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Summary

In recent years, the share of renewable energy sources in the electricity networks worldwide
has been in a constant increase. Wind power generation is predominated among all renewable
energy sources-based generation. However, when compared with non-renewable generation
its share in the electricity market is still limited. Mainly due to its lack of multiple services
provision. Battery energy storage systems, on the other hand, have proven the ability to

provide a wide range of services in the electricity market.

The main emphasis of this project is put on the investigation if the battery energy storage
systems ability in multiple service provision could help increase the wind power share
in the generation mix. For that, a hybrid system is hypothetically formulated taking into
consideration battery and wind turbines technologies. Furthermore, an operational scheduling
strategy which could be used by the battery energy storage system operator is used to evaluate
project profitability. Considering electricity price forecast, grid arrangement and optimum
unit commitment strategy and size. Moreover, to create a good business case with at least
as possible uncertainties, battery energy storage system lifetime model is developed. With
the model, battery degradation behavior is account for in the different services provision

schemes estimated.

Analysis of the practical operation scheduling scheme developed shows a good ability in cap-
turing the possible revenue streams from the different market while taking into consideration
stochastic variables such as price. From the different market bidding strategies formulated is
observed revenue values close to 18 Million dollars when a battery is providing all services
in the electricity market. However, the degradation effect is also high to accommodate the
rapid energy change in the battery.

Finally, it is concluded that with the integration of battery energy storage, multiple services
provision are added to the wind power generation. Furthermore, the degradation should be
bound by the unit commitment problem. This technology is representing an attractive solution,
as high revenue streams can be derived from its multiple services provision capabilities.
With the increasing research on the topic in combination with new electricity market rules to
accommodate system rapid response, an increase in battery deployment is expected in the
future. Not only as a utility-scale storage solution but in other applications as well.
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Chapter 1
Introduction

This chapter describes the background behind the thesis definition and introduces an overview
of modern trends in storage systems. A literature review is given based on recent studies
done in the topic. Furthermore, the definition of the problem which this thesis is aimed at
solving is discussed along side the methodology applied to solve such problem. Finally, the

limitations of the project are describe and an outline of the thesis is shown.

1.1 Background

Wind power generation have increased its share in the power generation mix, as a result of
its cost-effectiveness, in recent years. According to [4], wind power additions continued at
a rapid pace in 2016, with 8,203 MW of new capacity added in the United States and 13.0
billion invested. In a global scale, the report adds that 54,600 GW was commissioned in 2016.
The United States of America (USA) is the second-leading market in terms of cumulative
capacity and 2016 annual wind energy production, behind China. Other countries have
achieved high levels of penetration as well; end-of-2016 wind power capacity was estimated
to supply the equivalent of more than 40% of Denmark’s electricity demand, and between
20% and 35% of demand in Portugal, Ireland, and Spain [4]. So it’s clearly observed a
increasing trend in use of wind power, especially in the USA, where states like Texas had the
highest installed capacity in 2016 with 2,611 MW.

Despite the increase in wind power, its share in the electricity market is still small. Figure 1.1
from the International Energy Agency (IEA) shows that globally coal is the highest form
of electricity generation reaching 9,551,747 GWh in 2015, while wind generation reached
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838,546 GWh during the same year, showing the potential growth for wind energies in the
electricity market.

Electricity generation by fuel
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Figure 1.1 World Wide Electricity Generation by Fuel from 1990 - 2016 [5].

In the electricity market, wind generation is capable of participating in the Day-Ahead
Market (DAM) operations, buying or selling energy capacity, as a stand-alone system [6].
Nonetheless, Wind Farm (WF) operators often resort to higher reserves in the power system
to smooth out the unpredictable power fluctuations. After all, inconsistencies between energy
offered and energy delivered can lead to high penalties [1]. Developing a grid-tied energy
storage system is generally a practical solution to facilitate the massive integration of wind
power [7]. These grid-tied energy storage systems help the WF fulfill its energy commitment
in the DAM. Not only that but also increase the number of services a WF can provide in the
electricity market, often leading to high revenue streams.Therefore, energy storage system
can help increase the wind power penetration in the electricity market, by extending the
number of services provided in the electricity market.

1.2 Energy Storage System

According to a recent study made for the G20 [8], energy storage systems will be at the heart

of the energy renewable sources transition, providing a wide range of services that can also
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support the integration of variable renewable energy e.g. electric energy time shifting. Figure
1.2 illustrate the wide range of services in which a storage unit could be used in the power

system. The focus of this thesis is specific on the services highlighted in red.
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Figure 1.2 Range of Services that can be Provided by Electricity Storage [8].

According to [8], pumped hydro storage have a large share in the market when it comes
to energy arbitrage. Thermal storage, on the other hand, is often used in energy arbitrage
and as a supplemental reserve. However, the high turbine-heat system cost seems to be a
downfall for system implementation [8]. Such systems are implemented in the electricity
market due to their proven technologies and solid components reliability. However, the
economics of providing grid services are more challenging especially due to fast time
response required from a storage system performing ancillary services. For that reason, when
it comes to frequency regulation the most used form of storage is Battery Energy Storage
System (BESS), these types of storage can participate in both services highlighted in red
(Figure 1.2). Even though they have been used as solutions; their profitability has been
questionable, mainly to wrong assessment of possible streams revenues [9].

Nevertheless, in recent years the deployment of BESS as one storage solution for wind power

applications has significantly grown, especially due to the fallen cost of implementation [10].
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1.2.1 Battery Energy Storage System

Integrating BESS offers enormous benefits to increase the wind power share in the electricity
market. According to [11], battery as a storage unit can improve power quality, deferring
investment in transmission and distribution network, and provide ancillary services to the

system. Moreover, a BESS can lessen the need for emergency reserves of energy.

In the electricity market, a BESS can provide different types of services, which allows it to
participate in different markets bidding strategies [12]. The BESS’s ability to participate in
multiple market services has been proven in [13, 14], where different projects around the
globe are presented. In Berlin an 8.5 MW / 8.5 MWh battery is used to provide spinning
reserve and frequency control, whereas in the USA an 8 MW / 2MWh battery is used for

frequency regulation and wind turbine integration.

The ability to derive multiple revenue streams by providing a range of services with one
storage system enables the "stacking" of revenue and improvement in project implementation.
For instance, Table 1.1 present the profit increase of a 100 MW hypothetical generation plant
when the ancillary service market is considered as form of revenue [3]. The 81% increase
shows a clear potential in considering multiple market services provision, from a generation

unit perspective.

Table 1.1 Selling ancillary services in addition to energy increases profits in Texas for 2005
simulation of a 100 MW hypothetical engine driven generating plant [3].

Annual profits in $ millions Texas

Energy Only $6.3
Energy when selling AS  $4.1
Regulation $2.1
Spin $1.3
Non-Spin $3.9

Total With Energy & AS $11.3
Additional Profit $5.1
Increase 81%

Ultimately, by combining the BESS and the wind generation in a hybrid system, the operator
could exploit the potential profitability of multiple markets. Through BESS proven ability to

provide multiple services and the cheap energy generation from wind turbines [12].
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Nevertheless, BESS are complex systems with a wide range of possible structures and
peculiarities. Therefore, when analyzing profit with such systems the best approach is often
to define one technology in the studies. This reduces the search space, leading to more
precise results.

1.2.2 Lithium-ion Batteries

There are different types of battery technologies, which can be divided based on their
chemical reactions. Lead—acid batteries have high time response, but low charge/discharge
cycling number, up to 2000, describing the battery lifetime. Sodium—sulfur batteries, on
the other hand, have higher cycling times, up to 4500. However, these batteries have high
operational cost (80 $/kW/year) [14].

Leading technology in grid-based battery energy storage is Lithium-ion (Li-ion) batteries,
which have become an established technology in portable electronics and electric vehicle
applications due to their high energy density. The market for grid-based Li-ion batteries is
expected to grow significantly over the coming years. Analysts predict that approximately
28,000 MW of Li-ion storage will be installed globally between 2014 and 2024, comprising
the greatest share (35%) of total new grid energy storage capacity [15].

This expected growth is mainly based on the Li-ion batteries proficiencies: fast time re-
sponse, high power capability, long cycle lifetime at partial charge/discharge cycles, low
self-discharge rate and long calendar lifetime. Despite the increasing deployment of such
technologies in recent years, one of the massive drawbacks in the installation of Li-ion
BESS units for stationary storage applications is its economic viability [16]. To evaluate the
economical viability of Li-ion BESS, it is first necessary to understand the parameters which

largely impact the implementation of this technology.

The first parameter is the size of the BESS. This parameter has great effect on purchase
cost of BESS. A BESS can be sized based on its power and energy capacity. The power
capacity of a BESS is strong related to its converter size. The power converter must be able
to accommodate the maximum amount of power that can be drawn from the battery at any
given time. Similarly, the energy capacity of the BESS, is related to the maximum amount of
energy a BESS can store at any given time. In many cases, the usable energy capacity is less
than the advertised nominal one. This difference is accommodated by limiting the battery

State-of-Charge (SOC) within an upper and lower limit during operations [16].

The SOC is given, in terms of percentage, as the amount of energy stored in the battery at a

given time ¢ divided by its capacity, as shown in Equation 1.1. Limiting the SOC range can
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also help in battery damage mitigation, once rechargeable batteries are not meant to be fully
discharged [16].

Ew
SoC = —= %100 (1.1)

cap
The second important parameter to be considered when dealing with Li-ion battery is its
lifetime model. This parameter has a great effect in battery operation, when not considered
the observed revenue from the storage is unrealistic, once its capacity during operation is not

the same throughout the simulated interval.

The charging-discharging cycling and calendar life, are the key factors influencing a BESS
lifetime. The first one represents the number of cycles a battery can perform for different
cycle depths until its capacity degrades to 80% of its original capacity. At this stage, the
battery presents a non-linear behavior and is assumed "dead". The last factor represents the

degradation behavior of a battery at a specific SOC level at which the battery is idle [17].

Therefore an optimum operation scheme must be used when evaluating the profitability of
Li-ion BESS in multiple market services provision. This BESS operation must consider
the two parameters presented in this section, size and degradation. In order to present a

conclusive implementation assessment.

Hereafter, a brief literature review is presented, describing how different studies have consid-

ered these parameters when evaluating the profitability of BESS in multiple market schemes.

1.3 Literature Review

Many papers have undertaken the problem of finding the revenue streams of different markets
from an integrated storage system. However, when it comes to a battery energy storage
system the research is actually scarce, to the best of the author’s knowledge. The papers only
discuss a few types of market bidding strategies, missing different possibilities of market

revenue streams [18, 19].

Most of the present literature use the Linear Programming (LP) or the Mixed Integer Linear
Programming (MILP) approach to solve the BESS power commitment problem i.e. when to
charge and discharge energy. This is often done in order to define the revenue prospects from
energy arbitrage only, neglecting other markets revenue [18-21]. However, a drawback of

such analyses is the lack of degradation effect for the BESS.
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As recognized in [17] a battery has power and energy capacity often refer as nominal capacity.
This capacity, however, diminishes over battery use. A linear degradation model is often used
to quantify this effect. This results in a wrong assessment of actual profitability as shown in
[22], where a linear and a cycle counting model were used to quantify degradation. The results
show that the battery degradation is a non-linear function depending on charging-discharging

cycles and calendar lifetime [17].

Some papers [17, 22-24] have derive formulations on the relation between battery cycle life
and Depth-of-Discharge (DOD) using different fitting techniques. Generally, an equation is
derived to represent the battery lifetime, based on information found on the manufacturer

datasheet. Such equation gives a relationship between DOD! and lifetime.

Regardless of the specified cycle life model, a rainflow? counting algorithm is commonly
used to calculate a battery’s lifetime. As referenced in [17, 25, 26]. The issue with such
an approach is the computational burden; rainflow algorithms are black-box equations of
fatigue analyses with exponential equations presenting a non-linear behavior leading to
complexity. This complexity can be enough to turn a feasible problem into an infeasible
one. Nonetheless, most of these studies only assess the storage in one market, or similar to
[18, 27], two markets.

The battery profitability is co-dependent of its degradation, disregarding degradation in the
optimum bidding strategy would make the battery use all its capacity blindly. Authors in [27]
used a combine economic-degradation model, where they calculated revenue and degradation
associated with 11 operational policies aimed at constraining SOC range used. The best
policy found was to keep the SOC within a smaller swing range (e.g. 0-25%), only two
markets were used in this study. However, this range can change depending on battery
purpose, in [24] the SOC range used for a microgrid application was 35% - 65%. Therefore,
there is a relationship between using less available energy capacity and battery’s project
profit.

In terms of operational strategy for the BESS, authors in [26, 28, 29] used combined forecast-
operation strategy to evaluate actual revenue from storage systems. This is often done
to evaluate the real revenue from systems with stochastic variables, such as energy price.
The receding horizon operation is often used as a good real operation strategy, where the
stochastic variables are forecast for a receding horizon e.g. one day or one week. Then, the
battery scheduling operation is defined based on the forecasted variables [26, 29].

I'The DOD is the inverse of the SOC; 1 - SOC.
2A common methodology used in material fatigue analysis.
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When it comes to accessing BESS size, it is also observed that most papers fix the battery
capacity in order to evaluate project implementation [18-21], which does not provide an
optimum size for each market bid schemes. Considering optimum size in a MILP would
create a non-convex problem since the battery capacity is defined by its maximum power
charge/discharge 3.

With the information presented in this section is possible to describe a few key points below.
These key points are necessary to better comprehend the problem investigated in this thesis.

1. The BESS requires a optimum unit commitment strategy, often done using MILP in
the literature.

2. The BESS degradation needs to be assessed. However, the algorithm used to quantify
it leads to non-linearity in the MILP formulation.

3. A receding horizon strategy is often used to defined the profitability of a BESS. Which
requires a forecasting method.

4. When considering different revenue streams, the BESS size is often fixed and different

markets schemes are neglected in the profitability analysis.

Therefore, a real operation strategy that takes into consideration these key points must be used
in order to assess which market scheme provides the highest profitability. The information
presented in previous sections is used to define the investigated problem in the following

section.

1.4 Problem Definition

Considering the information presented in the background section that wind power generation
has a low share in the electricity market mix. This Master’s thesis focuses on investigating
the possible revenue streams accrue from a BESS-WF hybrid system participating in multiple
market services provision. Different forms of revenue streams are studied in order to evaluate

monetary compensation and profitability in implementing a Li-ion BESS alongside a WE.

The BESS profitability in multiple market services provision is evaluated through a real
scheduling operation. Such an operation takes into consideration different market bid

strategies, optimum unit dispatch, and price forecast. The scheduled operation is conducted

31s possible to make such problem convex by only looking at revenue and battery cost.
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for yearly data to account for seasonal patterns. The year 2017 is chosen due to its wide

range of available data.

A cost-benefit analysis is issued to evaluate the best market bid scheme and project prof-
itability. Taking into consideration, BESS degradation, BESS size, BESS revenue and BESS

operating expenditure.

Different electricity markets have different rules and regulations. Therefore, the Texan market
in the USA is used in the carried out analysis due to its large free available data. However,
the methodology demonstrated can be used for different markets noting their respective rules.
To accomplish such analysis important objectives are defined in the next section.

1.5 Project Objectives

A bottom-up approach is used to defined the thesis objectives. Firstly, in order to evaluate
the profitability in multiple market provision, the market used must be defined. Therefore,
the Texan electricity market is to be investigated and its rules and regulations interpreted.
Subsequently, the hypothetical hybrid system inserted in this market must be describe, serving
as foundation for the practical operation strategy.

The practical operation strategy is developed for the battery owner considering price forecast
and optimum BESS unit commitment. Therefore, a price forecast method, which can be
used for different markets, must be establish. Furthermore, the BESS unit commitment ought
to be formulated taking into consideration the different market schemes and hybrid system

parameters.

With the market and hybrid system information; the price forecast method and BESS unit
commitment formulated, the practical operation scheme is to be develop. Ultimately, a
cost-benefit analysis considering degradation and economical terms is done to evaluate the
BESS profitability

In summary, this thesis will focus on the following specific objectives:
1. Assess the Texan electricity market rules and regulations.
2. Develop an hypothetical hybrid system to be used in the analysis.
3. Define a price forecast method to be used in the practical operation scheme.

4. Investigating different optimization methods for correct sizing and market operation of
BESS.
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5. Determining different market bidding scenarios in order to make a comprehensive
profitability analysis.

6. Identifying a practical operation scheme to be used for the BESS owner in real world
operations.

7. Implement an economic assessment do identify the optimum market bid scheme.
Considering BESS degradation.

8. Implement a sensitivity analysis to identify the cost-benefits in restricting BESS energy
capacity.

With the objectives defined, the methodology used to archive them is describe in the following

section.

1.6 Project Methodology

The hypothetical BESS-WF hybrid system used in the multiple market participation of battery
storage system analysis is formulated taking into consideration important wind turbine and
battery parameters.

An electricity price forecast is identified comparing three different forecast methods present
in price forecasting literature [2]. The best forecast method identification is done using the
software R® and MATLAB®.

The BESS profitability will be assessed through a combination of two heuristic algorithms.
The first algorithm is created using the optimization formulation program YALMIP® [30], to
deal with the BESS optimum unit commitment problem. The problem is built as a MILP, for
each market bid scheme analyzed. The software package Gurobi® [31] is used to solve each
MILP defined. The second algorithm is develop based on evolutionary optimization theory
and solved using MATLAB® to identify the optimum BESS size considering degradation
and economic terms.

The practical operation of the system is developed taking into consideration the forecast
and mathematical formulations previously explained. Different cases of market bidding are
assessed to defined the best bidding scheme and the actual profitability of implementing the
BESS along with a sensitivity analysis. The flowchart in Figure 1.3 helps clarify the project
methodology.
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Figure 1.3 Simplify Thesis Methodology Flowchart.

Limitations

The limitations of this project are considered to be the following:

1.8 OQOutline of the Thesis

No maintenance downtime is assumed.

No cost related to generation use is considered.

The BESS degradation is not defined as part of the unit commitment problem.

No convex rainflow transformation is assessed.

The analyses are limited by the available data in the ERCOT market.

No reactive power constraints are considered since the system is not formulated for

such intention.

This thesis consists of seven chapters, summarised below.

* Chapter 1 - Introduction:

In this chapter, the background of the study is presented. First, an overview of the

recent trend in renewable is presented. Subsequently, the problem aimed to be analyzed

is explained with the methodology and its limitation.
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* Chapter 2 - Electricity Market:
With the focus on possible revenue streams in energy bidding. An overview of the
American electricity market is given, to better grasp the rules and regulations present
in the market used for the analyses, necessary to formulate the optimization problem.

* Chapter 3 - Hybrid System Components:
This chapter describes the hybrid system used in the analyses carried out. In parallel,

presenting key elements, in each component, necessary for profitability evaluation.

 Chapter 4 - Price Forecast:
In this chapter, the forecast methods are presented. Different forecast methods are
evaluated. Eventually, the forecast method with the smallest errors is used to forecast

price in different markets.

* Chapter 5 - Optimization Problem Formulation:
Relevant cases to evaluate are presented in this chapter. These consider different
market bid schemes, constraints and revenue streams. Each case is validated to prove
its mathematical formulation. The optimization procedure is explained in stages,
one dealing with optimum dispatch and another stage dealing with the economical
implementation. Subsequently, a benchmark case is used to evaluate the mathematical

formulation of the optimization procedure.

 Chapter 6 - Operating Schedule Strategy:
In this chapter, a scheduling strategy is assessed. The cases defined in Chapter 5 are
used to obtain the battery’s size that best suits each bid scheme defined. An examination
is carried out on the results for the practical operation. The project implementation are

assess alongside a sensitivity analysis.

* Chapter 7 - Conclusion:
The summary and conclusion of the thesis are presented in this chapter. In addition,

the possible further work based on this project is discussed.



Chapter 2

Electricity Markets

A brief overview of the USA power market is given in this chapter, with a focus in the
ERCOT market schemes. This chapter captures the rules and regulations present in the energy
arbitrage and ancillary service markets, explaining the different services and operations found
in both markets.

2.1 Introduction

The electricity market is a mechanism used for trading electrical energy between producers
and consumers. The institute of electricity markets has evolved significantly over the period
of its existence. Its working principle has a high complexity [32]. Most of its complexity
accrues from the fact that electricity may not be stored on a large scale. Thus, it has to be
consumed at the moment it is generated. Any unbalance between production and consumption

causes instability in the power system and decreases system reliability [32].

There are seven distinct power markets in the USA (Figure 2.1). In addition, there are three
similar markets located within Canada. These markets are each operated by an Independent
System Operator (ISO) or Regional Transmission Organization (RTO), hereafter jointly
referred to as in ISO/RTO. Each ISO/RTO manages the transmission infrastructure in its
service territory, administers markets for energy and ancillary services, and is responsible
for ensuring system reliability requirements established by the North American Electric
Reliability Corporation (NERC) are met.

With the exception of the Electric Reliability Council of Texas (ERCOT), each ISO/RTO i1s
subject to the jurisdiction of the Federal Energy Regulatory Commission (FERC). As the
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ERCOT system is wholly contained within a single state, it does not participate in interstate

commerce and is therefore not subject to FERC jurisdiction [33].

Alberta Electric
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Ontario Independent
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/ New Brunswick

System Operator

ISO New

-
- 3 a England
‘t ‘f New York ISO
California ISO j' e )
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-
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Council of Texas Power Pool ISO/RTO Council

Figure 2.1 Map of the Transmission Operators that Serve the USA.

A subset of these ancillary services are commonly procured through market-based mecha-
nisms; namely: regulation, spinning, and non-spinning Reserves [33].

In order to respond to supply/demand imbalances over one to several seconds resources
that provide regulation reserves are needed. These resources adjust their generation or
load levels in response to Automatic Generation Control (AGC) signals provided by the
system operator [33]. Operating reserves are maintain to provide additional generation
capacity in the event of load increase or other supply-side resources reduce their output or
are taken offline. These reserves are typically separated into two categories: spinning, and

non-spinning reserves.

Each of the seven power markets in the USA offers its own set of ancillary services, and pre-
cise definitions, requirements, and market mechanisms differ between markets. Accordingly
the ERCOT market display high price volatility, not only in energy arbitrage prices but also
in the ancillary services market. This volatility can lead to high revenue. The market also
has solid ancillary services rules and regulations, imperative information to define a BESS
operation. Furthermore, the area regulated by ERCOT has high wind power penetration,
making it a good candidate to test the profitability of a battery associated with a wind park.

Therefore the ERCOT market is chosen for the analysis carried out in this thesis, its

description is given in the following section.
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2.2 ERCOT

2.2.1 Overview

ERCOT was organized in its present form in 1970 as one of the ten Regional Reliability
Councils within NERC. Figure 2.2 represents the zones operated by ERCOT in Texas, the
state is divided into four interconnected zones. In the Zonal market scheme, a price is
established across a large geographic area to represent the value of energy in that area.
ERCOT covers most—but not all—of the state of Texas (75%), which entails to 85% of the
electric load in Texas comprise of 23 million Texas customers. It has an overall generating
capacity of approximately 80,000 MW with 68,305 MW recorded on August 3, 2011.

LA

Houston

Zones

O MNorth
B Houston
[ South
] West

Figure 2.2 ERCOT Coverage and Zones

ERCOT must match generation output and system demand to ensure day-to-day reliability
of the transmission grid. Therefore, continual dispatch of generation is required to meet
the system demand fluctuations. ERCOT perform this dispatch at the least cost executing
competitive markets to purchase energy and capacity services needed to reliably serve the
system demand. ERCOT must also be able to respond quickly to ever-changing system
conditions, including rapidly increasing or decreasing demand or sudden loss of generation.
Thus, ERCOT procures and reserves additional capacity from certain generators that can

respond quickly enough to meet changing system conditions, called ancillary services [6].
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2.2.2 Market Operation

Market prices and schedules are decided in one round, after receiving bids from generators
and demand day-ahead. ERCOT calculates the energy output of each electrical busbar based
on the offer made by the generation plant connected in the busbar. By doing so ERCOT
clears the market and establishes an electricity price, which is equal to the marginal cost of
providing an additional unit of generation at a particular time and place on the grid. ERCOT
uses a Nodal Market strategy, in summary, that means that a Locational Marginal Price (LMP)
is calculated in every power plant point of connection in the system to later be arranged in a

settlement point price [1].

Two processes that are completed in the day-ahead operation are DAM and Day-Ahead
Reliability Unit Commitment (DRUC). The DAM allows Qualified Scheduling Entities
(QSEs) to bid and/or offer energy and to offer ancillary services. The DRUC ensures that
there is sufficient generation capacity committed in the proper locations to reliably serve the
forecasted load and forecasted transmission congestion by committing offline resources if
required [6]. Figure 2.3 illustrate the day-ahead operation and the operating day activities,
where an Hourly RUC (HRUC) is fed with updated demand and wind forecast performed

every hour and within the operating hour and economical dispatch is realized every 5 minutes.

HRUC B et sinerlf

Figure 2.3 ERCOT Practical Operation (simplified).

ERCOT also operates a DAM for four ancillary services, Responsive Reserves (RRS),
Regulation-up (REGUP), Regulation-down (REGDN), and Non-spinning Reserves (NSPIN).

These services are co-optimized along with energy provisions in the DAM [6].

* Ancillary Service (AS) awards are physically binding. It is not permitted to change the
quantity of AS awarded through the ERCOT procurement process.

* DAM Energy Only, awards are financially binding, but not physically.
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* DRUC is used to ensure reliability for the ERCOT transmission grid.

Qualified QSEs to provide ancillary services provides a bid for one to all four of the services
in the AS Market (ASM). The bid consists of an amount of capacity offered (in MW) and
the resource operator’s willingness to sell that capacity (in /MW per hour). These bids are
"stack" in merit order and ERCOT establishes a market clearing price at the bid price of the
last bidder needed to purchase the required amount of each ancillary service [1]. QSEs can

submit offers in which the same capacity is offered into more than one of these markets [1].

2.2.3 Ancillary Services

As explained the specific services offered and exact definitions of each service differ from
market to market. Winning bids for energy and ancillary services are mutually exclusive, but a
generator can be compensated for both generation and ancillary service provision in the same
period as long as the capacities allocated to each do not overlap. According to [1], "Ancillary
Services are those services necessary to support the transmission of energy from resources to
loads while maintaining reliable operation of transmission provider’s transmission systems
in accordance with Good Utility Practice." AS products receive a "capacity payment", stand

by with excess capacity to provide electricity to the grid generates profits in this case.

Regulation Reserve

Regulation service is used to constantly and automatically balance small fluctuations in
supply and demand in real time. Generation units that are providing regulation service
must be able to respond to AGC signals from the system operator and change their output
accordingly on very short time scales, typically on the order of one to several seconds [34].
ERCOT offers separate products for REGUP and REGDN. REGUP means the capacity
available to increase output i.e. a generator can increase its power output. REGDN means the
capacity available to decrease output, for instance a BESS present this ability when charging

energy.

Responsive Reserve (RRS)

Response reserve, sometimes also referred to as spinning reserves or synchronized reserves,
are intended to help the system respond quickly to forced outages or other contingency events.

Spinning reserves are provided by generation units that are online but are not generating at
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full capacity and can, therefore, increase their output quickly to provide additional capacity
to the system [34]. Typically, generation units must be able to fully ramp up their generation
within 10 to 15 minutes of receiving instructions to do so, depending on the details of the
market [34]. ERCOT responsive reserves are calculated in four-hour blocks on the basis of

forecasted load and wind patterns.

Non-Spinning Reserve (NSPIN)

Non-spinning reserves, sometimes referred to as supplemental reserves, are also intended to
help the system recover from unplanned contingencies. However, non-spinning reserves can
also be provided by generation units that are offline, as long as they are able to start up and
increase their output to the target level within a predefined period of time, 30 minutes for
ERCOT’s market [34]. Online units with available capacity can also provide non-spinning
reserves. Therefore, the amount of non-spinning reserve capacity in a system is often

calculated inclusive of any surplus spinning reserve capacity [1, 34].

The ERCOT market is extensive and complex, with different types of operations and param-
eters calculations. However, most of this information is neglected and only the important
points are presented in this chapter. A summary of the key points to be remembered is given

in the following section.

2.3 Summary

In this chapter the USA electricity market structure is described to set the foundation of
the ERCOT market. Furthermore, the ERCOT market used in the analyses is defined. Its
market operations are discussed, taking into consideration key elements such as day-ahead
operations and energy bids transactions. ERCOT possess two different markets, the energy
arbitrage, and the ancillary services market. The ancillary service market is subdivided into
four distinctively markets: REGUP, REGDN, RRS, and NSPIN. Each of these services is
explained taking into consideration the most relevant facts to demonstrate how a BESS can
provide them. In order to analyze BESS rentability in multiple market provision from a
WF operator point of view, a theoretical hybrid system is used. The following chapter will

describe such a system and its components.



Chapter 3
Hybrid System Components

This chapter describes the wind farm and battery balance of plant. The output power of
the wind farm is addressed. Lastly, the key parameters of each component are described

individually.

3.1 Balance of Plant

The hybrid system is composed of wind turbines and a battery system, these elements are
presumed to be inside the WF structure studied. The simplistic wind turbines and BESS
arrangement used for the studies is given in Figure 3.1. It is assumed that the WF and the
BESS are connected at the Busbar by two different lines. The BESS consists of a Thermal
and Energy Management unit, TMS and EMS respectively, and a battery pack with modules

made of battery’s cells.

Line 1 connects the system with the external grid, the lines have a capacity limit of 200 MW,
this restriction is important because it constrains the amount of power that can flow within
the system. It is important to point out that this is merely a theoretical assumption. In reality,
this scheme would be more diverse, accounting for reactive power, system losses, power

transformation, etc.

The converter presented in the BESS is assumed to have bi-directional capabilities.
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Figure 3.1 Wind Farm/Park and BESS Arrangement.

The external grid represents the ERCOT market. Therefore, is assumed that energy beyond
the PCC point is sold without any power losses due to power transmission. The WF is
assumed to have a solid wind power forecast i.e. the wind power output is know ahead of the

running hour with 100% confidence. The WF parameters are given in the following section.

3.2 Wind Farm Parameters

The theoretical WF used is located in the West Zone ERCOT market, consisting of fifty
4 MW wind turbines. Vestas V136-4.2 MW [35] wind turbine specifications are used for
output power calculations. The power generated from the turbine depends on the availability
of the wind. Therefore the output power can be calculated with respect to wind speed which
is shown as a piecewise function below:

0 v<Veorv>vy
Py, = Pr><vf—v"C ve <v<v, (3.1)

P, v Sv<vg
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where P, is the rated turbine power, v, is the cut-in wind velocity, v, is the rated wind velocity
and vy is the cut-off wind velocity [36]. The wind speed data used is collected from the

measuring station present in the Midland' airport [37].

The wind turbines power output are calculated hourly based on hourly wind speed values.
The maximum power output in one hour by the WF is 200 MW at any time interval, therefore
the WF can produce 200 MWh of energy.

3.3 Battery Energy Storage System Parameters

The BESS TMS and EMS is disregarded in the analysis. Therefore is assumed that the BESS
operator has control over both management systems and can guarantee optimum battery

operation.

A battery system has charge and discharge efficiencies, most of the time these values are
only a reflection of battery parameters. However, the converter efficiency losses can also be
aggregated in the battery’s round-trip efficiency, which is the fraction of energy charged in
the battery that can be retrieved. A 15% losses take into account the losses due to converter
and battery systems. Therefore a round-trip of 85% is used in the problem formulations, to

accommodate converter losses.

The BESS degradation or capacity fade is one important parameter that needs to be consider.

Such parameter depends on the battery operation.

Authors in [17] developed a model to capture capacity fade due to cycling and idling based
on the results of the accelerated aging test. The expression for capacity fade due to cycling is
as follows:

Crade._cyeling = 0.021 - ¢ —001943-50Cuy . 107162, 0.5 32)

where SOCyy is average SOC during one cycle in percentage, cd is cycle depth during one

cycle in percentage and nc is the number of cycles. Capacity fade due to idling is given as:
Ctade_calendar = 0.1723 - £V-007388-50Cyy 0.8 (33)

where SOCry is SOC storage level in percentage and m is storage time in months.

To extract all the necessary input parameters in equation 3.2, a rainflow cycle counting

algorithm is used. This method is used by different authors [25, 38], to decompose battery’s

ICity located in the west part of Texas.
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SOC profile into cycles of different cycle depths performed at different SOC levels. The
steps used to accomplish the capacity faded is given in greater detail in [39]. Figure 3.2

illustrates the procedure done to find the degradation cost related to battery capacity fade.

SOC_cycle N Rainflow Ctade_cycling
Algorithm Eq5.15

Ce”cost

SOC Profile

SOC—IdIE Cfade_calendar ‘m ‘f)-(\ DegCo§t
Eq 5.16 \_J \J

Figure 3.2 Procedure done to identify the degradation cost used in NPV.

3.4 Summary

In this chapter, the hybrid system used throughout the thesis is presented. The WF and
battery grid arrangement are considered to have a power limit capacity of 200 MW. Batteries
important parameters are defined. The battery efficiency is used to accommodate for converter
losses. The battery degradation model is derived and presented to be used in the cost-
degradation analysis. The next is to define a price forecast methodology, consider in the next

chapter.



Chapter 4
Price Forecast

In this chapter, the price forecasting methodology is assessed. Firstly, a preliminary assess-
ment of both DAM and RTM prices is introduced. Furthermore, three different forecast
methodologies are defined and evaluated. Lastly, the best forecast methodology is defined
based on an accuracy test.

4.1 Electricity Market Data

4.1.1 Day-Ahead Market

Both the DAM and the RTM are difficult markets to predict due to their volatility. However,
some patterns can be observed in price markets which help in the prediction, Figure 4.1
shows the average price curve for the DAM in 2017 [6], it can be observed that prices peak
between 14 - 15 PM. It can also be observed that at these hours the market price can reach
values close to 250 $/MWh.
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Figure 4.1 Aggregated Hourly DAM Prices, Year 2017 [1].

The Box-Plot also show the outliers; in the morning (6-8) the price spikes can be quite
significant compared to the median at these hours, the same is observed in the evening
(19-20). Figure 4.2 shows the price variation in the day-ahead market throughout 2017, with
price spikes reaching values close to 250 $/MWh. High prices are not recurrent in the DAM,
the average price in this market is actually close to 23.73 $/MWh for 2017.

Analyzing both figures (4.1 and 4.2) it’s also observed that at some hours prices are negative.
Negative DAM prices are usually explained by exceeding generation. A large variation in
prices occurs in the summer months. Texas is known for its high temperature in summer

resulting in high air-conditioner use, an explanation for these high prices.
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Figure 4.2 Day-ahead Market Prices, Year 2017

Ancillary Services Day-Ahead Market

As mentioned before, the Ancillary Services DAM are procured in four different markets
within the day-ahead operations, they are REGDN, REGUP, RRS, and NSPIN. From Figure
4.3 it can be noticed the differences in each of the four markets. REGDN has a lower
maximum price when compared with the others. REGUP been the one with a higher
maximum price. From a purely graphical analysis, it seems as if RRS and NSPIN have a
strong correlation with the DAM prices. It is clear how all four markets have their own

behavior, consequently own forecast complications.
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Figure 4.3 DAM Prices for all four Ancillary Services, Year 2017.

Comparing all the markets in the day-ahead operations, it is observed that the highest price
comes from the REGUP service: 900 $/MWh. Almost four times the DAM maximum price
of 250 $/MWh, showing the potential revenue of the ASM. The average value of all 4 ASMs
is, however, lower than the DAM, being RRS market the one with the highest average of 10

$/MWh. Therefore, a good price forecast is necessary in order to capture high market prices.

4.1.2 Real-Time Market

Visually examining the RTM prices in Figure 4.4, it is observed a high price fluctuation,
making this market more volatile. In Figure 4.5 (A) the hourly prices in the RTM is exhibit,
notice the large number of outliers when compared with DAM (Figure 4.1). Clearly indicating
the high volatility of this market when compared with the DAM.
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However, if the outliers are removed one can notice the same hourly-price fluctuation as in
the DAM, Figure 4.5 (B). The highest price in 2017 is close do 900 $/MWh, three times the
DAM price. The RTM takes into account various factors to settle price, such as congestion,
blackout, wind uncertainties, loss generation, etc. That’s why the values are often quite high,

therefore when defining a forecasting method the markets must be analyzed separately for
seasonality and trend effects.
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Figure 4.4 RTM Prices, Year 2017
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Figure 4.5 Aggregated Hourly RTM Price, Year 2017.

With this preliminary assessment of the markets, the forecasting analysis is carried out in the

next section.

4.2 Forecasting Methods

This section will discuss three different methodologies present in the literature in terms

of electricity price forecasting. In the interest of information clarity, only the DAM price

forecast will be shown in this analysis. Therefore, the best method found is then applied for
all other markets used in the practical operation scheme later in the thesis (REGDN, REGUP,
RRS, NSPIN, and DAM).

The DAM prices data is collected from the ERCOT website [1]. Ranging from 2012 to 2017.
The 2017 data is used to assess the accuracy in the forecast methods. Therefore, the data
from 2012 to 2016 is used to train the different methods to predict.
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Time Series Analyses

A sequence of observations collected at a specific time interval is called time series. In
the case study, hourly prices. The frequency of a time series is the number of cycles per
observations. For hourly data, there could be a daily, weekly or annual cycle, i.e. the series
could present a similar behavior every day of the year. The simplest time series forecasting
methods use only the past variable values as information for prediction. That can introduce
complexity into predicting future values, particularly if said variable has strong external
factors e.g. gas prices, population density, etc. [40].

The preliminary analyses showed a daily cycle in the DAM price, however, it was difficult to
confirm any sort of trend or seasonality with accuracy, when only a daily interval was used.
A trend means that, on average, the measurements tend to increase (or decrease) over time.
A seasonality signifies that the times series is influenced by seasonal factors (e.g., a quarter
of the year, the month, or day of the week)[40].

An analysis of different plots is made to assess different patterns in the data, the most relevant
ones are presented in Figure 4.6. Plot (A) shows the DAM prices between 2012 and 2017,
observe the lower fluctuation in prices between 2016 and 2017, when compared with previous

years. Such difference can have various reasons.

The report from [41] express a high correlation between DAM prices and gas prices in the
ERCOT market. Gas prices have been decreasing since 2015 and so have DAM prices. Plots
(B) and (C) display the aggregated monthly and weekly DAM price respectively, it can be
deduced that in August prices tend to rise (the horizontal blue lines indicate mean value).
However, no strong pattern is seen during the weekdays. Plot (C) shows the autocorrelation
between different lags, representing daily, weekly and annually seasonality. There is a small
correlation in daily prices, but not in weekly or annually prices. Therefore, is possible that
the increase in price seen in August may not be seasonal i.e. other years may have a different
monthly pattern.
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Figure 4.6 Seasonality Analyses in DAM Price.

4.2.1 ARIMA Model

The first model to be evaluated for forecast will be an ARIMA(p,d,q) model, ARIMA stands
for Autoregressive Integrated Moving Average. ARIMA models are the most widely used
approach to time series forecasting. ARIMA models aim to describe the autocorrelations in
the data combining differencing, autoregression and a moving average. Therefore, the three
parameters p,d, and q must be defined [2].

The time series; however, presents different variations at different levels of the series. Accord-
ing to [40], a data transformation might be a convenient way to stabilize the data. Therefore,
a log-transform is done to stabilize the variation. Logarithms transformation, in particular, are
useful because they are more interpretable: changes in a log value are relative (percentage)
changes on the original scale.

To estimate (p,q,d) two functions are widely used Autocorrelation (ACF)! and Partial Auto-
correlation (PACF)? functions. The series is differentiated to removed the trend component.
Figure 4.7 shows both ACF and PACEF for the differentiated data, a strong seasonality is seen
in lag 24 confirming the daily seasonality.

!Give the relationship between present value and previous values.
2The amount of correlation with each lag that is not accounted for by more recent lags.
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Figure 4.7 ACF and PACF for DAM Prices Time Series.

Even after differentiating the series it is observed some large peak at lag 24, which shows a
seasonal effect in the data. The ARIMA model is adjusted to accommodate the seasonality
as describe in Table 4.1. A recurring algorithm is used to define the parameters present in
Table 4.1. The approach is defined in the flowchart at Figure 4.8. Akaike’s Information
Criterion (AIC) is used to compare various ARIMA models and define the best, the procedure

is done using the software environment R®.

Table 4.1 Sesonal Arima Model

ARIMA (p,d,q) (P,D,Q)m

Non-seasonal part Seasonal part of
of the model the model




4.2 Forecasting Methods

Time Series
DAM Data

Log-transformation
to stabilize the variance

Initialize Arima
parameters p=0;d=0;9=0;

< No. p<s5 4—— Increment |g——
Yes
Y
No. Increment
A
Yes
No

<4—] Increment

Yes

No

Fit ARIMA(p.dyqy)
IF AIC;<AIC¢4

Yes

Y

Store
ARIMA(p:,d:qr)

Figure 4.8 Process Used to Defined Best ARIMA Model.
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ARIMA Model Evaluation

The final ARIMA model used for the forecast is ARIMA(5,1,0)(2,1,0)4. Figure 4.9 shows
in green the prices from 2016. The forecasted prices for the first week of 2017 from the
ARIMA model are given by the blue line, along with its confidence interval. The longer the

prediction horizon the larger will be this interval. In red is plotted the real prices for the first
week of 2017.

ARIMA(5,1,0)(2,1,0)[24]

120 -
90 - Confidence Interval

80

= 95

=

& 60-

° Time Series
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a — ARIMA Forecast
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Train Data

0-

dezl 26 janl 02 janIO9
Figure 4.9 DAM Price Forecast with Seasonal-ARIMA Model.

Graphically the ARIMA model seems to capture the seasonal pattern, and the real prices are
within the confidence intervals for the first week in 2017. However, due to high volatility, the
model is not able to capture variation in prices very well. A peak price in Jan-07 falls outside
the confidence intervals while the forecast predicted a lower value. A better representation of

the forecast is achieved by looking at the residuals i.e. the difference between forecasted and
real values.
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Residuals from ARIMA(5,0,0)(2,1,0)[24]
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Figure 4.10 Residuals from the ARIMA Model.

Figure 4.9 shows high correlation in high lags e.g. 48 and 72. In addition, the residuals are
not normally distributed. The residual analysis shows that the forecast can be improved.

Only the daily pattern was assessed in this model. However, the findings of the residuals
indicate a multiple seasonality effect in the data. Therefore, the next model investigated will

be one able to account for multiple seasonality effects.

4.2.2 TBATS Model

TBATS stands for Trigonometric Box-Cox ARMA Trend Seasonal, this approach developed
by De Livera, Hyndman, & Snyder [42] uses a combination of Fourier terms with an exponen-
tial smoothing state space model and a Box-Cox transformation. Taking into consideration

different seasonality patterns in time series analysis, more information can be found in [42].

A TBATS model differs from the ARIMA previously used because seasonality is allowed to
change slowly over time i.e. different patterns can alter the forecast depending on the time
period. A better understanding can be obtained from Figure 4.11, where the time series is

decomposed in into five elements:
* A trend, showing that prices have been decreasing over the years.

* A daily seasonality (Seasonal24).
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* A weekly seasonality (Seasonal168).
* A yearly seasonality (Seasonal8766)

* Remainder, what is not explained by the previously mentioned components.

Mutiple Seasonal Decomposition
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Figure 4.11 Time Series Data Decomposition

Figure 4.11 display some important characteristics: the annually seasonal pattern is relatively
stable i.e. the prices in the begin and middle of the year are likely to be high. The prices
in the vertical axis illustrate that the trend component is rather small in magnitude when

compared to the seasonal components. The weekly and daily seasonal patterns seem to
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be good indicators of the actual DAM price. The weekly seasonality has high price drops.
Different scenarios could explain such behavior, one being a holiday and high renewable
production at the same time. Nevertheless, a good portion of the prices cannot be explained
by the seasonal components. The "Remainder" still presents high prices fluctuations that
could be proven difficult to forecast.

The parameters for the TBATS model are automated generated in R® using the function
tbats. Hereafter, the model found for TBATS is presented.

TBATS Model Evaluation

The TBATS model forecast can be seen in Figure 4.12. The price spike by the end of the
week is still not forecasted with precision. The improvement here is that this price is within
the confidence interval bounds. Even if the forecasted value is not the same as the real one.

The model offers a price interval which envelopes the real price.

TBATS(1, {3,3}, -, {<24,5>, <168,5>, <8766,5>})

100-

50-
series
AZ TBATS Forecast

f/ Test Data
f/ Train Data

Price $/MWh

_50 -

1
2017

Figure 4.12 DAM Price Forecast with TBATS Model.
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So far the forecasted models have been used for a univariate time series, these model simplify
the forecast methodology by only looking at the time series in order to predict future values.
However, in such data as electricity market price other external factors can affect the data
and improve the prediction. These more complex models allow for control of other factors in
predicting the time series e.g. holiday, temperature, day of the week, wind speed, etc. The
Artifical Neural Network (ANN) models take into consideration external factors which can

help predict a time series.

It is also good to inform that more intricate ARIMA > models can be used to account for the
problems found in the forecast. However, the definition of the parameters of such models fall

outside the scope of this thesis.

4.2.3 Artificial Neural Network Model

ANN are forecasting methods based on simple mathematical modeling of the human brain.
They allow complex nonlinear relationships between the response variable and its predictors
[2]. A neural network consists of "neurons" which are organized in layers. The predictors
(or inputs) form the bottom layer, and the forecasts (or outputs) form the top layer. There
may also be intermediate layers containing "hidden neurons". Figure 4.13 shows a simple
example of a non-linear model with one hidden layer, four predictors (inputs) with one output
(forecast). In such structure, each layer of nodes receives inputs from the previous layers

using linear combinations [2].

Input Hidden _ Output
layer layer layer
Input #1
Input #2 \ '
' - Qutput
Input #3
Input #4

Figure 4.13 Simplified Version of a Neural Network [2].

Each weight (representing by arrows in Figure 4.13) takes random values to begin with,
which are then updated using the observed data. There is an element of randomness in the

3 ARIMAX model allows the inclusion of other predictors. ARIMA+GARCH models could be used to deal
with the high volatility in the data.
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predictions. So the network is usually trained several times using different random starting
points, and the results are averaged. The weights are them "learned" by the neural network
using a "learning algorithm" that minimizes a "cost function" such as the error between
forecast and real value [2]. Some parameters must be taken into account before initializing

the neural network: the number of inputs and the number of hidden layers.

It has been stated that, as long as enough neurons are chosen, one hidden layer is enough
to estimate any continuous function for applications [43, 44]. Therefore a forward heuristic
simulation is developed to decide the proper number of hidden neurons. The training process
starts with a small number of hidden neurons and increases the number by one until no

significant improvement is achieved to avoid overfitting issues.

The selection of inputs variables is problem dependent; for electricity price some terms
are known to be better predictors: temperature, holidays, power demand, and especially
for ERCOT, gas price. Recurrent patterns are easy to predict, such as holidays, but future
demand or gas price required their own forecasting structures. Therefore, they will not be
assessed *.

The input selection is then based on explanatory analysis, simple correlations are used to
rank the importance of different inputs. The variables feeding the input layer are presented
in Table 4.2, temperature, dew point, and wind speed are forecast values, this values can be
forecasted with a 95% accuracy for a one week horizon [2]. These values can be found in
the same forecast station used for wind power output analysis presented at Chapter 3 [37].
In Table 4.2, DAM Price,_ represents lagged values of the time series, corresponding to the
indices k =24, 25, 26, 48, 49, 50, 72, 73, 74, 96, 97, 98, 120, 121, 122, 144, 145 and 146.

41f such forecast is accessible it is recommended to use it.
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Table 4.2 Input selection used in the ANN.

) Correlation With
Variable .
DAM Price

Input #1 Temperature [°C] 0,083
Input #2 Dew Point [°C] -0,0014
Input #3 Wind Speed [m/s] 0,016
Input #4 Day of the week 0,42
Input #5 Hour 0,66
Input #6 Whether is a holiday 0,30

[0,095; 0,544; 0,256; 0,079;
0,296; 0,150; 0,061; 0,184;
0,108; 0,051 ;0,123; 0,083
; 0,046; 0,112;0,079; 0,047]

Input #7 to #25 DAM Price;

The train and test data are the same as the previous methods, the hyperbolic tangent activation
function is employed with the networks, and the Levenberg—Marquardt method is used to

train the model, the neural network is trained using the Neural Net Fitting tool in Matlab®.

ANN Model Evaluation

Ultimately the ANN has 25 neurons in the input layer, 20 neurons in the hidden layer, and the
only output if the forecast price. Figure 4.14 display the forecast price for the first week of
2017 alongside the real price. The forecast is not perfect, but the ANN seems able to identify
the peaks and valleys of the actual market. Different from the other methods presented, the
ANN forecast does not possess a confidence interval once its forecast strategy is based on
input-output and not on probabilistic terms i.e. the accuracy in forecasting one hour ahead is

the same as forecasting one week ahead as long as the inputs for the network are known [2].
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Figure 4.14 ANN Model Forecast.

With the three different forecast method defined and the first week of 2017 evaluated, the
next section will compared the methods and defined the best.

4.3 Forecast Methods Evaluation

In order to evaluate which of the three different forecast method present in this chapter is
the best, a rolling window methodology forecast is used. Prices will be forecast for a week
ahead, then prices for the forecasted week will be updated with real prices and the next week
will be forecast. This is done for the DAM price in 2017. To measure the accuracy between

the forecast methods, the yearly forecasted will be compared with the real DAM prices.

Figure 4.15 shows the three forecast methods evaluated with a zoom-in for the month of
July. The ARIMA forecast is good in predicting the daily seasonality, but it uses the same
pattern for the whole year. Therefore, a month with high prices, like July and August, are not
well predicted. The TBATS is better in including the different patterns in the data but seems
to work poorly in forecasting high and low price fluctuations. From a graphical analysis,
the ANN model seems to perform the best out of the three methods. The network is able to
forecast with high precision the fluctuations. In terms of price spikes, it looks able to forecast
the high prices moments, but not the actual price.
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According to [2], a better measurement for forecast accuracy is the mean absolute percentage
error (MAPE), defined in Equation 4.1, where y7 ,r denotes the forecast of y7.,, and H
is the forecasted horizon, one year in this case. A high MAPE indicates high forecast error,
difference between actual and forecast prices. A low MAPE indicates the opposite i.e. the
difference between actual and forecasted values is low.

100 "=! .
MAPE = 522 Z }yﬂh _)’T+h|T‘ /1yl @1
H

Table 4.3 Accuracy Test for the Forecast Models.

ARIMA TBATS ANN

MAPE: 49.5738 53.5450 38.8263

Table 4.3 presents the MAPE for each method. The ANN method posses the lowest MAPE,
making it the best among the three methods used. Therefore, the ANN method will be used
to forecast the DAM REGUP, REGDN, SPIN, and NONSPIN market prices.

A summary of the procedure done and the key outcome form this chapter is given in the
following section.

4.4 Summary

In this chapter, the price forecast methodology later used in the practical operation scheme
is defined. Firstly a market data assessment is made in order to identify patterns that could
explain prices fluctuations observed in the ERCOT electricity market. Subsequently, three
different forecast methods are defined and used to forecast the DAM prices for 2017 data.
An accuracy test is used to define which of the three methods performs best in forecasting
the DAM prices. The ANN was found to have the lowest MAPE. Therefore, it’s used to
forecast the DAM REGUP, REGDN, RRS, and NSPIN market prices later in Chapter6. The
following chapter 5 will present the other key element necessary for the operational schedule

strategy, the optimization problem formulation.



Chapter 5

Optimization Problem Formulation

This chapter discusses the optimization problem formulation as a procedure. The procedure
is firstly described by explaining the different cases formulated for the analysis. Furthermore,
the full optimization procedure is divided and explained as a two stages optimization problem.
Each stage and its objectives are discussed. Later on, the two stages are combined to represent
the full optimization procedure used to evaluated profitability. Lastly, a benchmark case is

used to verify the full optimization procedure.

5.1 Mathematical Formulation

With the information specified in previous chapters, the optimization problem can be de-
veloped. Firstly, different cases will be defined. Each case will take into consideration a
possible bidding strategy presented to the BESS in the ERCOT electricity market. These
case will then be used to formulate different BESS unit commitment optimization problems.
After all, each bidding strategy will have a different set of constraints needed to be addressed

in the BESS unit commitment.

The assessment of the optimal bidding strategy is divided along with services in the ancillary
market. REGUP and REGDN are consider regulation services. RRS and NSPIN are regarded
as reserve services. Four different bidding strategies (cases) are formulated taking into
consideration the energy arbitrage and the ancillary services. Table 5.1 present each case

number and bidding strategy used.
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Table 5.1 Cases Definition for the Optimal Bidding Strategy Assessment.

Bidding Strategy  Case 1 Case2 Case3 Case4

Energy Arbitrage v v v v
Regulation Services v v
Reserve Services v v

At this point is important to recapitulate some important information defined in section 1.3.
The BESS unit commitment will be different for each case defined in Table 5.1. Therefore,
a different MILP must also be formulated for each case. The formulated MILPs do not
take into consideration factors such as BESS size and degradation because, as previously
explained, such information introduces non-linearities that could lead to infeasibility. For

that reason, the optimization procedure is dived into two stages.

The first stage deals with the BESS optimum unit commitment issue. In this stage, the differ-

ent MILPs will be mathematically formulated for each case considering their idiosyncrasies.

The second stage deals with the optimum BESS size. At this stage, two genetic algorithms
will be presented to deal with the non-linearities previously mentioned and a future sensitivity
analysis in Chapter 6. At this stage, a degradation-profit approach is used to define the BESS
optimum size for each of the defined cases, considering economic terms. Figure 5.1 helps

illustrate the actions taken to formulate the full optimization procedure.

Full Optimization Procedure

First Stage o"“m“mEU"r:tgommitme”t Second Stage oegradaton—
MILPs Formulations ach ase > PSO Algorithm |—BESS Size—»

For the 4 Cases Defined Economical Terms
——Revenue—p

Figure 5.1 Full Optimization Procedure and its Stages.
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In the first stage, the first week of operation in 2017 is used to verify the battery charge and
discharge scheme and validate the mathematical models. The battery capacity is chosen
arbitrarily as 20 MW / 40 MWh with 10-90% SCO range for these validation tests.

5.1.1 First Stage Optimization Problem

In the first stage of the optimization procedure, the MILP for each of the four cases will be
formulated taking into consideration grid and battery constraints. For a unit commitment
problem such as this a MILP is the best approach if dealing with linear relationship. A MILP
can be defined by the form presented in Equation 5.1

min ¢/ x

1. Ax=

s.t x=0b, 5.1)
x>0,
xi€ZNiel

where an objective function is defined to be minimized using a set of decision variables e.g.
x in Equation 5.1, subjected to a set of linear equality and/or inequality constraints. The
problem is said to be "Mixed" because some of the decision variables need to be an integer,
in the battery case a binary variable that can only take values of 0 and 1 is used to constrain

its charge and discharge operation [45].

The objective function maximizes revenue. For each case, this function will be different to
accommodate the different forms of revenue streams. The battery is subject to constraints
related to its energy capacity as well as grid capacity. To avoid redundancy, Case 1 will be
used to explain the MILP formulation steps, while in later cases the MILP will be given with

information about the new add variables.

Case 1 - Energy Arbitrage Only

For energy arbitrage only two decision variables are necessary, P(‘;) and P(‘f), charge and
discharge power, respectively. The hourly revenue is dependent on the amount of energy sold
or bought to/from the grid. The objective function, in this case, maximizes revenue, given by
Equation 5.2.
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* Objective Function: Case 1

T
Max

[(1 =GP+ (1= Ca) PP — (1= C)PG)| - m™M - At (5.2)
=1

where C,,, C; and C, are the cost related to wind park operation , cost of discharging and cost
of charging at time ¢ in ($/MWh), respectively. P(%’ P(lt)) and P(% are the power produced by
the wind park, the power discharge and charge by the battery at time 7 in (MW), respectively.
The 71:8341” symbolize the price of electricity in the DAM at time ¢ in ($/MWh) and At is the

optimization interval, one hour in this case.

A battery cannot charge and discharge at the same finite time, thus the binary variable ! K

is used to constrain the battery operations. The set of constraints are present as follow:
* Constraints

— Energy constrains
The SOC estimation is given by Equation 5.3. The SOC at time ¢ is calculated
using the previous state: SoC(,_p), plus the charged energy minus the energy
discharge. Variables 7. and 1, stand for charge and discharge efficiency, respec-
tively. A round-trip efficiency of 85% is used to accommodated converter losses.
Ef?ap is battery nominal energy capacity used to calculate the SOC due to charge
or discharge.

e o nCP(%At P(%At 53
0C () = 00C 1)+ £, _Eé’apnd (5.3)

In order to maintain BESS operation and reduce its degradation, SOC is con-

strained between safe operational limits:
SOCm,’n S SOC(t) S SOCmax (5.4)

— Capacity constrains
The battery operation is also bound by capacity constraints, at any point in time
the battery discharge or charge power should not exceed its power rating P

cap*
The binary variable L), ensures only one operation at time ¢.
D b
0 < Py < FPeap M) (5.5)

ITs advise to use fewer integer variables as possible in a MILP, as they can increase the problem difficulty,
this case, for example, can be simplified to have only one decision variable and no binary variables.
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0 <Pl <Pl (1- 1)) (5.6)

cap’

The aggregated power output of the system cannot surpass "Line 1" power
capacity (defined in Chapter 3). Therefore P}, symbolize the maximum power
that can be discharged by the system. The battery can be charged by the Wind
Park or the external grid. Therefore, the maximum charge power Pé;‘l;’fg( ) is the

sum of the Wind Park output and the line power capacity at time ¢.

P{) < Pliceas (5.7)
Pl < Pliarg(y (5-8)

The problem formulation is given by the set of equality and inequality constraints as well
as the Objective Function by Equations 5.9 - 5.9¢g, all decision variables are non-negative

quantities.

T

max Y [(1 —CWBY + (1-Cy)PR — (1= C)PE | - P (5.9a)
PP P -1
(1)7 ([)a.ut 1=

s.t. P <P vieT, (5.9b)

PG <P o) VteT, (5.9¢)

0 <P <Pl ) vieT, (5.9d)

0< PG <Ph,-(1-py) VEeT, (5.9)

ncP(f)At P(lt))At
SoCyy = SoC; 1)+ Ef-’ap - Eg?apnd VieT, (5.91)
SoCin < SOC(t) < S0Cux VieT. (5.9g)

Mathematical Validation
Figure 5.2 shows the BESS charge and discharge scheme (negative power values means

battery charge). The SOC profile is also shown to validate the mathematical formulation.



5.1 Mathematical Formulation 48

I Charge/Discharge Power L

—DAM Prlc‘e 100

Case 1 - BESS Operation
T T

W

—
o
T

50

Power [MW]

Do —
(=} [==} (==}
;H

Electricity Price [$/MWh]

1 1 1
0 20 40 60 80 100 120 140 160

hr

State-of-Charge [SOC] L

BESS SOC Profil
100 — ‘ r0|e‘

50 — =

SOC [%]

0 20 40 60 80 100 120 140 160
hr

Figure 5.2 BESS Operation for Case 1.

From the plots it can be observed the battery charging when prices are low and discharging at
high prices, no charge and discharge schedule happens at the same time. The SOC plot shows
the battery operation within the specified SOC limits (10 -90%). However, the SOC profile
does not look good for battery degradation. The battery seems to charge and fully discharge
quite often leading to a high average SOC, highly damage to a battery lifetime [17].

Case 2 - Energy Arbitrage + Regulation Services

In Case 2, REGUP and REGDN markets are considered, which opens for an additional
arbitrage opportunity between the day-ahead price and the real-time price. This structure
can be different depending on the ISO, in ERCOT there are two separated markets for each
service, as seem in Chapter 4. The REGDN market present very low prices when compared
to the DAM, which could present an opportunity for the BESS to procure energy in this
market rather than the DAM.

Equations 5.10a to 5.10h accounts for the optimization in Case 2. Two new decision variables

are added, P(IX] and P(If)D describing the energy offered into the REGUP and REGDN market

at time ¢, respectively. The price for both regulation services is secured in the day-ahead

market, based on the REGUP and REGDN market prices, 7V and 7%, respectively. The

(t) (t)
net energy, however, is settled at the real-time price (n(lf)T ).
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There is no guarantee that the capacity reserved will actually be deployed. In order to
quantify the change in SOC from participation in the regulation market, it is useful to defined
the REGUP efficiency 7, as the fraction of the REGUP reserve capacity that is actually
deployed in real-time (on average). The same for REGDN with 7,,,. In actual operation
of a storage system, these efficiencies will vary over each time interval. To formulate the
problem as an MILP, a known value must be employed. Therefore, the average value should
be used. Typically, the optimization solution is not sensitive to the choice of ¥, and Y, so
the uncertainty in these parameters does not significantly impact the accuracy of the results.

A sensitivity analysis is presented in [46] showing that the average value gives a realistic
assessment between what happens in real operation and the optimum revenue. The same
energy and grid constraints used in Case 1 are used here, with the addition of both market.

1=

max

DAM DAM D DAM C
PP PRU pC pkD 1\ o { = ) + (g™ = Ca)Plg = (™ Co) Pl +
0Py Py Foy e 1=

(7 + () —Ca)| P + [n{ﬁ?—y,d(n5{+cc)]P{f)’)}At (5.10a)
S.t.
0 <P+ P <Pl ) VieT, (5.10b)
0 <P +PRD < Pl (1=)  vreT,  (5.10c)
RU C RD b
O<PD +PR <Pcap() VteT,  (5.10e)
C RD b
ncP(C)At y,dnCP( 5 DA P(?)Az ymP(’fgf At
SOC(I) = SOC(t_l) + Eé)ap Eé)ap — Eé’apnd — Eégapnd VieT, (5.10g)
S0Cpin < SoC(sy < S0Cpax Vi€ T.  (5.10h)

Mathematical Validation
Figure 5.3 represents the BESS operation for Case 2. The battery has three options of markets
now, from the first plot it can be seen that for the first 100 hours the battery choose to bid in
the REGUP market. The reason for that can be seen in the second plot, where the markets
prices are plotted. The RTM (blue line) has high prices at the first operating hours of the
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week, considering the revenue stream from the RTM higher than from the DAM the battery

decides to discharge.

Despite the fact that REGDN has lower prices than the DAM, it is still more advantageous to
"charge" in the DAM prices, once the penalty cost applied for decreasing production takes
the RTM price into consideration. However, once the profitability arises, the battery decides
o "charge" in the REGDN market, e.g. after 100 hours, especially if RTM prices are lower
than DAM prices. Also worth mentioning that the battery breaks down the amount of power
it should discharge between the two possible markets (DAM and REGUP) as it can be seen

in the first plot around 140 hours.
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Figure 5.3 BESS Operation for Case 2.

Figure 5.3 also delineate the SOC profile, the battery present rapid changes in its SOC

levels to accommodates the markets price fluctuations.

hr
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Case 3 - Energy Arbitrage + Response Services

In Case 3 the response market is considered with two new options, spinning, and non-
spinning. This limit the charge stream to only DAM or Wind Park. This, however, opens
the opportunity for arbitrage in the RRS, NSPIN, and RTM. The decision variables used for
energy offered in RSS and NSPIN are P(S;I)D and Pg)SP , respectively. The optimization problem
is defined by Equations 5.11a - 5.11g. The RSS market price is defined by 7'[51)) and NSPIN
market price as né‘t’)SP . As for Case 2, the amount of energy offered in the RSS and NSPIN
markets is not guaranteed to be fully used in the operating hour, thus two efficiency terms
are defined for each market, ¥, and ¥, respectively. The same grid and battery constraints
used in Case 1, is used to formulate the optimization problem for Case 3, with the addition

of the two new markets.

T
max Z{ DAM —-C ) ()+(E(DAM Cd)P? ( DAM—I—C)P(C)

PO Py Py Pyt +=]

(75 + Yop (R} — Ca)] PRy + [ + Yo () — Cc)}P(’tV)SP}.Ar (5.11a)
S.t.
0 < PQ)+ PG +PG) < Paicthe M) VieT,  (5.11b)
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Mathematical Validation
Figure 5.4 illustrate the BESS operation. The battery bids only in two markets in the week
analyzed. The reason has been that both RSS and NSPIN market requires the battery to
discharge energy. Thus, the operation decision is based on which market presents the higher
price. From the second plot, top to bottom, it can be observed how the prices in the markets

fluctuate. NSPIN prices are quite small compared with the other markets. Therefore, for this



5.1 Mathematical Formulation 52

bid scheme, in this week, is better to bid in the DAM and RSS only. The battery SOC and
Power rating are within the predefined limits.

Case 3 - BESS Operation
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Figure 5.4 BESS Operation for Case 3.

Battery SOC profile is shown in the last plot of Figure 5.4, once again the profile shows
rapid variations of SOC to accommodate the price changes.
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Case 4 - All markets

For the final case all markets are considered, the problem formulation is presented in

Equations 5.12a-5.12h as a combination of previous cases.

T
DAM DAM D DAM C
PO PV ST SR pC 0 ,Zl{ = Cu) Py + (7 = Ca) P = (= + C PGy +

(7 + Yy — ClPEY + [7) = Yea(my) +Co)| PG+

(R 4 B DR+ o+ ]~y | o
(5.12a)
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0 < PO+ P +P5) +PYT < PRy - B (5.12b)
0 <P +PLY < Phax - (1= 1) (5.12¢)
0<P) +P(R§f PSP PP <Ph 0 (5.12d)
C
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NP AL YrameP() At

SoCp =SoCun+—gp =+ g

P(lt))At - ymP(Igf At - }’spP(S,) At - ynspP(f;’)SP At 5120
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Mathematical Validation
Figure 5.5 illustrate the BESS operation when included in all markets. A mixed of strategies
can be seen; similarly to Case 2 the BESS bids "charging" energy in the DAM when the RTM
price is high to avoid penalty. When RTM prices are lower than DAM prices, the BESS bids
on the REGDN market instead. The BESS does not bid in the NSPIN market for the week
analyzed, this market does not present revenue for the battery once its prices are low. The
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BESS uses a strategy between ASM and DAM to decided between the markets available to
discharge energy. A price spike appears around 30 hours in the REGUP market, the battery
uses the possible profit from this market to discharge. The BESS uses most of the time the
RRS market to bid capacity due to its high prices, once the RTM price is lower than the DAM
prices the battery uses a conjoint strategy between DAM and RRS market to bid energy.
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Figure 5.5 BESS Operation for Case 4.

The SOC profile, given in the last plot in Figure 5.5, shows the rapid changes the battery has
to employ to be able to capture all markets variations.

With the BESS unit commitment described and validate for each case defined is possible to
explain the second stage of the optimization procedure.
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5.1.2 Second Stage Optimization Problem

The second stage of the optimization problem deals with the BESS optimum sizing consider-
ing economic terms. However, as mentioned in the begin of this chapter another BESS term
is added in the second stage optimization. The SOC range, as seem before this parameter can
greatly affect the degradation cost. Therefore, in order to carry a sensitivity analysis later in

Chapter 6 this term is added to the second stage optimization.

To find the optimum BESS size and SOC range a Net Present Value (NPV) maximization
approach is used. This approach is used to have a better understating of which case presents
the best project implementation. It should be stated that this economic evaluation is not
aiming a business case implementation, but rather presenting various assessments of the

economic effects of the different cases defined in previous sections.

Therefore, by combining economic theory and genetic algorithms is possible to search and
identify which BESS size and SOC range would give the best project profitability for each
case defined. To better understand the second stage procedure, a brief description of the

economic terms used is given.

Net Present Value

The NPV is the difference between the present value of cash inflows (such as revenue or
income) and the present value of cash outflows (such as costs) over a period of time. NPV is

used to analyze the profitability of a project. Equation 5.13 is used for calculating NPV:

20
F
NPV — Z Net Cash Flow
k=0 (1 +r>k

(5.13)

where Net Cash Flow is the difference between present value of the cash outflow and cash
inflow, r is the annual required rate of return and & is the time in future, in this circumstance,

number of years.

A positive NPV indicates that the earnings generated by a project exceed the anticipated

costs at a specified required rate of return [47].

The BESS cash inflow is represented by revenue which is calculated for each case in the MILP
formulation. On the other hand, cash outflow considers Capital Expenditures (CapEx) and
Operating Expenses (OpEx). The CapEx consists of BESS purchase cost and Engineering
and Construction (E&C). The purchase cost is given by Equation 5.14
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Chess = P, Cp+EL,,-CE (5.14)

cap

where Cp and Cg are power and energy costs, respectively. The OpEx consist of Operation
and Maintenance (O&M), and the degradation cost or replacement cost. The degradation
cost is used to quantify the degradation related to battery operation. The assumption used
is that once the capacity of the BESS degrades it will be replaced at a cost. The two types
of capacity fade: idling and cycling, are added to provide a total capacity fade. Accounted
for BESS degradation. The total capacity fade C; 49 1s the sum of Equations 3.2 and 3.3
presented in Chapter 3. Therefore the degradation cost is defined by the following equation:

DegCost = Eé’ap * Crotalon * Cell os (5.15)

where Efa , stands for battery energy capacity rating, C;orq/9 18 the total capacity fade in

percentage and Cell, is the battery cell replacement cost.

With the NPV equation formulated, the Particle Swarm Algorithm (PSO) can be used. The
PSO is one of the most successful optimization approaches and is inspired by nature [48].
The algorithm is formulated based on the performance of a swarm such as; a flock of birds, a
shoal of fish. Generally speaking, various particles are generated and a fitness function is
given to each. The particles exchange information among each other to define which path to

follow in order to find the best fitness function e.g. NPV value.

The PSO is used to find the optimal BESS size and SOC range that maximizes NPV for each

defined case. However, these two parameters are decoupled: two PSOs will be used..

The first PSO will disregard the degradation cost in the NPV calculation, ensuring that the
BESS size found gives the best profitability of potential investments. This optimum size is
then used as input for the next PSO, which will consider the degradation cost in the NPV
calculations. This decoupling is done in order to later be used in a sensitivity analysis.
Therefore, the second stage in the optimization procedure is used to find the BESS size and
SOC range while maximizing the NPV.

With both stages explained is possible to combine them and formulate the full optimization
procedure and a Benchmark case to validate it.
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5.2 Optimization Procedure and Benchmark Case

The first PSO algorithm is written and executed in MATLAB®, two variables are randomly
generated between [1W, IWh] and [200MW, 400 MWh]?, as power and energy capacity.
These two generated variables are provided as input to each MILP previously formulated.

The first stage optimization is then modeled taking into consideration the objective function
and constraints for the defined case. The optimization modeling toolbox YALMIP® [30] is
used in the MILP formulations. With the MILP developed the solver Gurobi [31] is used to

find the maximum revenue.

The output of the solved MILP is revenue and battery SOC profile. The SOC profile is then
separated between idling and cycling mode to calculate degradation cost. The degradation
cost and BESS revenue are used to calculate the NPV which is the fitness function to the
PSOs. For the first PSO, the degradation cost is disregarded from the NPV calculations. This
PSO will then try to maximize NPV by changing the BESS size. The process is repeated until
the fitness function has no significant improvement between iterations or reach the maximum

number of iterations predefined.

The output of the first PSO: optimum BESS size, is then used as input for the second PSO.
The procedure is the same as explained before. The difference, in this step, is that the BESS
size is fixed as the optimum size. The decision variables are SOC,,;, and SOC,,,, and the
degradation cost is considered in the NPV calculation. Figure 5.6 make this procedure more

clear.

2The lower bound is chosen as 1 so it is possible for the second PSO to find the best SOC range. The upper
bound is chosen to increase the PSO performance.
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Figure 5.6 Full Optimization Procedure Flowchart.

Having the full optimization procedure formulated and explained. A Benchmark case is
defined below, to evaluate the optimization procedure.

5.2.1 Benchmark Case

Case 1 will be used as a Benchmark. A deterministic approach is used to define the best
possible operation scenario for a battery providing energy arbitrage only. This implies a

perfect price forecast in a one-year optimization window.

Figure 5.7 show the first PSO operation. This PSO will evaluate the best "Fitness value" i.e.
the NPV value in 20 years, disregarding degradation. From the figure is possible to observe
the PSO process. Until the fifth iteration, the swarm is still searching for the optimum BESS
value. There is no significant NPV improvement between iteration 6 and 30, so the operation
is finalized.
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Figure 5.7 First PSO BESS size Search Process.

The final value found by the first PSO is its lower bound, 1W / 1Wh. Implying that no
BESS will bring profitability in Case 1 i.e. the possible revenue accrue from having a BESS
participating in arbitrage only does not suffice a project implementation. Provided that even
if the degradation cost is disregarded, there is no optimum size. The second PSO considering
such cost is not evaluated.

This result is supported by other papers evaluating a Li-ion BESS profitability participating
in arbitrage only in the same market [19]. This, however, does not mean that a BESS is not a
profitable revenue stream in the energy arbitrage the only case. As stated in Chapter 2, in
the energy arbitrage market the energy bids are not financially bonded. The revenue comes
from the RTM, each settle prices every 15 min. This market as shown in Chapter 4 have high

prices leading to higher revenue than the one for Case 1, just analyzed.

The key points of this chapter are summarized in the following section.

5.3 Summary

This chapter dealt with the optimization procedure used to define the BESS size. Firstly, four
cases were defined to assess the different bidding schemes in which a BESS can participate.
The optimization procedure is divided into two stages to deal with non-linearity problems.
The first procedure deals with the BESS unit commitment problem. For each case predefined a
MILP problem is formulated and validated with a week of BESS operation. This formulation
takes into consideration grid and battery constraints while maximizing the revenue. The
second stage of the optimization deals with the optimum BESS size. At this stage, two PSOs
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algorithms are used to evaluate the BESS size while maximizing NPV with and without
degradation cost. Lastly, Case 1 is used as a Benchmark to verify the full optimization

procedure combining stage one and two previously mentioned.

With the forecast methodology and the BESS optimization procedure formulated. Is possible
to define a practical operation schedule for the BESS in the following chapter.



Chapter 6
Operating Schedule Strategy

This chapter will bring together the forecast method and the optimization procedure to
provided a practical operation strategy to BESS. Firstly, the operational strategy is described
taking into consideration forecast and optimization. Secondly, the defined operational strategy
is evaluated. Furthermore, the strategy is used to economically evaluate the different cases

defined in the last chapter. Lastly, a sensitivity analysis is presented.

6.1 Receding Horizon Control

In reality, the BESS operation does not possess a deterministic view like the one defined for
the Benchmark case. Therefore, in order to evaluate the real profitability of such system, a
practical operation strategy must be used. A Receding Horizon Control (RHC) strategy often

used as a scheduling procedure, which can be used in real-world operations, is selected [49].

RHC or model predictive control can be considered as a type of feedback control [49]. The
RHC shows a good performance for stochastic and nonlinear problems. However, the RHC
is an inappropriate control method for real-time applications, where it increase the size of an
optimization problem and requires data estimations. Therefore, the RHC can be considered
as a viable option to control systems with sample times like the one analysed [7].

The RHC concept is illustrated in Figure 6.1. Basically, the optimization problem, at each
time step, is solved over a fixed time horizon. Then, the decision variables from this horizon
are used. The prediction horizon, consequently, moves forward and the same procedure is
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repeated!. Then, the market price data used for each case is forecasted, over the prediction
horizon. The optimization problem is solved based on forecasted prices to maximize revenue.
All constraints should be satisfied at each iteration to guarantee the feasibility of the solution
[7, 49]. The energy content in the battery by the end of the time horizon (E (End)y is used as
input for the next time horizon, ensuring operational continuity.

Day-ahead forecast
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Figure 6.1 Schematic of Receding Horizon Control (RHC).

Five markets are forecasted and used in the RHC approach, REGUP, REGDN, RRS, NSPIN,
and DAM. Each market is forecasted using the ANN methodology defined in Chapter 4.
Table 6.1 show the forecast errors for each of these markets. The high error percentage is
due to price spikes, forecast improvement is not the main focus of this thesis, thus these
forecasted values will suffice [2].

Table 6.1 Forecast error for each market used in the forecast.

Market MAPE [%] MAE [$] Daily Peak MAPE [%]

DAM 38.83 4.30 18.98
REGUP 64.49 3.65 46.57
REGDN 69.70 279 36.76

RRS 45.67 3.51 26.86

NSPIN 768.01 1.99 240.55

Tt is worth noting that all previous wind and price information is available for the optimization problem at
each iteration.
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The prediction horizon window is chosen to be 24 hours to simulate the day-ahead market
operations. The day-ahead forecast is used to solve the MILP for each case in Table 5.1. The
horizon is moved, prices are forecasted for the next 24 hours and the procedure repeated.
This is done until the end of the year. The annual revenue is calculated using the predicted
battery schedule and the real market prices. The degradation is calculated using the battery
charge/discharge profile. The full optimization procedure defined in section 5.2 is used,
where two PSOs are used. The first step the PSO will generate battery sizes in order to
maximize NPV disregarding degradation, for every combination of battery size the RHC
strategy is performed until the optimum size is found. The optimum size is then used as input
to the second step, where the PSO will find the optimum SOC range for the optimum size
found considering degradation in the NPV calculations. The RHC procedure is the same as

before. Figure 6.2 captures this entire procedure.
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Figure 6.2 Combined RHC and PSO Strategy to find Optimum Battery Size and SOC Range.

This procedure is done for Case 2, 3 and 4. Case 1 is disregarded from this analysis once
its was found that for the best operational case (perfect foresight), the battery was deemed
unprofitable. The procedure is done twice for cases 2 to 4. One simulation is done using

the forecasted prices, called stochastic RHC. The other simulation is done using perfect
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foresight, called deterministic RHC. The later is used as an upper bound for the RHC strategy.
Different results from the simulations will be described in the following section.

6.2 Results Examination

The results presented in this section are divided to better visualization. Firstly, the RHC
strategy results will be presented to evaluate its ability as a practical operation strategy.
Secondly, the economic results will be evaluated, to verify the BESS profitability.

6.2.1 Practical Operating Schedule

The first set of results will show the RHC ability in providing a practical operation scheme to
the BESS operator. In Figure 6.3 is seem the annual revenue for each case evaluated. The
figure illustrates the ability a RHC strategy has. The revenue values found using the RHC
methodology are rather close to the upper bound.

I Deterministic RHC

: $ 17,791,000.00 N
I Stochastic RHC :

Annual Revenue [$ Million]

Case 2 Case 3 Case 4
Cases Evaluated

Figure 6.3 Revenues from Each Formulated Case Using Deterministic and Stochastic RHC.

The highest revenue discrepancy is observed in Case 4, with a 22% difference between
stochastic and deterministic RHC. Case 1 presents the lowest with 8% followed by Case 3
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with 16%. Case 4 has the highest revenue in both RHC simulations. With values close to 18
Million. Is important to point out that with an increase in forecast horizon this revenue could

be increased.

Table 6.2 reveals the BESS sizes found by the optimization procedure. These values show
another strength of the RHC strategy. The stochastic and deterministic BESS size values are
close to each other. In fact, in Case 2, the BESS optimum size is the same for both RHC

simulations.

Table 6.2 BESS Optimum Size for each Case Studied, Considering RHC Planning.

Power Energy
RHC Deterministic Stochastic Deterministic  Stochastic
Case 2 100 MW 100 MW 108 MWh 108 MWh
Case 3 119 MW 110 MW 147 MWh 125 MWh
Case 4 200 MW 177 MW 210 MWh 189 MWh

Case 4 presents the highest size. Being the case where all markets are considered, the opti-
mization seems to define a large capacity in order to fully used the available revenue streams.
Is useful to remember that these values are found without considering the degradation cost in
the NPV calculations. In reality, the degradation effect shown in Table 6.3 is quite severe. To

avoid redundancy, only the deterministic RHC values are used in the following analysis.

In all cases the BESS has high capacity fade due to cycling. As demonstrated in the MILPs
validations. The BESS performs high discharge/charge cycles in order to obtain such high
revenues. This leads to high capacity fading. In Case 4 the fading is so high that the
replacement cost surpass the actual revenue seen in Figure 6.3.

Table 6.3 BESS Capacity Fade for each Case Studied along with its Total Replacement Cost
and the Actual Revenue.

Case 2 Case 3 Case 4
Cap. Fade Idling 0.068 % 0.7083 % 0.07 %
Cap. Fade Cycling 22.54 % 18 % 51.61 %

Replacement Cost ~ $ 4.88 Million $5.32 Million $ 21.17 Million

P f A 1
ercentage (0) ctua 47 9 20 9, -22 9%

Revenue Earn
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If the degradation cost were to be accounted for in the revenue. The actual revenue earn
would be less than the ones previously observed. In Case 2 for example, a 47% decrease in
revenue would be observed. Case 3 has the lowest lost in actual revenue, due to its lowest
capacity fade out of the three cases evaluated. This is explained by the markets used in this
case. The BESS has fewer options to charge from. Therefore, it decides to wait for high
prices to discharge, leading to longer idling time. This can be corroborate by the fact that
Case 3 has the highest capacity fade due to idling out of all the three cases.

The degradation looks severe in some cases such as 4. But it may be that in cases like 2 or 3
the lost in revenue due to degradation is not severer enough to stop project implementation. In
addition to that the following economic analysis also gives which of the three cases presents
a potential project implementation.

6.2.2 Economic Analysis

The BESS project is assumed to have 20 years, the same as a WE. Therefore, the NPV after
20 years of project development will be assessed. A second economic term is defined to
better comprehend the results to be presented. The NPV ratio (NPV,4i,) gives the amount
of money returned for each dollar invested in the project. For example, if the NPV ratio
of a project is 10/$, that means the project returns 10 dollars for each dollar invested. This
ratio gives a better comparison between projects once it only takes into consideration the
profitability of each project [47].

Table 6.4 presents the NPV in 20 years and the NPV ratio of each case evaluated in this
chapter. Without the degradation cost, the best market bid scheme is the one presented in
Case 2. Case 4 presents the highest NPV (86 Million), however, the large BESS (200 MW/
210 MWh) makes the project less attractive than Case 2.

When considering the degradation cost, none of the market schemes has a positive NPV. For
such condition, Case 4 shows the worst performance. Again Case 2 presents as the most
attractive out of all three.
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Table 6.4 Economic Evaluation of each Case.

Projects Economic Analysis

No Degradation Cost With Degradation Cost
Economic term NPV,_»o NPV, 4tio NPV,_»o NPV, utio
Case 2 $ 46 Million  + 0.789/% -$14.81 Million - 0.234/%
Case 3 $ 3.41 Million + 0.044/$ -$62 Million  -0.759/$
Case 4 $ 86 Million  + 0.748/$ - $183 Million - 1.337/$

From a purely projects implementation perspective, Case 2 has presented the most attractive
values out of all the cases analyzed. The degradation has quite a large effect on the project

implementation. None of the cases presents positive NPV if degradation cost is considered.

Having that in mind, a sensitivity analysis is carried out in the following section to verify if
the using less energy capacity could lead to better profit implementation.

6.3 Sensitivity Analysis

The sensitivity analysis is carried out from the second PSO defined in the optimization
procedure. Therefore, the BESS values are the ones presented in Table 6.2. To recapitulate,
the second PSO will find the best SOC range while maximizing revenue.

The sensitivity analysis is presented in Table 6.5, where the optimum SOC range found is
given for each case. Except for Case 4, all the other cases have SOC range in the upper half
percentage. In all cases, however, the actual BESS capacity used is close to 20% of total

energy capacity.

The capacity fade is reduced significantly. Cases like Case 4, which presented 51% capacity
fade due to cycling now presents 7%. On the other hand, the capacity fade due to idling has
an increase in each case. The replacement cost due to degradation follows the decreasing
trend. Degradation cost is presented in the thousands for Case 2 and 3, where before it was
in the millions.

The fewer energy availability is perceived in the annual revenue stream. Revenue, as expected,

is less than in previous cases with larger energy capacity for use.
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Table 6.5 Sensitivity Analysis for Change in SOC Range.

Case 2 Case 3 Case 4
SOC Range 54 -77 % 53-70 % 0-27 %
Annual Idling 0.288 % 0.851 % 0.2192 %
Cap. Fade Cycling  0.549 % 0.778 % 6.978 %
Replacement Cost $ 180,690.00 $478,960.00 $3,022,800.00
Annual Revenue $4,266,700.00 $2,943,500.00 $ 10,627,000.00
Project NPV,—_yy -$21.8Million -$63Million -$ 47 Million
Analysis NPViio  -0.343/$ 0.764/$ -0.3723/$

However, despite the decrease in degradation cost, when constrained SOC is used, the NPV is
still negative. Looking at the NPV ratio, Case 2 still present the best project implementation
attractiveness out of the three. However, Case 4 has a better NPV ratio than Case 3. As a
matter of fact, Case 3 NPV ratio is worst than before. Case 4 seems to benefit the most from
the SOC constrain.

Table 6.6 helps to visualize this improvement. The percentage decrease for each parameter
presented before is given. As observed before, the BESS for all cases has a 80% capacity
decrease i.e. 80% of the BESS capacity is not used. In all cases the replacement cost is
decreased, presenting values such as 96% in Case 2, for instance. The annual revenue is also
decrease, with Case 3 presenting the highest lost in revenue. However, the lost in revenue
seems to balance with replacement cost in the project analysis. For Case 3 the NPV ratio has
a small increase. Contrary to Case 2, where the lost in revenue has a big impact in project

implementation. The NPV has a 47% increase.
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Table 6.6 Percentage Decrease in Parameters when SOC Range is Constraints

Parameters Percentage Decrease

Case2 Case3 Case4
BESS Energy

. ~80 %
Capacity
Replacement Cost 9% % 91% 86%
Annual Revenue 53% 60% 40 %
Project NPV_og -47% -02% 74 %
Analysis NPV,yio 46% -06% 72 %

Case 4, however, has the best improvement out of the three cases. Its replacement cost
declined to 86%, while revenue had a 40% decrease. Its project implementation increased
to 72%. A summary of the chapter is given in the following section to identify key element

points introduced in this chapter.

6.4 Summary

This chapter combined the the forecast methodology and the optimization procedure to
provided a practical operation schedule for the BESS. A receding horizon control strategy
was used to evaluate the actual profitability of the BESS in three different cases. Firstly, the
RHC strategy was simulated with perfect foresight to predefined an upper bound. This upper
bound was used to evaluated the RHC strategy with forecasted markets. The performance was
deem satisfactory, as the forecast and the perfect foresight results were close. Subsequently,
the RHC operation was used to evaluate the BESS project implementation. Revenue streams
up to 18 Million were found using a 200 MW / 210 MWh battery. This, however, lead to
high degradation costs. Even though projects showed positive NPV values if degradation
was not considered, no project showed the same if degradation was considered. Overall Case
2 presents to have the highest project implementation of all cases evaluated. Eventually, a
sensitivity analysis was carried out. The BESS SOC range was constrained and the results
founds point to a high decrease in degradation cost. The revenue, however, also decreases.
Again no project showed positive NPV and Case 2 present to have the best NPV ratio. The

conclusion and future work are presented in the next chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a key focus is put on investigating on the BESS profitability in multiple market
services provision. Wind power generation has had an increase in deployment in recent
years. Nevertheless, its share in the electricity market is still small when compared with the
non-renewable generation. Largely due to its inability to provided multiple market services.
BESS is presented as a prominent solution. Its installation is supposed to add different
services provision to wind power portfolio leading to an increase in its share in the generation

mix.

In order to evaluate such a scenario, an practical operation scheduling procedure for the BESS
was defined in this thesis. In the interest of having such operation in place key elements
needed to be addressed. Firstly, the ERCOT electricity market and its rules and regulation
were presented. Furthermore, the conjoint BESS and Wind Farm system was described as a
hybrid system. A BESS degradation model was defined and the wind farm structure develop.
Subsequently, a price forecast methodology for different markets was found. Afterward, the
optimum BESS operation was addressed through an optimization procedure. Eventually,
with all the information necessary, the practical operation schedule was addressed. The
RHC strategy was used combining the forecast of 5 different markets and the optimization
procedure. The RHC strategy performed with satisfactory results, presenting as a good
practical operation strategy.

Finally, BESS profitability was analyzed. The main conclusions suggest that a combination
of regulation services and energy arbitrage presents as preferred project implementation
out of the cases analyzed. When considering all the market scheme the annual revenue can
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reach values close to 18 Million. However, the battery has to perform high charge/discharge
cycles leading to high degradation cost. Nevertheless, the RHC presented as a good strategy
for operations in the electricity market, if combined with a real-time operation strategy
the revenue could increase. Another key outcome was how BESS degradation behavior
1s connected to constrain SOC. Therefore, this behavior must be considered inside the
unit commitment problem. The BESS showed positive NPV values if no degradation was
considered leading to the assumption that if such parameter could be improved or diminished
the BESS project attractiveness most certain would increase.

To conclude the BESS operation showed its rapid response to price changes, fast changes
that few systems can provide. If the BESS were to be paid for its performance, its revenue
would also increase. Therefore, there is still exists a gap between the optimum amount of
degradation and revenue to be considered to define if a BESS can help increase wind power
penetration in future work.

7.2 Future Work

In the further part of the text, future work verifying and improving the results of the work
carried out in this thesis is suggested. The focus is put on investigation of different scenarios

which, due to the limited time period of a semester, have not been investigated.
Task are listed as follow:

* Implement a degradation model inside the unit commitment problem.

* Investigate the profitability of different horizons in the RHC strategy.

* Investigate real-time operation scenarios.

* Investigate BESS project profitability accounting with wind farm revenue.

» Use different search algorithms strategy to identify best BESS parameters.

Evaluate different batteries with less degradation effect.
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