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Abstract: 

This thesis contains a study of automatic detection of large-scale solar plants from 

satellite imagery (Sentinel-1 and Sentinel-2) using geospatial cloud-based platform – 

Google Earth Engine. The thesis investigates to what extent and with what accuracy 

is possible to detect large-scale solar plants using specific remote sensing data. The 

study is connected with the existing research and approach and tries to provide a more 

accessible way using available processing tools. The approach and process are 

commented using coding samples, workflow scheme, and the results are compared 

using different machine learning classifiers. The analysis is conducted using Denmark 

as a study area with known ground-truth data, but the approach is ultimately 

transferred for detecting large-scale solar plants in the selected Germany state. 
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1 INTRODUCTION 

 

 

Humans have always been attracted by viewing the world from above. Every 

single day, there is a vast number of satellite images comprehensively taken by dozens 

of satellites orbiting Earth and containing a large amount of information. However, 

the broad range and amount of data, which is updated daily, exceeds the opportunity 

to process these data with manual analysis. It is only possible to manage to work with 

this data using entirely or semi-automated tools (Ishii et al. 2017). Another fact is that 

with still a growing rise of global warming of Earth, also the investments on clean 

energy have been increasing, not excluding solar plants investments and constructions. 

The photovoltaic (PV) capacity worldwide exceeded 270 GW between years 2010 and 

2016 (Imamoglu et al. 2017). 

There is an increased demand for the objects detected from space using remote 

sensing in recent years, including large solar installations in the academia and 

simultaneously by commercial companies and businesses. Companies usually use 

high-resolution aerial imagery and analyzing only the small portion of the area (for 

example cities or just part of cites). Not extensive academic research, on the other 

hand, uses less precise spatially resolution imagery but conduct their analysis using 

Convolutional Neural Network (CNN) on large datasets without using capabilities of 

cloud computing. This research is usually lead by the departments of Computer 

Science / Informatics without using the geography perspective on the subject.  

These facts lead to establishing a thesis project idea whether and to which 

extent we can observe, monitor, and collect data about solar energy objects, especially 

large-scale solar (PV) plants. Solar power plants are in a key position in renewable 

energy planning. Detection of solar power plants empowers authorities to plan and 

estimate energy production. Moreover, the direct light is needed for optimal 

functionality of solar power plants; thus, these objects are usually located in a place 

fully visible for satellite imagery (Ishii et al. 2017). Furthermore, the data for these 

installations often lacks precise geospatial information as they are registered to address 

to an adjacent building site or farm, and this makes the potential geospatial analysis 

using these data difficult with biased results. There is a fast-paced building-up of solar 
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plants, and data might become overdue quickly. With modern tools such as Google 

Earth Engine (GEE), it became easier and straightforward to monitor the changes in 

the land cover and the methods for usage rising invariably. These assumptions lead to 

defining main research questions and sub-questions of this thesis project.  

 

1.1 Problem statement and research questions 

The purpose of this study is to fill a gap in the ongoing research of the object 

detection of solar plants from geoinformatics perspective with a focus on the 

description of overall workflow from data collection to discussion of results, and 

examination of feasibility using freely accessible tools and satellite imagery 

collections. 

Main research question 

• To what degree of accuracy can we use freely available remote sensing images 

and the cloud processing platform, e.g., GEE to detect large-scale solar plants? 

Research sub-questions: 

• To what extent is, in terms of area size and installed capacity, feasible to get 

information for large-scale solar plants from Sentinel images? 

• What are the advantages and disadvantages of using binary supervised 

classification in order to detect large-scale solar plants? 

• Which machine learning algorithm available in GEE is the most suitable for 

the detection of large-scale solar plants? Is GEE capable enough to do this job? 

The structure of the thesis is as follows: firstly, the theory about researched 

subjects will be described. Secondly, the data processing and the overall approach for 

using GEE and its supervised classification along with commented script will be 

explained and written. The last part will consist of results commentary and 

discussion/conclusion part with a focus on answering the primal research questions. 

This project was conducted as a master thesis for Geoinformatics study program. The 

overall workflow for a thesis procedure ordered by the time frame from the thesis 

proposal to the final writing is presented in Figure 1. 
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Figure 1. The workflow of the thesis procedure 

 

1.2 Existing research on large-scale solar plants detection using RS 

There is still limited research on detection of large-scale solar plants or solar 

panels in the scientific literature. Many of the existing researches on object detection 

focus solely on high spatial resolution imagery within the small study area 

(incomparable with the scope of the study area of this project). Malof et al. (2015) 

conducted research to develop a computer algorithm to detect rooftop PV installations 

using high resolution (0.3 m) orthophoto imagery. Their algorithm shows exciting 

results with 94% detection rate and only 4 out of 57 PV installations falsely detected 

but mapping only one specific part of the city, Lemoore, CA.  

 Ishii et al. (2017) investigate the trained CNN using Landsat 8 satellite images 

(30 m spatial resolution) for the detection of solar power plants. Similarly, as the 

approach of this thesis project, they use the existing solar plant's dataset to annotate 

the results. Associated research from Imamoglu et al. (2017) uses CNN (FB-net model 

to a baseline CNN) and Landsat 8 imagery, this time with a weakly supervised 

feedback and the satisfactory results for pixel-wise detection tasks. Also, few blog 

posts present the research on a similar topic. Padarian (2018) small project consists of 

detection of solar rooftop installations within a city neighborhood. The research uses 

GEE to demarcate solar panels, but the CNN model is run elsewhere. Many of these 

researches have the common idea of particularly exploring the feasibility of their 

approach farther development and potential future research.  
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2 BACKGROUND AND THEORY 

 

2.1 Google Earth Engine 

There are several tools for enabling the processing of large-scale geospatial data 

– GeoMesa, GeoSpark, or Hadoop. Unfortunately, in many cases these tools require 

extensive technical expertise, knowledge of handling advanced data acquisition and 

storage and working with complex data and file formats, not to mention machine 

allocations or CPUs and GPUs complications among many (Gorelick et al. 2017). 

These difficulties discouraged many scientists from solving their potential research 

questions. The remote sensing research community, therefore, appreciated the 

initiation of the new platform – Google Earth Engine. Before GEE creation, it was 

theoretically described the needfulness for large-scale cloud computing product with 

a high-performance system to leverage the power and to get user-defined temporal and 

spatial high-quality remote sensing images (Li et al. 2019).  

GEE is a cloud-based, freely accessible and available Google product and 

processing imagery platform for facilitating remote sensing data extraction and 

processing without the need for extensive data downloading and immersed data 

processing. Data are mostly gathered from NASA`s Earth Observing Satellites 

(mainly MODIS and LANDSAT) and ESA`s Sentinel satellites (Wasson et al. 

2018)(Li et al. 2019). GEE is, for the time being of writing this master thesis, still a 

new platform used for scientific analysis and geographical visualization of large-scale 

(petabyte) spatial datasets including historical images (Liu et al. 2018). The present 

data archive consists not only from remote sensing data but is also complemented by 

vector data sets about demographic, social, weather, climate, and digital elevation 

models features (Mutanga and Kumar 2019). GEE takes profit not only from its free 

access but also for the growing user base, which is especially useful when exchanging 

information, code samples, and applicable approach (Healey et al. 2018). 

Google Earth Engine framework and platform overview 

GEE along with its catalog are reachable through Code Editor and GEE 

Explorer (both web-based platforms) after approved user registration. The GEE 
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Explorer is used to analyze and view satellite images with a set of tools and Code 

Editor is used to fully customizable analysis using JavaScript and Python 

programming language. Several spatial or mathematical operations can be executed 

on satellite imagery using Code Editor (Liss, Howland, and Levy 2017).  

GEE has a relatively user-friendly front-end solution for interactive data and 

algorithms exploration and processing (Mutanga and Kumar 2019). The access is 

provided after the approval of the development team when submitting the form of 

potential usage and the background of the user. It is expected that the GEE will provide 

a solution for not only scientists and researchers, but also for hobbyist and remote 

sensing enthusiasts. The diagram of all available components of GEE is displayed in 

Figure 2. 

 

Figure 2. Components of the Earth Engine Code Editor (“API Tutorials | Google Earth 

Engine API | Google Developers” n.d.) 

For many previous years, earth observation datasets were labor-intensive, 

required long-term acquisition for application and subsequent analysis with a 

dependent on geometric and radiometric correction due to systematic sensor errors 

and atmospheric impact (Hansen and Loveland 2012). Furthermore, the preparation 

of large-scale remote sensing data was inefficient as a result of principally for 

individuals since for example the Landsat data were accessed from the United States 
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Geological Survey’s archive after vast inspecting, filtering and downloading these big 

data (Woodcock et al. 2008).  

 

2.2 Satellite imagery 

Remote sensing and satellite imagery if used correctly can provide a beneficial 

point of view to explore the surface of the earth (Liss, Howland, and Levy 2017). As 

contrasted to the standard imagery, the remote sensing imagery significantly differs 

with the satellite images containing extra spectral information beyond the scope of the 

RGB spectrum. Spectral bands (infrared), which are not visible to the human eye, are 

used in remote sensing (Ishii et al. 2017). These bands work as different channels of 

the image and can help to get ‘for eyes’ hidden information. Satellite imagery is 

considered to be a useful data source more and more and is getting accessible easily 

every year more often. Amongst the application and usage of satellite imagery belong 

the assisting in urban planning, navigation, disaster planning, and recovery and getting 

data about large objects and energy. The intersection of object detection and energy 

are the main content of this thesis project.  

Sentinel-2 

Copernicus, formerly recognized as Global Monitoring for Environment and 

Security (GMES) is a Europe based monitoring Earth system which collects data from 

various sources (Earth observation satellites, ground stations, airborne sensors, etc.). 

Copernicus operates these data and provides them to end users (public authorities and 

policymakers), mainly related to environmental and security concerns. The services 

of this system contain six particular areas: atmosphere, climate change, land, marine, 

along with security as mentioned above and emergency management (Pasco et al. 

2016). 

Sentinel’s missions as a part of Copernicus Space Component are used in 

emergency management for mapping flooded areas, burn scars, earthquakes or 

landslides; nonetheless, their resolution is too coarse for urban area`s disaster and 

damage mapping (Pasco et al. 2016).  

Sentinel-2 imagery consists of two sensors collecting data between 443 nm and 2190 

nm (thirteen bands with different spatial resolution) at revisiting time of five days. 
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There are also other three bands (the channels of the atmospheric correction – B1, B9, 

and B10) with 60 m spatial resolution (Bomans et al. 2018).  

 Sentinel-2 is a high-resolution, wide swath and multi-spectral satellite image 

European mission consisting of twin satellites flying at the same orbit with a frequency 

of revisit five days. Sentinel-2 has optical instrument equipment which samples 13 

spectral bands. Sentinel-2 mission is a follow up to SPOT (Satellite for observation of 

Earth) and Landsat missions, compared to them, however, stands out with better 

spatial resolution and a greater wide-swath (Figure 3) (ESA 2019b). 

 

Figure 3. Overview of Sentinel-2 spectral bands (ESA 2019b) 

 

Sentinel-1 

 The mission of Sentinel-1 is even older (April 2014) than Sentinel-2 mission 

and consists of two satellites orbiting polar operating C-band synthetic aperture radar 

remote imaging. The radar imaging is particularly useful because the image 

acquisition is disregarding weather. Sentinel-1 has C-band performing in four 

exclusionary modes with distinctive resolution (5 m being the highest resolution). It 

supplies short revisit times, dual polarization capability, and fast product delivery.  

 Synthetic Aperture Radar (SAR) operates at wavelengths not disrupted by lack 

of illumination or cloud cover (ESA 2019a). Sentinel-1 is monitoring the Earth surface 
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in 4 modes: Strip Map Mode (SM), Interferometric Wide Swath Mode (IW), Extra 

Wide Swath Mode (EW) and Wave Mode (WM) displayed in Figure 4. 

 

Figure 4. Different Sentinel-1 SAR modes (ESA 2019a) 

 

 

2.3 Object detection in remote sensing  

Object detection is a part of remote sensing science area in last years and 

represented a growing challenge as an open research topic being a significant 

challenge for decades (mostly within the automatic building extraction) (Chen, Li, and 

Li 2018). The goal is to determine whether certain satellite image contains one or more 

objects of a given class along with the geographical position of these features. The 

term “object,” in this specific meaning, refers mostly to a human-made feature like 

vehicle, ship, building or in the context of this thesis solar panels or solar plant. This 

object should locate in the independent background environment and have sharp 

boundaries (Cheng and Han 2016). Successful object detection from remote sensing 
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can play an essential role in updating and creating geospatial databases, environmental 

or geological monitoring, or even in agriculture.  

Object detection applicable in remote sensing suffers from several challenges 

such as massive diversity of the visual appearance of the object, background clutter, 

shadow, and illumination, to name a few. This topic has been studied within the 

geospatial field since the 1980s. The earliest satellite images, including Landsat 

images, lacked the spatial resolution needed for the detection of separate natural or 

human-made features. The studies targeted only to extracting region properties from 

these images. After certain advances in remote sensing, the very high-resolution 

satellites were introduced (Quickbird, IKONOS, and SPOT-5) and the pictures from 

these satellites can provide more detailed textural and spatial information to the point 

where human-made objects appeared observable and recognizable and could be 

identified. That opened new challenges linked with automatic detection of objects with 

geospatial information (Cheng and Han 2016). 

There are several object categories for object detection in remote sensing, 

which were described and summed up by Cheng and Han (2016). These categories are 

template matching-based object detection methods, knowledge-based object detection 

methods, object-based image analysis detection methods, and machine learning-based 

object detection methods. In recent years, the scientific field of object detection from 

imagery has been dominated by CNN (Ishii et al. 2017). 

 

2.4 Solar energy and solar plants overview 

The increasing human consumption end to end with the future exhaustibility of 

the traditional resources of energy has caused growing energy issues for the world 

economy in the last years. To avoid energy deficiencies, a gradual transition to another 

alternative source of energy (water, wind, biomass, etc.) is one of the few conceivable 

solutions (Navratilova 2013). Being considered the future of the world’s global 

success, solar power plants are on the rise as a sustainable, significant energy source 

(SpaceKnow 2016). Solar energy is branched into solar PV, concentrating solar power 

and solar heating.  
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Solar energy is considered socio-economical beneficial and environmentally 

friendly with a few negative impacts as cultivable land loss, site size of large solar 

installations, and impacts on the ecosystem. The positive effects as the emission of 

greenhouse and toxic gases, reclamation of degraded land and many others, however, 

prevail (Tsoutsos, Frantzeskaki, and Gekas 2005; Phillips 2013). From the beginning 

of the 21st century, solar plants were growing rapidly due to the efforts of research and 

development, particularly in Germany, China, Spain, Australia, and the United States 

(Behar 2018).  

There were nearly 74 GW solar energy installations in 2016 but is anticipated 

by the current projection that the total capacity will exceed 1300 GW by 2025 and will 

pass wind energy total installed capacity around 2022 (Nyheim and Bruhn 2017). 

Large-scale solar plants in the world and Denmark 

There is no direct definition what can be considered as a large-scale solar plant 

(often also used as a solar park, solar power station or with a term ‘photovoltaic’ 

instead of ‘solar’) in terms of capacity and area size. Piyatadsananon (2016) writes 

about large-scale solar plant following: “system designed for the supply of merchant 

power into the electricity grid at the utility level. It has been promoted to invest this 

kind of renewal energy in several countries over the world.” The biggest solar 

installation in the world, at the time of writing this thesis report, exceeds 1 GW of 

installed capacity and the largest by area size is big around 25 km2. There are two 

kinds of large-scale solar plants: ground-mounted solar plants, which are the main 

objective of this study and are located in broad areas of agriculture, private or public 

areas. The other type is rooftop solar installations which are located on the rooftops of 

large commercial buildings or factories (Piyatadsananon 2016). 

Nowadays, Denmark is one of the leaders on large-scale solar plants which are 

directly linked to the district heating systems. The number of solar plants in Denmark 

expanded rapidly over the last years (Furbo et al. 2018). The goal of reaching 200 MW 

of installed capacity distributed by PV was reached in 2012 (although the set year was 

2020). Denmark has the largest solar plant in the whole Scandinavia – Solar park 

Vandel in Jutland with a capacity of 75 MW and is providing sufficient electricity to 

power around 20 000 Danish homes in a year (EuropeanEnergy.dk 2015).  
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Table 1 demonstrates the generation and capacity of solar power in Denmark 

from 2012 to 2017. However, also the values for small solar plants and rooftop 

installations are contained in the table, not only values for large-scale solar plants. 

Table 1. Solar PV electricity capacity and generation values for Denmark for period 2012 – 2017 

(source: IRENA (2018, Renewable Energy Statistics 2018) 

Country/area Technology Indicator 2012 2013 2014 2015 2016 2017 

         

Denmark Solar photovoltaic 
Electricity capacity 
(MW)   402   571   607   782   851   906 

    
Electricity generation 
(GWh)   104   518   596   604   744   

 

2.5 Solar plants data of Denmark 

The Danish Energy Agency provided the initial dataset of all registered solar 

plants (from the small rooftop solar panels to large-scale PV installations) as the author 

of this thesis worked as an intern for 4 months before thesis period there (on the project 

unrelated to the topic of this thesis project, except focus on the solar plants). This 

dataset was preprocessed, some parts of the same installations were grouped, and for 

the purpose of the project, the original dataset was filtered out to leave only solar plants 

with an installed capacity larger than 200 kW. Even though there is no direct definition 

and threshold for what can be considered as ‘large-scale’ installation, it is not in the 

interest of this project to detect solar plants with a smaller installed capacity. The 

source for the geographical location of the solar plants from this dataset was based on 

the geocoded web scrapping from DAWA (Denmark Addresses Web API). The 

coordinates for solar plants from this register are in many cases not accurate as the 

registered address of solar installation might be linked to an owner’s address (in many 

cases of large-scale solar plants it is the adjacent farm); thus the real geolocation of 

that solar plants is biased. This dataset contains point features, and together with the 

location, also the installed capacity is provided.  

The map showing the locations of the biggest solar installations in Denmark 

(valid for September 2018) is presented in Figure 5. These data will be used mainly 

for a visual check, drawing input training data and validation data for accuracy 

assessment of the classification. From the map (Figure 5) where the location is 

demonstrated, it can be observed the largest solar installations in Denmark are spread 
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all over the country with largest one being Solar Park Vandel in Jutland with the 

installed capacity of 75 MW. 

 

Figure 5. Locations of large-scale PV plants in Denmark with a capacity of 200 kW and 

more 
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2.6 Machine learning algorithms 

In supervised classification in remote sensing imagery, the selection of suitable 

machine learning algorithm is crucial. Machine learning in GIS is used not only in 

supporting classifications in remote sensing but is being currently used to solve many 

issues, including 3D visualization, geospatial economic modeling, and all different 

variety of problems. Usage of machine learning in remote sensing dates back to the 

late 1990s. These algorithms learn the pattern based on the training data, and with this 

example, can generalize the whole study area (Farda 2017). When this algorithm is 

trained, sequentially can be applied to the entire image in the researched region of 

interest, and the result classification is retrieved. The selection of machine learning 

algorithms used in this thesis project was evaluated by literature research (which are 

the most effective and used algorithms in remote sensing imagery supervised 

classification) and by the GEE API (application programming interface) availability. 

GEE provides in the time of this thesis processing 10 machine learning algorithms 

(CART, Fast Naïve Bayes, GMO Max Entropy, Multi-Class Perceptron, Random 

Forest, Margin Support Vector Machines (SVM), Voting SVM, Pegasos, IKPamir, 

Winnow), which can be divided into several groups (Farda 2017). In the following 

part, the machine learning algorithms which were used in this thesis project will be 

described theoretically. The accuracy assessment results from these different 

classifiers will be compared in the 4.1 section of this thesis paper. 

Support Vector Machines 

SVM algorithm targets entirely on the training data samples that are located 

closest in the classification space to the optimal boundary between the feature classes 

(Maxwell, Warner, and Fang 2018) and can be used both for classification and 

regression. These samples are support vectors. The objective of this classification is 

to detect the suitable boundary which expands the segregation between these vectors. 

This classifier is binary, thus detects a single boundary between surveyed classes. 

SVM classifiers are more frequently used in remote sensing applications due to their 

capability to generalize with a high level of accuracy even with a small number of 

training samples (Mountrakis, Im, and Ogole 2011). GEE contains two decision 

procedures – ‘Voting’ and ‘Margin’ whereas Voting decision procedure is the default. 
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Classification and Regression Tree 

Classification and Regression Tree (CART) algorithm is along with Random 

Forest belonging to the logic-based machine learning algorithms applicable in GEE 

(Farda 2017). CART is a binary tree-structured algorithm and has a non-parametric 

approach for recognition of patterns (Bittencourt and Clarke 2004). CART affects the 

identification and construction of decision trees using pretrained data (Thamilselvana 

and Sathiaseelan 2015). The advantage of this classifier is that it can handle the vast 

amount of processed data.  

Random Forest 

Random Forest classifier (belongs under ensemble methods for classification) 

uses a broad number of decision trees to overrun the deficiency of a single decision 

tree (Maxwell, Warner, and Fang 2018). The final class of every pixel of this 

classification is assigned based on the majority ‘vote’ of the entire set of trees. Usually, 

approximately two-thirds of training data samples are used to train trees, and the 

remaining third is used for internal cross-validation for estimating how well the model 

itself performed. This classifier is also regularly used in remote sensing applications 

for detection of land cover, greenery and is especially advisable to use this classifier 

when working with multispectral imagery (Belgiu and Drăgu 2016).  

Naive Bayes 

Naive Bayes classifier is an efficient and simple method of classification for 

remote sensing image supervised classification. It is based on probability theory and 

is one of the six models of Bayesian networks. So as Random Forest classifier is 

especially capable tool when working with multispectral satellite imagery 

classification (Solares and Sanz 2007). This classifier is based on the assumption that 

the effect of each attribute on a researched class is separated from another attribute. 

Naive Bayes classification algorithm works with conditional independence 

assumption and then has the least possible chance of error. Based on that, the algorithm 

examines every attribute with an identical effect on the attribute of its class (Yang et 

al. 2018). In GEE, Fast Naive Bayes classifier is available and falls under the statistical 

learning algorithm class.  

 



20 

 

2.7 Accuracy assessment theory 

The results of classification can be visualized in the form of the map when post-

processing the results, but only accuracy assessment can quantify the legitimacy of 

results or if the classification results competent or incompetent. The validation of 

classification provides quality of data information both for producers and users of the 

analysis. These results can also guide which of the classifier is the most suitable. The 

most accepted method of expressing accuracy of classification (in this case 

supervised) is confusion matrix (error matrix) and various descriptive measures 

acquired from this confusion matrix to provide the accuracy information for each of 

the classified classes (Topaloǧlu, Sertel, and Musaoǧlu 2016). 

Confusion matrix and overall accuracy 

Confusion matrix compares relations among validation ground truth data and 

the corresponding classification results class by class. This matrix is used to calculate 

all adjacent values and coefficient. Overall accuracy value is calculated by dividing 

the number of accurately classified pixels with an overall number of reference pixels 

(Equation 1).  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
𝑥 100 

Equation 1. Overall accuracy equation 

Producer’s and user’s accuracy 

In addition to overall accuracy, there are producer’s and user’s accuracy 

calculated similarly and help to evaluate the accuracy of classification. Producer’s 

accuracy expresses the quality of the mapped classification and is calculated by 

division of the overall number of pixels which were classified accurately by the total 

number of all referenced “known” (ground truth) pixels. The value of producer’s 

accuracy, therefore, means how strong the reference data are classified or can be 

interpreted as a probability that a randomly chosen point in the region of interest has 

the same property value as on the final classification map. On the other hand, the user’s 

accuracy expresses the quality of the classification of training dataset and is calculated 

by the division of the accurately classified pixels of every category by the total number 

of pixels which were classified for this category. It shows how well the classification 
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represents the chance that the pixels classified into a specific category represents this 

category in the real world based on the “ground truth” data. User’s accuracy can also 

be interpreted as the probability for each class that a randomly chosen point on the 

result classification map has the same property as in the real world. Other indicators 

are omission and commission error, which are the values conversed from producer’s, 

respectively user’s accuracy and calculated as the derived values from 100 % from 

their accuracies (Hasmadi 2005). The formulas explaining these indicators are in 

Equation 2. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 % − 𝑜𝑚𝑖𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (%) 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 % − 𝑐𝑜𝑚𝑚𝑖𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (%) 

Equation 2. Producer’s and user’s accuracy equations 

Kappa coefficient  

Kappa coefficient is a value to measure the original training pixels to the 

validation data (ground truth data). The coefficient differs between -1 and +1 values, 

where the negative value displays the low accuracy, values around 0 no correlation at 

all and positive values the high accuracy (Taufik, Ahmad, and Khairuddin 2017). The 

mathematical equation for kappa is presented below (Equation 3) where n is the total 

number of pixels p is the number of classes and Σxii  signs the absolute number of 

elements in the confusion matrix. 

 

Equation 3. Kappa coefficient equation (Taufik, Ahmad, and Khairuddin 2017). 
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3 DATA COLLECTION AND PROCESSING 

 

3.1 Process summary 

The whole process of the following classification using GEE and summarized in 

sections from 3.2 to 3.6 is presented in Figure 6. 

 

 

Figure 6. The flow chart of the process of the classification 
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3.2 Training input data for image classification 

 

To use the function to classify satellite images collections into the suitable 

analysis information, creation of sample training data is required. It is possible to 

upload preprocessed data or create point or polygon features directly in GEE or 

combine both methods. In this project, several potential options were carried out to 

compare, and the optimal procedure is written down. The choice of the training data 

is the predominant factor for successful classification. As object-based classification 

depends solely on two classes, feature collection with not the only property of solar 

plants occurrence, but also non-solar occurrence sampling containing as various land 

classes (urban areas, water bodies, crops, etc.) in the surrounding regions around 

trained samples of solar plants. The class property had to be in a binary numerical 

form so for the complete analysis and throughout the used datasets, the property solar 

was used with values 1 = solar plants training areas or 0 = areas without solar plants 

or even small solar panels appearance. In certain aspects, the supervised classification 

used in this analysis can be viewed both as a one class classifier and binary classifier 

at the same time as even though the analysis is executed for two classes, the goal is to 

extract the information just from one (solar). In Mack and Roscher (2014) one-class 

classification, the classifier requires reference data exclusively for a class of interest. 

This classification (without using contrarily training data – nonsolar), however, can 

be biased and is not, at the time of this thesis writing, supported by GEE.  

Training data for solar plants were drawn using geometry tools in GEE on top 

of Sentinel-2 composite image for the first half of 2018 using true colors composite. 

These training patches were extracted as feature collection and drawn on the largest 

(by installed capacity) large-scale solar plants in the original dataset also considering 

their geographical distribution in the investigated region (Denmark), so the patches of 

solar plants from different parts of Denmark were used. The critical aspect is the 

number of training pixels to avoid overfitting and underfitting in the consecutive 

analysis. The classification works by exploring the pixel values in predefined training 

sites to gather statistical signature for each of the training sites. To choose the solar 

plants where the training patches will be drawn upon, the idea that for the future 

reproducibility of the research is always easier to find information and data about the 
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most spacious large-scale power plants and then to detect the smaller ones. Hence, the 

training patches were drawn on the largest one (by capacity) concerning their spatial 

distribution. The samples of the training sites are seen in Figure 7 (in green) where 

training patches are drawn upon solar plants near Vandel in Southern Denmark region 

(left) and the solar plant near Gislinge in Zeland region (right). Even though the 

recognition of ground truth data is crucial and difficult in supervised classification in 

remote sensing, solar plant detection by user view is possible by significant visual 

features even without using high-resolution imagery. The patches were drawn and 

later trained on the inner part of arrays of solar plants to distinguished clearly from the 

surrounding areas and not to include non-solar areas. The red point symbols in Figure 

7 denote the original latitude and longitude attributes from the original datasets. 

 

Figure 7. Example of training sites made upon Sentinel-2 image 

The same level of importance is given for defining areas with non-solar 

attribute. Although it might seem that more non-solar patches are created, the more 

precise the final classification in terms of quantifying accuracy will be, the limitation 

of GEE must be considered conjointly. With geometry tools in GEE are limited by 

their function, for creating training patches for solar class = 0 ArcMap software was 

used. These areas were created as an intersection between two polygon circles with a 

radius of 4,000 m of a smaller one and 8,000 m for a larger one where the center of 

the circle is the centroid of the solar plant. The example of these areas is in Figure 8. 

These proportions were given that these polygon features would not include the area 

of solar plants. The visual analysis of these areas must have been conducted as it was 

necessary to not include any single solar plants (even the larger rooftop solar arrays) 

in these polygons. Based on a later execution of code for analysis, later the polygons 

were cut in half due to a computation capacity exceeding of GEE.  
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Figure 8. Non-solar areas (red color) training sample in the area of Vandel solar plant 

 

3.3 Pre-processing of satellite imagery data 

As all the computational operation are carried out on cloud in GEE, and the 

satellite imagery is provided besides, the pre-processing must be executed there. For 

the forthcoming classification, both imageries from Sentinel-1 and Sentinel-2 

missions were processed as for the challenging classification with a specific two 

classes input the best results will be needed. To classify the imagery with higher 

accuracy, the function that calculates the normalized difference vegetation index 

(NDVI) that quantifies vegetation and normalized difference water index (NDWI) that 

indicates the moisture content of the land surface were written (Code 1). Code 1 and 

all following code samples are written using JavaScript programming language. These 

indices must be renamed as seen in the complete code in Appendix 1. Adding these 

indices as additional bands to classification support the classification with higher 

overall accuracy and better kappa coefficient as conducted in research by Taufik, 

Ahmad, and Khairuddin (2017) on Landsat 8 satellite data. 
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1. //Creating function 
that creates NDVI and NDWI indices (later used for image collection)   

2. var addNDVIBands = function(image) {   
3. var NDVI = image.addBands(image.normalizedDifference(['B8', 'B4']));   
4. var NDWI = NDVI.addBands(NDVI.normalizedDifference(['B3', 'B8']));   
5. return NDWI.addBands(NDWI.metadata('system:time_start'));   
6. };   

Code 1. NDVI and NDWI adding function written in JavaScript 

Concerning the size of the study region and incomparable areas of large-scale 

solar plants, the highest spatial resolution imagery was needed, and thus the data from 

Sentinel-2 of 10 m and 20 m (dependent on the bands) were used. The image collection 

of Sentinel-2 top of atmosphere data was loaded (Code 2), filtered by date to get the 

median image from the whole collection, filtered by region of interest, using cloud 

filtering function and generating NDVI and NDWI indices using the function written 

in Code 1.  

1. // Loading Sentinel-2 TOA reflectance data.   
2. // Map the function over half a year of data and take the median.   
3. var sentinel2Collection = ee.ImageCollection('COPERNICUS/S2')   
4.                   .filterDate('2018-01-01', '2018-06-30')   
5.                   // Pre-filter to get less cloudy granules.   
6.                   .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))   
7.                   .filterBounds(region2)   
8.                   .map(addNDVIBands);   

Code 2. Loading of Sentinel 2 data in GEE (JavaScript GEE script) 

With the image collection loaded, the true color composite from Sentinel-2 

imagery using bands 4, 3 and 2 is adequate and pertinent for the training data sampling 

described in 3.2 section. 

The similar approach was used when importing data from Sentinel-1 before 

stacking the layers for classification from these two collections. Because unlike 

Sentinel-2, Sentinel-1 Ground Range Detected (GRD) scene data are radar data and 

requires specially designed algorithms to get imagery orthorectified and calibrated.  

1. // Loading the Sentinel-1 image collection   
2. var sentinel1Collection = ee.ImageCollection('COPERNICUS/S1_GRD')   
3.                   .filterDate('2018-01-01', '2018-06-30')   
4.                   .filterBounds(region2);   
5.                      
6. // Filtering by metadata properties.   
7. var metaSentinel1 = sentinel1Collection   
8.   .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'

))   
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9.   .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'
))   

10.   .filter(ee.Filter.eq('instrumentMode', 'IW'));   
11.    
12. // Filtering to get images from different look angles.   
13. var vhAscending = metaSentinel1.filter(ee.Filter.eq('orbitProperties_pas

s', 'ASCENDING'));   
14. var vhDescending = metaSentinel1.filter(ee.Filter.eq('orbitProperties_pa

ss', 'DESCENDING'));   
15.    
16. // Create a composite from means at different polarizations and look ang

les.   
17. var composite = ee.Image.cat([   
18.   vhAscending.select('VH').mean(),   
19.   ee.ImageCollection(vhAscending.select('VV').merge(vhDescending.select(

'VV'))).mean(),   
20.   vhDescending.select('VH').mean()   
21. ]).focal_median();   

Code 3. Loading of Sentinel 1 radar data in GEE (with the help of “Sentinel-1 

Algorithms  |  Google Earth Engine API  |  Google Developers” n.d.) 

Sentinel-1 data is gathered up with a different resolution, configuration, and 

band combination, and by that reason, it is necessary to filter these data before working 

them further on. These data have different geometry and strong speckle of images. In 

Code 3 above the pre-processing steps in GEE are written down including loading of 

data, filtering to get images both with VV and VH dual polarization and to get image 

collection in interfered wide swath mode (Sentinel-1 Algorithms, GEE). After 

initiating these steps, the Sentinel-1 composite can be created, used for display and 

most importantly, for layer stacking with Sentinel-2 data to be used as a final 

composite for classification.  

 

3.4 Classification  

The supervised classification in remote sensing has with the ability to monitor 

and identify objects from a satellite image. Supervised classification is a process where 

the computer is trained to detect a distinct object or specific land cover area on its 

unique reflected energy at distinctive wavelengths (Liss, Howland, and Levy 2017) 

and the process of performing it in GEE environment will be described further on. 

The next and significant part is to model and run a classifier when Sentinel-1 

and Sentinel-2 data are preprocessed. This procedure described subsequently 

comments on using random forest classifier with 20 trees, but the same approach is 
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used analyzing different machine learning classifiers (described in 2.6). To begin with, 

the training data was loaded to GEE (both with solar areas and non-solar areas), and 

Sentinel-1 and Sentinel-2 data were merged. Consequently, the bands for the 

classification were selected from both data sources. To generate a training based on a 

training data where ‘solar’ is the main parameter, each polygon from training data is 

overlaid by the within the Sentinel stacked data and extracting the data values for each 

sample of the training dataset. Once the data values for each band and indices are 

captured, then the classification model could be run. Furthermore, the classifier model 

was applied for the input parameters and could be visualized for image classification 

visualization or exported in raster format (GeoTIFF). This process in GEE is written 

in Code 4. 

1. /***************************  
2. Random Forest Classification  
3. ****************************/   
4. // Loading preprocessed training data with a feature property solar = 0 

or 1   
5. var trainingData = solar_non_solar_ZealandSJ;   
6.    
7. var color_solar = trainingData   
8.   .filter(ee.Filter.neq('solar', null))   
9.   .reduceToImage({   
10.     properties: ['solar'],   
11.     reducer: ee.Reducer.first()   
12.   });   
13. // Merging of Sentinel 2 and 1 preprocced data   
14. var finalComposite = sentinel2Composite.addBands(composite);   
15.    
16. // Training sample data   
17. // Selecting of bands suitable for classification from Sentinel 2 and 1 

  
18. var bands2 = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11', 'B12', 'N

DVI', 'NDWI'];   
19. var bands1 = ['VV', 'VH'];   
20.    
21. var bands = bands2.concat(bands1); //Merging of bands from Sentinel 2 an

d Sentinel 1   
22.    
23. var input = finalComposite.select(bands);   
24.    
25. var classifierTraining = input.select(bands)   
26.       .sampleRegions({   
27.         collection: trainingData,   
28.         properties: ['solar'],   
29.         scale: 20  
30.       });   
31.    
32. // Instantiating Random Forest (or different) classifier and training it

:   
33. var classifier = ee.Classifier.randomForest(10).train({   
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34.   features: classifierTraining,    
35.   classProperty: 'solar',    
36.   inputProperties: bands   
37. });   
38.    
39. //Classifying the image filtered by region   
40. var classified = input.select(bands).classify(classifier).clip(region2);

  
41. Export.image.toDrive({   
42.   image: classified,   
43.   description: 'Denmark_classification_raster',   
44.   region: region1.geometry().bounds(),   
45.   scale: 20   
46. });   

Code 4. Machine learning supervised classification model code in GEE 

 

3.5 Accuracy assessment in GEE 

Regardless of classified visualization, the important factor which decides about 

the success of classification is accuracy assessment, which is a quantification of 

results. This can also be done using GEE code editor. 

Accuracy assessment measures the consilience and compare the result of the 

classification with other data, optimally ground truth data from a different source or 

comparing with high-resolution imagery. In the thesis, two different accuracy 

assessments were made and used.  

The first variation of accuracy assessment (Code 5) works by partitioning the 

set of known data values (training data bot for solar plant areas and non-solar areas) 

to training and testing set, in this case in the ratio 70:30. The classification training set 

is split randomly in by randomColumn function and the results, therefore, might be 

slightly different every time the code is run. The classifier must remain the same as in 

the previous part (in this case random forest classifier), and the training set which was 

made by splitting from the original training set is used to train a model. The testing set 

(30% split of original training data) serves as validation and is used to deliver 

confusion matrix. This confusion matrix is made comparing the ‘solar’ property with 

the newly created ‘classification’ property. From the confusion matrix, GEE is able to 

calculate overall accuracy, producer’s accuracy (omission error), consumer’s/user’s 

accuracy (commission error) and kappa – coefficient of agreement and order value. 

These results can be printed into GEE console or saved as CSV file into Google Drive 
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which is a more appropriate method, in this case, concerning the training set data size 

and the area of the region of interest, printing into the console of large volume 

computation caused computation timed out error. 

1. /******************  
2. Accuracy assessment (1)  
3. ********************/   
4.    
5. var testTraining = classifierTraining.randomColumn();   
6. var trainedSet = testTraining   
7. .filter(ee.Filter.lessThan('random', 0.7));   
8. var testingSet = testTraining   
9. .filter(ee.Filter.greaterThanOrEquals('random', 0.7));   
10.    
11. // Training the classifier with the trainedSet:   
12. var trained = ee.Classifier.randomForest(10).train({   
13.   features: trainedSet,   
14.   classProperty: 'solar',   
15.   inputProperties: bands   
16. });   
17.    
18. // classifying the testingSet and get a confusion matrix    
19. var confusionMatrix = ee.ConfusionMatrix(testingSet.classify(trained)   
20.       .errorMatrix({   
21.         actual: 'solar',   
22.         predicted: 'classification'   
23.       }));   
24.    
25. var confMat = ee.Feature(null, {matrix: confusionMatrix.array()});   
26. var overAccu = ee.Feature(null, {matrix: confusionMatrix.accuracy()});   
27. var prodAccu = ee.Feature(null, {matrix: confusionMatrix.producersAccura

cy()});   
28. var consAccu = ee.Feature(null, {matrix: confusionMatrix.consumersAccura

cy()});   
29. var kappa = ee.Feature(null, {matrix: confusionMatrix.kappa()});   
30.    
31. // Printing the results to console in GEE (sample)   
32. print('Confusion Matrix:', confMat);   
33. print('Overal Accuracy:', overAccu);   
34.    
35. // Exporting the results in the CSV format to Google Drive (sample)   
36. Export.table.toDrive({   
37.   collection: ee.FeatureCollection(confMat),   
38.   description: 'confMat_Zealand',   
39.   fileFormat: 'CSV'   
40. });   

Code 5. Accuracy assessment 1 

The second method and the more suitable is to compare the classification results 

with ground truth data of original dataset. This dataset was filtered to contain only 

data for large-scale solar plants. Thus the threshold for installed capacity was made to 

be 500 kW. The solar plants with smaller installed capacity are not considered “large-
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scale” for this accuracy assessment, though the definition of the exact capacity 

threshold does not exist. Moreover, they hardly could be detected by satellite imagery 

of spatial resolution of Sentinel-1 and Sentinel-2 datasets. This data was valid for the 

second half of 2018, and the number of these large-scale power plants in the region of 

interest – Denmark was 47. Since these data might lack the precise location, the 

manual validation was made using ArcMap software, and their position was changed 

upon the same Sentinel-2 image collection median as was used for the training data 

set in GEE. These 47 points were manually validated and, in some cases, relocated 

into the potential centroid of the large-scale solar plant area. This dataset was merged 

with the dataset of 42 randomly distributed points in the region of interest made by 

Create Random Points function. For each of these merged points from final validation 

datasets property value, 1 or 0 was added for ‘solar’ class. The example for these 

validation data points is seen in Figure 9 (the spatial resolution of this Sentinel-2 

satellite composite median was scaled for 30 m when exporting to raster format to be 

used in ArcMap environment due to the computation limitation of GEE). These two 

sample validation points are located in the centers of the solar plants, and then the 

property value of 1 is assigned in the attribute table.  

 

Figure 9. Sample of validation data points for accuracy assessment 
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The final validation dataset was taken and from shapefile transferred into 

Fusion Table format to be fully cooperative in GEE. The accuracy assessment process 

(Code 6) is simpler and more straightforward but works according to the same 

principle as accuracy assessment from Code 5 by the fact that compares the 

classification results with existing ground truth data, additionally manually validated.  

1. /******************  
2. Accuracy assessment (2)  
3. ********************/   
4.    
5. var trainingTesting2 = 92points_for_validation;   
6.    
7. var validation = classified.sampleRegions({   
8.   collection: trainingTesting2,   
9.   properties: ['solar'],   
10.   scale: 20   
11. });   
12.    
13. var testAccuracy = validation.errorMatrix('solar', 'classification');   
14.    
15. var confMatrix = ee.Feature(null, {matrix: testAccuracy.array()});   
16. var overAccuracy = ee.Feature(null, {matrix: testAccuracy.accuracy()}); 

  
17. var prodAccracy = ee.Feature(null, {matrix: testAccuracy.producersAccura

cy()});   
18. var consAccuracy = ee.Feature(null, {matrix: testAccuracy.consumersAccur

acy()});   
19. var kappa2 = ee.Feature(null, {matrix: testAccuracy.kappa()});   
20.    
21. // Printing the results to console in GEE (sample)   
22. print('Confusion Matrix:', confMatrix);   
23. print('Overal Accuracy:', overAccuracy);   
24.    
25. // Exporting the results in the CSV format to Google Drive (sample)   
26. Export.table.toDrive({   
27.   collection: ee.FeatureCollection(overAccuracy),   
28.   description: 'overalAccuracy_Denmark_assesment2',   
29.   fileFormat: 'CSV'   
30. });   

Code 6. Accuracy assessment 2 

 

3.6 Post-processing of the classified maps 

GEE capabilities are extensive, but as for the post-processing of the raster, the 

desktop GIS software (both licensed and open source) can help process the result data 

and add additional value. GEE has a function to vectorize raster and use it for another 

analysis straight in the API, but unlike the supervised classification, pre-processing of 
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a vast collection of satellite imagery. Converting raster (of a bigger area, which the 

whole country of Denmark is) to vector is a time-consuming process in GEE. 

However, transferring the results of a classification in a raster format to Google Drive 

in a georeferenced TIFF format is straightforward and quick. Then the data can be 

generalized using filter to straighten the visual perception of the result and make 

congruous patches suitable for vectorizing. This vectorized dataset can be used as a 

polygon feature shapefile with the information about the location of the large-scale 

solar plant as contrasted to original, incorrect point datasets. Also, the point centroid 

of the polygon feature can be created, leading to better longitude and latitude 

information of the solar plant even when needed to be working with point dataset. 

The overall workflow of this processing method is transferable to many 

available GIS software or tools. The described process can be worked on using 

capabilities of modern programming languages with the ability to work with spatial 

data such as Python, and R. The post-processing of the classification result data in this 

thesis project was utilized in ArcMap, the main component of ArcGIS programs for 

geospatial processing especially for the possibility to process large raster file quickly 

and for the experience, the author of this thesis has with this software.  

The process leading to consequently usable format with valuable metadata and 

information can be seen in Figure 10, where the process is demonstrated using 

ModelBuilder application within ArcMap. The input raster is created using GEE code 

editor when performing supervised classification; the part of the code can be seen on 

the lines 35-40 in Code 4. This raster in georeferenced TIFF format (GeoTIFF) is 

firstly clipped using known polygon area (in the case of this study Denmark) with 

raster processing clip function considering the tile form of the exported raster from 

GEE. The majority filter is applied to filtered raster applying four neighbors to use 

and majority replacement threshold. Consequently, this filtered raster is vectorized to 

polygon shapefile using Raster to Polygon function with simplifying polygon option. 

There the selection of solar = 1 attributes can be made to distinguish only solar areas. 

Due to the fact that some of these solar area polygons are composed of few closely 

detached patches, the Aggregate Polygon function is used with aggregation distance 

of 1 km. Lastly, these already aggregated polygons are completed of geometry 

attribute, specifically the area of the solar plant polygon in square kilometers and 
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potentially transferred to point shapefile in particular when the point dataset is 

required and the location of this point feature is the centroid of previously created solar 

plant polygon feature. Even though the above-described process was created in 

ArcGIS environment, the same approach can be applied to many varieties of existing 

GIS processing tools with these functions which might just have different naming. 

When having the processed vector dataset is advisable to overlay it with primal raster 

classification result and compare them visually to detect any possible contradiction 

arisen during the processing.  

 

Figure 10. Model (in ArcMap SW) for post-processing of raster classification  
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4 RESULTS 

 

4.1 Accuracy assessment results of different models 

The classification of data was conducted in GEE, and together with the 

classification map, the accuracy assessment results for various machine learning 

classifiers were calculated. The same input training data were put into classifications 

with drawn patches in the five samples of large-scale solar plants (based on their 

capacity and geographical location) and neighboring areas without solar plants 

occurrence in the proximity of solar plants. Following results are conducted from 

accuracy assessment 2 (Code 6) using ground truth manually inspected validation data 

points. This accuracy assessment reflects the external validity acceptably. Assessment 

from Code 5 is re-substitution accuracy and must be viewed with attention as these 

classifiers can emulate the training set explicitly. The accuracy assessment from Code 

5 was even so conducted, but the results (overall accuracy in almost all cases 

exceeding 99 %) were not decisive in this type of supervised classification. The 

following results are subject of Code 5 solely. 

These results and accuracy assessment methods use independent validating 

datasets. As these models were chosen based on the literature research on the 

supervised classification with multi-classes, not the similar study was found where the 

goal is to detect two (respectively one when an only class of solar plants occurrence 

is demanded. Regarding the results captured in Table 2 and visualized in the bar chart 

in Figure 11, the figures for particular accuracies and kappa coefficient are not 

prominent.  

Table 2. Accuracy assessment results of different classifiers 

  overall accuracy producer's accuracy consumer's accuracy kappa 

CART 77.98% 52.94% 70.73% 0.545 

Random Forest (20)  78.90% 54.90% 71.60% 0.564 

SVM 78.90% 52.94% 71.60% 0.564 

Naive Bayes 68.81% 37.25% 63.64% 0.351 
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The lowest overall results are in classification using Naive Bayes classifier. 

This machine learning classifier based on the numerical results is least likely to be 

efficient for two class supervised classification, and even the visual inspection of the 

classifier map shows wrong assumption to classify pixels which are not seen in the 

training phase. The numerical results for the other three classifiers are approximately 

the same. CART and Random Forest (with 20 trees) classifiers belong to the same 

class of logical machine learning classifiers. Random Forest has slightly better 

performance, especially at the kappa coefficient, which is the most critical indicator 

of the classification effectiveness. Results for SVM classifier are surprisingly identical 

as for the Random Forest. The number of trees in Random Forest classifier is an 

important variable, but for this comparison, the number of trees = 20 was chosen as it 

is widely used in satellite imagery classification based on the literature review. It must 

be however noted, that the validation data are in a limited number (90) and there are 

only two classes in the classification. These results are showing essential information 

about classification and its classifiers but to be fully interpretable, the visual inspection 

analysis must be provided. This is crucial, particularly with the fact that the validation 

data was point dataset, and some of these points were classified in the opposite class 

even though most of the solar plant might have been labeled right.   

 

Figure 11. Models comparison for different accuracy assessments 
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The results are for accuracies are not extremely high must the specification of 

the two-class classification must be considered. Kappa coefficient interprets how an 

outcome classification is significantly better than the map generated by random where 

values between 0.40 and 0.80 represent the moderate agreement (Lee et al. 2016). This 

must, however, be confronted with another interpretation of results (visual analysis). 

Computation of confusion matrix and consecutive numerical results were 

carried out in GEE using export to table function as printing the results into the console 

exceeded the limited time available. Nevertheless, the computation into the CSV 

tables on Google Drive consumed a significant amount of time, different for each 

classifier. The average time for GEE to compute this classification using CART 

classifier was around 12 minutes (all results including kappa coefficient were 

calculated and available always in the timeframe of a minute), Naive Bayes 14 minutes 

and Random Forest with 20 trees 17 minutes. The time needed for calculating the 

results for SVM classifier exceeds 1 hour. It must be considered, however, the extent 

of the area of interest and the quantum of training and validation data. 

 

4.2 Visual inspection of the classification results 

As the values of accuracy assessment can tell certain information, it is 

suggested to visually inspect the results by comparing the results of the classification 

with the real ground truth data or with a base satellite imagery in true colors. Even 

though that SVM machine learning classifier is widely used in the supervised 

classification of remote sensing images, especially when classifying urban green areas 

(Kranjčić et al. 2019), for the purpose of two class classification and solar plants 

detection is impracticable. The first look at the classification for whole Denmark 

shows approximately equal distribution of solar and non-solar areas, which is 

incongruousness. However, this is seen only on the results classification using SVM 

classifier. Considering previously mentioned, the longest calculation time also the 

least accurate visual classification is seen in the case of a solar plant near Sundby in 

Zealand. The classification in Figure 12, where the green circle point indicates the 

middle location of the solar plant and the green color of classification shows the solar 

areas. While the area of the solar plant (below in Figure 15) is classified correctly, the 

surrounding fields and urban areas are also classified as solar areas; however, in the 
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researched area of Figure 12, there is only one solar plant of a larger scale. Similar 

cases are seen throughout the classification, and while the numerical accuracy 

assessment results might seem high, it may be caused by the coincidence factor (only 

two class in classification and under 100 validation points dataset).  

 

Figure 12. SVM Sundby classification visual inspection 

 

In the following lines, the comparison of visual classification for CART, 

Random Forest of 10 trees and Naive Bayes classifiers will be compared and 

commented on the example of three selected large-scale solar plants. The solar plant 

in Figure 13 is located at the south of Region of Southern Denmark near the town 

Tinglev close to the borders with Germany. The solar plant was put into operation in 

2015 and with its installed capacity around 20 MW was the fifth largest solar power 

plant by capacity in Denmark in 2018. At first glance, there is a significant observable 

difference between the results using Naive Bayes classifier and the other two. Despite 

capturing some of the solar panels into the right class, the overall observed results are 

poor. The much-improved situation is observable when confronting the classification 

results with Sentinel-2 true composite image of CART and Random Forest with ten 

trees classifiers. In brief, the results look very similar, but there are a more explicit 
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structure, fewer gaps, and falsely classified solar areas in Random Forest 

classification. Additionally, the black mark indicates the verification point from 

validation dataset.  

 

 

Figure 13. Classification visual results comparison shown in the case of the solar plant near Tingley 

Subsequently, the two adjacent installations which form one smaller large-scale 

solar power plant near the city Nakskov on the west of Lolland island with a capacity 

of 2.8 MW (northern installation) and 2.4 MW (southern) constructed in 2014, 

respectively in late 2013. Even though this solar plant is much smaller by area than 

the one near Tingley from Figure 13, the visual results for CART and Random Forest 

classifier are overall satisfactory. In Figure 14, Random Forest results exceed the 

CART classification because of the lack of random false positive pixels outside the 

solar areas. Despite the positive classification of the southern part of the Nakskov solar 

plant, the northern part is classified wrongly, and this indicated how small the 

threshold is for such a classification of solar plants. The high-resolution imagery 

shows that the solar panels arrays from northern part have the different size or tilt, but 

the overall visual classification is not of good quality, because there are a lot of false 

positive solar samples in the rectangular cut of the region of interest.   
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Figure 14. Classification visual results comparison shown in the case of the solar plant near Nakskov 

The last inter-model comparison is on the example of the chosen solar plant is 

in Figure 15. From the first instance, the classification results from Naive Bayes 

classifier seem the most fitting in terms of covering the area of the ground truth soar 

plant, but the results from this small cut of the area also indicate the high rank of false 

positive samples of solar pixels classified. 

Additionally, in this case, the results from CART classifiers exceeds the 

Random Forest classifier, but the visual record is not flawless. This solar installation 

lies in the east of Lolland island and was put into operation in early 2018. Its capacity 

was 7.0 MW, and that can be considered as the lower half of the large-scale solar 

plants of what can be treated as a ‘large-scaled.’ The imperfections in the CART and 

Random Forest classifiers results, however, can be improved when post-processing 

these results (as suggested using the model in Figure 10). The validation point in the 

Random Forest results pinpoints the wrong classification in the validation phase and 

stress the uncertainty with using point dataset for validating supervised classification. 

 

Figure 15. Classification visual results comparison shown in the case of the solar plant near Sundby 



41 

 

 

On the above commented and interpreted visual results, it is apparent, that the CART 

and Random Forest classifiers are superior to Naive Bayes and SVM classifiers when 

interpreting the results visually. When comparing CART and Random Forest, the 

second mentioned exceeds the CART for the lesser number of false positive solar 

patches and the overall smoothness of the solar plant areas with a higher level of 

smoothness of the classified solar areas. 

 

4.3 Results comparison of different number of trees for RF classifier 

Based on the results from 4.1 and 4.2, Random Forest classifier was chosen to 

be the most appropriate and suitable machine learning classifier of GEE for this thesis 

research. The default number of decision trees to create per class in GEE algorithm 

function is 1, but when running the classifier, the number of trees was chosen 20 as 

this setting is widely seen in related GEE supervised classification. When Random 

Forest classifier was demonstrated to over proceed the other classifiers, the optimal 

number of trees was researched. The code was run with the same training data and 

same preprocessed imagery only with a different number of trees (default 1, 5, 10, 20, 

25). The results are shown in Table 3. Even though the classification was made for a 

different number of trees, the results showed that if 5 or fewer trees are used, the results 

remained the same and the same for using 20 trees and more (even the attempt of using 

50 trees presented the same results as for 20). The kappa coefficient, which might be 

considered as the most important significant factor for supervised classification 

results, do not differ distinctively. Although for the consequential practice, the 20 trees 

used in Random Forest classifier will be considered as the optimal result in this thesis 

project and will be commented and analyzed further on. 

Table 3. Comparison of a different number of trees in Random Forest classifier. 

  
overall 

accuracy 
producer's 
accuracy 

consumer's 
accuracy kappa 

Random Forest (5 trees and less) 77.06% 50.98% 69.88% 0.525 

Random Forest (10) 77.98% 52.94% 70.73% 0.545 

Random Forest (20 and more) 78.90% 54.90% 71.60% 0.564 

 



42 

 

4.4 Results comparison without using Sentinel 1 data 

It was assumed that using the Sentinel-1 radar imagery data would improve the 

overall classification result, but for the verification, the classification was done using 

bands from Sentinel 2 imagery (B2, B3, B4, B5, B6, B7, B8, B11, B12 plus NDVI, 

and NDWI indices) solely.  

Table 4. Classification accuracy assessment values for classification with and without 

Sentinel 1 data 

  
overall 
accuracy 

producer's 
accuracy 

consumer's 
accuracy kappa 

Random Forest (20) S1 + S2 75.23% 47.06% 68.24% 0.486 
Random Forest (20) - only 
S2 78.90% 54.90% 71.60% 0.564 

 

As can be seen from Table 4, there is a more significant difference between 

values from the classification using additional Sentinel-1 data and not using the same 

classifier with the same number of trees. This observation states that the usage of 

Sentinel-1 data to classification improve the results from the accuracy assessment 

perspective not significantly, but a certain level of enhancement can be found. 

Moreover, the visual inspection on the example of the solar plant near Nakskov is in 

Figure 16. The particular improvement using a stacked layer from both Sentinel-1 and 

Sentinel-2 imagery is seen on the right picture, particularly in the northern part. 

Besides, without Sentinel-1 data addition (on the left picture) there are more false 

positive pixel patches in the cut. These patches might be disposed of in the post-

processing phase using the majority filter, but it can be stated that using Sentinel-2 

together with Sentinel-1 data is preferred and shows better results visually and 

accurately. 



43 

 

 

Figure 16. Visual inspection of classification results using Sentinel 1 data 

 

4.5 Results using less amount of training sites 

The previous analysis and results commentary were made on the results using 

training data of 7 selected large-scale solar plants chosen by their capacity (the largest 

were chosen) and geographical location throughout the study area (that the training 

data would be collected not only from one part of Denmark). Despite that, the lower 

number of training solar data samples was used to compare how feasible the results 

will be in terms of accuracy assessment related to the original training data input. In 

this research, the non-solar area remained the same – 4 half circles in the cut hole in 

the middle with an area of approximately 75 km2, as shown in Figure 8. The 

classifications were conductor from 7 training large-scale solar areas to 3 where the 

results started to be insufficient.  

Table 5. Comparison of different number of solar plants training samples 

  
overall 
accuracy 

producer's 
accuracy 

consumer's 
accuracy kappa 

7 solar plants training sites 78.90% 54.90% 71.60% 0.564 

6 solar plants training sites 76.15% 49.02% 69.05% 0.525 

5 solar plants training sites 75.23% 47.06% 68.24% 0.486 

4 solar plants training sites 74.31% 45.10% 67.44% 0.466 

3 solar plants training sites 64.22% 23.53% 59.79% 0.247 
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When lowering the number of training solar data, the classification results are 

getting subtly worse up to the four training solar areas, however when using only three 

large-scale solar plants for training data input, the numbers for accuracy measurement 

are significantly worse (Table 5). Additionally, the bar chart in Figure 17 shows the 

steep of kappa coefficient between using three and four solar training patches.  

 

Figure 17. Comparison of kappa coefficient for different number of solar plants training 

samples 

 

4.6 Use case on Schleswig-Holstein 

This analysis was so far conducted on the region of interest with a previously 

known data (even though with certain limitation, and low spatial precise accuracy). 

One of the questions asked when performing the classification was whether it is 

possible and feasible to extend the region of interest and have the detection of solar 

plants information available also for the regions with the unknown data. Based on the 

geographical proximity, the northernmost state of Germany – Schleswig-Holstein was 

chosen. The analysis was conducted the same as for Denmark using GEE, only the 

region of interest was expanded. The input training solar and non-solar data remained 

the same. The results classification layer was exported out of GEE environment and 

processed using the workflow and model from Figure 10.  
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Figure 18. Map of detected large-scale solar plants in the region without validation data 

Ultimately, the brief visual inspection was carried out to detect and delete false 

positive patches, and some of the polygon features were reshaped using the Reshape 

Feature Tool function. Based on these findings and post-processing, the map with the 

largest detected large-scale solar installation in Schleswig-Holstein was made. The 

map includes 35 detected solar plants, where the biggest by area size has the area of 

approximately 1 km2 near the Eggebek in the northern part of the state. Similarly, like 

the largest solar installation in Denmark, it is built on the old unused airport (based on 

the satellite image observation). The smallest detected solar plant in this analysis was 

the installation near Haselund with an area size of 12 000 m2. With this size, it is 

arguable whether this solar installation can be considered large-scale, but as 

mentioned before, there is no exact definition relating to size or installed capacity. 

When comparing the area size information with measuring tools of area size using 

several web GIS app, the results were almost identical with only a small and 

insignificant discrepancy. Nevertheless, the biggest tread and disadvantage of this 
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procedure is that even though all of the detected solar installations were checked using 

high spatial resolution imagery in the form of the base map in the desktop GIS 

software, there is still a chance that the process did not detect all the existing plants in 

the researched region. The verification of such a deficiency another way than by visual 

inspection (which is for a region of size as Schleswig-Holstein) would be time-

consuming and inapplicable. In 2018, most of the large-scale solar plants consist of 

arrays located closely together as can be seen from for example in Figure 16, but in a 

few observed cases, the arrays are scattered with a distance between separate solar 

arrays. This example is presented in Figure 19 on a high spatial resolution image. 

These solar plants with a higher distance between arrays are not frequent but might 

occur, and with a spatial resolution of satellite imager used in this study, it is almost 

impossible to detect them. This is by the author of this study, the biggest weakness of 

the object of the thesis and object-based supervised classification in general.  

 

Figure 19: The case of the specific spatial deployment which was not classified 
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5 CONCLUSION AND DISCUSSION 

 

5.1 Conclusion of the project 

Analysis of remote sensing imagery has already a broad spectrum of 

applications, but there are still new possible undiscovered capabilities or methods 

which can be improved. Although researchers in numerous studies have covered the 

detection of solar plants or solar panels, none of the existing studies endeavored on 

the scale of the whole country. With GEE getting a significant role in remote sensing 

over the last years, the analysis and calculations which were not possible several years 

ago are now accessible using this cloud platform. This thesis presented the approach 

of processing satellite data and conducting supervised classification in order to get 

information about one particular class – solar plants. Despite the fact that the study 

was conducted using medium spatial resolution imagery, the results are convenient 

and sufficient to a certain extent.  

The study compared and chose the most optimal machine learning classifier for 

this project, but even though the accuracy assessment numerical results do not reach 

up to the results of the comparable supervised classification studies with more 

different classes being included. This is, however, caused by the fact that the goal is 

to detect only one specific class and thus the antagonistic class has to contain all 

different land areas which are not solar. Additionally, Denmark is a country with solar 

energy on rising, but not comparable to leading European countries like Spain or 

Germany, where the number of large-scale solar plants with a spacious area can be 

found. Also, the validation data for accuracy assessment contained even the lower 

boundary of solar plants which can be considered large-scale  (installations with a 

capacity of 500 kW), and the results visually showed that the smaller the solar plant 

is, the harder it is to detect her using this specific satellite dataset combination. Visual 

inspection of results yet showed on the example of three different solar plants with 

diverse area size and installed capacity that the classification, especially using 

Random Forest with 20 trees classifier performed well. The classification of these 

solar plants had the distinctive shape which, to a large extent, copied the boundaries 

of the solar areas with high exactness. Especially these results can be a desirable 
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original set for transferring the raster classification results into the more usable vector 

geodata format to be used furthermore supplemented with more precise spatial 

location, polygon features, and area size. These data can be in most of the cases better 

and more accurate than the original datasets which are owned by governmental or 

commercial agencies and companies (in general) and are based on the registers of 

address and not on the precise location of the large-scale solar plant. Nowadays, when 

the world is over-filled with data, the precise data plays a significant role, and the 

accurate location information can lead to a better consequent spatial analysis. 

Ultimately, no matter the regions of study as the approach can be applied throughout 

the world, the information on the locations, area sizes and numbers of solar plants can 

be particularly valuable for mapping and surveying the development of this area of 

sustainable energy over the time.  

The study presented an innovative approach with a few not frequently used 

processes and methods. One of the not regularly seen ideas implemented in the 

research was to combine also radar data from Sentinel-1 to (in the  supervised 

classification of remote sensing imagery widely used) Sentinel-2 data. As compared 

in 4.4, the results using imagery from both satellite missions exceeded results working 

only with Sentinel-2 data. On top of that, indices (NDVI and NDWI) were calculated 

and with a function added to Sentinel-2 bands. 

5.2 The future direction of the thesis research  

There is a huge potential for more frequent utilization of object detection in 

remote sensing of different variety of objects, not only solar plants and solar panels. 

Unlike land cover / land use classifications, which dominated the research in the 

foregone years, object detection from satellite imagery is dependent on the a) spatial, 

temporal, radiometric and spectral resolution of the provided imagery and b) 

computational and processing capabilities of tools and software. Related to this, it is 

expected that GEE (as still at the time of writing this study a new cloud computing 

platform) will continue to develop simultaneously with cloud processing research. 

Similarly, new satellite missions with a better optical (not only) sensor will be 

launched. Thus, it is expected that the potential object detection will spread on the 

smaller objects even when computing on the large regions of interests.  
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Correspondingly, this will affect the research on the detection of solar plants 

and panels and presumably overcome the disadvantages mentioned in this study. 

Renewable forms of energy are currently one of the most discussed topics in the 

energy sector and having better, more precise and frequently updated data on solar 

plants even though as an additional source to existing databases will play its role. By 

the author of this study is believed that this will happen mostly in developed countries 

with less sufficient availability of energy data. Ultimately, as the satellite data is 

becoming more accessible and there are possibilities to observe the whole world, 

having data on solar energy for different countries can have an effect on the political 

collaboration and partnership cooperation of countries for better and sustainable future 

of energy. 

The complete code is provided in Appendix 1 on the example of classifier 

Random Forest with 20 trees and can be reproduced for another research, however, 

some of the data could not be provided as open. The code is commented and can be 

used with small changes when own training and validating data are provided. 

5.3 The utility of results and recommendations 

Despite this thesis being conducted for academic purposes, the results and the 

processing methods and ideas can be potentially used furthermore. There are 

numerous companies and start-ups from the last few years which detect, observe or 

follow numerous objects on the planet like cargo ships movement, parking lots and 

the current number of cars or residential pools. The goal of these companies is not 

only to provide this data further but mainly to use them for mapping economic index, 

forecasting the trends in the development (mainly economic development) and 

transfer these trends for businesses, defense sector, government, and many others.  

Among the usage for the governments and non-governmental organizations 

could be fighting energy fraud as the investments from funds for solar energy are 

indispensable. Another potential usage factor could be linking the area size with 

estimated capacity estimation. This information would stress the relevance of satellite 

imagery obtained data compared to address-based data with only longitude and 

latitude information. It was preliminary planned that this study would also implement 

these knowing and conduct additional analysis. It is known and affirmed by many 

studies that there is a strong relation between production power / installed capacity 
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and the solar plant size, but the consequential study research would be needed. 

However, the potential to link the results and findings of this study with capacity and 

power estimation is high and might be conducted in the future. 

5.4 Capabilities and limitations of GEE in this study 

This research demonstrated how GEE is a powerful tool when pre-processing 

satellite data and conducting classification on a large region of interest area. The 

processing approach using server along with constantly updated and extensive catalog 

of various satellite data are just the main ones of many advantages GEE have. 

However, there are certain limitations and inconveniences which were brought 

working on this thesis project. GEE is capable of working with spacious datasets and 

conducting analysis on a large area, but it is paid off by a considerable time needed to 

perform these big analyses. Especially the loading of the classification map lasted a 

couple of minutes (3 to 5) when performing classification for whole Denmark. 

On top of that, this classification layer was not stable when zooming to a certain 

location or moving around. Additionally, for numerical results or matrices, the options 

are that the results can be printed out to the console or saved to several format files 

and exported to the Google Drive. However, on-demand mode (printing to the console 

of Code Editor) is restricted to the 5 minutes running time which was exceeded in 

most of the analyses. Moreover, when exporting results in another format outside GEE 

environment, the calculation and export lasted usually from 10 to 35 minutes when 

performing classification for all Denmark. Also, memory limitations exist, so the 

training data had to be reduced (specifically the number of non-solar training samples). 

Additionally, the export of the raster format results of classification had to be clipped 

with the smaller regions of interests, because there is a limitation of pixels when 

exporting rasters to drive. 

The other demerits of the analysis and results were caused not by GEE but 

specifically by deficiencies and capability boundaries by the provided satellite 

imagery data.  
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7 APPENDIX 

1. // regions of Denmark are using preloaded asset   
2. var region1 = DNK1.filter(ee.Filter.eq('VARNAME_1', 'Zealand'));   
3. var region2 = DNK1.filter(ee.Filter.eq('VARNAME_1', 'South Denmark'));   
4. var region3 = DNK1.filter(ee.Filter.eq('VARNAME_1', 'Central Jutland'));   
5. var region4 = DNK1.filter(ee.Filter.eq('VARNAME_1', 'North Jutland'));   
6. // solarDenmark is dataset about training solar areas and is in FusionTable forma

t   
7. var solarDenmark = ee.FeatureCollection('ft:1yAPTE-IsxMPlmQhjNI3h-

5vkaq7nlH40z0iQsqpA');   
8. //merging of 4 Denmark regions (excluding Capital Region and additional region of

 Germany,   
9. //where the training data are not provided)   
10. var region = region1.merge(region2).merge(region3).merge(region4).merge(Shleswig_

Holstein);   
11. //merging of training data, both solar and nonsolars, non_solar_areas dataset is 

loaded in GEE as asset   
12. var solar_non_solar = non_solar_areas.merge(solarDenmark);    
13.    
14. //function that creates NDVI and NDWI indices (must be later used for image colle

ction)   
15. var addNDVIBands = function(image) {   
16.   var NDVI = image.addBands(image.normalizedDifference(['B8', 'B4']));   
17.   var NDWI = NDVI.addBands(NDVI.normalizedDifference(['B3', 'B8']));   
18.   return NDWI.addBands(NDWI.metadata('system:time_start'));   
19. };   
20.                      
21. // Loading the Sentinel-1 image collection   
22. var sentinel1Collection = ee.ImageCollection('COPERNICUS/S1_GRD')   
23.                   .filterDate('2018-01-01', '2018-06-30')   
24.                   .filterBounds(region);   
25.                      
26. // Filtering by metadata properties.   
27. var metaSentinel1 = sentinel1Collection   
28.   .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))   
29.   .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))   
30.   .filter(ee.Filter.eq('instrumentMode', 'IW'));   
31.    
32. // Filtering to get images from different look angles.   
33. var vhAscending = metaSentinel1.filter(ee.Filter.eq('orbitProperties_pass', 'ASCE

NDING'));   
34. var vhDescending = metaSentinel1.filter(ee.Filter.eq('orbitProperties_pass', 'DES

CENDING'));   
35.    
36. // Create a composite from means at different polarizations and look angles.   
37. var composite = ee.Image.cat([   
38.   vhAscending.select('VH').mean(),   
39.   ee.ImageCollection(vhAscending.select('VV').merge(vhDescending.select('VV'))).m

ean(),   
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40.   vhDescending.select('VH').mean()   
41. ]).focal_median();   
42.    
43. // Display as a composite of polarization and backscattering characteristics.   
44. //Map.addLayer(composite, {min: [-25, -20, -

25], max: [0, 10, 0]}, 'composite');   
45.    
46. // Loading Sentinel-2 TOA reflectance data.   
47. // Map the function over half a year of data and take the median.   
48. var sentinel2Collection = ee.ImageCollection('COPERNICUS/S2')   
49.                   .filterDate('2018-01-01', '2018-06-30')   
50.                   // Pre-filter to get less cloudy granules.   
51.                   .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))   
52.                   .filterBounds(region)   
53.                   .map(addNDVIBands);   
54.                      
55. //function which renames NDVI index   
56. function renameNDVI(img) {   
57.   var ndvi = img.select(["nd"], ["NDVI"]);   
58.   return img.addBands(ndvi);   
59. }   
60. var ndviColl = sentinel2Collection.map(renameNDVI);   
61.    
62. //function which renames NDWI index   
63. function renameNDWI(img) {   
64.   var ndwi = img.select(["nd_1"], ["NDWI"]);   
65.   return img.addBands(ndwi);   
66. }   
67. var ndwiColl = ndviColl.map(renameNDWI);   
68.    
69. var sentinel2Composite = ndwiColl.median();   
70. print(sentinel2Composite);   
71.    
72. var visParamsTrue = {bands: ['B4', 'B3', 'B2'], min: 0, max: 3000, gamma: 1.4};   
73.    
74. //Map.addLayer(sentinel2Composite.clip(region), visParamsTrue, 'Sentinel 2 True',

 false);   
75. //Map.addLayer(sentinel2Composite.clip(region), visParamsTrue, 'Sentinel 2 True',

 false);   
76.    
77. //This code is based on the RF classification, but can the classifier can be simp

ly changed   
78. /***************************  
79. Random Forest Classification  
80. ****************************/   
81. // Loading preprocessed training data with a feature property solar = 0 or 1   
82. var trainingData = solar_non_solar;   
83.    
84. var color_solar = trainingData   
85.   .filter(ee.Filter.neq('solar', null))   
86.   .reduceToImage({   
87.     properties: ['solar'],   
88.     reducer: ee.Reducer.first()   
89.   });   
90. // Merging of Sentinel-2 and 1 preprocced data   
91. var finalComposite = sentinel2Composite.addBands(composite);   
92.    
93. // Training sample data   
94. // Selecting of bands suitable for classification from Sentinel-2 and 1   
95. var bands2 = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11', 'B12', 'NDVI', 'ND

WI'];   
96. var bands1 = ['VV', 'VH'];   
97.    
98. var bands = bands2.concat(bands1); //Merging of bands from Sentinel 2 and Sentine

l 1   
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99.    
100. var input = finalComposite.select(bands);   
101.    
102. var classifierTraining = input.select(bands)   
103.       .sampleRegions({   
104.         collection: trainingData,   
105.         properties: ['solar'],   
106.         scale: 20   
107.       });   
108.    
109. // Instantiating Random Forest (or different) classifier and training it:   
110. var classifier = ee.Classifier.randomForest(20).train({   
111.   features: classifierTraining,    
112.   classProperty: 'solar',    
113.   inputProperties: bands   
114. });   
115.    
116. //Classifying the image filtered by region   
117. var classified = input.select(bands).classify(classifier).clip(Shleswig_Holste

in);   
118.    
119. // Define a palette for the IGBP classification.   
120. var igbpPalette = [   
121.   'A9A9A9', //non-solar   
122.   'CCCC00' //solar   
123. ];   
124.    
125. Map.addLayer(classified, {palette: igbpPalette, min: 0, max: 1}, 'classificati

on visualization');   
126. Map.centerObject(region, 10);   
127. Map.addLayer(validation_PV_points_90, {}, 'validation_points');   
128.    
129. // possible export of Schleswig_Holstein region solely as TIFF   
130. /*  
131. Export.image.toDrive({  
132.   image: classified,  
133.   description: 'Germany_solar_plants',  
134.   region: Schleswig_Holstein.geometry().bounds(),  
135.   scale: 20  
136. });  
137. */   
138.    
139. /******************  
140. Accuracy assessment (2)  
141. ********************/   
142.    
143. var trainingTesting2 = validation_PV_points;   
144.    
145. var validation = classified.sampleRegions({   
146.   collection: trainingTesting2,   
147.   properties: ['solar'],   
148.   scale: 20   
149. });   
150.    
151. var testAccuracy = validation.errorMatrix('solar', 'classification');   
152.    
153. var confMatrix = ee.Feature(null, {matrix: testAccuracy.array()});   
154. var overAccuracy = ee.Feature(null, {matrix: testAccuracy.accuracy()});   
155. var prodAccracy = ee.Feature(null, {matrix: testAccuracy.producersAccuracy()})

;   
156. var consAccuracy = ee.Feature(null, {matrix: testAccuracy.consumersAccuracy()}

);   
157. var kappa2 = ee.Feature(null, {matrix: testAccuracy.kappa()});   
158. var order2 = ee.Feature(null, {matrix: testAccuracy.kappa()});   
159.    
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160. // Printing the results to console in GEE (sample)   
161. //print('Confusion Matrix:', confMatrix);   
162. //print('Overal Accuracy:', overAccuracy);   
163.    
164. // Exporting the results in the CSV format to Google Drive (sample)   
165. Export.table.toDrive({   
166.   collection: ee.FeatureCollection(overAccuracy),   
167.   description: 'overalAccuracy_Denmark_PV110_RF20',   
168.   fileFormat: 'CSV'   
169. });   
170.    
171. Export.table.toDrive({   
172.   collection:  ee.FeatureCollection(prodAccracy),   
173.   description: 'producersAccuracy_Denmark_PV110_RF20',   
174.   fileFormat: 'CSV'   
175. });   
176.    
177. Export.table.toDrive({   
178.   collection:  ee.FeatureCollection(consAccuracy),   
179.   description: 'consumersAccuracy_Denmark_PV110_RF20',   
180.   fileFormat: 'CSV'   
181. });   
182.    
183. Export.table.toDrive({   
184.   collection:  ee.FeatureCollection(kappa2),   
185.   description: 'kappa_Denmark_PV110_RF20',   
186.   fileFormat: 'CSV'   
187. });   
188.    
189. /******************  
190. Accuracy assessment (1)  
191. ********************/   
192.    
193. var testTraining = classifierTraining.randomColumn();   
194. var trainedSet = testTraining   
195. .filter(ee.Filter.lessThan('random', 0.7));   
196. var testingSet = testTraining   
197. .filter(ee.Filter.greaterThanOrEquals('random', 0.7));   
198.    
199. // Training the classifier with the trainedSet:   
200. var trained = ee.Classifier.randomForest(10).train({   
201.   features: trainedSet,   
202.   classProperty: 'solar',   
203.   inputProperties: bands   
204. });   
205.    
206. // classifying the testingSet and get a confusion matrix    
207. var confusionMatrix = ee.ConfusionMatrix(testingSet.classify(trained)   
208.       .errorMatrix({   
209.         actual: 'solar',   
210.         predicted: 'classification'   
211.       }));   
212.    
213. var confMat = ee.Feature(null, {matrix: confusionMatrix.array()});   
214. var overAccu = ee.Feature(null, {matrix: confusionMatrix.accuracy()});   
215. var prodAccu = ee.Feature(null, {matrix: confusionMatrix.producersAccuracy()})

;   
216. var consAccu = ee.Feature(null, {matrix: confusionMatrix.consumersAccuracy()})

;   
217. var kappa = ee.Feature(null, {matrix: confusionMatrix.kappa()});   
218. var order = ee.Feature(null, {matrix: testAccuracy.order()});   
219.    
220. // Printing the results to console in GEE (sample)   
221. print('Confusion Matrix:', confMat);   
222. print('Overal Accuracy:', overAccu);   
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223.    
224. // Exporting the results in the CSV format to Google Drive (sample)   
225. Export.table.toDrive({   
226.   collection: ee.FeatureCollection(confMat),   
227.   description: 'confMat_Zealand',   
228.   fileFormat: 'CSV'   
229. });   
230.    
231. //Print the confusion matrix and expand the object to inspect the matrix.   
232. print('Confusion matrix:', confusionMatrix);   
233. print('Overal Accuracy:', confusionMatrix.accuracy());   
234. print('Producers Accuracy:', confusionMatrix.producersAccuracy());   
235. print('Consumers Accuracy:', confusionMatrix.consumersAccuracy());   
236.    
237.    
238. Map.addLayer(color_solar, {palette: ['ff0000', '00ff00']}, 'solar non solar');

   
239.    
240. /******************  
241. Adding the legend for GEE  
242. ********************/   
243.    
244. // set position of panel   
245. var legend = ui.Panel({   
246.   style: {   
247.     position: 'bottom-left',   
248.     padding: '8px 15px'   
249.   }   
250. });   
251.     
252. // Create legend title   
253. var legendTitle = ui.Label({   
254.   value: '',   
255.   style: {   
256.     fontWeight: 'bold',   
257.     fontSize: '18px',   
258.     margin: '0 0 4px 0',   
259.     padding: '0'   
260.     }   
261. });   
262.     
263. // Add the title to the panel   
264. legend.add(legendTitle);   
265.     
266. // Creates and styles 1 row of the legend.   
267. var makeRow = function(color, name) {   
268.     
269.       // Create the label that is actually the colored box.   
270.       var colorBox = ui.Label({   
271.         style: {   
272.           backgroundColor: '#' + color,   
273.           // Use padding to give the box height and width.   
274.           padding: '8px',   
275.           margin: '0 0 4px 0'   
276.         }   
277.       });   
278.     
279.       // Create the label filled with the description text.   
280.       var description = ui.Label({   
281.         value: name,   
282.         style: {margin: '0 0 4px 6px'}   
283.       });   
284.     
285.       // return the panel   
286.       return ui.Panel({   
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287.         widgets: [colorBox, description],   
288.         layout: ui.Panel.Layout.Flow('horizontal')   
289.       });   
290. };   
291.     
292. //  Palette with the colors   
293. var palette =['FF0000', '00ff00', 'CCCC00'];   
294.     
295. // name of the legend   
296. var names = ['non solar training','solar training','results solar area'];   
297.     
298. // Add color and and names   
299. for (var i = 0; i < 3; i++) {   
300.   legend.add(makeRow(palette[i], names[i]));   
301.   }     
302. // add legend to map   
303. Map.add(legend);   

Appendix 1. The complete JavaScript code for the study using RS classifier 


