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Abstract

This report documents synthesis of control law using Lyapunov functions for a
range of nonlinear systems. Finding Lyapunov functions for a nonlinear system
is a non-trivial task and to overcome this challenge, we have considered the Lya-
punov function to be a Sum of Squares (SOS) polynomial. Using this approach, the
problem of finding a suitable Lyapunov function is posed as an Semidefinite Pro-
gram (SDP) which can be solved using a suitable solver. In this project, we have
used results from Algebraic Geometry specifically Putinar’s Positivstellensatz so
as to restrict the search of Lyapunov function to a semialgebraic set.

A major drawback in using this approach is scalability to bigger problems.
As the number of states increase, the size of the SDP increases and the computa-
tional time is polynomial in number of states n i.e. O(nd) [Las06] (with d being
the maximum degree of Lyapunov function). Thus, practical implementation of
this approach becomes difficult and we have used a sparse version of Putinar’s
Positivstellensatz so as to overcome the aforementioned challenge in practical im-
plementation. We begin by finding Lyapunov function for Van der Pol’s model
of a nonlinear oscillator. Thereafter, we have considered complex systems such
as a wind turbine and Ørsted Satellite and found Lyapunov function using this
approach. Finally, based on the obtained Lyapunov function we have attempted,
methods for Nonlinear control design such as Sontag’s formula and Lyapunov
Redesign.

Keywords Nonlinear systems, Lyapunov function, Sum of Squares, Semidefinite
Programming, Semialgebraic sets, Putinar’s Positivstellensatz, Sparse Putinar’s Positivstel-
lensatz, computational complexity
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Chapter 1

Introduction

The study of nonlinear systems is a fundamental study in control theory as vir-
tually all physical systems are nonlinear in nature [Vid02]. The well-known, Lya-
punov stability theorems form the basis for verifying stability of such systems.
Specifically, the Lyapunov stability theorem is used to prove stability of an equi-
librium point of the system under consideration. We find a candidate Lyapunov
function V(x) which should be positive i.e. V(x) > 0 (but zero at the equilibrium
point i.e. V(0) = 0), while having a negative Lie derivative along the system trajec-
tories i.e. V̇(x) < 0 (see Theorem 3).

However, the Lyapunov stability theorem only gives the conditions which a can-
didate Lyapunov function must satisfy and does not provide any formal method
for finding them. Intuitively, for a physical system, the candidate Lyapunov func-
tion can be considered as the total energy of the system as the energy of a system is
always positive and if the energy of the considered system, is decreasing over time,
then we can say that such a system is stable. However, finding the total energy of a
complex real world system may not be straightforward. Further, if we are not able
to find a suitable candidate Lyapunov function by trial and error, it may not mean
that the considered equilibrium point for the system is unstable and the stability
analysis is thus inconclusive.

1.1 Literature review

In recent years, many control theorists have proposed Sum of Squares (SoS) func-
tions as a possible candidate Lyapunov function [PP05], [Par00], [Löf04], [AM19],
[Slo16], [JW03], [Tan06] and [SPW12]. This is particularly, due to the fact that
checking global non-negativity of an arbitrary function is an NP-hard problem
[MK87] and one way to avoid this is to find an SoS function (instead of an arbi-
trary non-negative function) which is guaranteed to be non-negative. Furthermore,
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2 Chapter 1. Introduction

the problem of finding an SoS function can be posed as an Semidefinite program
(SDP) [Par00] which can then be solved using a solver like MOSEK [MOS16] or
SeDuMi [Stu99]. Thus, we can relax the strict condition of non-negativity with an
SoS condition which is referred to as an ’SoS relaxation’ in the literature [Las10],
[Wak+06] and [Las06]. Suitable MATLAB based toolbox have been developed for
converting SoS problems into a standard SDP for the solvers such as SOSTOOLS
[PP05] and YALMIP [Löf04], [Löf09]. In this project, we have exclusively used
YALMIP for SOS programming.

It is important to note, that a multi-dimension function can be non-negative
without being SoS. Further, as the number of variables grows, then the gap be-
tween non-negative and SoS polynomials increases and is unbounded [Las10]. As
practical real-world systems are multidimensional in nature and may not be sta-
ble globally, we need a specific representation for finding SoS candidate Lyapunov
functions which are positive within a local region. These representations are thus,
valid only in a local region and are referred to as Positivstellensatz (which means
"positive-locus-theorem") in the literature. In [Par00], [JW03] and [Tan06], Stengle’s
Positivstellensatz has been used to find numerical certificates of non-negativity
which can be considered as candidate Lyapunov functions. However, Stengle’s
Positivstellensatz is computationally demanding nature and using it for a real-
world problem is not practical. To circumvent this issue, Linear Programming
and Second order Cone Programming based relaxations have been proposed in
[AM19]. Further, Putinar’s Positivstellensatz (and its sparse variant) has been used
for computation of Lyapunov functions in [Slo16].

1.2 Motivation

In this project, we have focused on the algorithms and methods instead of a par-
ticular system. The methods have then been tried on the dynamical models which
have been obtained from various sources and the focus is on algorithms for finding
candidate Lyapunov functions instead of the system itself.

The motivation behind this project is to find Lyapunov functions and develop
control law for nonlinear systems in an algorithmic way. Unlike nonlinear systems,
for linear systems, synthesis of a control law is comparatively straightforward and
can be done by using the well known Lyapunov Inequality.

Consider the LTI system ẋ = Ax. The system is stable if and only if ∃ P > 0
such that

PA + ATP < 0 (1.1)

with xTPx being the candidate Lyapunov function.
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A feedback u = Kx stabalizes the LTI system ẋ = Ax + Bu if and only if ∃ P > 0
such that

P(A + BK) + (A + BK)TP < 0 (1.2)

We can write (1.2) as
(A + BK)Q + Q(A + BK)T < 0 (1.3)

with Q = P−1, and define Y = KQ such that

AQ + QAT + BY + YTBT < 0 (1.4)

Thus we conclude, a feedback control u = Kx stabalizes the LTI system ẋ =
Ax + Bu if and only if the LMI’s

Q > 0 and AQ + QAT + BY + YTBT < 0 (1.5)

with Y = KQ are feasible.

Is it possible to find a Lyapunov function and do synthesis of a control law for
a class of nonlinear systems? We attempt to do that by considering the candidate
Lyapunov function as SoS polynomial. Further, we wish to address the issue of
scalability (due to increasing computational complexity) of this approach to real
world problems.

Based on the above discussions, we can broadly summarize the aims of the
project as follows:

• Find candidate Lyapunov functions using SoS and Putinar’s Positivstellen-
satz

• Explore scalability of this approach to real world problems and exploit spar-
sity in the considered system structure for reducing computational demand

1.3 Contribution

The following contributions were made in this work.

• In Chapter 4, we have suggested ideas for the construction of Index sets
I and J while exploiting system sparsity for finding a candidate Lyapunov
function. The proposed, algorithm (Algorithm 1) is useful for dynamical
systems which are composed of cascaded subsystems.

• We have also proposed a generalized version of Algorithm 1 (Algorithm 2),
which is based on ideas from [Wak+06] and an algorithm for construction of
Index set J, once we have obtained Index sets I (Algorithm 3).
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• A candidate Lyapunov function has been found for the Wind Turbine model
(based on CART3 wind turbine model from [SPW12]) while a shutdown has
been initiated.

1.4 Report Outline

The rest of the report is organized as follows:

• Chapter 2 introduces the reader to the concepts of Sum of Squares (SoS) poly-
nomials, Semidefinite Programming (SDP) and Lyapunov’s stability theorem.

• Chapter 3 introduces the reader to the concepts of Semialgebraic sets and
Putinar’s Positivstellensatz. Putinar’s Positivstellensatz is a representation
theorem, used for representing a SoS polynomial on a given semialgebraic
set. This chapter also demonstrates the application of previously introduced
concepts while finding a candidate Lyapunov function for Van der Pol’s
model of an nonlinear oscillator.

• Chapter 4 is arguably the most important chapter of this thesis where, we
have focused on exploiting sparsity in the system dynamics while finding
the candidate Lyapunov functions. We have discussed Newton Polytopes
and Sparse version of Putinar’s Positivstellensatz and how to apply them.

• Chapter 5 focuses on the application of the concepts discussed in Chapter 4
for finding candidate Lyapunov functions for complex systems such as Wind
turbine, Ørsted satellite and Adaptive control.

• Chapter 6 focuses on the computational considerations and verification of
obtained candidate Lyapunov functions.

• Chapter 7 focuses on the synthesis of control law based on the obtained can-
didate Lyapunov functions. We have explored nonlinear design techniques
such as Lyapunov Redesign and Sontag’s formula. We have also presented
some intermediate results on the same and this chapter serves as the motiva-
tion for future work

• Chapter 8 serves as the conclusion of this report.

• Appendix A shows the maximum constraint violations obtained after solving
SDP 2 while finding the candidate Lyapunov function for the wind turbine
model.



Chapter 2

Preliminaries

Summary This chapter provides a background to the reader for concepts such as Sum
of Squares (SoS) polynomials, Semidefinite Programming (SDP) and Lyapunov Stability
which will be used heavily in the later chapters of this thesis. We begin by reviewing
monomials and SoS polynomials. SoS polynomials allow us to relax the strict condition of
non-negativity of a polynomial to the existence of an SoS decomposition which is a tractable
problem compared to proving the non-negativity of a polynomial [Las10]. The problem of
finding a SoS decomposition of a polynomial is converted into a SDP which can be solved
by solvers like MOSEK or SeDuMi. Thereafter, we review SDP and state its general form
as well as the concept of duality. Finally, we review the well known concepts of Lyapunov
stability and Region of Attraction. This chapter is based on [Kha02], [Ber99], [BV04],
[Las15], [Las10] and [Par00].

2.1 Polynomial background and SoS polynomials

Consider the state variables X ∈ Rn. A vector of monomials vd(x) is a set of all
possible monomials xα = (1, x1, x2, .., xn, x2

1, x1x2, ...xd
n) where α and d are positive

real numbers. vd(x) can be formed upto a degree d (α 6 d) which is user-defined.
The dimension of this vector is s(d) := (n+d

d )

Let R[x] be a set of polynomials in the variables X. A polynomial p ∈ R[x] is
said to be Sum of Squares (SoS) if it can be written as

p(x) = Σj pj(x)2 (2.1)

Proposition 1 : A polynomial p has a sum of squares decomposition if and
only if there exists a real symmetric and positive semi-definite matrix Q ∈ Rs(d)×s(d)

(also referred to as Gram Matrix) such that

p(x) = vd(x)TQvd(x) ∀x ∈ Rn (2.2)

5
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A proof for the above proposition can be found in [Las10]. In the case of
univariate polynomials i.e. polynomials having only a single variable x, any poly-
nomial of even degree is nonnegative if and only if its SoS decomposition exists
whereas, this is not true for multivariate polynomials [BPT12].

2.2 Problem of finding SoS decomposition as a Primal form
of SDP

Given a SoS polynomial p ∈ R[x]2d, the coefficients of the matrix Q must satisfy the
eq. (2.2). These conditions give affine constraints on Q. The vector of monomials
vd defined above forms the basis of SoS polynomial and we can write

vd(x)vd(x)T = ∑
α∈Nn

Bαxα (2.3)

for some Bα ∈ Rs(d)×s(d)

Equation (2.2) can be rewritten as

∑
α

pαxα = trace(vdvT
d Q) (2.4)

by using the cyclic property of the trace operator. pα is the coefficient associated
with xα and recall that trace(A, B) = ∑i,j AijBij. Substituting, (2.3) in (2.4) we get,

∑
α

pαxα = ∑
α

trace(BαQ)xα (2.5)

Equating the coefficients of RHS and LHS of (2.5) and recalling that the trace op-
erator is commutative, we get,

trace(Q, Bα) = pα (2.6)

We can now state the problem of finding an SoS decomposition for a poly-
nomial p(x) as a Primal form of SDP (explained in the next section) as stated in
[Las10] and [Par00].

Theorem 1 The problem of finding an SoS decomposition can be posed as the feasibility
of SDP

Find Q ∈ Rs(d)×s(d) (2.7a)

such that Q = QT , (2.7b)

Q < 0, (2.7c)

trace(Q, Bα) = pα, ∀α ∈Nn (2.7d)
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2.3 Semidefinite Programming

In the previous section, we have concluded that, the problem of finding SoS de-
composition for a polynomial can be posed as an SDP. In this section, we give a
background on mathematical optimization and SDP.

2.3.1 General mathematical optimization problem and LP

A mathematical optimization problem can be stated as follows.

minimize f0(x) (2.8a)

subject to fi(x) ≤ bi, i = 1, · · · , m (2.8b)

where, the vector x ∈ Rn is the optimization variable of the problem, the function
f0 : Rn → R is the objective function, the functions fi : Rn → R, i = 1, · · · , m are
the constraints and the constants b1,···,m are the bounds.

A vector x∗ is called optimal, or a solution of the problem (2.8), if it has the
smallest objective value among all vectors that satisfy the constraints i.e. for any z
with f1(z) ≤ b1, · · · , fm(z) ≤ bm, we have f0(z) ≥ f0(x∗).

Mathematical optimization problems are classified on the basis of the objective
function and the constraints. Suppose, if the optimization problem (2.8) has a linear
objective function f0 and linear constraints fi, then such an optimization problem
is called Linear Programming (LP).

2.3.2 General form of SDP

A SDP is a generalization of an LP over convex cones of positive semidefinite ma-
trices.

Let Sk
+ denote cone of positive semidefinite k× k matrices. A general SDP can

be stated as follows:

minimize cTx (2.9a)

subject to x1F1 + · · · + xnFn + G 4 0, (2.9b)

Ax = b (2.9c)

where, G, F1, · · · , Fn ∈ Sk
+, A ∈ Rp×n, b ∈ Rp, c ∈ Rn and x ∈ Rn.
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Figure 2.1: Feasible region of an SDP is the intersection between the Positive Semidefinite Cone S2
+

due to 2.9b and the blue line due to 2.9c.

The inequality constraints are expressed as an Linear Matrix Inequality (LMI)
and it provides two advantages. Firstly, multiple inequality constraints can be
clubbed together as a single LMI. Secondly, nonlinear (convex) inequalities can be
converted to an LMI using Schur complement [Boy+94], [BV04]. If the matrices
G, F1, · · · , Fn are diagonal matrices, than the LMI reduces to a set of inequalities
and correspondingly the SDP reduces to an LP.

The problem of finding SoS decomposition is stated as a primal form of SDP
(2.7) and it is only a feasibility problem which implies that the set composed of
semidefinite cone and equality constraints should be non-empty or feasible (see fig.
(2.1)). Thus, the objective function in this case is void as we are only checking the
feasibility of the SDP. The constraint (2.7c) is an inequality constraint represented
by an LMI of size s(d)× s(d) and the other two constraints (2.7b) and (2.7d) are
equality constraints.

2.3.3 Duality

We now discuss the concept of duality for an SDP. Solving a dual problem for
an optimization problem gives the best lower bound on the primal objective func-
tion. The dual problem for (2.9) is formed by using the Lagrangian dual function
L(x, λ, ν) : Rn × Sk ×Rp 7→ R which is defined as follows:
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Figure 2.2: Geometric interpretation of duality from [BV04]. Strong duality does not hold in this
case as duality gap is positive.

L(x, λ, ν) = cTx + trace(λ, x1F1 + · · · + xnFn − G) +
p

∑
i=1

νi(Ax− b) (2.10)

where, λ is a matrix ∈ Sk of Lagrange multipliers associated with the LMI con-
straint (2.9b) and ν ∈ Rp are Lagrange multipliers associated with the p equality
constraints (2.9c). λ and ν are also refered to as the dual variables.

The lower bound (parametrized by λ and ν) of the primal SDP is found by
taking the infimum of the Lagrangian (2.10).

g(λ, ν) = inf
x

L(x, λ, ν) (2.11)

g(λ, ν) =

{
−trace(G, λ)− bTν, if trace(Fi, λ) + ci + ATν, i = 1, · · · , n

−∞, otherwise
(2.12)

Solving (2.12) gives us the optimal value d∗ which is the lower bound for op-
timal value p∗ of primal objective function obtained by solving (2.9). If the LMI
constraint (2.9b) is strictly feasible i.e. x1F1 + · · · + xnFn + G ≺ 0, than the SDP has
a strong duality, which implies p∗ = d∗. A geometric interpretation of duality is
given in fig. (2.2). Further information on duality such as Slater’s conditions can
be found in [Ber99] and [BV04].
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2.4 Lyapunov Stability

We now give a brief introduction to the well known Lyapunov stability theorem.
Primarily, we shall be using Lyapunov stability theorems for proving stability of
equilibrium points for a dynamical system. There are other kinds of stability the-
orems as well such as input-output stability and stability of periodic orbits. This
section is based on [Kha02] and [SL+91].

2.4.1 Equilibrium point

Consider the following autonomous system:

ẋ = f (x) (2.13)

where, f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn

and f (0) = 0 is the equilibrium point for (2.13).

Theorem 2 The equilibrium point x = 0 of (2.13) is

• stable, if for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖< δ⇒ ‖x(0)‖< ε, ∀t ≥ 0 (2.14)

• unstable, if it is not stable

• asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖< δ⇒ lim
t→∞

x(t) = 0 (2.15)

If the equilibrium point is not at the origin, then it can be shifted to the origin
via a change of variables (without any loss of generality).

2.4.2 Lyapunov Stability theorem

We now state, the well-known Lyapunov’s stability theorem for proving stability of
equilibrium point for the system (2.13). By using, Lyapunov’s stability theorem, we
can prove stability of the equilibrium point (origin) of the system, without solving
the differential equation (2.13) for all possible trajectories [Kha02].
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Theorem 3 Let x = 0 be an equilibrium point for (2.13) and D ⊂ Rn be a domain
containing x = 0. Let V : D → R be a continuously differentiable function such that:

V(0) = 0 (2.16a)

V(x) > 0 ∀x 6= 0 (2.16b)

V̇(x) < 0 (2.16c)

then x = 0 is asymptotically stable.

If we relax the strict inequality V̇(x) < 0 to V̇(x) ≤ 0, then the equilibrium
point is stable but we cannot conclude whether it is asymptotically stable or not.
LaSalle’s Invariance Principle [Kha02] can be used in such a case.

2.4.3 Region of Attraction (ROA)

In this subsection, we define Region of Attraction (ROA) as given in [Kha02]. Let
the origin x = 0 be an asymptotically stable equilibrium point for the system (2.13).
Let φ(t; x) be the solution of (2.13) that starts at initial state x at time t = 0. ROA of
the origin can be defined as follows:

ROA = {x ∈ D | φ(t; x) is defined ∀t ≥ 0 and φ(t; x)→ 0 as t→ ∞} (2.17)

Estimation of ROA is of great practical significance. It can be used in estimating
critical fault clearing time for a nonlinear system such that if the fault is cleared
within this time interval, the system does not become unstable [Kha02]. The fol-
lowing Lemma from [Kha02] gives some properties of ROA.

Lemma If x = 0 is an asymptotically stable equilibrium point for the system
(2.13), then its ROA is an open, connected, invariant set. Moreover, the boundary
of ROA is formmed by trajectories.

This Lemma suggests that ROA can be determined by characterizing the tra-
jectories lying on its boundary. It is important to note that the ROA is not always
equivalent to domain D of the Lyapunov function. An example demonstrating this
can be found in [Kha02].





Chapter 3

Putinar’s Positivstellensatz

Summary In this chapter, we discuss two key concepts from algebraic geometry which
we have used extensively in this work. We begin by defining a semialgebraic set as per
[Las10], which is a subset of Rn. This set can be considered as the domain D of a Candidate
Lyapunov function. Thereafter, we have stated Putinar’s Positivstellensatz which is used
to certify a polynomials positivity on a given semialgebraic set. Finally, we demonstrate
the application of the previously stated concepts of SoS, semialgebraic sets and Putinar’s
Positivstellensatz for proving stability of Van der Pol’s equation which are stated as a 2nd

order autonomous state space model. This chapter is based on [Kha02], [Lau09], [Las06]
and [Las10], [Tan06].

3.1 Semialgebraic sets

A semialgebraic set is a compact subset of Rn and can be defined as follows:

Let (gj)m
j=1 ∈ R[x] be such that the basic semialgebraic set

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, · · · , m} (3.1)

Using Putinar’s Positivstellensatz, we can obtain polynomial certificates of pos-
itivity on the compact semialgebraic set K defined above (3.1).

We now define Quadratic modules Q(g) associated with the polynomials gj ⊂
R[x] (that define K).

Q(g) = Q(g1, · · · , gm) :=
{

q0 +
m

∑
j=1

qjgj : (qj)m
j=0 ⊂ Σ[x]

}
(3.2)

A quadratic module Q(g) is called Archimedean if M−∑n
i=1 x2

i ∈ Q(g) for some
M ∈N

13



14 Chapter 3. Putinar’s Positivstellensatz

3.2 Putinar’s Positivstellensatz

Earlier in Chapter 1 and 2, we had discussed that for a non-negative polynomial
p ∈ R[x] does not necessarily needs to have an SoS representation in the multivari-
ate case. Further, we are interested in constrained polynomial optimization as the
considered system may not be globally stable. Therefore, we need representation
theorems for constrained polynomial optimization of multivariate polynomials.
Putinar’s Positivstellensatz is one such representation theorem which focuses on
the positivity of a polynomial on a compact basic semialgebraic set [Put93]. Besides
Putinar’s Positivstellensatz, there are other representation theorems such as Sten-
gle’s Positivstellensatz which characterizes when a semialgebraic set described by
polynomial inequalities, equalities and non-equalities is empty (see Theorem 2.11
in [Las10] and [Las15]), Pólya provided a certificate of positivity for homogeneous
polynomials that are positive on a simplex and Schmüdgen’s Positivstellensatz
which does not require Assumption 2.1 but is computationally more demanding
as the number of terms is exponentional in number of polynomials that define K
[Las10]. We have therefore, focused on Putinar’s Positivstellensatz in this thesis
due to its simplicity and less computational demand as compared to Stengle’s,
Pólya’s and Schmüdgen’s Positivstellensatz.

Putinar’s Positivstellensatz can be stated as follows:

Assumption 2.1 Let K be a semialgebraic set as defined in (3.1) and let there
exist u ∈ Q(g) such that the level set {x ∈ Rn : u(x) ≥ 0} is compact.

Theorem 4 If F ∈ R[x] is strictly positive on K than F ∈ Q(g) that is,

F = F0 +
m

∑
j=1

Fjgj (3.3)

for some SoS polynomials Fj ∈ Σ[x] , j = 0, 1, · · · , m.

Compared to Stengle’s Positivstellensatz or Schmüdgen’s Positivstellensatz,
Putinar’s Positivstellensatz is computationally less expensive as the number of
terms in (3.3) is linear in the number of terms that define K [Las10]. Computa-
tional complexity is further discussed later in chapter 6.

The Assumption 2.1 required for application of Putinar’s Positivstellensatz is
not very restrictive [Las10] and is always satisfied in the following cases:

• All the gi’s are affine and K is a polytope

• The set {x ∈ Rn : gj(x) ≥ 0} is compact for some j ∈ 1, · · · , m
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Further this assumption implies that the Quadratic module Q(g) generated by
the semialgebraic set K is Archimedean.

3.3 Finding Lyapunov functions using Putinar’s Positivstel-
lensatz

Consider the autonomous system given in (2.13) which has an equilibrium point at
the origin. The problem of finding an Lyapunov function for such a system using
SoS and Putinar’s Positivstellensatz can be stated as follows.

We begin by defining an semialgebraic set which includes the equilibrium
point. Any trajectory starting within this set will asymptotically converge to the
equilibrium point (Locally Asymptotically Stable). Thus, a semialgebraic set can
be considered as an ROA for the equilibrium point. Using Putinar’s Positivstel-
lensatz, we can find a suitable candidate Lyapunov function which is required to
be positive only within the predefined semialgebraic set. In a similar way, we
constrain the candidate Lyapunov function’s Lie derivative such that it is negative
over the predefined semialgebraic set. Thus, the following SDP is posed for finding
Lyapunov function.

Semidefinite Program 1

Find V(x) (3.4a)

such that V(0) = 0, (3.4b)

V(x)−
m

∑
j=1

Fjgj − Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m, (3.4c)

− ∂V(x)
∂x

f (x)−
m

∑
j=1

Fjgj − Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m (3.4d)

Since SDP solvers can violate the constraints slightly, while solving the opti-
mization problem ([Löf09] and [Löf11]), we use Γ (which is a small constant of
order 10−3) to make V(x) and − ∂V(x)

∂x f (x) greater than ‖x‖2 which ensures that
they are greater than 0.

3.4 Van Der Pol equations

The Van Der Pol equations are a specific case of Lienard’s equations which were
used to model oscillating circuits during the development of vacuum tube circuits
[Kha02]. In this section, we apply the previously defined SDP 1 for proving the
stability of a simple physical system. For an electronic circuit having an inductor



16 Chapter 3. Putinar’s Positivstellensatz

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Phase Potrait of Van Der Pol Equations for  =0.5

Figure 3.1: Van Der Pol Equations Phase portrait revealing limit cycle

L > 0, capacitor C > 0 and a voltege v across the resistive element, the Van Der
Pol equations can be stated as follows:

v̈− µ(1− v2)v̇ + v = 0 (3.5)

where µ =
√

L
C

In the above equation it can be seen that the term µ affects the nonlinearity in
the system. When µ = 0, the Van Der Pol equations are reduced to a linear har-
monic oscillator which has an exact analytical solution.

We begin analyzing the system by writing the model in state space. Let us
choose x1 = v and x2 = v̇ as state variables to obtain

ẋ1 = x2

ẋ2 = −x1 + µ(1− x2
1)x2

(3.6)

The phase portrait of eq. (3.6) reveals that the system has a stable limit cycle fig.
(3.1) which implies that all trajectories starting near the limit cycle asymptotically
tends towards the limit cycle [Kha02].

Proving stability of a limit cycle is harder than proving the stability of an equi-
librium point and is beyond the scope of this project. We therefore consider the
Van Der Pol equations in reverse time which has an unstable limit cycle (i.e. all
trajectories starting near the limit cycle asymptotically tends away from the limit



3.4. Van Der Pol equations 17

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Phase Potrait of Van Der Pol Equations for  =0.5

Figure 3.2: Phase portrait for Van Der Pol Equations in reverse time

cycle ) but an stable equilibrium point at the origin and a ROA around it. Any
trajectory starting within the ROA will asymptotically converge towards the origin
while any trajectory starting outside the ROA will go away from the origin. The
state space model of Van Der Pol equations in reverse time can be stated as follows:

ẋ1 = −x2

ẋ1 = x1 − µ(1− x2
1)x2

(3.7)

The phase portrait corresponding to eq. (3.7) can be seen in the corresponding
fig. (3.2).

The SoS problems are posed as an SDP (Semidefinite Program 1) by using the
YALMIP environment in MATLAB [Löf09]. For the Van Der Pol equations consid-
ered in this section, the following Lyapunov function candidate was obtained (see
fig. (3.3))

6.62440344927 ∗ x2
1 + 0.0260363377173 ∗ x2

1 ∗ x2

−2.40737613573 ∗ x1 ∗ x2 + 2.28459682059 ∗ x2
2

−0.0517333345533 ∗ x3
1 − 1.23565122248 ∗ x4

1

−0.822713464636 ∗ x2
1 ∗ x2

2 − 0.00690539002097 ∗ x1 ∗ x3
2

−0.0894895760021 ∗ x4
2

(3.8)
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Figure 3.3: Candidate Lyapunov function V. x1 and x2 are system states. The red box is the semial-
gebraic set.

with the following Lie derivative (see fig. (3.4))

−2.40737613573 ∗ x2
1 + 0.0250183150736 ∗ x2

1 ∗ x2

+3.35726742126 ∗ x1 ∗ x2 − 20.4385920702 ∗ x2
2

+0.0260363377173 ∗ x3
1 − 0.0520726754346 ∗ x1 ∗ x2

2

−8.73970271797 ∗ x3
1 ∗ x2 + 31.0523866822 ∗ x2

1 ∗ x2
2

+1.39104947558 ∗ x1 ∗ x3
2 + 1.79669691006 ∗ x4

2

+0.130181688586 ∗ x4
1 ∗ x2 − 8.22713464636 ∗ x4

1 ∗ x2
2

−0.103580850314 ∗ x3
1 ∗ x3

2 − 1.78979152004 ∗ x2
1 ∗ x4

2

(3.9)

Figure 3.4: Lie derivative dV of the candidate Lyapunov function. x1 and x2 are system states. The
red box is the semialgebraic set.

It is important to noted that SDP 1 finds a candidate Lyapunov function which
only needs to satisfy (3.4b), (3.4c) and (3.4d) within the semialgebraic set. There
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is no guarantee that the constraints will also be satisfied outside the semialgebraic
set. It can be seen in fig. 3.4) that the constraint (3.4d) is not satisfied outside the
semialgebraic set. For clarity, we have added a scaled version of fig. (3.4) which
shows only the region of the Lie derivative within the semialgebraic set (see fig.
(3.5)).

Figure 3.5: Lie derivative dV of the candidate Lyapunov function. x1 and x2 are system states. The
red box is the semialgebraic set. The figure has been scaled to show only the region within the
semialgebraic set.

The degree of SoS polynomial was chosen to be 4. The semialgebraic set con-
sidered for this was a box in R2 with edges at (0, 1.5), (0,−1.5), (1.5, 0), (−1.5, 0) and
is shown in fig (3.6).

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5
Considered Semialgebraic set

Figure 3.6: The semialgebraic set considered for finding Lyapunov function (3.8)
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Figure 3.7: Estimation of ROA for Van Der Pol equations with µ = 0.5

3.4.1 Estimation of ROA using semialgebraic sets

The basic tool for estimating ROA is Zubov’s theorem which is given in [Kha02].
One drawback in using Zubov’s theorem is that, it requires the solution of a par-
tial differential equation. [Kha02] also suggests that the ROA can be estimated as
the set Ω which is a compact positively invariant subset of D i.e. every trajectory
starting in Ω stays in Ω for all future time. The semialgebraic set K defined in (3.1)
can be considered as such a subset of D. We start with a small K which is close to
the equilibrium point and we keep increasing the boundaries of K till it becomes
equivalent to the ROA. As long as the semialgebraic set considered in the analysis
is a subset of the ROA, all the constraints specified by (2.16), (3.1) and (3.3) are
satisfied and the SDP is feasible. If the edges of the considered semialgebraic set
exceeds the ROA, the SDP becomes infeasible. The ROA can thus, be estimated by
increasing the bounds of the semialgebraic set until the SDP becomes infeasible as
shown in fig. (3.7) and fig. (3.8).
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Figure 3.8: Estimation of ROA for Van Der Pol equations with µ = 5
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The estimate of ROA using this method is conservative when µ is increased
as can be seen in the fig. (3.8) where only a small subset of ROA is correctly
estimated. The estimate can be improved if we consider a circular or an elliptical
semialgebraic set instead of a rectangular set. The ROA estimate is affected by the
numerical accuracy and precision of the solver package and it can be observed in
fig (3.7) that the estimated ROA exceeds the actual ROA by a single step. This can
be improved by reducing the step size at the cost of extra computing time by the
solver.

3.5 Conclusion

We can conclude that by applying Semidefinite program 1, we have an algorithmic
way of finding candidate Lyapunov functions and finding an estimate of the ROA.
This is true for systems having few variables. However, when dealing with systems
involving large number of variables, the Semidefinite Program 1 quickly becomes
too large for obtaining a solution. Fortunately, most of the dynamical systems are
sparse in nature and it is possible to exploit this sparsity while searching for can-
didate Lyapunov function. This is the main study topic for the following chapters
and this project.





Chapter 4

Sparsity in system dynamics

Summary This chapter focuses on exploiting sparsity in the dynamical system while find-
ing a candidate Lyapunov function. As discussed previously, SDP 1 works only for dy-
namical systems having few state variables. We begin by reviewing the concepts of Netwon
Polytope and Sparse Putinar’s Positivstellensatz as given in [Löf09] and [Las10] respec-
tively. The sparsity patterns of the dynamical system are represented via Index sets and we
present a couple of algorithms for constructing Index sets such that they satisfy Assumption
4.1, Assumption 4.2 and the Running Intersection Property 4.12 simultaneously. Algo-
rithm 2 is based on [Wak+06] and uses concepts from graph theory which we have briefly
reviewed for the sake of completeness. Finally, we have applied Sparse Putinar’s Posi-
tivstellensatz for reformulating SDP 1 such that it exploits inherent sparsity in dynamical
systems and is thus, computationally more efficient. This chapter is based on [Las10],
[Löf09], [Slo16], [Ant13], [SPW12] and [Wak+06].

4.1 Motivation

Recall from Theorem 1 in Chapter 2, the elements of the Q matrix impose affine
constraints on the SDP. Let us consider a state space model, having n = 7 states
and if we search for a candidate Lyapunov function having degree d = 2, the size
of matrix Q in (2.7) is s(d) = (7+2

2 ) = 36. Thus the dimensions of Q will be 36× 36 in
this case. This is equivalent to an SDP with 1296 affine constraints. As the number
of constraints increases, the SDP becomes practically unsolvable. Thus, we wish to
exploit sparsity in the dynamical system.

23
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4.2 Sparse and Dense Polynomials

We begin by defining a dense polynomial and a sparse polynomial.

Definition 4.2.1 Consider the state variables X = (x1, x2, .., xn) ∈ Rn and the vector
vd(x) consisting of all possible monomials xα = (1, x1, x2, .., xn, x2

1, x1x2, ...xd
n) which can

be formed upto a degree d (α 6 d).

• If the polynomial is composed of all possible monomials, then the polynomial is con-
sidered to be a dense polynomial.

• If the polynomial does not contain all possible monomials, then the polynomial is
considered to be a sparse polynomial.

4.3 Newton Polytope

The Newton polytope of polynomial is one of the earliest results in exploiting
sparsity while finding SoS decomposition for a polynomial [Lau09]. It has already
been implemented in YALMIP SoS module and its implementation is discussed in
[Löf09]. We begin by finding the support function of a polynomial.

Consider the SoS polynomial p = ∑
α∈Nn

cαxα ∈ R[x], the support function of p is

supp(p) := {α ∈Nn | cα 6= 0} (4.1)

The Newton Polytope is the convex hull of the support function [Lau09], [Slo16]
and can be formally defined as follows:

New(p) = co(supp(p)) (4.2)

Some authors [Löf09] define the Newton Polytope in an equivalent way as fol-
lows: The Newton polytope is the convex hull of exponents of the polynomial in
Rn, where n is the number of variables in the polynomial. We illustrate the New-
ton Polytope by a simple example.

Consider the polynomial p = x2
1 + x2

2 + 2x1 with variables x ∈ R2. The Newton
Polytope for p is shown in fig. (4.1).

Newton polytope is used in order to reduce the considered monomials based
on the sparsity in the considered polynomial considered for SoS decomposition
[Löf09]. In fact, [Wak+06] defines a polynomial p as sparse, if the number of el-
ements in its support supp(p) is much smaller then the number of elements that
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Figure 4.1: Newton Polytope for polynomial p = x2
1 + x2

2 + 2x1

form a support of a fully dense polynomial. We can illustrate this by following
example.

Consider the polynomial p = x4
1 + x4

2 + x1x2 with variables x ∈ R2. The expo-
nents of the polynomial p are

P =
[

4 0 1
0 4 1

]
(4.3)

and the exponents of all possible monomials in R[x1, x2] are

S =
[

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

]
(4.4)
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Figure 4.2: Newton Polytope for polynomial p = x4
1 + x4

2 + x1x2

The corresponding Newton polytope for p is shown in fig. (4.2) in red shaded
area and the blue dots represent the candidate monomials for SoS decomposition.
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The monomials lying outside the polytope are rejected as they are not present in the
original polynomial itself due to its sparse nature. The resulting set of candidate
monomials after applying Newton polytope is

S =
[

1 2 1
1 1 2

]
(4.5)

The monomial x2
1x2

2 is rejected (despite appearing on the boundary of Newton
polytope in fig. (4.2)) because we only consider polynomials having a maximum
degree of 1/2 p.

4.3.1 Implementation of Newton Polytope in YALMIP

The Newton polytope P is implemented in YALMIP by checking if we can find
a separating hyperplane between a candidate monomial si and all the vertices of
1/2P . If we can find a such a separating hyperplane, than the candidate mono-
mial is not in 1/2P and it can be rejected. The problem of finding an separating
hyperplane is an Linear program (LP) [BV04] and it can be stated as follows:

maximize aTsi − b (4.6a)

subject to
1
2

aT pk − b ≤ 0 ∀k = 1, · · · , N (4.6b)

aTsi − b ≥ 0 (4.6c)

where, a and b define the hyperplane (which is a generalization of a line in
higher dimensions), si are the candidate monomials and pk are the exponents of
the polynomial p(x) whose SoS decomposition we are interested in finding. If the
LP (4.6) is infeasible, then no strictly feasible hyperplane exists for that particular
si and therefore, the candidate monomial si cannot be rejected. On the other hand,
if the objective function (4.6a) is unbounded then the candidate monomial si does
not exist inside the Newton Polytope and can thus be rejected [Löf09].

4.4 Sparse Putinar’s Positivstellensatz

We now review a ’sparse’ version of Putinar’s Positivstellensatz as given in [Las10].
This representation is the most computationally efficient and the computational
savings obtained from it are discussed in Chapter 6. Prior to applying Sparse Puti-
nar’s Positivstellensatz, we have assumed that a a sparse dynamical system may
have a Lyapunov function that has the same (or finer) sparsity pattern as the dy-
namical system itself.
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Consider R[x] = R[x1, · · · , xn]. Let K ⊂ R[x] be as defined in (3.1). Let I ⊂ N

denote a finite index set. An Index set Ik ensures that R[x(Ik)] consists only of
variables stated in the index set. Formally, an Index set can be defined as follows:

Ik := {x(Ik) | xi : i ∈ Ik} (4.7)

Let I0 := {1, · · · , n} be the union
p⋃

k=1
Ik of p subsets Ik, k = 1, · · · , p (with pos-

sible overlaps). Let nk := |Ik|. Thus, R[x(Ik)] is a ring of polynomials in the nk
variables x(Ik) and R[x(I0)] = R[x] as per (4.7). The Index sets characterize sparsity
as weak couplings between the variables x in the polynomial. We now present a
simple example to clarify the concept of weak couplings and Index sets.

Consider the following polynomial.

F(x1, x2, x3) = f1(x1, x2) + f2(x2, x3) (4.8)

As can be seen from (4.8), the variables x1 and x3 are not directly coupled or
correlated. However, they are coupled via variable x2. Thus, the variables are
weakly coupled and we can characterize sparsity via Index sets. In this case, we
can make 2 subsets (thus, p = 2), I1 and I2 with I0 = {1, 2, 3}. I1 = {1, 2} with n1 = 2
and I2 = {2, 3} with n2 = 2.

We now state two important assumptions related to the semialgebraic set K
which must be satisfied in order to exploit sparsity while representing a polyno-
mial F as SoS polynomial.

Assumption 4.1 Let K ⊂ Rn be as in (3.1). A scalar M > 0 is know such that
‖x‖∞ < M for all x ∈ K. Under this assumption, we have ∑

i∈Ik

x2
i ≤ nk M2, k =

1, · · · , p and we are adding p redundant polynomial inequalities gk(x) ≥ 0 in the
definition of K (3.1).

gm+k(x) := nk M2 − ∑
i∈Ik

x2
i k = 1, · · · , p (4.9)

and set m′ = m + p so that K is now defined as

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, · · · , m′} (4.10)

Note that gm+k ∈ R[x(Ik)], for all k = 1, · · · , p. These additional polynomial
inequalities are redundant as in order to apply Putinar’s Positivstellensatz, the
quadratic modules Q(g) generated by K are compact which means that they are
Archimedean as stated in theorem 4. We now state the second assumption required
for sparse Putinar’s representation.
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Assumption 4.2 Let K ⊂ Rn be as in (4.10). The index set J = {1, · · · , m′} is
partitioned into p disjoint sets Jk, k = 1, · · · , p. Further, {Ik} and {Jk} satisfy:

• For every j ∈ Jk, gj ∈ R[x(Ik)], that is, for every j ∈ Jk, gj(x) ≥ 0 only involves
the variables x(Ik) = {xi : i ∈ Ik}

• The objective function F ∈ R[x] can be written as

F =
p

∑
k=1

Fk, with Fk ∈ R[x], k = 1, · · · , p (4.11)

We now state sparse version of Putinar’s Positivstellensatz.

Theorem 5 Let K ⊂ Rn be as in (4.10) with the above assumptions and in addition,
assume that for every k = 1, · · · , p− 1,

(Ik+1 ∩ (
k⋃

j=1

Ij)) ⊆ Is for some s ≤ k (4.12)

If F ∈ R[x] is strictly positive on K, then

F =
p

∑
k=1

(
qk + ∑

j∈Jk

qjkgj

)
(4.13)

for some SoS polynomials (qk, qjk) ⊂ R[x(Ik)], k = 1, · · · , p.

Eq. (4.12) is referred as Running Intersection Property. Running Intersection
Property captures the absence of extra coupling variables and ensures sparsity in
SoS representation (4.13). A system can thus be considered to be a sparse system if
the Running Intersection property is satisfied. From Assumption 4.1, Assumption
4.2 and (4.12), it is evident that if we add a new Index set I, we will get a new
redundant polynomial inequality gK(x) and we will also need to construct a new
Index set J which should satisfy Assumption 4.1, 4.2 and (4.12). Note that, the
index set J are disjoint from each other and they have to include all the polynomial
inequalities including the redundant polynomial inequalities.

4.4.1 Construction of Index sets

Theorem 5 only gives the conditions which should be satisfied while constructing
Index sets and it does not give us a clear procedure on how to do so. The focus
of this subsection is to construct an algorithm which exploits sparsity. Further, we
will now consider dynamical systems and we will be exploiting the system dy-
namics to obtain a sparse polynomial as the candidate Lyapunov function.
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Firstly, we divide the dynamical model into relevant subsystems. We then, find
out the states which are correlated with other states and the states which connect
different subsystems together. We begin by illustrating the possible construction(s)
of Index set I using Venn diagrams and small examples. This is for the sake of
better intuition into the problem.

Suppose, we have a dynamical system which is composed of many subsystems
which are correlated with each other via certain states. Consider the Index sets I1

and I2 based on any two subsystems which are correlated via some common states
(represented by the intersection between sets). The first figure shows some of the
possibilities while constructing a third Index set I3 such that the Assumptions 4.1,
4.2 and (4.12) are satisfied.

Figure 4.3: Illustration of Running Intersection Property using Venn Diagram. I1 and I2 are Index
sets with some common elements between them. The grey sets show the possibilities for I3.

The next figure (4.4) shows possible Index sets which can be formed while
intersecting with two preexisting Index sets. From this figure, it is clear that a new
index set should not intersect with more than one preexisting index sets unless, it
intersects with the common space between the preexisting index sets.

Figure 4.4: Illustration of Running Intersection Property using Venn Diagram. I1 and I2 are Index
sets with some common elements between them. The grey sets show the possibilities for I3.
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It is important to note that, if the new Index set does intersect with more than
one preexisting Index set, including elements of the other index set which are not
in the common intersection space, then we need to reject it as it will violate (4.12).
This idea can be illustrated by the following example and the subsequent Venn
diagram fig. 4.5.

Consider state variables X ∈ R4 and let, I1 = {1, 2} and I2 = {2, 3}. Now, if we
want to add I3 then, it cannot be chosen as I3 = {1, 3, 4}, because I3 ∩ (I1 ∪ I2) 6⊆
I1 or I2 and hence (4.12) is not satisfied.

Figure 4.5: Illustration of Running Intersection Property using Venn Diagram. I1 and I2 are Index
sets with some common elements between them. The red set is not a correct construction for I3 as it
violates (4.12).

The next figure (fig. 4.6) shows the correct propagation of Index sets when we
add a new Index set.

Figure 4.6: Illustration of Running Intersection Property using Venn Diagram. I1, I2 and I3 are
Index sets with some common elements between them. The grey sets show the possibilities for I4.
The possible Index sets involving intersection spaces between preexisting Index sets have been not
shown for the sake of clarity.

Finally, it should be noted that the empty set is always a subset of all other sets
and the Running Intersection Property (4.12) is always satisfied if the index sets
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are disjoint.

We now present a couple of algorithms for construction of index sets. Algo-
rithm 1 is based on the intuition that an Index set always satisfies Running Inter-
section Property if it has only two elements and there is only one elements which
is common between two adjoining index sets. Later, it was found out that this
algorithm suffers from a drawback and it works only in a specific case. Therefore,
we have used the second Algorithm which looks at the problem of constructing
index sets visually and is based on Graph theory. These algorithms will be used in
later applications as well.

Algorithm 4.1: Construction of Index set I with at most two elements
Input : States (xa, · · · , xlast) and K defined by g1,···,m
Output: Index sets I1,···,p, J1,···,p and K′ defined by g1,···,m+p

1 Find the state xa which has the least couplings in the dynamic model
2 Check whether xa is coupled with at least one other state in the dynamic

model

3 while xa is coupled with at least one more state (xb, · · · , xlast) do
4 Select xb
5 Ik = {a, b}
6 gm+k = nk M2 − (x2

a + x2
b)

7 Jk = {a, b, m + k}
8 if xb is coupled with at least one more state (xc, · · · , xlast) then
9 Ik+1 = {b, c}

10 Jk+1 = {c, m + k + 1}
11 if Ik+1 ∩ Ik ⊆ Is for some s ≤ k then
12 repeat: until index of all states (including xlast) are included in

Index sets
13 else
14 break: Ik+1 does not satisfy Running Intersection Property.
15 else
16 goto: Step 3 and replace xa with xb

17 end

Thee above algorithm satisfies all the conditions and it exploits the sparsity to
the maximum as each vector of monomials vd has a dimension of only s(d) = 6, if
we are searching for a candidate Lyapunov function having a maximum degree of
2. However, Algorithm 1 can only be used if the system has no couplings greater
than 2 i.e. dynamical systems which are composed of cascaded subsystems (for
example, the general dynamical system proposed in [Kha02] and [Kha15] for state
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feedback stabilization using Backstepping) and thus this algorithm is applicable
only for a few dynamical systems.

To overcome this drawback, we have used ideas from [Wak+06] for generalizing
Algorithm 1 for dynamical systems which have couplings greater than 2 between
the states. We begin by introducing some key concepts from Graph theory and
then we present the Algorithm.

Graph theory

This subsection is based on [Slo13] and [BP93]. We review some basic definitions
in graph theory and our aim is to define cliques which is then used in construction
of Index sets.

Firstly, we define a Directed Graph.

Definition 4.4.1 A Directed Graph (or digraph) is a pair G = (V, E) where, V is the set of
Vertices {v1, · · · , vn} of the digraph G and E ⊆ V ×V is the set of Edges of the digraph.

We now define an Undirected Graph which is a digraph with bidirectional
edges.

Definition 4.4.2 A graph G = (V, E) is undirected if (vi, vj) ∈ E =⇒ (vj, vi) ∈ E)

For any vertex set S ⊆ V , consider the edge set E(S) ⊆ E. E given by

E(S) := {(vi, vj) ∈ E | (vi, vj) ∈ S} (4.14)

Let G(S) denote the denotes the subgraph of G i.e. G(S) = (S, E(S)). We now
define an Induced Subgraph.

Definition 4.4.3 An Induced Subgraph is obtained by removing a set of vertices S ⊆ V
(and their associated edges) from the graph. Hence, we define G\S by

G\S := G(V − S) (4.15)

Two vertices vi, vj ∈ V are said to be adjacent if (vi, vj) ∈ E. An induced sub-
graph G(S) is complete if the vertices in S are pairwise adjacent in G. In this case we
also say that S is complete in G. We now define paths, cycles and chords as follows:

Definition 4.4.4 A path of length k in the Graph G is denoted by [v0, v1, · · · , vk] where,
vi 6= vj for i 6= j and (vi, vi+1) ∈ E for 0 ≤ i ≤ k− 1.

Definition 4.4.5 A cycle of length k + 1 in the Graph G is denoted by [v0, v1, · · · , vk, v0]
where, vi 6= vj for i 6= j and (vi, vi+1) ∈ E for 0 ≤ i ≤ k.
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Figure 4.7: Chordal graph. A graph should atleast have 3 elements for it to have a chord.

Definition 4.4.6 A chord of a path (cycle) is any edge joining two nonconsecutive vertices
of the path (cycle). A chord is shown in fig. 4.7.

Based on the above definitions, we now define chordal undirected graph.

Definition 4.4.7 An undirected graph G = (V, E) is chordal (triangulated, rigid circuit)
if every cycle of length greater than three has a chord. A chord is shown in fig. 4.8.

An induced subgraph of an chordal graph is also chordal.

Figure 4.8: Chordal graph. A graph should atleast have 3 elements for it to have a chord.

Finally, we define cliques for a graph.

Definition 4.4.8 A Clique K of a graph G = (V, E) is a maximal set of vertices that is
complete in G, and thus a clique is properly contained in no other clique. Fig. 4.8 shows
consists of two cliques {x1, x2, x3} and {x1, x4, x3}.
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We can now state a more generalized version of Algorithm 1. The idea be-
hind this Algorithm is that for a dynamical system, the states x ∈ Rn represent
the vertices of a Graph G and the Index set I can be constructed as the Maximal
Cliques formed in G. Physically, the cliques may represent the subsystems in the
overall dynamical system. In [Wak+06], this idea is stated in a more general form
for polynomial optimization.

Algorithm 4.2: Construction of Index set I using Cliques
Input : States (x1, · · · , xlast) and K defined by g1,···,m
Output: Index sets I1,···,p and K′ defined by g1,···,m+p

1 Find the cliques K1,K2, · · · ,Klast
2 Find the the states (say xa, xb, · · ·) which connect K1,K2, · · · ,Klast in the

dynamical system

3 while xa is coupled with at least one more Clique Kk do
4 Ik = {All elements of Clique Kk}
5 gm+k = nk M2 − (x2

a + x2
b + · · · + x2

last element of K)

6 if Ik+1 ∩ Ik ⊆ Is for some s ≤ k then
7 repeat: until index of all states (including xlast) are included in Index

sets
8 else
9 break: Ik+1 does not satisfy Running Intersection Property.

10 end

Compared to polynomial optimization problems in [Las10], [Las15] and [Wak+06],
the dynamical systems are generally composed of a few state variables. It is un-
likely to have dynamical systems with more then 15 variables and therefore, we
have suggested Algorithm 2 instead of the procedure involved in polynomial op-
timization where, a correlation sparsity pattern matrix is constructed. Interested
reader is referred to [Wak+06], [KM09] and the accompanying MATLAB toolbox
SparsePOP [Wak+08].
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Construction of Index set J

Suppose, we have constructed Index set I and have obtained the redundant poly-
nomial inequalities as per Algorithm 2, we can easily construct the index set J as
follows:

Algorithm 4.3: Construction of Index set J
Input : States x, Index sets Ik and semialgebraic set K′ defined by g1,···,m+p

Output: Index sets J1,···,p

1 Start with I1 and gm+1

2 J1 = I1 ∪ {m + 1}

3 while Jk ≤ Jp do
4 Jk+1 = (Ik+1 ∩ (

⋃k
j=1 Ij)

{)∪ {m + k}
where (.){ denotes the compliment of the set (.)

5 end

4.5 Computationally efficient SDP for finding Lyapunov func-
tion

After applying Sparse version of Putinar’s Positivstellensatz, we have obtained a
more computationally efficient SDP which is listed below.

Semidefinite Program 2

Find V(x) (4.16a)

such that V(0) = 0, (4.16b)

V(x)−
p

∑
k=1

(Fk +
p

∑
j∈Jk

Fjkgj)− Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m + p (4.16c)

− ∂V(x)
∂x

f (x)−
p

∑
k=1

(Fk +
p

∑
j∈Jk

Fjkgj)− Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m + p

(4.16d)

Here p denotes the number of Index sets and rest of the terminology is as
given Theorem 5. SDP 2 is more computationally efficient than SDP 1 because
each F ∈ R[x(Ik)] in SDP 2 instead of F ∈ R[x] in SDP 1. Thus, it is evident that
smaller the Index set, more computational savings. This is further discussed in
Chapter 6. In the next Chapter, we focus on applying SDP 2 for finding candidate
Lyapunov functions for complex systems.





Chapter 5

Applying Sparse Putinar Positivstel-
lensatz

Summary This chapter focuses on application of SDP 2 for finding a candidate Lyapunov
function for autonomous models of systems. We have considered an Autonomous model of
a wind turbine during shutdown from [SPW12]. Thereafter, we have considered stability
of the dynamics of an Adaptive Controlled system based on [Kha02] and [ÅW13]. Finally,
we have found Lyapunov function for an autonomous model of Ørsted Satellite based on
[Wis96] and [Wer78]. Further, it should be noted that our goal is to simply apply SDP 2
and therefore, we will keep the discussions on the models as brief as possible.

5.1 Wind Turbine

In this section, we consider a wind turbine model during shutdown phase. Thus,
the blade pitch angle β will be constant and a constant generator torque Tg =
3, 580Nm is applied to the rotor shaft. Compared to a Van der Pol’s model of
harmonic oscillator, a wind turbine is a more complex system and the dynamics
are described using a nonlinear state space model with 7 states. The considered
model of wind turbine with subsystems is based on a CART3 model which will be
stated now without derivation. Interested reader is referred to [PS12], [ES09] and
[SPW12] for further information on the derivation of wind turbine model.

A wind turbine is an interconnected system primarily composed of the follow-
ing three subsystems:

• Aerodynamics

• Tower

• Drive train

37
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Figure 5.1: Wind turbine modeled as an interconnection of three subsystems

The interconnection of the three subsystems with coupling variables is shown
in fig. (5.1). vw represents the wind speed which is an external input to the system
in the range of 15m/s to 25m/s. In this case, we have assumed it to be constant
at 20m/s. β represents the pitching angle of the blades which during regular op-
eration are aligned such that a high lift/drag ratio is achieved which gives high
torque. During shutdown, the blades are pitched at an angle of β = 90◦, such that
a negative torque is obtained which deaccelerates the rotor. Additionally, during
shutdown a constant generator torque of Tg = 3580 N-m is also applied to speed
up the deacceleration of the rotor until the rotor speed is below a threshold of 0.77
rad/s, at which point, it is not possible to apply a torque from the generator and
hence, the wind turbine is left uncontrolled at that point of shutdown. Tr is the
torque exerted by the wind via the aerodynamics model. Ft is the force exerted on
the tower due to the wind. ωr is the rotor speed. Tr and Ft depends on ωr, β and
the wind speed at the rotor given by vw − vt, where vt is the velocity of the tower
due to aerodynamic forces on it. These relations a given by Cp and Ct which are
generally described by lookup tables. However, we have characterized Cp and Ct

by polynomials p1 and p2 which are stated as follows.

p1 = (c11 + c12ωr, f + c13vr + c14ω2
r, f + c15v2

r + c16ωr, f vr)v3
r (5.1)

p2 = (c21 + c22ωr, f + c23vr + c24v2
r + c25ωr, f vr)v2

r + c26 + c25ω2
r, f (5.2)

where, ωr, f is the rotor speed generated from filtering the wind speed. These
polynomials have been obtained by a least squares approximation of Cp and Ct

tables. Further information on the same can be obtained in [PS12].

We now state Tr and Ft based on the polynomials p1 and p2 respectively.

Tr =
1
2

ρARv2
w p1 (5.3)
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Ft =
1
2

ρAv2
w p2 (5.4)

where, ρ is the density of air, A is the area swept by the blades and R is the
radius of the area swept by the blades.

We now state the dynamic model of the wind turbine[
v̇r

ω̇r, f

]
=

[
−cvr vr + (vw − vt)
−cωr, f ωr, f + ωr

]
(5.5a)

h1 =
[

p1

p2

]
(5.5b)[

v̇t

ẋt

]
=

[
1

Mt
(Ft − Btvt − ktxt)

vt

]
(5.5c)

h2 = vt (5.5d)ω̇r

θ̇∆

ω̇g

 =


1
Jr

(Tr − krθ∆ − Br(ωr − 1
Ng

ωg))
ωr − 1

Ng
ωg

1
Jg

( 1
Ng

(krθ∆ − Br(ωr − 1
Ng

ωg))− Tg)

 (5.5e)

h3 = ωr (5.5f)

where, h1, h2 and h3 represent the interconnecting outputs of subsystems 1, 2
and 3 respectively. We will now state the parameters used in the wind turbine
model (5.5) along with their physical description. A complete list of descriptions
of all the state used in the model (along with the considered regions) can be found
in Table 5.3.

Symbols Description Value Unit
Mt Mass of the tower 7.76× 103 kg
Bt Tower damping coefficient 18.6 kN/(m/s)
kt Tower torsion coefficient 2.7 MN/m
Ng Drive train gear ratio 43 −

Jg
Moment of inertia of the high-speed
shaft

534.12 kg-m2

Jr Moment of inertia of the low-speed shaft 611.1× 103 kg-m2

Br Viscous friction of the low-speed shaft 24 kN-m/(rad/s)
kr Torsion stiffness of the low-speed shaft 24.7× 106 N-m/rad

Table 5.1: Parameters (with dimensions) for the wind turbine model (5.5)
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Besides the parameters mentioned in table 5.1, the dynamic model also consists
of dimensionless constants c∗ which have no physical significance. They have been
stated in table 5.2 along with their suitable values.

Symbols Value
cvr 11.65
cωr, f 21
c11 −32.42× 106

c12 −746× 106

c13 53.03× 106

c14 −1.128× 109

c15 −18.63× 106

c16 −384.6× 106

c21 8492.6
c22 300.88× 103

c23 −11.85× 103

c24 3584
c25 −90.32× 103

c26 318.3
c27 1.692× 106

Table 5.2: Dimensionless parameters for the wind turbine model (5.5)

We now consider a region of state space which can be defined by a semialge-
braic set. Our aim is to find a Lyapunov function which satisfies the conditions
(2.16) in the semialgebraic set.

The considered region of state space is given as follows:

Description Symbol Region
Rotor velocity vr [2, 28]
Rotor angular velocity (filtered) ωr, f [0.77, 44]
Tower velocity vt [−0.01, 0.07]
Tower displacement xt [−0.05, 0.05]
Rotor angular velocity ωr [0.77, 44]
Drive train torsion angle θ∆ [−25, 25]× 10−3

Generator angular velocity ωg [33.2, 172.7]

Table 5.3: Description of States and considered State space region
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Based on (5.3), the semialgebraic set K is constructed as follows:

K ={x ∈ Rn : gj(x) ≥ 0, j = 1, · · · , 7} (5.6a)

where, g1 =(x1 − 2)× (28− x1) (5.6b)

g2 =(x2 − 0.77)× (4− x2) (5.6c)

g3 =(x3 + 0.01)× (0.07− x3) (5.6d)

g4 =(x4 + 0.05)× (0.05− x4) (5.6e)

g5 =(x5 − 0.77)× (4− x5) (5.6f)

g6 =(x6 + 25× 10−3)× (25× 10−3 − x6) (5.6g)

g7 =(x7 − 33.2)× (172.7− x7) (5.6h)

We begin by stating the dynamics (5.5) of wind turbine in a simpler state space
form which highlights the couplings between the states.

ẋ1 = f1(x1, x3) (5.7a)

ẋ2 = f2(x2, x5) (5.7b)

ẋ3 = f3(x1, x2, x3, x4) (5.7c)

ẋ4 = f4(x3) (5.7d)

ẋ5 = f5(x1, x2, x5, x6, x7) (5.7e)

ẋ6 = f6(x5, x7) (5.7f)

ẋ7 = f7(x6, x7) (5.7g)

We can now construct Index sets for (5.7) using Algorithms 2 and 3. We cannot
use Algorithm 1 in this case, as the wind turbine model is composed of cliques (see
fig. 5.2), instead of being composed of cascaded subsystems.

From fig (5.2), it is evident that the states x5 and x3 connect the subsystems,
Drive Train (x5, x6 and x7) and the Tower (x3 and x4) via the Aerodynamics sub-
system (x1 and x2) respectively.

The following index sets were obtained for the wind turbine model (5.7):

I1 = {1, 2, 3, 5}, g8 = 4M2 − (x2
1 + x2

2 + x2
3 + x2

5), J1 = {1, 2, 3, 5, 8} (5.8a)

I2 = {3, 4} , g9 = 2M2 − (x2
3 + x2

4) , J2 = {4, 9} (5.8b)

I3 = {5, 6, 7} , g10 = 3M2 − (x2
5 + x2

6 + x2
7) , J3 = {6, 7, 10} (5.8c)

Note that, M in g8, g9 and g10 is the maximum value attainable by any of the
state. Looking at g7 in 5.6h, it is evident that the maximum possible value attain-
able by any state is 172.7. We therefore, select M = 172.7. This ensures compactness
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of the semialgebraic set as per Theorem 5.

Figure 5.2: Graphical representation of the dynamics for the wind turbine model (5.5)

Using (5.8) and (4.13), we can now write an representation for finding candidate
Lyapunov function V which is guaranteed to be positive in K.

(5.9)
V =

p

∑
k=1

(
qk + ∑

j∈Jk

qjkgj

)
= q1 + q11g1 + q21g2 + q31g3 + q51g5 + q81g1 +
q2 + q42g4 + q92g9 + q3 + q63g6 + q73g7 + q103g10

Similarly we obtain a representation for the negative Lie derivative − ∂V(x)
∂x f (x)

which ensures that the condition (2.16c) is satisfied. Substituting V obtained from
(5.9) into SDP 2, we have obtained the following candidate Lyapunov function:

− 364625036.89 ∗ x1 + 6736099.77835 ∗ x2 − 0.0349697674069 ∗ x3

+ 6638022.48774 ∗ x4 + 968605484.225 ∗ x6 + 162937.980549 ∗ x7

+ 1845916378.31 ∗ x2
2 + 295850773.632 ∗ x2

1 − 143907819.635 ∗ x1 ∗ x2

+ 22491497.3928 ∗ x2
4 + 1595109060.44 ∗ x2

6 + 1367.3279238 ∗ x2
7

− 2613108.88038 ∗ x6 ∗ x7 + 5830855.18081 ∗ x1 ∗ x4 − 62652.9344278 ∗ x2 ∗ x4

− 94518551.544 ∗ x1 ∗ x6 − 189586625.553 ∗ x2 ∗ x6 + 4174790.86017 ∗ x4 ∗ x6

− 246539.560875 ∗ x1 ∗ x7 − 207318.002999 ∗ x2 ∗ x7 − 5771.09408269 ∗ x4 ∗ x7
(5.10)

After obtaining the Lyapunov function in (5.10), we would like to verify whether
the obtained function satisfies all the constraints and we will discuss that in the
section 6.1 in Chapter 6.
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5.2 Adaptive Control

In this section we apply SoS and Sparse Putinar’s Positivstellensatz to prove stabil-
ity for an autonomous adaptive control system. We begin by defining the dynamic
model for the model reference adaptive control. We have considered an Adaptive
Control system for this project as the non-autonomous model (5.17) is a 3rd order
nonlinear system which is the minimum order required for application of Sparse
Putinar’s Positivstellensatz. Later, we have discussed an autonomous model of
Adaptive control which is a higher order system. The model is based on [ÅW13]
and [Kha02]. Consider a 1st order linear system

ẏp = apyp + Kpu (5.11)

where, subscript p indicates plant, u is the control input to the plant, yp is the mea-
sured output from the plant, ap and kp are unknown plant parameters. Suppose
that it is desirable to obtain a closed loop system where input-output behavior is
described by the following reference model.

ẏm = amym + Kmr (5.12)

where, r is the reference input and ym(t) represents the desired output of the closed
loop system. This can be achieved by a linear feedback control law

u(t) = θ1(t)r(t) + θ2(t)yp(t) (5.13)

where the time varying gains θ1(t) and θ2(t) represent adjustable controller param-
eters which are adjusted online.

From (5.11), (5.12) and (5.13), it can be seen that the ideal values of θ1(t) and
θ2(t) should be θ∗1 (t) and θ∗2 (t) which are given as follows:

θ∗1 (t) =
km

Kp
and θ∗2 (t) =

am − ap

Kp
(5.14)

where kp 6= 0.

We now choose an adaptation rule such that θ1(t) and θ2(t) converge to θ∗1 (t)
and θ∗2 (t). One such rule is the gradient algorithm which is stated as follows:

θ̇1 = −γ(yp − ym)r (5.15a)

θ̇2 =−γ(yp − ym)yp (5.15b)

where γ is a positive constant which determines the speed of adaptation. This
adaptive control law assumes that kp is positive.
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We now define output error and parameter errors e0, φ1 and φ2 as follows:

e0 = yp − ym , φ1 = θ1 − θ∗1 and φ2 = θ2 − θ∗2 (5.16)

The closed loop system can now be described by a nonlinear, 3rd order system

ė0 = ame0 + kpφ1r(t) + kpφ2[e0 + ym(t)] (5.17a)

φ̇1 = − γe0r(t) (5.17b)

φ̇2 = − γe0[e0 + ym(t)] (5.17c)

This appears to be a simpler system compared to (5.5). However, it is non-
autonomous in nature because the reference r(t) is user-defined. The reference
input needs to be persistently exciting of the order equal to the model order, so as
to ensure convergence of the parameters φ1 and φ2 to the origin [ÅW13].

Since, the considered plant model (5.11) has an order of 1, a single sinusoidal
reference will be sufficiently persistently exciting. We have obtained a candidate
Lyapunov function for the non-autonomous system with a sinusoidal input and
later we will discuss, the autonomous variant of adaptive controlled system.

Firstly, we consider the semialgebraic set K for this system. We have obtained
the state space region for the Adaptive control system by simulating it with a
sinusoidal reference.

K ={x ∈ Rn : gj(x) ≥ 0, j = 1, · · · , 3} (5.18a)

where, g1 =x2
1 − 0.2771297 (5.18b)

g2 =x2
2 − 16 (5.18c)

g3 =x2
3 − 16 (5.18d)

As can be seen from fig. (5.3), there are no cliques in the graph and thus, we
can apply Algorithm 1 for constructing Index sets as follows:

I1 = {1, 2}, g4 = 2M2 − (x2
1 + x2

2), J1 = {1, 2, 4} (5.19a)

I2 = {1, 3}, g5 = 2M2 − (x2
1 + x2

3), J2 = {3, 5} (5.19b)

We can write a sparse representation of the candidate Lyapunov function which
is guaranteed to be positive on the semialgebraic set K.

(5.20)V =
p

∑
k=1

(
qk + ∑

j∈Jk

qjkgj

)
= q1 + q11g1 + q21g2 + q41g4 + q2 + q32g3 + q52g5
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Figure 5.3: Graphical representation of the nonlinear dynamics for adaptive control (5.17)

Similarly we can write a sparse representation for the negative Lie derivative
− ∂V(x)

∂x f (x) which ensures that the condition (2.16c) is satisfied. Substituting V ob-
tained from (5.9) into SDP 2, we have obtained the following candidate Lyapunov
function:

− 0.0197193466133 ∗ x1 − 16.0313864599 ∗ x2 + 21.3694746707 ∗ x3

− 0.00741910396354 ∗ x1 ∗ x3 + 489.643177153 ∗ x2
1 + 244.064576396 ∗ x2

2

+ 244.541999491 ∗ x2
3 + 0.00596493998992 ∗ x1 ∗ x2 + 0.776667515418 ∗ x2 ∗ x3

(5.21)
For the sake of generalization, we would like to make the system autonomous.

As stated earlier, this system can be made autonomous at the cost of adding extra
states to the system which define the reference r(t) via some persistently exciting
function of the order n. For a sinusoidal reference, we need to add two more states
as a model of harmonic oscillator (5.22) is a 2nd order model.

ẍ = x (5.22)

As a result of adding, (5.22) to (5.17), we got a 5nd order model which does not
have a single equilibrium point but instead a periodic orbit due to (5.22). Analysis
of such a system is outside the scope of this project, as it requires specialized
theorems because Lyapunov’s Stability theorem 3 is valid only for equilibrium
point.
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5.3 Ørsted Satellite

In this section, we apply sparse version of Putinar’s Positivstellensatz and SoS to
obtain a candidate Lyapunov function for a satellite stabilized via a PD controller.
The motivation behind considering a satellite in this project is that, the motion of
a satellite is defined by a nonlinear model with 7 states viz. 4 quaternions and 3
angular velocities. Further, quaternions have some special constraints which we
will be discussing in this section. We begin by giving a brief overview of the satel-
lite coordinate system and quaternions. This section is based on [Wer78], [TAM10],
[Wis99] and [Wis96].

The satellite’s body is a box shaped, 680 mm (length) × 450 mm (breadth) ×
340 mm (height). Further, during the normal operation of the satellite, an 8m long
scientific boom is deployed (see fig. 5.4). For simplification, we are only con-
sidering the control of satellite during normal operation and have ignored the
detumbling and boom upside-down phase which have been studied in [Wis96].

Figure 5.4: The Ørsted Satellite as described in [Wis96]

5.3.1 Coordinate systems

We have used four coordinate systems (CS) for defining satellite motion and con-
trol. They are defined as follows:

• Control CS
The Control CS is a right orthogonal coordinate system with the origin at the
center of mass of the spacecraft. Its a carefully chosen CS such that, the x
axis has the maximum moment of inertia, and the z axis has the minimum
moment of inertia.
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• Body CS
The Body CS is a right orthogonal coordinate system with the origin at the
centre of gravity of the spacecraft body. The z axis is parallel to the boom
direction and points towards the tip of the boom. The x axis is perpendicular
to the breadth of the satellite, and points away from the boom. The y axis is
perpendicular to the length of the satellite.

• Orbit CS
The Orbit CS is a right orthogonal coordinate system with the origin at the
centre of mass of the spacecraft body while in an orbit. The z axis points at
the zenith i.e. it is aligned with the centre of the Earth and points away from
the Earth towards the satellite. The x axis points in the orbital plane normal
direction and its direction coincides with the direction of the orbital angular
velocity vector. The Orbit CS is the reference for the attitude control system.

Figure 5.5: Control CS and Orbital CS for the satellite as described in [Wis96]

• World CS
The World CS is an earth centered inertial right orthogonal coordinate sys-
tem. The z axis is parallel to the rotation axis of the Earth and points towards
the North Pole. The x axis is parallel to the line connecting the centre of the
Earth with Vernal Equinox and points towards Vernal Equinox.
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Figure 5.6: World CS which is an Earth centered Inertial CS (abbreviated as ECI) for the satellite as
described in [Wis99]

5.3.2 Modeling of the Satellite with Quaternions

Rotation of a coordinate system can be defined via quaternions which provide a
convenient product rule for describing successive rotations. Intuitively, rotation
can also be described via the three Euler angles viz. Pitch, Roll and Yaw. However,
the minimum number of parameters required for global attitude representation is
four [Wis99] and the problem of gimbal lock associated with Euler angles is also
avoided.

A quaternion q consists of four parameters [q1 q2 q3 q4]T of which the first three
[q1 q2 q3]T components, form the vector part of the quaternion and the last compo-
nent q4, forms the scalar part of the quaternion. Thus, q can be written as follows:

q = q1i + q2j + q3k + q4 (5.23)

where, i, j and k are hyper imaginary numbers which satisfy the following
condition

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

(5.24)

The inverse of quaternion q is defined as

q∗ = −q1i− q2j− q3k (5.25)

The norm of quaternion q is defined as
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|q|=
√

qq∗ =
√

q2
1 + q2

2 + q2
3 + q2

4 (5.26)

We now construct a unit quaternion having a norm 1 which gives the rotation of
an angle Φ around a unit vector ε = [ε1 ε2 ε3]T. These parameters are also known
as Euler symmetric parameters. The four parameters of the quaternion q can be
defined as follows:

q1 := ε1 sin
Φ
2

q2 := ε2 sin
Φ
2

q3 := ε3 sin
Φ
2

q4 := cos
Φ
2

(5.27)

Clearly, the Euler symmetric parameters satisfy the constraint,

q2
1 + q2

2 + q2
3 + q2

4 = 1 (5.28)

Suppose, we want to find the rotation of the satellite in the World CS and the
quaternions, c

oq (describing the transformation Control CS to the Orbit CS) and o
wq

(describing the transformation Orbit CS to the World CS) are given then,

c
wq = R(o

wq)c
oq (5.29)

where,

R(q) =


q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4

 (5.30)

The matrix R(q) is referred to as the quaternion product matrix and is used for
finding successive rotations. Further, we can write

R(q)RT(q) = RT(q)R(q) = qTqI4×4 (5.31)

We now define the transformation matrix A (also referred to as the Attitude
Matrix or the direction cosine matrix) for the transformation between the Orbit CS
and the Control CS.

c
oA = [c

oi c
oj c

ok] (5.32)
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where, c
oi, c

oj and c
ok are the unit vectors representing the transformation of x, y

and z axis of the Orbit CS into the Control CS. We can now parametrize, the unit
vectors in terms of the attitude quaternion.

c
oi = [ q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 − q3q4) 2(q1q3 + q2q4) ]T

c
oj = [ 2(q1q2 + q3q4) − q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 − q1q4) ]T

c
ok = [ 2(q1q3 − q2q4) 2(q2q3 + q1q4) − q2

1 − q2
2 + q2

3 + q2
4 ]T

(5.33)

Transformation of a vector v observed in Orbit CS (ov) to Control CS (cv) can
now be done as

cv = c
oAov (5.34)

Kinematics Model

The Kinematics can be represented in terms of the Quaternion product matrix
(5.30) as follows

c
oq̇ =

1
2

R(cΩ̃co)c
oq (5.35)

where, R(·) is Quaternion Product as given in (5.30) and cΩ̃co = [cΩT
co0]T. cΩco

is the angular velocity in the Control CS with respect to Orbit CS and it can be
resolved in the World CS as follows:

cΩco = cΩcw −ωo
c
oi (5.36)

where, ωo is the orbital rate which we have assumed to be constant as the
eccentricity of the spacecraft orbit is negligible.

Dynamics Model

The dynamics describe the relation between the satellite’s angular momentum with
the torques acting on the spacecraft. This is known as the Newtonian approach
since we are essentially writing Newton’s 2nd law of motion which relates the force
with the change of momentum. We obtain a set of three differential equations
which are known as Euler’s equations of motion and they can be written as follows:

IcΩ̇cw(t) = −cΩcw(t)× IcΩcw(t) + cNctrl(t) + cNgg(t) + cNdist(t) (5.37)

where, cNctrl(t) is the control torque, cNgg(t) is the torque due to gravity gradi-
ent and cNdist(t) is the torque due to external disturbances.
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We begin, by defining cNctrl(t) which is generated due to the interaction be-
tween the geomagnetic field and the magnetic moment m(t), generated due to the
magnetorquer current i(t) as follows.

cNctrl(t) = cm(t)× cB(t) (5.38)

where, cB(t) is the geomagnetic field and we have used the dipole model with
IGRF coefficients given in [Wer78] for this simulation. It should be noted, that cB(t)
is dependent upon the position of the satellite and thus should be transformed into
Control CS using the Attitude matrix, c

oA given in (5.32)

cm(t) is the magnetic moment generated by the satellite and it serves as the
control signal for this system. It is generated via electromagnetic coils housed
inside the satellite body as follows.

m(t) = ncoilicoil(t)Acoil (5.39)

where, ncoil , icoil(t) and Acoil are the number of winding’s of the coil, current in
the coil and area of the coil respectively.

Since, the winding’s are housed inside the body of the satellite, we have to
transform (5.39) from body CS to Control CS as follows.

cm = c
bAbm (5.40)

Unlike, other LEO satellites, the Ørsted Satellite is actuated only via Magne-
torquers and therefore, there are no additional actuators, such as reaction wheels
described in [Wis99] and [Wer78].

The gravity gradient torque cNgg(t) is given as follows.

cNgg(t) = 3ω2
o (cko × Icko) (5.41)

Finally, we have the disturbance torque which is primarily due to the aerody-
namic drag since its a LEO satellite. Disturbance due to residual magnetic field is
already compensated while estimating states and disturbance due to Solar radia-
tion is negligible enough in comparison to the aerodynamic drag and so it can be
neglected. Based on [BW97], we can write cNdist(t) as follows.

cNdist(t) =
1
2

CDρv2
0

k

∑
i=1

Ai(n̂i · v̂b)v̂b × ri (5.42)

where Ai is the surface area of one of the faces of the satellite (assuming the
satellite’s main body to be a box, there are three surfaces so k = 3), n̂i is the out-
ward normal to the considered surface, v̂b is the unit vector in the direction of the
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translational velocity of the considered surface element, CD is the drag coefficient
and ρ is air density.

5.3.3 Finding Candidate Lyapunov function

In the previous subsection, we obtained the kinematics and the dynamical model
of the Ørsted Satellite, Now, we can find the candidate Lyapunov function for the
same. We begin by defining the semialgebraic set as follows.

K ={x ∈ Rn : gj(x) ≥ 0, j = 1, · · · , 7} (5.43a)

where, g1 =x2
1 − 1 (5.43b)

g2 =x2
2 − 1 (5.43c)

g3 =x2
3 − 1 (5.43d)

g4 =x2
4 − 1 (5.43e)

g5 =x2
5 − 0.1 (5.43f)

g6 =x2
6 − 0.1 (5.43g)

g6 =x2
7 − 0.1 (5.43h)

Since the quaternions are bound by the constraint (5.28), g1, g2, g3 and g4 are
constrained by 1 in (5.43). Further, angular speed Ω is of the magnitude of 0.001
m/s and conservatively, we have constrained it by 0.1. We now, construct Index sets
based on Algorithm 2 and 3 as the dynamics reveal two cliques K1 consisting of
the four quaternion q states (see (5.35)) and K2 consisting of the remaining three
angular velocity Ω states (see (5.37)). Thus, we have constructed the following
Index sets.

I1 = {1, 2, 3, 4}, g8 = 4M2 − (x2
1 + x2

2 + x2
3 + x2

4), J1 = {1, 2, 3, 4, 8} (5.44a)

I2 = {5, 6, 7} , g9 = 3M2 − (x2
5 + x2

6 + x2
7) , J2 = {5, 6, 7, 9} (5.44b)

Based on the Index sets (5.44), we can now write the Sparse Putinar’s Posi-
tivstellensatz based representation of the candidate Lyapunov function as follows.

(5.45)
V =

p

∑
k=1

(
qk + ∑

j∈Jk

qjkgj

)
= q1 + q11g1 + q21g2 + q31g3 + q41g4 + q81g8 +
q2 + q52g5 + q62g6 + q72g7 + q92g9

Similarly we can write a sparse representation for the negative Lie derivative
− ∂V(x)

∂x f (x) which ensures that the condition (2.16c) is satisfied. Substituting V ob-
tained from (5.45) into SDP 2, we have obtained the following candidate Lyapunov
function:
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2.01726347735 ∗ q1 + 1.8769208317 ∗ q2 + 1.97655932521 ∗ q3 + 3.1690686905 ∗ q4+

0.0277894915149 ∗ w1 + 0.00240131425285 ∗ w2 − 0.0138054230665 ∗ w3+

2.74577385031 ∗ q2
1 + 3.40998675508 ∗ q2

2 + 2.87167813837 ∗ q2
3 + 3.20115868719 ∗ q2

4+

0.554720673841 ∗ q1 ∗ q2 + 1.36313094243 ∗ q3 ∗ q4 + 1.42805892686 ∗ q1 ∗ q3+

1.20305142048 ∗ q2 ∗ q4 + 0.338689316864 ∗ q2 ∗ q3 + 1.39663370578 ∗ q1 ∗ q4
(5.46)

5.4 Conclusion

In this chapter, we have demonstrated how a candidate Lyapunov function can
be found for complex dynamic systems. However, we still need to verify these
candidate Lyapunov functions and that has been done in Chapter 6. Further, it is
important to note, that Lyapunov’s Satbility theorem works only for equilibrium
point and it has to be the origin of the system. If a system has an equilibrium
point at some other point instead of the origin, we can do change of variables
by subtracting the equilibrium point coordinates from the states (i.e. shift the
coordinate axis). If a system doesn’t have an equilibrium point but instead a limit
cycle or a periodic equilibrium point then the above methods cannot be applied.





Chapter 6

Computational considerations

Summary In this chapter, we focus on computational considerations and practical issues
while solving SDP’s 1 and 2. We firstly introduce a method for verification of candi-
date Lyapunov functions based on [Löf09] and [Löf11] for YALMIP SoS module. Another
YALMIP SoS module feature under consideration is symmetry reduction. Thereafter, we
introduce some well-known metrics used to quantify computational complexity and state
the theoretical time complexity for SoS, SDP, Putinar’s Positivstellensatz and its Sparse
version. We have also compared the computational savings achieved by applying SDP
2 versus application of SDP 1 based on number of parametric variables, number of con-
straints, Solver execution time and the size of SoS multipliers. As expected theoretically,
we have obtained computational savings, when sparsity in system dynamics is exploited
while finding the candidate Lyapunov function. In the last section, we have given a break-
down of the total number of parametric variables used and have shown the reduction in the
number of variables, if we have a small Index set. This implies that whenever possible, we
should use Algorithm 1 in Chapter 4 while constructing Index sets. This chapter is based
on [Las06], [Las10], [Löf09], [Par00] and [MOS16].

6.1 Verification of Candidate Lyapunov function

Once a Candidate Lyapunov function has been found, it is necessary to verify
whether it satisfies the conditions (2.16) stated in Lyapunov’s Stability Theorem
(3). This verification is required (even though we specify (2.16) as constraints while
solving the SDP (2.7)) due to the finite machine precision of the solvers used while
solving an SDP. The floating point arithmetic of numerical solvers is prone to er-
rors such as rounding off errors. Thus, the solution obtained after solving an SDP
may violate the constraints slightly [Löf09]. We have primarily used MOSEK as the
solver for solving the SDP’s and MOSEK lists the constraint violation in its basic
solution summary [MOS16].

55
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We can solve the SDP (2.7) either in its primal form or in dual form by using
YALMIP [Löf04]. If we solve the SDP in its primal form, the equality constraint
(2.7d) may be violated in the final solution whereas, if we solve the SDP in its dual
form (also referred to as the image form in some literature) the semidefinite con-
straint (2.7c) may be violated. Violation of the equality constraint means that we
have not found the exact certificate for proving non-negativity of p but instead we
have proven non-negativity of a slightly perturbed polynomial and thus the orig-
inal polynomial is very close to being an SoS polynomial based on accuracy upto
finite machine precision. However, if we are solving the dual problem and the
semidefinite constraint is violated than the obtained certificate of non-negativity
is practically useless as we can’t use it to prove non-negativity of the obtained
polynomial (or the Lyapunov function) over the considered semialgebraic set. Fur-
ther discussion on the feasibility of SoS can be found in [Löf09], [Löf11] and [LP04].

For the verification of the candidate Lyapunov function we have used two ap-
proaches. Firstly, we have used the following theorem from [Löf09] for validating
whether the solution is strictly feasible.

Theorem 6 Let Q ∈ Rs(d)×s(d) and consider the SDP constraints, (2.7c) and (2.7d).
Suppose we are solving the SoS decomposition problem, p(x) = vd(x)TQvd(x).

If the constraints are violated and we get p′(x) instead of p(x), then then the obtained
polynomial is non-negative (over the considered semialgebraic set), if

Λmin(Q) ≥
∥∥∥p′(x)− vd(x)TQvd(x)

∥∥∥
∞

(6.1)

where, Λmin(Q) is the minimum eigenvalue of the gram matrix Q.

This approach is based on the fact that SDP solvers using Interior point meth-
ods, typically find solutions in the analytic center of the feasible region. Thus, if a
strict interior exists, we will obtain a strictly feasible solution. A feasibility prob-
lem will however not return an optimal solution. To overcome this, we add a new
constraint, which forces the solver to return a feasible solution which is very close
to the optimal value. Hence, we resolve the problem with the requirement that
we should be within 1

10000 from the previously computed optimal objective value
[Löf11].

It can be concluded from Theorem 6, that if we can make the Gram matrix Q
sufficiently positive definite, than the polynomial is non-negative on the semialge-
braic set. The next approach is also based on this idea.
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We constrain the candidate Lyapunov function to not just be positive but to be
greater than a quadratic function Γ(xTx), where x ∈ Rn is the state of the system
and Γ is a tuning parameter. The tuning parameter Γ is set based on Theorem 6.

6.2 Symmetry reduction and Post-processing by YAMIP

YALMIP automatically detects sign symmetries in polynomials i.e. p(x) = p(−x)
and based on it, the SDP can be reduced to half of its original size as some of the
elements of Q matrix will cancel out each other.

Post-processing is a practical feature in YALMIP by which we can eliminate
further candidate monomials after solving the SDP (2.7). Due to the limitations
posed by numerical solvers (discussed earlier in section 6.1), we may obtain a
Lyapunov function which has coefficients of some of its candidate monomials to
be a very low value (say in the order of 10−5 ), such monomials can also be rejected
which reduces the computational complexity of the SDP [Löf09]. This feature was
useful in this project (see table 6.1).

6.3 Computational complexity

The computational complexity (also referred to as time complexity in some lit-
erature) of an algorithm is defined by the order of growth O of its running time
[Cor+09]. The order of growthO of running time for an algorithm gives the asymp-
totic upper bound for the running time of the algorithm. For a function f (n), it can
be defined as follows:

O(g(n)) = { f (n) | ∃c, n0 ∈ R+ such that 0 ≤ f (n) ≤ cg(n) ∀n ≥ n0} (6.2)

O-notation gives an upper bound on a function, within a constant factor.

6.3.1 SoS and SDP

As mentioned earlier, the size of the Q matrix while finding an SoS decomposi-
tion in (1) determines the computational complexity. The size of the corresponding
SDP is determined by the number of constraints which is s(d) and the size of s(d)
is bounded by nd [Las10]. Therefore, as per (6.2), the computational complexity
for finding SoS is O(nd) where n is the number of variables and d is the maximum
degree of the same.

For a general SDP solver such as MOSEK or SeDuMi which works with Interior-
point method, we can find an approximate solution (within prescribed accuracy
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ε > 0), in a time that is polynomial in the input size of the problem [Las10].
Specifically, the worst-case time complexity for an SDP is O(n

1
2 ) [VB96] where n is

the input size or the number of variables. It is also mentioned in [VB96], that
practically, solving a SDP is faster then O(n

1
2 ) and can be of the order of O(n

1
4 ) or

O(log n).

6.3.2 Putinar’s Positivstellensatz

The worst-case computational complexity of solving SDP 1 obtained via Putinar’s
Positivstellensatz is O(nd) where, n is the number of variables and d is the max-
imum degree of the SoS multipliers. The size of the LMI constraint (3.4c) in 1 is
equivalent to solving m + 1 LMI’s growing at the rate of O(n

d
2 ), where m is the

number of semialgebraic sets. Finally, the constraint (3.4d) is also equivalent to
solving m + 1 LMI’s growing at the rate of O(n

d
2 ) (see [Las06], [Las10] and [Las15]).

Practically, we have observed that the size grows rapidly as we increase the de-
gree of Lyapunov function candidate. Fortunately, in all the considered problems,
we have been able to find candidate Lyapunov functions having a degree of 2 or 4.

6.3.3 Sparse Putinar’s Positivstellensatz

If we can apply sparse version of Putinar’s Positivstellensatz, than computational
savings are guaranteed in the sparse variant because the SoS multiplier associated
with polynomial inequality gj consists of monomials associated with gj only. We
can demonstrate this comparison by following example.

Consider the following polynomial,

F(x1, x2, x3) = f1(x1, x2) + f2(x2, x3) (6.3)

Let the semialgebraic sets for (6.3) be as follows:

Kx1,x2 = {(x1, x2) ∈ R[x1, x2]n1+n2 : gj(x1, x2) ≥ 0, j ∈ Ix1 ,x2} (6.4a)

Kx2,x3 = {(x2, x3) ∈ R[x2, x3]n2+n3 : gj(x2, x3) ≥ 0, j ∈ Ix2 ,x3} (6.4b)

(6.4c)

By applying Putinar’s Positivstellensatz we get the representation,

F = P0 + ∑
j

Pjgj + ∑
k

Qkhk (6.5)

for some SoS polynomials P0, Pj, Qj ε Σ[x1, x2, x3].
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Whereas, if we apply sparse version of Putinar’s Positivstellensatz we get the
representation,

F = P0 + ∑
j

Pjgj + Q0 + ∑
k

Qkhk (6.6)

for some SoS polynomials P0, Pj ε Σ[x1, x2] and Q0, Qj ε Σ[x2, x3].

Note that, even if we apply Putinar’s Positivstellensatz despite the presence of
sparsity in the system dynamics, the resulting SoS decomposition will have 0 co-
efficients for the monomials which could have been rejected before. However, the
size of SDP will be large (it may be practically to large to solve) and therefore, it is
advisable to consider sparsity while searching for SoS polynomials.

As expected in (6.6), SDP 2 obtained via Sparse Putinar’s Positivstellensatz is
less computationally complex as compared to SDP 1 obtained via Putinar’s Posi-
tivstellensatz.

Let p denote the maximum number of Index sets constructed for SDP 2 and let
κ denote the maximum number of elements among all the Index sets and can be
formally defined as follows.

κ := maxk|Ik| k = 1, · · · , p (6.7)

Then, the worst-case computational complexity of solving SDP’s 2 is pO(κd)
where, d is the maximum degree of the SoS multipliers. The size of the LMI
constraint (4.16c) in 2 is equivalent to solving m + 2p LMI’s growing at the rate
of O(κ

d
2 ), where m is the number of semialgebraic sets. The constraint (4.16d) is

also similarly, equivalent to solving m + 2p LMI’s growing at the rate of O(κ
d
2 ) (see

[Las06], [Wak+06], [Las10] and [Las15]). Finally, based on (6.7), we can conclude
that, smaller the size of Index set Ik, greater will be the computational savings achieved by
applying Sparse Putinar’s Positivstellensatz. In the next section, we have practically
compared the saving’s obtained by exploiting sparsity.
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6.4 Practical computational comparison between SDP 1 and
SDP 2

As mentioned earlier, practically computation might be faster as compared to the
theoretical worst-case time complexity bounds discussed in the previous section.
We present the computational savings for the complex systems discussed in Chap-
ter 5, viz. the Wind turbine and Ørsted Satellite.

Wind Turbine

To demonstrate computational savings, we have generated candidate Lyapunov
functions for previous example of wind turbine (5.5) using both the approaches
and the following table 6.1 shows the comparison between the same.

No. Description Putinar Sparse Putinar
Positivstellensatz Positivstellensatz

1. Number of parametric vari-
ables

541 303

2. Number of constraints prior
to post-processing

1236 998

3. Number of constraints after
post-processing

1213 975

4. YALMIP execution time 0.8732 sec 0.6632 sec
5. Solver execution time 1.2718 sec 0.9418 sec
6. Size of SoS multipliers 14× 1

92244 bytes
24× 1
138408 bytes

7. Total size of constraints 18× 1
165884 bytes

28× 1
193328 bytes

Table 6.1: Computational Comparison between Putinar’s Positivstellensatz and Sparse Putinar’s
Positivstellensatz for the wind turbine

As can be seen from table 6.1, the number of constraints and parametric vari-
ables is significantly reduced if we exploit sparsity while constructing the Lya-
punov function using SoS polynomials. However, this comes at the cost of creation
of more SoS ’multipliers’. By SoS ’multipliers’ over here refer to the SoS polynomi-
als in the representations given by Theorem 4 and Theorem 5. The next fig. (6.1)
shows the comparison between the SDP’s 1, 2 and the theoretical bounds discussed
in the previous section.
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Figure 6.1: Time complexity comparison between SDP 1 and SDP 2, while finding candidate Lya-
punov function for the Wind Turbine

Ørsted Satellite

As done previously, we will now demonstrate computational savings for Ørsted
Satellite (5.35), (5.37). The following table 6.2 shows the comparison between the
same.

No. Description Putinar Sparse Putinar
Positivstellensatz Positivstellensatz

1. Number of parametric vari-
ables

540 286

2. Number of constraints prior
to post-processing

1223 969

3. Number of constraints after
post-processing

1223 969

4. YALMIP execution time 0.7707 sec 0.7573 sec
5. Solver execution time 0.6783 sec 0.5912 sec
6. Size of SoS multipliers 14× 1

92244 bytes
20× 1
116384 bytes

7. Total size of constraints 17× 1
193008 bytes

23× 1
194044 bytes

Table 6.2: Computational Comparison between Putinar’s Positivstellensatz and Sparse Putinar’s
Positivstellensatz for the Ørsted Satellite
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As can be seen from table 6.2, finding candidate Lyapunov function for the
satellite has a similar computational load as compared to finding candidate Lya-
punov function for the wind turbine problem. This is because, the number of states
in both the systems is 7 and recall that, the computational complexity of (2.7) is
dependent on the number of variables and the maximum degree of the SoS poly-
nomials only. Fig. (6.2) shows the comparison between the SDP’s 1, 2 and the
theoretical bounds discussed in the previous section.
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Figure 6.2: Time complexity comparison between SDP 1 and SDP 2, while finding candidate Lya-
punov function for the Ørsted Satellite
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6.5 Computational Savings obtained by using small Index
sets

Consider a 7th order nonlinear model and suppose we want to find a candidate
Lyapunov function having degree 2. The semialgebraic set K is constructed as
follows:

K ={x ∈ R7 : gj(x) ≥ 0, j = 1, · · · , 7} (6.8a)

where, g1.···,7(x) is a compact function of x ∈ R7. Further consider, the following
two sets of Index sets.

I1 = {1, 2, 3, 5}, g8 = 4M2 − (x2
1 + x2

2 + x2
3 + x2

5), J1 = {1, 2, 3, 5, 8} (6.9a)

I2 = {3, 4} , g9 = 2M2 − (x2
3 + x2

4) , J2 = {4, 9} (6.9b)

I3 = {5, 6, 7} , g10 = 3M2 − (x2
5 + x2

6 + x2
7) , J3 = {6, 7, 10} (6.9c)

In (6.9), we have p = 3 Index sets I with corresponding Index sets J.

I1 = {1, 3}, g8 = 2M2 − (x2
1 + x2

3) , J1 = {1, 3, 8} (6.10a)

I2 = {3, 4}, g9 = 2M2 − (x2
3 + x2

4) , J2 = {4, 9} (6.10b)

I3 = {4, 2}, g10 = 2M2 − (x2
2 + x2

4), J3 = {2, 10} (6.10c)

I4 = {2, 5}, g11 = 2M2 − (x2
2 + x2

5), J4 = {5, 11} (6.10d)

I5 = {5, 6}, g12 = 2M2 − (x2
5 + x2

6), J5 = {6, 12} (6.10e)

I6 = {6, 7}, g13 = 2M2 − (x2
6 + x2

7), J6 = {7, 13} (6.10f)

In (6.10), we have p = 6 Index sets I with corresponding Index sets J.

On the next page, we have presented a tabular comparison between (6.9) and
(6.10) based on the number of parametric variables when we pose the problem as
an SDP. It can be concluded from table 6.3 that, having p = 6 gives us a saving of
50 variables.
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Description p = 3 p = 6

SoS Representa-
tion

V = ∑3
k=1

(
qk + ∑j∈Jk

qjkgj

)
V = ∑6

k=1

(
qk + ∑j∈Jk

qjkgj

)
= q1 + q11g1 + q21g2 + q31g3 +
q51g5 + q81g1 + q2 + q42g4 +
q92g9 + q3 + q63g6 + q73g7 +
q103g10

= q1 + q11g1 + q31g3 + q81g8 +
q2 + q42g4 + q92g9 + q3 + q23g2 +
q103g10 + q4 + q54g5 + q114g11 +
q5 + q65g6 + q125g12 + q6 +
q76g7 + q136g13

Number of vari-
ables per Index
sets

I1 = (4+2
2 ) = 15

I2 = (2+2
2 ) = 6

I3 = (3+2
2 ) = 10

I1 = (2+2
2 ) = 6

I2 = (2+2
2 ) = 6

I3 = (2+2
2 ) = 6

I4 = (2+2
2 ) = 6

I5 = (2+2
2 ) = 6

I6 = (2+2
2 ) = 6

Total number of
variables due to
all Index sets

n1 = 5× (2+2
2 ) = 75

n2 = 3× (2+2
2 ) = 18

I3 = 4× (3+2
2 ) = 40

n1 = 3× (2+2
2 ) = 18

n2 = 3× (2+2
2 ) = 18

n3 = 3× (2+2
2 ) = 18

n4 = 3× (2+2
2 ) = 18

n5 = 3× (2+2
2 ) = 18

n6 = 3× (2+2
2 ) = 18

Total number of
variables due to
constraint (4.16c)

133 108

Total number of
variables due to
constraint (4.16d)

133 108

Variables de-
clared due to
candidate Lya-
punov function

(7+2
2 ) = 36 (7+2

2 ) = 36

Total number of
variables

302 252

Table 6.3: Breakdown of parametric variables and comparison based on number of Index sets con-
structed.



Chapter 7

Controller Synthesis

Summary This chapter focuses on the design of a control law based on the candidate
Lyapunov functions obtained in the previous chapters. We begin by reviewing Lyapunov
redesign technique in which an existing controller is made robust to external disturbances,
while requiring minimal information of the disturbance. Further, we review Control Lya-
punov functions (CLF) and Sontag’s formula for nonlinear stabilization. We also present
some intermediate results obtained while trying Lyapunov Redesign for Ørsted Satellite.
This chapter also serves as the motivation for future work. This chapter is based on [Kha15],
[Kha02], [Son89], [Tan06] and [Vid02].

7.1 Lyapunov Redesign

Consider the following nonlinear system

ẋ = f (x) + G(x)[u + δ(t, x, u)] (7.1)

where, x ∈ Rn is the state and u ∈ Rm is the control input. The functions f , G,
and δ are defined for (t, x, u) ∈ [0, ∞)×D ×Rm, where D ⊂ Rn is a domain that
contains the origin. We assume that f , G are locally Lipschitz and δ is piecewise
continuous in t and locally Lipschitz in x and u. The functions f and G are known,
while δ is unknown. A nominal model of the system is

ẋ = f (x) + G(x)u (7.2)

Suppose, we have a state feedback controller u = Φ(x) which stabilizes the ori-
gin of the nominal model (7.2) and suppose we have found a candidate Lyapunov
function for the autonomous system (7.1) such that it is continuously differentiable
and it satisfies (2.16a), (2.16b) and (2.16c) and can be stated as follows.

∂V
∂x

[ f (x) + G(x)φ(x)] ≤ −W(x) (7.3)

65
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where, W(x) is some positive definite function. Recall that previously in SDP’s 1
and 2, we have constrained the Lie derivative of the candidate Lyapunov function
to be less than −Γ ‖x‖2. We now state an important assumption regarding the
unknown disturbance δ.

Assumption 7.1 Assume that, with the modified control law u = Φ(x) + v where,
v will be designed later based on the Lie derivative of the candidate Lyapunov
function (hence, the name Lyapunov Redesign), then the uncertain term δ satisfies
the inequality,

‖δ(t, x, Φ(x) + v)‖ ≤ ρ(x) + κ0 ‖v‖ , 0 ≤ κ0 < 1 (7.4)

where, ρ(x) ≥ 0 is an measure of the size of uncertainty and is locally Lipschitz.
The bound (7.4) with the known ρ and κ0 is the only information we need to know
about δ(t, x, Φ(x) + v). For the sake of simplicity, we will be relaxing the notation
for δ(t, x, Φ(x) + v) and stating it as simply, δ.

Under the control u = Φ(x) + v, the closed-loop system, can be stated as follows.

ẋ = f (x) + G(x)Φ(x) + G(x)[v + δ] (7.5)

The Lie derivative of candidate Lyapunov function V(x) for (7.5) is given as
follows.

V̇ ≤ −W(x) + wTv + wTδ (7.6)

where, wT = ∂V
∂x G. The first term on the right-hand side is due to the nominal

closed-loop system. The second and third terms represent, respectively, the effect
of the control v and the uncertain term δ on V̇. Due to the matching condition, the
uncertain term δ appears at the same point where v appears. Consequently, it is
possible to choose v to cancel the (possibly destabilizing) effect of δ on V̇. We have

wTv + wTδ ≤ wTv + ‖w‖ ‖δ‖ ≤ wTv + ‖w‖ ‖ρ(x) + κ0 ‖v‖‖ (7.7)

We design v as

v = −β(x) · w
‖w‖ (7.8)

such that, with a nonnegative locally Lipschitz function β, we obtain

wTv + wTδ ≤ −β ‖w‖ + ρ ‖w‖ + κ0β ‖w‖ = −β(1− κ0) ‖w‖ + ρ ‖w‖ (7.9)

Choosing β(x) ≥ ρ(x)
1−κ0

∀x ∈ D, yields
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wTv + wTδ ≤ −ρ ‖w‖ + ρ ‖w‖ = 0 (7.10)

Hence, with the control (7.8), the derivative of V(x) along the trajectories of the
closed-loop system (7.5) is negative definite. The controller (7.8) is a discontinuous
function of the state x. The discontinuous function raises some practical (such as
inability of the controller to oscillate with very high frequency due to actuator lim-
itations) and theoretical issues (such as existence and uniqueness of solutions and
validity of Lyapunov analysis) which have been discussed in [Kha15] We thereby,
implement a continuous approximation of (7.8), given by

v = −β(x)Sat
(

β(x)w
µ

)
=


−β(x) w

‖w‖ , if β(x) ‖w‖ > µ

−β2(x) w
µ , if β(x) ‖w‖ ≤ µ

(7.11)

where, µ is a real positive constant number which decides the continuity of the
control law at the point of switching. Smaller the value of µ, more discontinuous
will be the controller.

We have applied Lyapunov Redesign technique on the Ørsted Satellite (dis-
cussed previously in Chapter 5). Recall, that the Ørsted Satellite is stabilized via a
PD control law. We have attempted to make the existing controller robust to dis-
turbances by applying Lyapunov Redesign, using the candidate Lyapunov function
obtained in (5.45). We present the simulation results as follows.
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Figure 7.1: Simulation results for Lyapunov Redesign on Ørsted Satellite

It can be concluded from fig. (7.1) that since there is no integral action, the
Quaternion state q is oscillating. The angular velocity is bounded due to the strong
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derivative action. The high amount of chattering is expected due to the switching
nature of the control law.

7.2 Sontag’s formula for nonlinear stabilization

Recall that, the classical Lyapunov’s stability Theorem (3) is defined for proving
the stability of an equilibrium point for an autonomous system (2.13). Therefore,
we need a generalization of Theorem 3 such that we can analyze the stability of a
system with inputs. Artstein [Art83] and Sontag [Son89] came up with the concept
of Control Lyapunov function (CLF) which can be stated as follows.

Theorem 7 Consider the stabilization problem for the system

ẋ = f (x) + g(x)u (7.12)

where, x ∈ Rn, u ∈ R, f (x) and g(x) are locally Lipschitz and f (0) = 0. Suppose
there is a locally Lipschitz stabilizing state feedback control u = χ(x) such that the origin
of

ẋ = f (x) + g(x)χ(x) (7.13)

is asymptotically stable. Then, there is a smooth Lyapunov function V(x) such that :

∂V
∂x

[ f (x) + g(x)χ(x)] < 0, ∀x 6= 0 (7.14a)

∂V
∂x

g(x) = 0 and x 6= 0 =⇒ ∂V
∂x

f (x) < 0 (7.14b)

If the origin of (7.13) is globally asymptotically stable, then V(x) is radially un-
bounded and the inequality (7.14b) holds globally.

Thus, the existence of a function V satisfying (7.14b) is a necessary condition
for the existence of a stabilizing state feedback control. Existence of a CLF is also
a sufficient condition for the existence of the following stabilizing state feedback
control.

Φ(x) =


−[ ∂V

∂x f +
√

∂V
∂x f 2 + ∂V

∂x g4], if ∂V
∂x g 6= 0

0, if ∂V
∂x g = 0

(7.15)

(7.15) is referred to as Sontag’s formula and the controller’s design ensures that
the Lie derivative is negative definite.

For, x 6= 0, if ∂V
∂x g = 0, then
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V̇ =
∂V
∂x

f < 0 (7.16)

and if ∂V
∂x g 6= 0, then

V̇ =
∂V
∂x

f − [
∂V
∂x

f +

√
∂V
∂x

f 2 +
∂V
∂x

g4] (7.17a)

= −
√

∂V
∂x

f 2 +
∂V
∂x

g4 < 0 (7.17b)

We have attempted to construct an SoS program based on Sontag’s formula
such that, we can directly obtain the CLF as well as the control law as follows.

Semidefinite Program 3

Find V(x) and Φ(x) (7.18a)

such that V(0) = 0, (7.18b)

V(x)−
p

∑
k=1

(Fk +
p

∑
j∈Jk

Fjkgj)− Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m + p (7.18c)

−
√

∂V
∂x

f 2 +
∂V
∂x

g4 −
p

∑
k=1

(Fk +
p

∑
j∈Jk

Fjkgj)− Γ ‖x‖2 ∈ Σ[x] , j = 1, · · · , m + p

(7.18d)

However, the SDP 3 is non-convex in nature and solving it is not possible with
available SDP solvers.
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Conclusion

The primary scope of this project was to find candidate Lyapunov functions and
exploit sparsity in system dynamics such that this approach becomes applicable to
complex systems. We can conclude that by applying Putinar’s Positivstellensatz
and SoS, we can find candidate Lyapunov functions using SDP 1. Fortunately, it
is unlikely for a practical dynamical system to have more than 15 states and thus,
the approach is scalable to bigger problems as well using SDP 2. However, it is
important to note that the results of these SDP’s are dependent on the accuracy
of solvers. Compared to LP, SDP is still not a mature technology and while, we
can verify the results using Theorem 6, we should still be careful while designing
controllers based on the same. Thus, the topic considered in the project requires
further investigation and we have compiled a list of possible future works.

8.1 Future Works

• Verify the candidate Lyapunov function for the Wind turbine model by sim-
ulating extreme wind conditions

• Find candidate Lyapunov function for different regions of a wind turbine
operation and verify them by designing controllers for the same

• Formulate a convex SDP for Sontag’s formula

• Apply Algorithm 1 for designing a control law for systems composed of
cascaded subsystems using backstepping

• Improve the Lyapunov Redesign control law for Ørsted Satellite.

• Find optimal adaptive gain for adaptive controllers using SoS and Putinar’s
Positivstellensatz

71
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Appendix A

Appendix A : Feasibility of constraints

A.1 Putinar Positivstellensatz representation

In this section of the Appendix, we have stated the constraint violation while ob-
taining the Lyapunov function for the wind turbine model using Putinar’s Posi-
tivstellensatz representation. The first 14 constraints represent the SoS constraint
on the SoS ’multipliers’. Constraint 15 represents the SoS constraint (2.16b) on the
Lyapunov function, Constraint 16 represents the SoS constraint (2.16c) on on the
Lie derivative of the Lyapunov function and finally, Constraint 17 represents the
SoS constraint (2.16a) on Lyapunov function.

ID Constraint Primal residual
1 SOS constraint (polynomial) 1.9303× 10−13

2 SOS constraint (polynomial) 6.0063× 10−13

3 SOS constraint (polynomial) 7.3896× 10−13

4 SOS constraint (polynomial) 5.914× 10−13

5 SOS constraint (polynomial) 6.8212× 10−13

6 SOS constraint (polynomial) 3.7836× 10−13

7 SOS constraint (polynomial) 1.9966× 10−14

8 SOS constraint (polynomial) 2.8422× 10−13

9 SOS constraint (polynomial) 8.5265× 10−13

10 SOS constraint (polynomial) 5.6843× 10−13

11 SOS constraint (polynomial) 3.979× 10−13

12 SOS constraint (polynomial) 2.9382× 10−13

13 SOS constraint (polynomial) 4.2633× 10−13

14 SOS constraint (polynomial) 3.6948× 10−12

15 SOS constraint (polynomial) 4.0745× 10−10
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ID Constraint Primal residual
16 SOS constraint (polynomial) 8.3144× 10−5

17 Equality constraint −1.4822× 10−21

Table A.1: Constraint violations for Wind turbine model while using Putinar’s Positivstellensatz
representation

Minimum eigenvalue Λmin(Q) of the obtained SoS Lyapunov function was 0.0002351.
Thus, as per Theorem 6, the obtained SoS certificate is nonegative over the consid-
ered semialgebraic set.

A.2 Sparse Putinar Positivstellensatz representation

In this section of the Appendix, we have stated constraint violations while ob-
taining the Lyapunov function for the wind turbine model using Sparse version
of Putinar’s Positivstellensatz representation. The first 36 constraints represent
the SoS constraint on the SoS ’multipliers’. Constraint 37 represents the SoS con-
straint (2.16b) on the Lyapunov function, Constraint 38 represents the SoS con-
straint (2.16c) on the Lie derivative of the Lyapunov function and finally, Constraint
39 represents the SoS constraint (2.16a) on Lyapunov function.

ID Constraint Primal residual
1 SOS constraint (polynomial) 2.7285× 10−12

2 SOS constraint (polynomial) 9.0949× 10−13

3 SOS constraint (polynomial) 8.8818× 10−16

4 SOS constraint (polynomial) 1.4779× 10−12

5 SOS constraint (polynomial) 9.4363× 10−13

6 SOS constraint (polynomial) 5.5511× 10−17

7 SOS constraint (polynomial) 1.1369× 10−12

8 SOS constraint (polynomial) 1.5916× 10−12

9 SOS constraint (polynomial) 2.6645× 10−15

10 SOS constraint (polynomial) 2.8955× 10−13

11 SOS constraint (polynomial) 1.6769× 10−12

12 SOS constraint (polynomial) 4.4409× 10−15

13 SOS constraint (polynomial) 1.1369× 10−13

14 SOS constraint (polynomial) 9.3969× 10−13

15 SOS constraint (polynomial) 3.5527× 10−15

16 SOS constraint (polynomial) 9.0949× 10−13

17 SOS constraint (polynomial) 2.8422× 10−14
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ID Constraint Primal residual
18 SOS constraint (polynomial) 2.2204× 10−15

19 SOS constraint (polynomial) 1.0914× 10−11

20 SOS constraint (polynomial) 1.819× 10−12

21 SOS constraint (polynomial) 8.8818× 10−15

22 SOS constraint (polynomial) 3.0695× 10−12

23 SOS constraint (polynomial) 1.5916× 10−12

24 SOS constraint (polynomial) 1.3878× 10−16

25 SOS constraint (polynomial) 4.5475× 10−13

26 SOS constraint (polynomial) 1.819× 10−12

27 SOS constraint (polynomial) 5.6843× 10−14

28 SOS constraint (polynomial) 1.4655× 10−13

29 SOS constraint (polynomial) 1.3642× 10−12

30 SOS constraint (polynomial) 4.8352× 10−12

31 SOS constraint (polynomial) 4.5475× 10−13

32 SOS constraint (polynomial) 1.819× 10−12

33 SOS constraint (polynomial) 3.5527× 10−14

34 SOS constraint (polynomial) 4.5475× 10−13

35 SOS constraint (polynomial) 3.4106× 10−13

36 SOS constraint (polynomial) 2.6645× 10−15

37 SOS constraint (polynomial) 9.3132× 10−10

38 SOS constraint (polynomial) 2.1854× 10−7

39 Equality constraint −5.3482× 10−23

Table A.2: Constraint violations for Wind turbine model while using Sparse Putinar’s Positivstellen-
satz representation

Minimum eigenvalue Λmin(Q) of the obtained SoS Lyapunov function was 0.032592.
Thus, as per Theorem 6, the obtained SoS certificate is nonegative over the consid-
ered semialgebraic set.


	Front page
	Preface
	Abstract
	Contents
	Nomenclature
	List of Tables
	List of Figures
	1 Introduction
	1.1 Literature review
	1.2 Motivation
	1.3 Contribution
	1.4 Report Outline

	2 Preliminaries
	2.1 Polynomial background and SoS polynomials
	2.2 Problem of finding SoS decomposition as a Primal form of SDP
	2.3 Semidefinite Programming
	2.3.1 General mathematical optimization problem and LP
	2.3.2 General form of SDP
	2.3.3 Duality

	2.4 Lyapunov Stability
	2.4.1 Equilibrium point
	2.4.2 Lyapunov Stability theorem
	2.4.3 Region of Attraction (ROA)


	3 Putinar's Positivstellensatz
	3.1 Semialgebraic sets
	3.2 Putinar's Positivstellensatz
	3.3 Finding Lyapunov functions using Putinar's Positivstellensatz
	3.4 Van Der Pol equations
	3.4.1 Estimation of ROA using semialgebraic sets

	3.5 Conclusion

	4 Sparsity in system dynamics
	4.1 Motivation
	4.2 Sparse and Dense Polynomials
	4.3 Newton Polytope
	4.3.1 Implementation of Newton Polytope in YALMIP

	4.4 Sparse Putinar's Positivstellensatz
	4.4.1 Construction of Index sets

	4.5 Computationally efficient SDP for finding Lyapunov function

	5 Applying Sparse Putinar Positivstellensatz
	5.1 Wind Turbine
	5.2 Adaptive Control
	5.3 Ørsted Satellite
	5.3.1 Coordinate systems
	5.3.2 Modeling of the Satellite with Quaternions
	5.3.3 Finding Candidate Lyapunov function

	5.4 Conclusion

	6 Computational considerations
	6.1 Verification of Candidate Lyapunov function
	6.2 Symmetry reduction and Post-processing by YAMIP
	6.3 Computational complexity
	6.3.1 SoS and SDP
	6.3.2 Putinar's Positivstellensatz
	6.3.3 Sparse Putinar's Positivstellensatz

	6.4 Practical computational comparison between SDP 1 and SDP 2
	6.5 Computational Savings obtained by using small Index sets

	7 Controller Synthesis
	7.1 Lyapunov Redesign
	7.2 Sontag's formula for nonlinear stabilization

	8 Conclusion
	8.1 Future Works

	Bibliography
	A Appendix A : Feasibility of constraints
	A.1 Putinar Positivstellensatz representation
	A.2 Sparse Putinar Positivstellensatz representation


