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Abstract:

Introduction: The present study aimed at creat-
ing and verifying a workflow to perform subject-
specific strength-scaling of musculoskeletal mod-
els, and validating the strength-scaled models us-
ing isometric joint torque measurements. Meth-
ods: The participants consisted of 21 males and
7 females. A field strength assessment across 10
exercises was used to estimate the participants’
one-repetition-maximum (1RM). The 1RM mea-
sures were implemented in an optimization rou-
tine, calculating a set of strength factors capable
of scaling all included muscles in the 10 differ-
ent exercise-specific musculoskeletal models. Fur-
ther, peak joint torques were investigated using
dynamometer obtained isometric strength mea-
surements for elbow flexion and extension, knee
flexion and extension, and ankle plantar flexion.
Results: The optimization based strength-scaled
models showed an improvement of mean normal-
ized root mean square error from 48.39 (±22.99)
% to 28.13 (±15.47) % compared to the standard-
scaled models. Discussion: The optimization
routine was faster than previously used methods
and showed a higher accuracy than the standard
strength-scaling of musculoskeletal models. Issues
in the simple muscle models wrapping around the
knee and ankle joints made the comparison with
the dynamometer data infeasible. The present
study shows an improvement when applying the
optimization routine for whole body musculoskele-
tal models, and other or more exercises could eas-
ily be implemented for scalability. However, uti-
lizing simple musculoskeletal muscle models can-
not readily be used to estimate and compare peak
joint torque for near end range of motion angles.
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Abstract

Introduction: The present study aimed at creating and verifying a workflow to perform subject-specific
strength-scaling of musculoskeletal models, and validating the strength-scaled models using isometric joint
torque measurements. Methods: The participants consisted of 21 males and 7 females. A field strength
assessment across 10 exercises was used to estimate the participants’ one-repetition-maximum (1RM). The
1RM measures were implemented in an optimization routine, calculating a set of strength factors capable of
scaling all included muscles in the 10 different exercise-specific musculoskeletal models. Further, peak joint
torques were investigated using dynamometer obtained isometric strength measurements for elbow flexion
and extension, knee flexion and extension, and ankle plantar flexion. Results: The optimization based
strength-scaled models showed an improvement of mean normalized root mean square error from 48.39
(±22.99) % to 28.13 (±15.47) % compared to the standard-scaled models. Discussion: The optimization
routine was faster than previously used methods and showed a higher accuracy than the standard strength-
scaling of musculoskeletal models. Issues in the simple muscle models wrapping around the knee and ankle
joints made the comparison with the dynamometer data infeasible. The present study shows an improvement
when applying the optimization routine for whole body musculoskeletal models, and other or more exercises
could easily be implemented for scalability. However, utilizing simple musculoskeletal muscle models cannot
readily be used to estimate and compare peak joint torque for near end range of motion angles.
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Introduction
A paradigm shift from creating standard muscu-
loskeletal models to subject-specific scaled models
has evolved extensively over the last decade. Com-
plex techniques for obtaining subject-specific anthro-
pometric and geometric input data such as; bone
surfaces [1], tendon properties [2], and musculoskele-
tal geometry [3] have made it possible to accurately
scale cadaver-based musculoskeletal models to repre-
sent specific subjects.

Parallel to the developments in anthropomet-
ric scaling, the strength-scaling (SS) of muscu-
loskeletal models, especially when creating subject-
specific models, has not undergone the same develop-

ment. Accurate subject-specific estimations of inter-
nal forces have long been sought as the next step in
musculoskeletal modeling [4] and could aid in design-
ing prosthetics, surgical planning and refining strate-
gies for athlete training schemes. Common for all scal-
ing methods should be their ability to scale the mass,
geometry and strength properties of the underlying
cadaver models used in musculoskeletal software [5, 6].
Currently, commercial musculoskeletal modeling soft-
ware, such as the AnyBody Modeling System (AMS),
provides different standard scaling laws suitable for
different types of models [7]. A general method is
the uniform scaling law, which scales the geometry
equally in all three dimensions, while scaling the mus-
cle strengths to a non-linear power of 2

3 . A more ad-

1



vanced and subject-specific method is the XYZ scal-
ing law which allow the modeler to input scaling fac-
tors derived from anthropometric databases, to create
models representing percentiles of populations or spe-
cific subjects. The strength scales accordingly to the
Length-Mass-Fat (LMF) scaling law [7], which have
been widely implemented [8–10] and incorporates the
estimated fat percentage of the subject to ensure that
short subjects with high masses do not necessarily
have more force producing capacity [7]. Common for
the current SS methods are their inability to encapsu-
late subject-specific strength variations between two
anthropometrically equal subjects.

Previous studies have tried to bridge the gap
between experimentally obtained maximum strength
measures and musculoskeletal model strength, aimed
at more subject specificity [11–13]. D’Souza et al.
[11] developed a multiple linear regression formula, us-
ing anthropometric predictors, to estimate peak joint
torque (PJT). Such regression equations could read-
ily be implemented in a musculoskeletal model to im-
prove the SS. Oomen et al. [12] developed a rule-based
SS method and validated it against different standard
methods including the LMF method. Their results
indicated that the LMF method significantly underes-
timated the lower-extremity strength, while the stan-
dard strength of the TLEM 1.0 dataset [14] and their
rule-based SS method resulted in better strength esti-
mations. Concludingly, they argued that care should
be taken when applying the current SS methods in
subject-specific models.

Heinen et al. [13] implemented a two-step opti-
mization routine using subject-specific isometric and
iso-velocity torque profiles to scale the muscle tendon
parameters needed in a 3-element Hill-type (3E) mus-
cle model [15]. They found that the isometric torque
data provided the largest decrease in normalized root
mean square values. However, adding an iso-velocity
optimization did not improve the results to an extent
where the extra strain on the subjects and the cum-
bersome data collection was worth the gain in accu-
racy [13]. Although they did not report the computa-
tional time of their optimization routines, performing
an inverse dynamics analysis over a dynamic move-
ment with multiple timesteps and design variables, it
is unlikely that it is practically applicable, even when
only including the lower extremity model. The Hill-
type muscle model forms a good phenomenological
representation of muscle contraction dynamics, how-
ever, obtaining the parameters needed for its calibra-
tion can be a difficult task [16]. Instead, researchers

have successfully utilized a simple muscle model with-
out force-length or force-velocity profiles for investi-
gating knee joint contact forces [17, 18], spinal loads
[19], and glenohumeral stability as a consequence of
rotator cuff tears [20].

When working with muscle force estimations, the
muscle load sharing redundancy has been resolved by
optimization schemes, to form different criteria capa-
ble of representing the complex underlying physiol-
ogy. Obtaining subject-specific muscle strength esti-
mations could help the muscle recruitment criterion,
in terms of limiting the maximum force output of
the muscle models to physiologically realistic values,
thereby acting as a boundary condition [4, 21].

To summarize, implementing regression formulas
seems to be infeasible in subject-specific SS. Addi-
tionally, using complex muscle models and strength
parameters, such as isometric or iso-velocity measure-
ments that are difficult to obtain, further complicates
the process of SS. Hence, identifying easy-to-measure
parameters, describing the force capabilities of skele-
tal muscles, combined with mathematical optimiza-
tion routines could be utilized to create reliable and
practical SS of subject-specific musculoskeletal muscle
models. These maximum strength parameters should
preferably be obtained without expensive machines,
such as dynamometers, while the optimization routine
should be fast enough to be practically applicable.

Examining the strength exercise literature, a prac-
tical and reliable method of obtaining maximum
strength assessments is the use of one-repetition-
maximum (1RM) measures [22]. A 1RM is defined
as the maximum mass that an individual is able to
move through a given range of motion (ROM). Al-
though the measure is easy to understand, it can be
tedious to obtain, as it imposes a relatively high risk
of repetition failure and injury when the intensity of
the exercise increases. Several researchers have sought
easier methods to obtain 1RM estimates. These in-
clude the use of regression formulas to estimate 1RM,
based on submaximal repetitions until fatigue [22, 23].
An abundance of algorithms have been developed and
presented throughout the literature, showing good re-
sults on varying populations and exercises [22, 24–26].

When altering previously validated musculoskele-
tal models and implementing subject-specific scaling,
it is wise to ensure that the imposed scaling does not
alter the model to a degree where it is no longer repre-
sentative of the physiological systems that they simu-
late [27]. It is important to consider possible verifica-
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tion and validation schemes in order to ensure reliable
models. Such schemes could be validating a method
using a dataset not used to develop the method, as
implemented by Oomen et al. [12].

To the best of our knowledge, no method exists
to input simple anthropometric measures, 1RM esti-
mations and static optimization in order to perform
subject-specific SS of simple musculoskeletal muscle
models. Therefore, the present study aimed at 1) cre-
ating and verifying a workflow to perform subject-
specific SS of musculoskeletal models, and 2) validat-
ing the strength scaled-models using isometric joint
torque measurements.

Methods

Experimental design

The experimental design consisted of two parts. The
first part focused on verification of the methodology
regarding subject-specific SS of musculoskeletal mod-
els based on dynamic strength measurements. This
involved a field test session for each participant, test-
ing their individuel 3-7 repetition-maximum in 10 dif-
ferent exercises, consisting of seven upper and three
lower body exercises. The second part focused on val-
idating the optimization based strength-scaled models
by testing the participants’ isometric strength, using
a dynamometer.

Part 1

The verification experiment consisted of a field test
at a local fitness center, testing each participant’s dy-
namic submaximal strength in 10 different strength
exercises, focusing on most major muscle groups. Uni-
lateral exercises were performed using the right side
of the body and consisted of; biceps curl, calf raise,
lateral pulldown, lateral raise, leg curl, leg extension,
side bends, and triceps extension. Whereas the bench
press and horizontal row, were performed as bilateral
exercises due to their technical requirement.

Subjects

28 healthy participants were recruited and consisted
of 21 males and 7 females. The participants had a
mean (±SD) age of 28.11 (±7.68) years, stature of
1.81 (±0.08) m and body mass of 90.2 (±19.02) kg.
No participants had suffered injuries within the last
three months prior to testing. The participants an-
swered a series of questions regarding their physical
activity levels, weekly participation in sports, and
experience with strength exercise. The participants
showed a wide range of experience with strength train-

ing, from novice (first time in a fitness center) to ex-
pert (national powerlifting team member). The study
was conducted in accordance with the guidelines set
through the Declaration of Helsinki, with all partic-
ipants giving their written consent before participat-
ing.

Protocol

The field test session began with noting 15 anthro-
pometric measures of the participant. Subsequently,
a 15-minute dynamic mobility warm-up routine was
completed, specifically targeting all major muscle
groups. Furthermore, before each exercise, the par-
ticipant would perform an exercise-specific warm-up,
consisting of 1-2 sets with an increasing load immedi-
ately before the test sets. The specific warm-up acted
both as a familiarization of the required technique for
the exercise, and as a warm-up of the targeted mus-
cles. For both the specific warm-up and test sets, the
test-leader and the participant agreed upon the inter-
set mass increments. The goal for the test sets was
to increase the load rapidly to limit the number of
sets performed, and thereby minimize fatigue. After
the specific warm-up, a one-minute rest period was
given before the participant started the test set. The
goal was to complete one set with a mass that the
participant was only able to perform 3-7 repetitions
with. If the participant completed eight repetitions,
the set was terminated and the mass was incremented
for another set. Each test set was separated by a
one-minute rest period, and a two-minute rest period
separated the exercises. The order of exercises was
chosen to ensure that the same muscle groups were
not tested on two consecutive exercises (e.g. the hor-
izontal row could not follow the lateral pulldown and
vice versa).

To ensure the applied mass of each exercise ma-
chine was noted correctly, the gearings of the ma-
chines were measured using a handheld analogue ring
dynamometer (Tiedemann Instruments GmbH & Co.
KG, Garmisch-Partenkirchen, Germany). The la-
beled loads on the strength exercise machines were
plotted against the values from the ring dynamome-
ter, after a conversion from µm to kg, and a linear
relationship was found (R2 > 0.95). Therefore, par-
ticipant’s recorded mass moved was multiplied by the
regression coefficient from the linear regression equa-
tion found for each strength exercise machine. This
was done for the biceps curl, horizontal row, lateral
pulldown, leg curl, leg extension, and triceps exten-
sion exercises.
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Estimating 1RM

The Wathan regression formula [23, 28] (equation 1)
was selected to estimate 1RM based on the mass
moved and the number of completed repetitions dur-
ing the last set, due to its performance in multiple
strength exercises resembling the included exercises.

1RM =
100m

48.8 + 53.8e−0.075nreps
(1)

where m is the mass [kg] moved and nreps is the
number of repetitions performed. The estimated
1RM served as a measure of subject-specific dynamic
strength for each exercise and was used in the opti-
mization workflow.

Musculoskeletal exercise models

To model all exercises as computer-based muscu-
loskeletal models, the AnyBody Modeling System
(AMS) ver. 7.2 beta (AnyBody Technology A/S, Aal-
borg, Denmark) was used [6]. All models were based
on the human model template in the AnyBody Man-
aged Model Repository (AMMR) ver. 2.2.0 [29]. Each
model included the TLEM 2.0 leg model [3], detailed
neck model [30], lumbar spine model [31], and the
shoulder-arm model [32]. Each model included a to-
tal of 918 muscle actuators, which were modeled as
simple muscle models with only a nominal strength
parameter, and no force-velocity or force-length re-
lationships were taken into account. For all models
the min/max muscle recruitment criterion was used
[21]. A quadratic auxiliary term of 0.0001 was added
to stabilize the inverse dynamics solution. All models
were kinematically overdeterminate, which was solved
through the AMS overdeterminate solver [33]. This
involved deciding which constraints the solver was
able to treat as soft and should be fullfilled ”as good as
possible”, and which constraints were hard and could
not be violated, based on how the exercise was per-
formed in the fitness center. Furthermore, to con-
trol the exercise movement, the WeakDriverWeight
was altered for certain drivers, in order to control the
movement and mimic the strength exercises.

Geometrical scaling

In order to geometrically scale each model to repre-
sent the participants’ anthropometrics, the XYZ scal-
ing law was implemented. The law scales each seg-
ment linearly as defined by Rasmussen et al. [7]:

s = Sp+ t (2)

where s represents the scaled node’s position vector in

its local coordinate system, p is the positional vector
of the unscaled node, and t represents a translational
vector of the segment’s local coordinate system on the
scaled segment. S is a 3 × 3 diagonal scaling matrix,
given by:

S =

kx ky
kz

 (3)

where k is the scaling factor, which are calculated
based on subject-specific anthropometric data, mea-
sured in accordance with the ANSUR dataset [34].
A kinematic optimization study [35] was applied to
a standard AMS model, resulting in subject-specific
scaling factors for each of the ANSUR subjects. Us-
ing the ANSUR anthropometric measures and corre-
sponding scaling factors as a basic population, and
setting the measured participants’ anthropometrics as
primal constraints, a closed-form optimization prob-
lem utilizing a PCA resulted in subject-specific scaling
factors for each participant.

Initial strength-scaling

The initial muscle strength (f) is calculated through
the LMF scaling law as defined by Rasmussen et al.
[7]:

f = f0
km
kL

Rmuscle1

Rmuscle0

(4)

where f0 is the unscaled nominal strength of the mus-
cle, and km is the mass ratio defined as; km = m1

m0
and

kL is the length ratio defined as; kL = L1
L0

between
the unscaled segment (denoted 0) and the subject-
specific segment (denoted 1), respectively. Rmuscles is
the muscle mass proportion of the total body mass,
found by; Rmuscles = 1 − Rfat − Rother, where Rother

is the proportion of the total body mass accounted
for by factors such as bone, blood, and tissue, and
is set to 50% in the AMS [7]. Rfat is the body fat
percentage and is defined by Frankenfield et al. [36]:

Rfat = −0.09 + 0.0149BMI − 0.00009BMI2 (5a)

Rfat = −0.08 + 0.0203BMI − 0.000156BMI2 (5b)

where equation 5a and 5b is for male and female, re-
spectively, and BMI is the body mass index.

Optimization based strength-scaling

The general goal of the optimization process was to es-
timate a set of strength factors capable of scaling all
included muscle models to match each participant’s
1RM measures. Practicality was highly prioritized
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throughout the workflow development, why an op-
timization problem including all 918 muscle models
as design variables was deemed unmanageable. The
number of design variables were lowered to 10 (i.e.
one per exercise) by; first assuming symmetry between
the right and left side of the models reduced the to-
tal number of muscle models to 459. Second, a mea-
sure of how much mass the models could move during
the exercise movements (equation 6), combined with
a sensitivity matrix of how each muscle was active in
each exercise (equation 8).

Measuring current model strength

The dynamic exercise models were fixed in a static
posture equal to where the peak envelope of maximum
muscle activity (a) occurred, which limited the inverse
dynamics calculation to one time step. The assump-
tion that the exercise movement can be reduced to a
single posture or point in the concentric part of the
movement, is based on the idea of a “sticking point”
or “sticking region”, which is used extensively in the
strength exercise literature [37–39]. It is defined as the
point at which muscular failure is most likely to occur.
Overcoming this point is associated with completing
the full repetition. The phenomenom has proven to
be difficult to assess on an inter-subject level due to
morphological differences between subjects [38].

After creating a static scenario for each model,
the relationship between applied mass (m) [kg] and
a was investigated. The analysis showed that, for
m above an exercise-specific threshold, the relation-
ship can be assumed linear in the form; y = αx + β,
where α denote the slope calculated as; α = x2−x1

y2−y1
using two (x, y) coordinates on the line, and β denote
the y-axis intercept. This linearity stems from using
the min/max muscle recruitment criterion during the
inverse dynamics analysis, where the linear relation-
ship has been shown between the external moment
and muscle activity [21]. Further, for all exercises
the assumed linearity crosses a = 1, indicating that
when running two model simulations, using two ap-
plied masses high enough to be on the linear section,
the applied mass (m) where a = 1 can be calculated
as:

̂1RM =
1

α
− a

α
+m (6)

where ̂1RM is the current estimated 1RM for the
models and will serve as part of the objective func-
tion for the optimization problem.

Formulating an optimization problem

An unconstrained minimization problem was formu-
lated using the objective function:

J =

n∑
i=1

( ̂1RMi − 1RMi

)2
(7)

where n denotes the number of exercises and i de-
notes the ith exercise. The optimization workflow was
written in Python 3.7 (Python Software Foundation,
Beaverton, Or, USA) using the Nlopt package [40] and
the NEWUOA BOUND quadratic approximation al-
gorithm [41].

Calculating strength factors

The general idea behind the use of a multitude of exer-
cises targeting different muscle groups was the ability
to create a mexercises×nmuscles sensitivity matrix (M)
of how a change in each muscle’s nominal strength
(∆f) [N] affects the a. The sensitivity measure was
formulated as:

M =

n∑
i=1

∆ai
∆fi

(8)

Since an overlap in muscles working in each strength
exercise is unavoidable, a correlation exists between
the a in each exercise. This correlation could be a
limiting factor in the optimization and was sought to
be resolved by invoking a PCA on the sensitivity ma-
trix and using the orthogonal principal components
(D) in the further analysis. A linear equation system
was formulated to solve for the strength factors (kmus)
to implement:

kmus = Dκ+ k0 (9)

where k0 is a vector of ones and κ is the design vari-
ables used in the optimization. The strength factors
were parsed to the AMS models, effectively multiplied
to each muscle’s nominal strength (f0), and a neŵ1RM was evaluated by the optimizer using equation
6.

Data analysis

A baseline scaling was used in comparison with the
novel SS workflow. This consisted of geometri-
cally scaling the exercise models to the participant’s
anthropometrics and calculating their ̂1RM using
the underlying LMF SS as a standard-scaled model
(LMFSS). To evaluate the accuracy of the subject-
specific SS relative to the subject-specific 1RM for
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each participant, a normalized root mean squared er-
ror (NRMSE) was calculated for both the LMFSS and
the novel optimization based SS (OPTSS) models:

NRMSE =

√√√√ 1

n

n∑
i=1

( ̂1RM i − 1RMi

1RMi

)2

100 (10)

Further, a pooled accuracy measure was calculated as
the mean NRMSE of all included participants to eval-
uate the workflow in general. An analysis of how the
OPTSS affected the envelope of muscle activity across
the dynamic exercise movements was evaluated by in-
vestigating if the sticking point used for the optimiza-
tion, and the muscle activity across the full dynamic
ROM, had changed after applying the OPTSS .

Part 2

The second part of the study focused on validating the
results obtained in part 1, using isometric strength as-
sessment of specific joint movements. Since the field
tested strength exercises require different amounts of
technique and stabilization, the elbow flexion and ex-
tension, knee flexion and extension, and ankle plantar
flexion, i.e. the simplest ones, were chosen for com-
parison.

Protocol

The experiment was conducted at the strength lab-
oratory at Aalborg University using a Human Norm
model 770 dynamometer (Computer Sports Medicine
Inc., Stoughton, MA, USA). 13 participants from the
verification experiment were recruited, and consisted
of 10 males and 3 females, with a mean (±SD) age of
26.31 (±1.80) years, stature of 1.83 (±0.08) m, and
body mass of 96.84 (±22.25) kg. The participants re-
ported to the laboratory for one session and started
with an introduction to the protocol and a 10-minute
general full-body dynamic mobility warm-up. The or-
der of exercises was; ankle plantar flexion, elbow ex-
tension, elbow flexion, knee flexion, and knee exten-
sion. For all movements only the right side was tested,
in line with the protocol from the part 1. The partici-
pants were tested while supine for the ankle and both
elbow movements, prone for the knee flexion move-
ment, and seated for the knee extension movement.
The anatomical axis of rotation for the tested joint,
was aligned with the dynamometer axis of rotation
using visual inspection and manual palpation. Fur-
ther, each testing angle was determined by the stick-
ing point location found during part 1 (table 1). Af-
ter alignment and safely securing the participant, a

series of five submaximum trials served as a specific
warm-up and familiarization to the movement. The
participants were instructed to perform the submax-
imum voluntary contractions for three seconds, with
each trial separated by 15 seconds of rest, and an addi-
tional 45 seconds of rest before the testing trials. The
participants performed three maximal voluntary con-
tractions (MVC) for five seconds, each separated by
one minute of rest. Verbal encouragement was given
during all MVC trials. Two minutes rest separated
each of the five movements.

Table 1: Angles [◦] for maximum voluntary contraction
for each movement. Ankle plantar flexion is denoted as
ankle flexion.

Joint Flexion Extension

Elbow 30 73
Knee 5 5
Ankle -14

Isometric strength models

For the validation experiment, the AMS Evaluate-
JointStrength class was implemented to estimate
the PJT of the LMFSS (P̂ JTLMF ) and OPTSS
(P̂ JTOPT ), respectively. The tested joints were posi-
tioned corresponding to the dynamometer tests, and
all other degrees of freedom were carried by reaction
forces.

Data analysis

The gravitational corrected dynamometer torque data
was exported for further analysis. A custom Python
script was written to extract the PJT and calculate
a mean across the participant’s three MVC trials.
The PJT means were compared to the ̂PJTLMF and
the ̂PJTOPT , respectively. The comparison was done
through Bland-Altman plots, including bias and lim-
its of agreement (LoA). The hypothesis was that the
OPTSS would show more narrow LoA and a lower
mean bias between PJT, when comparing lab results
with model performance.

Results
The mean NRMSE across all 28 participants for each
exercise, for the LMFSS and OPTSS , is shown in ta-
ble 2. The NRMSE can be interpreted as the average
percentage deviation of the ̂1RM from the field ob-
tained 1RM. The results shows that the OPTSS is
effective in reducing the mean NRMSE across all ex-
ercises from 48.39 (±22.99) % to 28.13 (±15.47) %.
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Moreover, table 2 shows that the OPTSS is most ef-
fectively scaling the calf raise exercise, lowering the
NRMSE from 70.4 % to 11.5 %. The lateral raise ex-
ercise is on average deviating 66.4 %, making it the
least accurately optimized exercise.

Table 2: Normalized root mean square error (NRMSE)
[%] for each exercise and a mean and SD across all
exercises, for the standard scaled (LMFSS) and the
optimization scaled (OPTSS) models, respectively.

NRMSE
LMFSS OPTSS

Bench press 25.0 15.8
Biceps curl 34.2 24.7
Calf raise 70.4 11.5
Horizontal row 29.7 21.4
Lateral raise 101.0 66.4
Lateral pulldown 33.5 31.2
Leg curl 40.3 29.0
Leg extension 46.8 18.4
Side bends 58.3 25.5
Triceps extension 44.7 37.6
Mean 48.39 28.13
SD 22.99 15.47

Table 3 shows how each participant is scaled by
the OPTSS workflow. It is shown that the OPTSS is
effective in improving the NRMSE for all participants
but one (p04). The OPTSS performs best for p18 im-
proving the NRMSE from 46.78% to 5.35% and for
p27 the OPTSS results in a NRMSE improvement of
0.65%. When investigating the time to convergence
(TTC) in table 3, the optimization time ranges from
33 minutes to 8 hours and 43 minutes, with an average
of 2 hours and 35 minutes. Further, table 3 shows the
participants’ descriptives, where the majority of the
participants had either 2 or 5 years of experience with
strength training throughout the past five years (10
and 9 participants, respectively). At the time of the
field strength test 15 participants were doing train-
ing less than 1-2 times per week, and two participants
were training more than five times per week.

Figure 1 shows a graph of the dynamic full ROM
for each exercise used to identify the peak a. The
graph is created using the ̂1RM from one partici-
pant (p01) applied to the full ROM. This was done
for both the LMFSS and OPTSS , with their corre-
sponding masses. The figure shows how the sticking
point is affected by implementing the strength factors
based on the OPTSS . Imposing the OPTSS has an
effect on the sticking point location especially for the
biceps curl, horizontal row, and side bends exercises.

Furthermore, the figure shows when the posture of
the calf raise and lateral pulldown exercises is fixed,
the muscle activity either increases (seen in the lateral
pulldown exercise) or decreases (seen in the calf raise
exercise).

Table 4 shows the PJT obtained from the dy-
namometer experiment, and the AMS Evaluate-
JointStrength studies when applying the LMFSS and
OPTSS , respectively. Further, figure 2 shows a Bland-
Altman plot for each of the movements from part 2.
It shows a mean bias below 10 Nm for the elbow joint,
while the knee and ankle joint shows a mean bias of
more than 950 and 250 Nm, respectively.

Discussion

Part 1

The scope of the present study was separated into
two, where the first aim was to create and verify
a workflow to perform subject-specific SS of muscu-
loskeletal models. When analysing the overall results
from the optimization routine, it is clear that the
OPTSS represent the participants’ 1RM better than
the standard LMFSS . It is effectively improving the
NRMSE across all participants except for p04 (table
3). Furthermore, when investigating the participant’s
descriptives in table 3, no immediate link exists be-
tween the optimization results and the influence of
gender, BMI and Rfat, experience with strength ex-
ercises, or the amount of strength training performed
per week. This could indicate that the workflow is
robust and increases the accuracy across the popula-
tion sample. Although effort was put into recruiting
participants of both anthropometric differences and
variations in strength exercise experience. Table 3
shows that only four participants had no experience
with strength training and that the average experi-
ence in the past five years was 2.89 (±1.81) years,
indicating that the present population was above av-
erage experienced (> 2.5 years). The relatively high
experience level could hide certain side effects, such as
novice participants focusing more on maintaining ex-
ercise technique, or not having experience with max-
imal force production (i.e. the ability to recruit large
motor units). Including more untrained participants
could clarify if some of the included exercises might
have been too difficult to perform, and thereby hard
to accurately measure strength.
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Table 3: Participants’ descriptives including; gender (GEN) [m=male, f=female], body mass index (BMI), estimated
body fat percentage (Rfat), strength training experience during the last five years (EXP) [years], training sessions per
week (TSPW) indexed as: never, rarely, 1-2, 3-4, and 5+. Furthermore, the optimization descriptives including;
objective function value (J), function evalutions (nEval), time to convergence (TTC) [HH:MM], and normalized root
mean square error (NRMSE) across all exercises for the standard-scaled (LMFSS) and optimization based (OPTSS)
conditions, respectively.

Participants’ Descriptives Optimization descriptives

Participant GEN BMI Rfat EXP TSPW J nEval TTC
NRMSE
LMFSS

NRMSE
OPTSS

p01 m 25 22.86 4 Never 351.5 71 01:43 56.44 17.87

p02 m 39 35.34 4 Never 2001.6 120 02:57 62.38 42.82

p03 f 31 39.94 0 Never 389.9 90 02:23 73.83 36.31

p04 m 25 23.08 5 1-2 4105.3 24 00:33 43.68 47.24

p05 m 30 27.20 0 Never 237.8 122 02:59 40.99 21.91

p06 f 22 29.25 0 Never 58.1 132 03:14 48.09 24.35

p07 m 31 28.82 5 1-2 6550.5 30 00:43 51.07 47.31

p08 m 20 17.37 2 Rarely 257.1 50 01:12 79.75 34.25

p09 f 26 34.74 1 Rarely 849.9 49 01:11 59.85 31.39

p10 m 26 23.37 2 1-2 165.3 150 03:40 51.80 10.58

p11 m 22 19.23 2 1-2 1711.5 48 01:09 49.15 28.05

p12 m 27 24.31 5 3-4 3706.3 80 01:56 44.99 33.62

p13 f 29 37.68 2 5+ 392.5 352 08:43 67.68 40.82

p14 m 30 27.28 0 Never 626.2 35 00:50 60.94 42.45

p15 m 35 31.97 5 3-4 29207.5 27 00:38 59.18 49.63

p16 f 25 33.20 2 3-4 54.5 130 03:13 53.78 23.12

p17 m 29 26.46 5 3-4 10885.9 88 02:08 47.98 38.21

p18 f 22 28.56 2 3-4 3.6 220 05:23 46.78 5.35

p19 m 27 25.05 5 3-4 94.8 200 04:56 39.72 8.87

p20 f 26 34.34 5 1-2 145.9 173 04:23 52.99 24.02

p21 m 30 27.75 2 Never 2749.1 117 02:52 47.61 22.52

p22 m 24 21.15 3 Rarely 147.1 120 02:56 46.49 11.41

p23 m 28 25.72 2 Rarely 469.2 61 01:28 45.13 12.43

p24 m 28 26.03 2 Rarely 1073.9 61 01:36 39.32 16.57

p25 m 23 20.32 4 Rarely 460.2 27 00:38 52.63 45.04

p26 m 25 22.18 5 5+ 901.9 113 02:46 44.07 16.87

p27 m 32 29.39 5 Rarely 6994.7 90 02:11 52.92 52.27

p28 m 27 25.08 2 Rarely 258.4 162 04:00 41.04 16.24

Mean - 27.28 27.42 2.89 - - 105.1 02:35 52.15 28.63

SD - 4.16 5.64 1.81 - - 72.1 01:47 10.03 13.93
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Figure 1: Maxmimum muscle activity during each dynamic contraction for both standard scaled (LMFSS) and the
optimization based (OPTSS) models, respectively. Peaks indicate the location of the sticking point.
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Figure 2: Bland-Altman plots for each movement tested in the validation experiment, comparing the standard scaled
(LMFSS) or the optimization based (OPTSS) conditions’ peak joint torques to the dynamometer obtained peak joint
torques, left and right respectively. y-axis indicate the difference between dynamometer and either LMFSS or OPTSS

and x -axis indicate the mean between dynamometer and either LMFSS or OPTSS . Dotted lines indicate limits of
agreement, dashed line indicate the bias (MD = mean difference).
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The OPTSS routine took on average 2 hours and
35 minutes to converge, using an average of 105 itera-
tions per participant. Comparing these numbers with
the results of Heinen et al [13], whose isometric op-
timization routine converged after 300 iterations, the
present study offers a faster and simpler method for
subject-specific SS. Moreover, the maximum strength
assessment used in the present study is more accessi-
ble to obtain than measuring isometric or iso-velocity
strength. The use of 1RM measures to assess max-
imum strength is the most common method in the
strength training society. Most participants which
regularly engage in strength training are familiar with
these measures and base their strength training pro-
gression on fractions of either measured or estimated
1RM. Further, estimating 1RM from 3-7 repetition-
maximum is an applicable method for participants
with little to no prior experience with strength train-
ing, since there is a lowered risk of injury compared
to measuring 1RM.

Although the overall results improved for all but
one participants, the accuracy of the strength opti-
mization is only deemed satisfying for participant 18
and 19. For the workflow to be truly accurate, the
NRMSE should be below 10% for any participant.
When the NRMSE is below this threshold, the re-
maining variation is most likely lower than what can
be accounted for by the precision of the regression
formula, tolerances of the different weight plates and
dumbbells used, or fluctuations in dietary and sleep
patterns. Since no immediate variation in the opti-
mization results could be identified from variations
in participant descriptives, further improvements in
accuracy would most likely derive from altering the
assumptions and workflow setup.

Table 2 shows that not all exercises are equally
improved by the optimization routine. A possible ex-
planation regarding the optimization accuracy is that
the algorithm does not have enough freedom to adjust
the design variables to match the strength of each
participant. Several steps along the workflow could
be the cause of this. The characterization of exer-
cises could influence how each muscle is affected by
the optimization. Care was taken in modeling ex-
ercises without having multiple exercises testing the
same major skeletal muscle groups. This is a difficult
task and some overlap is unavoidable. For example,
the biceps brachii muscles are involved in flexing the
elbow joint and thereby contributing in the biceps curl
exercise and both pulling exercises (i.e. lateral pull-
down and horizontal row). The pulling exercises were

included to target the large latissimus dorsi muscles
during the horizontal row, and the smaller upper back
muscles (e.g. trapezius and rhomboid) alongside the
rotator cuff muscles during lateral pulldown. In or-
der to overcome these overlaps in muscle activities
between exercises, a PCA was performed on the sen-
sitivity matrix A. This created orthogonal principal
components and de-correlated each of the exercises’
sensitivity measures.

Since the basis for obtaining the correct strength
factors is derived from the sensitivity matrix A, ob-
taining a better sensitivity measure could improve
the results. One method could be to use cutoff val-
ues for the active muscles in each exercise. This
would ensure that only muscles active above a cer-
tain threshold would contribute to the sensitivity ma-
trix. This method could alleviate the issue with the
biceps brachii muscles, by removing its contribution
from the exercises where it is not assumed to be the
main contributor. This would effectively have the op-
timization algorithm scale the biceps brachii strength
solely from the biceps curl exercise, and thereby scal-
ing the otherwise intended muscles from the horizon-
tal row and lateral pulldown exercises separately. The
same scenario could be true for the lateral raise ex-
ercise, which isolates and almost solely activates the
deltoid and rotator cuff muscles. However, these mus-
cles are also heavily involved during many of the other
included exercises (e.g. bench press). Raising a dumb-
bell in a straight arm means that even relatively low
loads create a large moment around the glenohumeral
joint, resulting in a relatively low 1RM in the range
of 5.8− 19.7 kg. The LMFSS model strength ( ̂1RM)
for the lateral raise exercise is ranging from 8.4 − 34
kg, meaning that the optimizer would have to down-
scale the strength of the targeted deltoid muscles to
reduce this difference. Since the deltoideus muscles
are involved in exercises such as the bench press, and
thereby effectively contributing to the sensitivity ma-
trix in that exercise, the optimization algorithm might
try to adjust the strength of the deltoideus muscles
resulting in too strong muscles when simulating the
lateral raise exercise. Using another sensitivity mea-
sure could potentially improve how the optimization
algorithm determines the SS. Currently, the A matrix
shows how a small change in muscle strength affects
the muscle activity envelope for each exercise. The
matrix is constructed utilizing the min/max muscle
recruitment criterion. This criterion effectively post-
pone fatigue by allowing all contributing muscles, to
contribute to their full extent. Although there is a
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clear upside to using this criterion when investigating
maximum strength, using it for the sensitivity matrix
construction might not be the most favorable choice,
due to how it recruits available muscles. Constructing
the sensitivity matrix using another muscle recruit-
ment criterion could result in a more physiological ac-
curate representation of how the muscles are active in
each exercise.

Another limitation of the optimization workflow
could be associated with SS during a static posture
(i.e. the sticking point position). As seen in figure
1, the location of the sticking point changes after ap-
plying the optimized strength factors. It was revealed
that changing from a dynamic repetition, to a static
posture, had a negative impact on 5 of the 10 exer-
cises. No difference was found between the LMFSS

and OPTSS conditions for the bench press, lateral
raise, leg curl, leg extension, and triceps extension
exercises. This indicates the optimization routine is
accurately representing the strength of the active mus-
cles in these exercises, without altering the strength
relationship between muscles. The peak a for the dy-
namic ROM and static position equals 1, which indi-
cate that moving from a dynamic scenario to a static
posture does not affect the location of the peak a.
Contradictory, the calf raise and lateral pulldown ex-
ercises are seemingly poor choices, even though the
mass applied corresponded to a = 1 for the static
position. However, the a for both SS conditions are
∼ 0.64 and ∼ 1.2 when performing the dynamic ROM,
for calf raise and lateral pulldown respectively. For the
side bends and biceps curl exercises the sticking point
location is largely affected by using the OPTSS condi-
tion. However, for the OPTSS condition some muscles
are scaled through other exercises, which could affect
muscles used in other parts of the exercise ROM, re-
sulting in a new sticking point posture. The same
can be seen for the horizontal row, were the sticking
point position occurs in the beginning of the move-
ment, rather than the end. This could indicate that
the muscles used in this movement is not scaled solely
from this exercise. To summarize, for half of the exer-
cises, the calculated maximal applied mass the model
can sustain, is affected by switching from a dynamic
scenario to a static one. Using multiple postures dur-
ing the optimization might limit the variation between
muscle activity when applying new strength factors.

Part 2

The second aim of the present study was to vali-
date the strength-scaled models using dynamometer

obtained isometric joint torque measurements. The
results showed that the P̂ JTOPT performed poorly
across all isometric exercises, when compared to the
golden standard (dynamometer PJT). Knee exten-

sion overestimated the P̂ JT values almost by a fac-
tor of 10 for all participants, for both the P̂ JTLMF

and P̂ JTOPT . Ankle plantar flexion and knee flex-
ion overestimated the PJT values by a factor of 2-4
(table 4). These overestimations are thought to be
caused by using the simple muscle models in the AMS
exercise models. These muscle models do not have
a force-length or force-velocity relationship and rely
solely on the nominal strength parameter. This ef-
fectively means that the moment is only governed by
the moment arm of each muscle. Switching to the
more complex 3E muscle model, with a force-length
and force-velocity relationship, showed a decrease in
P̂ JTLMF by a factor of 4-6 for the knee extension
(data not shown). Issues in the simple muscle mod-
els wrapping around the knee and ankle joint surfaces
could further cause the muscle moment arms to be
prone to errors. Dzialo et al. [42] showed that by
modeling the knee joint with a moving rotation axis,
secondary joint kinematics could be improved, indi-
cating that the simple hinge knee joint model might
also be a limiting factor when comparing PJT. For
elbow flexion and extension, the comparison between
the P̂ JTLMF , P̂ JTOPT and the dynamometer seems
more reasonable. However, both the P̂ JTLMF and
P̂ JTOPT still performed poorly when compared with
the PJT values from the dynamometer. The LoA tend
to get more narrow when using the P̂ JTOPT values,
however it comes at the cost of an increased bias from
0.98 to 7.59 Nm and 3.4 to 9.91 Nm for the elbow
flexion and extension, respectively. The poor perfor-
mance of the OPTSS during elbow extension could
be influenced by how inadequately the optimization
routine scaled the participants’ strength in the triceps
extension exercise. The NRMSE values for the triceps
extension shows a 37 % mean variation between the
OPTSS model ̂1RM and field obtained 1RM. Consid-
ering p03’s results from table 4, it is clear that the
optimization routine had an issue when scaling the
muscles crossing the elbow joint. The ̂1RM for p03

in the triceps extension exercise is only 2.6 kg, while
the actual field obtained 1RM was 8.3 kg (data not
shown). This further indicates that the exercises are
too similar, and that an overlap in active muscles exist
between exercises.
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Practicality

As part of the present workflow, the ability to differen-
tiate the strength between the left and right side of the
AMS models was implemented. Furthermore, other
1RM regression formulas or even exercise-specific for-
mulas is easily implementable if desired. The present
workflow is scalable and more strength exercises can
be implemented with ease, which makes the workflow
practical in the sense that coaches and athletes could
implement specific exercises in a custom SS optimiza-
tion.

Conclusion
The present study shows promising initial results
regarding the use of easily obtainable maximum
strength measures to scale whole body musculoskele-
tal models. The improvements shown in the present
study evoke confidence that further research involv-

ing the correct measure of muscle sensitivity, strength
exercises to characterize the skeletal muscle actions,
and the implementation of PCA combined with an
optimization routine can converge to a reliable and
accurate method of subject-specific SS. Furhter, The
present study shows that utilizing simple muscu-
loskeletal muscle models cannot readily be used to
estimate and compare peak joint torque for near end
ROM angles. The present field strength data and dy-
namometer torque data collected will be available on
Zenodo for other researchers.
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A detailed description of certain methodological topics, including problems and thoughts, will be presented in
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Contents

1. Exercise models 2

1.1. General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Support conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. The inverse dynamics study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4. Excluded models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5. Specific model information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6. Models for part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2. Subject-specific geometric scaling 20

2.1. Calculating subject-specific scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Defining the sticking point 22

4. Calculating model strength 24

5. Strength optimization 26

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2. Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3. Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4. Optimization algorithm benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5. Omitting the optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6. Protocol specific details 29

6.1. Fitness equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2. Learning effect during strength training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References 33

1



1. Exercise models
This worksheet describes the details regarding the structure and build of the included AnyBody Modeling System
(AMS) strength exercise models. The first sections describes the general information regarding the creation of
the exercise models and how certain aspects of the field test were translated to the AMS models. The following
sections elaborates details about the specific models. A figure of both the exercise model fixed in the sticking point
position from the field test and AMS is shown under each exercise subsection, figure 1-15. The general idea is
to create an open source strength exercise library that can be used to further develop and test the workflow.

1.1. General information

The models were built to resemble strength exercises that can easily be performed in most fitness centers. The
models only represented the concentric part of the movement, based on where the sticking point occurs [1]
(see 3.Defining the sticking point). For generalization purposes the exercise library was modeled using simple
measures, such as linear distances between segments and the global origin, or a specific range of motion (ROM)
expressed through joint angles, to drive the motion of each model. This eliminates the need for subject-specific
technique measurements, such as motion capture data of how a participant performs each exercise. From a
commercialization point of view, it was interesting to investigate if these general models could be used across
a heterogeneous population sample to scale subject-specific models. This would decrease the complexity of the
workflow and the amount of subject-specific data to collect. Some of the strength exercise models implemented
dumbbells, barbells and handles. It was assumed that they would not rotate, therefore, any segment held by
the hand had reaction forces applied in all three rotational directions. All models were based on the human
model template in the AnyBody Managed Model Repository (AMMR) ver. 2.2.0 [2]. Each model included the
TLEM 2.0 leg model [3], detailed neck model [4], lumbar spine model [5], and the shoulder-arm model [6].

1.2. Support conditions

All exercise models utilized a type of support, e.g. feet placed on the ground, hand in contact with a wall, or
the participant leaning against a wall. These conditions were modeled as reaction forces. The in-built ground
reaction force prediction (GRFP) class was used in all exercises where the feet were in contact with the ground
or foot rests. The class constructs 25 nodes under each foot segment and models a normal and friction force
using muscle-like actuators, only capable of pushing [7]. The GRFP class makes it possible to control how
much friction force the model is able to recruit, as a fraction of the normal force, while also solving the balance
of the model. The GRFP actuator muscle will only make use of the ground reactions if that minimizes the
overall maximum muscle activity (a). The trigger volume, which decides if the feet are close enough to enable
contact, was adjusted in size, to ensure that the models’ feet would always be inside. The GRFP base class
ContactSurfaceLinPush was implemented, to simulate the participant leaning against a wall in the side bends
and lateral raise exercises. This class models a normal force perpendicular to the thorax segment and a friction
force parallel to the thorax segment, simulating the contact between the thorax and the wall.

1.3. The inverse dynamics study

The study section of the AMS models is were numerous key parameters is defined. Since the exercise models
utilized the default drivers for all degrees of freedom, the addition of extra drivers to model the exercise ROM
resulted in kinematically overdeterminate models. The AMS provides a solver (KinSolOverDeterminate) to
overcome these scenarios based on the work of Andersen et al. [8]. All dynamic exercise movements were
modeled using 30 timesteps, corresponding to a three second time period. This was chosen based on field
observations of maximum contractions during the pilot test, and the notion that maximum contractions involve
the contraction velocity approaching zero, thereby increasing the time of the repetition.

1.3.1. Muscle recruitment criterions

For the inverse dynamics analysis, several muscle recruitment criterions exist in the AMS. These are designed
to minimize a cost function, taking into account that muscle force is produced by metabolic energy and that
muscles can only pull, formulated as:
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minimize G(f (m))

subject to: Cf = r

f
(m)
i ≥ 0, i = 1 . . . n(m)

(1)

where G is the cost function, f (m) represent the muscle forces, Cf = r is the equilibrium equations defined as
a constraint, where C is a matrix of coefficients, f is the muscle force and r is the external and inertia forces.
The last constraint states that the muscle forces are restricted in sign, ensuring that they only pull. The task
is now to determine which G is most representative of the physiological system in question. The simplest
is the linear recruitment; G = f1

N1
+ f2

N2
. . . fnNn

, where fn is the muscle force of the nth muscle and Nn is a
normalization factor, typically the maximum force that the muscle can exert. This criterion will result in only
the minimum number of muscles being recruited, based on their moment arms and strength. This criterion
fails to represent how co-contraction and muscle synergy works. Another criterion is the quadratic criterion;
G =

∑
i(
fi
Ni

)2. This criterion is used extensively as it have been shown to represent muscle forces well during

experiments [9]. A more general description of the criterion is the polynomial form; G =
∑

i(
fi
Ni

)p, where AMS
offers a value of the power (p) between 1−5, since p > 5 starts to resemble the min/max criterion. Changing p
affects how much co-contraction the model is able to utilize, since it penalizes large terms in the recruitment.
The last recruitment criterion is the min/max muscle recruitment criterion; G = max( fiNi

). This is effectively
the same as letting p approach infinity for polynomium criterions, as shown by Rasmussen et al. [10]. This
criterion effectively postpones fatigue by letting all contributing muscles, work to the extent feasible. A side
effect of both the higher order polynomial and min/max muscle recruitment criterions is that some muscles
will be recruited faster than they are physiological able to in the human body. The min/max criterion is well
suited for scenarios involving maximum strength, why the present study chose this criterion.

1.4. Excluded models

The initial characterization of strength exercises needed to encapsulate the gross skeletal muscles of the human
body indicated that 15 models where to be included in the present study. However, five exercises were excluded
from the optimization routine; the hip abduction, hip adduction, crunches, glute bridge, and hyperextension
exercises. Common for these models are that they involve multiple support conditions and thereby multiple
points of reaction forces working. Adding these, using the tools listed in section 1.2, resulted in the models
becoming unrealistically strong, recruiting other muscles than the intended, or fail to meet the linearity criterion
described in worksheet 4.Calculating model strength. This was especially clear in the hip abduction and
adduction exercises, where reaction forces between the hand and the wall caused the model to recruit upper
body muscles much more than the intended hip muscles. A solution of not applying reaction forces at the hand
and instead applying a rotational fix of the thorax segment and reaction forces to the pelvis x and z directions
in global coordinates, were implemented. However, this did not solve the problem with the models being to
strong and inevitably lead to an exclusion.

The crunches and glute bridge exercises were modeled with 10 contact nodes added to the gluteus maximus
muscle, and the T11, T9, and the scapula segments. The ContactSurfaceLinPush class was implemented
between the nodes and the global coordinate system (GCS). These contact models should allow a smooth
movement of both models which loses contact with the ground node by node. However, the a showed large
peak values and rapid increases during the dynamic movements. This could indicate that 10 nodes where
insufficient to create a smooth movement and further development is needed in order to include the models in
the optimization routine.

After further investigation of the hyperextension model using the ̂1RM , a clear error occurred. For some
participants the model was not able to move the body mass of the participant without reaching a a > 1 and
showed a non-linear relationship between applied mass and muscle activity. This could indicate the modeled
reaction forces was not implemented correctly, and lead to the exclusion of the exercise.
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1.5. Specific model information

1.5.1. Bench press

The model simulates a person supine on a bench, with the feet fixed on the ground using the GRFP class and
with 90 degree knee flexion. A vertical reaction force is placed on both the skull and thorax segments, which
represents the bench. The start position is modeled with the carpal segments coupled to the barbell through
spherical joints, with 80 cm between them, holding the barbell ∼ 5 cm above the anterior side of the sternum,
inline with the T5 vertebrae. The barbell start position is determined as:

barpos0 = wristy + 0.1 (2)

where wristy is the y coordinate of the wrist joint in global coordinates, and the constant 0.1 represent
approximately half the length of the hand segment in meters added to the position of the wrist joint. This
ensures that the linear path of the barbell scales accordingly to the participants’ anthropometrics. The barbell
moves away from the torso towards the end point where the arms are almost stretched out above the torso,
with 10 degree elbow flexion. A linear measure defined as the distance between the barbell and the sternum is
used to simulate the desired movement.

Figure 1: The sticking point position of the bench press exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.2. Biceps curl

The model simulates a person standing with their hands down the side of the body. The feet are locked in
position by the GRFP class. The starting position is with the right arm stretched and the hand grabbing a
machine handle, simulated by a spherical joint. The mass of the handle was set to 0.10 kg, to represent the
actual mass of the handle in the fitness center. From this position the elbow is flexing towards 125 degrees,
while keeping the elbow close to the body, simulating the full ROM. The force representing the cable pull force
is added to the handle segment, working vertically downwards in the GCS.

Figure 2: The sticking point position of the biceps curl exercise as seen in the fitness center and in the AnyBody
Modeling System.

5



1.5.3. Calf raise

The model simulates a person standing upright in a smith rack with the right forefoot on a ledge. The contact
between the forefoot and the ledge is simulated by altering the GRFP class slightly to only incorporate the 13
forefoot nodes. The starting position is with a barbell placed posterior to the T2 vertebrae and with 20 degree
dorsiflexion of the right ankle. A driver is placed on the right ankle creating a plantar flexion, which moves
the body vertically upwards until the end point is reached at 10 degree plantarflexion. The barbells movement
is restricted in the global x - and z -directions.

Figure 3: The sticking point position of the calf raise exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.4. Crunches

The starting position of this model simulates a person supine on the ground with the knees bend at 90 degrees.
The feet are locked in place by two drivers; one that restricts the ankle flexion, and one that locks the position
of the feet in the GCS, simulating the toes placed under a rack. Further, reaction forces are placed on the
pelvis only allowing rotation around the global z -axis. The model has the arms crossed across the chest. A
mass is added to represent the mass of the weight plate lying on the chest and is connected through a contact
node on the anterior side of the thorax. First, a flexion of the neck occurs and shortly after a lumbar and
thorax flexion follows. A driver is placed to rotate the pelvis around the global z -axis −8 degrees each second.
Further, a driver is placed on the thorax segment which creates the thorax extension. The combination of these
two drivers creates the motion that moves the upperbody off of the ground. The end point of the movement
is when the participants is almost sitting up.

Figure 4: The sticking point position of the crunches exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.5. Glute bridge

This model simulates a person supine on the floor with 140 degree knee flexion and the feet on the ground.
This is achieved by implementing the GRFP class and a driver that ensures that the feet will not move. A
barbell is modeled and is placed anteriorly on the hips, by connecting two nodes, one on the bar and one on
the pelvis. Further, the skull segment have reaction forces added in the global x - and y-axis simulating the
head in contact with the ground. Similar reaction forces are applied to the posterior side of the thorax segment
around the scapula in x and y directions. The movement is started by a hip extension driver on each hip,
which moves the gluteus muscles off of the ground and ends when there is a straight line from the shoulders
through the torso and thighs to the knees. Another driver creates 10 degree neck flexion each second, in order
to keep the skull segment on the ground during the movement.

Figure 5: The sticking point position of the glute bridge exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.6. Hip abduction

The model simulates a person standing on the left leg, with a cable connected to the right ankle. The simulated
cable resistance is created using an applied force connected to a node on the shank. The start position is with
the right foot slightly (5 degree right hip adduction) crossed in front of the left foot (0 degree left hip adduction).
The left foot is locked to the ground achieved by implementing the GRFP class and a driver on the left foot,
which ensures that it will not move. The upper body rotation is fixed, to ensure no movement. While keeping
the legs straight, a driver abduct the right hip towards the endpoint at 35 degrees abduction. Another driver
abduct the left hip slightly, 5 degrees every second, which rotates the pelvis in order to keep the balance of the
model.

Figure 6: The sticking point position of the hip abduction exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.7. Hip adduction

The model simulates a person standing on the left leg, with a cable connected to the right ankle. The simulated
cable resistance is created using an applied force connected to a node on the shank. The start position is with
a 25 degree abduction in the right hip, an abduction of the left hip (15 degree) and a rotation of the pelvis
segment around the global x -axis to ensure the model starts in the desired position. The left foot is locked
to the ground, achieved by implementing the GRFP class and a driver that ensures that the left foot will not
move. The upper body rotation is fixed, to ensure no movement. While keeping the legs straight, a driver
adduct the right toward the endpoint at 5 degrees adduction. Another driver adduct the left hip slightly, 5
degrees every second, to keep the balance of the model.

Figure 7: The sticking point position of the hip adduction exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.8. Horizontal row

The model simulates a person sitting on a bench, where added reaction forces on the pelvis segment restrict
movement in global x - and y directions (forward and upward, respectively). Further, both feet is connected
to the footrests by the GRFP class. The starting position is with the arms stretched out in front of the body
with both hands coupled with a handle through spherical joints. The hands are placed with a distance of 60
cm from each other. The mass of the handle is 4.8 kg and a constant force was added to simulate the cable
pulling away from the body. The start position is defined as:

handlepos0 = |wristx| − 0.05 (3)

where wristx is the x coordinate of the wrist joint in global coordinates, and the constant -0.05 [m] ensures
that the elbow joint does not overextend. The movement ends with the handle right in front of the thorax
segment near the sternum.

Figure 8: The sticking point position of the horizontal row exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.9. Hyperextension

The model simulates a person bending forward over a roman chair, resulting in a 75 degree flexion in the hips.
A reaction force is applied to the hips, simulating the pad the roman chair pad. The feet are locked in position
by creating spherical joints between the heel pad and the heel. Additionally, a segment is modeled to simulate
the weight plate held in folded arms anteriorly to the thorax segment. The first driver is placed on the thorax
segment simulating the extension of the spine, by 10 degrees each second. The second driver is placed on the
hips working to extend the hips 25 degrees each second. At the end of the movement there is a straight line
from head to feet.

Figure 9: The sticking point position of the hyperextension exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.10. Lateral pulldown

The model simulates a person seated on a machine chair and vertically pulling down a handle attached to a
cable. The handle is coupled with the carpal segment through a spherical joint. The GRFP class is applied to
the feet. Further, reaction forces is added to the pelvis, restricting movement in the global x and y directions.
The movement starts with the model’s right arm stretched out above the head, with only a slight elbow flexion,
and grabbing the handle. The start position of the movement is defined as:

handlepos0 = (wristy0.8)− 0.6 (4)

where wristy is the y coordinate of the wrist joint in global coordinates, and the constant -0.6 [m] ensures that
the scapula is not elevated beyond its ROM. The movement stops when the wrist is at shoulder height.

Figure 10: The sticking point position of the lateral pulldown exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.11. Lateral raise

The model simulates a person standing in an upright position with the back against a wall. The contact
between the wall and the back is modeled using the ContactSurfaceLinPush class. Further, the GRFP class is
added to the feet. The start position is with the right arm stretched down the side and a dumbbell in the hand,
coupled through a spherical joint. Then, by an abduction of the shoulder, the hand creates a circular movement
upwards, that stops when the hand is in line with the shoulder. The arm is kept stretched throughout the
whole movement, abducting 29.5 degrees per second.

Figure 11: The sticking point position of the lateral raise exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.12. Leg curl

This model simulates a person in a prone position on a bench, modeled by vertical reaction forces placed on
the thorax and thigh segments. Further, reaction forces in all directions are applied to the pelvis, to alleviate
movement. The legs are placed in an outstretched position with a machine pad resting on the back side of the
right shank around the achilles tendon. An applied force simulating the resistance from the machine pad is
added to the heel. The start position is with 25 degree hip flexion and 5 degree knee flexion. A driver is placed
at the right knee joint creating 40 degrees of flexion every second.

Figure 12: The sticking point position of the leg curl exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.13. Leg extension

This model simulates a person sitting in a chair, where the back is leaned against a backrest, and the seat
have a slight incline (∼ 15 degrees). The contact between the back and the backrest is modeled by adding
a horizontal reaction force to the thorax segment. Further, reaction forces are applied to the pelvis in all
directions, which simulates that the pelvis is stabilized during the movement. The model is sitting in the chair
with 80 degree hip flexion, 95 degree knee flexion, and a pad placed on the anterior part of the shank, near the
ankles. An applied force, simulating the resistance from the machine pad, is added to the shank. In order to
simulate the movement, a driver is placed on the knee joint, extending the knee 30 degrees each second, until
the leg is stretched.

Figure 13: The sticking point position of the leg extension exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.14. Side bends

The model simulates a person standing in an upright position with the back against a wall. The ContactSur-
faceLinPush class was implemented between the thorax and wall. Further, the GRFP class is added to the
feet. The model is starting with the left arm stretched down the side of the body, grabbing a dumbbell, coupled
to the hand through a spherical joint. The movement starts with the spine laterally flexed to the left so the
dumbbell is at the height of the lower part of the thigh. A driver is applied to the thorax segment in order
to laterally extend the spine to the right with 10 degrees each second. Further, in order to allow the left arm
to move up along the body, a driver is applied to adduct the shoulder 5 degrees each second. The movement
ends when the model is standing upright and the dumbbell is at the height of the left hip.

Figure 14: The sticking point position of the side bends exercise as seen in the fitness center and in the AnyBody
Modeling System.
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1.5.15. Triceps extension

The model simulates a person standing with the back against a wall, simulated ContactSurfaceLinPush class.
The model starts with the right hand grabbing the handle, simulated by a spherical joint between the two.
The mass of the handle is set to 0.10 kg, to represent the actual mass of the handle from the fitness center.
The pull force from the cable is represented by a force working vertically downwards in the GCS. A driver is
added to the right elbow joint, starting the movement at 120 degree elbow flexion and extending the elbow by
35 degrees every second.

Figure 15: The sticking point position of the triceps extension exercise as seen in the fitness center and in the
AnyBody Modeling System.
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1.6. Models for part 2

For part 2 of the present study, the built-in AMS EvaluateJointStrength study class was used to estimate the
maximum joint torques of the standard scaled strength scaled (LMFSS) and the optimization based strength-
scaled (OPTSS) subject-specific models, respectively. The study excludes the parts of the body not needed for
the analysis and fixes the upperbody using reaction forces. Furthermore, it fixes the joint in question in the
desired position and adds constraints to all the other degrees of freedom in the model. It applies a force (F )
at the measured joint and calculates the joint torque (T ) as; T = F

a+0.00000001 , where a is the maximum muscle
activity. In order to do this calculation, the study implements the min/max muscle recruitment criterion
making the relationship between F and a linear [10]. The present study evaluated the peak joint torque (PJT)
for the sticking point position for the five tested movements (i.e. ankle plantar flexion, knee and elbow flexion
and extension), in-line with the positions used in part 1.

1.6.1. Comparing joint torques

Originally the present study aimed at comparing the measured mean PJT from the dynamometer tests with
the AMS PJT across the five movements. During the analysis, the AMS PJT showed unrealistic values for
the ankle plantar flexion, and knee flexion and extension movements. The results for one participant (p01)
are shown in table 1. To understand this discrepancy, the EvaluateJointStrength study covering a full ROM
of the movements were investigated (figure 16). Ideally these graphs should approximate a bell curve, much
like the standard graph of the force-length relationship. Clearly, this is not the case for the knee extension
movement. The present study implemented the AMS simple muscle models, characterized by only having a
nominal strength parameter, based on the force output at optimal fiber length. Considering the use of these
muscle models, it was theorized that the combination of simple muscle models and testing angles near end ROM
resulted in a large overestimation of joint torque for the AMS models. Furthermore, for all five movements the
3-element Hill-type (3E) muscle models was implemented to see if the inclusion of a force-length and force-
velocity relationship could improve the results. Table 1 shows that using the 3E muscle models alleviate much
of the discrepancy between measured and estimated PJT. This could indicate that caution should be taken
when utilizing the simple muscle models in comparison with dynamometer obtained PJT.

Table 1: Peak joint torque [Nm] for the dynamometer experiment (DYNO), using either simple muscle models
applying the standard scaled (LMFSS) or optimization based (OPTSS), or the 3-element Hill-type (3E ) muscle models.
Ankle plantar flexion is denoted as ankle flexion.

Ankle
flexion

Elbow
flexion

Elbow
extension

Knee
flexion

Knee
extension

Joint
angle [◦]

-14 30 73 5 5

DYNO 211.0 62.3 68.6 99.8 180.8

LMFSS 523.9 76.1 76.6 306.3 1244.5

OPTSS 518.8 57.4 58.7 351.5 1244.6

3E 685.1 32.1 21.7 528.4 332.8
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Figure 16: Relationship between joint strength [Nm] and joint angle [◦] for one participant (p01) using either the
simple muscle models, with the standard scaled strength-scaling (LMFSS) or the optimization based strength-scaling
(OPTSS), or the 3-element Hill-type (3E) muscle models. Each subplot represents one of the five movements tested in
the validation experiment.

2. Subject-specific geometric scaling
The purpose of this worksheet is to introduce different methods in order to geometrically scale musculoskeletal
models in the AMS. Further, this worksheet will show two standard methods available in the AMS to scale the
strength of said models.

In order to scale musculoskeletal models, the AMS have the capability to implement different scaling laws
depending on the amount of subject-specific anthropometric information available. The unscaled AMS model
is created with a stature of 1.8 m and a mass of 75 kg, based on a multitude of cadaver studies [3–6]. The
simplest scaling law is the standard scaling law, where the model is scaled in accordance with the 50th percentile
European male anthropometrics. This method is mostly used when no subject-specific information is available.
However, when external measures, such as body mass and stature is known, the uniform scaling law is more
preferred for creating subject-specific models. This method scales the segments linearly in all directions,
based on proportions of the total subject stature, relative to the stature of the unscaled model, as defined by
Rasmussen et al. [11]:
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s = Sp+ t (5)

where s represents the scaled node’s position vector in its local coordinate system, p is the positional vector
of the unscaled node, and t represent a translational vector of the segments local coordinate system onto the
scaled segment. S is a 3× 3 diagonal scaling matrix, given by:

S =

kx ky
kz

 (6)

where k is the scaling factor. For the uniform scaling law kx = ky = kz. A more advanced geometrical
scaling method is the XYZ scaling law, which uses segment specific dimensions to scale the model in all three
dimensions of the segments local coordinate system. This is achieved by changing the scale factors k in the
scaling matrix S, in accordance with the actual segment dimensions of the subject.

The muscle strength in the uniform scaling law is scaled through a non-linear regression with the power of
2
3 .

f =

(
ms0

ms1

) 2
3

(7)

where ms0 is the estimated mass of the individual segment based on the segment’s mass percentage of the total
body mass [12]. ms1 is the standard mass from the cadaver based models used in the unscaled model in AMS. A
disadvantage of the uniform scaling law is the inability to account for BMI and body fat-percentage (Rfat), why
it often underestimates the muscle strength for tall light subjects and overestimates for short heavy subjects.
In order to overcome this problem the Length-Mass-Fat (LMF) scaling law, can be implemented to scale the
muscle strength [11]. This method is feasible with the same anthropometric information as the uniform scaling
law, however, it also takes the fat-percentage into account by calculating how large a proportion of the total
body mass is muscles, fat, and other (e.g. bone, tissue, ligaments); Rmuscles = 1−Rfat −Rother, where Rother
is set to 50% in the AMS, and Rfat is the fat-percentage found by a regression equation relating BMI to
fat-percentage, as defined by Frankenfield et al. [13]:

Men: Rfat = −0.09 + 0.0149BMI − 0.00009BMI2 (8a)

Women: Rfat = −0.08 + 0.0203BMI − 0.000156BMI2 (8b)

The initial muscle strength can then be calculated as:

f = f0
km
kL

Rmuscle1
Rmuscle0

(9)

where f0 is the nominal strength of the unscaled segment, km and kL are the mass and length ratios between
the unscaled segment (denoted 0) and the subject-specific segment (denoted 1), respectively.

km =
m1

m0
(10)

kL =
L1

L0
(11)

For the subject-specific models in the present study, a combination of the XYZ and LMF scaling laws were
used. The XYZ scaling law was used to scale the geometry of the participants and the LMF scaling law was
used as a standard muscle strength scaling.
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2.1. Calculating subject-specific scaling factors

In order to scale a standard AMS model according to subject-specific data, the anthropometric measures from
the ANSUR dataset [14], were used to compile a dataset of XYZ scaling factors (kx, ky, and kz) for each of
the subjects in the ANSUR dataset, based on a method developed by Andersen et al. [8]. This is achieved by
creating a standard human model locked in a standing position using hard drivers on all movements. Further,
a subset of ANSUR measures were modeled as kinematic measures with soft drivers. By running a kinematic
optimization study (AnyKinOptStudy) [8], in one timestep, a kinematic error between the modeled measure
and the one from ANSUR was minimized, by allowing the segment dimensions to vary. The length dimension
of each segment is scaled according to the ANSUR measures, where the depth and width dimension of each
segment is based on a proportion of the total body stature. This entails that subjects with short legs still gets
realistic leg dimensions.

Using the compiled dataset as a basic population and the present study’s participant anthropometric
measures as primal constraints, a closed-form optimization problem using PCA was solved, to obtain subject-
specific scaling factors (kx, ky, and kz) for each participant. The method uses the given primal constraint
and tries to keep all other anthropometric dimensions as ordinary as possible, given the information from the
ANSUR dataset. The present study anthropometric measures were taken in accordance with the ANSUR
dataset [14] and consisted of; acromial height (sitting), acromion-radial length, foot breadth, foot length,
handbreadth, hand length, heel breadth, iliocristale height, lateral femoral epicondyle height, lateral malleolus
height, radiale-stylion length, and stature. In addition, the body mass, age, and gender were noted for all
participants resulting in a total of 15 primal constraints.

3. Defining the sticking point
This worksheet describes the details of the sticking point phenomenon.

When examining dynamic repetitions of strength exercises, the success criteria is often the ability to move a
mass through a pre-described ROM. A failed repetition is therefore characterized by the subject being unable
to exert the force needed to move a mass throughout the ROM. Previous research has sought to identify the
mechanisms and postures where failure occurs in order to develop training schemes and knowledge of how to
better overcome this point. Investigating the difference in strength exerted during concentric and eccentric
contractions, Hollander et al. [15] identified that eccentric contractions are able to produce more force than
concentric contractions. Therefore, failure will occur during the concentric part of a dynamic repetition.
Extensive studies have been performed to identify the point during concentric contractions where failure is
most likely to occur [1, 16–18]. This point or phenomenon is often noted as a “sticking point” or “sticking
region”, and Kompf and Arandelovic [1] defines it as:

“... the point at which failure occurs when exercise is taken to the point of momentary muscular failure” [1]

If the subject manages to overcome the sticking point, there is a higher possibility of completing the repetition.
However, the sticking point possesses a large interpersonal variation, making its location hard to predict without
subject-specific data, such as motion capture data of the repetition. A portion of this variation can be related
to the large discrepancy in morphology between individuals [1]. Since the present study aimed to develop a
workflow involving simple data inputs, it was deemed infeasible to collect subject-specific technique data in
order to predict subject-specific sticking points. As previously mentioned, the sticking point is the hardest
point to overcome during the ROM, which coincide with the position at which the AMS models have the
highest a. Therefore, this timestep was chosen as the sticking point position for that given movement, greatly
reducing the convergence time of the optimization routine, since the inverse dynamics analysis would only be
computed in this timestep. The joint angles of the model in the sticking point position can be found in table
2.
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4. Calculating model strength

The following worksheet describes the details for calculating the maximum mass ( ̂1RM) that the exercise models
are able to sustain in a static posture.

The assumptions regarding the calculation are based on the selected muscle recruitment criterion. The present
study applied the min/max muscle recruitment criterion [10], where the load is distributed across all available
muscles in order to minimize the maximum relative muscle force, which is denoted as a. This muscle recruitment
criterion is suitable for scenarios where maximum strength is desired, since the criterion can be thought of as a
postponement of fatigue. As noted by Rasmussen et al. [10], the min/max criterion shows a linear development
between the muscle force and the external moment. For the present study the relationship between the a and
the external applied mass (m) [kg] was investigated, and

figure 17 shows that the same linear development can be seen for applied masses above a given threshold. This
is an important characteristic as it simplifies the calculation of which mass will result in a = 1. The assumed
linear relationship can be characterized by:

a = α ∗m+ β (12)

where β is the y-axis intercept. The slope (α) can be calculated using the coordinates of two points along one
of the graphs in figure 17.

α =
a2 − a1

m2 −m1
(13)

Subsequently, knowing that one coordinate for the ̂1RM is a = 1, equation 13 can be rearranged into

̂1RM =
1

α
− a

α
+m (14)

where ̂1RM is the maximum applicable mass. As an example of the calculation, the ̂1RM of each exercise for
one participant (p01) was calculated using equation 13 and 14. Table 3 shows the results for the calculated̂1RM and the a when applying ̂1RM and running the inverse dynamics analysis.

Table 3: An example of ̂1RM calculation and corresponding
maximum muscle activity (a) for the 10 included exercises, for
one participant (p01).

Exercise ̂1RM a

Bench press 84.0845 1
Biceps curl 15.3224 1
Calf raise 55.4994 1
Horizontal row 57.6782 1
Lateral pulldown 27.7818 1
Lateral raise 41.9646 1
Leg curl 49.4671 1
Leg extension 55.2014 1
Side bends 30.0198 1
Triceps extension 27.0566 1
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Figure 17: Relationship between applied mass and maximum muscle activity for one participant (p01), for each of the
10 included exercise models. Dashed line indicate a maximum muscle activity of 1.

25



5. Strength optimization
The following worksheet is submitted to clarify certain details regarding the workflow and settings during the
optimization process.

5.1. Introduction

The present study defined a optimization problem, aimed at minimizing an objective function, in order to scale
the strength of a set of subject-specific AMS models, to match a field obtained set of 1RM estimations. The
general idea was that a design variable (κ) for each exercise could be calculated, thereby creating a problem
with a number of design variables equal to the number of included exercises (nκ = nexercises). The calculated
κ values were used in a linear system of equations to solve for a series of strength factors to be implemented
in the AMS models. These strength factors represents the change of each individual muscle strength in the
models. It was deemed infeasible to optimize the total number of strength factors, as this would create 918
design variables, opposed to the included 10. The present study implemented a simple objective function:

J =
n∑
i=1

( ̂1RMi − 1RMi)
2 (15)

where ̂1RM is the maximum applicable mass of the AMS models, and 1RM is the one-repetition-maximum
obtained in the field strength test.

5.2. Dependencies

For the workflow to be practical and ready for others to use, the number of dependent software packages where
kept at a minimum, and focus was to use open-source software. For obvious reasons the AMS software is needed
as this founds the basis for the musculoskeletal models and inverse dynamics calculations. It further provides
a console application, which founds be base for the automatization of model simulations when combined with
the AnyPyTools python library [19]. The AMS is the only commercial licensed software used. To set up
and perform the optimization itself, the open-source programming language Python 3.7 (Python Software
Foundation, Beaverton, Or, USA) was used alongside the free libraries; Numpy [20], Pandas [21], Nlopt [22],
and AnyPyTools [23].

5.3. Workflow

As seen in figure 18, the workflow starts by estimating a 1RM measure for each field tested exercise, using
a user defined regression formula. Thereafter, the optimizer solves for the strength factors to implement in
the AMS models. The ̂1RM is returned to the optimizer in order to evaluate the objective funtion. After
convergence, the new strength factors can be implemented and used to validate the subject-specific models.

1RM Optimizer Strength Factors ̂1RM Validation

Figure 18: Flowchart of the optimization workflow.

5.4. Optimization algorithm benchmark

The present study did not aim at developing a optimization algorithm, instead a practical evaluation of already
existing algorithms was performed. The evaluation aimed at benchmarking available algorithms to investigate
their performance and suitability for the strength optimization problem. Benchmark parameters included;
objective function value (J), time to convergence (TTC), and number of objective function evaluations (nEval)
across two participants’ (p03, p12) field obtained data. The tested algorithms were chosen based on their
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description in the Nlopt Python library. The library group algorithms by their conditions and suitability. The
present study involved a unconstrained minimization problem. Further, no derivative information was available
for the optimizer, why only derivative free algorithms were benchmarked. The Nlopt library offers six algorithms
suited for unconstrained non-derivative optimization. The present study implemented the NEWUOA BOUND
algorithm [24], based on the algorithm evaluation.

5.5. Omitting the optimization

Concurrent to developing the optimization workflow, a strength-scaling method using only a system of linear
equations (SLESS), to solve for the desired strength factors, was explored. The method would have the
potential to eliminate the need of an optimizer iteratively finding the κ values to solve for the strength factors
for the AMS models. By assuming that the change in strength could be linearly approximated, a system
of linear equations could be formed to solve in a matter of seconds, instead of hours using the optimizer. A
working method based on these assumptions could prove to be much more practical for users of musculoskeletal
models, as the complexity is lowered. The present study tested the following system:

Adiag(f0)B = ̂1RM − 1RM (16)

where B is a matrix of principal components of A and A is a sensitivity measure formed by

Ai,j =

n∑
j

∆ ̂1RMi

∆fi
(17)

where ̂1RMi is the maximum permissible mass that the model can move and fi is the nominal strength of the
ith muscle over the jth exercise. This system was solved for each of the 28 participants and their normalized
root mean square error (NRMSE) was evaluated to assess the accuracy (table 4). The table shows that the
system is effective in lowering the NRMSE for all participants. More interesting is the fact that particpant 04,
07, 12, 15, 17, 25, and 27 shows a lower NRMSE for the SLESS , when compared to the OPTSS . This could
indicate that the optimization algorithm might have been stuck in the process of determining the strength, or
that the termination criteria, based on how much the objective function changes from iteration to iteration,
have been set to high. This entails that further research investigating how the optimization problem behave,
and if other types of optimization algorithms are needed, to converge to a global minimum.

The time needed to solve the equation system in order to obtain the desired strength factors in the AMS
models, by far outperform the optimization routine. For one participant (p02), the optimization routine con-
verged after ∼2 hours, whereas the equation system was solved in a matter of seconds, resulting in almost the
same accuracy (table 4). This is intriguing as it provides hope that further research can improve the equation
system, in order to have a fast and reliable method of performing strength-scaling. Researches and other users
of musculoskeletal models could either apply the equation system, to obtain a better than standard result,
or implement the more time consuming optimization routine, to gain further accuracy based on the accuracy
needs.
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Table 4: Results of scaling the AnyBody Modeling System models’
strength, based on a linear system of equations. The normalized root
mean square error (NRMSE) of the standard scaled (LMFSS), the
optimization based (OPTSS), and the system of linear equations
(SLESS) conditions are shown for each participant across all exercises.

Participant
NRMSE
LMFSS

NRMSE
OPTSS

NRMSE
SLESS

p01 56.44 17.87 35.10

p02 62.38 42.82 43.76

p03 73.83 36.31 58.96

p04 43.68 47.24 28.14

p05 40.99 21.91 28.16

p06 48.09 24.35 37.97

p07 51.07 47.31 36.86

p08 79.75 34.25 47.64

p09 59.85 31.39 41.36

p10 51.80 10.58 35.64

p11 49.15 28.05 34.47

p12 44.99 33.62 33.52

p13 67.68 40.82 51.63

p14 60.94 42.45 45.17

p15 59.18 49.63 41.36

p16 53.78 23.12 41.40

p17 47.98 38.21 32.22

p18 46.78 5.35 32.60

p19 39.72 8.87 27.32

p20 52.99 24.02 40.87

p21 47.61 22.52 30.62

p22 46.49 11.41 32.11

p23 45.13 12.43 27.35

p24 39.32 16.57 28.12

p25 52.63 45.04 36.59

p26 44.07 16.87 28.33

p27 52.92 52.27 33.36

p28 41.04 16.24 28.51

Mean 52.15 28.63 36.40

SD 10.03 13.93 7.93
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5.5.1. More iterations

An iterative process of updating the equation system was investigated. A fully updated system would require
the A matrix to be recalculated after each iteration, as the new strength factors would alter the sensitivity
of the muscles. Calculating the A matrix is the costliest term in equation 16, and an assumption was made
to only update the non-expensive term, ̂1RM . The resulting κ values was used to solve for a set of strength
factors, to implement in the AMS models. This resulted in an updated ̂1RM , which could be implemented in
the equation system, to create new κ values. This process was repeated for five iterations, for two participants
data, in order to see if the accuracy in terms of NRMSE values between the SLESS and the field obtained
1RM could be lowered (table 5). As seen in table 5, using multiple iterations of the equation system, only

updating the ̂1RM term, does not improve the NRMSE after the first iteration. Instead the NRMSE toggle
up and down further from the results obtained in the first iteration.

Table 5: Normalized root mean square error (NRMSE) across all exercises for each system of linear equation
strength-scaling (SLESS) iteration, for participant p01 and p02, respectively.

Iteration 1 2 3 4 5
Participant

p01 35.1 42.3 40.6 41.1 41.0

p02 43.8 50.8 48.4 49.3 48.9

6. Protocol specific details
The first part of this worksheet will describe the gearing assessment of the strength exercise machines. The
second part documents details, assumptions and limitations related to the field test during part 1.

For many regular strength exercise machines, there is some sort of gearing. The gearing controls the exchange
ratio between the applied mass from the weight stack, and the actual force required to move the mass throughout
a prescribed ROM. The present study estimated the gearing of the strength exercise machines used during the
field test. These included a prone leg curl, a leg extension, a horizontal row, and a lateral pulldown machine,
and a cable tower. Further, the smith rack used was measured in order to apply the accurate mass of the
embedded barbell to the calf raise exercise. To estimate any possible exchange ratio, a handheld analogue ring
dynamometer (Tiedemann Instruments GmbH & Co. KG, Garmisch-Partenkirchen, Germany) was used to
measure the force required to move the machine handle. To ensure that any irregularity was caught, the section
of the weight stack measured corresponded to the range used during the field test. Further, all machines were
tested within the full ROM of the given exercise for each machine, ensuring that peak forces needed during
the exercise was measured. A table relating measured µm to kg was given by the dynamometer manufacturer,
which was used to calculate the following linear regression equation:

m = 1.8337d (18)

where m is the mass [kg] of the weight stack and d is the measured µm from the dynamometer. The actual
mass moved after accounting for the gearing, was found by multiplying the µm by 1.8337. This resulted in a
series of data showing the exchange ratio between the mass of the weight stack and the actual mass moved.
The discrepancies between these two is an important factor, because the AMS models do not have any gearing
implemented and/or accounted for. A mean peak displacement of three peak force measurements per weight
stack increment was used to plot this relationship. Figure 19 shows that the relationship is linear for all
five machines (R2 > 0.95). Therefore, the participants’ recorded moved mass was multiplied by a coefficient
corresponding to the regression coeficient found for each strength exercise machine.
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Figure 19: The relationship between weight stack mass and estimated mass, based on dynamometer displacement, for
each of the used exercise machines. the coefficient of determination is denoted as R2.

6.1. Fitness equipment

One goal of the field test was to use simple equipment and exercises when possible, including a standard
measuring tape to measure stature and body dimensions, and a platform scale (EOE 150K50L, Kern & Sohn
GmbH, Balingen, Germany) to measure body mass. General equipment found in an average fitness center were
used, and included; barbells (5 kg, 15 kg, 20 kg), weight plates (1.25 kg, 2.5 kg, 5 kg, 10 kg, 15 kg, 20 kg, 25
kg), dumbbells (1 kg - 55 kg), cable tower, sitting leg extension machine, prone leg curl machine, cable lateral
pulldown machine, and a seated horizontal row machine.

Although effort was put in to implement simple equipment, limitations occurred during testing. For the
side bends exercise, a grip strap was needed to ensure that the participants were not limited by their grip
strength, since this failure criteria could be seen in the pilot test. Furthermore, several of the moderate
experienced participants (i.e. one participant with two years of experience and five participants with five years
of experience) were able to lift the heaviest dumbbell (55 kg) more than seven times. An alternative setup
could have been implemented utilizing the smith rack, however, it was found an infeasible setup, since it did
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not follow the same exercise technique. This limitation negatively affected the participants 1RM estimation
for the given exercise.

For the crunches exercise, several participants experienced discomfort from holding the applied mass on
their chest. This resulted in some participants terminating the exercise before a true strength assessment could
be made. The crunches exercise is believed to be a poor choice when the goal involves loading the exercise
close to maximum effort.

For the glute bridge exercise, one participant experienced discomfort from stabilizing the barbell on the
hip bone, despite the use of padding material. This was believed to be the main reason for not increasing the
load further. Using another exercise targeting the gluteus muscles, or the use of sufficient padding to limit
discomfort could prove a better choice in the future.

6.2. Learning effect during strength training

To investigate the implication of familiarization of the exercises in the present study, one participant (p03),
with no prior experience in strength exercises, performed the field test once a week for four weeks. This was
evaluated in order to estimate if simply performing the test once a week would alter the results significantly.
Figure 20 shows the indexed changes in 1RM over the four weeks, with the first week being the baseline. The
results shows large fluctuations between the four test sessions for most exercises, indicating that some nerual
adaptions occured. Previous studies have shown a rapid increase in muscle strength for novice subjects in the
first few sessions of strength exercise [25, 26], due to neural adaptations more than hypertrophy. This could
imply that caution should be taken when including novice participants into strength exercise studies without
a familiarization period before the actual test sessions. This is especially true with the aim of comparing the
optimization results with the dynamometer results. Novice participants could have had a positive effect from
participating in the field test prior to the dynamometer test, because of the familiarization acquired through
the strength exercises.
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Figure 20: Baseline indexed change in one-repetition-maximum (1RM) compared to the first test session (baseline) for
one participant (p03), for each exercise, respectively.
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