that can aid to make their

1

2 Chapter 1. Introduction

security posture more powerful.[6]

Huge amount of data require a method to alert and monitor the unauthorized access to network.
Traditional firewalls are used to filter the inbound and outbound traffic, but this method is
not able of informing who is trying to breach the network. After, there are Network Intrusion
Detection System (NIDS) and Intrusion Prevention System (IPS) that are mechanism used for
prevention and detection, additionally another method of protection is to have a decoy system
that lures that attacker into thinking that he is actually on real system, while he is trapped and
monitored inside a Honeypot. [2]

Honeypots are systems that attract attackers into trying to breach them. This interest is
generated by the idea that a honeypot is looking like a real system in the network. Furthermore,
these systems are voluntarily created to be attacked or compromised.

A honeypot permits incoming attacks and offers the possibility of monitoring and collecting
information while acting as a decoy system. Honeypots are usually designed for catching any
actions that an actor is performing when an attack is initiated. By offering these possibilities
honeypots show great value when dealing with zero-days exploits.

1.1 Contribution

The master’s thesis is investigating into the possibility of deploying honeypots within a large and
complex network. Honeypots permit a high flexibility in terms of design due to their possibility
of integration with a physical or virtualized environment. Furthermore, a systematic approach
is presented to integrate and deploy honeypots into a corporate network. Docker containers are
configured to act as real device on the network, by assigning a static public IP for the containers
that have access to/from the Internet. The subnet where the containers are configured, is a
subnetwork of the Danish Research Network, consequently every container will be hosting a
different honeypot that permits access using the configured static ip address.

1.2 Report Structure Outline

This section is presenting the report overview focusing on the structural organization, therefore
in the followings a summary of the chapters can be seen:

Chapter 2 - Problem Analysis
Starting by presenting honeypots technologies according to the state of the art, further
risk assessment is performed for a better understanding of the university perspective. Ac-
cordingly, the problem statement is formulated, and after that Aalborg University network
structure is investigated. At the end, a rough idea of the desired system is discuss

Chapter 3 - System Requirements
Focusing on the system requirements that are used to describe system, but also on system
attributes. At the end, development concerns are discussed.

1.2. Report Structure Outline 3

Chapter 4 - System Design
Starting by analyzing the possibilities of hosting environment for the honeypots, and chap-
ter is continuing by a rough presentation of Docker technologies that have been used.
Later, the system architecture is outlined, by focusing on the main components. Chapter is
ending by discussing how the logs are processed.

Chapter 5 - Docker Security
Focused is put into the system’s aspects in terms of security, by detailing docker security
features and presenting the firewall settings that were used to isolate the honeypots.

Chapter 6 - Honeypots Deployment
Architecture setup is presented by focusing on two different angles: the attacker’s perspec-
tive and the defender one. At the end, details are given for processing and organizing the
stored log files.

Chapter 7 - Results and Observations
Overview of the honeypots activity is presenting by considering at the beginning general
aspects. Further, the honeypots are discussed one by one.

Chapter 8 - Conclusion
Final observations are outlined by considering the main ideas of the report. Nonetheless,
final answers for the research questions are provided.

[This page is intentionally left blank.]

CHAPTER 2

Problem analysis

The chapter is starting by presenting the state of art honeypots technologies, to create an initial
overview of the possibilities. Further, a risk assessment is performed to determine the university
context, from a structural perspective the chapter is organized as follows:

• Overview of State of Art - general aspects and honeypots technologies are detailed

• Overview of the Risk Assessment - conducted to identify the threats for AAU and also
established the university context

• Overview of the Problem Statement - is identifying the problem and also formulating the
research question

• Overview of AAU’s Network - is presenting the network structure to understand some its
main components

• Overview of Desired System - is presenting an initial sketch of the system without going
in any technical details.

5

6 Chapter 2. Problem analysis

2.1 State of the Art

Honeypots can be classifyed based on certain criteria. For instance, based on the level of interac-
tion, which is determined based available commands that an attacker is having access to when is
inside a honeypot and also on received feedback, honeypots can be classified in: Low-Interaction
Honeypots (LIHP), Medium-Interaction Honeypots (MIHP) and High-Interaction Honeypots
(HIHP).

LIHP

LIHP offers a limited range of service for the attacker to use. There is no operating system
for the attacker to use, but this type of honeypot can emulated service like Secure Shell (SSH)
or File Transfer Protocol (FTP) that can be attractive for the assailant. Its main advantages are
represented by the aspects of being easy to deploy and maintain, furthermore these types of
honeypots are excellent statistical tools by being able to detect high peaks of requests. Although,
their drawbacks are the facts that they are limited in discovering new attack patterns and their
response is moderate to exploits. [23]

MIHP

In contrast with LIHP, MIHPs offer more interaction and access to the attacker, although no
operating system is available. The emulated services are more complex and are able return a re-
sponse that can attract an attacker to carry on with the attack. Due to the level of interaction and
availability of commands, both MIHP and LIHP, are having low changes of being compromised.
[23]

HIHP

By far the most advanced type of honeypots. These honeypots offer the attacker a real op-
erating system to use that is not restricted, therefore require more work for deployment and
maintenance. Accordingly the complexity these honeypots offer a large variety of monitoring
services, including attacks logs, data access, file traversing and so on. Nonetheless, due to the
high amount of information generated the analysis needs to be done manually. While, the first
two did not have a high risk of being compromised, this type of honeypot present a high risk
and it needs to be monitored permanently [23]. In table 2.1 a summarize of honeypots types and
their primarily feature can be seen.

LIHP MIHP HIHP
real operating system no no yes
risk of compromise low mid high
wish of compromise no no yes
information gathering low mid high
knowledge to deploy low mid high
knowledge to develop low high high
maintenance time low low very high

Table 2.1: The table provide in [23] is summing up the principal characteristics of LIHP, MIHP and HIHP

2.1. State of the Art 7

In table 2.2 a classification of the existing honeypots is started. The honeypots will be cat-
egorized into a scale of Low, Medium and High based on their functionalities. For instance,
Information is considerate the amount of data that the honeypot is capable of tracking and for
Risk is considered if the honeypot can be compromised based on their commands availability.
Therefore, for an LIHP honeypot the risk of compromise is low, since is not a real operating
system. Consequently, HIHP will be tagged as high for the information column since is able to
provide the most information about the attacker and it’s Tactics, Techniques and Procedures
(TTPs).

Honeypot Information Risk
Cowrie Medium Medium
Conpot Low Low
Kojoney2 Medium Low
Glastopf Medium Low
Shockpot Medium Low
Thug Medium Low
Modern Honey Network High Medium
Dionaea Medium Low

Table 2.2: Existing honeypots frameworks classification.

Moreover, honeypots can be classified based on their desired purpose. For instance, there are
Research and Production honeypots, in the following the characteristic of each type will be
further detailed.

• Research honeypots - are basically used to gain information about the attacks and attacker.
The research honeypots are used mostly by educational institutions, military or govern-
ment organizations with the role of gathering as much information as possible about TTPs.
Beside, their advantages these types of honeypots have also some drawbacks: they are not
offering direct value to the organization and are hard to maintain, but the information
that they offer is extremely important. Using information, organizations can develop new
policies to stay ahead of the cyber threats. [23]

• Production honeypots - are primary used by companies and are easy to deploy and main-
tain. These honeypots are placed inside the production network to improve overall security.
These honeypots are mimicking the production network, by offering services such as FTP,
Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP). They guard
the principal network by deceiving the attacker, and by alerting the network’s administra-
tors of the activity. Even if the amount of information provided is less, the risk of being
compromised is lower. [23]

There are a variety of existing honeypot frameworks, but some of them are already outdated
by this time and therefore the research will be focusing only on the those that were developed
starting with the year 2015. The purpose is to review some of the existing frameworks that
are still maintained and also to chose the most appropriate ones for the project based on the
section 2.2 and the chapter 3 that will be discussed further in the report.

8 Chapter 2. Problem analysis

Cowrie is a MIHP capable of logging brute force attacks on SSH and Telnet with the capacity
of keeping track of the interactions an attacker is having with the shell. In addition, Cowrie
is having a fake file system with the ability of adding or removing files, and also all the
downloaded files are saved for later inspection. [23]

Conpot is a LIHP of honeypot that aims to collect intelligence about the attackers that are
targeting systems that monitor or control industrial processes. Conpot is able to understand
common Internet protocols such as HTTP, but also some Industrial control systems (ICS)
specific ones like kamstrup, BACnet or mosbus. [23]

Kojoney2 is a MIHP that is listening on port 22 for incoming SSH attacks. The same like Cowrie
is capable of downloading the requested files and place them into secure locations, furthermore
its purpose is to fingerprint attacker’s behavior and tools. When is exposed to external network,
Kojoney2, can identify attacks’ source and well as fingerprinting the attackers’ moves after he
gets access.

Glastopf is a modern LIHP web server. This type of honeypot gathers information about
web-based attacks such as local and remote file inclusions or SQL injections. Moreover, Glastopf
is capable of downloading files that are requested, keeping the attacker’s interest to continue
further with his attack.

Shockpot was created after the vulnerability Shellshock/CVE-2014-6271 of the bash shell. It
is emulating an Apache-server that allows attackers to execute arbitrary code into the original
vulnerability.[23]

Thug is a LIHP that emulates a real web-browser actions and its main task is to detect malicious
code. Thug uses Google V8 Javascript engine that is embedded with pyv8 for analyzing
malicious code and Libemu library with Pylibemu for detecting a shellcode emulation.[35]

Dionaea is a honeypot that offers exploitable network services. Some of the offered protocols
are: Server Message Block (SMB)SMB, HTTP, FTP, Microsoft SQL Server (MSSQL), or Voice
over Internet Protocol (VoIP). Its action is to trap malware that attacks the stated protocols and
furthermore to obtain a valid copy of it.

Modern Honey Network is a management system capable of integrating some of the previously
presented honeypots sensor such as: Cowrie, Dionaea, and Glastopf, and others. MHN is
collecting the attacks’ data and is able to plot the data into a World Map view while maintaining
all the information about the attack parameters.

As an overview, there are different types of honeypots capable of mimicking various types of
protocols and systems. Moreover, some of the honeypots require higher maintenance time then
others, but also the information provided is broader. Therefore, it is important to consider not
only the data that honeypot is producing, but also the required time deployment, maintenance
and its applications area.

For outlining the types of information a honeypot can provide, two long term honeypot project

2.1. State of the Art 9

that are still active and maintained will be discussed. These projects are both used as monitoring
tool, but also as a prevention and detection ones. They provide important insights into the
number of attacks, sources and destinations of the attacks.

The Finish security company F-Secure have released a report [12] about 2018 attacks landscape.
Their honeypots’ network revealed that U.K outranked Russia in 2018 at the total number of
attacks, and that U.S is still the preferred country when comes to being a target. When it comes
to which country is haunting which, F-Secure have stated that Russia is after U.S, but also after
U.K, Ireland and Netherlands. In fig. 2.1 an overview of sources and destination for the attacks
can be seen. Moreover in fig. 2.2 a display of the number of the attacks and port that was probed
is presented. It can be seen that the highest activity was on port 445.

Figure 2.1: Most relevant relation source-destination provided in F-Secure report[12].

10 Chapter 2. Problem analysis

Figure 2.2: Top TCP ports probed provided in F-Secure report[12].

Additionally, the German company Telekom have launched in 2013 a project where 97 honey-
pot’s sensors where deployed over the world and the project is still going and providing insights
of the attacks. A real-time cyber attack map based on the data collected by the honeypots is
presented on the site https://sicherheitstacho.eu/start/main. Telekom uses the information gathered
to protect their own systems and shares the data also with security vendors. On the website
there are available statistics about total number of attacks, type of sensors that are used and the
protocols used in probing [11]. For instance, in table 2.3 an overview of the top countries and
their number of attacks for March 2019 can be seen.

Country Attacks
Russia 59011166
United States 46167303
Poland 28393206
China 16620060

Table 2.3: Overview of the top ranked countries by number of attacks. [11]

The following section will present an analytical method in identifying information security risk
for AAU. The university is having a huge amount of data and also a big variety of systems, it is
valuable to established the cyber security context that AAU fits into and also to form a general
overview over the possible threats and their principals groups that can perform cyber attacks.
Nonetheless, performing a risk assessment is a method for AAU to identify risks before any
actual problems are appearing.

2.2 Risk Assessment

The ISO 27005 Information Security Risk Management standard was used in order to have a
systematical approach towards the organization’s risk. Not to mention, that risk assessment
represents a crucial analysis within any organization and based on it the whole core of informa-
tion security management is established [28]. Furthermore, is one of the principal methods that

2.2. Risk Assessment 11

organization uses in order to determine what related technologies are best for protecting their
information assets [28]. The risk assessment process can be divided into three distinct branches
that are outlined in the fig. 2.3.

RISK ANALYSIS

RISK ASSESSMENT

1. Context Establishment

2. Risk Identification

3. Risk Analysis

4. Risk Evaluation

5. Risk Treatment

Figure 2.3: ISO 27015 steps in performing a risk assessment.

2.2.1 Context Establishment

Universities are special case of organizations due to their high amount of data, large number
of users, but also their special policies when it comes to cybersecurity. The type of informa-
tion universities posses make them important targets for the attackers. University are not only
having personal information about their employees, but they also hold valuable research data.
Nonetheless, Bring-Your-Own-Device (BYOD) policy is making it even more difficult, since stu-
dent’s devices can have outdated software and this is creating proper channels for the attackers.
In the following subsections, AAU context will be established from the perspective of a research
institution, an educational one and also as organizational one.

Research Context

The research that Aalborg University holds make it a valuable target for foreign intelligence
services. AAU is targeted not only due to its research information, but also due to its third party
data that is used to perform the research. Third parties’ information can come in different forms
(medical/health records, cutting edge technologies) or detailed information about discoveries.
AAU stands in vulnerable position since not only it needs to proper store the data, but it also
needs to protected it. In the event of threat which can alter the data, AAU can be held responsible
and this is implying serious damage to brand. Its reputation can be diminish by losing its
credibility and nonetheless, the circumstances can escalate to legal action.

12 Chapter 2. Problem analysis

Educational Context

Daily hundreds of students are relying on AAU’s network to access their educational material,
moreover the students at AAU are having access to different systems that can aid them in their
studies. Nonetheless, daily personal students’ devices connect to the university networks which
makes it nearly impossible to control their security state. In addition, the university holds
detailed personal information of their students such as CPR. numbers, home addresses, even
electronically copies of students’ passports. Therefore, this data can be priceless for any attackers
that can gain a lot of money selling it on the black market.

Institutional Context

Additionally from the students at AAU there are approximatively 3500 employees. The nec-
essary equipments (laptop, work stations, smart devices) are provided by the university, but it
still comes down to the personal information that the university is holding about their employ-
ees. Information such as contracts, bank statements, medical records and CPR numbers can be
considered at risk in the event of a threat.

2.2.2 Risk Identification

This subsection will be focusing on detecting the risk that can harm the assets. By asset in this
analysis is understood any person, equipment, or third party that is involved in normal function
of the university and presents a threat of being attacked. Therefore, the analysis is made by first
defining the general type of assets and then the possible attacks’ groups that might have the
necessary resources and motives.

Hardware - Any systems that are used during a normal work day at the university. For
instance laboratory equipment, employees workstation/laptops or servers

Software - Programs, applications, websites that were developed for and by AAU to per-
form its daily activities. For example some of the software assets for AAU can be Moodle,
STADS, RES, RUS or ESDH. More detail about the systems can be seen in table 2.4.

Information - at this category can fit any data that the university is holding, even if is
employee, students or research data

People - Employees expressed by academic staff, researchers or any other personnel.

Outsourced Services - in this category can fit the third-party services that are either bought
or lend to the university for research actions.

2.2. Risk Assessment 13

System Description

Moodle
Moodle is a virtual learning enviroment that AAU uses,

where courses material/information are posted.
Uptime is essential for the AAU to operate as a educational institution

STADS

STADS is the study administration system
that handles courses sign-up and grades access.

Therefore, concerns about grades falsification are raised,
but also personal data makes it a critical system.

Email service

Email service represents the main form of communication at AAU.
Emails can contain sensitive/confidential information,

therefore an attacker can potentially disrupt the normal state
by removing the spam filter and letting accounts exposed.

Budgeting and Planning Tool (RES)

RES is a budgeting and planning tool for resource management.
The RES is an important tool for key management leaders

for making qualified and long-term decisions.
Therefore, if is attacked can offer to the attackers a lot of information.

Economic system

If an assailant is getting access to the economic system,
data can be altered.

Bank statements or accounts can be modified
resulting into transaction being made to the attacker’s account.

Travel / outlay system (RUS)

RUS is the system used to manage the employees travels.
Therefore if it is exploited by attackers, they can

benefit of free expenses and also gain information
about employees travelling plan.

Electronic Case and Document Management (ESDH)
Is the system that is handling all the documents at AAU.

Compromising this system can lead to legal and reputation damage
due to wide type of information the system can poses.

Table 2.4: Overview of the systems that are used at AAU

Once the assets’ list was put in place, the next phase of identifying the source of threats can
be started. This step along with the next ones are important, because by narrowing down who
can possible attack the university is helping to understand which are the possible threats and
vulnerabilities. Therefore, some of the well-known groups that have the necessary resources to
attack the university’s assets are presented in the followings:

• Script Kiddie - their motivation comes from the desire of proving himself among others,
can show strong persistence even if he is facing failures. They are not skilled enough
to perform complicated attacks and their limited in terms of computational and financial
resources. [29]

• Cyber-terrorists - are motivated groups to cause harm in the society by attacking the critical
infrastructure. They have strong ideological and political motives, also they might go to
extreme. Their resources are significant and are capable of planning long attacks that
require preparation and carrying out. [29]

• Black hat hacker - his main motive is financial gain. His skill is varying, but is worth
considering that some of them are cybersecurity world’s experts. If they are organized into
a criminal structure their resources can be vast both computational and skill matter. [29]

• Hacktivist - highly similar with the cyber-terrorist groups, with the main differences that
hacktivists are not going to extreme and they focus their potential on selected groups,
politicians or individuals. Their resources and competences can be varying, since most
of them are acting solidarity. Once they are organized their computational resources and
competence are rising. [29]

14 Chapter 2. Problem analysis

• Insider - in this category is falling any untrustworthy employee who is motivated by fi-
nancial gain and also to cause the employer harm. In terms of resources, he might have
access to all the systems and have deep information about the organizational structure and
its security. [29]

A threat to an assets can be understood any "Potential cause of an unwanted incident which may
result in harm to a system or organization" [29]. Classifying threats into categories based on cause
and principal actors the following classes can be determined:

Natural - power failure, floods, fire, earth quakes

Unintentional - a non-hostile actor, either an insider or an outsider

Intentional - outsider/insider hostile individual or group (organized hackers groups, for-
eign agencies, industrial espionage, terrorists), or non-hostile that his principal motive is
curiosity

Since, the natural types of threats are not interesting for this report scope, further detail will
be put into the unintentional and intentional classes. Therefore, a non-hostile actor can be an
employee that misuses some of the systems that he has access to, and even if the action is done
purely accidental this can still cause loss of data, system malfunction or alter of the available
information. In the following table 2.5 threats are imagined based on their assets and principal
actors.

Group/Threat Source Assets Threats Attack Methods

Script Kiddies
Hardware
Software

Information

Not responding servers due to DDoS
Services as Moodle,STATS,RES are not working due to attacks

Sensitive information are obtain from servers
Weak credential are exposed

DDoS Attack
SQLi
XSS

Dictionary attack
Brute-force attack

Black hat hacker
All-above mentioned

People
Outsourced Services

All-above mentioned
Employees workstation blocked for ransom

Access to internal systems
Malware propagation by email

All-above mentioned
Phishing

Spear-phishing
Trojans

Ransomwares

Hacktivist
Software
People

Outsourced Services

Not responding servers due to DDoS
Expose of sensitive research information

Social-engineering
Phishing

Spear-phishing
Malwares

DDoS

Cyber-espionage

Hw/Sw
Information

People
Outsourced

Not responding servers due to DDoS
Research information are captured

All-above mentioned
AI-powered attacks

Insider
Hardware
Software

Information

Intentionally shutting down security systems
Copy sensitive information from servers

Exposed credential to systems
Trade brand secrets

Trojans
MITM
DDos

Table 2.5: Threats linked with the assets and their principal actors.

Continuously, another determinant factor at risk identification are the vulnerabilities. Threats
actually are taking advantage of them for causing harm. Precisely, A vulnerability is a weakness,
flaw, or deficiency that can be exploited by a threat to cause harm to an asset [29]. Vulnerabilities

2.2. Risk Assessment 15

can be categorized in different classes: Phishical, Hardware/Software or Human vulnerabilities.
Therefore, in table 2.6 a relation between vulnerability type and assets is developed, in order to
expose the defenseless actions.

Vulnerability class Assest Vulnerabilities

Hw/Sw

Hardware
Software

Information
Outsourced services

Old O.S.
Software outdated

Lack of back up servers
Weak encryption and integrity check

Service stop running and Erros

Phishical
Hardware

Information
Outsourced services

Unsecure hardware plug-in
Phishical remove of device

Human
People

Information

Social-engineering
Bring data out of the office

Store data into personal devices
Lack of security Awareness

Sensitive information discussed outside the office
Misuse of the systems

Table 2.6: Relation between the vulnerability type and corresponded asset is presented.

2.2.3 Risk Analysis

Based on the previously established assets, threats and vulnerabilities the actual risk needs to
be determined by judging the frequency of threats and the severity of exploited vulnerabilities.
Since there are not available previous statistics of the attacks the following analysis will be
made from an visionary point of view. Threat’s likelihood based on the attacked assets and
consequence is discovered, moreover it is classified into Likely, Possible and Rare .

In addition, impact is chose between Low, Medium or High determined by the possible damage
and the threat probability of occurrence. Threats are based on the vulnerabilities that are dis-
cussed in table 2.7. Furthermore, in table 2.8 these facts are outlined and the consequence is
explained:

16 Chapter 2. Problem analysis

Vulnerabilities Severity Explanation

Old O.S. High
Old operation systems have vulnerabilities and those

are exploited by attackers
Software outdated Medium Antivirus

Lack of back up servers Medium
Temporary out of service systems

Loss of data
Service stop running and Erros Low Short/long time annoyance

Unsecure hardware plug-in High
USB with malicious server

is insert into an important system

Phishical remove of device High
System containing sensitive data

is stolen

Social-engineering Medium
Employee can be tricked into

divulging company information
Bring data out of the office Medium Unauthorized person can read, steal them

Store data into personal devices Medium Personal device can be infected with malware

Lack of security Awareness High
Employee are not coping with the security

details. As consequence no interest is showing
in good cybersecurity practice.

Sensitive information discussed outside the office Low Outsiders might gain company information

Table 2.7: Vulnerabilities and their impact severity.

Threat Likelihood Impact Comments

Not responding servers due to DDoS Likely Medium
Depending on the actual server that is attacked,

the impact can vary from Medium to High

Services as Moodle,STATS,RES are not working due to attacks Rare High
Being some of the most used services at AAU,
an off period can results in high disturbance

Sensitive information are obtain from servers Possible High
AAU is holding both research and personal information,

if any of previous are tampered AAU can be held responsible

Weak credential are exposed Likely Low
Depending on the exposed credential and their associated systems,

the impact can vary

Employees workstation blocked for ransom Possible Medium
Employees workstation may held sensitive information, that

can be alter
Access to internal systems Possible High Research of personal data can be tampered

Malware propagation Likely High
Not depending on the malware type, if the network is infected

can have dangerous consequences

Expose of sensitive research information Possible High
As sensitive information can be classified patient records, shared

technologies from third party or secret project documentation
Research information are captured Likely Medium The dependency can become crucial if data is marketed

Intentionally shutting down security systems Likely Medium
The action can facilitate an attack and therefore the impact

can be varying from

Copy sensitive information from servers Likely Medium
Depending on the actual information and if their are markted,

the impact can raise to High
Exposed credential to systems Possible High System access, implicitly means access to valuable data

Trade brand secrets Possible Medium
Operational and security policies can be exposed by

rouge employes

Table 2.8: Previously presented threats and their Likelihood of occurrence at AAU.

2.2.4 Risk Evaluation

The risks were identified and their consequences and likelihoods were analyzed. Therefore, the
following step is to arrange the risks based on the based on its annoyance level. Moreover, risk
can be also mapped base on its probability of occurrence and impact level in order to determine
the organization tolerance line.

2.3. Problem Statement 17

2.3 Problem Statement

It has been seen during the risk assessment moments when the situation were based on
other universities research, due to the fact that other information were not publicly available.
Moreover, another aspect that came uncertain and difficult during the risk assessment was a
method to classify the most critical targets for an organization with various system and labor
personal. Additionally, was complicated to determine how to better dedicate the available
resources.

Therefore, honeypots become suitable systems due to their large applicability that can also
stand as a decoy/alert system, but also as information gathering systems. Accordingly, the
following question is raising:

"How can a honeypot network be integrated with AAU’s network, that could serve both as
decoy system but also as a information gathering tool?"

In order to integrated a new system into AAU’s network a good understanding of the actual
structure of the network is necessary. Therefore, in the next section AAU’s Network will be
presented based on knowledge that was gained from a previous student project. It is worth
mentioning that the mapping of the network was made from an insider point of view where all
the system were visible.

2.4 AAU’s Network

In previous project Aalborg University network was determined using NMAP and by trace-
routing different connection betweens buildings. As a starting point for the analysis an
existing documentation [31] was used and also additional insights were provided by the AAU
IT-department. An overview of the AAU’s Network map can be seen in fig. 2.4.

All incoming and outgoing traffic to/from AAU is going through 130.226.249.121 and
130.226.249.122. Then, incoming traffic passes through an edge into one core. It should be noted
that occasionally, it can be seen in the trace-route that two cores are passed through. These two
cores are connected together due to routing and to ensure redundancy. However, they act as
one core.

18 Chapter 2. Problem analysis

OUT:130.226.249.121
IN:130.226.249.122

*.edgeX.aau.dk

*.aau-coreX.aau.dk

Gateways

*.site.aau.dk

Servers

Clients

Switches

*.site.aau.dk Clients

Wireless

Servers
(172.18.0.0/16
172.19.0.0/16)

E1-48.slv-gw01.aau.dk

E1-48.dc02-gw01.aau.dk

172.18.25.253
172.19.25.253

Servers
(172.18.0.0/16)

Servers
(172.18.0.0/16)

frb7c-k6-07-sw0
.router.es.aau.dk

Servers
(130.225.50.0/23)

Figure 2.4: Overview of AAU network map.

After the incoming traffic has passed through the core, destination is either to a site or a gateway.
From these sites and gateways, it goes to clients, servers, or switches. When performing a
trace-route between two systems on AAU’s network, it normally have to pass through the core
before it can reach its destination. The exception is if the two sites are sharing the same router.
Then they can jump directly from one site to another. Furthermore, the servers are primarily
located behind frb7c-k6-07-sw0.router.es.aau.dk, E1-48.slv-gw01.aau.dk, or E1-48.dc02-gw01.aau.dk.
However, some are actually located a level deeper behind the last two gateways, precisely
behind 172.18.25.253 or 172.19.25.253. The subnet for the servers is 172.18.0.0/16, 172.19.0.0/16,
and 130.225.50.0/23.

2.5. Desired System 19

AAU has complex network that is promoting both security and redundancy, implicitly these
supports the network high availability that is required for AAU’s services to operate at normal
parameters. Therefore, if the honeypots are chosen to be deployed outside the university
firewall the subnet should originate from *.edgeX.aau.dk. Consequently, this position facilitates
the honeypots to receive attacks from outside world without the traffic being filter by the
university’s firewall.

Moving towards a system sketch based on the question raised in section 2.3 and the difficulties
that were experienced during the risk assessment, next section will describe a desirable system
formulated in natural language without integrating any technical concepts or following a well
known methodology.

2.5 Desired System

Based on the question that was raised in section 2.3, the difficulties that were encountered
during the risk assessment, table 2.5 and table 2.6, and due to the shortage of information
supposition was used. Therefore, a system that can give any information in relation with
the possible attacks that AAU can experience is wanted. Moreover, the system is required
to be integrated with AAU’s network in order to make it attractable for possible attackers.
Nonetheless, this system is expected to be attacked and proper isolation from AAU’s systems is
necessary, since is not desired to be used as jump station for attacking the university services.

Additionally, the system may be considered a decoy from the AAU’s network, but also as a
tool that is able to gather information about the attackers. Apart from integration part, the
honeypots need to have at least a limited response to attacker’ request for keeping the interest
active and to exclude risk of being discovered.

Furthermore, the hardware used in the system deployment is an important choice, since there
are a variety of existing ones. Is desired that the system to be handled into an environment
separated from AAU network, without naming any restrictions to a physical or virtual environ-
ment. Additionally, the system is required to be connected to Internet for permitting people to
connect to the system. Nevertheless, the configuration should not present a risk for university
systems or users, and the system is not considered a critical one where the uptime is vital, but
is desired to have an acceptable work time.

The following chapter will translated the properties into more technical concepts. Moreover,
based on the properties system requirements will be presented together with setup requirement
and the system attributes in terms of architecture for long term solution.

[This page is intentionally left blank.]

CHAPTER 3

System requirements

This chapter purpose is to translate from section 2.5, section 2.3 and the analysis made in sec-
tion 2.2 into system requirements and to define options that are worth analyzing for hosting the
environment. From a structural perspective the chapter is organized as follows:

• Overview of the systems requirements - determine the system function based on the anal-
ysis

• Overview of the setup concerns - are presenting some of the setup requirements

• Overview of the system attribute - is discussing the main attributes the system should have

21

22 Chapter 3. System requirements

3.1 System Requirements

The system needs to fulfill different purposes and therefore the requirements section will be
organized based on objectives. Firstly the systems needs to act as a decoy system for the real
network and the information related with the attacks should be stored for further analysis.
Accordingly, the following system requirements are detached:

3.1.1 SR1 - Configurable and Portable System

The desire is to have a system that can be easily configured on existing platforms and where the
necessity of buying new hardware is not present. Moreover, is desired that the implementation to
be rapidly movable between systems without investing new time in configurations and settings.
Nonetheless, platform independence is a considered a plus.

3.1.2 SR2 - Integration with AAU’s Network

Based on the facts that were discussed in section 2.2.1, the honeypots need to be associated with
AAU’s network. Honeypots should appear as active systems when an IP range reserved for
Danish Research Network is scanned. Nonetheless, honeypots need to appear as part of AAU’s
network.

3.1.3 SR3 - Mimic Systems and Protocols used at AAU

The honeypots are required to imitate common services from AAU that were discussed in ta-
ble 2.4 and in section 2.2.2. The system should have at least one honeypot that is able to emulate
a server, a web server activity or a mail-server.

3.1.4 SR4 - Low/Medium Response to Requests

The systems require not to be detected by the attackers as honeypots, and to act as real systems to
keep the attacker engaged a longer time to extract information. Thus, in order to keep attackers
motivated the honeypots needs to offer a feedback to attacker’s actions.

3.1.5 SR5 - Register Connections

Honeypots can be also used as alert systems, idea that was previously considered in section 2.3.
When a connection is initiated, information of that instance is registered into log files. Distinct
logs file will be kept depending on the used honeypots.

3.1.6 SR6 - Save Information in Relation with Connections

Most of the information that was presented in section 2.2.3, table 2.8 were based on other uni-
versities’ reports, since no available AAU data was found. Therefore, after the connection is
registered, related information are stored into the honeypot log files for further analysis.

3.2. Setup Concerns 23

3.1.7 SR7 - Monitor the Connections

Consequently, from SR6, section 2.2.3, table 2.8 and table 2.7 the system should be able to keep
track of the interactions that an attacker is having with the systems. Honeypots are required
to save the services that were probed and to show an overview based on ip, port and protocol
attacked.

3.1.8 SR8 - UI for Statistics

Based on the problem statement that was discussed in section 2.3 the system should be use as
a information gathering tool, and therefore a method to visualized an overview of honeypots
interactions is necessary. Moreover, a combination of user-passwords used by attackers should be
displayed and also most active countries based on the IP address.

Accordingly, the following system’s requirements that will be formulated can also provide
insights into the attacks, but due to time constrains will not be analyzed in this project.

3.1.9 SR9 - Extract Common Patterns

During the risk analysis, section 2.2.3, some of vulnerabilities and threats from tables table 2.7
and table 2.8 can benefit from further analysis. It is worth compiling a method that can extract
the first commands that are tested after access is gained to a system.

3.1.10 SR10 - Track the Connections per Day

It is interesting to see if the ratio between number of connection/per day is different in the first
days when the honeypots are deployed comparatively with a week later.

The following section will be investigating into the setup details, by focusing into the options
that will be used for deployment.

3.2 Setup Concerns

For deploying a system, consequently a platform is needed to sustain its capabilities. When it
comes to honeypots there are some possibilities that can fulfill this requirement. Furthermore,
since the honeypots will be deployed on AAU’s network the level of details will be restrained to
physical or virtual systems deployment.

Physical Hardware

For this type of setup, an actual machine that will work as a server for the honeypots is neces-
sary. The physical machine is required to have a screen attached or to be accessible over a SSH
connection from another computer. Additionally, the computational power required is one that
can assure normal operation of the system.

24 Chapter 3. System requirements

Virtual Hardware

Honeypots can be also developed inside a virtualized environment that acts like a physical
machine. For instance, virtual boxes, virtual machines or docker’s containers can represent
solution for this type of setup.

Internet Connection

Nonetheless, for the honeypot to be functional a constant Internet connection is required. This
can either be achieve by a direct connection for the physical setup, or if a virtualized environ-
ment is chosen the hosting machine for the environment is required to have access to Internet.
Considering, the fact that inbound connections are desired traffic originated from Internet is
recommended not to be restricted.

3.3 System Attributes

The system is required to fulfill some of the specification that will be discussed further, in order
to be considered as a long term solution and not only a preliminary architecture to serve for
short term purpose.

Reliability

Into an ideal scenario the system should only be unavailable when processes of maintenance are
handled. Nonetheless short periods of unavailability are acceptable if the systems are capable
of automatic restart or if the person designated with the maintenance is alerted when they are
unavailable. Honeypots are not considered critical systems where the downtime comes with
huge loss of data and adjacent problems, however some data is lost when the system is not
available, but with proper handling this failure can be adapted.

Security

Running systems that are attacked by different individuals/groups is presenting a huge risk
for the network and organization where honeypots are deployed. Therefore, the security is an
important factor when design decisions are made. The honeypot network, is required to be
isolated from the principal AAU’s network and the outbound communication to be limited.
Nonetheless, the system is desired to not be used as a jump station by the attackers to gain
access of AAU’s Services.

Portability

The system is not meant to be fixed to one machine, therefore a reasonable easy-changeable
and portable solution is desired. Due to the fact that the hosting machine can suffer failures, is
requested a solution where the honeypots can be implemented fast to a different location.

3.3. System Attributes 25

Maintainability

Maintainability is the property that if a failures occurs that system can be restored to working
state into a time frame. Depending on the honeypots type that will be used the maintainability
can vary from occasional to frequent, although the systems after deployment are not intended to
be let unsupervised due to their high security risk. Is desired a system where the maintainability
is not considered a main task after deployment, moreover maintainability being required only
from time to time for changes or regular inspections.

On the grounds of the system requirements formulate in section 3.1 and consequently consid-
ering the system attributes the next chapter will offer an overview over the applicable hosting
environments. Moreover, next chapter will also outline the chosen architecture for the system,
by discussing network overview and design particularities.

[This page is intentionally left blank.]

CHAPTER 4

System design

The chapter is building on the system requirements formulated previously, but focus is directed
to considerable solutions in order to meet the requirements. Therefore, the chapter from an
organizational point of view is structured as the following:

• Overview of hosting architectures - to decide on a good hosting architecture, the existing
possibilities are analyzed and described

• Overview of Docker - general knowledge on Docker is necessary for a better understanding
of its capabilities and how can be applied in the project

• Overview of System Architecture - is detailing the chosen design together will all its the
components

• Overview of Logs processing - is presenting a method to organize and visualize log files

27

28 Chapter 4. System design

4.1 Related Architectures

Considering that nowadays there are a lot of possibilities when it comes to systems’ architecture,
the section main purpose is to define the applicable solutions for honeypot deployments and to
outline their strong and weak points. At the end of this section a conclusion will be traced and
one type of architecture will be chosen for deployment.

4.1.1 Bare Metal Servers

As a bar metal server can be identified any physical computer that is used to run specific
services without any interruptions for large periods of time. Additionally, bare metal servers are
considered single tenant architectures, where the resources are not shared. In their architecture
they are standalone device where access to hardware is permitted. Furthermore, one main
advantage is that they provide isolation and performance being good hosting machines for
systems where a lot of power is required. [16]

On the other hand, bare metal servers do not require layers of software to access them, they
have direct access, unlike virtual environment where you need a least one additional layer
of software. The layer of software in this case is the operating system (Windows or Linux).
Nonetheless, physical server are not as scalable as a virtual environment, but they compensate
by the fact that they are more powerful than a Virtual Private Server (VPS), another drawback
for physical systems is the fact that they are a lot more expensive than a virtual environment. [16]

Consequently, physical servers can be seen as a good options for hosting honeypots, since they
can offer direct access, performance and the isolation that is required. In this case any desktop
computer can be used as a server since not a lot of power is required. However, decent hardware
configuration can be desired for a good operation of the processes.

Moreover, a physical machine can offer the necessary isolation for hosting honeypots, since
the honeypot will be easily isolated from the rest of the environment and any risks that can
appear can be contained. For instance, a desktop system that has Linux as operating system
can host multiple honeypots and with proper isolation can be considered a fairly secure testing
environment. Nonetheless, if any error or damage is made the only affected system will the one
where the honeypots are hosted.

4.1.2 Virtual Environment - Virtual Machines

Virtualization is used to describe the software that lays between the hardware and operating
system. The abstraction level is hiding the physical resources from the operating system, and it
is called a Virtual Machine Monitor (VMM) or a hypervisor. Since the hardware resources are
controlled by VMM it is possible to run in parallel different Operating System (OS)es. For this
case the hardware is divided between OSes into one or multiple logical units that are called
Virtual Machine (VM), a graphical representation can be seen in fig. 4.1.

Virtual machines were developed due to the high amount of time and complexity that was
required for maintainance task of large computers, but also that can run multiple processes in

4.1. Related Architectures 29

parallel and this actually increase the efficiency of the environment. [30]

Figure 4.1: Virtual machine architecture presented in [5].

Some of the primary advantages that virtualization can offer are the resource sharing, in contrast
to the bare metal systems discussed previously where all the resources are allocated to the
process running on that machine, VMs share the resources such as memory, disk and network
devices. Secondly, VM provide the layer of isolation that can be either come as an advantage by
the fact that processes running on different VMs are not interfering with other process running
on a secondary VM, or it can be seen as disadvantage that the processes cannot see programs
running on other VMs. [30]

Furthermore, virtual environments have been seen as a choice for researchers in deploying
honeypots since in this architecture they do not require additional physical systems. Nonethe-
less, using virtual honeypots is quite accessible to populate the network with different type
of operating systems and services, and also it is easier to recreate or redeploy if they are
compromised. [34]

However, there is one feature of the virtual environment that can lead to serious difficulties if is
not managed carefully. Isolation can become a threat if the applications running inside one VM
have access to the applications that run in other VMs. Additionally, by having a good isolation
can prevent an attacker that have successfully gain control over one VM to extend his control to
other VMs or to mitigate his attack to the underlying host resources. [30]

30 Chapter 4. System design

4.1.3 Virtual Environment - Containers

Containers were created as light operating systems inside the host operating system. They
operate directly at the CPU without any requirement of a VMM, being limited in this way to the
host Kernel for using the existing hardware. One main difference between VM and containers
is that VMs share the resources between each other and every virtualization is using a different
kernel specific for that operating system so every VM being a large consumer of the host CPU
and memory. On the other hand, containers design the flexibility of the kernel is eliminated,
by doing this the computation power is saved by using the operating system kernel. Moreover,
a considerable difference comes also from the starting time, since a VM is required to boot
up its private kernel container use the working kernel on the host machine [19]. In figure
fig. 4.2 can be seen the architecture that is used for virtualization both for VM and for containers.

Figure 4.2: VM virtualization vs. containers method [20].

Containers architecture is not new, but their concept raise was due to DevOps industries and
when Docker was introduced [27]. The main goal of developing into a containers is the pos-
sibility of sharing the necessary libraries that are required by a certain software product, ad-
ditionally this feature adds a plus into the scientific area by facilitating the reproducibility of
experiments[19]. There are different container technologies, therefore in the following para-
graphs some of the most popular one will be named and described.

LXC - Linux Containers

LXC containers represent a light virtualization concept which does not need simulation of the
physical hardware. LXC main advantage is that can run a complete duplicate of a Linux OS
without the necessity of having an overhead hypervisor. Therefore, by sharing the same kernel
with the host OS its file system and running processes are completely visible from the host.
Nonetheless LXC containers use kernel namespaces to provide resource isolation and the con-
tainer is seeing only the file systems and processes that were assigned to it. Moreover, CGroups

4.2. Docker 31

are used to handle resource facilities, for implementing processes and to offer network isolation
POSIX capabilities are added. [4]

Docker

Docker comes as a continuation for the LXC container. Docker facilitates an open-source plat-
form where everyone can create, upload or download the necessary containers and their full
dependencies that can be found on the Docker Hub. Docker brings new features to manage
data both kernel and application based ones. In addition, is adding more processes and advance
isolation. The architecture is based on the server-client model, docker clients are communicating
with the docker daemon which is working on the host OS. [19]

Singularity - High-performance computing (HPC) Container Platform

Singularity brings a new principle for containers, in terms of not requiring root privileges for
using all the resources. Singularity is blocking the privileges escalation inside the container,
and therefore if any script is needing root privileges inside container, root privileges are
required also outside the container. Singularity is compatible with Docker, and has also its
own implementation for Message Passing Interface (MPI) which permits to be use in HPC
environments. [19]

On the grounds of earlier presented architectural concepts, the ideas that can be extracted are
starting with the point that bare metal architecture will not be considered further than this
point due to their lack of scalability, even if for the project scenario can be considered that the
architecture offering the most isolation. Therefore, the alternative of a virtual environment is
more suitable for deployment process, since is not presenting the necessity of new hardware
and the architecture can be hosted on existing solution from the University. Additionally, when
it comes to virtual environment containers are yet superior over VMs in terms of performance
and scalability, and therefore they are considered a good fit for application deployment [18].

Overall, all containers technologies presented have similar capabilities, Docker will be preferred
since is adding an additional layer of defense by its isolation. Moreover, Docker is providing
process, devices and files restrictions and permits the docker container images to originate from
local or remote storage. In addition, for the remote stored images they can be verified to avoid
usage of any malicious ones. Nonetheless, Docker permits the user to tune their containers
policies based on their needs. All the early mentioned feature come as run-time facilities. [22]
Since Docker environment will be used for the honeypots, the following section will be detailing
more into docker technology features. Therefore, the next section will be focusing on docker
containers, volumes and docker network properties in order to gain information that will be
used during the design.

4.2 Docker

Docker is represented by a open source platform that is suitable for running, developing
and distributing applications. Docker offers simple possibility to group all the necessary
dependencies of an application into one package that can provide abstraction and that can

32 Chapter 4. System design

run despite of the hosting operating system. The packages used by Docker are called contain-
ers, and they run over the existing operating system, nonetheless containers exist from long
time ago but Docker, successfully offered the isolation and abstraction that was investigated. [26]

Docker uses a client-server architecture, the client request to Docker’s engine which is creating,
building and running the containers for the application [10]. Docker client can be run on any
platform, that as well goes for the Docker engine, in fig. 4.3 docker architecture can be seen:

Figure 4.3: Overview of Docker architecture from [10].

4.2.1 Docker Containers

Docker is creating an instance of an image when a new container is created, the application
code and configuration file are stored inside the container. Furthermore, Docker images are
read-only and once created are not modified. Above the read-only images each container has
a writable layer where runtime changes or privileges for files are stored and is called writable
layer. Multiple isolated containers can run on the same host resulting in better usage of the
hardware and also is minimizing the possibility of applications to interfere with each other. [7]

4.2.2 Docker Volumes

Docker Volumes are mechanism used to store persistent data generated by the containers. A
volume can be created when a docker image is stared. Volume will be locally stored on the
Docker host and that directory is mounted on the container as a volume. Volumes are entirely
separated form the host core functionality, and they can be either assigned a random name
by docker or can be named from the beginning. Moreover, if Docker is given the name of the
volumes, is ensuring that they are unique inside one docker host. [9]

Nonetheless, if they are randomly named or custom made their functions are the same. Further-
more, volumes are preferred choice for persistent data because they are not increasing the size of
container and data is still present outside, in fig. 4.4 a graphical representation of how volumes
are associated with host file system.

4.2. Docker 33

Figure 4.4: Overview of the honeypots integration with docker.

4.2.3 Docker Networks

Docker beside all the possibilities that is offering for the applications, it has multiple network
infrastructure available for use. In the followings the available network drivers will be discussed:

Bridge - stands as a default network driver when no driver is specified. This type of
network is used when applications run in standalone containers that can communicate [8]

Host - this driver removes the docker network isolation and the container is sharing the
same network with the host [8]

Overlay - the driver connects different Docker daemons and enable services to communi-
cate with each other. Nonetheless, overlay driver can be used for two standalone containers
that are on different hosts to communicate, the driver reduces the necessity of using OS-
level routing [8]

Macvlan - allows assignment of a MAC address to the container, make it appear as a device
in the network. The traffic is routed by their MAC address. Macvlan is considered to be
the best choices when the application is expected to be directly connected to the physical
network [8]

None - this driver disables all networking. Most of the time it is used in relation with a
custom network driver [8]

The following section is detailing into the proposed architecture and its integration with docker.
Nevertheless, the used honeypots will be briefly named and attention will be distributed towards
the network’s architecture and how it is integrated with the AAU’s network.s

34 Chapter 4. System design

4.3 System architecture

The system design is structured in regards with the requirements and constrains previously
discussed in chapter 3, therefore will consist of the following parts: Hosting environment and
Network features.

4.3.1 Hosting Environment

Based on the requirements discussed in section 3.1.2 and section 3.1.3 a VPS provided from
the university will be used. The VPS will have Linux operating system installed as hosting
environment, and afterwards the docker engine will be configured on the machine. Moreover,
custom settings are necessary to provide isolation from the university network and this aspect
will be further explained in section 4.3.3 and chapter 5.

4.3.2 Honeypots Integration with Docker

Docker will be used as a platform for deploying the honeypots, and each honeypot will be
deployed inside one docker container. In section 4.2.1 were introduced docker containers and
their advantages. Consequently, they seem to be a good fit for the architecture since by design
they provide an extra layer of isolation.

Nonetheless, separation comes by default and every container will be independent from each
other the architecture becomes more flexible. Considering, that an error can appear in one
container, rest of them can still remain fully functional. In the followings, the honeypots that
were chosen are discussed:

• Cowrie - exposing a SSH and telnet connection, with the possibility of logging and storing
the IP-source, user-password combination and used commands;

• Dionaea - is capable of capturing malware samples and additionally emulates the pro-
tocols FTP, Trivial File Transfer Protocol (TFTP), Message Queuing Telemetry Transport
(MQTT), MSSQL, MySQL, Session Initiation Protocol (SIP), SMB and Universal Plug and
Play (UPnP). Dionaea is logging all the activity to JavaScript Object Notation (JSON) format
log file;

• Heralding - design as a simple honeypot that is able to collect credentials. Heralding is
emulating the protocols HTTP, Hypertext Transfer Protocol Secure (HTTPS), Post Office
Protocol 3 (POP3), Post Office Protocol 3 Secure (POP3S) and Internet Message Access
Protocol (IMAP);

• Mailoney - is a classical mail server that is exposing SMTP protocol with the possibility of
storing the source-ip and commands used;

• RDPY - aiming to mimic Remote Desktop Protocol (RDP) from windows. It also has the
possibility of logging the connection attempts and storing the source ip address;

The honeypots were chosen based on requirements from section 3.1.3 and section 3.1.4, and
furthermore since all the above presented honeypots are LIHP the attacker interest is kept by

4.3. System architecture 35

responding limited to the inserted commands. They are either mimicking a the real response or
popping up a message that command is not available.

In relation with the requirements presented in section 3.1.5, section 3.1.6 and section 3.1.7 each
honeypot is configured in a separated container, and the logs generated by the containers are
saved on the hosting machine individually using docker volumes. In fig. 4.5 the honeypots
integration with docker is displayed the approach is presented horizontally. Nonetheless, in
section 4.3.3 the network structure will be detailed to offer an understanding about how the
communication is working.

Figure 4.5: Overview of the honeypots integration with docker.

4.3.3 Network Design

Moving towards the network design as it was mentioned earlier, the VPS will be provided from
the university. The VPS is configured on a small subnet(130.225.239.113/29) that resides outside
AAU’s firewall. Therefore, the server has a principal interface used for the SSH connection and
other several secondary interfaces were created for the honeypots.

36 Chapter 4. System design

A network interface is represented by the connection that is form between a computer and pri-
vate/public network. In most of the cases an interface is usually a Network Interface Card (NIC)
without the requirement of having a physical form, since network interfaces can be implemented
in software[24]. In fig. 4.6 an overview of the architecture is available:

AAU Network

Internet

SSH connection

Process
ProcessDocker

Containers

VPS

Traffic to AAU

Tr
af

fic
 to

 In
te

rn
et

Figure 4.6: Overview of the honeypots integration with docker.

Therefore, secondary Ethernet interfaces were created for the honeypots -130.225.239.115,
130.225.239.116, 130.225.239.117 and 130.225.239.118 and the honeypots will be distributed
across them. By default the containers are connecting to the Bridge network that Docker is
creating and the routing is done using IPtables which are detailed described in section 5.1.1. For
this design this behavior was partially modified, for every container a static ip was allocated
that is accessible from outside and also to integrate them with the AAU’s network. Nonetheless,
the same bridge default network is used, the only modification is made by assigning a static ip.

In theory, one IP address can be assigned to all the containers if the port mapping is done
properly and no ports are allocated two times. However, for this specific project the full subnet
was used in order to provide a better realism to the situation. It is hard to believe that a
singular system is used to handle different types of protocols/services and all the ports from
that services are open.

Since the interaction with the honeypots are stored into log files, a method to organize and
analyze the files are presented in the following section. There are quite some options, but for
this project the present architecture was used since it offers scalability.

4.4. Logs Processing 37

4.4 Logs Processing

To fulfill also the requirement from section 3.1.8 a method to process all the logs files is required,
furthermore all the honeypots are storing the activity in separated log files and therefore is
desired to have a centralized processing method where all the logs are collected to facilitate the
analysis. The system that is proposed in this report for collecting the logs and manage them is
Graylog.

Graylog is an open source log management tool, that collects all the logs into a centralized
location and makes them available, moreover it also offers a good performance and less
downtimes [1]. Graylog has a backend functionality written in Java and user inteface written in
Ruby-on-Rails, is able to collect syslog message over UDP and TCP, but it has also its personal
protocol GELF that is simplifying the structuring of the log files.

For storing and passing the logs’ messages, Graylog uses Elasticsearch where all the messages
are indexed. Additionally, Graylog stores all the configuration in a MongoDB database [33].
Continuously, in fig. 4.7 Graylog architecture can be seen.

Figure 4.7: Graylog minimum architecture provided in [14]

Elasticsearch is a real time distributed tool mainly designed to organized data . To provide later
easy access, it stores all the objects into a JSON format. All the documents that are stored are
indexed by default, additionally it is a schema free storing systems so no fields for the data
types needs to be defined prior adding data.[15]

The structure of elasticsearch is inspired from relational databases system with the difference
that in elasticsearch the old fashion databases are replaced with indices. Moreover, indices are

38 Chapter 4. System design

collection of JSON documents in the same manner as SQL databases are collection of tables.
Nonetheless, elasticsearch ensures to have a high availability of the data by keeping redundant
copies of the it. When a new index is created is separated into one ore more shards that are
kept on different node. Nonetheless, a node is considered any instance of Elasticsearch that is
running. [15]

Docker containers will be hosting the honeypots and the data generated by them will be save
into volumes for further analysis using Graylog. Main goal of honeypots is to lure attackers into
connecting, and therefore additional attention needs to be put into the security policies that were
implement to ensure that the design is separated from the university network and is not used as
jump station. Next chapter will further detail the policies used and how they are set to ensure a
better isolation.

CHAPTER 5

Docker Security

Honeypots apart from all the benefits that can bring when they are deployed inside an organiza-
tion network, can come with several drawbacks. One setback is the fact that when a honeypot is
configured into a network is an open door for attackers to that network and therefore honeypots
needs to have proper security in place to not become more risk for the institution than an aid.
Following chapter is describing the security measures that were used to ensure proper isolation
from the AAU’s network, the chapter is organized as follows:

• Overview of Docker Security - Docker architecture facilitates a secure design by isolation,
grouping and by removing the necessity of additional softwares

• Overview of Firewall - in order to protect the university network and also to isolate the
honeypot network Iptables were used

• Overview of Iptables settings - used to permit traffic to/from Internet and block anything
originating from the VPS to AAU’s systems

39

40 Chapter 5. Docker Security

Docker increases the security by using containers that provides isolation. Layers are created
between the applications, host and application, furthermore is protecting also the host by
restring the access to it. Nonetheless, is a good practice to create resource restrictions around
deployed applications, and docker enforces these practices by creating private file systems that
permits separated user accounts.[10]

Continuously when a container is started docker creates a set of namespaces and control groups
for that container. Namespaces refer to a feature of Linux kernel that the resources are partitioned
while one processes sees one set of resources and another processes sees a different set of re-
sources. Therefore, docker creates set of name spaces for the container to provide isolation from
other running containers [10]. During the creation various namespaces are created:

• PID Namespaces: every program starts with a new and unique ID that is different from the
host system.[10]

• MNT Namespaces: Mounted directory paths are uniquely created for each container[10]

• NET Namespaces: Every container has its view to the network stack, to avoid interference
with other containers or socket access [10]

Consequently, when an attacker is connecting to honeypot that is hosted inside a container he
can only find information about the processes, directories and network stack that are specific
for that container without having any information of the host or other Linux containers that are
running.[10]

Furthermore, Docker can control for each container the level of resources that is handling.
Control groups permits docker to share the available hardware resources and to limit if necessary
the use of them. For instance, the amount of memory that a container uses can be restricted
so the host is not drained of memory, in case an attacker is trying to abuse the RAM memory. [10]

Linux systems offer the possibility of fragmentary user access, the root user is permitted access
to all the feature, while non-root has more limited access with the possibility of growing his
access with sudo. This may represent a security risk and Docker settings are configured to limit
the Linux capabilities for cutting down the risk. The available list of commands for a docker
container is less than in Linux and also the possibility of escalating the access to root is limited
[10]. Moreover to support docker security architecture, custom users were set for the honeypots
in the DockerFiles, and this can be seen in fig. 5.1.

1 addgroup -g 2000 cowrie && \
2 adduser -S -s /bin/ash -u 2000 -D -g 2000 cowrie && \
3

4 addgroup --gid 2000 dionaea && \
5 adduser --system --no-create-home --shell /bin/bash --uid 2000 --disabled-password

--disabled-login --gid 2000 dionaea && \↪→

6 chown -R dionaea:dionaea /opt/dionaea/var && \
7 rm -rf /opt/dionaea/etc/dionaea/*
8

Figure 5.1: Examples of the users created for the honeypots

5.1. Firewall 41

Additionally, docker container run with limited set of abilities inside since all the jobs that
require higher access are handle by the host system, nonetheless the normal container func-
tionality is not affected. This default settings increases the container security by restricting
access, and even if an intruder is capable of rising to root privileges is difficult to provoke host
system damages [10]. Moreover, in this project LIHP were chosen and the response to attacker’s
command is limited, so no important damage can be made.

Finally, Docker implementation is considered to be an implementation where security is handled
by default and where the need for other security application is not present. Therefore, the
complexity is limited and possible system misconfiguration are avoided. As a principal conclu-
sion Docker’s environment is more secure for applications than running applications outside
of containers, based on the level of protection and isolation a container is capable of offering. [10]

To further isolate the design and control the traffic flow towards university network, a firewall
was implemented to limit the traffic originating from VPS to the university. Therefore, next
section will present general aspects of firewalls and giving details about Linux Iptables that are
used to imply the rules.

5.1 Firewall

Firewalls are instruments used by organization to impose security policies. Firewalls are capable
of filtering network traffic in one of the layers of ISO network model. They are frequently used
in the application, transport, network and data-link levels. Firewalls implement a set of rules
known as policies that provide separation between networks, they also allow some traffic to
reach its destination, while blocking the unwanted one. Nonetheless, firewalls can be good
mechanisms for auditing and monitoring. They are offering a protection both to an outside
attack but also to an inside one by preventing confidential information from leaking, or by
preventing the users’ access to unnecessary informations. [17]

The firewall used during this project is operating at the network layer of the ISO stack. Accord-
ingly to honeypots’ architecture is configured to accepted any inbound connections, but to block
all traffic to AAU’s network. Nonetheless, outbound traffic to Internet is allowed to minimize
the attacker’s suspicions that is being trapped inside a honeypot. In order to configure this poli-
cies, Netfilter from Linux kernel was used and further details about their management will be
provided into the following subsection.

5.1.1 Netfilter - IPtables

Netfilter is a process that handles Linux network packet traffic, and iptables is the command
used to apply configurations. For a simple understanding during this report the term that will
be used to refer to this type of process will be iptables. Iptables operate by grouping traffic into
chains, where rules are created that are afterwards save in tables depending on which of the
chains are applied to. The rules are constructed based on patterns used to determine which
of them is applicable for a specific group of packets and to assets what will be done with the
packets that match a pattern [25]. For example in fig. 5.2 a command of how inserting a new
rule can look like:

42 Chapter 5. Docker Security

Figure 5.2: Example of the command used to insert a new rule presented in[25].

Therefore, when a new rule is created, firstly the chain that fits into is specified, secondly the
pattern and at the end what to happen with the packets if is not entering any rule. Iptables
are targeting 5 types of packet traffic: PREROUTING, INPUT, FORWARD, POSTROUTING and
OUTPUT [25]. In the following table these concepts of iptables will be explained together with
their main features:

Chains Packets’ description
Input Traffic that was delivered to a system

Output Traffic that is generated from a system

Forward
Traffic that is going to a gateway computer and

then is preparing to pass another one
Postrouting Traffic that is preparing to leave the network interface
Prerounting Traffic that have just arrive to the network interface

Table 5.1: Routing chains explained.

The chains are filtering traffic based on their origin and destination. Every chain is formed by
tables where rules are constructed in order to match a pattern. In general a rule consists of one
or more criteria that needs to assess how network traffic will be affected, if no pattern is specified
all the traffic is considered. Targets are used to determine what is happening with the packets
that are matched. There are 4 types of targets that are build into the iptables rules. In table 5.2,
rules regarding the targets are explained:

Target Description
ACCEPT Permits packets to pass through the next stage of processing

DROP

Stop processing the packets completely.
The packets are not checked for any rules, chains or tables.

No information is sent back to the sender;
REJECT can be used to provide some information.

QUEUE Packets are send back in the userspace (not at the kernel level)

Table 5.2: Targets explanations used by Iptables.

Iptables rules that were used to isolated and filter traffic to/from AAU are detailed in next
section, and also next section is providing a specific overview of the Ip ranges that are permitted
to access the VPS’s SSH connection.

5.1.2 Iptables - settings

Considering the idea that honeypots are designed to be attractive for attackers isolation and
protection of the AAU’s network is a mandatory. Firstly the rules for the Input chain will be

5.1. Firewall 43

presented. The desired with this rules is to ensure that the interface - 130.225.239.114 used as
a SSH connection is managed only by authorized people. Therefore, all unauthorized access is
blocked without receiving any feedback for a better covertness. In the fig. 5.3 the rules applied
can be seen. Moreover, is intended to allow only connection that originates from inside AAU’s
network or known IP addresses.

Figure 5.3: Rules used to restrict traffic for the SSH connection.

Secondly, no traffic originated from the VPS is allowed to proceed to the AAU’s network, and
therefore all the IPes used at the Input target are used again for the Output with one modification,
for this chain the policy used is Reject. Nonetheless, all traffic to the Internet is allowed to not
restrict the usage of the VPS. In fig. 5.4 the rules used format the chain are presented.

Figure 5.4: Rules used to restrict traffic to AAU’s network.

The main chains that were used for firewall’s rules were the Input and the Output chain. Con-
tinuously, rest of the chains are used by docker when the traffic is started. During the following
chapter the actual deployment is detailed, together with the decisions made.

[This page is intentionally left blank.]

CHAPTER 6

Honeypots Deployment

The following chapter is detailing the honeypot setup, by presenting the implementation from
two perspectives: an attacker perspective and a defender angle of the systems. In terms of
structure the next chapter is organized as:

• Overview of Docker and IPTables settings - how docker is routing the traffic using iptables

• Attacker overview of the systems - an accurate representation of the honeypots’ network
and also how the systems are viewed when they are scanned

• Defender overview of the systems - security measures used in relation with the open source
code

• Logs processing - integration of Graylog and elastic with the setup

45

46 Chapter 6. Honeypots Deployment

6.1 Docker and IPTables

Apart from the files, processes and privileges containers offer separation and isolation also
when it comes down to network structure. Each container is creating its own network interfaces,
and therefore processes can use ports that are inside the containers. Docker’s services are
available by exposing the ports to outside world [3]. Docker is manipulating the network traffic
by the used of the iptables. When Docker is started, the necessary iptables rules are created.
Mainly, the Postrouting chain is affected by Docker.

Therefore, Docker is adding a new chain to iptables that were discussed, in section 5.1.1, to
create a link between bridge network and the hosting environment. In figure fig. 6.1 the iptables
docker rules can be seen.

Figure 6.1: Iptables docker chain.

Even though the default docker settings of the network are working, for this project scenario
changes will be made since the ideas is to integrate the honeypot network with the existing
AAU’s network. In order to do so in figure fig. 6.2 can be seen the secondary interfaces that were
created. The honeypots are designed inside docker containers, and therefore for every container
is assigned a static IP address where different ports are exposed based on the emulated services.
For a better mimicking of real network the honeypots are spread along all available addresses
(130.225.239.113/29), since from an attacker perspective is hard to believe that one device has a
lot of services/ports open.

6.1. Docker and IPTables 47

Figure 6.2: VPS network interfaces.

Once all Docker dependencies where installed on the VPS, next step is to install and configure
Docker-Compose which is Docker’s feature that can administrate multiple containers. Addition-
ally, Compose file is a YAML configuration file where all the settings regarding the containers
are declared ,and furthermore it offers the possibility of starting all the containers at once only
by using a command. In fig. 6.3 and fig. 6.4 can be seen the docker-compose file that was created
to support the easily transmissible architecture.

48 Chapter 6. Honeypots Deployment

1 version: '2.3'
2

3 services:
4

5 # Cowrie service
6 cowrie:
7 container_name: cowrie
8 restart: always
9 networks:

10 ipv4_address: 130.225.239.115
11 ports:
12 - "22:2222"
13 - "23:2223"
14 image: "cowrie/cowrie"
15 read_only: true
16 volumes:
17 - cowrie/downloads:/cowrie-git/var/lib/cowrie/downloads
18 - cowrie/keys:/cowrie-git/var/lib/cowrie
19 - cowrie/log/:/cowrie-git/var/log/cowrie
20 - cowrie/tty:/cowrie-git/var/lib/cowrie/tty
21

22 # Dionaea service
23 dionaea:
24 container_name: dionaea
25 stdin_open: true
26 tty: true
27 restart: always
28 networks:
29 ipv4_address: 130.225.239.118
30 ports:
31 - "20:20"
32 - "21:21"
33 - "42:42"
34 - "69:69/udp"
35 - "81:81"
36 - "135:135"
37 - "443:443"
38 - "445:445"
39 - "1433:1433"
40 - "1723:1723"
41 - "1883:1883"
42 - "3306:3306"
43 - "5060:5060"
44 - "5060:5060/udp"
45 - "5061:5061"
46 - "27017:27017"
47 image: "dtagdevsec/dionaea:1903"
48 read_only: true
49 volumes:
50 - dionaea/roots/ftp:/opt/dionaea/var/dionaea/roots/ftp
51 - dionaea/roots/tftp:/opt/dionaea/var/dionaea/roots/tftp
52 - dionaea/roots/www:/opt/dionaea/var/dionaea/roots/www
53 - dionaea/roots/upnp:/opt/dionaea/var/dionaea/roots/upnp
54 - dionaea:/opt/dionaea/var/dionaea
55 - dionaea/binaries:/opt/dionaea/var/dionaea/binaries
56 - dionaea/log:/opt/dionaea/var/log
57 - dionaea/rtp:/opt/dionaea/var/dionaea/rtp
58

Figure 6.3: Docker-Compose file created for fast deployment of the honeypots arhictecture.

6.1. Docker and IPTables 49

1 # Heralding service
2 heralding:
3 container_name: heralding
4 restart: always
5 tmpfs:
6 - /tmp/heralding:uid=2000,gid=2000
7 networks:
8 ipv4_address: 130.225.239.115
9 ports:

10 # - "21:21"
11 # - "22:22"
12 # - "23:23"
13 # - "25:25"
14 - "80:80"
15 - "110:110"
16 - "143:143"
17 - "443:443"
18 - "993:993"
19 - "995:995"
20 - "1080:1080"
21 - "5432:5432"
22 - "5900:5900"
23 image: "dragas/heralding"
24 read_only: true
25 volumes:
26 - heralding/:/heralding
27

28 # Mailoney service
29 mailoney:
30 container_name: mailoney
31 restart: always
32 networks:
33 - mailoney_local:
34 ipv4_address: 130.225.239.116
35 ports:
36 - "587:25"
37 image: "dtagdevsec/mailoney:1903"
38 read_only: true
39 volumes:
40 - mailoney:/opt/mailoney/logs
41

42 # Rdpy service
43 rdpy:
44 build: .
45 container_name: rdpy
46 restart: always
47 networks:
48 - rdpy_local:
49 ipv4_address: 130.225.239.117
50 ports:
51 - "3389:3389"
52 image: "amazedostrich/rdpy"
53 read_only: true
54 volumes:
55 - rdpy/log:/var/log/rdpy
56

57

Figure 6.4: Docker-Compose file created for fast deployment of the honeypots arhictecture.

50 Chapter 6. Honeypots Deployment

Consequently, fig. 6.3 and fig. 6.4 offer a good overview of the used honeypots. Moreover, it can
be also seen the IP addresses that are allocated for every honeypot, exposed ports and the based
image that was used for deployment. Due to the fact that the honeypots are storing information
into the log files, the data is stored in persistent directories described into the compose file by
volumes.

Continuously, next section will present the honeypots in the context of an attacker, where the
actual network architecture can be seen and how it is integrated with the AAU, moreover the
available open ports and the services that are running are visible.

6.2 From Attacker point of View

If an attacker is starting to scan AAU’s network IP ranges the honeypot network will appear as
small subnet with multiple open ports. The honey-network is visible since is configured outside
the AAU’s firewall to receive connections. For a better understanding of the honey-network,
in fig. 6.5 can be seen how the network is connected with the main AAU’s network that was
previously presented in section 4.3.3.

edge1.aau.dk

192.38.59.27

130.225.239.117

130.225.239.116

130.225.239.115

130.225.239.114

130.225.239.118

Eth1-35.dc2-gw02.aau.dk

130.225.239.113

Figure 6.5: Honey-network from attacker perspective.

Furthermore, when an attacker is performing a scanning of the network the honeypots are seen
as standalone systems that have different ports open based on the emulated services by the
docker containers. If the scan is performed with NMAP - Network Mapper, which is an open
source tool for network exploration and auditing [21], that is capable of various scan types the

6.2. From Attacker point of View 51

level of details received is dependent on the scan method chosen. Therefore, if SYN scan is
performed the results can be seen in fig. 6.6.

Figure 6.6: Overview of the services and open ports based on NMAP SYN scn

Nonetheless this type of scan is considered to be rapid since is not opening a full TCP
connection. A SYN packet is send, and if the port is answering back with a SYN/ACK packet
is considered to be an OPEN port and the source is sending a RST packet. If the port is being
CLOSED the destination host is sending back a RST packet, and nonetheless if the port is

52 Chapter 6. Honeypots Deployment

FILTERED no feedback is received from destination.

Next section will further detail on the deployment by changing the viewpoint towards the de-
fender perspective. Continuously are presented some of the aspects that were taken into consid-
eration when the honeypots are deployed. It is important to notice the honeypots level of access
and also the privileges.

6.3 From Defender point of view

Considering the aspect that containers deployed main purpose is to be attacked by malicious
actors, containers’ security must follow the best practices in order to avoid creating any
opportunities to the attackers. Since not all the containers are used as honeypots, for instance
portainerio which is hosting an User-Interface (UI) for containers administration was configured
to run on port 9980 taking into consideration that is not in the most-common[21] ports that
NMAP is scanning. This is done to avoid being detected on a regular scan.

In fig. 6.7 an overview of Portainerio is available. Nonetheless for all administration contain-
ers ports that are not in the most common NMAP are mapped and additionally iptables were
configured to accept connections on these ports only from certain IP addressees.

Figure 6.7: Portainer UI used to administrate the containers.

Honeypots were created from open-source images that were verified upon download to avoid
Man-in-The-Middle types of attacks. The DockerFiles inside the image are created with special
type of privileges, no root access is given to any of the created docker containers. For every
image a new user and a group was created. The user is assigned without any base directory or
root password to limit the attacker possibility of elevating to root privileges.

Once the honeypots start to attract attackers, the activity is logged into JSON files that are further
utilize. Next section will discussed how the log files are organized to provide useful information
about the activities in regards with honeypots.

6.4. Logs - Processing 53

6.4 Logs - Processing

As a result of container based architecture, the honeypot are set to store the activity in different
log files and therefore a method to centralized the location of log files was developed. Firstly, a
separated bridge network was created to facilitate the communication of the containers used for
the analytics part and also to separated them from the honeypots.

Further, Graylog have been used as a log management tool, moreover after the logs are send
to Graylog they will be saved in Elasticsearch to offer proper indexing of the data. In fig. 6.8 a
graphical representation of the architecture used for processing the logs can be seen.

Honeypots log files

TCP UDP

GRAYLOG-SERVER

Log MessageLog Message

REST-API

ElasticSearch MongoDB

Graylog UI

Figure 6.8: Overview of the log files parsing architecture.

Graylog is capable of receiving data of multiple formats and from different sources. For some
of the honeypots the selected format was Graylog Extended Log Format (GELF), due to the fact
that this is approximativelly similar with JSON format, but also due to the fact that part of the
honeypots are logging the activity using JSONs. In fig. 6.9 an example of GELF format can be
seen.

1 {"version": "1.1", "host": "example.org", "short_message": "A short message", "level": 5}
2

Figure 6.9: Example of GELF format.

In consideration of the fact that every honeypot are having different fields based on the honeypot
type, the logs require to be normalized firstly to respect the GELF format and then to have as
much as possible similar information to transmit. The transmission is happening over an open
UDP port, netcat is used to transmit the data to graylog. In fig. 6.10 the script used to format the
log files and to transmit them can be seen.

54 Chapter 6. Honeypots Deployment

1 while read p;
2 do echo $p | nc -w0 -u 130.225.239.115 12201;
3 done <<< $(jq -rc

'.timestamp = (.timestamp | sub("\\.[0-9]+Z$"; "Z")|fromdate|tonumber)' file_name)↪→

4

Figure 6.10: Example of GELF format.

Additionally, log files can be sent as RawText and after the messages are received Graylog
extractors can be used to organize the information, nonetheless structuring the messages into
fields is important for Graylog analysis features. The data can be filtered based on regular
expressions, Grok patterns, substrings or the message can also be devised into tokens.

Graylog is supporting flexibility by its various possibilities to inject data and its different sup-
ported formats, and moreover no limitations are enforced for the developers. Therefore, the
following chapter will be presenting the activity that was registered by the honeypots using
Graylog build-in statistics and graphs generators.

CHAPTER 7

Results and Observations

The chapter will review the honeypots’ outcomes by considering the total number of connections,
the most attacked ports and also services that were having a high number of attempts. The
chapter is organized in the following format:

• Overview of the honeypots - without being focused on a service or a specific honeypot

• Overview of Cowrie - activity tracked by the SSH honeypot is detailed

• Overview of Heralding - focused is put into the combination of user-password used and
also on number of attempts by emulated protocols

• Overview of Dionaea - is detailing the attacked services, the relation between probed pro-
tocols and countries of origin for the attacks

• Overview of RDPY and Mailoney - is focusing on total number of attempts

55

56 Chapter 7. Results and Observations

The honeypots were started on 13th of May, and after 13 days there were registered a number
of 361634 attempts. The majority of them were generated from SSH connections.

The majority of created sessions came from Ireland, nearly 74%, then the following 4 countries
are Netherlands, Germany, Indonesia and Panama. Additionally in fig. 7.1 top 10 countries
based on the number of attempts are displayed. The countries presented are considered to be
the last hop of the attacks, since is not possible to identify from the logs if the attackers are using
any proxies.

Figure 7.1: Top 10 most active countries based on number of attempts.

Since the majority of the connections attempts came from Cowrie nearly 346346 of the total
number, it is good to take a look at the protocol probed by not considering the SSH sessions
since there is clear to be the largest ones. Therefore, an overview based on Heralding and Rdpy
can be seen in fig. 7.2 there were a number of 10672 attempts distributed along the emulated
protocols.

Figure 7.2: Attemps based on protocols.

Consequently, some of the protocols emulated require a username and a password, from the
total number of attempts there were approximatively 54294 registered combination of username

7.1. Cowrie 57

and password. In fig. 7.3 the top 10 most used combination by their number of attempts can be
seen.

Figure 7.3: Used combination for Username-password.

The following sections are further analyzing the results by going into details based on the hon-
eypots and emulated services. The analysis is focusing on the combination of user-password that
were used, together with the most probed services.

7.1 Cowrie

By far the most active honeypot in the presented time frame with 346, 346 registered attempts.
There were found 96, 380 direct TCP connection requests to different targets and 48, 966 success-
fully connection were registered. Most of them are trying to connect to ya.ru, which is a Russian
Internet company, on port 80.The most used credentials combination were root-admin and most
used password can be seen in table 7.1.

Password Attempts
Admin 48713
12345 134

support 20
user 20

Table 7.1: Most used passwords by the number of attempts

7.2 Heralding

For this honeypot the most probed protocols are available in fig. 7.4, definitely http have gotten
a lot of attention from attackers. Furthermore, when it comes to user-password combination,
it was seen a tendency to use combinations of same user and password such as admin-admin,
root-root, postgresql-postgresql and Cisco-Cisco. Nonetheless, in fig. 7.5 and fig. 7.6 are presented
the most used usernames and most used passwords.

58 Chapter 7. Results and Observations

Figure 7.4: Heralding protocols overview.

Figure 7.5: Top 10 most used usernames.

Figure 7.6: Top 10 most used passwords.

7.3. Dionaea 59

7.3 Dionaea

Dionaea is the honeypot that is emulating a high number of protocols. There were nearly 4619
connection and from the total number approximatively 3684 have successfully identify the at-
tacked protocol. The distribution of attacked protocols can be seen in fig. 7.7, it can be seen that
the most attacked service is Microsoft SQL.

Figure 7.7: Top 10 most attacked services emulated by Dionaea

Moreover, the services early presented were also associated with the countries of origin. Ireland
is still present at the top of the list, but is passed by China for this honeypot. In fig. 7.8 are
presented the top 10 countries that have established connections with the honeypot.

Figure 7.8: Top 10 most attacked services and countries of origin.

7.4 Rdpy and Mailoney

For the honeypot that is emulating and RDP protocol there were in the observed days a number
of 5438 attempts. As for the Mailoney there were only 15 attempts, since the presented number
is suspect low further analysis will be made to determine if the value was accurate or was
generated due to an error made during the parsing of the logs.

Moreover the results need to be further investigated, and also is it worth keeping the honeypots
active to observe if the general observations are changing once the time passes. However, it
is expected a higher number of registered connections, but it is also interesting to see if the
distribution of attacked services is kept or different protocols receive a higher number of attacks.

60 Chapter 7. Results and Observations

The following chapter is focusing into tracing a general overview for the project, underlying the
principal observations.

CHAPTER 8

Conclusion

The project focusing into a method to integrate honeypots with an existing corporate network
and it can be concluded now that there are a variety of choices. Additionally, the honeypots are
acting as a decoy system, if a Danish Research Network IP ranges are scanned the honeypots
are popping up as open services.

The approach demonstrated in this project was to integrate a honeypot network without having
the necessity of connecting to AAU’s network additional hardware device. Therefore, Docker
was used as integration framework. Different types of honeypots were started inside Docker’s
containers providing robustness and isolation to the system. Nonetheless, Docker engine was
installed on a VPS provided by the university.

Furthermore, to promote the attackers’ desire to connect the honey-network was developed
outside the university firewall. Consequently, the interaction with any systems from AAU
is restricted but also the initiated connections are not filtered by the firewall. Additionally,
honeypots outside the principal network act as decoy systems since attackers invest time and
computational power while the real network is not attacked.

Placing the honeypots outside the university firewall have shown that can provide an excellent
overview of the connections. However, one drawback that can be identified is the fact that no
knowledge can be formed for what is happening inside the network, and therefore any on-going
infection cannot be detected in this architecture.

Additionally, honeypots are excellent tools for gathering information about the attackers’ origin
country, probed systems and credentials tried. Therefore, the activity tracked by every honeypot
is stored as persistent data by using Docker’s volumes, further the individual log files generated
by the honeypots are send to Graylog to be organized and analyzed.

It was seen for the services that require credentials a tendency to use the same combinations for
username and password, and also generic username such as root, admin, user in combination

61

62 Chapter 8. Conclusion

with passwords like password123, 123456, pass123 needs to be avoided for the systems. Nonethe-
less it was also observed for the service that permitted connections that attackers are trying to
use them as proxies. For the analyzed time frame the protocol that was the most attacked was
SSH, but also in general protocols that are not secure such as HTTP were targeted.

Therefore, it can be concluded that honeypots can provide useful insights for an organization
and they are worth deploying. Additionally, Docker containers are suitable architecture for
hosting LIHP since the available commands are limited and the attackers are not having the
necessary tools to escaped from the containers.

Moreover, LIHP are good statistical systems that can store the most important activity of the
attackers, nonetheless utilizing LIHP is hard to distinguish between human or manual attacks,
and moreover it is also complicated to extract attackers’ TTPss.

To summaries, it can be stated that LIHP are valuable tools that are easy to maintain and deploy.
Docker is facilitating the platform independence and also the virtualization of the system. More-
over LIHP can be considered systems that can bring valuable information for an organization
without generating any high risk if the security features are setup accordingly.

List of Figures

2.1 Most relevant relation source-destination provided in F-Secure report[12]. 9
2.2 Top TCP ports probed provided in F-Secure report[12]. 10
2.3 ISO 27015 steps in performing a risk assessment. 11
2.4 Overview of AAU network map. 18

4.1 Virtual machine architecture presented in [5]. 29
4.2 VM virtualization vs. containers method [20]. 30
4.3 Overview of Docker architecture from [10]. 32
4.4 Overview of the honeypots integration with docker. 33
4.5 Overview of the honeypots integration with docker. 35
4.6 Overview of the honeypots integration with docker. 36
4.7 Graylog minimum architecture provided in [14] . 37

5.1 Examples of the users created for the honeypots . 40
5.2 Example of the command used to insert a new rule presented in[25]. 42
5.3 Rules used to restrict traffic for the SSH connection. 43
5.4 Rules used to restrict traffic to AAU’s network. 43

6.1 Iptables docker chain. 46
6.2 VPS network interfaces. 47
6.3 Docker-Compose file created for fast deployment of the honeypots arhictecture. . 48
6.4 Docker-Compose file created for fast deployment of the honeypots arhictecture. . 49
6.5 Honey-network from attacker perspective. 50
6.6 Overview of the services and open ports based on NMAP SYN scn 51
6.7 Portainer UI used to administrate the containers. 52
6.8 Overview of the log files parsing architecture. 53
6.9 Example of GELF format. 53
6.10 Example of GELF format. 54

7.1 Top 10 most active countries based on number of attempts. 56
7.2 Attemps based on protocols. 56
7.3 Used combination for Username-password. 57

63

64 List of Figures

7.4 Heralding protocols overview. 58
7.5 Top 10 most used usernames. 58
7.6 Top 10 most used passwords. 58
7.7 Top 10 most attacked services emulated by Dionaea 59
7.8 Top 10 most attacked services and countries of origin. 59

List of Tables

2.1 The table provide in [23] is summing up the principal characteristics of LIHP,
MIHP and HIHP . 6

2.2 Existing honeypots frameworks classification. 7
2.3 Overview of the top ranked countries by number of attacks. [11] 10
2.4 Overview of the systems that are used at AAU . 13
2.5 Threats linked with the assets and their principal actors. 14
2.6 Relation between the vulnerability type and corresponded asset is presented. . . . 15
2.7 Vulnerabilities and their impact severity. 16
2.8 Previously presented threats and their Likelihood of occurrence at AAU. 16

5.1 Routing chains explained. 42
5.2 Targets explanations used by Iptables. 42

7.1 Most used passwords by the number of attempts 57

65

[This page is intentionally left blank.]

Bibliography

[1] V. Agrawal, D. Kotia, K. Moshirian, and M. Kim. Log-based cloud monitoring system for openstack. In
2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), pages
276–281, March 2018. doi: 10.1109/BigDataService.2018.00049.

[2] Ateeq Ahmad, Muhammad Ali, and Jamshed Mustafa. Benefits of honeypots in education sector. IJCSNS, 11
(10):24, 2011.

[3] Charles Anderson. Docker [software engineering]. IEEE Software, 32(3):102–c3, 2015.

[4] D. Beserra, E. D. Moreno, P. T. Endo, J. Barreto, D. Sadok, and S. Fernandes. Performance analysis of lxc for
hpc environments. In 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems,
pages 358–363, July 2015. doi: 10.1109/CISIS.2015.53.

[5] Doug Chamberlain. Containers vs. virtual machines (vms): What’s the difference? URL https://blog.netap
p.com/blogs/containers-vs-vms/. [Online; accessed 31-May-2019].

[6] Cisco. 2018 annual cybersecurity report impacts on public-sector, 2018. URL https://www.cisco.com/c/dam/
m/digital/elq-cmcglobal/OCA/Assets/Federal/2018-Annual-Cybersecurity-Report-Impacts-on-Publi
c-Sector.pdf?ccid=cc000126&oid=rptsc008809&elqTrackId=64397bd4bdfd4bf6a6cde2dee70f3e6e&elqai
d=4518&elqat=2. [Online; accessed 08-March-2019].

[7] Docker. What is a container?, . URL https://www.docker.com/resources/what-container. [Online; accessed
07-May-2019].

[8] Docker. Network drivers, . URL https://docs.docker.com/network/. [Online; accessed 11-May-2019].

[9] Docker. Use volumes, . URL https://docs.docker.com/storage/volumes/. [Online; accessed 07-May-2019].

[10] Docker. Introduction to container security - understanding the isolation properties of docker, August 2016. URL
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf. [Online;
accessed 19-April-2019].

[11] Telekom DTAG. Fruhwarnsystem, sicherheitstacho, 2013. URL http://www.sicherheitstacho.eu/. [Online;
accessed 11-March-2019].

[12] F-Secure. Attack landscape h1 2018, 2018. URL http://images.secure.f-secure.com/Web/FSecure/%7B
a1352f14-be26-4fd1-bcc8-3c9bd6b20bd3%7D_Attack_Landscape-H1-2018.pdf. [Online; accessed 11-March-
2019].

[13] Danish Defence Intelligence Service Centre for Cyber Security (CFCS). Foreign hackers threaten danish pub-
lic research, 2017. URL https://fe-ddis.dk/cfcs/publikationer/Documents/TV%20forskning%20ENG.pdf.
[Online; accessed 08-March-2019].

67

https://blog.netapp.com/blogs/containers-vs-vms/
https://blog.netapp.com/blogs/containers-vs-vms/
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/OCA/Assets/Federal/2018-Annual-Cybersecurity-Report-Impacts-on-Public-Sector.pdf?ccid=cc000126&oid=rptsc008809&elqTrackId=64397bd4bdfd4bf6a6cde2dee70f3e6e&elqaid=4518&elqat=2
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/OCA/Assets/Federal/2018-Annual-Cybersecurity-Report-Impacts-on-Public-Sector.pdf?ccid=cc000126&oid=rptsc008809&elqTrackId=64397bd4bdfd4bf6a6cde2dee70f3e6e&elqaid=4518&elqat=2
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/OCA/Assets/Federal/2018-Annual-Cybersecurity-Report-Impacts-on-Public-Sector.pdf?ccid=cc000126&oid=rptsc008809&elqTrackId=64397bd4bdfd4bf6a6cde2dee70f3e6e&elqaid=4518&elqat=2
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/OCA/Assets/Federal/2018-Annual-Cybersecurity-Report-Impacts-on-Public-Sector.pdf?ccid=cc000126&oid=rptsc008809&elqTrackId=64397bd4bdfd4bf6a6cde2dee70f3e6e&elqaid=4518&elqat=2
https://www.docker.com/resources/what-container
https://docs.docker.com/network/
https://docs.docker.com/storage/volumes/
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
http://www.sicherheitstacho.eu/
http://images.secure.f-secure.com/Web/FSecure/%7Ba1352f14-be26-4fd1-bcc8-3c9bd6b20bd3%7D_Attack_Landscape-H1-2018.pdf
http://images.secure.f-secure.com/Web/FSecure/%7Ba1352f14-be26-4fd1-bcc8-3c9bd6b20bd3%7D_Attack_Landscape-H1-2018.pdf
https://fe-ddis.dk/cfcs/publikationer/Documents/TV%20forskning%20ENG.pdf

68 Bibliography

[14] Graylog. Architectural considerations. URL https://docs.graylog.org/en/3.0/pages/architecture.html.
[Online; accessed 23-May-2019].

[15] S. Gupta and R. Rani. A comparative study of elasticsearch and couchdb document oriented databases. In
2016 International Conference on Inventive Computation Technologies (ICICT), volume 1, pages 1–4, Aug 2016. doi:
10.1109/INVENTIVE.2016.7823252.

[16] Inap. Bare metal vs. hypervisor: The evolution of dedicated servers. URL https://www.inap.com/blog/bare
-metal-vs-hypervisor/. [Online; accessed 07-May-2019].

[17] Kenneth Ingham and Stephanie Forrest. A history and survey of network firewalls. University of New Mexico,
Tech. Rep, 2002.

[18] A. M. Joy. Performance comparison between linux containers and virtual machines. In 2015 International
Conference on Advances in Computer Engineering and Applications, pages 342–346, March 2015. doi: 10.1109/IC
ACEA.2015.7164727.

[19] Á. Kovács. Comparison of different linux containers. In 2017 40th International Conference on Telecommunications
and Signal Processing (TSP), pages 47–51, July 2017. doi: 10.1109/TSP.2017.8075934.

[20] Gregory M Kurtzer. Singularity 2.1. 2-linux application and environment containers for science,
2016. URL https://www.researchgate.net/publication/309129586_Singularity_212_-_Linux_applicat
ion_and_environment_containers_for_science.

[21] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide to network discovery and security
scanning. Insecure, 2009.

[22] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, and K. N. B. S. Murthy. Docker container security via
heuristics-based multilateral security-conceptual and pragmatic study. In 2016 International Conference on Cir-
cuit, Power and Computing Technologies (ICCPCT), pages 1–14, March 2016. doi: 10.1109/ICCPCT.2016.7530217.

[23] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian Keil, and Jochen Schönfelder. A survey
on honeypot software and data analysis. arXiv preprint arXiv:1608.06249, 2016.

[24] Oracle. What is a network interface? URL https://docs.oracle.com/javase/tutorial/networking/nifs/
definition.html. [Online; accessed 17-May-2019].

[25] Gregor N Purdy. Linux iptables Pocket Reference: Firewalls, NAT & Accounting. " O’Reilly Media, Inc.", 2004.

[26] Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. An introduction to docker and analysis
of its performance. International Journal of Computer Science and Network Security (IJCSNS), 17(3):228, 2017.

[27] Flávio Ramalho and Augusto Neto. Virtualization at the network edge: A performance comparison. In 2016
IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages
1–6. IEEE, 2016.

[28] Atle Refsdal, Bjørnar Solhaug, and Ketil Stølen. Cyber-risk Management, pages 33–47. Springer International
Publishing, Cham, 2015. ISBN 978-3-319-23570-7. doi: 10.1007/978-3-319-23570-7_5. URL https://doi.org/
10.1007/978-3-319-23570-7_5.

[29] Atle Refsdal, Bjørnar Solhaug, and Ketil Stølen. Cyber-risk management. In Cyber-Risk Management, pages
33–47. Springer, 2015.

[30] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization: A survey on concepts, taxonomy
and associated security issues. In 2010 Second International Conference on Computer and Network Technology, pages
222–226. IEEE, 2010.

[31] ES-It Services. Network. URL https://it-wiki.es.aau.dk/wiki/Network. [Online; accessed 07-May-2019].

https://docs.graylog.org/en/3.0/pages/architecture.html
https://www.inap.com/blog/bare-metal-vs-hypervisor/
https://www.inap.com/blog/bare-metal-vs-hypervisor/
https://www.researchgate.net/publication/309129586_Singularity_212_-_Linux_application_and_environment_containers_for_science
https://www.researchgate.net/publication/309129586_Singularity_212_-_Linux_application_and_environment_containers_for_science
https://docs.oracle.com/javase/tutorial/networking/nifs/definition.html
https://docs.oracle.com/javase/tutorial/networking/nifs/definition.html
https://doi.org/10.1007/978-3-319-23570-7_5
https://doi.org/10.1007/978-3-319-23570-7_5
https://it-wiki.es.aau.dk/wiki/Network

Bibliography 69

[32] UK Universities. Cyber security and universities; managing the risk. Retrieved December, 31,
2013. URL https://www.universitiesuk.ac.uk/policy-and-analysis/reports/Documents/2013/cyber-s
ecurity-and-universities.pdf. [Online; accessed 03-March-2019].

[33] Risto Vaarandi and Paweł Niziński. Comparative analysis of open-source log management solutions for secu-
rity monitoring and network forensics. In Proceedings of the 2013 European conference on information warfare and
security, pages 278–287, 2013.

[34] Wira Zanoramy Ansiry Zakaria, S. R. Ahmad, and N. A. Aziz. Deploying virtual honeypots on virtual machine
monitor. In 2008 International Symposium on Information Technology, volume 4, pages 1–5, Aug 2008. doi:
10.1109/ITSIM.2008.4631930.

[35] N. F. Zulkurnain, A. F. Rebitanim, and N. A. Malik. Analysis of thug: A low-interaction client honeypot to
identify malicious websites and malwares. In 2018 7th International Conference on Computer and Communication
Engineering (ICCCE), pages 135–140, Sep. 2018. doi: 10.1109/ICCCE.2018.8539257.

https://www.universitiesuk.ac.uk/policy-and-analysis/reports/Documents/2013/cyber-security-and-universities.pdf
https://www.universitiesuk.ac.uk/policy-and-analysis/reports/Documents/2013/cyber-security-and-universities.pdf

	Title page
	Contents
	1 Introduction
	1.1 Contribution
	1.2 Report Structure Outline

	2 Problem analysis
	2.1 State of the Art
	2.2 Risk Assessment
	2.2.1 Context Establishment
	2.2.2 Risk Identification
	2.2.3 Risk Analysis
	2.2.4 Risk Evaluation

	2.3 Problem Statement
	2.4 AAU's Network
	2.5 Desired System

	3 System requirements
	3.1 System Requirements
	3.1.1 SR1 - Configurable and Portable System
	3.1.2 SR2 - Integration with AAU's Network
	3.1.3 SR3 - Mimic Systems and Protocols used at aau
	3.1.4 SR4 - Low/Medium Response to Requests
	3.1.5 SR5 - Register Connections
	3.1.6 SR6 - Save Information in Relation with Connections
	3.1.7 SR7 - Monitor the Connections
	3.1.8 SR8 - UI for Statistics
	3.1.9 SR9 - Extract Common Patterns
	3.1.10 SR10 - Track the Connections per Day

	3.2 Setup Concerns
	3.3 System Attributes

	4 System design
	4.1 Related Architectures
	4.1.1 Bare Metal Servers
	4.1.2 Virtual Environment - Virtual Machines
	4.1.3 Virtual Environment - Containers

	4.2 Docker
	4.2.1 Docker Containers
	4.2.2 Docker Volumes
	4.2.3 Docker Networks

	4.3 System architecture
	4.3.1 Hosting Environment
	4.3.2 Honeypots Integration with Docker
	4.3.3 Network Design

	4.4 Logs Processing

	5 Docker Security
	5.1 Firewall
	5.1.1 Netfilter - IPtables
	5.1.2 Iptables - settings

	6 Honeypots Deployment
	6.1 Docker and IPTables
	6.2 From Attacker point of View
	6.3 From Defender point of view
	6.4 Logs - Processing

	7 Results and Observations
	7.1 Cowrie
	7.2 Heralding
	7.3 Dionaea
	7.4 Rdpy and Mailoney

	8 Conclusion
	List of Figures
	List of Tables
	Bibliography

