
SharpFlying
Design and implementation of a generic multi-service framework for
autonomous indoor flight & An exploratory study into autonomous

indoor Human-Drone Interaction

Master Thesis
hci102f19

Aalborg University
Software



Copyright © Aalborg University 2019





Software
Aalborg University
http://www.aau.dk

Title:
SharpFlying

Theme:
Master Thesis in Human-Computer Interac-
tion

Project Period:
Spring 2019

Project Group:
hci102f19

Participant(s):
Kasper Østergaard Helsted
Steffen Darby Carlsen

Supervisor(s):
Mikael Skov

Copies: 3

Page Numbers: 16

Date of Completion:
10-06-2019

Abstract:

In current time, research into the use of
drones in terms of autonomy has become
more popular. This has caused researchers
to attempt and find a singular technology
and solution for solving indoor naviga-
tion with drones. Even though some of
this research has proven to be successful,
none of the found research has attempted
to combine multiple solutions into a singu-
lar framework. Thus, we designed and im-
plemented SharpFlying, a generic and ex-
tendable multi-service framework for au-
tonomous indoor drones. In order to vali-
date our framework, we implemented three
proof of concept services. These services
were tested, individually and together, to
get an insight into whether or not a multi-
service structure can perform equal to, or
greater than a singular solution. Our results
show that by combining multiple services,
you gain vastly better results compared to
a singular service. Our first study showed
how to develop autonomous drones, how-
ever, research has yet to figure out a set
of design guidelines as to how we should
interact with drones in an indoor environ-
ment. Based on this, we created a 3-
parts exploratory study into the world of
indoor autonomous Human-Drone Interac-
tion. Our tasks focused on primary in-
teraction during navigation, voice interac-
tion and secondary interaction. Our results
show that participants expected the drone
to behave under a level of trust. Trust was
a metaphor expressed by some of the par-
ticipants, they related this word to the be-
havior of the drone and how flawless they
expected it to be. Our study outlines a se-
ries of design insights for future interaction
development of indoor autonomous drones.
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Summary

The purpose of this project is to investigate the world of autonomous drones from a devel-
opment and interaction perspective. The first article starts by consulting the related work in
regards existing solutions within autonomous drone navigation. This gives an insight into
how researchers has already attempted to solve the many problems of autonomous naviga-
tion, both in regards to indoor and outdoor. This showed that the related work always focused
on using one technology or method to perform indoor autonomous navigation. Based on the
related work, we extracted multiple approaches to indoor navigation and created the frame-
work, SharpFlying. This framework is a service-focused extendable and generic implemen-
tation, meaning that it is created to allow for other developers to continue the development
by implementing more services using the base-classes we have implemented.

As a proof of concept, we created three different services: Vision-, Distance- and WiFi-
Positioning service. The vision service implements Canny Edge Detection, Hough Line
Transformation and DBSCAN clustering in order to determine the vanishing point of the
area flown in. When the vanishing point has been determined, it can be used to correct the
yaw of the drone, allowing it to steer down a hallway, while keeping the nose of the drone
correctly aligned. The distance service uses ultra sonic sensors mounted onto a 3D-printed
hull with a Raspberry Pi Zero-W as a means of communication. This service controls the
roll of the drone by using the distances measurements on either side of the drone to correct
itself into the center. The WiFi-positioning service was implemented as a proof-of-concept
of how the system could be used. In order to test the implementation of SharpFlying and
the services, we designed a close-to worst-case scenario for an indoor drone. It had to
navigate down a narrow hallway from different starting positions, where it had to centralize
itself before landing in a designated area. The tests showed that the individual services can
navigate the hallway, although with a lot of inconsistencies and mistakes. Combining the
vision and distance service yielded better results and consistencies, where the drone only
made one wrong landing.

Due to the services not allowing indoor navigation and the unpredictability of actions by the
implemented services, we did not deem it safe enough nor ready to be used in a real scenario.
Thus, in order to get an insight into Human-drone Interaction with an indoor autonomous
drone, we used Wizard of Oz (WoZ).
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With WoZ, we emulate similar behavior to that of a fully autonomous drone, however with
the safety of an experimenter being able to immediately stop the drone in case of a dangerous
situation. Thus, we designed an experiment with three different parts, each focusing on their
own type of interaction. The first part is about primary interaction, where the participant is
following an indoor navigation drone. The second part is an indoor area investigation, where
the participant, using voice commands in a remote location, controls the drone between two
locations, to then investigate an area and locate two hidden objects. The third and last part is
about secondary interaction. In this task, the user is sharing a narrow hallway with the drone
under different conditions.

Based on the interaction experiment, we withdraw four design insights, that future researchers
within autonomous Human-Drone Interaction may consider when designing an autonomous
system. This includes: trust, a metaphor explicitly stated by our participants. Trust deals
with expected behavior of the drone. The participants expected the drone to be flawless in
its navigation and ability to know the environment it is navigating. Furthermore, the partic-
ipants wanted consistency in actions and speed of the drone. Lastly, we derive how much
natural language understanding in necessary to properly interact with a drone using voice
commands alone. Here we draw similar results to that of related work, that the interaction
level needed is similar to communicating with a pet.

Currently, the implemented services of SharpFlying does not deal with any interaction spe-
cific measures, however, the implementation allows a service to be developed that does.
Based on the results obtained through our study, the service would need to detect people and
react to them by giving the person space and awaiting the person to move past the drone, be-
fore continuing. Furthermore, further research should be made into proper auto-stabilization
in indoor environments, as the drone in the current state can be unstable, especially in inter-
sections, however this could potentially be solved with a smaller drone.

We conclude that a multi-service framework for controlling autonomous drones can perform
better than single instances of services. Furthermore, that allowing new services to be eas-
ily added to extend the autonomous system can provide better results. Based on the results
of the exploratory study, several recommendations of valid services to extend SharpFlying
has been proposed as design insights. For future work, we recommend continued develop-
ment of SharpFlying to behave according to our design insights, to which the results of the
exploratory study should be verified.
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ABSTRACT
Drones are becoming increasing popular, however, the use of drones
is limited to mostly outdoor usage. While research highlights new
and smart technologies to perform indoor navigation, it is often
focused on using a singular technology as a solve-everything solu-
tion. In this article, we designed and implemented SharpFlying, a
generic and extendable multi-service framework for autonomous
indoor drone flight.We implemented three proof of concept services
based on related work to validate our framework implementation.
We tested our services individually and together, which showed
vast improvements when using multiple services at the same time.
We contribute a framework for future researchers to use when
developing autonomous drones with a multi-service structure in
mind.
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1 INTRODUCTION
The use of drones in indoor environment has been researched in
regards to using a single technology to attempt and solve one of the
many problems of indoor navigation. This includes: Recognizing
tags using vision or RFID [8, 28], using deep learning for percep-
tion, guidance and navigation indoors [20] and a general use of
vision to navigate the drone indoors [16, 17] or adding additional
sensors to the drone [31, 33]. While some of the solutions has been
developed as frameworks, none of them attempt to combine multi-
ple approaches to indoor navigation into a framework for flying
indoors with drones.

In outdoor environments, navigation is often done using GPS,
gyroscopes, accelerometers and some wireless communication with
a base station using the camera feed. These tools are great for
outdoor navigation, but is not enough when it comes to indoor
navigation, which can be used for in-building delivery, automated
inventory and indoor emergencies [29]. Additionally, A survey
made in 2001 shows that humans spend upwards of 87% of their
time in indoor environments, this includes office buildings, airports,
venues or homes. This result displays the need of indoor navigation
and that any type of framework that allows indoor navigation has
a practical use.

In indoor environments, a drone need to use its sensors and
vision based systems to detect and avoid collisions. These are used
in conjunction with obstacle avoidance strategies to find the best
solution to avoid the environment [12].

Although a lot of research highlights indoor navigation strategies
and how to approach this [13, 25, 28, 36], limited research could be

found that designs and implements an indoor autonomous drone
with the goal of detecting and avoiding humans [26]. However, their
results does not focus on any interaction, but rather focus on the
technical aspects of detecting and avoiding humans, with a singular
contribution to Human-Drone Interaction (HDI), this being that
the drone should move when meeting humans in a hallway.

In this paper, we have developed a standalone framework, SharpFly-
ing. SharpFlying combines multiple results from previous work by
combining vision, ultra sonic sensors and WiFi positioning into
one framework that helps with autonomous indoor navigation.

The framework we have developed is not a fully implemented
system, but rather a proof of concept. It is developed as a foundation
to be build upon, where the system allows for easy expansion upon
functionality by adding more services. This framework relies on
the related work, and comes with a collection of developed libraries,
in order to support the features which was deemed necessary for
this framework.

The inspiration and some of the requirements of the project is
based the SciRoc Episode 12 challenge - Fast delivery of emergency
pills [3]. This challenge is about an aerial robot in an emergency
situation, where a first-aid kit needs to be delivered to a customer
in an indoor environment as fast as possible. The robot will need to
automatically detect and avoid obstacles and account for GPS being
unavailable. The challenge defines that the robot must navigate in
an indoor environment, detect a customer and correctly maneuver
in an environment with obstacles, land and deliver the item within
a 2 meter accuracy and fly back. These requirements are the point
of reference of requirements for the development of SharpFlying.

Initially, we will take a look at related work, to get an idea on
how to approach the project and to get an insight into the current
progress made by other researchers. Afterwards, we will go through
multiple development cycles, each focusing on solving a problem
within indoor navigation with a drone. Lastly, the different imple-
mented services will be tested individually and in conjunction with
each other, to show how each of them perform and compensate for
each other.

2 RELATEDWORK
In order to gain an understanding of current research in regards to
navigation with drones, we look at the related work in regards to
outdoor and indoor autonomous navigation with drones. This will
give an insight into the current state of the art and novel approaches
to solving outdoor and indoor navigation issues, with a focus on
drones. The related work will be used to extract important consid-
erations and guidelines for developing SharpFlying, our framework
for indoor autonomous flight.
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2.1 Outdoor autonomous navigation
Within outdoor navigation, there are several approaches that at-
tempt to either solve or optimize the field of navigation. The conven-
tional approaches use GPS to determine the position of the drone
and either way-points or other planning algorithms to determine
the most optimal route for the drone. Another approach that has
evolved, especially in regards to race drones, is machine learning
approaches using neural networks.

Conventional approaches
GPS is one of the most core technologies used for outdoor posi-
tioning and can be used in conjunction with a camera for fully
autonomous flight without pilot input [24]. One of the most basic
implementations of autonomous navigation includes way point
planning, where the pilot determines a set of points the drone
should navigate to, this feature is often implemented by the drone
manufactures [4]. The approach of generating a flight plan based
on points specified by the pilot has previously been researched in
regards to precision [34, 35] and performance [19].

Carvalho et al. adapted a standard commercialized drone into
an embedded system, without any reliance on a ground station
for fully autonomous flight [11]. This was done using the Robot
Operating System (ROS). Their work is a design and integration
of the ROS framework with the robot’s hardware using an Odroid
micro computer mounted on the drone. Their results show the
drone being able to correctly perform a simple mission consisting
of performing a takeoff, flying in a square and then landing again
using GPS only. The UAV responded satisfactory during random dis-
turbances, such as wind and GPS signal fluctuation, with a minimal
number of errors. They conclude that using filtering algorithms for
GPS signal fluctuations, the minor inconsistencies in flight paths
might perform better.

Machine learning & outdoor navigation
Some of the related work has started to look at machine learning
as an approach for outdoor navigation. Most of their motivations
stem from drone racing, where each drone is controlled by a human
pilot, with a first-person view from the drone, who controls the
drone at high speed using a radio transmitter. While human pilots
need years of training to properly control the drone in fast paced
environments, the skills are valuable to an autonomous system that
must quickly and safely navigate through complex environments,
which is the primary reasoning for using this as a task.

Simultaneous Localization and Mapping (SLAM) can provide
consistent 2D to 3D pose estimation against a known environment,
but is prone to errors during any accelerated movements, due to
image blurring. SLAM is great in static environments where way-
points or movement trajectories are already defined or where speed
is not a concern [10]. Kaufmann et al. describes Deep Drone Racing,
a 2-part system for robust and agile flight of a drone in a dynamic
environment [21]. Part one is a perception system, which uses a
Convolutional Neural Network (CNN) to predict a goal direction
in local image coordinates, together with a navigation speed. This
is generated from a single image on a forward-facing camera. The
second part is a control system. It uses the output from the percep-
tion system to generate a movement trajectory vector. Their results

show that their system is able to navigate a complex race track,
while avoiding common problems, such as drifting and a navigation
in a dynamic environment.

Sadeghi et al. presented CAD2̂ RL, a neural network trained
purely on simulation data. Their goal is to train a neural network
for obstacle detection, without having to put the drone into the real
scenario [32]. Their results show that they can successfully fly and
avoid obstacles. For future work they recommend including depth
into the images using multiple cameras or combine their simulated
training with real data, which could yield a better overall result.

Giusti et al. researched a drone as a medium of visual perception
of a forest trail [18]. Here, they assume that as long the drone follow
the trail, that it is free of any obstacles, thus focuses on finding
and following the trail. They have trained a CNN on 17,000 train-
ing frames and uses that to process an image in order to obtain
a perception of the trail. They derived a two-class problem, one
has to decide whether the trail is visible or not, while the other
class determines where the trail is. The biggest problems they faced
were in regards to image quality, where their training data was
recorded from GoPros mounted on a researchers head during a
regular hike. This meant that the fast-paced motion pictures from
the drone caused complications with the classifications. Further-
more, differences in light strength across the trail caused the drone
to be unaware of its surroundings, which caused some crashes. In
general, they were able to classify trails correctly in synthetic tests
and that their system performs better than any alternatives and to
a certain degree, comparable to humans.

2.2 Indoor autonomous navigation
There is a fairly recent body of work attempting to solve the prob-
lem of indoor navigation in GPS denied environments using one of
the Parrot drone platforms [9, 16, 22]. The solutions proposed in-
cludes: the use of markers for vision to detect, vision based distance
estimation and full on image processing systems.

In recent years, the use of drones has expanded into real-life
applications, especially in outdoor scenarios, such as monitoring
and surveillance [1, 6]. Thus, research has been made in regards to
HDI in outdoor environment with respect to: how users interact
with drones and how they expect the drone to respond to their inter-
action. However, only limited research has gone into the potential
interaction in indoor environments. Lioulemes et al. researched
the safety challenges when humans and drones collaborate in in-
door environments [26]. Their results show that humans expect
the drone to behave in a similar manner to a ground vehicle, that
is, that the drone should be the one maneuvering away from the
human when possible.

Follow-me drone
Mao et al. investigated the possibilities of an indoor follow-me
drone [27]. Their motivation is that video taping is a costly and time
consuming process with possibilities for automation. They describe
the challenges of being unable to use GPS or similar technologies
to properly do indoor tracking. Their solution uses robust acoustic
tracking to determine the distance between the user and the drone.
Their results show that it is possible to find the location of a user
and follow them within a specific distance, with the limitations
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being unable to properly follow the user during extended periods
of disconnections with the sound signals, I.E. hard concrete or a
human blocking the signal [27].

Machine learning & indoor navigation
Duggal et al. researched the use machine learning in contrast to
fully autonomous indoor navigation for drones [13]. They use a
single monocular camera on the front of the drone. They input an
image into a Hierarchical Structured Learning (HSL) algorithm that
outputs a depth map. This depth map is fed into a CNN to generate
the flight planning commands for the drone. Their results show
that they use ≈ 180ms to perform HSL and ≈ 200ms for the CNN to
generate flight planning commands. They specify that the Bebop
drone they use for their experiment takes approximately 400ms to
respond, so that their computation time is justifiable. Their flying
experiments show that they have an 82% successful navigation rate,
however that they had problems with the drone drifting in the
indoor environment and problem with depth map estimation due
to changing light levels in the hallways.

Vision-based approaches
Adriano Garcia & Kanad Ghos researched autonomous indoor navi-
gation using a stock quadcopter using off-board control [16]. Their
approach to indoor navigation uses vision to determine the loca-
tion of floors and walls. This is done using Canny edge detection
in correlation with Hough Line Transformation. This is done to
form vanishing points. The vanishing points provides a general
central marker of the image and can be used for yaw correction
and the position of the vanishing lines can be used as a reference
for roll correction. One part of their results show that they can
detect an intersection within a 50cm difference of their measured
estimate. The second part of their results is in regards to navigating
a narrow hallway. In total they had 20 test flights, with 15 total
collisions, with only 2 of them being hard crashes. They identify
the error causing the hard crashes in both cases, saying that the
implementation of 180 degree turns will fix this. They manage to
successfully detect, stop and turn at the intersection in 90% their
tests. Because of their implementation heavily relying on being
able to find vanishing points for navigation and stabilization of
the drone, during turns, they had troubles correctly finding the
new vanishing point, causing problems in 25% of their test cases.
A similar type of research was made by Bills et al. who focused
on indoor navigation in narrow staircases [8]. Their results show
that their vision based solution succeeded over 80% of their tests,
however that they had problems getting the drone to properly fly
in the indoor environment causing air drifts and turbulence, which
caused the drone to crash or touch the walls.

Distance sensor-based approaches
There already exists different types of solutions that attempt to
support drone flight using distance sensors. This includes a obstacle
detection and collision avoidance system using ultrasonic sensors
by Gageik et al. [15]. They show that ultra sonic sensors perform
well when reflecting onto straight surfaces, where it is capable
of reproducing the environment with an accuracy of centimeters,
however that they are unable to reliably detect objects beyond
250cm. They recommend using additional sensors, such as infrared

sensors, to account for some of the negative aspects of using ultra
sonic sensors. The use of infrared sensors as an obstacle avoidance
tool has previously been researched [14, 23]. Their results show the
use of the range finder in conjunctionwith the inertial measurement
unit, that they can stabilize the drone in an indoor environment
within a 2x3 meter area. They conclude that this is adequate, since
the rooms they navigate in are always at least 6x6 meters. In one
of the test cases in [14], the drone is flying in a narrow hallway
towards a dead end. In this test, their system showed inconsistencies
due to wind turbulence in the narrow indoor environment. Even
though they were able to correctly navigate the area and avoid
obstacles, specifically tweaking the system variables was needed in
order to accommodate the narrow areas.

3 SHARPFLYING
Based on the related work, we have chosen to focus on three tech-
nologies. The first technology is vision, this is chosen based on the
promising results of Adriano Garcia & Kanad Ghos, who managed
to perform indoor navigation using deterministic well-researched
vision models. The second technology is distance using ultra sonic
sensors. This is implemented in order to accommodate for the weak-
nesses of vision. These sensors measure the distances between the
drone and environmental objects, allowing us to stop the drone
from crashing into walls. Furthermore, Bills et al. described scenar-
ios where they had problems with the air generation of the drone
when indoor. We attempted to replicate their results by manually
flying indoors, which showed that when the environment changes,
I.E. flying past an intersection, the drone can no longer stabilize
itself during hovering, causing it to increase its speed. Using ultra
sonic sensors, we can detect drastic changes in the environment
and accommodate for these environmental changes. Lastly, some of
the distance sensor-based related work showed promising results
in regards to indoor environments and that their systems are able
to function in even narrow environments, as long as the system
parameters are designed to accommodate for this. The outdoor
approaches use GPS in order to perform self-localization of the
drone, this is not available for indoor flight. The related work sim-
plify their experiments by ignoring the need to navigate a building
between two known points, but rather follow a user or move inside
a simple environment, such as a hallway with no obstacles. In order
to implement indoor navigation, we will use WiFi positioning as
the third technology. The goal is not to get an absolute positioning
of the drone, but rather self-localization to the point of the drone
understanding where it is, such that it knows how to move between
two known locations.

4 HARDWARE
This section describes the drone and the base-station used for the
system. The drone chosen for this project is a Parrot Bebop 2 (42cm
x 39cm x 9cm) modified with a custom 3D printed hull. Furthermore,
the drone has 3 ultra sonic sensors (HC-SR04) mounted onto the
hull. The ultra sonic sensors measures in a 15°angle and has a range
of 2cm to 400cm.

The drone with all modifications can be seen in Figure 1. The
ultra sonic sensors are connected to a Raspberry Pi Zero W, which
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is also mounted on the drone. The Raspberry Pi is running Raspbian
as its operating system.

Figure 1: Image visualizing the drone setup, with ultra sonic
mount.

The Raspberry Pi offloads all of the heavy computations to a
base-station. The base-station is a laptop with an i5-7300HQ @
2.5GHz processor running Windows 10. During integration tests
of the distance sensors, it was discovered that the drone propellers
emit ultra sonic sound, causing some of the sensors to give invalid
data. Due to this being discovered late in the project, the tests were
performed by taking the hull off the drone, placing it on an office
chair and imitating the movements of the drone.

5 IMPLEMENTATION

Figure 2: A simplified overview of the SharpFlying compo-
nent architecture

The implementation consists of 4 different modules. These are
the modules outlined by the related work as necessary to implement
an indoor autonomous drone. The system architecture can be seen
in Figure 2.

SharpFlying is the entry point for the system. Here the declara-
tions of the different services are made and the results from each
service is retrieved. BebopSharp is the library developed to con-
trol the drone. The Vision service contains the implementation of
Canny Edge detection, Hough Lines and the DBSCAN clustering.
The Distance service contains the implementation of the ultra sonic
sensors. The WiFi Positioning service provides functionality to
find an estimated position of the drone inside a building. All of
the services return a Response together with a confidence value. A
confidence value is a value that indicates the services confidence in
its result. From the vision service, the confidence value is dependant
on the changes between images. If we observe a large change in the
results from a captured image, the confidence value will drastically
go down. This will handle cases of blurred images or other cases of
bad data.

The entire point of SharpFlying is to be a fully asynchronous
multi-service framework. This means that all services are running
separately and “as fast as possible”, causing no services to bottleneck
each other. This means that there is no guarantee of a looped order
of actions, but that one service can publish multiple results before
another service publishes theirs.

5.1 BebopSharp
BebopSharp is the implementation of the drone controller library.
This is the library implementing all of the functionality we can
perform with the drone. Initially, we implemented the bebop sys-
tem in Python using PyParrot, an existing library for developing
drone flight applications [7]. However, during integration of the
vision service, the performance of Python failed to deliver the
expected results, with this implementation only being able to pro-
cess 1-10 frames per second, depending on the amount of data in
each image. Thus, we decided to rewrite the entire project in a
compiled language, namely C#, due the project members having
previous experience in the language. However, there existed no
library equivalent of PyParrot for C#. Thus we created our own
library to communicate with the Bebop drone, called BebopSharp.
After successfully connecting to the drone, a thread that gener-
ates the drone command packets is started. This thread ensures
that if the drone retrieves a FlightVector (An object containing
movement values) from SharpFlying, that the drone performs the
corresponding movements. The amount of times the command
generator generates and sends commands is controlled by the Con-
structor call to the BebopSharp class, where the user can specify
the number of updates per second, per default this is 10.

In order to ensure safety, a thread watcher is used. The thread
watcher ensures the command generator thread is active and per-
forms an emergency landing if we lose connection to the drone.

The drone communicates using UDP between itself and the client.
Based on the ARSDK Protocol documentation (Official documenta-
tion of how the drone works internally), the communication with
the drone has been implemented to handle pings from the drone
(the drone asking if we are still alive) and when the drone has
updates to its sensors [30]. This is implemented by recursively
withdrawing the first 7 bytes, containing the packet header, then
based on the total packet size, we store the bytes from the data

4



SharpFlying: A framework for autonomous indoor drone flight

Services
Vision Distance Indoor positioning

Objective Detect features in rooms Measure distance to remote objects Estimates location from WiFi strength

Implementation Uses multiple vision based algorithms
to locate room features.

Uses an external mounted system to
measure distance. Using multiple
measurements, to understand distance.

Uses external mounted system scan
for WiFi and comparing to know
hotspots, for positioning.

Table 1: Simplification of implementation of different services

array from the drone. This is performed recursively since the drone
can send multiple data packets at a time.

In order to parse the drone-UDP-packet, we start by parsing the
Datatype byte of the packet. The Datatype tells us how to respond
to the packet retrieved, this is either: Ping, acknowledgement packet
(The drone asking us whether we retrieved a specific packet) or
sensor data. The next byte in the header is the Buffer ID. This
specifies if the data is an internal drone command, a data buffer
or an acknowledgement buffer. Afterwards, we have the Sequence
ID. This is an identifier for the packet. Lastly, we have the Packet
size. This defines is the total size of the entire data structure as a
little endian integer.

In order to send a FlightVector to the drone, we must first
determine how the drone should move. In order to ensure the
horizontal movement (Yaw & Roll) of the drone, the camera from
the drone is used to extract relevant data from the images. The
implementation of this is described in subsection 5.2. Vision does
not provide any details about distance, thus in order to ensure the
drone is in the middle of the corridor, we use ultra sonic sensors
in our distance service. The implementation of this can be seen in
subsection 5.3. In order to navigate indoors, we have to knowwhere
the drone is located, this is done using indoor WiFi positioning, the
implementation can be seen in subsection 5.4.

5.2 Vision service
Vision allows us to extract information about the environment
that distance-based sensors or other measurement devices can not
directly provide. The vision service will be used to extract details
from the live camera-feed of the drone.

The vision service extends the base-service, overriding the Input,
Run and GetLatestResponsemethods. These are used to give data
to the service, start the service and retrieve the latest result from
the service.

The Vision service implements Canny EdgeDetection andHough
Lines Transformation. In order to visualize the data, RenderGeometryLib
is used. This library is a wrapper around the OpenCV drawing func-
tionality and allows us to draw geometric figures on a frame and
render it. DBSCANLib is the clustering library used. We are using
DBSCAN clustering algorithm over the traditional K-means, since
we can not estimate or predict the expected amount clusters in the
image. GeometryLib contains base implementations of Box, Line,
Point and Polygon, which is used throughout the implementation
of all features. An example can be seen in EdgyLib, where the im-
plementation of Hough Line Transformation uses Line to represent
its result.

Implementation
Based on the previous research described in the related work, we
decided to build upon the approach described by Adriano Garcia &
Kanad Ghos in [16]. This means that we take the raw image from
the drone, downscale it to 640x360px, apply Gaussian blur and run
Canny Edge detection on the image.

Canny Edge detection consists of 5 different steps. The first
step is to apply Gaussian filtering to smooth out the image, this
removes the noise. The next step is to determine the location of
the horizontal, vertical and diagonal edges in the blurred image.
Afterwards, a scan of the image is performed to remove unwanted
pixels not apart of the edge. Furthermore, each pixel is checked if
its a local maximum or if there is a local maximum close-by the
gradient. The result of this step is a binary image with thin edges.
The last step decides which of the edges are useful. For this, two
values, maximum and minimum threshold are used. The edges that
lie between the threshold values are decided to be edges based on
their connectivity.

After Canny Edge detection, we find the lines in the image using
HLT. HLT uses the binary representation of the image from Canny
Edge detection and based on: a minimum distance between points,
a maximum angle between the points in a line and a minimum
number of points to represent a line, the lines are returned.

After finding the lines in an image, we will need to find the
point with the most intersections. If there exists intersections in the
image, we perform DBSCAN clustering based on the intersections.
This gives us a best-case centroid point, which is our vanishing
point. If the vanishing point is outside of the center-location of the
drone’s image, the drone will auto-correct itself to have the point
in the middle. An example of the steps of the vision service can be
seen in Figure 3.

The top-left image is the raw input image, taken directly from
the video feed of the drone. The top-right image is the result of
performing Canny Edge detection on the image. The bottom-left
image is the result of HLT, where we find the lines in the image. The
bottom-right image shows the clustering, where the dots indicate
points and the red dot is the centroid.

5.3 Distance measurement service
Using the Vision service, the drone has an understanding of the
environment and can use this to auto-correct itself. However, in
more advanced environments, the drone requires understanding
of distances to accommodate for changes in the environment, that
vision can not detect and classify. The distance service uses 3 ultra
sonic sensors, one on the front and one on either side of the drone.
The drone and its extra components is described in section 4.
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Figure 3: The four different stages of which our Computer
Vision sees each processed video frame

The distance service extends the base-service, overriding the
Run and GetLatestResponse methods. These are used to start the
service and retrieve the latest output from the service. It is depen-
dant on UDPBase, which is a wrapper around the C# UDPClient, to
which it implements a network handshake and handles disconnects.
This is implemented for easier communication over UDP across
multiple classes and to reduce code duplication across services. The
Raspberry Pi sends the data to the base-station, which uses the data
to compute an action for the drone.

Implementation

The implementation of the distance measurement service uses
a Client-Server architecture. The server runs on the Raspberry Pi,
and the client is a service for the SharpFlying system.

In order for us to use the ultrasonic sensors, we have mounted a
Raspberry Pi Zero-W on the drone, which uses General-purpose
input/output (GPIO) to get the distance from each of the three
ultrasonic sensors. The Raspberry Pi is also equipped with an UDP
server, which is used for transmitting the data to all clients, which
are listening.When a client connects to the UDP server, a handshake
is made to register the client as a subscriber to the sensor data.

The UDP server reads from the sensors 10 times a second. Since
ultrasonic measurements can vary depending on the surroundings,
we average the distancemeasured over a period of 10measurements,
so highly varying results does not have a large impact, but if an
object suddenly comes close to the sensor, the sensor will still give
enough small values for it to have an effect on the result.

The server transmits the latest result four times a second to all
clients as JSON.

The client subscribes to the UDP server running on the Raspberry
Pi and receives JSON data as fast as possible, which is then mapped
to internal objects. The client calculates the correct action for the
drone to perform, based on the data received from the server.

The actions are separated into two different types of movements;
critical and non-critical movements. The critical movements are
executed first. This is done by checking if any of the sensors detect
objects within a “safe distance” of the drone. The default safe dis-
tance is 30cm to either side. If an object is detected, the drone should

move away from that object immediately. If no critical movements
are needed, the non-critical movements are calculated. An example
of a non-critical movement is to center the drone in a given area by
using the ultrasonic sensors on each side of the drone. All of these
movements are calculated in the distance service and is returned
to the SharpFlying program as a Response, where the movement
vector is given with a confidence value. The confidence value by
the distance service is hard-coded to 75 out of 100. This means that
we are 75% sure that the value retrieved from the service is correct.
Since the confidence value of the vision service is fluctuating, this
allows it to both be below and above the confidence of the distance
service, making it possible to be at a bigger priority than the result
from the distance service. The confidence value does not cause a
result to be ignored. Instead, a higher confidence value causes the
final movement vector to be more impacted by the service result.

5.4 Indoor Positioning Service
At the current stage of the implementation, we have made the
drone become aware of its surroundings, however, it has no under-
standing of its position in the building. Thus, in order to navigate
a building and move between two locations, the drone must be
able to position itself. Following the specifications of the SciRoc
challenge, we should assume that the area we are flying in is GPS
restricted, thus another approach is used.

Through previous indoor navigation research made at the House
of Computer Science, Cassiopeia, we obtained an IFC (Industry
Foundation Classes) File, containing router locations and their cor-
responding MAC addresses.

Implementation
The implementation of the indoor positioning service uses a Client-
Server architecture, similar to that of the distance service. The
server is the Raspberry Pi Zero-W, which was previously described
in section 4. The client is a service written for the SharpFlying
system.

On the server, the operating system has two commands, iwlist
and egrep, which allows for the scanning of nearby WiFi access
points, and filtering of command output. These commands are run
four times a second, to get the most accurate result. The output of
the commands is parsed and mapped to an AccessPoint object.

The AccessPoint object contains information about the ESSID,
Signal Strength, Quality, Mac Address and Frequency of the
access point.

This data from the AccessPoint object is serialized into JSON
and transmitted to all clients using the same UDP server as the
distance measurement service.

The client subscribes to the UDP server and receives a list of
AccessPoint objects serialized as JSON as fast as possible. When
the client parses the data from the the server, the union of the
retrieved access points from the service and a list of known access
points is found. The list of known access points has an associated
latitude and longitude, which is used for calculating the distance
from the drone to each access point.

After the distances have been calculated, the access point with
the smallest distance is then selected as the assumed area, where
the drone is within. We have chosen to not use trilateration, due
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to intermediate test results showing that due to interference from
surroundings, the second nearest access points diameter was greater
then the smallest diameter and offset, thus no intersections was
found. In order to counteract this and due to only using the result
as a general approximation of distance, the access point with the
smallest distance was selected as the position of the drone.

6 EXPERIMENT
As presented in section 5, SharpFlying contains multiple services.
Each of these services provide their own functionality to the overall
system and work independently from the other services. The exper-
iment will test the vision and distance services independently. This
tests the two service’s ability to perform its intended action, for
example, the vision service to modify the yaw of the drone. Further-
more, the services’ will be tested in conjunction with each other, to
show how the services compensate each others weaknesses.

We chose a test case that tests the system’s ability to perform fully
autonomous movements in an indoor environment. Each service
and both services combined will be put through the same test case.
This will show the strengths and weaknesses of the services.

Test cases
In total, the system is tested in three similar test cases. The drone is
placed in varying position in a hallway. The positions are: Center
of the hallway and 25% of the total distance towards both right and
left side of the hallway. The change in placement is made to test the
properties of the system to place itself in the center of the hallway
using the different services.

6.1 Environment
The environment is a hallway (156 cm x 800 cm) with solid walls
on either side. In the hallway, there is an window at the end of the
test area with direct sunlight during the tests. A figure of the test
area can be seen in Figure 4.

Figure 4: The environment used for the autonomous flight
tests

In the starting area, three positions are marked, the center posi-
tion and the two locations to the right and left side of center. The
left and right positions are placed 25% of the total distance from the
center starting point equalling to 39 cm. The landing area is a 100
cm by 78 cm area. Since the goal of the drone is to automatically
center itself, the same deviation used during take-off is used for the
landing area. The length of the landing area, 100 cm, was chosen

due to the landing being performed manually by the experimenter
from a distance, giving some room for human error.

6.2 Data analysis
In the experiment, there is one independent variable, the service(s).
The dependant variables that will be used to determine the effect
on the service(s) are:

• Task completion time
• Number of errors
• Successful landing

Task completion time is measured from when the drone take-off
command is send to when the drone is landed. The time will be
measured using the Stopwatch class in C#. The number of errors
is incremented every time the drone: Hits a wall or otherwise has
any collisions with objects in the hallway. If the experiment ended
in a full crash, it will be noted down in the table of results. The last
dependant variable is whether the landing was successful or not. A
successful landing implies the drone being at the end of the hallway
and landing with a maximum 25% offset from the center. All of the
data was collected from video recording of the experiments, output
logs from SharpFlying and observers notes.

The data is analysed by initially extracting the main dependant
variables from the video material. Afterwards, each test-run is
analysed to extract relevant flight information. The relevant flight
information relates to the cause of the drone’s actions. This allows
us to create a timeline of input to the services and actual output
versus expected output. This will give an insight into why the drone
made any given decisions.

7 RESULTS
In order to analyze and interpret the results from our tests, video
were recorded of the different flights and the controller screen.

In Table 2, a summery of the results from our tests can be seen.
From this table, it can be seen that the completion time of the tests
were all within a small margin of error, however, that both the
vision and distance test varied the most in regards to time.

Services
Vision
(n=9)

Distance
(n=9)

Vision +
Distance (n=9)

Task completion
time (seconds) 10.74 (2.25)* 9.7 (1.44) 10.79 (0.85)

Number of errors 5 2 0
Successful landings 2* 5 8

Table 2: Combined results from test flights, * n=6

The number of vision tests, in regards to completion times, is
lower then the initial 9 tests, which were performed. This is due
to the drone crashing beyond recovery, which would immediately
stop the current test run. Likewise, when looking at the errors and
number of successful landings in Table 2, the distance and vision
service performed the worst, with substantially worse results than
vision + distance. Based on the results, three different themes are
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withdrawn, these are: Service validation, lack of distance awareness
and correction with multiple services.

Service validation
The first theme shows that we are able to successfully validate the
data input and output of the distance service. In order to validate
the precision of the distance sensors, unit tests were performed.
Two different sensor validation tests was made, distance reliability
and movement vector test.

The distance reliability test shows the precision of the sensor
and the reliability of the service. The movement vector test, is a test
where the distance service outputs the movement vector, and this
vector is compared to an expected vector, depending on the drone’s
actual distance. This movement vector is corresponding to the
movement the drone should perform. These tests show whether the
distance service is calculating and outputting a correct movement
vector.

The distance reliability test is done by placing the drone precisely
100 cm from a wall. The distance service then measures the distance
100 times and then output the minimum, maximum and average
values. The results can be seen in Table 3. The results show that

Distance unit test Distance (cm)
Minimum distance 99
Maximum distance 102
Average distance 100

Table 3: Unit tests of the distance service

the implementation of the service works as intended and provides
stable results in a calm environment.

The movement vector test is done by placing the drone in a
hallway. Then the distances on either side of the drone is measured
with a ruler and observed using the ultra sonic sensors. The output
vector from the distance service is then outputted and compared to
the expected vector. This movement vector is verified to be equal
to the expected output. An expected value is a movement vector
with a direction towards the side with the greater distance.

Lack of distance awareness
The second theme shows the general inability to understand dis-
tance and overall interpret hallways using the individual services
alone.

This could be seen in the distance service, where the drone would
lose track of the direction, depending on the starting position. This
would in some cases make the drone rotate uncontrollably, and
unable to recover to the initial direction.

In total we experienced 4 successful and 5 unsuccessful flights
using the distance service. During landing, in 7 of the tests, the
drone was aligned with the hallway, but in 2 of the flights, the nose
of the drone would not align with the hallway upon landing. These
results show, that the distance service by it self was not able to
detect the direction of the hallway in which it was flying. This could
be observed since the drone would deviate in the yaw direction,
and not recover from it. The problem most commonly occurred
when the takeoff was off center, which causes the drone to try and

re-center itself. This causes over-corrections and made the nose of
the drone be unaligned with the hallway.

Figure 5: Illustration of distance service in hallway

In Figure 5, the hallway feature problem can be seen. This figure
shows how the distance service is unable to understand if the hall-
way is getting wider or the drone is rotating in the yaw direction.

The results form our vision service shows that the drone would
correctly change its yaw to center itself, but would drift, causing
major inconsistencies in its movement direction. During the tests,
the drone crashed to an unrecoverable state once, and were operator
aborted twice. The crash happened while the drone attempted to
correct its yaw, while drifting directly towards a door frame. This
caused the drone to hit the door frame and crash the drone. In
the 2 aborted tests, the operator deemed the drone was moving
towards an unrecoverable state. In the first aborted test, the drone
was moving into an intersection, where an ongoing movement
would cause a direct frontal crash with a wall. The errors observed
during the tests were caused by the drone zig-zagging between
the walls towards the end of the hallway. These inconsistencies
translated into the drone missing the landing zone. In general, the
drone using only vision is unable to properly center itself in the
hallway and will instead drift, which means the drone’s movements
are somewhat randomly determined.

Correction with multiple services
The third theme shows that using multiple services, the overall
results drastically improve. It was clear that using a single service,
would not be sufficient for autonomous flight, since each service in
itself have different weaknesses.

For example, the vision service is unable to account for the
distances in the environment, thus colliding with the walls. It does,
however, properly find the center point of the hallway and can
center itself. The distance service was able to traverse the hallway
with no hard crashes, but with the nose of the drone misaligned
from the center, causing the drone to slide sideways and missing
the landing zone. In the vision + distance test, the two services run
at the same time, in order to compensate for each others limitations.

The result from the vision + distance test showed that in total,
8 out of 9 tests are successfully completed and 1 test where the
landing zone was missed.

The vision + distance tests showed the drone is able to navigate
a hallway using SharpFlying and its developed services with only
one unsuccessful landing and no errors during the flight. In the test,
where it failed the landing, the drone compensated too much from
the air generated during lift-off from the right side, causing it to
steer too far left. This caused the vision service to temporary lose
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the center location of the hallway, which meant that the natural
drift left got the drone close to the wall, causing an emergency
roll towards right. At the same time the yaw was right-heavy, this
meant that the drone barely managed to avoid a wall-collision, but
due to the limited length of the hallway, it did not have enough
time to get to the center of the hallway before the landing zone.

Vision
(n=6)

Distance
(n=6)

Vision +
Distance (n=6)

Task completion
time (seconds) 10.81 (2.75)* 9.11 (1.34) 10.54 (0.97)

Number of errors 5 2 0
Successful landings 1* 1 5

Table 4: Table showing results from tests, where the drone
started off-center, * n=4

As can be seen in Table 2 and Table 4, when the drone started in a
non-center position, it had a higher degree of non-completeness and
a higher margin of error. The time differences are similar between
all starting positions. However, when looking at the margin of
error in Table 2, the error rate is similar to Table 4, however the
sample size is 33% smaller, which makes the errors vastly more
influential. Also the amount of successful landings suffers from the
same problem as the errors. The drone is vastly better at correcting
the position when using multiple services.

Limitations
During our tests some limitations became clear. The vision ser-
vice is limited to travelling through a narrow hallway, where it is
able to successfully identify the vanishing point and use that to
auto-correct itself for successful navigation. The system has no un-
derstanding of distances. This means that it is unable to determine
when it is too close to the sides and end of a hallway.

The distance service is unable to understand the features of the
hallway. This causes the drone to rotate uncontrollably, making it
unable to recover the nose to the initial direction.

We experienced turbulence when approaching the intersection
in the hallway due to the air generation of the drone. Using only
the vision service, the intersection is not being detected, which
means we can not compensate for this.

8 DISCUSSION
Through the related work, we found that research has been made
in regards to indoor navigation and indoor flight using a multitude
of different approaches. However, none of the work used multiple
different approaches in a singular framework. Thus, we designed
and implemented SharpFlying, a generic and extendable framework
for indoor flight. Our results show that each of our implemented
services separately show strengths andweaknesses and that by com-
bining multiple of these approaches, that the amount of weaknesses
can be drastically limited. The results can be derived into two main
themes: Standalone services lack awareness and accuracy increases
with multiple services. Lastly, we will discuss the implementation

in regards to optimizations related to the implementation itself and
the vision service.

Standalone Services lack awareness
Our test results show, that vision service alone is able to navigate
the hallway, while only modifying the yaw of the drone from all
starting positions. However, it is unable to properly correct itself to
be in the middle of the hallway and thus misses the landing zone 7
out of 9 times. Furthermore, if the drone experiences turbulence at
the lift-off moment, the drone has a big chance of colliding with the
walls or completely crashing. Similar test results was found by [16].
Their results showed that their vision system could lose the van-
ishing point which caused collisions. Our tests showed that having
no understanding of distance or the depth of the room, caused the
drone to have major inconsistencies in regards to staying central-
ized in the hallway. The test results show that the drone is able to
find the center point of the hallway and point the nose of the drone
in that direction, by modifying the yaw of the drone. However,
it can not properly account for turbulence or drastic changes in
terms of distance to the walls. We believe that vision based systems,
which are stand-alone, should explore the use of machine learning
approaches more-so than line detection. A standalone CNN that
generates flight commands based on a depth map was created by
[13], their results showed a successful navigation rate of 82%. How-
ever, they had issues with drifting, similar to how our vision service
experienced.

The distance service results showed that the distance service
alone makes the drone able to move between two locations by
only modifying the roll of the drone. The drone had three fully
completed flights, where the drone was able to correctly stay center
of the hallway. Coincidental, the successfully completed tests were
all when the drone started at the center position. This shows that
when the drone is already center, that the distance service is good
at making the drone stay there, but when the drone is starting
uncentered, that it fails to either successfully land, or has collisions
with the environment. The test cases, where the drone did not
start in the center, showed that the nose of the drone would be
misaligned with the center of the hallway, causing the distance
service to overcompensate the roll values, which meant the drone
was unable to perform a successful landing, even though it was able
to reach the landing zone. In general, these results were expected
from the ultra sonic sensors, especially considering the related work
of [14], where they had to fine-tune their distance sensor algorithm
and still had problems in narrow areas due to the air generation of
the drone.

Accuracy
The test results of using both vision and the distance service show
that by combining multiple services and using both of their results
to navigate the hallway, that the amount of errors are minimized.
This causes the drone to successfully recover from almost-impact
situations1. The video linked in the footnote shows the drone re-
covering from a non-center starting position using the both imple-
mented services. This test results show that the drone was able to
successfully navigate the hallway and avoid collisions.

1https://streamable.com/a0igt
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When testing both services together, there were 0 errors and
1 missed landing. This missed landing was because of the drone
compensating too much from the air generated during lift-off from
the right side, causing it to steer too far left, making it unable to
recover before landing.

Optimizations
One of the main goals of the implementation was to achieve near
real-time data processing. Thus, we had to optimize the implemen-
tation into a state of “as fast as possible”. An example is with the
vision service: While an image is being processed, any new image
will be added as the newest available image and the old image will
be discarded. This causes us to only ever use the newest available
data and not have the system halt behind. Since we always assume
that there is a context between the latest processed frame, whatever
frames we discard should not cause the system to behave overall
differently. The queue system, combined with dynamically modify-
ing the input parameters to the primary bottleneck of the system,
HLT, caused the vision service to achieve a processing frame rate
equal or greater than the camera feed of the drone (30 FPS).

Currently, the services, we have implemented only uses the CPU
for image processing. However, it is possible to offload some of the
computations to a GPU using for example CUDA with OpenCV.
According to the OpenCV documentation, most primitive image
processing techniques can see speed increases of up-to 30x using
CUDA [5]. However, using CUDA comes with a computational cost
of moving the image from main memory to the GPU’s memory [2].

In this study, we designed and implemented a framework for
autonomous indoor flight with a drone. The framework is designed
to be generic and extendable with further services. Testing of the
implemented services showed that they individually are able to
perform some part of the necessary actions to perform indoor
flight, but that their weaknesses far outweigh what they can do
individually. In the combined service tests, where the results of
both services are used, the drone shows drastic better results and is
able to successfully navigate the indoor hallway and recover from
almost collisions in a narrow hallway.

9 CONCLUSION
Considering the increase of research in regards to indoor drones
and that most of the current studies focus on finding a singular,
solve everything solution, for indoor navigation, we took some
of the related work’s ideas and implemented them into a generic
and extendable framework, SharpFlying. The framework was unit
tested, to discover the strength and weaknesses of each service,
which showed that each service was able to account for its own part
of the control, but that the drone was unable to properly navigate
a hallway consistently. We found that combining the results of our
two services, vision and distance service, the framework was able to
successfully navigate the indoor hallway with only a single missed
landing and 0 errors during flight. We contribute a framework that
future researchers can use to implement their autonomous indoor
navigation systems, allowing them to easily create multi-service
structures for controlling their drones.

Currently, the system assumes that the developer accounts for
the results from a service themselves and knows how to convert

the results of a service into a valid movement vector. The two
services we implemented each control a direction, but there are no
overlap between them. Given further implementation, it would be
interesting to automatically choose the correct movement based
on a level of confidence from the service, in the case that multiple
services would attempt to change a singular movement direction,
for example roll. Furthermore, we would have liked to finish the
implementation of a third service into our service structure, namely
WiFi positioning. This would have allowed us to navigate indoor,
rather than just fly and account for changes in the environment.
We researched the use of WiFi positioning and managed to retrieve
an approximate position in the building, but did not have enough
time to combine the results of the positioning and navigation.
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ABSTRACT
During the last 10-15 years, the world of robots has focused on the
use of drones to explore areas inaccessible to humans, search/rescue
and remote inspections. In this context, research has been made
in regards to how autonomous drones should fly and how we in-
teract with outdoor drones, but only limited work has focused on
autonomous indoor drones and how we interact with these. In this
paper, we present a 7 participant 3-parts exploratory study into
autonomous indoor Human-Drone Interaction. Our tasks focused
on primary interaction during navigation, voice interaction and
secondary interaction. Our results show that participants expected
the drone to behave under a level of trust. Trust was a metaphor
expressed by some of the participants, they related this word to
the behavior of the drone and how flawless they expected it to be.
Our study outlines a series of design insights for future interaction
development of indoor autonomous drones.

KEYWORDS
Drones, Human-Computer Interaction, Human-Drone Interaction,
Indoor navigation, Indoor Interaction, Autonomous flight, Sec-
ondary interaction, Voice interaction, Bebop

1 INTRODUCTION
During the last 10-15 years, the world of robotics has largely fo-
cused on using teleoperated mobile robots equipped with cameras
to get their eyes on something out of reach [25]. While in more
recent times, drones has been used in regards to exploring areas
completely inaccessible to humans[1], search/rescue [13] and re-
mote inspections [22, 23]. In this context, researchers have proposed
methods and approaches to autonomous outdoor drone navigation
in regards to earthquakes[19], forest navigation[11] and tunnels
[21, 22]. However, the area of indoor navigation and general use
of autonomous indoor drones is rarely investigated. These fully
autonomous drones interact differently with people and requires
considerations and design decisions beyond the natural interaction
techniques researched in regards to outdoor drones. The skill-set
required for a human teleoperator of an indoor drone includes:
Being able to control the drone in an indoor environment, avoiding
collisions with surrounding obstacles and to interpret the intentions
of other people in the indoor environment.

Given this, our work explores the use of drones in an indoor
environment from a perspective of different types of interaction.
Our results show that drones have a use in indoor environments, in
particular in terms of indoor navigation. Furthermore, that interac-
tion with drones requires trust, which can be achieved through the

behaviour and flawlessness of the drone. Lastly, voice interaction
with a drone performing micro movements requires the drone to
understand advanced commands, while macro movements, such
as moving between locations, were performed using similar com-
mands to a GPS.

2 RELATEDWORK
The interaction between humans and drones bring a new type
interaction into the area of Human-Robot Interaction by adding
an additional dimension. Being able to change the height of the
robot interacted with, changes the interpretation of the interaction
the user has. In the following, we will outline previous Human-
Drone Interaction in regards to appeal, which Baytas et al. defined
as: "Are people willing to accept, acquire, and/or use a drone or
drones, as designed, for the purpose under investigation? Do people
feel psychologically comfortable and safe in interacting with the
drone(s) or simply cohabiting the same environment? Do they
have confidence that the drone will not inflict damage or otherwise
misbehave? [5]" Their definition of appeal and the context to drones
is the primary factor investigated in this exploratory study. Thus we
will, based on their definition, investigate the related work in this
context. Lastly, interaction from the perspective of voice interaction
is investigated in the related work.

2.1 Appeal
The differences between humans in regards to the level of comfort
during interaction with drones are often associated with the im-
pression of safety and stability, which are influenced by the design
decisions of the drone. The understanding of what comforts people
changes drastically depending on the background of the person
[3, 12, 14]. Research has shown that drones meant for close range
interaction should be small, as the noise and large amounts of air-
flow from the propellers can annoy the user causing discomfort
[4, 6, 7].

The height of which a drone operates changes the comfort level
of the users interacting with the drone. In a comparison between
two heights, 120cm and 180cm, it was shown that participants
preferred a height of 120cm [28]. Similar results was found by Han
et al. who found that users allow a drone at eye to level closer than
a drone above their heads [12].

Furthermore, the visual appearance of the drone is an important
aspect of appeal. Different studies has investigated the impact of
altering the visual appearance of the drone [16].

In contrast to the visual appearance of the drone, the movements
of the drone has a big impact on the perception of comfort. Here,
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studies have shown that fast mechanical and non-smoothed move-
ments are repellent; while steady and smooth drone movements
give a positive perception of the drone. Specifically, the undesired
movements often includes lack of compensation of wind changes,
causing the drone to perform unwanted and often drastic changes
in short periods of time, while the positive perceptions come from
smooth and stable movements, such as automatic movement pans
[17, 24].

The last notion of appeal is privacy and social acceptance. This
issue is highlighted by the Electronic Privacy Information Center,
who highlights the issue of privacy and surveillance as a concern
[2]. While many studies show that users are comfortable when
interacting with drones, some users showed concern in how drones
will integrate into public settings. Yao et al. interviewed drone pilots
in the US, to understand their privacy perceptions and practices of
drones [26]. They found that drone pilots consider privacy issues
very important when they fly and consider the media to overstate
drones as a privacy problem. This contradicts their own previous
work, where they concluded that bystanders of drones were in
search of different mechanisms to further privacy [27]. The results
of bystanders showing a larger concern with regards to drone usage,
is common within privacy research in regards to drones [7, 10, 15].

2.2 Voice interaction
Throughout the related work in regards to interaction, there is a
fairly large body of work focusing on smartphone applications and
joystick-based controllers. These are seen as the common inter-
action techniques with regard to drone piloting. In recent times,
investigations and exploratory studies have focused on the use of
gestures and voice control to communicate with drones [6, 8, 9, 20].
In the exploratory studies, it has been found that these two inter-
action techniques are the preferred techniques when interacting
with social drones, with a relation to the interaction context and
the personal familiarity of the participant with drones. Often, par-
ticipants would display initial discomfort when interaction with
drones using voice, but over time become comfortable with voice
interactions and in some studies, where participants could choose
between voice and gesture interactions, end up preferring to use
voice, explaining that the interaction became similar to interacting
with a pet [18].

3 EXPERIMENT
The contribution of this paper is a exploratory study into the world
of autonomous drones using Wizard of Oz (WoZ). We performed
three different parts with 7 participants, each providing some in-
sight into design decisions for the future of HDI. Our aim was to
emulate autonomous drone behavior in order to gain insight into
how users choose to interact with a drone in indoor scenarios. In
the following, we describe the three parts and and their results.

Indoor navigation
We simulated autonomous behaviour of a drone in an indoor envi-
ronment. We chose an open lobby area as the initial start-off point,
to perform a safe take-off and allow the user to better determine
what they deemed a safe distance. The experimenter stayed behind
the user, but could not be fully hidden, as they needed direct line

of sight to the drone to properly control it. We found that with
WoZ, users showed vastly different opinions in regards to safety
and usefulness of an autonomous navigation drone. The scenario
and task was explained verbally to user seconds before starting and
the user was asked if they understood the task at hand.

Indoor area investigation
In order to test the interaction between a user and a voice controlled
drone in an investigation scenario, two tasks were created. The
user is told that they are sitting in their office, where they suddenly
remember that they forgot their coffee machine and bag of coffee in
another room. Instead of going to pick it up themselves, they send
their drone to investigate and find them. Here they are to complete
2 tasks: Indoor navigation and Area investigation.

Secondary Interaction
In order to simulate a real-world scenario, the environment chosen
mimics the worst case scenario. The environment chosen for the
test, is a narrow hallway, where the user is asked to walk past
the drone, while not doing anything in particular. The test was
performed using WoZ. This was partly for safety reasons, since in
case of a dangerous situation, the pilot would be able to abort the
test. The pilot was not hidden, as they needed direct line of sight on
the drone, in order to ensure safety of the participant. The scenario
and task was explained verbally to the participant, to which the
user was asked if they understood the task.

Figure 1: Indoor map displaying test areas, the red path is
navigation test; the blue path is secondary interaction and
the purple path is indoor area investigation

3.1 Participants
7 volunteers (6 male), 17 to 39 years old (µ = 27) were recruited
from our institution and social networks. Their training was in
Computer Science, Psychology, Social Sciences, shop trained and a
High School student. All of the participants knew what drones were
prior to the tests, three of the participants had previously flown a
drone.

When testing the different parts of the experiment, we have
chosen to use a limited amount of volunteers per part. For the first
and third part, we are using 5 volunteers and for the second part
we are using 2 volunteers.
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3.2 Apparatus
In this section we describe the drone used for our experiment.

The drone used for our experiment is a Parrot Bebop 2 (42cm
x 39cm x 9cm). In order to increase safety of our participants, we
have modified the drone with propeller guards. The drone can be
seen in Figure 2.

Figure 2: The Parrot Bebop 2withmounted propeller guards

The propeller guards are mounted on the base of each propeller,
and ensures that if the drone hits a wall or a person, the guard takes
the blow, and not the propeller, thus minimizing damage to the
drone and its surroundings. The drone has been limited in terms of
speed and acceleration, these limitations are created for the drone
to easier be controlled in limited space. The limitations set on the
drone are the minimum in all directions, except yaw, where the
recommended speed are used.

3.3 Procedure
The experiment lasted 30 minutes to 45 minutes. One of the experi-
menters performed all of the communication with the participant
before the experiment and recorded during the experiment. The
other experimenter controlled the drone and asked follow-up ques-
tions during the interview. The participant was told verbally about
each of the tasks before the task started by reading the scenario
aloud. They were asked if they understood the scenario and to ask
the experimenters if they had any questions about the task. At this
point the task would begin. After each task, the participant was
interviewed about their interaction.

If the participant was partaking in the navigation and secondary
interaction task, the order of which task they performed first was
counterbalanced according to a Latin Square design.

3.4 Environment
Our experiment was carried out at the Computer Science building
of Aalborg University, Cassiopeia. The experiment consisted of
three different parts, indoor navigation, indoor area investigation a
and secondary interaction.

The indoor navigation starts in the lobby of the building and
moves towards room 0.1.32. The route is marked as the red path in
Figure 1. This route was chosen since it starts from a location a user
would be expected to start navigation from, and ends in an area
where multiple turns has been taken. Lastly, the area flown in was
also chosen due to being secluded from the group room clusters
and having multiple doors at the ending location.

The indoor area investigation starts outside of a cluster and
moves towards room 2.1.03, where the participant will perform the

room investigation. The route is marked as the purple path, which
can be seen in Figure 1. The route was chosen since it requires
multiple voice commands in order to navigate and it allows partici-
pants to move the drone in all directions and through both wide
and narrow areas.

Figure 3: The indoor area investigation and the object to be
found

Inside of the room, the participant had to find two objects, a
coffee machine and a coffee bag, which can be seen in Figure 3. We
chose to hide the objects at different heights and to make them hard
to spot in general. This was done to make the investigation of the
area non-trivial and force the participant to control the drone in
all dimensions. The areas where the two objects were hidden could
not be found without changing the default height of the drone nor
without actively navigating beyond the center of the room.

The last part, the secondary interaction was done in one of the
hallways inside the Cassiopeia. The hallway measures 1.56m x 12m.
The path is marked on Figure 1 with a blue path.

The participant starts at the end of the blue line, furthest away
from the circle marked with red in Figure 1 and were asked to
walk around the corner, assess the situation, and act as they would
normally.

4 TASKS
In order to test the interaction with an autonomous drone in an
indoor environment, a series of different tasks was created. Each
task tests its own approach to indoor drone interaction with an
autonomous drone.

Indoor navigation
In the indoor navigation task, the user has to be navigated from
the entrance of a building to a target room. The user takes out their
smartphone and starts the navigation of the drone. After the drone
takes off, the user follows the drone in their preferred way.

Indoor area investigation
In the indoor area investigation task, the user has forgotten two
objects at a previously visited location and wants to find these ob-
jects again. The user has connected to their remote voice controlled
drone and wants to investigate the area.
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First, the user has to tell the drone to perform a take-off, after
which it will follow their commands, moving towards a group room.
This part of the task requires the user to determine how they wish
to control the drone when performing broad a navigational task,
which can be seen as similar to a GPS giving you directions.

Second part of the task is after arriving at the target location, a
group room. The user has to fly into the room and find two objects,
a coffee bag and a coffee machine. These objects are hidden in such
a manner that they can not be found without using all types of
movements the drone can perform.

Secondary Interaction
In the secondary interaction task, the user has to interact with the
drone in a narrow hallway under different scenarios. The user is
asked to wait around a corner of the hallway and when their hear
the drone taking off, count to 10 (allowing the experimenters to
properly stabilize the drone and prepare it for the next scenario)
before moving around the corner towards the end of the hallway. In
the center of the hallway, the user will meet the drone in different
scenarios, these being:

• On contact, land.
• Continue past the participant
• On contact, stop movement and await the participant to pass

These scenarios were performed at two different heights depend-
ing on the height of the participant, at their knees and at chest
height. The starting height was counterbalanced according to a
Latin Square design.

5 FINDINGS
In this section, we will first present the overall results of the ex-
periment, to then go into specific aspects of the overall results of
the exploratory study, by pointing out tendencies in the results and
explaining these.

When following a drone, the participants expected the drone to
know all possible scenarios and know how to properly react. This
includes, always giving a 100% correct navigation, even in advanced
buildings and to correctly handle larger crowds of humans in a
navigational area. However, how the drone should handle larger
crowds, none of the participants knew.

In correlation to being able to properly navigate crowded areas,
the participants expressed the importance of the safety of any inter-
actors with the drone. One of the repeated expectations of the drone
was to detect and react properly to other humans during flight. In
the navigation task, two participants said that trust is an important
factor when using an autonomous system, like a drone. The partic-
ipants expect the system to be flawless and always show correct
directions and not misinterpret the environment it is flying in. This
shows that using and interacting with a fully autonomous drone
requires trust. This trust is based on the drone’s ability to perform
to its requirements and successfully interpret the intentions of the
users. Whether this is for the drone to move faster, steer around
on-going people or land. In regards to interpreting the intentions of
people, the secondary interaction task showed that the participants
preferred when the drone would move to the side and hold still,
sharing the space similar to that of another person. In correlation
to the general behaviour of the drone, the secondary interaction

task showed that the participants preferred when the drone was
at chest height. However, two of the participants disagreed with
this, saying that the lower the drone would fly, the safer they felt.
These two participants were also visible scared in the recordings of
the task, showing that as users become more comfortable with the
drone, the more they wish to have the drone in a similar height to
how they usually interact with people.

When the participants where asked to interact with a drone using
voice commands, two different types of commands were observed.
The first type of interaction was a macro focused interaction. Here,
the participants chose to use simple, general directional commands,
such as; Move left, move right and move to the intersection. Consid-
ering that the participants were familiar with the environment and
that there were only two intersections where they had to choose a
direction, it makes sense that they choose to navigate using macro
commands in this area. However, considering the wording using
when explaining the tasks, explicitly telling them the room number
they were flying to, it is surprising to us that none of them used
the drone as a GPS, that they would tell where to move to, rather
than telling it how to move.

After getting to the room, the participants had to find two objects.
At this point, they changed their interaction to micro adjustments,
telling the drone to rotate slightly right. Another noticeable differ-
ence was that they chose to, instead of telling the drone how to
move, told it what to look at. An example of a command used by
a participant was: “I want to take a closer look at the windowsill
over there”. This type of command show, that in order for a drone
to properly cater to voice commands, it will need to have a certain
level of understanding of natural language.

In general, the interactions with the follow-me navigation drone
were simple and similar between the participants. They would
choose their destination on the application and slowly follow behind
the drone. During the straight paths of the drone’s route, they would
follow the drone relatively close, keeping upwith the drone in terms
of tempo. When at the intersection, they would prematurely slow
down, keeping distance from the drone and waiting for the drone
to manoeuvre the corner. It shows, that when the drone had to
perform a different action than move straight, that users chose to
keep their distance, waiting for the drone to finish its action.

The users expressed that a drone, depending on the environment
it is used in, is a functional navigational tool. In particular, if the
indoor environment is large enough and the infrastructure of the
area needing navigation allows for it. However, there are certain
expectations to the abilities and behaviour of the drone. The drone
should follow the pace of the follower, while not exceeding a regular
walking pace. Furthermore, it should be able to handle the envi-
ronment and any changes that happen to it during the navigation.
This includes meeting other people and moving objects.

6 DISCUSSION
We made an exploratory study into the world of autonomous drone
flight by deploying a series of different WoZ tasks. The tasks fo-
cus primarily on the interaction between a user and a working
autonomous drone in a navigation context. Throughout this study,
we found trends in terms of the interaction techniques and expecta-
tions of drone behaviour from the feedback of the participants and

4



An Exploratory Study into the Use of Autonomous Drones in Indoor Environments: Follow Me, Indoor Area Investigation and Indoor
Navigation

the analysis of video footage. This section presents and discusses
design insights based on these trends.

6.1 Drone behaviour
Several different expectations in terms of drone behaviour was
observed through the interviews and task recordings. We observed
that users expected the drone to act under a level of trust and
that the height of the drone and interaction action is important to
consider.

Trust
One of the repeating metaphors, said explicitly by two participants,
was that the interaction with an indoor drone requires a high level
of trust. We observed this through the interviews of the participants,
where they expected the drone to react properly in all situations,
where situations range from meeting people during indoor navi-
gation to always correctly navigating the user to their destination.
The last point of trust mentioned by the participants is in regards
to the speed of the drone. They wanted consistent and predictable
movement, that they could follow while walking. The system the
participants searched for was a flawless, consistent and predictable
system, which shows that if drones were to be used for indoor tasks,
that the development of specialised drones, that only complete a
singular task, although is very good at this particular task, is a
potential future area of research. Similar results have been found
by other researchers, who found that the noise and air-flow from
the propellers can cause discomfort for the users [4, 6, 7]. In regards
to the consistency and predictability of drone movements, related
work found that users expect smooth and stable movements by
the drone [17, 24]. This shows that even in different scenarios, the
fundamentals of interactions with drones remain the same and
that trusting a drone is an important aspect of ensuring a user is
comfortable.

Height and safety
A variable modified during the secondary interaction task was
height. The participants met the drone in a narrow hallway, where
it would perform one of three actions at two different heights. Here,
the participants preferred the drone to be at chest height, saying
that although the drone is able to do more damage when at chest
height, that being able to keep direct line of sight with the drone is
more important than having the drone in the proximity of the least
damaging area of the body. Two of the participants fully disagreed
with this testimony, saying that they preferred the drone as low
it could get. This shows that although our task showed a slight
favour in regards to the drone being at chest height, that future
research can further task with how users prefer to interact with
a fully autonomous drone in indoor environments. Related work,
primarily focusing on the concept of a social drone, have found
that users feel more comfortable around a drone between 1.2m and
eye level of the participant [12? ]. Although our work used two
different heights, it still shows some connection between height
and feel of safety.

Interaction
The last behavioural expectation observed during the experiment is
in regards to the action performed by the drone when approached
by a person in a hallway. Here, our results show that 3 out of 5
participants preferred the drone to pull over and wait for them to
pass the drone, while the last 2 wanted the drone to land. Expand-
ing upon this task, by using areas of different sizes and a drone
developed for indoor usage might yield more consistent results.
This is largely because of the participants preferring the drone to
hold still in the air, mentioning that the sound of the drone changed
drastically when performing a landing, making it seem more scary.
This could be counteracted by using a smaller form factor of a drone,
perhaps designed for indoor use. The related work has shown that
users prefer a drone in an indoor environment to be small, as a
small drone generates less noise and air [4, 6, 7].

6.2 Voice interaction
Two types of interaction methods were used by the participants
during the voice interaction tasks. This was either macro or micro
adjustments of the drone. The type of command changed how
the user interacted with the drone, going from general and vague
commands to specific, object targeted commands.

Natural language understanding
Macro commands were used by the participants when moving
between locations, the commands consisted of simple directional
commands, similar to how a GPS proposes directions. During this
interaction, the drone was never told how to move, rather which
direction it should move. This was changed after entering the room,
where the commands changed into how the drone should move or
commands specifying where the drone should look. This shows,
that if the drone needs to performmicro adjustments, a greater level
of natural language processing is required in order for a user to feel
understood in their interaction with the drone. On the other hand,
the simplicity of the directional commands makes it easier to have
a drone perform navigational tasks using voice commands. One of
the comparisons used in regards to drones, is that it is similar to
that of a pet during interaction [18]. This shows that the level of
understanding necessary to properly control a drone in an indoor
environment, can be compared to the same communication level
of interaction with a pet. This can, in future work, be used as a
guideline of howmuch natural language understanding is necessary
in the context of voice interaction with a drone.

7 CONCLUSION
Given the current increase in research in regards to fully autonomous
indoor drones, we need to create and investigate natural interac-
tion techniques to best support users. We executed one exploratory
experiment with 7 users performing three different tasks and found
design principles with high agreement among participants. We
found several similar ties between participants in their expectations
to how they interact with a drone, both when directly interacting
and during secondary interaction. We contribute a set of design
insights to develop the field of autonomous indoor Human-Drone
Interaction.
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In the future, there are primarily two points of interest based
on our research. The first is to primarily focus on the areas where
our exploratory study showed to be statistical insignificant. This
is especially in regards to the preferred height of the drone, where
our study showed mixed results between knee and chest height.
The second point of interest is to use the proposed design insights
and use those in the development of an autonomous indoor flight
system for drones. The understanding of how a user expects a
drone to behave and interact with an user, both in regards to direct
interaction, during navigation, and secondary interaction, can be
used to design a future system that is not only able to fulfil its goal,
but also designed for human interaction.

Due to the complications of flying in confined spaces, some of
the participants noticed that an experimenter flew the drone, rather
than an automated system. We believe that this might cause some
of the participants to feel safer than they really were. In order to
further investigate and validate the results of our study, recreating
our experiment with a fully autonomous drone might yield different
results compared to ours.
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