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Resumé

Denne rapport omhandler hvad et godt datasæt til øjenbevægelses klassificering er
og hvordan deep learning håndterer at klassificere øjenbevægelser. En grunding
gennemgang er blevet gjort af øjenbevægelses datasættet GazeCom og Lund 2013.
Ved at kigge på histogrammer af hastigheden og retning af fikseringer, sakkader,
smooth pursuit og post-sakkade oscillering (PSO) har det været muligt at undersøge
kvaliteten af annoteringerne i GazeCom. Det viste sig at især den manuelle annoter-
ing af sakkader ikke levede op til de fysiologiske egenskaber ved sakkader og dette
var et tegn på at datasættet er annoteret forkert. De samme problemer var ikke
tilstede i Lund 2013. Derfor blev Lund 2013 valgt til at træne et neuralt netværk til
at klassificere fikseringer, sakkader, smooth pursuit af PSO’er. Forskellige modeller
blev evalueret for at finde ud af hvilke der er bedst til klassificering. Diverse features
blev også brugt for at se hvilke der har den største effekt på klassificeringen. Der
blev foretaget en evaluering på både datapunktniveau og på helhedsniveau. Helhed-
sniveau evalueringen blev implementeret af forfatteren da ingen implementering var
tilgængelig. Evalueringen viste at det bedste netværk var et multi resolution neural
netværk, men det var ikke markant bedre end de andre netværker der blev testet.
Den største udfordring var at skelne mellem fikseringer og smooth pursuit og dette
problem blev ikke løst.
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This projects outlines how to choose a
good eye movement dataset and eval-
uate a deep learning approach to eye
movement classification. A thorough
investigation of the annotation of the
GazeCom dataset was performed. By
looking at different feature distributions
and event durations of eye movements
it was possible to show that the anno-
tations did not comply with the phys-
iological properties of said movements.
A similar investigation was performed
on the Lund 2013 dataset and this
showed that the features were in agree-
ment with physiological properties. A
1D Convolutional Neural Network Bidi-
rectional Long Short-Term Memory
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Chapter 1

Introduction

Eye tracking is a field that has been in rapid growth over the last 20 years. It has
seen success in various academic field like usability analysts, cognitive psychologist,
reading research and sports science. It has been used study schizophrenia, reading
strategies, and human computer interaction by gaze Holmqvist et al. [2011]. Newer
uses of eye trackers are foveated rendering [Patney et al., 2016], biometrics [Friedman
et al., 2017] and integration with Virtual Reality [Tobii, 2019]. It has been also been
used as assistance technology for people with various disabilities. In other words it’s
a useful tool which has been helpful in a slew of different area. Companies like Tobii
make affordable, easy to use eye trackers that can integrate with modern gaming
becoming more of an everyday item. Some of the major producers of eye trackers
include Tobii, SensoMotoric Instruments (SMI) and EyeLink. Eye trackers differ
depending on their usage. Some operate in low frequencies like 30 Hz while other
operate in 1000 Hz. The recording techniques are different and the algorithms that
classify the eye movements also often differ from eye tracker to eye tracker and from
company to company. They are often proprietary and classify different eye move-
ment. Some only classify saccades and fixations while others might classify micro
saccades or smooth pursuit. A survey of 112 eye tracking researchers conducted by
Hessels et al. [2018] show that 62% of the researchers use manufacturers classification
software while 25% use algorithms described in literature and 58% use self-written
software. It was possible to answer with multiple answers. This can make it diffi-
cult to compare research as this also changes the definition of the eye movements
depending on the algorithm. The same survey also showed that conceptually there
is a difference in how researches defined fixations and saccades. In recent years the
classification algorithms have started to move threshold based algorithms [Salvucci
and Goldberg, 2000] to machine learning based algorithms [Hoppe and Bulling, 2016;
Startsev et al., 2018; Zemblys et al., 2018]. This projects focus will be eye movement
classification as it is the heart of eye trackers and has implications on the eye trackers
usage.
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Chapter 2

Eye movement classification

This chapter is a review of the state of the art algorithm for eye movement clas-
sification. It contains a summary of the different datasets that are used and their
availability, the evaluation metrics for the classification algorithms and the algorithms
themselves.

2.1 Eye movements
This project will only concern itself with the four major eye movements; fixation,
saccades, smooth pursuit and Post-Saccadic Oscillation (PSO). According to Hessels
et al. [2018] definitions of these events differ from researcher to researcher and there
does not seem to be a consensus amongst the eye movement community. This section
consists of description of the movements and their characteristics. To be as clear as
possible a definition of some events is also given.

2.1.1 Fixation

From Leigh and Zee [2004] the definition of a fixation is "Holds the image of a
stationary object on the fovea by minimizing ocular drifts.". In other words it is
when the eye is looking at target that is not moving. The fovea is the part of the eye
which has a high concentration of cones which allow for high acuity vision. The fovea
takes up a very small portion of visual field, approximately the size your thumbnail if
you extend your arm straight from yourself. The rest of the visual field is low acuity
vision which means that the eye has to move it self to get an object into the part of
the visual field where the fovea is. While the eye is fixating there are small tremors
and drifts that occur so the eye never truly still. There is no maximum duration of
a fixation but they typically span between 200 - 400 ms [Holmqvist et al., 2011].

2.1.2 Saccade

A saccade "brings images of objects of interest onto the fovea" [Leigh and Zee, 2004].
They are very rapid and short movements. Their durations are typically between

3



4 Chapter 2. Eye movement classification

between 30-80 ms spanning amplitudes of 4deg - 20deg and having a velocity of
30 deg /s to 500 deg /s [Holmqvist et al., 2011]. They are ballistic in nature and
predetermined, meaning that that once the movement has started it doesn’t change
until it reaches the predetermined end. An example if a saccade can be seen in
Figure 2.1. There are also movements called micro saccades which are very small
saccades having amplitudes of around 0.16 deg - 0.66 deg [Holmqvist et al., 2011].
Micro saccades are beyond the scope of this project.

2.1.3 Post-Saccadic Oscilation

PSO are small movements that can occur at the end of a saccade. They have previ-
ously been called dynamic overshoot/undershoot and glissades but PSO is the term
that is currently being used. They are characterized by having a small wobble lead-
ing to the fixation after a saccade. The cause of the PSO is not entirely clear as
some believe it is caused be the recording equipment Deubel and Bridgeman [1995],
others believe it has a neural cause Bahill et al. [1975a] and Holmqvist et al. [2011]
believes the eye itself wobbles after a saccade. This disagreement also reflects in the
problem that PSOs are a eye movement raters struggle to agree on. Never the less
they are events that occur when recording with an eye tracker and they can influence
the characteristics of saccades and fixations Nyström et al. [2013]. They are typically
very short event lasting 10-40 ms with an amplitude of 0.5deg - 2 deg and having
velocities between 20 deg /s to 140 deg /s [Holmqvist et al., 2011]. They also don’t
occur after every saccade. An example can be seen in Figure 2.1.
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Figure 2.1: An example of a fixation, saccade and PSO in a real recording.
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2.1.4 Smooth pursuit

Smooth pursuit is when the eye is following a moving target. It is typically in the
range of 10deg /s to 30 deg /s [Holmqvist et al., 2011] but it can reach up to 100
deg /s Meyer et al. [1985] but those movements typically consists of both smooth
pursuit and saccades termed catch-up saccades.

2.2 Datasets
The datasets can be split into two main categories. Low frequency eye trackers,
25-30 Hz, and high frequency eye trackers, 300-1000 Hz.

2.2.1 Driving data

There are three datasets that deal with recording eye movements while driving. They
all use the Diklabis mobile infrared eye tracker at 25 Hz.

Tafaj et al. [2012] recorded a dataset that was used in a broader study. It con-
tained three groups of subjects; 1. subjects suffering from homonymous visual field
defects. 2. subjects suffering from glaucoma 3. control subjects. They do not state
the amount of participants used or the amount of data recorded. The subjects were
tasked with driving a car while their eye movements were recorded. The dataset does
not contain labels and is not publicly available.

Tafaj et al. [2013] recorded 27 subjects driving in an extensive virtual driving
simulation. The subjects drove a route of 37.5 km that contained 10 hazardous
situations. The situations labelled by manually annotating a bounding box around
the object that causes hazardous situation. This is because the study concerns itself
with whether the subjects would perceive and react to the presented hazards.

Braunagel et al. [2016] recorded 85 subjects driving and doing secondary tasks
in a virtual driving simulation. The subjects drove for 35 minutes and this resulted
in 35.5 hours of recording. 1.5 hours of this was manually labelled by two coders
resulting in 6623 fixation samples and 1384 saccades samples.

2.2.2 Clinical data

Santini et al. [2015] recorded 6 subjects doing what they described as visual stim-
uli1. A Diklabis mobile infrared eye tracker at 30 Hz was used. The simuli is a dot
presented on a uniform background and which will move to produce fixation, sac-
cades and smooth pursuits of varying length, velocity and amplitude. They divided
smooth pursuit into circular movement and straight movement. Four datasets were
collected from each subject; I) Fixations, saccades, and all possible straight pursuits.
II) Fixations and saccades. No pursuits. III) Fixations, saccades, and all circular
pursuits. IV) Fixations, saccades, straight and circular pursuits. As the algorithm

1Publicly available at http://ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html?
&L=1

http://ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html?&L=1
http://ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html?&L=1
http://ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html?&L=1
http://ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html?&L=1


6 Chapter 2. Eye movement classification

for eye movement Santini et al. [2015] proposed does not use gaze position but pupil
position, only the pupil was recorded. The eye tracker was not calibrated before
each subject. The datasets were manually coded one coder. This produced 18682
fixation samples, 1296 saccade samples and 4143 smooth pursuit samples. Noise was
also classified but only stated as ≈ 1.76% of the entire dataset and not in number of
samples. In total approximately 13.4 minutes of recording was recorded.

2.2.3 Hoppe and Bulling

Hoppe and Bulling [2016] recorded 16 subjects with a Tobii TX300 remote eye tracker
at 300 Hz. The subjects were presented with dot stimulus, 10 static images, 7 videos
and 4 reading task. A subset made up of random amounts of dot stimulus task,
one random image viewing task, one random video viewing task and two reading
tasks per subject were manually annotated. Number of coders was not stated. This
resulted in a total of 400000 labelled samples spanning over 1626 fixation events,
2647 saccades events and 1089 pursuit movements events. The duration of events or
sample distribution was not stated. In total approximately 22.2 minutes of labelled
recording.

2.2.4 GazeCom

Dorr et al. [2010] recorded 76 subjects with a SR Research EyeLink II eye tracker
at 250 Hz. The subjects were spread out over three experiments. First experiment
had 54 subjects that were tasked with viewing 18 movies of real-world scenes in and
around Lübeck. Second experiment 11 subjects were brought in two days in a row for
repeated measures. They watched four Hollywood movie trailers six selected movies
from the 18 real-world movies. Third experiment also contained 11 subjects. They
were shown nine stop motion movies made from the real-world footage movies in
first experiment. Afterwards they were shown static images from the remaining nine
movies from the first experiment. Agtzidis et al. [2017] labelled the whole dataset
by first automatically labelling the whole dataset and then having manual coders go
through it and correct it2. Only the data from experiment one was labelled resulting
in about 4.3 million samples spread across 38629 fixations events, 39217 saccades
events, and 4631 smooth pursuits events. This dataset seems to be the largest pub-
licly available manually labelled dataset and is about ≈4.8 hours of recording. It
could be viewed as a benchmark dataset since multiple state of the art eye move-
ment classification algorithms have been tested on the data and their performance is
also publicly available.

2.2.5 Lund 2013

Larsson et al. [2013] recorded 31 subjects with a Hi-Speed 1250 eye-tracker from
SensoMotoric Instruments at 500 Hz. The subjects were presented with static images,

2Publicly available at http://michaeldorr.de/smoothpursuit/

http://michaeldorr.de/smoothpursuit/
http://michaeldorr.de/smoothpursuit/
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reading, video clips, moving dot stimuli and vertical scrolling text. Only a subset
of images, moving dot stimuli and video clip was manually labelled by two raters
Marcus Nyström (MN) and Richard Andersson (RA)3 . The data was annotated
into fixation, saccades, PSOs, smooth pursuit, blinks and undefined. The full size of
the labelled recordings were 12.75 minutes but Zemblys et al. [2018] used only the
image task and reported that it consisted of 151639 samples (303.28 seconds) with
77.78% fixations, 8.93% saccades, 4.96% PSO, 5.03% blinks and 0.17% undefined.

2.2.6 gazeGenNet

Zemblys et al. [2018] used a subset of the Lund 2013 dataset that contained the
image viewing task to generate synthetic data. The subset was 43.78 second and
contained 85.57% fixations, 10.45% saccades and 3.98% PSOs. These were fed to
a sequence-to-sequence Long Short-Term Memory (LSTM) with a Mixture Density
Network as an output layer. This made it possible to train a network that would
generate 10 second long synthetic recordings. The recordings were then heuristicly
augmented to make the signal close to real signal. This entails enforcing different
rules e.g. forcing maximum saccade duration, removing too short fixations or sac-
cades, removing saccades of certain amplitudes. After the heuristics the result is ≈5.4
hours of synthetic recording. The dataset is not publicly available but the code for
gazeGenNet is4.

2.2.7 Reading study

Friedman et al. [2018] used a subset from a larger eye-tracking study. 20 subjects
were recorded with EyeLink 1000 at 1000 Hz. Only the first 26 seconds of each
subject were labelled. Four different algorithms automatically labelled the data into
fixation, saccade, PSO, noise or artifact, and unclassified which is publicly available5,
but no manual labelling was done.

A total of of 9 datasets have been reviewed with 5 being publicly available. Only one
dataset contained labelling of fixations, saccades, PSOs and smooth pursuit while
the rest contained a subset of these movements. The stimuli used in the datasets is
varying from real world situations to clinically controlled environments which also
makes them difficult to compare to each other. The summary of all the dataset can
be seen in Table 2.1.

3Publicly available at https://www.humlab.lu.se/en/person/MarcusNystrom/
4Publicly available at https://github.com/r-zemblys/gazeGenNet
5Publicly available at https://digital.library.txstate.edu/handle/10877/6975

https://www.humlab.lu.se/en/person/MarcusNystrom/
https://www.humlab.lu.se/en/person/MarcusNystrom/
https://github.com/r-zemblys/gazeGenNet
https://github.com/r-zemblys/gazeGenNet
https://digital.library.txstate.edu/handle/10877/6975
https://digital.library.txstate.edu/handle/10877/6975
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Tafaj et al. [2012] Diklabis 25
Tafaj et al. [2013] Diklabis 25 27
Braunagel et al. [2016] Diklabis 25 87 x x 1.5 h
Santini et al. [2015] Diklabis 30 6 x x x x 13.4 m x
Hoppe and Bulling [2016] Tobii TX300 300 16 x x x 22.2 m
Agtzidis et al. [2017] EyeLink II 250 54 x x x 4.77 h x
Larsson et al. [2013] Hi-Speed 1250 500 31 x x x x x x 12.75 m x
Zemblys et al. [2018]† Hi-Speed 1250 500 x x x 5.43 h x
Friedman et al. [2018]† EyeLink 1000 1000 20 x x x x x 8.66 m x

Table 2.1: Summary of the datasets that have been described in section 2.2. It shows what type of
eye tracker was used for recording, the sampling frequency, the manually coded classes, the amount
of labelled data and the availability of the dataset. † indicates that the labelling was not done by
manual coders.

2.3 Evaluation metrics
There does not seem to be a commonly accepted method among the eye tracking
community as to how to evaluate an algorithms performance. This sections contains
some of the different evaluation metrics that have been used to evaluate classification
algorithms.

2.3.1 Behavioural scores

Komogortsev et al. [2009] introduced metrics to measure accuracy when the pre-
sented stimuli is known. Since the stimuli is known an expected accuracy based
on physiological traits can be calculated and this can be compared to the classi-
fication of an algorithm. Fixation Quantitative Score (FQnS) compares the num-
ber of shown fixation stimuli to the number of fixations detected, Equation 2.1.
fixation_detection_counter is the amount of samples correctly detected as fixation
while stimuli_fixation_points is the total number of fixation samples. This metric
will never reach 100% due to the the brain taking approximately 200 ms to calculate
and initiate a saccade.

FQnS = 100 ∗ fixation_detection_counter
stimuli_fixation_points

(2.1)

Fixation Qualitative Score (FQlS) compares the proximity of the known stimuli to
the positional accuracy of the detected fixation. It is not for measuring classifica-
tion accuracy but instead a measurement that the subject is actually looking at the
presented stimuli. Equation 2.2 takes the distance between the position measured in
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degrees of the sample labelled as fixation and the position of the presented sample of
the stimuli for each sample labelled as fixation and averages over number of samples.

FQlS = 1
N

∗
N

∑
i=1
fixation_distancei (2.2)

FQlS is ideally 0○ but due to inaccuracies in eye trackers it will never be that low and
should preferably remain below 0.5○ If the FQlS is too high this is either an indication
that the subject was not looking at the stimuli or that something is wrong with the
eye tracker. Lastly the Saccade Quantitative Score (SQnS) compares the amount of
detected saccades to the number of presented saccade. A saccade is defined here as a
jump from one fixation stimuli to another fixation stimuli. The distance between the
two fixations in the stimuli is added to total_stimuli_saccade_amplitude while the
distance between detected fixations is added to total_detected_saccade_amplitude,
Equation 2.3

FQnS = 100 ∗ total_detected_saccade_amplitude
total_stimuli_saccade_amplitude

(2.3)

This value can be above 100% if behaviour such as PSO or overshooting is present.

2.3.2 Hierarchical error rules

Friedman et al. [2018] developed a method to manually inspect the labelling from
an algorithm and the raw signal to determine the accuracy of the algorithm. A
hierarchical rule set of 32 types of error was created. The rater is presented with the
signal and algorithm classification and will decide if the event is detected correctly
or classified as something else and if the timing is too early or too late. This rule
set was developed for 1000 Hz data and is difficult to generalize to other sampling
frequencies as some of the rules are defined by the number of samples. It is also very
time consuming and difficult to replicate. Because of the hierarchical nature of the
rules some errors will never be present because they will already be classified by a
different type i.e. saccades timing errors are labelled before PSO therefore the errors
will increase in saccades.

2.3.3 Global metrics

Accuracy defined as Equation 2.4 shows a simplistic picture of the algorithms per-
formance which can be lacking.

Accuracy = True Postitive +True Negative
Positive +Negative

(2.4)

Since there is naturally a much higher occurrences of fixation in the signal, classifi-
cation of fixations will increase the overall accuracy but will not be very informative
of how well the algorithm would perform in the other classes. This is sometimes
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known as the accuracy paradox. To consider how the classification does with fairer
representation multiple metrics have been found during the literature review. An
overview of a metrics occurrence can be seen in Table 2.2

Authors Accuracy F1- Score Specificity Recall Precision Cohen’s Kappa
Tafaj et al. [2012]
Tafaj et al. [2013] X X X
Santini et al. [2015] X X X X
Braunagel et al. [2016] X X X
Hoppe and Bulling [2016] X X X X
Startsev et al. [2018] X X
Zemblys et al. [2018] X X

Table 2.2: An overview of how many times a metric has been reported in the reviewed literature.

Precision

Precision was used by [Braunagel et al., 2016; Hoppe and Bulling, 2016] and is defined
as Equation 2.5.

Precision = True Postitive
True Positive + False Positive

(2.5)

Where True Positive (TP) are samples that have been classified as belonging to
the class that it actually belonged to. False Positive (FP) are samples that have
been classified to belong to the class when they actually belonged to a different
class. Precision, also called Post Predictive Value (PPV), represents the ratio of TP
samples from the total amount of positively classified samples. In other words; of all
the samples that were classified as positive how many were actually correct.

Specificity

Specificity was by [Chen and Epps, 2013; Chen and Chien, 2015] and is defined as
Equation 2.6.

Specificity = True Negative
True Negative + False Negative

(2.6)

Where True Negative (TN) are samples that have been classified as not belonging to
the class correctly. False Negative (FN) Are samples that have been wrongly classified
as not belonging to the class, when they did belong to it. Specificity, also known as
selectivity or True Negative Rate (TNR), represents the ratio of TN samples from
the total amount of negative classified samples. In other words; of all the samples
classified as negative how many where actually negative.
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Recall

Recall was used by [Tafaj et al., 2013; Chen and Chien, 2015; Braunagel et al., 2016;
Hoppe and Bulling, 2016] and is defined as Equation 2.7.

Recall = True Postitive
True Positive + False Negative

(2.7)

Recall, also known as sensitivity, hit rate, and True Positive Rate (TPR), represents
the ratio of classified TP samples from actual total amount of samples belonging to
that class. In other words; from the total amount of samples belonging to a class
how many were correctly classified.

F1 score

The F1 score was the most commonly used metric [Braunagel et al., 2016; Hoppe and
Bulling, 2016; Startsev et al., 2018; Zemblys et al., 2018]. It is defined as Equation 2.8.

F1 = 2 ∗ (Recall ∗Precision)
(Recall +Precision)

(2.8)

It is a harmonic mean so when using the F1 score both recall and precision have to
be high for the resulting metric to be high. This means that it does not suffer from
the accuracy paradox. This makes global comparison easier.

Cohen’s Kappa

Cohen’s Kappa is a measurement between how similarly two raters rate the same
signal. It is used to compare how much manual raters agree when rating an eye
movement signal. Another use is to compare how much an algorithm agrees with a
manual rater. Cohen’s Kappa was used by [Chen and Chien, 2015; Startsev et al.,
2018; Zemblys et al., 2018]İt is defined as Equation 2.9

κ = po − pe
1 − pe

(2.9)

where po is the relative observed agreement among the raters. It can be thought of
as an accuracy because it represents the fraction of samples that the voters agree on
relative to total number of samples. pe the hypothetical probability that the raters
would agree by chance. It is given by Equation 2.10

pe =
1
N2 ∑

k

nk1nk2 (2.10)

where N is number of samples, k is number of classes and nki is number of times the
rater i predicted category k. The metric lies between a value of 0 to 1 with 0 being
no agreement and 1 being total agreement. The Kappa is commonly interpreted as
such:
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• 0.1 – 0.20 = slight agreement.
• 0.21 – 0.40 = fair agreement.
• 0.41 – 0.60 = moderate agreement.
• 0.61 – 0.80 = substantial agreement.
• 0.81 – 0.99 = near perfect agreement

2.3.4 Sample and Event level difference

A common evaluation of the signal in the literature has been to look at both the
sample level and event level. The difference between them is that a sample is one
single point of a recording while an event is a number of consecutive points that form
the event that eye perform, e.g. fixation. While it is straight forward to segment the
signal into event it is not straight forward to match an predicted events to events
from the ground truth. Hoppe and Bulling [2016] have used the naive approach of
simply using the majority as an indicator of which event to match. So an event from
the ground truth is matched with the event from prediction that has the majority of
samples that occur during ground truth. They then reported the confusion matrix
on the event level.

Hooge et al. [2017] used a different method of event matching. An event is
matched with the earliest event that overlaps it. It is then labelled as a hit if they
are both the same class. If an event from the predicted stream is not matched with
an event from the ground truth because the ground truth is matched with an earlier
event, it is labelled as a false alarm (FA). If an event from ground truth end up being
unmatched it is labelled as a miss. The different scenario can be seen depicted in
Figure 2.2 from Hooge et al. [2017]. These are then used to calculate an event level
F1 score defined as Equation 2.11

F1 = 2 ∗#Hits
2 ∗#Hits +#Misses +#False Alarms

(2.11)

where #Hits can be thought of as TP, #Misses as FN and #False Alarms as FP.
They also introduce two other metrics derived from this method of event matching
called Relative Timing Offset (RTO) and Relative Timing Difference (RTD). RTO
is the mean of the offsets between events while RTD is the deviation of the same
distribution. These are calculated in two passes, one for the beginning offset of events
and one for the ending offset of events. To match the ends of event the matching
algorithm is simply flipped and the matching is done from reverse. The paper does
not specify on what pass the F1 score is calculated, which is important since this
matching would produce asymmetric F1 score.

Zemblys et al. [2018] tried to combine Hoppe and Bulling [2016] and Hooge et al.
[2017]. This is done by using the same classifications of TP, FN and FP but instead
of matching with the earliest event they match the ground truth with the event that
has the largest overlap.
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Figure 2.2: Event matching used in Hooge et al. [2017]. Reference is the ground truth and test is
an algorithms output. The figures is taken from Hooge et al. [2017].

Startsev et al. [2018] tried to improve Hooge et al. [2017] by using a metric from
computer vision called Intersection over Union (IoU). It is a measurement of how
much two areas overlap defined as Equation 2.12 which ranges from 0 to 1:

IoU = Area of Overlap
Area of Union

(2.12)

When matching with the first event that occurs it is used as a threshold. Only
events with an IoU of 0.5 are registered as hits so that two events cannot be matched
with the same ground truth. Instead of calculating the RTO and RTD they use the
average IoU as a an overall metric for a class. For this FP, FN and hits with with
and IoU below 0.5 are set to an IoU of 0.

2.4 Algorithms
The common approaches to eye movement classification algorithms have traditionally
been threshold based or dispersion based. Newer approaches have tried to utilise sta-
tistical model and machine learning to improve classification. This section contains
the explanation of some modern eye move classification algorithm.

2.4.1 Classical Algorithms

Velocity-Threshold Identification (I-VT) is a classical thresholding algorithm. The
instantaneous velocity is used and an empirically chosen threshold is applied. Every-
thing below the threshold is classified as fixation and everything above as saccade.
Dispersion-Threshold Identification (I-DT) is a dispersion based algorithm that uses
the gaze position. A moving window is applied to the signal and when the dispersion
of the window crosses an empirically set threshold threshold everything in the win-
dow is set to fixation. Samples then not marked as fixation are marked as saccade.
Hidden Markov Model Identification (I-HMM) is probabilistic approach where a two
state Hidden Markov Model (HMM) uses the instantaneous velocity to learns the
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distributions and transitional probabilities of fixations and saccades [Salvucci and
Goldberg, 2000].

The classical approaches mainly classify saccades and fixations, as smooth pursuit
is a difficult movement to classify. Velocity and Velocity Threshold Identification (I-
VVT) is an expanded I-VT that tries to classify smooth pursuit. Here two velocity
based threshold are used; Tvs and Tvp. Everything above Tvs is classified as saccades,
unclassified samples below Tvp and the rest are classified as smooth pursuit. Velocity
and Movement Pattern Identification (I-VMP) uses the same approach as I-VVT to
classify the saccades. For the unclassified points an empirically selected temporal
window is applied. Inside the window the angle between each adjacent point and
the horizontal axis is computed. These angels are mapped to the unit circle and if
the mean of these angles is above an empirically chosen threshold they are marked
as smooth pursuit. Velocity and Dispersion-Threshold Identification (I-VDT) has
the same approach as I-VVT for computing the saccades. On the remaining points
a dispersion threshold is applied as in I-DT and the points below the threshold are
marked as fixation and above as saccades [Komogortsev and Karpov, 2013].

A more recent algorithm using similar approaches to the classical is the Modified
Nyström and Holmqvist (MNH) by Friedman et al. [2018] which classifies fixations,
saccades and PSOs. It is velocity based, but the velocity is smoothed by a Savitysky-
Golay filter and transformed to a radial velocity using Equation 2.13 where V elx is
the horizontal velocity and V ely is the vertical velocity.

radial velocity =
√
V el2x + V el2y (2.13)

Empirically set velocity and acceleration thresholds are used to remove noise and
artifacts. A saccade peak velocity threshold of 55 deg/s are used to identify potential
saccades and a saccade subthreshold of 45 deg/s to identifying when to search for
a local minimum. Because the Sovitsky-Golay filter introduces a delay into the
velocity the beginning and end of a saccade is set to be 5 samples before or after the
local minimum. These thresholds can be seen depicted in Figure 2.3a. To classify
PSOs the only adaptive threshold in the algorithm is used; 90th percentile of velocity
noise distribution. The first 5 consecutive samples that appear below that threshold
mark the end of the PSO. The PSOs are then categorised as small, moderate and
large depending on if they cross the saccade peak velocity threshold, the subsaccade
peak velocity threshold or the small PSO velocity threshold which set at 20 deg/s,
respectively. The PSO thresholds are depicted in Figure 2.3b. Fixations are then
whatever has not been classified as saccade, PSO or noise or artifact. The MNH has
been hand crafted specifically for reading tasks using the EyeLink 1000 eye tracker
at 1000 Hz.
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(a) Saccade thresholds.
(b) PSO thresholds.

Figure 2.3: A depiction of how the thresholds used for saccade and PSO detection of the MNH
taken from [Friedman et al., 2018].

2.4.2 Bayesian Mixed Model

Introduced by Tafaj et al. [2012] the Bayesian Mixed Model (BMM) is a machine
learning based approach designed for classification of a live signal from a low fre-
quency recording of 25 Hz. It was developed to be used for assistance during driving
and was tested used driving data, section 2.2.1. The instantaneous velocity is used to
learn the parameters of Gaussian distributions representing fixations and saccades,
seen in Equation 2.14

p(x) =
K

∑
i=1
φ ∗N (x∣µi, σi) (2.14)

with φ being the prior of the distribution and µ being the mean and σ is the standard
deviation. This is done by letting the recording run for 200 samples which correspond
to 8 seconds and using Expectation-Maximization (EM) to learn the parameters.
Whenever a new sample is recorded the parameters are recalculated. Braunagel et al.
[2016] claimed that the BMM adapted too slowly and could not handle changes in
the underlying distributions which could be cause by i.e. the subject suddenly doing
a secondary task. They proposed a new algorithm Moving Estimate Classification
(MERCY) which uses weights and threshold to decide how to update the parameters.
When a new sample is predicted new parameters are learned as with BMM. A second
set of parameters are estimated by using Equation 2.15

µkn+1 =
ωµkn + vn+1

ω + 1
(2.15)

where µkn+1 is the estimated mean,µkn is the previous mean, ω is the size of the weight
and vn+1 is the velocity of the newest sample. The standard deviation and prior is
estimated in a similar fashion. If the distance between the learned parameters and
the estimated parameters are larger than a threshold l, which they set to zero, the
estimated parameters are used for Gaussians. This causes the model to be able to
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handle shifts in the underlying distribution and the ω decides how fast or slow the
algorithms adapts, which was chosen to be ω = 10.

Tafaj et al. [2013] expanded BMM to classify smooth pursuit. Principal Compo-
nent Analysis (PCA) together with an empirically set threshold t is determine if the
last k fixation samples are classified as fixation or smooth pursuit, Equation 2.16.

σ2
2 ∗ ∣∣u2∣
σ1

2 ∗ ∣∣u1∣
= σ2

2
σ1

2∗
=< t (2.16)

Here σ1 and σ2 are the largest and second largest eigenvalues and u1 and u2 are the
corresponding eigenvectors. The logic being that smooth pursuit would be classified
as fixations by BMM since it’s velocity is usually slower than saccades. The variation
between the samples should be small for fixations while smooth pursuit would have
larger ions.

Santini et al. [2015] added classification of smooth pursuit to BMM with a dif-
ferent approach. Fixations and saccades are classified the same way as BMM while
the probability of smooth pursuit is calculated by Equation 2.17

p(sp) = ri =
1
Nw
∑([Wi > 0]) (2.17)

where ri is the movement ratio over the window Wi which contains the last N ve-
locities. [Wi > 0] means that velocities above zero counted as 1 and velocities below
as 0. This produces a value between 0 and 1 depending on how much movement
there is during the window which reflects the probability of smooth pursuit p(sp)
as occurring. The window size was set to be 1.5 times maximum saccade duration
which they claim is 80 ms.

2.4.3 Deep Learning

Deep learning has been used in various fields which great success but to the field of
eye movement classification it is relatively new. To the authors knowledge currently
three papers using deep learning for this task with the earliest being Hoppe and
Bulling [2016]. They claim to use an end-to-end Convolutional Neural Network
(CNN) architecture to classify a single eye movement sample at a time from a 30
sample window containing the horizontal and vertical gaze position. The network is
not end-to-end though since the input of the network is the Fast Fourier Transform
(FFT) of the 30 second sample window. The architecture consists of a convolution
layer of size 10x1, maxpooling, a fully connected layer and output layer of three
classes. It classifies fixations, saccades and smooth pursuit and was trained with the
dataset described in section 2.2.3.

Zemblys et al. [2018] proposed a architecture they named gazeNet to do sequence-
to-sequence classification. The network consists of two convolutional layers with
kernel sizes of 2x11 followed by three bi-directional Gated Recurrent Unit (GRU)
layers and a fully connected layer at the end. The network classifies fixation, saccade
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and PSOs. The network was trained with synthetic data generated by gazeGenNet,
section 2.2.6. It was compared with several state-of-the-art algorithms for PSO
detection including the MNH and seemed to outperform them on multiple datasets.

Startsev et al. [2018] a 1D-CNN with BLSTM sequence-to-sequence network that
classifies fixations, saccades and smooth pursuit. It has three convolutional layers
with kernel size of 3x1 followed by a fully connected time distributed layer, BLSTM
layer with 16 units, fully connected time distributed layer and an output layer. The
output layer has 5 classes as it also classifies noise and unknown. As input differ-
ent features and their combination were tested; gaze position (x and y coordinates),
speed, acceleration and direction. The best combination was speed and direction.
Different input sizes were also tested with a input window corresponding to 1 second
of recording being the best. It was trained on the GazeCom dataset, section 2.2.4.
Various feature combinations were compared to several state-of-the-art fixation and
saccade only detections algorithms as well as some smooth pursuit algorithms on
the GazeCom dataset. Most feature combinations were either competitive or out-
performed the competition with the best neural network results having an average
F1 score of 0.830 and the best non deep learning algorithm being 0.769. On other
datasets it also performed competitively but not outperforming as much as with
GazeCom.

Figure 2.4: The 1D-CNN with BLSTM architecture, figure from Startsev et al. [2018].

2.5 Problem statement
Eye movement classification is not a field that has been figured out and there seems
to be room for improvement, especially in regards to PSOs and smooth pursuit.
There does also not seem to be a common agreement of how to event evaluate the
algorithms which can make it difficult to compare their performances. Deep learning
is a relatively new approach in this field and not much research has been done on
the topic. One of the limitations of deep learning is that is requires large amounts
of labelled data, which there is unfortunately not a lot of publicly available. It
is very time consuming and resource exhaustive to manually score eye movement
recoding and there seem to be disagreement in the community about the specifics of
scoring. The largest available manually annotated gaze eye movement gaze dataset
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is GazeCom which contains around ∼4.7 hours of recording with the second largest
being the Lund 2013 dataset at ∼12.75 minutes. GazeCom also seems to be the only
dataset with publicly available benchmark scores for different algorithms on it. The
few networks that do exist seem to perform competitively or even outperform the
state-of-the-art non deep learning algorithms. In all three instance of deep learning
there were no exploration as to how the networks actually labelled the movements,
only global metrics were reported. The problem statements, based on the literature
review in this chapter, for this project is:

What are the characteristics of a good eye movement dataset?
How well do deep learning algorithms perform eye movement classifica-
tion?



Chapter 3

Dataset exploration and
selection

The largest available dataset is GazeCom [Dorr et al., 2010]. Unfortunately the
GazeCom dataset was found to be lacking in quality. This chapter shows the short-
comings of GazeCom and proposes to use the Lund 2013 dataset instead. GazeCom’s
classification methodology and examples are shown together with their influence on
the features extracted from the dataset. The same is done for the Lund 2013 dataset.

3.1 GazeCom features
The set contains recordings of 18 videos with 47 subjects in each. The experiment
for this dataset is described in section 2.2.4. The subjects were seated 45 cm from
a looking at screen of size 40 cm by 30 cm with images at a 1280 by 720 resolution.
The stimulus covered 48 by 27 degrees of visual angle, with 1 degree corresponding
to about 26.7 pixels [Dorr et al., 2010]. Binocular calibration was performed but
only monocular data was recorded which resulted in a mean validation error of 0.62
deg across subjects. The recordings are stored in the ARFF format which is easily
accessible through Python. In the metadata of the recording the specifications of the
experiment are stored. The dataset contains the raw gaze positions, ground truth
labels, the outputs from different eye movement algorithms and extracted features.
The ground truth contains the time in microseconds, x (horizontal) and y (vertical)
position as gaze position on the screen, the confidence of the eye tracker and the
scoring of each scorer and a final combined scoring. The dataset contains 5 classes
unknown, fixations, saccades, smooth pursuit and noise labelled from 0 to 4 in the
respective order.

The features extracted are the velocity, direction and acceleration of the signal.
After they have been extracted the gaze position, velocity and direction are converted
to pixels per degree by dividing each sample by an average pixel per degree value

19
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calculated by Equation 3.1.

ppd =

( width(px)

2∗arctan( width(mm)
2∗distance(mm))

∗ 180
π ) + ( height(px)

2∗arctan( height(mm)
2∗distance(mm))

∗ 180
π )

2
(3.1)

Velocity is defined as Equation 3.2, direction as Equation 3.4 and acceleration as
Equation 3.4:

v =
√

∆x2 +∆y2

∆time
(3.2)

dir = arctan ∆y
∆x

(3.3)

acc =
√

( ∆vx
∆time

)
2
+ (

∆vy
∆time

)
2

(3.4)

where ∆x is the difference between the two horizontal gaze samples and ∆y is the
difference between two vertical gaze samples. ∆time is the difference between two
samples used. v is in deg /s. The direction is the angle in radians between the
horizontal plane and the sample, so it ranges between −π and π. Acceleration is
deg /s2 and ∆vx and ∆vy is the difference between two horizontal or vertical velocity
samples respectively. Each feature has been computed using different window sizes
which dictate the temporal distance between the two samples used in the feature
extraction. The window sizes corresponded to 4, 8, 16, 32 and 64 ms.

3.1.1 Classification methodologgy

It has been a bit unclear as to what criteria exactly Agtzidis et al. [2017] used to
determine the different classes, as the paper focused more on software used for the
manual labelling or handscoring as they called it. The recordings were automatically
labelled by three algorithms; SP-DBSCAN, I-VVT and I-DT where a majority vote
was used to determine the label of a sample. This labelling was then presented
and the rater could make adjustments to it. Two raters were used for this process
and their labels are present in the ground truth dataset for GazeCom. Agreement
between the two raters has also not been reported. A final label is then produced
to be the ground truth but it is unclear exactly how this was decided. The paper
claimed that a 20 second recording took between 3 and 5 minutes to label.

3.1.2 Class examples

Since no clear classification criteria were specified this section contains examples of
how the recordings and their classes look. Multiple recordings have been manually
inspected and the presented figures here are representative of the general trends of
the labelling. Figure 3.1 shows a whole recording plotted. The range of horizontal
and vertical values should not go below zero, since (0,0) marks the bottom left corner
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Figure 3.1: The 2D plot of subject JJK viewing the beach recording.

of the screen the subject was looking at. The negative values have been marked as
noise. Looking at a zoomed view of the horizontal position, see Figure 3.2, the noise
class contains multiple different things. The negative degrees seem like artefacts
from the eye tracker "losing" track of the eye. The noise also contains what looks like
fixations and saccades. It seems that samples before and after the eye tracker loses
track are also classified as noise even though they could be classified as fixations or
saccades

Figure 3.3 shows examples of some saccades. It is quite clear that the saccades
are not rigorously marked as the some samples which should have been labelled as
fixations are marked as saccades especially the ending of the saccade near 12200 ms.
There are also what appear to be a PSO at the end of the first saccade. Agtzidis
et al. [2017] have chosen not to mark PSOs even though it is clear in the velocity
trace that they do occur in the recordings.

Figure 3.4 shows examples of a smooth pursuit in the recordings. Both smooth
pursuits have been broken off in the middle by a saccade, which looks like a catch
up saccade. While the second smooth pursuit one has a clear saccade in between
them, the first one could just as easily have been normal jitter, especially since the
end of that small saccade looks very stable so the actual length of the saccade looks
to be about 3 samples. This inconsistent ending labelling occurs multiple times in
the segment, especially the ending of the first saccade. Even when viewed on a
larger time axis it is visible that the saccades are marked into what should have been
fixations. A case of noise is also present where the eye tracker loses tracks and drops
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Figure 3.2: An example of a noise event.

the positional signal to zero. The jittery signal surrounding the zeros are also marked
as noise. At around 4700 ms there appears the be a movement that has been marked
as fixation but does not appear as either fixation, saccade or smooth pursuit.
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Figure 3.3: An example of saccades in the beach recording of subject JKK.
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Figure 3.4: An example of smooth pursuit in the beach recording of subject AAF. The bottom
figure shows a zoomed in plot of first smooth pursuit event.
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3.1.3 Duration

This section investigates the properties and characteristics of the labelled classes.
Figure 3.5 shows the distribution of events duration for each class. There were no
instance of the class "unknown" in the entire dataset. The first thing that comes to at-
tention is there are saccades that have been marked that are longer than usual. Typ-
ical saccades are in the range of 20-80 ms with an amplitude of 4-20 deg [Holmqvist
et al., 2011] and with such a large number being above that, it is alarming.
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Figure 3.5: Distributions of event duration

The main sequence [Bahill et al., 1975b] is tool to view saccades. When a com-
bination of the duration, magnitude or peak velocity for saccades are plotted on a
logarithmic scale a largely linear relationship should be seen. Figure 3.6 shows the
main sequence of the classified saccades. It becomes very apparent that there are
several saccade under 10 ms and several with magnitudes below 1 deg. There are
even some saccades with magnitudes below 0.1 deg. There also appear to be a large
a number of saccades above 80 ms. There also appear to be several questionable
outliers. These are all indications that some saccades have been misclassified which
could heavily impact the underlying distribution of what they were misclassified as.
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Figure 3.6: The main sequence for the classified saccades of GazeCom

3.1.4 Inspection of saccades

To understand what the saccades have been classified as the easiest approach is
to look at examples of the recording in those regions. There were 16 instances of
saccades below 10 ms. By looking at Figure 3.7 it can be seen that by the using
only the velocity trace the event could be interpreted as a saccade while in reality
it is just noise since the positional signal does not have the spatial movement of a
saccade. The beginning and end of the "saccade" are also wrong as the "saccade"
itself is only two samples. This is a case of bad classification.
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Figure 3.7: Example of a regular recording noise being classified as saccade.

Figure 3.8 shows that the duration of the event is only 1 sample, which corre-
sponds to 4 ms duration. After some investigation this seems to be caused by the fact
that there are two raters and the final label is based off of some unknown merging
of those two. These composed the majority of sub 10 ms samples.
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Figure 3.8: Example of 1 sample classifications which can be seen between 5600 ms to 5650 ms.
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When looking at the events around 20 ms some are marked correctly and some
are signal noise with very long start or ends as Figure 3.7. The closer to 10 ms the
more errors. When looking at event around 80-120 ms classification events such as
Figure 3.9 also to appear where it is clear that a PSO has been marked as part of a
saccade.
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Figure 3.9: Example of saccade with a PSO that has been classified as saccade.

When look at around 180-200 ms the saccades begin to look more like smooth
pursuit. Figure 3.10 is an example it can be seen in the vertical trace that those
movements are not saccadic. It is hard to interpret as there is a very large saccade
in the horizontal saccade but the vertical trace looks more like smooth pursuit or
perhaps noise. Figure 3.11 looks like a huge saccade in the horizontal trace but it
lasts almost 200 ms. When looking at the vertical trace it becomes clear that it looks
much more like a partial blink instead. Figure 3.12 is actually two saccades with a
fixation in between that has been labelled as one saccade instead. The saccades
that do exist in this duration are actually saccades where the end has been severely
misclassified and the saccade goes on for too long.
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Figure 3.10: Example of saccade that is mislabelled at around 180-200 ms
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Figure 3.11: Example of a partial blink mislabelled as a saccade at around 180-200 ms .
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Figure 3.12: Example two saccades misclassified as one saccade

3.1.5 Feature distribution

Startsev et al. [2018] use the horizontal position, vertical position, velocity, accel-
eration and direction as features for their network. The distribution for velocity,
acceleration and direction shown here are all based on the windows size that corre-
sponds to 4 ms as it is the instantaneous velocity at a sampling frequency of 250 Hz.
Figure 3.13 shows the positional distribution for the different classes. There were
very large outliers that distorted the histograms so only the 99.9th percentile at a
sample level has been plotted. There doesn’t seem to be distinct differences between
the classes except for the noise class. There are a lot more samples around and below
0 than the other classes. There are also samples that go to above 50 deg, while the
actual movements stay between 0 deg and 50 deg horizontal and 0 deg and 25 deg
vertical. There seems to be some samples a little bit below 0 in the other classes and
this could be caused by the eye-tracker loosing track of the eye.

Figure 3.14 shows the distribution of the velocity and acceleration. The velocity
of the fixations are spread between 0 and 100 deg/s which indicates that there is
a lot of signal noise in the recordings. The smooth pursuit does not seem much
different which is strange since smooth pursuit should have velocities larger than
the fixations. The saccades have a distinctive range of distribution above 100 deg/s
but they also contain a lot of samples that are below. This could indicate that
many saccades are not clearly marked and contain a lot of fixation or smooth pursuit
samples. The noise velocities are magnitudes above the rest which is likely caused
large oscillations that have been shown in the previous examples. They also contain
a large amount of samples in the realm of the other classes velocities which is likely
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caused by the samples surrounding the dropped samples also being classified as noise.
The acceleration looks the same except for the saccades.

The distribution of directions can be see in Figure 3.15. The most distinctive class
is the saccade which has clear peaks at 0, π, π2 , −π, and−

π
2 . These could correspond

to largely horizontal saccades at 0, π and −π while vertical saccades are centred
around π

2 and−π2 . Fixation just looks like a scaled up version smooth pursuit while
in theory smooth pursuit should be more distinctive. Noise looks like less distinctive
version of the saccade distribution which could indicate that a lot of saccadic like
movements have been labelled as noise.

This all indicates that the dataset has not been classified properly. This can be
especially seen in Figure 3.6 where a large portion of the marked saccades does not
line up with the physical properties of saccades. Further inspection of individual
cases confirms that many of the saccade classifications are questionable and some
are plainly wrong. The results of using such a dataset to train a network would be
very questionable. Either this dataset must be reclassified or some clean up is need.
Since that is beyond of the scope of this project a different dataset will be used.
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Figure 3.13: Distribution of the positional gaze signal
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Figure 3.14: Distribution of the instantaneous velocity and acceleration of the gaze
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3.2 Lund 2013 dataset
The Lund 2013 dataset, described in section 2.2.5, was recorded on 38 cm by 30 cm
monitor with a resolution of 1024 by 768 pixels. The subjects were seated 67 cm
from the screen. The recordings were presented to the raters without the knowledge
of which stimuli it was from. The horizontal and vertical coordinates over time were
shown together with a velocity over time trace as well. Marcus Nyström (MN) and
Richard Anderson (RA), who are experts in the eye tracking field with many years
of experience, classified the recordings based on their own internal understanding
of the event definitions without explicitly stating what definitions they each used or
accounting for difference in opinion. The eye movements were classified into fixations,
saccades, PSOs, smooth pursuit, blinks and unidentified. It contains recordings
from three experiment; dot stimuli, image viewing and video viewing. In the dot
and video viewing there is smooth pursuit stimuli presented while the images are
static and therefore should not contain smooth pursuit. Zemblys et al. [2018] found
a mistake in the dataset where a saccade should have been marked as a fixation
and reclassified that event and this fix is also applied in the following presentation.
Table 3.1 shows the amount of samples in the different experiments. The dots stimuli
has far greater smooth pursuit than fixations. The video stimuli has more of an even
spread of fixation and smooth pursuit. There are not many saccade and even less
PSO samples compared to fixation and smooth pursuit which makes sense since they
are both usually much shorter events. The Cohen’s kappa reported are samples
level comparison in the recordings which both RA and MN labelled. There is a
good agreement with fixations and saccades, and slightly worse with smooth pursuit.
PSOs are the lowest at 0.73 which is not unusual for PSOs. The duration of each
experiment and how much each rater has labelled can also be seen. Rater RA has
by far the most labels with a total of 764.58 seconds labelled. Going forward only
recordings labelled by rater RA will be used.

Fixations Saccade PSO Smooth Pursuit Blink Undefined Duration
Rater RA Dots 12.85% 4.72% 1.43% 79.53% 0.53% 0.95% 40.0 s

Images 76.46% 9.18% 4.76% 4.78% 4.68% 0.14% 175.58 s
Videos 33.63% 4.41% 2.64% 57.88% 1.36% 0.08% 548.19 s

Total 42.38% 5.53% 3.06% 46.81% 2.08% 0.14% 765.58 s

Rater MN Dots 8.99% 4.53% 2.01% 81.64% 1.42% 1.42% 23.73 s
Images 79.6% 8.59% 5.24% 0.85% 5.51% 0.2% 127.70 s
Videos 42.97% 5.17% 3.38% 46.38% 2.03% 0.06% 58.06 s

Total 61.45% 7.19% 4.36% 22.62% 4.09% 0.3% 209.50 s

Cohen’s Kappa 0.82 0.9 0.73 0.79 0.54 0.91

Table 3.1: Distribution of the manual labelling done by rater RA and and MN for the Lund
dataset. Rater MN labels are a subset of rater RA. The distribution of samples for each class in
each experiment is shown. Cohen’s Kappa was calculated on sample level on the recordings across
all experiments that both RA and MN had labelled.
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3.2.1 Lund 2013 movement examples

Figure 3.16 shows an example of how rater RA scores fixations, saccades PSO and
smooth pursuit. These are much clearer markings than in the GazeCom dataset,
since saccade beginnings and ends corresponds to what is normally defined as a
saccade. Figure 3.17 shows how a blink looks like in these recordings. Because a
different eye-tracker is used in the Lund 2013 dataset compared to the GazeCom
dataset blinks are handled differently. In Lund 2013 dataset the gaze position is set
to NaN whenever the eye-tracker losses track of the eye. After viewing a couple of
examples the tendency of blinks in this dataset is that the event before and after
the blink is the same and the gaze position being relatively unchanged. Figure 3.18
show an example of an unidentified event which in this case is an event in the end of
a recording. This is probably because RA judged that it was a different event that
did not finish and therefore should be excluded. Other cases unidentified labels are
NaNs that can occur during recording. Here the NaN and a few samples before and
after are marked as unidentified. There are no NaNs present in labels other than
blinks and unidentified.
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Figure 3.16: Example of how rater RA scores fixation, saccades, PSO and smooth pursuit. The
velocity is instantaneous velocity.

3.2.2 Lund 2013 feature distribution

The gaze position is transformed into degrees. The point (0,0) is not the bottom
left corner as in GazeCom but is the center of the screen instead. Since Larsson
et al. [2013] do not calculate the features mentioned in section 3.1 so these have



36 Chapter 3. Dataset exploration and selection

1200 1400 1600 1800 2000 2200 2400
6

8

10

12
X 

Po
si

tio
n 

(d
eg

)

Subject UL39 
 recording Trial1 Labelled

1200 1400 1600 1800 2000 2200 2400

10

0

Y 
Po

si
tio

n 
(d

eg
)

1200 1400 1600 1800 2000 2200 2400
0

500

1000

Ve
lo

ci
ty

 (d
eg

/s
)

Undefined
Fixation
Saccade
PSO
Smooth Pursuit
Blink

Time (ms)

Figure 3.17: Example of how rater RA scores blinks. The missing samples are NaNs. The velocity
is instantaneous velocity.

been calculated with the same approach as Startsev et al. [2018]. Since Lund 2013
recordings are 500 Hz and not 250 Hz the temporal windows for feature extraction
can therefore be lower. The windows used are 2, 4, 8, 16 and 32 ms. Since the
recording contains NaNs some of the features will also be NaNs. Figure 3.19 shows
that there are not many blinks and unidentified events and in the recording and since
blink detection is out of the scope for this project blinks and unidentified events are
simply dropped and the events before and after are stitched together. This has the
unfortunate effect that it create events that are longer than they should be e.g. long
fixations. There was also one instantaneous acceleration sample that was a NaN and
that has been removed as well. There does not seem to be any general approach to
how to deal with NaNs or blinks in the reviewed literature.

Figure 3.19 also shows that there are no the durations for the events are also
reasonable. There doesn’t seem to be many saccades above 75 ms and the PSOs
are shorter than the saccades. Figure 3.20 shows the main sequence after blinks
and unidentified have been removed. The very shortest saccades seem questionable
and after looking at examples of some of them it becomes apparent that they look
saccades in the velocity trace but the gaze does not actually change positing from
before and after that saccade. There are only 9 saccades above 90 ms and two of
those are result of removing blinks in between two saccades which result in a saccade
that is 206 ms and another that is 242 ms. The relationship also seems fairly linear
without too many outliers.
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Figure 3.18: Example of how rater RA scores the end of a recording as unidentified. The velocity
is instantaneous velocity.
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The distribution of the features shown are all calculated with a 2 ms window.
No outlier removal was performed on these distributions. Figure 3.21 shows the
positional features. There does not seem the anything distinctive about them. Fig-
ure 3.22 shows the velocity and acceleration distribution. The saccade velocities are
clearly higher than the rest which is as expected. Smooth pursuit and fixation have
similar distributions with spikes in the lower velocities. PSO has a similar distribu-
tion as saccades except it is not in the same range. The accelerations seem like a
scaled version of the velocities. There also appear to be a few outliers but nothing
that seems major, except for 1 sample in the acceleration for smooth pursuit.

Figure 3.23 shows the directional feature. Compared to the same feature pre-
sented in GazeCom this seems much more distinctive which could indicate a better
labelling. The saccade has the same distinctive peaks as mentioned previously. PSO
looks like a less distinctive version with the same peaks. Smooth pursuit and fixations
look similar but smooth pursuit seems to have sharper peaks.
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Figure 3.21: Distribution of the positional gaze signal in the Lund dataset
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Figure 3.22: Distribution of the instantaneous velocity and acceleration of the gaze in the Lund
dataset.
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Chapter 4

Methodology

This chapter contains the theory behind 1D-CNN-BLSTM network, the implemen-
tation of the network and the evaluation metrics chosen.

4.1 Neural Networks

The 1D-CNN-BLSTM network from Startsev et al. [2018] is made up of two main
parts; a CNN part and a Recurrent Neural Network (RNN) part.

4.1.1 Convolutional Neural Network

A CNN consists of a kernel with weights that convolves over the signal. The output
of this is then put through an activation function which results in what is often called
a feature map. Depending on the weights, different feature maps are extracted. A
CNN then has a set number of kernels with different weights and will learn those
weights. The features that the kernel learns are translation invariant meaning that
the features are local and not dependent on their location in the signal. Typically
multiple convolutional layers are used as the features extracted in the early layers
are simple e.g. horizontal or vertical line while the feature maps of the later layers
are more abstract e.g. edges [Goodfellow et al., 2016]. The typical parameters to
set of a convolutional layer are the stride, i.e how many steps the kernel will move
at each step, the kernel size itself, number of kernels and what activation function is
used. In 1D-CNN-BLSTM the convolution is in 1D.

4.1.2 Long Short-Term Memory

RNNs can be thought of as a layer that loops. The input to the layer is processed by
some function and put back into itself which allows it to have knowledge of all the
time steps that came before it. This is especially useful with sequential data as the
order of what came before is important in predicting what comes next. The LSTM
network is a type of RNN that can learn long-term dependencies. It has a similar

43
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repeating structure except instead of just having a function each cell of the LSTM
contains an input gate, a forget gate, cell state, output gate and output. The cell
state is like a highway of information that passes through all the cells and passes
information from one cell to the next. The gates then determine what information
is passed along. First the forget gate decides what information to throw away. The
output of the previous layer ht−1 and the current input xt are put through a sigmoid
function to get a number between 0 and 1 to determine how important the previous
information is. This is then multiplied with the current cell state Ct−1. The equation
for the forget get can be seen in Equation 4.1 where subscript f denotes the forget
gate, W are the weights, b is the bias and σ is the sigmoid function.

ft = σ(Wf ∗ [ht−1, xt] + bf) (4.1)

The input gates is similar to the forget gate except it is instead multiplied with the
tanh function of the previous gate. These are then used to update the cell state as
in Equation 4.2, where it is the input gate and Ct is the new cell state. Each state
also has it’s own respective weights W and bias b

it = σ(Wi ∗ [ht−1, xt] + bi)
C̃ = tanh(WC ∗ [ht−1, xt] + bC)
Ct = ft ∗Ct−1 + it ∗ C̃

(4.2)

The output of the cell block ht is then based upon the current state combined with the
previous output, Equation 4.3. This output is then fed to next cell block [Goodfellow
et al., 2016].

ot = σ(Wo ∗ [ht−1, xt] + bo)
ht = ot ∗ tanh(Ct)

(4.3)

The LSTM used in this network is bidirectional which is actually two independent
LSTM layers that run in the opposite direction of each other time wise. In other
words one layer has knowledge about past samples in respect to the current sample
while the other layer has knowledge about the future samples. They are typically
treated as one layers since their outputs are concatenated. The typical parameters
of an LSTM layers is called units which represents the number of outputs at each
time step.

The full 1D-CNN-BLSTM architecture used be seen in Table 4.1. This also shows
that batch normalization and dropout layers are added. The time distributed layers
are a wrapper that ensures that when flattening or creating a dense layer the ap-
propriate slice is taken so that each time step is kept separate. The input, 520 × 5,
is shown when using all five features. The input is 520 samples because it has been
mirror padded. This ensures that the output has the correct size of 514 samples. The
number of classes is 4. The input size depends on the kernel size as larger kernels
will require more padding to maintain the 514 sample output.
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Layer Type Feature Map Size Kernel Activation Other
Input 520 × 5
Conv1D 32 3
BatchNormalization
Activation ReLU
Conv1D 16 3
BatchNormalization
Activation ReLU
Dropout 0.3
Conv1D 8 3
BatchNormalization
Activation ReLU
Dropout 0.3
TimeDistributedFlatten
TimeDistributedDense 32 SoftMax
BLSTM 16
Output 514 ×Num. of Classes SoftMax

Table 4.1: Parameters set for the 1D-CNN-BLSTM

4.2 Implementation

The original network from Startsev et al. [2018] was made for data recorded at 250 Hz
and since the Lund dataset was recorded at 500 Hz some changes were made. The
recordings were split into windows of 514 samples with an overlap of 130 samples be-
tween recording, which is twice what was used at 250 Hz. The windows were padded
by using mirror padding in each windows. Rater RA was chosen as the ground truth.
Leave-One-Video-Out (LOVO) cross validation was performed where one recording
was keep as test each time. There were a total of 10 different recordings; (dots)
trial 17, (images) Europe, Vy, Rome, Konijntjes, (videos) Bergo Dalbana, Dolphin,
Biljardklipp, TrafikEhuset and Triple Jump. The recordings being used as test set
did not have any overlap when being split into windows. The features position, ve-
locity, acceleration and direction were used and a combination of those features was
also tried. The network was coded in Python using Keras with Tensorflow back-
end. The networks were trained on a NVIDIA GeForce GTX 970 graphics card. All
models were trained for 500 epoch. Since there are many more fixation and smooth
pursuit samples in the data a weighted cross entropy loss was used. The weights
are w = 1 − ( ∑xn

∑xm
) where xn are samples of the class and xm are all samples. The

RMSprop optimizer with default settings was used. A batch size of 1500 was used
on most models except some models which due to GPU memory could not run with
such a large batch size. In these cases a batch size of 500 was used. With this setup
it took approximately 1.5h of training each model which becomes 11.5h when doing
LOVO.
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Different variations of the 1D-CNN-BLSTM were tried in this project as the work
by Startsev et al. [2018] did not show the effect of different model parameters. The
kernel sizes of 3, 9 and 29 were tried. A Residual Network (Resnet) [He et al.,
2016] was also tried. The intuition behind larger kernel sizes is that smooth pursuit
is a long event where the change is gradual and often needs more time be salient.
Different features and feature combination were also used to see if any of the features
were particularly good.

4.3 Evaluation metrics chosen
To evaluate the performance the metrics mentioned in section 2.3 were considered.
On a sample level the F1-score and Cohen’s Kappa were chosen. On an event level
the F1-score was chosen. To get an event level matching the approach from Startsev
et al. [2018] was used. There was no implementation of their matching available
online so based on the paper the algorithm was been reimplemented from scratch.
The pseudo code can be seen in Algorithm :

An example of how the matchings look can be seen in figure Figure 4.1. It can
be visually seen how an event is matched into hits, miss and false alarms. False
alarm matching has been shown as fa and fa2 where fa is when IoU< 0.5 and fa
2 are events that happens during the algorithm but not during the ground truth.
In the calculation of the F1 - score they are grouped together into a single false
alarm number. This subjects F1 - scores can be seen in table Table 4.2. The biggest
difference is that smooth pursuit has a sample level F1 of 0.61 but a 0.00 event
level F1. This is because the long smooth pursuit event in ground truth is split into
smaller events in the algorithm. Even though more than half the samples occurring
in the large smooth pursuit event are classified as smooth pursuit by the algorithm,
none of the events have an IoU > 0.5 causing them all to be misses.

F1 - score
Sample Event

Fixation 0.46 0.30
Saccade 0.88 1.00
SP 0.61 0.00
PSO 0.55 0.20

Table 4.2: Sample and event level F1 - scores for the recording in Figure 4.1



4.3. Evaluation metrics chosen 47

Algorithm Event level matching: The inputs are sample level labels for ground
truth and a comparison e.g. another rater or output of a classification algorithm.
The event types can be fixation, saccades, smooth pursuits and PSOs depending on
what events were labelled. The hits, misses and false alarm can be used to compute
an event level F1 score.
1: Get starts and ends of events in ground truth and comparison
2: for event type in number of event types do
3: set current event type to 1 every other event to 0
4: Keep track of events marked in ground truth and in comparison
5: for event in ground truth do
6: if no comparison event occurred then
7: miss counter ++
8: mark ground truth event as marked
9: else

10: for event occurring in comparison during ground truth event do
11: calculate IoU
12: if IoU ≥ 0.5 then
13: hit counter ++
14: mark ground truth event as marked
15: mark comparison event as marked
16: else
17: false alarm counter ++
18: mark comparison event as marked
19: if event in ground truth not marked then
20: miss counter ++
21: mark ground truth event as marked
22: for event in comparison do
23: if comparison event is not marked then
24: false alarm counter ++
25: mark comparison event as marked
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Figure 4.1: Example of the output of event level matching on one recording. RA is the ground
truth and CNN3 is a model. Hits, misses and false alarms can be seen for all events.



Chapter 5

Experiment

This chapter contains the results of the initial experiment and the models classifica-
tions. An improvement of the models is attempted and its results are also shown.

5.1 Results of LOVO cross validation
Figure 5.1 shows the sample level F1 -scores from the cross validation. The errors
bars for both saccade and PSO are smaller than fixation and smooth pursuit which
could indicate that the networks are pretty consistent in those to eye movements
across different recordings. When looking at the event level F1- scores it is quickly
noticeable that smooth pursuit performs much worse at the event level than at the
sample level. E.g. when looking at the model which used speed and directions the
lowest performing model, CNN3, has a sample level F1 - score of 0.57 but a 0.17
event level F1- score. The event level Cohen’s Kappa are very low for fixation and
smooth pursuit in all cases indicating that these two classes are where the networks
struggles the most. Even though the sample level F1-score for fixation is high, the
the low Cohen’s Kappa this could indicate that because there are a lot more fixation
samples the F1 - score could be higher based by simple chance which is something
the Kappa takes into account.

The best performing single feature across all metrics and models is the velocity
with acceleration being behind it which make sense since they are very similar. There
doesn’t seem to be much variation in performance for velocity across the models. The
positional feature on the other hand has more variation across models. It seems like
a kernel size of 9 performs best but there is no difference between a kernel size of 3
and 29. With direction the largest kernel with size 29 seems to perform the worst.
When the features are combined there doesn’t seem be much improvement across
models or classes and it looks similar to just using speed. In Startsev et al. [2018]
the best performing model was using velocity and direction but they did not show
error bars nor did they try positional features with velocity and direction.

The minimum and maximum metrics for the models that used velocity and com-
bination of the other features can be seen in Table 5.1. The general trend is that

49
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saccades are the class it with the best performance in both sample level and event
level evaluation followed by PSOs. Fixation and smooth pursuit both perform simi-
larly in sample level F1 - score but smooth pursuit performs much worse when looking
at the event level F1 - score and sample level Cohen’s Kappa while fixation performs
slightly worse in event level F1 - score but has a very low Kappa.

Fixation PSO Saccade SP
Sample level F-1 0.44 - 0.64 0.53 - 0.64 0.77 - 0.83 0.53 - 0.64
Event level F-1 0.38 - 0.55 0.43 - 0.59 0.81 - 0.88 0.10 - 0.20
Sample level Cohen’s Kappa 0.12 - 0.31 0.52 - 0.63 0.75 - 0.82 0.07 - 0.19

Table 5.1: The minimum and maximum F-1 - score and Cohan’s kappa for fixation, PSO saccade
and smooth pursuit (SP) for the models that used velocity, and a combination of direction, position
and acceleration.
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Figure 5.1: Sample level F1 score for LOVO cross validation with features and feature combination.
Resnet3 has a kernel size of 3 while the CNN have the kernel size of 3, 9 and 29. The error bars are
the 95% confidence interval for the 10 recordings used for LOVO.
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Figure 5.2: Event level F1 score for LOVO cross validation with features and feature combination.
Resnet3 has a kernel size of 3 while the CNN have the kernel size of 3, 9 and 29. The error bars are
the 95% confidence interval for the 10 recordings used for LOVO.
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Figure 5.3: Sample level Cohen’s kappa for LOVO cross validation with features and feature
combination. Resnet3 has a kernel size of 3 while the CNN have the kernel size of 3, 9 and 29. The
error bars are the 95% confidence interval for the 10 recordings used for LOVO.
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5.2 1D-CNN-BLSTM network output
To get a better understanding of the actual output of the network manual inspection
was done. The networks that used x, y, velocity, direction and acceleration were
chosen to be inspected. Random recordings from their respective test set were looked
at. Figure 5.4 show an example of how the classification looks. The positional trace,
x and y can be seen together with velocity trace, while the bottom panel are the
classifications from rater RA as the ground truth and CNN 3, 9 and 29 are the 1D-
CNN-BLSTM with different kernel sizes and Resnet3 was the Resnet with kernel size
3. The window size of the network is 1028 ms.
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Figure 5.4: Rater RA is the ground truth and CNN 3, 9 and 29 are the 1D-CNN-BLSTM with
different kernel sizes and Resnet3 was the Resnet with kernel size 3. Recording is dolphin with
subject UH29.

In this subject it appears as though the Resnet3 performs better since it’s clas-
sifying smooth pursuit better but this is not a general tendency. What can be seen
is that some events appear very short. Figure 5.5 shows example of a close up of
Figure 5.4. None of the networks are performing particularly well as CNN3 has im-
possibly small fixations and smooth pursuits and the saccade is very short, CNN9
also has an impossible smooth pursuit and misclassified the smooth pursuit as fixa-
tion, CNN29 misclassified smooth pursuit as fixation and Resnet3 didn’t detect the
PSO and had very short saccade as well. Figure 5.6 shows the event level fixation
distribution and it is very obvious that all algorithms have some very short fixations
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and classified more fixations that were present, except for Resnet3. The short events
seem to be a general problem amongst the recording which could be the cause of
the event level F1 - scores for fixation and smooth pursuit being so low. The many
short events break up the longer events, so even if a the majority of sample during
e.g. a smooth pursuit event are classified as smooth pursuit, if a few samples in the
middle are classified as fixation none of the smooth pursuit events are hits. This in-
dicates that post processing to reclassify the impossible events is needed. A different
problem is that the networks all have a hard time differentiating between fixations
and smooth pursuit. The general boundaries for the fixations or smooth pursuit are
usually good but the actual class itself is wrong which can be seen in Figure 5.4
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Figure 5.6: Event level fixation distribution from the ground truth and different networks for
Figure 5.4

5.3 Results of improvements
One approach to try and solve the issue with the alternating too short events is to
change the temporal aspect of the networks. The following was done; increase the
units in the Bidirectional Long Short-Term Memory (BLSTM) layer from 16 to 64,
add another BLSTM layer and lastly try a multi resolution network consisting of low
resolution part that uses kernel size 3 and a high resolution part that has a kernel size
of 9 or 29. The features extracted from each CNN stream are concatenated before
flattening them followed by the BLSTM layers. The parameters of the model multi
resolution model can be seen in Table 5.2.

5.3.1 Changing the LSTM layer

The models were trained with the same setting as section 5.1. The kernel size for the
models was kept to 3 and only the LSTM layer was changed. LSTM 16 is the same
network as CNN 3 used in section 5.1, the name is just changed to showcase the
important settings of the network in this evaluation. LSTM 64 is the same network
except with 64 units. LSTM with 2 layers has 64 units in both layers. Only the
feature combination of position, velocity, acceleration and direction was used. The
LOVO cross validation results can be seen in Figure 5.7 and Figure 5.7. On a sample
level Cohen’s Kappa doesn’t reveal any changes as all scores are very comparable.
The sample level F1 - scores shows a similar trend. The event level F1 - scores a
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Type Size Kernel Activation Other Type Size Kernel Activation Other
Input 520 × 5 Input 598 × 5
Conv1D 32 3 Conv1D 32 29
BatchNorm BatchNorm
Activation ReLU Activation ReLU
Dropout 0.3 Dropout 0.3
Conv1D 16 3 Conv1D 16 29
BatchNorm BatchNorm
Activation ReLU Activation ReLU
Dropout 0.3 Dropout 0.3
Conv1D 8 3 Conv1D 8 29
BatchNorm BatchNorm
Activation ReLU Activation ReLU
Dropout 0.3 Dropout 0.3
Concatanate 16
TDFlatten
TDDense 32 SoftMax
BLSTM 64
BLSTM 64
TDDense 514x4 SoftMax

Table 5.2: Parameters set for the multi resolution 1D-CNN-BLSTM. The two different resolution
streams are concatenated in the concatenate layer. TD are TimeDistributed layers and Classes are
the number of classes.

very small improvement of 0.8 in smooth pursuit but at the expense of the other
classes. With LSTM 64 it looks like it is as the expense of saccades and PSOs while
the 2 layer LSTM 64 has similar performance as LSTM 16 in saccades and PSO but
a decrease of 0.8 in fixation. Overall there does not seem to be significant change in
the performance of any metric.
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Figure 5.7: Sample level Cohen’s Kappa for LOVO cross validation when using position, velocity,
acceleration and direction. All models had a kernel size of 3, only the LSTM layer was changed.
The error bars are the 95% confidence interval for the 10 recordings used for LOVO.
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Figure 5.8: Sample level (Figure 5.8a) and event level (Figure 5.8b) F1 score for LOVO cross
validation when using position, velocity, acceleration and direction. All models had a kernel size
of 3, only the LSTM layer was changed. The error bars are the 95% confidence interval for the 10
recordings used for LOVO.
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5.3.2 Multi resolution network

The multi resolution network had a significant increase in training time. 500 epochs
took around 30.5 hours for one model so cross validation would have taken over two
weeks. To look at the effect a model with kernel size (3, 9) and (3, 29) was trained
for 100 epochs holding out the recording "video BergoBalbana" as a test set. A single
model with kernel size (3, 9) was trained for 500 epochs. All models had a single
LSTM layer of 64 units. Their results can be seen in Figure 5.9 and Figure 5.10. For
the Kappa the model with kernel (3, 9) outperforms the (3, 29) model, especially
for PSOs. The 500 epochs (3, 9) model performs better with saccades and PSOs
then the same model with only 100 epochs but performs much worse with fixation
and smooth pursuit. None seem to be superior and they are comparable to LSTM
16. When looking at sample level F1 - score the model the (3, 9) 500 epoch model
outperforms both the other multi resolution models but does not outperform LSTM
16 as they are very comparable. A the event level a difference does appear as the
smooth pursuit F1 - score is much higher for the multi resolution networks. The (3,
9) models perform comparably with fixations and saccades, and a drop of 0.04 and
0.1 in PSO. These could indicate that the multi resolution networks had an effect on
the small alternating events described in section 5.2.
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Figure 5.9: Sample level Cohen’s Kappa for the recording "video BergoBalbana" when using
position, velocity, acceleration and direction. The model Multi Resolution (3, 9) 100 was trained
for 100 epochs while Multi Resolution (3, 9) 500 was trained for 500 epochs. The 2 layer LSTM
64 fixation and smooth pursuit score has a negative Cohen’s Kappa at -0.04 both. The LSTM 64
smooth pursuit score is at -0.01. Since the figure is capped at 0 they are not shown.
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Figure 5.10: Sample level (Figure 5.10a) and event level (Figure 5.10b) F1 score for the recording
"video BergoBalbana" when using position, velocity, acceleration and direction. The model Multi
Resolution (3, 9) 100 was trained for 100 epochs while Multi Resolution (3, 9) 500 was trained for
500 epochs.
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5.4 Output of improvements
To see if the changes have had an effect on the output manual inspection is performed
again. Figure 5.11 shows the models with different LSTM layers and the multi
resolution models. RA is again the ground truth. What the multi resolution networks
should output were less shorter events and more continuous fixations and smooth
pursuit. The Multiresolution (3, 29) 100 epoch networks looks promising as it is
only around 500 ms that an alternation is found and the fixation event is also not
unreasonably small. On the other hand it did miss an obvious saccade that the other
networks found. The (3, 9) kernel model in both 100 and 500 epochs seem to have the
impossibly small events present but not in the same places as single kernel models.
Figure 5.12 shows the network outputs of the same recording but a different subject.
The Multiresolution (3, 29) model has completely missed most of the saccades which
is also reflected in F1 - scores in Figure 5.10. There are again impossibly small events
on the other multi resolution networks.
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Chapter 6

Discussion

For a machine learning approach choosing the right dataset is one of the most im-
portant steps. The scarce availability of datasets and their varying number and
definitions of eye movement makes it challenging to choose the right dataset. It is
important to know the methodology and the definitions of eye movements that were
used when the dataset was labelled. Looking at the velocity, direction and event
durations distributions for each eye movement should be done to sanity check that
the labels do indeed make sense. The main sequence [Bahill et al., 1975b] is also an
excellent tool to investigate the labelled saccades and locate possible errors or out-
liers. In chapter 3 an example of bad labelling is showcased with the large dataset
GazeCom [Dorr et al., 2010]. The dataset is described as manually annotated while
it is in reality automatically annotated and manually looked through afterwards.
The lack of proper definitions of the eye movements show up in impossibly short
and impossibly long saccade durations. Multiple examples have been shown with
questionable labels. This can have serious implications as all the machine learning
research done with this dataset can become moot as the outputs of networks are
not based on real eye movements. An alternative dataset, the Lund 2013 dataset
[Larsson et al., 2013], is proposed. It is much smaller totalling in 12.75 minutes of
manually labelled compared to GazeComs 4.8 hours of labelled recording. On the
other hand it 500 Hz instead of GazeCom’s 250 Hz and it was labelled by Marcus
Nyström (MN) and Richard Anderson (RA) who are both distinguished eye tracking
researchers with many years of eye movement experience. No definitions of move-
ments were used to label the dataset other than their respective experiences but the
difference in quite clear when looking at each datasets feature distributions. Lund
2013 is much sharper in the feature distribution shapes especially the directions.
The event durations and velocities also match the physiological properties of eye
movements described in section 2.1.

A different issue is how to evaluate an algorithms classifications of the dataset
against the ground truth. Especially in cases where multiple raters are involved
as raters often disagree between each other to a certain degree [Hooge et al., 2017].
[Dorr et al., 2010] attempted to solved this issue by having two human raters produce
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annotations and then merging those annotations on an unknown criteria. This did
produce some problems as it created multiple events that were 1 sample long. With
the Lund 2013 there are no final annotations, only each raters annotations. The rater
with most annotations was chosen as the ground truth and the other raters labels
were discarded. After a ground truth is chosen the question becomes what metrics to
use. There is not a consensus amongst the eye movement community on what metrics
to use and many papers develop their own metrics. The most common metrics is
sample level F1 - score and sample level Cohen’s Kappa. But as seen in section 5.1 it
is possible to have a high sample level F1 - score but when looking at output of the
algorithms it is clear that it is wrong. This is something that can be seen in an event
level evaluation. There currently exists four different approaches to match events
from ground truth to events from the algorithm. These matchings can produce true
positives, false positives and false negatives which can be used to calculate and F1 -
score [Hooge et al., 2017]. IoU can then be used to determine how close an overlap the
matched events need to have to be classified as a true positive [Startsev et al., 2018].
This event matching algorithm has been described by Startsev et al. [2018] but no
implementation of it has been available so it has been implemented from scratch and
pseudo code for the implementation can be found in section 4.3. These metrics are
global metrics and make it easier to compare performance between algorithms but
they do not have any informations about the shortcomings of the algorithms. There
exists two metrics, RTD and RTO [Hooge et al., 2017] that provide information
about the timing differences between matched events but they still only produces
one number. A more informative version of RTD and RTO could be to report the
histograms of the timing differences. Since RTD and RTO have a different matching
criteria than what was used in this project these were not used. Instead manual and
more a qualitative inspection was done with examples of how the algorithms classifies
eye movements. These provided a deeper but more abstract insight into where the
algorithms make mistakes and what type of mistakes it makes.

The neural network architecture 1D-CNN-BLSTM by Startsev et al. [2018] was
chosen as the basis network for this project. It was made up of three CNN layers
with a 1D kernel of size 3 and a BLSTM layer of 16 units. The network took 1028
ms windows as input and performed sequence to sequence classification fixations,
saccades, PSO and smooth pursuit. There was no clear test set so LOVO cross
validation was used. The features instantaneous velocity, acceleration, direction and
gaze position and a combination of said features were used to see what features
performed well. Velocity was the feature that performed best on its own which is
not surprising as many eye movement classification algorithms are velocity based.
Acceleration performed similarly albeit had a slightly lower F1 and Kappa score
which was to be expected as distribution of velocity and acceleration are very similar.
The positional features seemed to perform the worst, while direction seemed to be
slightly better than positional which is surprising as the distributions of direction
for the different movements seemed to have distinct patterns. When combining
features there were no real improvement gain which is contradictory to Startsev et al.
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[2018] finding that combining velocity and direction should improve the performance.
Multiple kernel sizes were also tried with rationale that smooth pursuit is a movement
with slow gradual change which is easier to detect over a longer duration. Kernel
size 3, 9 and 29 were used but there was no real difference when combining features.
On the other hand a difference can be seen when only using direction as the longest
kernel, 29, seemed to perform worse especially for saccades. This was not the case
when using velocity as it had no effect on it which also explains why it did not have
an effect on the combined features.

To try and understand how the networks actually labelled the movements manual
inspection of various random recordings and subjects was done. The general trend
was that most of the saccade errors seemed to stem from small saccade with ampli-
tudes of less than 0.5-1○. These are tough to label even for a rater as there can be
multiple things causing those movements like noise, micro saccades or fixation drift.
PSOs are ill defined so even raters disagree amongst them selves what categorizes a
PSO. This shows in the network output as many PSOs marked by the network were
not in labelled PSOs by ground truth but upon insepction of the velocity trace it
becomes move clear why it could be interpreted as a PSO. In general saccades and
PSOs had the highest sample Kappas being in the area of 0.8 and 0.55 respectively.
In comparison fixations and smooth pursuit were around 0.25 and 0.15. This seemed
to be cause by two issues; 1) the networks had a hard time distinguishing fixations
from smooth pursuit 2) the networks created impossibly short fixations and smooth
pursuit and would create alternating sequences of short fixations and smooth pursuit
when the ground truth was just one long event. The first issue is a well known prob-
lem as differentiating fixation from smooth pursuit is notoriously difficult as their
characteristics are very similar. During a fixation the eye stands still but due to
recording noise, tremors in the eye and fixation drift the eye is actually constantly
moving at a very slow velocity. Smooth pursuit is actual movement whose speed
is determined by the object that the eye is following. The slow movement makes
is difficult to differentiate between them. The second issue stems from the network
not knowing the physical properties of the movements e.g. a fixation below 200 ms
are uncommon, section 2.1 or that the short 10 ms fixations which it outputs are
impossible events. This problem could be handled in two ways; improve the network
or do post processing to detect and merge the impossible events. An attempt to
improve the model was done by changing the parameters of the temporal part of
the network - the BLSTM layer. The amount of units was changed from 16 to 64
and a second BLSTM was added. These did not seem to have desired effect as the
impossible events were still present but they were just found in other parts of the
recording than before. A multi resolution network was also tried with the reasoning
being that a larger kernel, size 9 or 29, might be better for smooth pursuit while
the shorter kernel of size 3 would be better for the shorter events like saccades and
PSO. Since it took 30.5 hours to train the multi resolution model for 500 epochs it
was only trained once with the video BergoDalbana kept as test set instead of using
the LOVO cross validation. The (3, 29) kernel did produce less of the impossibly
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short events but that was at cost of not detecting the saccades and overly classifying
events as smooth pursuit. It also had less of the alternating sequences with multiple
small fixations and smooth pursuit. The (3, 9) kernel with 500 epochs did seem to
produce higher event level F1 - scores for smooth pursuit than the LSTM 16, 0.32
and 0.12 respectably, while having slightly higher scores for fixation and saccades,
0.39 and 0.91 compared to 0.36 and 0.89 respectively. This seemed to come at the
cost of having lower PSO scores, 0.43 and 0.53. This indicates that there could be
potential in a multi resolution model, especially if it did indeed create less of the
impossible events but more research would be needed. Since the comparison was
only made with one test set, cross validation could show if the higher performance
was due to variance or if was and actual improvement. This would also make post
processing easier as less events would have to be merged which can be difficult to
determine when there is an alternating sequence present.



Chapter 7

Conclusion

This project showcased some of the difficulties in making a deep learning based eye
movement classification algorithm. Since neural networks have to train on a dataset,
the importance of having a good data set is imperative. Choosing a good dataset is
difficult as manually annotating eye movements is an exhaustive and time consuming
task so the availability of public databases is scarce. The biggest contribution from
this project was showing that by looking at the distributions of the gaze position,
velocity and direction for each eye movement type it is possible to determine how
well the dataset was classified. The main sequence and event duration distribution
can also be used to ensure that the labelled saccades make sense compared the physi-
ological properties of saccades. It was shown that the classifications of the GazeCom
dataset do not make physiological sense and even though it was claimed to be manu-
ally annotated it was in fact automatically labelled by three different eye movement
classification algorithms and then superficially inspected by raters. This has impor-
tant implications as previous work done based on this dataset becomes questionable
as a model trained on a wrongly labelled dataset will produce meaningless classifica-
tions. Instead the much shorter dataset Lund 2013 was proposed as it was actually
manually annotated by eye movement experts. It was shown that its feature distribu-
tions were much more distinct for the different eye movements and the saccades make
physiological sense. To evaluate an algorithms performance sample level F1 - score
and Cohen’s Kappa were chosen as these were the most common metrics used in the
field although many other metrics exist and there does not seem to be an agreement
as to what to use. An event level evaluation was implemented by matching events in
the ground truth with events in the algorithm stream to count the number of hits,
false alarms and misses. These could be used to calculate an event level F1 - score.
Intersection over Union (IoU) with a threshold of 0.5 was used to determine the
criteria for when an event is a hit. A sequence to sequence 1D Convolutional Neural
Network Bidirectional Long Short-Term Memory (1D-CNN-BLSTM) neural network
by Startsev et al. [2018] was used the baseline model to classify fixations, saccades,
smooth pursuit and Post-Saccadic Oscillations (PSOs). A kernel size of 3, 9 and 29
and a Residual Network (Resnet) version of 1D-CNN-BLSTM were tried with the
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features gaze position, velocity, acceleration and direction and a combination of said
features. Leave-One-Video-Out (LOVO) cross validation was performed on the ten
stimuli from the Lund 2013 dataset. The best performing single feature was velocity.
When combining features there was no real improvement. Between the three kernel
sizes there were no real difference in model performance for velocity and combina-
tions of features that used velocity. There was a performance difference between
models when using direction as kernel size kernel size 9 and 29 performed worse. A
manual inspection of the network outputs showed that the networks had a hard time
differentiating between fixation and smooth pursuit. This created impossibly short
events that would sometimes result in alternating sequences of short fixations and
smooth pursuit instead of a longer event of either type. This resulted in lower event
level F1 - scores. To improve the temporal aspect of the network different Bidirec-
tional Long Short-Term Memory (BLSTM) configurations were tried. The unit size
of 16 and 64 for the BLSTM were tried together with adding an additional BLSTM
layer. This did not seem have a noticeable improvement on the event level F1 - score.
A multi resolution model with a low resolution channel of kernel size 3 and a high
resolution channel of kernel size 9 and 29 was tried. The multi resolution seemed
to have less of the impossibly short events and had higher scores but it was only
compared with 1 test set instead of cross validation as the model took 30.5 hours to
train. The sample level F1 - scores, sample level Cohen’s Kappa and event level F1
- scores for the multi resolution model were respectively; fixations - 0.39, 0.08, 0.39,
saccades - 0.83, 0.82, 0.91, smooth pursuit - 0.61, 0.11, 0.32 and PSO - 0.61, 0.60,
0.43. The multi resolution model is promising but a full cross validation will have to
be done to properly compare its performance to the other models. The problem of
distinguishing fixations from smooth pursuit was not solved as it is a difficult task
that needs more research.



Chapter 8

Furher work

There are several things that need to be done. A post processing algorithm will have
to be implemented by choosing criteria for unacceptable events and merging them
with other events. A common criteria is event duration to ensure that saccades or
fixations cannot be too short. The challenges lies in how to determine what the
unacceptable event should be classified as in stead. In cases where both the adjacent
events are of the same type it can be just labelled as them. The challenge arises
when the adjacent events are two different events. A similar but slightly different
challenge are the alternating sequences of fixations and smooth pursuit that were
present in the manual inspection of the output. It is not straight forward to decides
if they should all be either fixations or smooth pursuit.

Comparison of the neural networks performance with other algorithms will also
be nessecary to determine how well it actually performs. This can be a challenge
as many of the classic algorithms have thresholds that need to be manually set.
One approach could be to perform a grid search over the entire data set for the
different algorithm parameters but this could artificially increase their performance
as they would have knowledge of the test set while the network does not. It becomes
difficult with algorithms like the Modified Nyström and Holmqvist (MNH) that were
designed specifically for a certain frequency and task. There are other challenges
when implementing other researchers deep learning networks as they may not have
the model weights available or have done some specific pre processing of the data
they do not mention. There is also the issue that many algorithms do not classify
both smooth pursuit and PSO.

To evaluate the neural networks generalisability other datasets will have to be
used. This poses multiple challenges as the datasets are often recorded at different
frequencies with different eye trackers. This creates inherent differences that may give
neural networks trained on them an inherent edge. It also poses the issue that not
many datasets are available and their definition of events also vary. It is reasonable
to think that a network trained on GazeCom will produce much different saccades
than one trained on Lund 2013 as the saccade boundaries in the ground truth are
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much different. This would create lower scores because the ground truth is operating
on a different definition of where the movements start and end.

To improve the difficult task of differentiating fixations from smooth pursuit a
different approach could be necessary. The first step would be to create a new dataset
with clinical smooth pursuit stimuli of varying velocities and directions. This would
allow investigation into what types of smooth pursuit the network struggles with
and which it is able to detect. This could give some insight into how to improve the
smooth pursuit detection. It would also be a good approach to review the literature
for alternative features that others have used for smooth pursuit and see how it would
impact the classification



Bibliography

Agtzidis, I., Startsev, M., and Dorr, M. In the pursuit of (ground) truth: A hand-
labelling tool for eye movements recorded during dynamic scene viewing. In Pro-
ceedings of the 2nd Workshop on Eye Tracking and Visualization, ETVIS 2016, pp.
65–68. IEEE, oct 2017. ISBN 9781509047314. doi: 10.1109/ETVIS.2016.7851169.
Available at: <http://ieeexplore.ieee.org/document/7851169/>.

Bahill, A. T., Clark, M. R., and Stark, L., 1975. Dynamic overshoot in saccadic eye
movements is caused by neurological control signal reversals. Experimental Neu-
rology, jul, 48(1), pp. 107–122. ISSN 10902430. doi: 10.1016/0014-4886(75)90226-
5. Available at: <https://www-sciencedirect-com.zorac.aub.aau.dk/science/article/
pii/0014488675902265>.

Bahill, A., Clark, M. R., and Stark, L., 1975. The main sequence, a tool
for studying human eye movements. Mathematical Biosciences, jan, 24(3-4),
pp. 191–204. ISSN 00255564. doi: 10.1016/0025-5564(75)90075-9. Available
at: <https://www.sciencedirect.com/science/article/pii/0025556475900759http://
linkinghub.elsevier.com/retrieve/pii/0025556475900759>.

Braunagel, C., Geisler, D., Stolzmann, W., Rosenstiel, W., and Kasneci, E., 2016.
On the necessity of adaptive eye movement classification in conditionally automated
driving scenarios. Etra, (2), pp. 19–26. doi: 10.1145/2857491.2857529. Available at:
<http://dx.doi.org/10.1145/2857491.2857529>.

Chen, H. Y. and Chien, J. T., 2015. Deep semi-supervised learning for domain adap-
tation. IEEE International Workshop on Machine Learning for Signal Processing,
MLSP, 2015-Novem, pp. 1–6. ISSN 21610371. doi: 10.1109/MLSP.2015.7324325.

Chen, S. and Epps, J., 2013. Automatic classification of eye activity for cogni-
tive load measurement with emotion interference. Computer Methods and Pro-
grams in Biomedicine, may, 110(2), pp. 111–124. ISSN 0169-2607. doi: 10.1016/J.
CMPB.2012.10.021. Available at: <https://www.sciencedirect.com/science/article/
pii/S0169260712002830{#}bib0125>.

73

http://ieeexplore.ieee.org/document/7851169/
https://www-sciencedirect-com.zorac.aub.aau.dk/science/article/pii/0014488675902265
https://www-sciencedirect-com.zorac.aub.aau.dk/science/article/pii/0014488675902265
https://www.sciencedirect.com/science/article/pii/0025556475900759 http://linkinghub.elsevier.com/retrieve/pii/0025556475900759
https://www.sciencedirect.com/science/article/pii/0025556475900759 http://linkinghub.elsevier.com/retrieve/pii/0025556475900759
http://dx.doi.org/10.1145/2857491.2857529
https://www.sciencedirect.com/science/article/pii/S0169260712002830{#}bib0125
https://www.sciencedirect.com/science/article/pii/S0169260712002830{#}bib0125


74 Bibliography

Deubel, H. and Bridgeman, B., 1995. Fourth Purkinje image signals reveal eye-lens
deviations and retinal image distortions during saccades. Vision Research, feb, 35
(4), pp. 529–538. ISSN 00426989. doi: 10.1016/0042-6989(94)00146-D. Available
at: <https://www.sciencedirect.com/science/article/pii/004269899400146Dhttps://
linkinghub.elsevier.com/retrieve/pii/004269899400146D>.

Dorr, M., Martinetz, T., Gegenfurtner, K. R., and Barth, E., 2010. Variability of
eye movements when viewing dynamic natural scenes. Journal of Vision, aug, 10
(10), pp. 28–28. ISSN 1534-7362. doi: 10.1167/10.10.28. Available at: <http:
//jov.arvojournals.org/Article.aspx?doi=10.1167/10.10.28>.

Friedman, L., Nixon, M. S., and Komogortsev, O. V., 2017. Method to assess the
temporal persistence of potential biometric features: Application to oculomotor,
gait, face and brain structure databases. PLoS ONE, jun, 12(6), p. e0178501. ISSN
19326203. doi: 10.1371/journal.pone.0178501. Available at: <http://www.ncbi.nlm.
nih.gov/pubmed/28575030http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=PMC5456116https://dx.plos.org/10.1371/journal.pone.0178501>.

Friedman, L., Rigas, I., Abdulin, E., and Komogortsev, O. V., 2018. A novel evaluation
of two related and two independent algorithms for eye movement classification during
reading. Behavior Research Methods, aug, 50(4), pp. 1374–1397. ISSN 15543528.
doi: 10.3758/s13428-018-1050-7. Available at: <http://link.springer.com/10.3758/
s13428-018-1050-7>.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, volume 2016-Decem, pp. 770–778, dec 2016. ISBN 9781467388504.
doi: 10.1109/CVPR.2016.90. Available at: <http://arxiv.org/abs/1512.03385>.

Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., and Hooge, I.
T. C., 2018. Is the eye-movement field confused about fixations and sac-
cades? A survey among 124 researchers. Royal Society open science, aug,
5(8), p. 180502. ISSN 2054-5703. doi: 10.1098/rsos.180502. Available
at: <http://www.ncbi.nlm.nih.gov/pubmed/30225041http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=PMC6124022>.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Halszka, J., and van de
Weijer, J. Eye tracking: A comprehensive guide to methods, and measures. Oxford
University Press, 2011. ISBN 9780199697083.

https://www.sciencedirect.com/science/article/pii/004269899400146D https://linkinghub.elsevier.com/retrieve/pii/004269899400146D
https://www.sciencedirect.com/science/article/pii/004269899400146D https://linkinghub.elsevier.com/retrieve/pii/004269899400146D
http://jov.arvojournals.org/Article.aspx?doi=10.1167/10.10.28
http://jov.arvojournals.org/Article.aspx?doi=10.1167/10.10.28
http://www.ncbi.nlm.nih.gov/pubmed/28575030 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5456116 https://dx.plos.org/10.1371/journal.pone.0178501
http://www.ncbi.nlm.nih.gov/pubmed/28575030 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5456116 https://dx.plos.org/10.1371/journal.pone.0178501
http://www.ncbi.nlm.nih.gov/pubmed/28575030 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5456116 https://dx.plos.org/10.1371/journal.pone.0178501
http://link.springer.com/10.3758/s13428-018-1050-7
http://link.springer.com/10.3758/s13428-018-1050-7
http://arxiv.org/abs/1512.03385
http://www.ncbi.nlm.nih.gov/pubmed/30225041 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6124022
http://www.ncbi.nlm.nih.gov/pubmed/30225041 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6124022


Bibliography 75

Hooge, I. T., Niehorster, D. C., Nyström, M., Andersson, R., and Hessels, R. S., 2017.
Is human classification by experienced untrained observers a gold standard in fixation
detection? Behavior Research Methods, oct, 50(5), pp. 1864–1881. ISSN 15543528.
doi: 10.3758/s13428-017-0955-x. Available at: <http://link.springer.com/10.3758/
s13428-017-0955-x>.

Hoppe, S. and Bulling, A., 2016. End-to-End Eye Movement Detection Using Convo-
lutional Neural Networks. sep. Available at: <http://arxiv.org/abs/1609.02452>.

Komogortsev, O. V. and Karpov, A., 2013. Automated classification and scoring of
smooth pursuit eye movements in the presence of fixations and saccades. Behavior
Research Methods, mar, 45(1), pp. 203–215. ISSN 1554351X. doi: 10.3758/s13428-
012-0234-9. Available at: <http://link.springer.com/10.3758/s13428-012-0234-9>.

Komogortsev, O. V., Jayarathna, S., Koh, D. H., and Gowda, S. M., 2009. Qualita-
tive and Quantitative Scoring and Evaluation of the Eye Movement Classification
Algorithms. Proceedings of ACM Eye Tracking Research & Applications Symposium,
Austin, TX, p. 10. doi: 10.1145/1743666.1743682.

Larsson, L., Nystrom, M., and Stridh, M., 2013. Detection of Saccades and Postsaccadic
Oscillations in the Presence of Smooth Pursuit. IEEE Transactions on Biomedical
Engineering, sep, 60(9), pp. 2484–2493. ISSN 0018-9294. doi: 10.1109/TBME.2013.
2258918. Available at: <http://ieeexplore.ieee.org/document/6504734/>.

Leigh, J. R. and Zee, D. S. The Neurology of Eye Movements. 4 edition, 2004. ISBN
978-0-19-530090-1.

Meyer, C. H., Lasker, A. G., and Robinson, D. A., 1985. The upper limit of human
smooth pursuit velocity. Vision Research, jan, 25(4), pp. 561–563. ISSN 0042-6989.
doi: 10.1016/0042-6989(85)90160-9. Available at: <https://www.sciencedirect.com/
science/article/pii/0042698985901609>.

Nyström, M., Hooge, I., and Holmqvist, K., 2013. Post-saccadic oscillations in eye
movement data recorded with pupil-based eye trackers reflect motion of the pupil
inside the iris. Vision Research, nov, 92, pp. 59–66. ISSN 00426989. doi: 10.1016/
j.visres.2013.09.009. Available at: <https://www.sciencedirect.com/science/article/
pii/S0042698913002356?via{%}3Dihub{#}b0085>.

Patney, A., Kim, J., Salvi, M., Kaplanyan, A., Wyman, C., Benty, N., Lefohn, A., and
Luebke, D. Perceptually-based foveated virtual reality. In ACM SIGGRAPH 2016
Emerging Technologies on - SIGGRAPH ’16, pp. 1–2, New York, New York, USA,
2016. ACM Press. ISBN 9781450343725. doi: 10.1145/2929464.2929472. Available
at: <http://dl.acm.org/citation.cfm?doid=2929464.2929472>.

http://link.springer.com/10.3758/s13428-017-0955-x
http://link.springer.com/10.3758/s13428-017-0955-x
http://arxiv.org/abs/1609.02452
http://link.springer.com/10.3758/s13428-012-0234-9
http://ieeexplore.ieee.org/document/6504734/
https://www.sciencedirect.com/science/article/pii/0042698985901609
https://www.sciencedirect.com/science/article/pii/0042698985901609
https://www.sciencedirect.com/science/article/pii/S0042698913002356?via{%}3Dihub{#}b0085
https://www.sciencedirect.com/science/article/pii/S0042698913002356?via{%}3Dihub{#}b0085
http://dl.acm.org/citation.cfm?doid=2929464.2929472


76 Bibliography

Salvucci, D. D. and Goldberg, J. H., 2000. Identifying fixations and saccades in eye-
tracking protocols. Proceedings of the symposium on Eye tracking research & applica-
tions - ETRA ’00, pp. 71–78. ISSN 10960384. doi: 10.1145/355017.355028. Available
at: <http://portal.acm.org/citation.cfm?doid=355017.355028>.

Santini, T., Fuhl, W., Kübler, T., and Kasneci, E., 2015. Bayesian Identification of
Fixations, Saccades, and Smooth Pursuits. Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications - ETRA ’16, nov, pp. 163–170.
ISSN 1471-2105. doi: 10.1145/2857491.2857512. Available at: <http://dl.acm.org/
citation.cfm?doid=2857491.2857512http://arxiv.org/abs/1511.07732>.

Startsev, M., Agtzidis, I., and Dorr, M., 2018. 1D CNN with BLSTM for automated
classification of fixations, saccades, and smooth pursuits. Behavior Research Methods,
nov, pp. 1–17. ISSN 1554-3528. doi: 10.3758/s13428-018-1144-2. Available at:
<http://link.springer.com/10.3758/s13428-018-1144-2>.

Tafaj, E., Kasneci, G., Rosenstiel, W., and Bogdan, M. Bayesian online clustering of
eye movement data. In Proceedings of the Symposium on Eye Tracking Research and
Applications - ETRA ’12, p. 285, New York, New York, USA, 2012. ACM Press.
ISBN 9781450312219. doi: 10.1145/2168556.2168617. Available at: <http://dl.acm.
org/citation.cfm?doid=2168556.2168617>.

Tafaj, E., Kübler, T. C., Kasneci, G., Rosenstiel, W., and Bogdan, M. Online
Classification of Eye Tracking Data for Automated Analysis of Traffic Hazard
Perception. In IEEE Signal Processing Magazine, volume 30, pp. 442–450. sep
2013. ISBN 978-3-642-40728-4. doi: 10.1007/978-3-642-40728-4_56. Available at:
<http://www.csie.ntu.edu.tw/{~}cjlin/talks/rome.pdfhttp://ieeexplore.ieee.org/
document/6582713/http://link.springer.com/10.1007/978-3-642-40728-4{_}56>.

Tobii, 2019. Tobii and HTC Bring Eye Tracking to Next Generation VR Headset.
Available at: <https://www.tobii.com/siteassets/tobii-and-htc-bring-eye-tracking-
to-next-generation-vr-headset-press-release-8-jan-2019/?v=1>.

Zemblys, R., Niehorster, D. C., and Holmqvist, K., 2018. gazeNet: End-to-end eye-
movement event detection with deep neural networks. Behavior Research Methods,
oct, pp. 1–25. ISSN 1554-3528. doi: 10.3758/s13428-018-1133-5. Available at: <http:
//link.springer.com/10.3758/s13428-018-1133-5>.

http://portal.acm.org/citation.cfm?doid=355017.355028
http://dl.acm.org/citation.cfm?doid=2857491.2857512 http://arxiv.org/abs/1511.07732
http://dl.acm.org/citation.cfm?doid=2857491.2857512 http://arxiv.org/abs/1511.07732
http://link.springer.com/10.3758/s13428-018-1144-2
http://dl.acm.org/citation.cfm?doid=2168556.2168617
http://dl.acm.org/citation.cfm?doid=2168556.2168617
http://www.csie.ntu.edu.tw/{~}cjlin/talks/rome.pdf http://ieeexplore.ieee.org/document/6582713/ http://link.springer.com/10.1007/978-3-642-40728-4{_}56
http://www.csie.ntu.edu.tw/{~}cjlin/talks/rome.pdf http://ieeexplore.ieee.org/document/6582713/ http://link.springer.com/10.1007/978-3-642-40728-4{_}56
https://www.tobii.com/siteassets/tobii-and-htc-bring-eye-tracking-to-next-generation-vr-headset-press-release-8-jan-2019/?v=1
https://www.tobii.com/siteassets/tobii-and-htc-bring-eye-tracking-to-next-generation-vr-headset-press-release-8-jan-2019/?v=1
http://link.springer.com/10.3758/s13428-018-1133-5
http://link.springer.com/10.3758/s13428-018-1133-5

	Frontpage
	Title Page
	Contents
	1 Introduction
	2 Eye movement classification
	2.1 Eye movements
	2.1.1 Fixation
	2.1.2 Saccade
	2.1.3 Post-Saccadic Oscilation
	2.1.4 Smooth pursuit

	2.2 Datasets
	2.2.1 Driving data
	2.2.2 Clinical data
	2.2.3 Hoppe and Bulling
	2.2.4 GazeCom
	2.2.5 Lund 2013
	2.2.6 gazeGenNet
	2.2.7 Reading study

	2.3 Evaluation metrics
	2.3.1 Behavioural scores
	2.3.2 Hierarchical error rules
	2.3.3 Global metrics
	2.3.4 Sample and Event level difference

	2.4 Algorithms
	2.4.1 Classical Algorithms
	2.4.2 Bayesian Mixed Model
	2.4.3 Deep Learning

	2.5 Problem statement

	3 Dataset exploration and selection
	3.1 GazeCom features
	3.1.1 Classification methodologgy
	3.1.2 Class examples
	3.1.3 Duration
	3.1.4 Inspection of saccades
	3.1.5 Feature distribution

	3.2 Lund 2013 dataset
	3.2.1 Lund 2013 movement examples
	3.2.2 Lund 2013 feature distribution


	4 Methodology
	4.1 Neural Networks
	4.1.1 cnn
	4.1.2 lstm

	4.2 Implementation
	4.3 Evaluation metrics chosen

	5 Experiment
	5.1 Results of LOVO cross validation
	5.2 gazecomnet network output
	5.3 Results of improvements
	5.3.1 Changing the lstm layer
	5.3.2 Multi resolution network

	5.4 Output of improvements

	6 Discussion
	7 Conclusion
	8 Furher work
	Bibliography

