
Copyright © 2006. This report and/or appended material may not be partly or completely published or copied without
prior written approval from the authors. Neither may the contents be used for commercial purposes without this written
approval.

Aalborg University Copenhagen

Semester:

Title:

Project Period:

Semester Theme:

Supervisor(s):

Project group no.:

Members:

Copies:
Pages:
Finished:

Abstract:

Aalborg University Copenhagen

Frederikskaj 12,

DK-2450 Copenhagen SV

Semester Coordinator:

Secretary:

10th

Exploring emotion detection in textual data, using
knowledge based methods and web scraping, and
communication of the results through affective
visualizations created by generative algorithm

01/02 /19– 28/05/19

Master’s Thesis

George Palamas

Anna Lunterova
Ondrej Spetko

The following exploratory research investigate approaches to
natural language processing, and propose alternative way to approach
visualization and communication of multivariate data. The aim is to
1. improve the traditional recommender systems by adding emotional
category to the data organization, and 2. to communicate the subsequent
metadata further through an affective visualization. Respectively, the
design process is divided into two phases of natural language processing
(NLP) phase and visualization phase.

The NLP phase consists of extracting experimental features of arousal,
entropy and color, in addition to the more traditional features of valence
and subjectivity from the IMDB reviews dataset. Afterwards the machine
learning algorithm, the t-Distributed Stochastic Neighbor Embedding
(tSNE), is used for reduction of the feature set dimensionality, resulting
in a spatial organization representing the textual data of IMDB reviews.
The extracted features are observed and judged by basic statistics, value
distributions and visualizations. The visualizations are further supported
by clustering analysis for purely experimental purposes.

The visualization phase consists of exploring the affective capabilities
of computationally generated visuals, with an intention to communicate
data qualities through an affected state. From the NLP phases metadata,
specific data qualities are chosen and then mapped into preattentive
elements of the final affective visualizations. Each visual represents the
data qualities of reviews of one movie. Together 20 movies signatures are
visualized. Afterwards, from the perspective of communicativeness, the
created data-informed generative art visuals are evaluated additionally
with the effectiveness of the generative algorithm.

Although further investigation are needed, results from the NLP phase of
feature extraction support the significance of the influence of the
experimental features on the organization of the textual data. The
evaluation of the visuals through a quantitative online survey done by 79
participants, confirms the possibility to communicate data characteristics
through an affective visualization.
 We believe the immersion of the two phases brings new perspective into
understanding and communicating textual data.

Exploring emotion detection in textual data,
using knowledge based methods and web

scraping, and communication of the results
through affective visualizations created by

generative algorithm.

Anna Lunterova1, Ondrej Spetko1, and George Palamas1

Aalborg University, A. C. Meyers Vaenge 15, 2450 Copenhagen, Denmark

Abstract. The following exploratory research investigate approaches to
natural language processing, and propose alternative way to approach
visualization and communication of multivariate data. The aim is to
1. improve the traditional recommender systems by adding emotional
category to the data organization, and 2. to communicate the subsequent
metadata further through an affective visualization. Respectively, the
design process is divided into two phases of natural language processing
(NLP) phase and visualization phase.
The NLP phase consists of extracting experimental features of arousal,
entropy and color, in addition to the more traditional features of valence
and subjectivity from the IMDB reviews dataset. Afterwards the machine
learning algorithm, the t-Distributed Stochastic Neighbor Embedding (t-
SNE), is used for reduction of the feature set dimensionality, resulting
in a spatial organization representing the textual data of IMDB reviews.
The extracted features are observed and judged by basic statistics, value
distributions and visualizations. The visualizations are further supported
by clustering analysis for purely experimental purposes.
The visualization phase consists of exploring the affective capabilities
of computationally generated visuals, with an intention to communicate
data qualities through an affected state. From the NLP phases metadata,
specific data qualities are chosen and then mapped into preattentive
elements of the final affective visualizations. Each visual represents the
data qualities of reviews of one movie. Together 20 movies signatures are
visualized. Afterwards, from the perspective of communicativeness, the
created data-informed generative art visuals are evaluated additionally
with the effectiveness of the generative algorithm.
Although further investigation are needed, results from the NLP phase of
feature extraction support the significance of the influence of the experi-
mental features on the organization of the textual data. The evaluation of
the visuals through a quantitative online survey done by 79 participants,
confirms the possibility to communicate data characteristics through an
affective visualization. We believe the immersion of the two phases brings
new perspective into understanding and communicating textual data.

Keywords: Natural Language Processing · Sentiment Analysis · Gen-
erative Art · Affective Visualization · Emotional-context aware system ·

2 O. Spetko, A. Lunterova et al.

Dimensionality reduction · Affective Intent· Affective Computing · Data-
Driven Visual · Visualizing Metadata Qualities · Recommender systems
· Emotion detection

1 Introduction

With the fast development of social media and ever increasing possibilities to
create short content through various networking services or recommendation sys-
tems, more and more textual data are generated by users. Whether it is users
stories, posts, comments from social media, or reviews of publications, products
or services. This text data is stored across multiple platforms in vast quantities.
Users turned from being primarily passive recipients of information on the web,
and became active contributors to the amount of data stored. This phenomenal
accumulation of textual content has attracted many researchers and necessi-
tates further automated analysis, extraction, recognition or adaptations of the
system. Processing of the text, Natural Language Processing, allows e.g, auto-
matic translations [28], information retrieval [26, 2], document classification[65],
question answering[73], entity recognition[77], sentiment analysis[53], etc. Par-
ticularly famous use of users behavioural data nowadays, recommender systems
seek to predict users preference when browsing through various contents. Recom-
mender systems are used for variety of areas, including e-commerces (Amazon,
Netflix) music or videos recommendations (such as Youtube), search queries,
social tags, online dating etc., providing a relief to the users information over-
load problem. The algorithm is based on analyzing previously searched items or
similar users characteristics. As a more specific example, Social Tagging Recom-
mender Systems categorize and retrieve content using open-ended tags. Tagging
data are user-provided[20], and it is today a popular method to organize and
retrieve items of interest in the Social Web. Tags are used as either main or
additional source of content for the recommender system, but tag-augmented
recommender are only slightly more accurate than the recommendations of the
pure content-based one[13]. Additionally, it has been shown that the average
precision of user tags is about 0.5 and the average recall (completeness rate) of
the user tags is 0.5 as well. This means half of the tags created by users are noise
and half of the true labels are missing[11].

Beginning of emotion recognition and analysis has sparked a lot of researches
in computer sciences and human computer interaction in the past decade. The
idea and importance of fusing emotions and affect into technology, was presented
for the first time in 1997, by Rosalind Piccard[58]. The emotional communica-
tion enriches and facilitate a deeper understanding of the content through the
expressiveness of verbal (spoken words, prosody) cues. Automatic extraction of
emotions from the text can provide additional information about the content
that has been in recent years used for various purposes such as suicide preven-
tion, intelligent tutoring systems, online communication to build smart robots,
product review, emotions application development, social studies, etc[30, 14, 52,
53].

Exploring emotion detection in textual data.. 3

Processing and analyzing content, based additionally on the emotional cat-
egory, adds an important attribute for the traditional recommender systems.
Organizing and retrieving data points with additional source of content intro-
duces a novel way to enhance the understanding of the textual data content. We
believe that creating emotion based recommender systems has potential to both:
-address the issue of imprecise sorting based primarily on tags, users or date,
by suggesting alternative categorization of items, -bring deeper understanding
of the content to the system and then potentially to the user.

Textual data processing and analysis form a new subset of the same data,
called metadata. This metadata gives an opportunity to explore and communi-
cate the newly found characteristics of the original data. A graphical represen-
tation of data and their attributes, or data-driven design, serves as a method
of displaying sorted data items, and relationship between them, to not only fa-
cilitate their understanding[75, 44], but also brings focus on the creative and
aesthetic potential of the data uses[34]. Emphasizing engagement and interest
with the data, the visual appearance of data in form of data visualization, or
data art, forms data-driven visualizations that communicate not only informa-
tion but also and affect[79]. These problem areas and fields of interests lead to
the following research motivation:

How can we extract and communicate emotional signature of textual data to
potentially enhance the traditional recommender systems?

This research is divided into two distinct phases, first part focused on the
analysis and categorization of textual data for the purpose of extraction of emo-
tion based features from textual data. The second part will take the opportunity
to investigate the ways to communicate and visualize the subsequent metadata
obtained in first phase from the original textual data.

2 Background research

2.1 Recommender systems

Generally recommender systems are divided into two categories: content based
and collaborative-filtering based [61].

Content based systems are recommending products or elements based on
features that defines them. For example in case of music the content based
system would recommend songs and other music products based on the sound
properties of the songs.

Collaborative-filtering based recommender systems are suggesting content
based on the history of the users choices and comparing them with similar users
and their choices. Collaborative-filtering recommender systems are not interested
in the features defining the content items themselves but rather build on statis-
tical probability of similar users liking the similar products. It is not a rule that
a recommender system should fall exclusively under just one of these categories.

In regards to this project the interest incline towards the content based ap-
proach of recommender systems as the aim is ti extract features representing
content of a textual data.

4 O. Spetko, A. Lunterova et al.

2.2 Natural language processing (NLP)

Natural language processing is relatively novel concept in linguistic science and
allows processing and analyzing large amounts of natural language data [39].
NLP field is very famous in the word of data science nowadays, and there is
access to various tools and libraries for this purpose. Among the most famous
Python libraries belong CoreNLP [40] from Stanford University, SpaCy [24],
NLTK [70] or TextBlob [37]. Some of them differ in implementation, performance
and capabilities. However, when it comes to the baseline functions like part-of-
sentence tagging (POS) [1], phrase isolation or basic sentiment analysis, they
usually produce almost the same results.

For example TextBlob is a python library that offers a simple functionality
to access its methods and perform basic NLP tasks. Including property of senti-
ment analysis returning both sentiment and subjectivity values of the processed
textual data. Sentiment analysis can be used to add informative value to the
emotional signature of the processed textual data. On the other hand CoreNLP
is more robust library that provides stand alone support for developers. CoreNLP
is developed in Java and has more complex functionalities like dependency struc-
turing of the part-of-sentence tokens and many more. The implementation works
through API from the developers environment. Natural language processing usu-
ally follows three basic steps: preprocessing of data, feature extraction and in-
spection/evaluation. These three steps are usually done in repetitive manner by
means of exploration before jumping to any conclusions.

In the preprocessing phase the researchers usually try to eliminate most of the
noise from the data and, generally speaking, prepare the data for the phase of fea-
ture extraction. The phase of preprocessing contains operations like tokenization
(represent text as group of tokens=words), removal of stopwords (over common
words e.g. the, a, so etc.), lemmatization (transforming words into their basic
form e.g. flew to flying), special character elimination (also removal of punctua-
tion and digits), lower-case transformation (WORD to word), removal of white
spaces and other. In the preprocessing phase the choice of operations applied
to the textual data often depend on the purpose of the research. For example
in case of emotion-based feature extraction, the punctuation and generally text
format, is considered to be a big clue that can indicate some emotion attributes.
For example - WHY? - may indicate negative sentiment thanks to the capital
letters used as opposed to its lowercase version - why?. Many NLP libraries al-
ready have these preprocessing operations included and therefore making the
whole process of NLP easier for those using them [40]. In the feature extraction
phase the main NLP methods (e.g. topic modelling, sentiment analysis etc.) are
applied on the processed text from the previous stage of preprocessing. This
phase is responsible for extraction of features that would serve the purpose of
the research or experiment. In the last phase the distribution and significance
of the features and results is inspected, evaluated and reconsidered. In case of
potential improvements the three steps can be repeated in any order needed
to ensure improved feature extraction and generally better or more significant
results.

Exploring emotion detection in textual data.. 5

2.3 Word to vector

For the purpose of representing a textual data in a computational friendly way,
textual data needs to be represented as numbers. Word2Vec is a class of machine
learning models that is responsible for representing words of a text in embedded
space (vectors) according to their relative meaning derived from co-occurrence
in text [42]. These word embeddings are highly useful for Natural Language
Processing tasks. Recently, the technique has also been applied to more general
machine learning problems including product recommendations. Representing
words in vector space is more and more commonly used for locating similar words
that share common contexts in the analyzed content, mostly for the purposes of
deep learning, semantic analysis, sentiment analysis, classification, recommender
systems, etc. Word2vec algorithm takes a textual data, and map each of the
words on one vector space. This space is composed likely of several hundred
dimensions (size depends on the amount of processed text), with each word being
assigned a corresponding vector in the space. High-quality distributed vector
representations of words can grasp quite precise syntactic and semantic word
relationships. Word embeddings are further usable for topic modeling known as
Doc2Vec model.

2.4 GloVe

GloVe is a new global log-bilinear regression model for the unsupervised learning
of word representations performs comparable to the word2vec and other models
on word analogy, word similarity, and named entity recognition tasks [56]. It
is developed as an open-source project at Stanford, with a large downloadable
database of pre-trained vectors. Advantage of using the GloVe is the big pre-
trained map of word vectors that was trained on immense amount of textual data
providing general mapping of words without having to train your own model of
word2vec.

2.5 Sentiment analysis and arousal

In NLP for emotion detection it is common to follow Paul Ekmans model of
six basic emotions which are Anger, Disgust, Fear, Happiness, Sadness and Sur-
prise [47, 15]. These main groups of emotions contain subcategories of emotions
forming emotion ontology [68, 71].

Emotion ontology is important part of the emotion detection because it maps
the relationship of emotions and enables for main emotion assumption based on
minor emotions that are present. Emotions have also other representation. This
representation is located in 3D space of valence arousal and dominance (VAD)
where valence refers to sentiment (positive, negative) of the text, arousal refers to
activation (activation, deactivation) and dominance. Domain of dominance does
not carry significant value as it highly correlates with valence (0.97) [82]. The
resulting space of valence and arousal is called Circumplex model of emotions
and allows for emotion mapping based on these two domains.

6 O. Spetko, A. Lunterova et al.

Fig. 1. Circumplex of emotions

In NLP another dimension is often present aside from the circumplex model.
This dimension is subjectivity and provides information about the personal
stance of the text (subjective, objective). Together sentiment (valence) and sub-
jectivity form basic feature for most of the NLP implementations. The arousal
domain is only an experimental feature that is usually deducted from the arousal
lexicons created by mechanic turks (people labeling data).

With an aim to propose alternative ranking method for facebook fan page,
in the research The Lexicon-based Sentiment Analysis for Fan Page Ranking
in Facebook [53] the focus was on crawling textual data from users posts and
comments. For analyzing the user engagement and comment polarity, lexicon
AFFIN was used to add users opinion into the analysis. Including users opinion
in the account when evaluating a fan page was found to be more accurate,
compared to evaluation based only on number of comments, posts, and likes.
Although the aim of this research was different and purely for evaluating success
rate of fan pages on Facebook, the insights were regarding the approach towards
the sentiment analysis and web crawling.

2.6 Emotion detection

There is quite bit of research and work done in the field of emotion detection
through text. In general the approaches to detect emotion from the text can be
summed into 3 main categories [67]:

– Knowledge (or Keyword) based approach
– Learning based approach
– Hybrid approach

Knowledge based approach focuses on assigning words with emotional affect
levels (anger:60%, happiness:40% etc.) or directly assigning the words with the
main emotion category (anger) based on existing lexicons like WordNet-Affect
[71] or NRC-VAD [46].

In data science the lexicons and datasets are the core component of learning
for models and predictions. In the field of NLP lexicons play major role. Main

Exploring emotion detection in textual data.. 7

reason being the lack of emotional information encoded in the textual data itself.
For this purpose some NLP lexicons provide at least partial answer to this prob-
lem with their emotional rating of words. Among the top used emotion lexicons
are WordNet and NRC.

In the research Can word embeddings help to find latent emotions in text? [66]
it has been shown that standart word embeddings algorithms as word2vec and
GloVe do not predict main emotion from the component of emotions, resulting
in an imprecise emotional distribution of words. Lexicons serve as knowledge
based approach for sentiment analysis and classification technique, and improve
the accuracy of embeddings in representing emotions.

The NRC Valence, Arousal, and Dominance (VAD) Lexicon (2018) includes
list of more than 20,000 English words and their valence, arousal, and dominance
scores. Other lexicons (such as Affective Norms for English Words (ANEW)
lexicon (1999), the WordNet Affect (2004), the SentiWordNet 3.0 (2010)) exists
but having lower number of words and some are lacking dimensions of valence,
arousal or dominance, they have been measured as having lower reliability.

WordNet lexicon is emotion ontology lexicon and it is specifically designed
around the ontology of emotions and maps affective words to this hierarchy where
a word pissed leads to main category anger thanks to the hierarchical structure
of the emotion links in the lexicon. WordNet-Affect lexicon is extension of the
original lexicon by means of adding value of valence for each of the affective words
in the lexicon. This lexicon is, however, limited to only affective words in the
first place. NRC-VAD lexicon has different approach. First of all the lexicon work
with common words as well as affective words which is advantage as opposed
to WordNet lexicon and it has much more words listed. The lexicon is build
by people (mechanical turks [12]) rating common words based on their affective
value in dimensions of VAD (valence, arousal, dominance). NRC-VAD lexicon
can assist the traditional sentiment analysis by providing mapping of arousal
dimension of words completing the coordinate system of Russels circumplex of
affection model of valence (sentiment) and arousal.

After mapping the words in the text with affective values or basic emotion,
the final emotion can be then assumed as the dominant one (ex. anger) or dis-
played as probability distribution of all main emotions spotted (ex. anger:60%,
happiness:40%). The scope of keyword based approach can differ from keyword
level through sentence level all the way to the document level evaluation.

This approach lacks context judgement and therefore different meanings (I
met her by accident; I had an accident) may produce similar results if not sup-
ported by further semantic and syntactic analysis of the sentence instead of
selective word-based evaluation only.

Learning based approach uses supervised and unsupervised machine learning
algorithms to determine probability distribution of the emotion values in the text
and classify the final emotion. Supervised machine learning requires big datasets
of samples that are divided into training and testing samples. Disadvantage of
this approach lies in the need of labeling data that allows for training and testing

8 O. Spetko, A. Lunterova et al.

of the model and eventually validation and accuracy measures. Unsupervised
learning uses statistical measures to represent semantic relations of words within
sentences and their relevance to target emotion.

Hybrid based approach uses combination of the two previous approaches.
Hybrid solutions tend to have higher accuracy compared to exclusive use of
knowledge or learning approach.

In this project the knowledge approach for emotion detection is used because
the lexicons provide faster implementation compared to learning and hybrid
models.

2.7 Experimental features from textual data

When dealing with textual data it is often the task to conclude the emotion
from the text itself because we dont have a way to account for external data
like mindset of the author. Majority of approaches for emotion detection are
focusing on the syntactic and semantic relations and modeling of the textual
data, supported by lexicons and other labeled datasets that cant reach levels of
certainty for the reason of disagreement between the labeling judges.

When reading, people tend to visualize what they read [51]. Depending on
the type of text they read or conditions in which they happen to read, the
perception may differ but the base idea prevails: reading as well as expressing
ourselves in textual format communicate certain form of taste or color that is
locked within the words, phrases or the whole text as one. This perception usually
goes hand in hand with emotion felt when reading the same text. Visualizing
and perceiving certain words may be different for each person but there could be
a way to generalize this perception. If we could use internet to provide us general
representation of a textual data that would be beyond traditional methods of
NLP (e.g. topic modelling, sentiment, subjectivity) in a reasonable data form,
we could use this as an experimental feature for potential emotion representation
of the text. In other words perception or visualization (imagination) of a textual
data could be reflected on the internet using the search engines and the textual
data as input. This idea originates from the fact that people label and structure
content they create on the internet in a way that the images (and other medias)
are enclosed in relevant context linking the textual information closely to the
media themselves.

Internet search engines are specifically designed to link textual data from
search bars to results of various media types (pictures, videos, music) as well as
text. Images compared to videos and music are easier data form to process as they
are simply bunch of pixels with color values. The idea would be to represent a
textual data in pictures from a search engine and further apply image processing
methods to find a way to summarize the findings into a feature representing the
textual data. It is generally known that perception of colors is related to the
emotions [27, 74]. Therefore, the colors of the images that represent a textual
data could provide potential insight into the emotional print of the data that

Exploring emotion detection in textual data.. 9

they represent. Additionally entropy, known as average information of an image,
could be used along with the color to enhance the representation value of the
textual data as a visual information.

There exist few datasets that provide mapping of common words with col-
ors. In his work Saif M. Mohammed developed a lexicon based on the people
labeling common words with colors [45]. This lexicon was later combined with
similar dataset of word-emotion labeled lexicon resulting in mapping of word-
color-emotion. The dataset is relatively small and limited in terms of number of
judges per term to be used for this project.

2.8 Visual representation of data

Analysis and processing of the textual data serves for enhancing deeper or more
precise understanding of the textual data, such as its content and emotional
value. The result of this process is metadata describing the data in depth, pro-
viding space for next directions such as novel organization for recommender
systems, answering analysts specific questions regarding values, or communicat-
ing the results further to the public. For the case of further communication and
representation of the obtained metadata, data visualizations are often used to
transform a table with raw data values, into more easily comprehensible and
aesthetically pleasing visuals of different forms[6, 18, 44, 48, 50]. From broad per-
spective, the approaches for visually encoding the information visually varies
across research, depending on its purpose, from being purely functional with
focus towards the visualization maximum informativeness, to more artistic and
exploratory approaches with more attention towards its aesthetics and creative
expression. This chapter will describe the investigation of the two approaches.

2.9 Functional apporach

Form follows function is known principle associated with industrial design and
modern architecture. Especially among scientists or engineers, the communi-
cation of complex and inter-related datasets requires high informativeness and
often is the only focus. An example of most commonly used tools are default
excel tables, predefined Tableau templates, default settings for plotting tables
through Matplotlib library for Python, or online tools for making graphs that
pay rather little or no attention to the aesthetics of the graph. Graphics that
are designed with high functional purpose, focus on their simplicity and short
cognitive interpretation time of the data. Well known data artist A. Cairo in
his book, The Functional Art, explains functionality as an accurate depiction
of data, that help the viewer to think about the shown information rather than
the design of it[5]. Functionality is the foundation for the next four principles
of a good DV, that are as follows: truthful, aesthetically pleasing, insightful,
and enlightening[6]. Similarly, Tufte (1997) in the book Visual Explanations:
Images and Quantities, Evidence [76] makes a distinction between a friendly
data graphic, which is one that helps readers to understand the data, and an
unfriendly data graphic which will not enable readers to efficiently grasp the

10 O. Spetko, A. Lunterova et al.

data. He argues that the functionality is found in the form of graphical elegance
of simplicity of the visual representation of complex data. He invented term
data-ink ratio, what is the ratio between how much ink is used for the graphics,
versus how much data is being communicated. Here he argues that the beau-
tifulness of data visualizations equals simplicity. Primary aspect of the visual
is the data itself, and the graphics is mainly and often only considered as the
medium for effective communication. The functionality of the visualization is
measured quantitatively, most commonly such as time needed for interpretation
and making sense of data, accuracy of interpretation, its readability, efficient
learning rate, etc[30]. An effective data visualization can be altogether charac-
terized as a visual representation of accurately depicted data, that is easy and
fast to understand cognitively.

However, although Tuftes work connects functionality with the minimalism
of the graphics, the recent growth of applying computing technology to data
visualization and the problem of high dimensional datasets open a new discussion
in terms of the before perceived necessity for lowest data-ink ratio. In the digital
age, large amount of complex data and the simple use of computer technology to
create generated visuals, brings further challenges and calls for new possibilities,
when approaching data communication[25].

2.10 Aesthetic approach

Although the functionality being the main and unquestionable focus when eval-
uating data visualization, recently more and more research goes into the effects
and importance of aesthetics. The need for aesthetics is gaining attention for pro-
moting positive effect on perception of data, sharpening focus, reducing boredom,
for enhancing the experience and engagement with the data, improving problem
solving skills and also amplifying the ability to obtain knowledge[7, 33, 60, 16].
Aesthetics are the investigation of the reasons that assess the value of the visual,
depending on the sensations or emotion it produces[63]. Based on the theory of
cognitive-affective processing system model[43], while the functional approach
involves the cognitive processing system that interprets the content, aesthetics
of the stimuli engage the affective processes. These affective processes involve
persons feelings or emotions towards the visual, and the experience of these felt
evaluations serves as perceived information. The functionality of affect can be
directly observed in the way people react to certain stimuli in the environment,
and indirectly in the way people cognitively process information about the en-
vironment[64]. In comparison with the engineering or scientific discipline where
the value depends on the functionality and utilization, here the assessment of
value is in a form of the viewers emotional response.

What exactly is that emotion that drives human behaviours is an open and
rather philosophical question. Throughout the history various dimensional mod-
els of emotions (e.g Ekman emotion model, the OrtonyCloreCollins emotional
model, Plutchiks model of emotions, Parrots categorical model, etc.[57]) were
created with an aim to better understand emotion and the processes behind

Exploring emotion detection in textual data.. 11

them. One particular already mentioned model, the circumplex model of af-
fect[62, 59], proposes that all affective states arise from cognitive interpretations
of core neural sensations. Compared to the categorical models where the emo-
tions are rather considered separate and emerging from independent neural sys-
tems, here the emotions are placed on a continuum of valence (pleasant vs un-
pleasant dimension) and arousal (activation or also called intensity) dimension,
and considered arising from common neurophysiological systems.

The x axis with valence represents the polarity of emotion, from negative to
positive,and the y axis with arousal is the emotions activation, from low to high.
This suggests, that when perceiving and evaluating the aesthetics, the affective
system judges based on the perception of valence and arousal resulting in a
perceived feeling. This preattentive processing is triggered automatically with a
speed of 250-500 ms compared to much slower attentive (cognitive) top-down
processing[32, 23].

Returning to the previous chapter, the same model is also used within the
NRC lexicon of words used for sentiment analysis, where the words are catego-
rized by their value based on their valence, arousal and dominance. The uses
of this model from 1980 are spreaded across various fields, and help to under-
stand and define different emotional states as being related rather than separate.
When creating or evaluating aesthetics, this can serve for placing the affected
state within the model and its corresponding emotion.

2.11 Neuroaeshtetics

Often criticized challenge of the aesthetic approach, is that the assessment of
artistic value of the visual is considered as highly subjective and in lack of an
adequate way to provide quantitative measurements[8]. However, emotions were
proved at various researches to have influence on the performance (functionality,
utility and usability) elements of the visual[54, 72], and quite new field of neu-
roaesthetics bring an empirical approach of understanding why. Merging design
and cognition, neuroaesthetics attempt to explain and understand the aesthetic
experiences at the neurological level based on the knowledge from neuroscience.
The study of brain scans informs that aesthetic experiences are a product of
interactions between sensorymotor, emotionvaluation, and meaningknowledge
neural systems (figure 2).

12 O. Spetko, A. Lunterova et al.

Fig. 2. Three neural systems contributing to aesthetic experience[9]

Although there is still needed further study of the significance of the indi-
vidual differences in neural structures, there are common pathways activations
and aesthetic preferences across individuals[9]. That means taking into consid-
eration found characteristics for perceiving a visual, can help to understand the
creation of affected state. Aesthetic processing, defined as appraisal of the pos-
itivity (valence in the circumplex model) of not only artworks but also objects
and shapes[4] seems to be happening across different brain areas for different
sensory modalities[78]. This supports the studies of affective motion textures,
creating specific affected states across groups of people by choosing specific art
attributes and their characteristics, e.g. path curvature, shape, direction, trajec-
tory, smoothness, acceleration, linear vs radial shapes etc[17, 36]. Although these
studies had only around 20 participants, this suggests there is a link between
specific attributes and affected state it creates.

To help understand different art attributes and make clearer distinctions be-
tween what characteristics an artwork has or can have, the Assessment of Art
Attributes (AAA)[10] questionnaire was looked into. The AAA is a commonly
used tool to quantitatively assess attributes of visual artwork. These attributes
are divided into two. -The formal perceptual attributes: balance, color saturation,
color temperature, depth, complexity, and stroke style. -The content representa-
tional attributes: abstractness, animacy, emotionality, realism, representational
accuracy, and symbolism.

Similar division of art attributes were found when researching preattentive
features of visuals[81], or visual impact of elements of art in older books about
graphics[21]. This distinction of attributes is used both during the assessment
and also creation process of a visual, while the questionnaire is used for de-
termining and evaluating the similarities across individual perceptions of an
artwork[49].

Exploring emotion detection in textual data.. 13

During this chapter, the focus shifted from the cognitively processed informa-
tiveness called the visual functionality, to the datas creative potential of artistic
expression to evoke affected states through an aesthetic experience. The aes-
thetic approach evaluates the created data art in terms of the produced feelings
and sensations. The preceding research suggests, that visual representation and
communication of data could be more effective if the artistic side of the visu-
alization is strengthened. This facilitate engaging users attention, encouraging
the user to react and attend to the stimulus. Additionally it suggests, that de-
sired characteristics of the data could be mapped, and communicated through
an affective state by choosing specific artworks attributes.

Now we will look into novel technique of visualizing and possible way of
merging rules for creating a visual with the data.

2.12 Generative art

As creation is related to the creator, so is the work of art related to the law
inherent in it. The work grows in its own way, on the basis of common, universal
rules, but it is not the rule, not universal a priori. The work is not law, it is
above the law. Paul Klee, 1961[31]

A novel art form called generative art, defined by artist and professor Philip
Galanter, as referring to an art practice where the artist uses a system, such
as a set of natural language rules, a computer program, a machine, or other
procedural invention, which is set into motion with some degree of autonomy
contributing to or resulting in a completed work of art[19]. Merging philosophy,
data, aesthetics, and experimentation between quite distinct fields of computer
science and art, it is an algorithmic way of creating a visual from data values.
Quite different from the traditional art, here the use of principles of numerical
representations and modularity through algorithm is aiding or leading the auto-
mated process of creation. Various applications of generative art exist, such as
live performances, music visualizations, visual art, literature, architecture etc.
Exploration of the affective capabilities of generative art[16] can be looked as
a new tool for affecting audiences through the use of computing technology.
In the paper from P. Galanter, it is suggested that generative art systems, de-
pending on the degree of automation, are considered from the perspective of
being on a continuum between high disordered (random, low comprehensibility,
high information content) and highly ordered (orderly, high comprehensibility,
low information content). The organizing principles in the comparison of various
generative art systems are the effective complexity, order, and disorder. The goal
of the system and the author determines where on the continuum the produced
generative art algorithm will belong, which helps with defining rules for the
development approach. The non-specific continuity (or an open interpretative
form) that the high disorder offers leads the audience to accept illogical, irra-
tional and multiple continuities, and make their own meaning out of the visual.
Various commonly used generative algorithms exists such as Perlin noise, cellu-
lar automata, fractals, oscillation figures, formulated bodies, etc[55, 3]. To access

14 O. Spetko, A. Lunterova et al.

and use these algorithms, Processing, is a flexible open source software sketch-
book that allows for simple prototyping and learning to code within the field of
visual arts. With over 100 libraries, good documentation, and large community
of enthusiastic users, it is a simple way to start experimenting with generative
art.

2.13 State of the art for visual representation of data

The aim of researching the state of the art, was to find and understand previous
similar works in the field and their techniques. Although the field of visual rep-
resentation of data was researched and described in the previous chapters, the
state of the art chapter gives better understanding of how these fields were con-
nected in previous studies. This chapter describes some of the studies, dividing
and categorizing them from the point of view depending on their focus.

A paper focused on analyzing social media content and creating a tool called
HarVis[2]. HarVis is a framework with an aim to assist analysis of YouTubes
textual content, facilitating acquisition, storage, processing and visualization of
content. The visualization offers exploratory analysis of relevant informations
and extensive data about videos, authors and comments, based on the searched
tags, topics, or names. Research is divided into two particular aspects: data ac-
quisition method, and data visualization. On the figure below is the exploratory
visualization of organized data.

Fig. 3. HarVis[2], organized map of YouTube content and networking communities.
Authors of videos are green, authors for comments red, and blue for people with dual
roles.

Compared to the fan page ranking research, here the central focus was on the
organization and visualization of the already existing data about the content,
without further processing or analysis of the textual data. Information presented
in the visual was organized to facilitate answering of five main topics regarding
the content: temporal evolution of the network, vocabulary network, authors

Exploring emotion detection in textual data.. 15

popularity and influence, existing categories, user communities and influencers.
The evaluation of the tool was based on quantitatively evaluating the precision
of produced visuals, compared to the previous data retrieval systems. However,
the produced data visualization has high complexity and informational content,
communicating all different categories and their connections with only few an-
notations and without legend. As this was not evaluated during the research,
the visuals usability and effectiveness in communicating can be questioned. Yet,
this served as an insight into alternatives regarding organizing content visually.

In the research Design and Development of Visualization Tool for Movie
Review and Sentiment Analysis (2016) the focus was on the problem of the usual
display of reviews and recommends chronologically in a list format. To make it
easier to grasp information and categorize the reviews based on the most helpful,
the authors developed a visualization tool that visualizes sentimental analysis of
the reviews on pre-made Sentiment Dictionary. More information regarding the
used dictionary and its name are missing. The final visual (figure below) shows
only a small number of highlighted emotionally rich comments on the movie,
extracted from the analyzed reviews and linked by clicking to the original review.

Fig. 4. Proposed system of Movie Reviews Visualization tool[83]

This is another functional approach towards navigating through the movie
ratings or product reviews in an interactive data visualization. User evaluation
of the developed visualization tool effectiveness was noted as an interest of future
investigations.

16 O. Spetko, A. Lunterova et al.

Cosmovis - visualization of heat map sentiments, projected onto star signs[22]
falls in the same category where the focus was to visualize reviews based on the
sentiment. With slightly different and more aesthetical approach, the authors
firstly collected data from Korean movie service NAVER, then established their
own korean sentiment word dictionary with consultation with linguist. Each of
seven main emotions was classified by category, that included its kinds of syn-
onyms as sentiment words in the same emotional category. Then the reviews
were organized by their main sentiment, and projected onto a heatmap visu-
alization. To facilitate the cognitive understanding an interesting approach of
projecting heatmap into constellations was used. The asterism name, and the
symbol on which the heatmap was presented, was chosen based on the movies
main emotion or emotions. The final visual for one movie can be seen on the
following Figure 5.

Fig. 5. CosMovis constellation map of sentiment words from movie Paranormal Activ-
ity[22]

The evaluation consisted of pilot testing the reaction and learning time of
the visual between two groups of 10 participants. The drawback of the study was
that participants used the location of the emotion nodes to asses the sentiment
rather than the symbol of the constellation. Although the informativeness of the
two-dimensional model where the emotions were placed can be considered as
an helpful information that led better results in understanding the visual, the

Exploring emotion detection in textual data.. 17

visual communication of the chosen symbols is being questioned at the end of
the research.

From the more aesthetic and affective visualizations focused studies, Beyond
Data: Abstract Motionscapes as Affective Visualization (2017)[16] was chosen as
an example for the approach focused on communicating through sentiment. The
paper summarizes findings on the affective expressiveness of abstract motion-
scapes and set guidelines for extending the use of affective visuals from mainly
artistic circles also to HCI studies. Authors create different interactive motion-
scape in VR, where the motionscape varies in shape (compositional layout),
motion factors (speed,direction,path curvature) and presentational aspects as
viewpoint and display condition, since those are considered as key contributors
for creating the intended motion affects. Instead of communicating information
as static visual, here the focus goes towards communicating intended feelings of
the environment, such as in the case of movies, games, or performances. Although
such scenarios are created with quite different goal, the findings of the study are
interesting for also other various uses of communicating through affective intent
and support the idea that there is a link between embedded visual properties and
perceived emotional value. The only research was found that connects the infor-
mation visualization and affective visualization with a focus on communicating
emotions through a static data visualization. In Affective Data Visualization: A
Preliminary Study (2018)[41], authors explore how data visualizations can be
used to get a targeted emotional response. Twenty visuals with different fonts,
colours and font sizes were tested by 41 people in regards to the emotions evoked.
The color was found as the only element affecting the evoked state. However,
the tested visuals were in the form of graphs, where only the used elements to
form the same graph varied. The research lacks further investigations, such as
adding more preattentive visual properties for testing the emotion manipulation
effect, or trying different kinds of data visualizations.

This chapter summarizes the state of the art studies in the fields of sen-
timent analysis and visual representations approaches. The studies varies and
were described starting from the ones purely focused on textual data analy-
sis, towards the ones focused on visualizing the analyzed informations with dif-
ferent approaches. Finally, recent studies regarding affective visualizations and
their guidelines on communicating with affective intent were mentioned. This
acknowledges the direction of this paper investigation.

2.14 Dataset

For the purpose of extracting emotional information from a textual data it is
highly recommended to select data that revolves around stories and complete
idea formulations with ideally randomized topic of the content.

It is very common nowadays to use social media API to retrieve big datasets
especially for data science purposes. However, these are usually platforms that
users use to express themselves in limited form (comments, reactions, opinions),
lacking the core of the story (subject often not present in the text) since the focus
of the content is aimed towards an external medium (video, tweet, picture) that

18 O. Spetko, A. Lunterova et al.

it refers to. It is possible to filter out the data that hold value of a complete
story from these social platforms but it would not be time efficient for this
projects timeline. Another major problem with social medias textual data is
frequently used (even desired) sarcasm. Sarcasm is almost impossible to detect
from just the textual expression if the clue/s lie in an external medium (previous
tweet/comment, general subject, footage etc.).

Famous datasets for sentiment analysis and other NLP tasks are coming
from Tweeter or YouTube in form of textual data from user tweets and comments
respectively. This textual data is very rich on emotional print in various forms like
emoticons, gifs, excessive punctuation or text-formatting expressions (Capital
letters, spaces, spam etc.). Such data can serve well for sentiment analysis and
possibly for deeper emotional print as is desired in this project. However, these
same features that provide potential value for generation of an emotional print
of the data are as well very computationally expensive to distinguish and classify
mainly thanks to overuse of the sarcasm which is often undetectable knowing
nothing about the general subject of the content or previous tweets in the same
chain (chain of tweets as people react to other tweets).

For this reason the dataset of IMDB reviews seems much more convenient.
IMDB reviews are another very famous source of data (in data science). IMDB
reviews are almost guaranteed to provide complete point of view (potential emo-
tional print) while mentioning the subject (movie). Disadvantages of using such
dataset are the length of the text data that is very large on average causing
potential loss of definition (sharpness) of the extracted information. For exam-
ple the authors stance may shift along the review as the focus switches between
the sub-subjects (actor performances, plot, CGI, etc.) creating noisy data that
(without advanced processing) produce insignificant results (middle ground, av-
erages).

A new platform is also emerging called Duckling. This platform hosts en-
vironment for users to write stories in form similar to a slideshow containing
both text and other medias. This dataset was believed to suit the purpose of
this project but the serious size and language (often in danish) limitations were
crucial in deciding not to use it further.

Considering the options in terms of pre-processing needed, potential value
carrying, amount of data points and access to the datasets the dataset of IMDB
reviews was chosen. Convenient enough the dataset of IMDB reviews with addi-
tional sentiment labeling (positive=1, negative =0) feature was found [38]. This
labeling can serve as test for the sentiment feature extraction-method validation.

2.15 Final problem statement

This chapter summarizes key findings from the background research. Afterwards
the final problem statement and reasoning of the interest for this thesis will be
stated and explained.

There are several already known methods to address processing of textual
data for the purpose such as analysing the sentiment, subjectivity or semantic
meaning. Natural language processing algorithms such as word2vec and different

Exploring emotion detection in textual data.. 19

lexicons, as GloVe, NRC or SentiWordNet are already existing toolkits for text
processing. Analyzing and processing textual data facilitate deeper understand-
ing of the content, and can suggest a more meaningful categorization of the data
compared to the traditional recommender systems.

The ways for visually representing the information were divided into two
distinct approaches, functional and aesthetical. While they could be further di-
vided into sub-categories depending on what is being communicated or methods
of communication, the aim was to provide an understanding of both approaches
and provide reasoning of their use. The functional approach is measured in terms
of effectiveness of the visuals communicativeness, while the aesthetic approach
is focused rather on communicating affective states and measuring the perceived
sentiments. There is ongoing research in the topic areas of evaluating affective
intent in motionscapes, or influence of different shapes and their characteristics
on the affective state. From the research of neuroesthetics, it is known there are
common neural pathways activations for different preattentive attributes that
influence our perception, and also common aesthetic preferences among most
people. The intentional influence of users sensations had become one of the
central parts of the new media age. This has been mainly targeted within the
development of narrative experiences, for example cinema storytelling or game
industry, however the use of affective intent is slowly rising and being extended
to the HCI technology as well.

Although both approaches, functional and aesthetic, have their common and
reasonable use between quite distinct groups of enthusiasts, there was not found
much research in regards of combining them. Apart of adding aesthetics into data
visualization, or evaluating perception of different kinds of data visualizations,
the area of communicatively mapping data onto affective visualizations is yet to
be explored. This lead to a question whether extracted data values, usually com-
municated in form of informational data visualizations, can be visualized with
an aesthetic approach, yet without loosing their communicativeness. Generative
art opens a possibility to define data-driven set of rules for creating metaphors
from the data values, that would be communicated through an affective state
evoked by the computer drawn artwork. This extends the traditional uses of the
data, and combines it with an added experimental and artistic value.

From the analysis the current problem area can be divided into two smaller
fields of interest: emotion-content aware recommender systems and affective vi-
sual representations of metadata. Both fields could be rather separate directions
of the research, since each has their own distinct purposes that needs to be de-
signed, implemented and evaluated rather separately. However, our aim was to
connect both directions and take the results of the recommender systems textual
data analysis and translate their form onto an affective visualization. This was
for the purpose of combining our different fields of interest and additionally the
combination allowed extending the researched area. For this reason, the follow-
ing chapters of design, implementation, evaluation and results will be divided
respectively.

The final problem statements for each of the problem areas are following:

20 O. Spetko, A. Lunterova et al.

– How can image scraping and arousal lexicons influence results of traditional
NLP methods for the purpose of improving recommender systems?

– How can characteristics of complex metadata from multivariate analysis of
movie reviews be mapped and communicated through an affective visualiza-
tion?

3 Methods

Having established an understanding of the field and defined the final problem
statements, the next step is to define the methodology for attaining the goal of
the study. The end of the analysis suggests division into two smaller problem
areas, which can be understood also as separate phases complementing each
other, but with their own aims and measurements. First phase will be called
NLP phase and the second phase is the visualization phase. For both phases the
fundamental methods for evaluating will be introduced separately.

In regards to the FPS, the goal of the NLP phase is to analyze textual data
with the use of NLP tools and lexicons, to create more meaningful, emotional-
content aware categorization of the data. The researched tools such as different
lexicons, GloVe model and other NLP methods, will serve as exploratory tools for
the data analysis, and the findings will form data features representing textual
data. This will result in a high-dimensional dataset with the features of the
original textual data. The high dimensional dataset then needs to be further
analyzed and simplified in a meaningful way, to facilitate the understanding of
the results. The convenience of the results then needs to be evaluated, to asses
the meaningfulness of the created organization.

The goal of the visualization phase is to use the created metadata from the
resulted organization, understand their characteristics, and map the characteris-
tics into visual attributes of the affective visualization. The affective visualization
will be created with the use of different generative art algorithms. For this phase,
IMDb reviews will be used as the textual data. The researched values of differ-
ent visual elements, and the principles from generative art chapter, will serve as
guidelines for the phases of mapping, and shaping the final form of the visual.
The art assessment tool will be extended for evaluating affective visualization of
data and its communicativeness of different values. Additionally, the algorithm
will be evaluated based on the effectiveness and aesthetical value of the gener-
ated results. For evaluating the final visuals, the measurements are divided into
two following categories.

3.1 Topic modelling, sentiment analysis and emotion

Since the big emphasis of the project is on recommender systems and potential
application of the system in the social media, the topic modelling is accepted as a
feature for the further NLP analysis as it is one of the key factors that distinguish
between textual data. In other words topic of the textual data matters even if
the intention of the project is to experiment with potential emotion indicating

Exploring emotion detection in textual data.. 21

features. For topic modelling the implementation of the GloVe word embedding
models provide fast and precise solution to the word to vector operation. These
vectors can be then used to assume the general topic of the textual data similar
to the Doc2Vec model.

In order to represent textual data based on the potential emotional signature
it possess, the basic sentiment analysis methods such as sentiment, subjectiv-
ity and topic needs to be performed on the data and the features needs to be
extracted for the purpose of further NLP analysis. Many libraries promise rel-
atively accurate sentiment analysis such as NLTK, CoreNLP, Spacy, Gensim
[80], TextBlob or custom libraries like Vader [29] that also accounts for emoti-
cons. The final choice depends on the implementation difficulty and the accuracy
achieved.

To complete the circumplex of emotions space for emotion mapping, the
arousal needs to be extracted from the textual data as well. This can be done
using NRC-VAD lexicon. This lexicon covers 20 000 common words including
affective words. Other lexicons lack behind with size and validity of the results
(too few judges for labeling).

The accuracy of the sentiment domain could be tested against the sentiment
labels obtained from the dataset like IMDB sentiment dataset. Unlike sentiment
other features like subjectivity and arousal are not labeled in the IMDB senti-
ment dataset and therefore the accuracy and validity of the results can be only
evaluated as manual observation using visual cues like charts, plots and statistic
cues.

It is expected that lexicon based extraction of arousal should provide limited
results in terms of accuracy using IMDB sentiment dataset. This is partially
because even with the size of 20 000 words NRC-VAD lexicon cannot cover
majority of the natural language of english. The other factor contributing to the
lack of value distribution (spread) for arousal, as well as other features extracted
from the dataset, could be the length of the reviews in the dataset that (for
earlier mentioned reasons) creates noisy data reducing the significance of the
results. However, for the experimental purposes of this project these warnings
are accepted and the methods are implemented.

3.2 Image scraping

To evaluate the potential of information delivered by the approach of represent-
ing textual data as images it is necessary to develop a system that will scrape
internet for pictures through use of one of the biggest search engines available
(Google, Yahoo, Bing). After retrieving the image representation of the text the
images need to be represented in a convenient way so the potential information
they carry can be distinguished easier. For this purpose the color and entropy
features of the images will be the extracted and used as features for the further
NLP analysis of the textual data together with the sentiment analysis and topic
modelling features obtained in the previous step.

Just like it was with unlabeled features subjectivity and arousal, the scrap-
ing method providing features of entropy and color cannot be tested directly

22 O. Spetko, A. Lunterova et al.

(true,false) and the validity of the information these features carry will there-
fore need to be concluded from visual observations and possibly basic statistical
measures.

3.3 Evaluation through vizualization

Considering successful extraction of the features (topic, valence (sentiment),
arousal, subjectivity, entropy and color) from the textual data, the relevance or
validity of the features (or their experimental combinations) could be observed
by means of basic statistics like correlation of the features, mean and variation
values. Following the initial statistics the feature set could be observed in visual-
izations allowed by dimensionality reduction algorithms (t-SNE, PCA). Judging
of the visualizations could be aided by clustering algorithms like K-means or
Gaussian Mixture. Thanks to the lost relevancy of the distances between visual
clusters formed by t-SNE, it is not recommended to use clustering algorithms or
and cluster distance measures on the visualizations produced by t-SNE. How-
ever, the purpose of the evaluation is to visually judge the results and therefore
an aid in means of clustering measures, even if not definite, could be tolerated.
Clustering would allow for further measures of the validity of the clustering like
Silhouette score that could therefore represent the final score of the visualization
(combination of features). This score would only serve as a clue because its va-
lidity is compromised by the dimensionality reduction algorithms in the previous
step. Among the cluster visualizations could also belong distribution measures
like Gaussian Mixture to display the distribution and densities of data points in
the clusters.

3.4 Communicativeness of the visual

Measuring the correlation between the perception of the visual and data char-
acteristics, and assessing the range of words used to describe the same visual.

Generative algorithm effectiveness Evaluating the generated results from
the perspective of effective complexity, in regards to the continuum between
order and chaos. This means the visual results for the same dataset needs to
be similar enough in terms of the communicated values but without having the
same form.

4 Design and implementation of NLP phase

In this chapter the process of experimentation and tuning of the NLP phase will
be described. The intention of the NLP phase is to extract meaningful infor-
mation, with emphasis on the emotional tone, from the textual data of IMDB
sentiment dataset. The idea is that this information will be encoded in the fea-
tures of topic, sentiment, arousal, subjectivity, entropy and color. The initial

Exploring emotion detection in textual data.. 23

analysis showed that features of sentiment, subjectivity and topic labeling are
very common and their implementation is relatively easy thanks to wide range
of libraries. The rest of the features are considered experimental and their imple-
mentation will therefore be documented better. The structure of this chapter will
start with description of data pre-processing followed by description of extrac-
tion of features starting with topic modelling, sentiment and subjectivity. The
following feature extraction described will be arousal followed by image scraping
method for entropy and color feature extraction. The chapter will be enclosed
by description of the feature selection and evaluation method.

All the implementation was done in Python programming language in Jupyter
Notebooks environment. Jupyter Notebooks environment allows for code devel-
opment in manner of a notebook-like structure where the output of each code sec-
tion can be displayed creating an ideal environment for scientific Python-based
implementation documentations. The design and implementation are described
as precisely as possible in the following sections but the complete code can be
seen in Appendix B for image scraping implementation, Appendix C for entropy
extraction implementation, Appendix D for preprocessing implementation and
Appendix E for NLP implementation and observation.

4.1 Preprocessing

The original IMDB sentiment dataset has 25 000 data points (reviews). For the
experimental purposes only a small chunk of 1000 data points was cut out. The
preprocessing consisted of punctuation, white spaces and digitals removal, low-
ercase reformatting, tokenization, length threshold (minimal length of 4 words)
and finally rebuilding of the dataset (from tokens). The library used for most
of these features was NLTK (natural language toolkit). Despite the significant
effort to make each operation do hundred percent of its work, the data required
manual operations in order to prevent some information losses. Even with this
the manual intervention the data contains impurities. However, these can be
tolerated as their presence in the text is not significant. For the purpose of the
improved sentiment feature extraction results, the original IMDB dataset is pre-
served as a second instance of the same data set that will be used specifically
for the purpose of sentiment feature extraction thanks to the importance of
punctuation and text formatting for sentiment detection.

4.2 Topic modelling

Going into the phase of feature extraction from preprocessing the two datasets
are available. Main dataset are preprocessed IMDB reviews with sentiment la-
bels. The secondary dataset consist of the original text data from the IMDB
reviews and this dataset will be used only for sentiment feature extraction later
on. For the rest of the features the serving dataset will be main (preprocessed)
dataset. The preprocessed reviews are tokenized (split into words) and this token
representation of each review is added to the main dataset. The frequency of each

24 O. Spetko, A. Lunterova et al.

token within each review is counted and the resulting array of term frequencies
is also added .

Fig. 6. Dataset - tokens , roken frequency (counts) and word count (wordT)

To be able to perform any topic modeling approach the tokens (words) first
need to be translated into vectors using word2vec principal. Instead of creat-
ing a custom word2vec model from the dataset the pretrained GloVe model of
300-dimensional vectors (biggest available) was used. As mentioned already the
GloVe models are pretrained on immense amount of text and map around 400
000 english words. Dimensions in these models indicate complexity and accuracy
of the final model (bigger = better). A custom method for topic extraction of
each review was then assembled. This method takes most frequent words from
the review, translates the words to the vectors based on the GloVe model and
finally determines final topic vector based on the average of the cumulative value
of those words. Each word vector is weighted by the frequency of the occurrence
within the review. The final topic of a review is therefore defined as average
vector (word) of most frequent words within the review with the frequency of
each word being accounted for.

Fig. 7. Dataset - topic vector (topicV)

It seems fair to mention here that initially the topic feature had dimensions of
the GloVe model (300 dimensions) creating uneven balance in feature set with
other features (300 + 7[eventually]). This issue was resolved by reducing the
dimensionality of the topic vectors to just two using dimensionality reduction
algorithm.

Exploring emotion detection in textual data.. 25

An experimental measure of the topic distribution across the whole dataset
was performed by affinity propagation clustering algorithm. This algorithm al-
lows for clustering without number of clusters being predefined. Affinity prop-
agation therefore, gives a glance of the distribution of topics of the reviews for
purely experimental purposes. The results were not very interesting, showing
great number of clusters. The separation of data based on topic can be only
indicated by t-SNE visualization of the distribution.

Fig. 8. t-SNE visualization of topic vectors

4.3 Sentiment feature

Sentiment can be extracted using almost any NLP library out there. The differ-
ences in terms of results are usually minimal. However, these methods usually
requires training and therefore, for the time management purposes, the lexical
and rule based approaches were researched instead. One idea was to use NRC
lexicon for sentiment analysis. When researching the possible options a less fa-
mous library for sentiment analysis was found on GitHub called Vader (Valence
Aware Dictionary and sEntiment Reasoner). This sentiment analysis library is
based on lexicons and syntactic rules (rule-based) that allows for sentiment ex-
traction specifically designed for social media originated textual data. In the
earlier phase this project development the dataset used was different than the
IMDB that was eventually decided to be used. Therefore, the Vader sentiment
was considered and tested with impressive results vastly because Vader consid-
ers punctuation, emoticons and some slangs resulting in better judgement than
many famous sentiment analysis toolkits. Once the IMDB review dataset was
chosen the sentiment feature extraction method was reconsidered but its per-
formance was still comparable to the conventional methods (70% success rate)
and outperformed the pure lexicon based approach using NRC lexicon.

26 O. Spetko, A. Lunterova et al.

Fig. 9. Statistical comparison of valence rating accuracy using NRC-VAD lexicon and
Vader

Fig. 10. Comparison of valence distribution using NRC-VAD lexicon (left) and Vader
(right)

The sentiment of a review was performed on the dataset of unprocessed
(original) dataset of IMDB reviews. When deciding the level on which the Vader
should operate (sentence or text as whole) it was decided to go with top level
(text as whole) as the results shown despite the lower accuracy (-3% compared
to sentence level), the distribution seemed more defined.

The precise testing of the success rate was possible thanks to the labeled
data of the IMDB dataset used for this project. The Vader library was chosen
to extract the sentiment values for each review and the values were added to the
dataset.

4.4 Subjectivity feature

To complete the set of conventional features of NLP (topic, sentiment, subjec-
tivity) the subjectivity was added to the feature set of the dataset. The library
used for this operation was TextBlob thanks to its convenient implementation.

Exploring emotion detection in textual data.. 27

The subjectivity was rated on the sentence level as the distribution of values
appeared better as opposed to the top level (text as whole). Dataset used for
the subjectivity was also original (unprocessed) dataset of IMDB reviews that
was used in sentiment extraction phase. The distribution of subjectivity values
resulting from TextBlobs subjectivity extraction method was displayed as the
original t-SNE visualization of topics ordered by the subjectivity of the data
points (X axis).

Fig. 11. t-SNE map of topic vectors of IMBD reviews ordered by subjectivity values
(X-axis)

When comparing the t-SNE visualizations of features (without and with sub-
jectivity feature) the subjectivity brings visible separation.

Fig. 12. Comparison of t-SNE visualizations of features of valence and topic with
(right) and without (left) subjectivity feature included

28 O. Spetko, A. Lunterova et al.

4.5 Arousal feature

In order to implement circumplex of emotions model for emotion mapping the
arousal was assumed by using NRC lexicon of valence, arousal and dominance
(VAD). When exploring the resulting values the weak spread of arousal was
indicated by means of a visual plot.

Fig. 13. Plot of IMDB reviews in space of valence(X) and arousal(Y) where arousal is
extracted from every token (word)

To enhance this spread a method of frequent-token (word) selection (previ-
ously used for topic modelling) was used. This selective representation of each
review shown much better spread of the arousal values across the dataset.

Exploring emotion detection in textual data.. 29

Fig. 14. Plot of IMDB reviews in space of valence(X) and arousal(Y) where arousal is
extracted from only top 5 of the most frequent tokens (words)

4.6 Image scraping for entropy and color features

Originally inspired by a github work of Nelson-Liu [35] the web scraper was build
to search Yahoo image results based on an input phrase and extract dominant
colors and entropy of the images. Entropy is feature that represents informative
potential of a data including picture pixels [69]. Google search engine would be
preferred thanks to its robustness and popularity but since Google requires paid
API for scraping the Bing and Yahoo needed to considered instead. Comparing
the two Yahoo provides bigger database of pictures and resulting images from
Yahoo were experimentally more accurate than those from Bing in terms of
relevancy to the searched phrase. The scraper was set to gather only top 5
resulting images as consequence of high cost in terms of computational power
discovered later on. Images that the scraper returns were rescaled and combined
into one picture for more effective color clustering. The original images were
preserved and used for entropy calculation extraction.

The dominant color extraction works as set of k-means clusterings. First k-
means clustering is performed on the combined image retrieving 5 main colors
(clusters) including gray scale results. These main colors are then filtered, ex-
cluding gray scale results using standard deviation threshold filtering performed
on the color channels of each of the 5 main colors. If the phrase of the scraping
returns no colors or only grayscale results, the resulting color for that phrase
will be black. Entropy is implemented using sklearn.metrics library for entropy.
The entropy is calculated as average of entropies of all images obtained from the
scraping. The entropy for each image is performed on the grayscale version of
the image.

The process of phrase selection from the text is done using library TextBlob
that has functionality to isolate phrases that revolves around a noun (noun-

30 O. Spetko, A. Lunterova et al.

phrases). The noun phrase is expected to provide potential center of focus (noun)
around which the shaping words are located (adjectives etc.) [84]. This structure
of phrases should enhance and define the informative value of the selection and
therefore improve the scraping results of the searching engine.

Resulting values of the image scraping method are entropy and color features
where color is represented by three color channels of hue, saturation and value
in HSV color system.

4.7 Feature selection and evaluation

Having wider range of features: topic, sentiment, arousal, subjectivity, entropy
and h, s, v channels defining each review, the big task at this point was to observe
and evaluate the correlations and behavior of the features.

For each feature selection (combination of features) the 4 steps of observation
were performed as follows. First the statistics and clustering was performed on
the dataset (of the selected features). Then came dimensional reduction of the
dataset using PCA and t-SNE followed by comparison of the t-SNE and PCA
in terms of clustering potential using Gaussian Mixture and K-means clustering
algorithm. And finally visualization of the population density and distribution
of the data points in the t-SNE and PCA visualizations.

5 Design and implementation of visualization phase

The following chapter describes and explains the design choices for the final
affective visualizations. It is divided into smaller parts, starting with specifying
design requirements, then metadata characteristics, chosen initial shape, choice
of initial generative algorithm, mapping choices for visual attributes, and then
examples of resulting visuals and description of the iteration process. Aim is to
provide an overview on the process leading to the resulting images.

5.1 Design requirements

The methods chapter has defined the methodology for evaluating the final visual
in terms of the prospective measurements. The specific design requirements of the
visualization are defined as follows, based on the analysis and methods chapter.
Additionally, necessary mid-stones in between the requirements derived from the
analysis were chosen, and their rational will be explained later on.

– specific data characteristics of the metadata from analyzed reviews needs to
be chosen, and prioritized upon their informativeness about the reviews

– the design needs to feature abstraction of this characteristics
– the approximate shape and style of the visual needs to be chosen
– the visual should be of non-specific continuity and have an open interpretive

form

Exploring emotion detection in textual data.. 31

– the abstracted characteristic needs to be communicatively mapped onto basic
visual elements of the shape, while taking into account the hierarchy of
perception

– the appropriate algorithm should define the interactions and transformation
of the elements, based on the mapping principles

– the resulting images needs to communicate the mapped metaphors suffi-
ciently, while keeping the effective complexity

5.2 Metadata

The obtained metadata from the processing phase were in form of an csv files
of 150 values with 11 dimensions. For each movie there was one file with the
resulting data describing the 150 reviews. Which different movies to analyze was
decided, and they were picked by hand. The aim was to represent movies from
different genres, at least 2 from same genre, with different ratings and preferably
from different origins. This was to have various samples for analysis, that would
result in more different visuals, although whether the genre, rating or origin of
the movie would have impact on the results of the analysis was only supposed.
The dimensions of the data values, as mentioned in the processing phase, were:
t-SNE map x,y position in the 2D map, word2vec x,y positions, value of valence
and arousal, entropy features, and mean values for saturation, hue and value of
the assigned color. The decision was to continue using only some of them, and
those were the t-SNE x,y position, valence and arousal. This was in order to keep
only the most informative features of the dataset by considering what is most
essential about the reviews to the audience and taking inspiration from the state
of the art work on movie reviews analysis. To further understand the values such
as the standard deviation and mean for the valence and arousal simple statis-
tics were applied for further analysis through Python, using statistical library
numPy. Additionally the t-SNE points were visualized to see their distribution,
and clustering algorithm DBSCAN was applied to cluster similar points in the
map together. This gave an understanding of the diversity of clusters for differ-
ent movies, their size, number of points, and mean. For the valence and arousal
(the mood from negative to positive, and the intensity of the emotion) the deci-
sion was to communicate one value for each movie. Therefore mean valence and
arousal was calculated, which resulted in normalizing the values of arousal, and
being around 0 for all the movies. However, since the standard deviation was
also low and there were only few outliers with extreme values, the mean value
was considered as representative. While the need to prioritize minimum num-
ber of communicated characteristics, this at the end resulted in not using the
arousal value in the visual. Valence, number of clusters, number of noise points,
cluster size and mean were considered as the essential values to communicate.
The figure below shows comparison of the DBSCAN clusters of t-SNE points for
3 different movies (Bruno(2017), Life of Pi(2012) and Free Solo(2018)).

32 O. Spetko, A. Lunterova et al.

Fig. 15. Results of clustering on the reviews t-SNE map

The mean value of valence ranging from negative to positive was positive for
most of the movies, even the ones with low ratings, however the range of the
values was much higher and therefore considered as representative characteristic
of the overall sentiment of the reviews. The diversity of clusters represents the
the diversity of reviews, some with more similar characteristics than others, and
some with diverse opinions resulting in a map of only noise points. The values of
word2vec, entropy, or HSV values were not considered as very informative about
the reviews, while they were already included in the dimensionality reduction
process of the t-SNE algorithm.

5.3 Visual form

Although the metadata values, such as the mean valence, number of clusters,
clusters mean and size will be somewhat shaping the form of the visual, initial
form and style of the visual needs to be chosen. Inspiration was taken from
the TV color test signal circle, and TV noise lines. Although other shapes were
considered, the minimalist circular shape with horizontal lines was preferred for
its simplicity and commonly perceived mildness and neutrality of the circular
shape. The figure below shows the noise lines, color test circle, and the abstracted
final form of the visual before applying the algorithm.

Fig. 16. The inspiration for the initial visual form

Although more variables could be an option and perhaps more reasonable
style exists, the resulted shape achieved the desired simplicity. The purpose was
to make the transformations and interactions of the line be the main attention

Exploring emotion detection in textual data.. 33

catching features and not its form or colors. The result of the experimental
visualization should be aesthetic and non-narrative, so that the audience need
to interpret the work themselves and make their own meaning out of it. This
refers to the requirement of the non-specific continuity.

5.4 Generative algorithms

Mainly two generative algorithms, Perlin noise, and Attractors were tested and
used. The algorithms for experimentations were chosen based on their interest-
ingness, and ability to use multiple values that would influence their effect on
the shape.

Perlin noise is a gradient type of noise, meaning the output values are chang-
ing gradually, with less randomness compared to the traditional random func-
tion. It is commonly used to achieve less machine like look, (as its developer Ken
Perlin said), such as for procedural terrain, fire effects, water or clouds applying
texture or shaping environment in the fields of games or other visual media.

Attractors is more complex algorithm, refined for processing by generative
design community[3], that works as virtual magnets. They can be considered
as points in shape, that either attract or repel other objects in shape of nodes.
Each time the program is run, they have some effect on the environment what
makes them time based. Effect of attractors resembles stretching of a fabric, or
pattern creation, depending on the strength applied, attractors position, and
other factors. Further explanation of an attractor class and its functions will be
in the implementation chapter.

Firstly, the Perlin noise was added to the height of the line splitted into
nodes, which resulted in curves, going from the left to the right side of the circle.
Another values were added to the y position, which resulted in creating certain
pattern that was followed by all the lines. By adjusting noise range and range of
values added to the function calculating the final y position, different complexity
and noisiness of the visual was achieved. An example of the Perlin noise curves
applied on the initial form can be seen on two figures below.

34 O. Spetko, A. Lunterova et al.

Fig. 17. Perlin noise based visual example 1

Fig. 18. Perlin noise based visual example 2

Although there were more variables to control such as number of lines, the
noise of the circle radius or the colors, apart of the noisiness other variables such
as position of the noise and its variance were not found to be controllable. This
resulted in very random shapes, with little in common. This would make it more
difficult to make communicative changes on the shape.

Attractors were more easy to be shaped, with functions as strength, ramp,
radius, and direction. There are various ways to work with attractors, and effects

Exploring emotion detection in textual data.. 35

range from different kinds of stretching, repulsing and visually creating holes,
twirling, etc. Twirling was decided as the only effect to maintain unity across
visuals. Different types of twirling can be achieved, depending on the passed
values to the functions. The example of range of effects for twirling can be seen
on figure below.

Fig. 19. The range of effects for different values of ramp and strength

On the pictures there is only one attractor in the middle, and is creating
an effect for the time of approximately 3 seconds. The values changed are for
the ramp function in the first six upper pictures, and with different strength
value in the lower three pictures. Additionally radius affects the radius of the
attractors effect, and by choosing negative values for strength, the direction of
the twirl is changing. To experiment with the algorithm and see how it affects the
overall shape, the initial position for the attractor was following the position of
the mouse. The resulted images from the experimentation were expressive, with
having quite distinct affect, and the decision was to continue with the attractors
as the main algorithm.

5.5 Mapping

The chosen values from the metadata, valence, number of clusters and their
mean and size, needed to be translated into metaphors, that would communi-
cate their value in a meaningful way. Taking inspiration from the art assessment
tool, and commonly mentioned qualities of data, following characteristics were
chosen: random, diverse, separate, noisy. Additionally, the word positiveness
was added for communicating the valence. All five characteristics, with their

36 O. Spetko, A. Lunterova et al.

antonyms added to the opposite side of the scale, creates large range of possibil-
ities for the data expressiveness, such as positive,structured, uniform, separate
and noisy, etc. While the valence has its own characteristic translated into the
mood because it is the main communicated value, the other metaphors are for
the representation of the clusters characteristics.

For visually encoding the data metaphors, the hierarchy of elementary per-
ceptual tasks was followed as a rule for assigning most relevant form that would
visualise the characteristics by their importance[6]. On the figure 20 the accuracy
of how precisely we are able to perceive different visual attributes is shown.

Fig. 20. Hierarchy of elementary perceptual tasks

Position on the axes has the highest accuracy, length of line second, orienta-
tion of the line or object as third, then area of the shape, next is the 3D volume
of the shape, and finally the color or the texture indicators. This suggests how
to choose the correct attributes by their importance in being perceived. Before
choosing how each metaphor will be mapped, the visual elements of the chosen
shape were defined (figure below).

Exploring emotion detection in textual data.. 37

Fig. 21. Visual elements of the shape

Firstly, to get a better understanding of the look of the main elements, the
position of the twirl was linked to the position of the attractors. The attractors
had the positions of the cluster mean, and radius depending on the size of the
cluster. This created direct translation of the clusters onto the shape. Number of
attractors was depending on the number of clusters. Noisiness of the line spacing
refers to uniformness of the circle radius. On the picture the circle radius is
smooth, and below is the explanatory picture for noisy circle radius (figure 22).

Fig. 22. Noisy circle radius

38 O. Spetko, A. Lunterova et al.

It is important to remind that the horizontal lines are connecting dots de-
scribing a circle. If the circle radius is noisy, the lines are going to start and finish
at more random positions in the circle. Noisiness of the circle was translated to
the metaphor of noise. Next attribute is the curvature of the line, which can
be straight, curvy and angular. While straight is the passive form of the initial
shape, curvyness and angularity refers to the line after it is being transformed
by the attractors. This is partially achieved by the ramp function, and refers to
the mood, as the rounded objects are generally perceived as positive and an-
gular as more rough. Additionally the ramp function in negative values creates
an effect of hole, which adds to the perceived disturbance. Direction on twirl
was decided to be changing during the effect, and different effects were explored.
When changing only once, more expressive and more affected by change results
would be obtained, while often changing the direction of the twirl would lower
the effect of transformation. The decision was to keep the change in twirl at
random times and number of changes would be based on the number of clusters.
More clusters would create effect of less visible transformation, which is in par-
allel with the perception of less strong cluster of opinions. Length of deformation
was also decided to be linked to the number of clusters. The more clusters, the
lower the effect of the destruction since the low radius, but the longer time would
the effect last, more noticeable but smaller effects would be created. Strength
of the effect was chosen to be same for all visuals, since it would only lower
the speed by which the effects are happening, yet longer time frame with low
strength creates same effect as short time frame with strong strength applied.

Additionally the valence was mapped into a colour range from pink to dark
blue, resulting in three coloured lines, that would be placed accordingly on the
visual. For high valence and this positiveness, the lines would be in the upper
part of the circle. This was to support the communicativeness of the valence
value, and make it more precise by adding the direct metaphor of scale from up
do down.

This chapter provided an overview on how the metadata were mapped into
the visual. It needs to be noted, there is yet too little research on the perception
of the specific elements. While there is still large space for experimentations,
various assumptions were tested only by intuition and trying out the different
mapping combinations and their resulting visual . The accuracy of the chosen
results will be evaluated during the experiment.

5.6 Results

After mapping of the values into the algorithm and the shape, for each movie
various visuals were created to evaluate their randomness, similarity of com-
municativeness and aesthetics. Multiple movie signatures were compared, the
mapping and the range of values updated during various iterations until the
desired result was obtained. Below are the initial more expressive visuals.

Exploring emotion detection in textual data.. 39

Fig. 23. Results with more expressive forms

To be less expressive, the time length of drawing and changes to the strength
were applied. This resulted in more neutral but with still defined characteristics,
as can be seen on final picture below. The picture shows comparison of two
visuals for the same movie, with positive mood on the top and negative on the
bottom.

Fig. 24. Final visuals for movies Wrinkle In Time (2018), and Toy Story (1995)

After the adjustment, the differences in the final drawings for the same movie
were more distinct. Movies with negative mean valence would be more disturbed
and edgy, and positive ones more curvy. Reviews with many clusters would have
many smaller area disturbances, and noisiness would be visible on the imprecise
line ordering and more spreaded effects across the shape. On the example above,
the Wrinkle In Time had only 8 points (from 150 total) of noise and two bigger
and two smaller clusters, while Toy Story had 66 points of noise and five small
groups. The complete list of all visuals for 20 movies, together with the name of
the movie and mapped results from the clustering of t-SNE points, can be found
in the appendix A1.

40 O. Spetko, A. Lunterova et al.

6 Implementation of the visualization phase

The implementation and design were done in parallel, since the ideas needed to
be tested, to see the results visually and iterate over while applying changes.
Also the programming skills needed to be updated, so every idea needed to be
tried out to see if and how it can be accomplished. This chapter will explain
the tools used, with main focus to explain the parts of the drawing code of the
visuals, and how it works. For the implementation decision was to go with the
tools and languages that are well supported with large community, to ensure
easier problem solving and faster learning and implementation.

6.1 Data analysis and formatting

The entire data analysis of the metadata from the processing phase, was written
in Python language and executed in Jupyter Notebook environment. Scikit and
NumPy libraries were used for the clustering, by using the DBSCAN machine
learning algorithm. DBSCAN, or Density-based spatial clustering of applica-
tions with noise, is one of the most common clustering algorithms. It is a non-
parametric algorithm, that takes a set of points in space and groups together
points with many nearby neighbors and marks as outliers (noise) points that
are in a low-density regions, with nearest neighbours too far. As input it takes
the array of points, parameters of epsilon, (eps) which is the maximum distance
between two points to be considered as neighbours, also called local radius for
expanding clusters, and number of minimum samples (min sample) which is the
total weight, (number of samples) in a neighborhood for a point to be considered
as a core point. From the NumPy library, only the mean and standard deviation
functions were used. For each movie, the exported file included the number of
clusters, their size and their mean, and screenshot of the clusters. The mean and
standard deviation was calculated again in the code, so it was not necessary to
export. Output formatting was in a form of a csv file.

6.2 Drawing the visual

As mentioned in analysis, Processing was chosen for its simple environment con-
sisting of setup and draw function. Before the setup function only the variables
are defined, and then in setup the before drawing needed functions are called
and definitions such as the size of the canvas and its colour are defined. Before
loading the file with data values, the shape needed to be drawn and functions
created. The figure belows shows the functions called in the setup function.

Exploring emotion detection in textual data.. 41

Fig. 25. The setup functions inside setup

To briefly explain, the makepoints function calculates the coordinates of each
point for the right and left side of the circle and stores them in an array. The
idea was to have them created around particular circle radius with added noise
value to create less perfect circle. To achieve that, the nodes x and y positions
were calculated based on the noise value of the circle radius, by using sinus and
cosinus of the angle, the angle and radius. The sortMe functions was created
to sort the points from the created array (for both left and right side) based
on their y value. The initgrid function is creating the grid of nodes. Each node
is an object with x and y value, stored in a list array. The nodes were created
on the line connecting left points with the right points, where after each pixel
on the line one node is created. The number of nodes for a line depends on its
length. Since later on the decision was to make some line different color, this
was achieved by having arraylist of all the nodes in an arraylist of all the lines.
Once this was done, the only thing was to connect all the nodes on one line by
drawing a line between them. This resulted in the initial shape consisting of a
circle with pure horizontal lines, without the added attractors and data. The
loaddata function loads the data and calculated the valence and arousal mean
and standard deviation, from which at the end only valence mean was used. Last
function called in setup, setupClusterPoint setups the data about the clusters,
to be later on assigned as number of attractors, attractors position and radius.

6.3 Applying the attractors

Attractor class has 5 variables, x and y position of the attractor, strength ramp
and radius value. It has one function, called attract, which takes the node ob-
ject (which has only x,y position) and apply changes to its velocity values, and
thus changing its position. The force of the attractor depends on the distance
between the node and the attractor. Below on the figure 26 the attract function
calculating the force is shown.

42 O. Spetko, A. Lunterova et al.

Fig. 26. The attractor function calculating the force

The attractor function for calculating the force was setup with a help of
the book Generative Design[3], where one section is dedicated to attractors.
Attractor objects are also initiated in the setup at the end, with their initial
position, strength, radius and ramp value. At the next phase, the draw function,
is calling the attractor over and over with different values, changing the values
of nodes that are drawn as lines, and thus changing the visual in real time. Each
cycle results in slightly different visual, and it is changing gradually, resulting as
an animation. However, this would result in few static attractors, depending on
the number of clusters and their position. To add more interesting and gradual
effects of the attractors, movement was needed, such as in the case when the
attractors were following the mouse position. This was done by adding random
walk, which is a walk based on the Perlin Noise, that would be around the
attractors original position, respectively the clusters position. This was done by
iterating through the clusters original positions, and adding the noise in both
positive and negative values, and different value for x and y, to move the position
around the main cluster. As a resulting code, that can be seen as a whole in the
appendix A4, the initial attractors are the clusters points, and then for each
cycle, the position of attractor is iterating through the nodes and through their
added noise. Additionally, the range of added noise was linked to the number
of noise points, to create more randomized look when high noisiness of data.
After the new lines connecting changed nodes, there is a condition for recording,
saving the frames at certain times, and condition to stop the loop when the time
runs off. This briefly summarizes how the attractors works, and how the visual
is drawn.

Lastly, the mapping of the data values is happening in the setup. Processing
map function works perfectly for that, as it takes 5 floats, first is the value that

Exploring emotion detection in textual data.. 43

is being mapped, then is the initial range where the value belong, and then is the
range values for the output. The loaded data were just passed through the map
function. Additionally the clusters position needed to be mapped from cartesian
to polar coordinates, since the initial t-SNE map is a square, whereas the map
on the circle is a circle. This was done by calculating the angle and the radius
from the original x and y, then the size of the radius was decreased, and the x
and y coordinates were recalculated. However, since this resulted in the same
effect as reducing mapping values to be all inside a square described by the circle,
at the end in regards of simplifying the code only the mapping was used. This
issue could be solved differently, by changing the values of radius accordingly to
their position. The values in the corners would have the radius more decreased
as compared to the values more in the center. However because of a lack of time
resources, this could not be prioritized and only noted for future investigations.

This chapter summarized the creation process of the visual representations.
Although there were aspects that could be further looked into, such experiment-
ing with the metaphors mapping more or more precise mapping of the clusters,
the results were considered meeting the minimum design requirements. The next
phase consisted of evaluating the solution.

7 Evaluation of NLP phase

7.1 All features

As the first part of the evaluation all of the features were selected.

The correlation shows very little connection between the features which is
good indicator meaning the features are unique.

Fig. 27. Heatmap of the correlation values of the features

44 O. Spetko, A. Lunterova et al.

Basic statistics show that value distribution of features of entropy and hue
are tilted on a side (high/low mean).

Fig. 28. Mean, Variance and Standard deviation of the features

The case of low mean for hue could be caused by filtering out gray scale
results. Very high mean for entropy could be caused by noisy data thanks to
the way the entropy is calculated. The minimum value of entropy is not 0 but
negative number which created big gap that cause uneven distribution and the
subsequent rescaling (for purpose of even feature value scales) will preserve the
problem. Another noticeable outlier is high standard deviation of valence (senti-
ment). This can be caused by binary-like distribution of sentiment values thanks
to nature of the IMDB sentiment dataset. The dataset is specifically built to dis-
tinguish the sentiment poles (negative, positive) and therefore the distribution
of the valence values are expected to be almost binary. Since the labels on the
dataset sentiment are binary this theory is not verifiable.

The Silhouette score performed on the raw feature set indicate ideal cluster
range within 3 to 5 clusters. These scores are still very low meaning that the
identity of the clusters is not very noticable.

Exploring emotion detection in textual data.. 45

Fig. 29. Silhouette score of the clustering on raw feature set (red) and dimensionally
reduced feature set (blue, green)

When visualizing the feature set with t-SNE and PCA we can instantly notice
that the color feature is systematically distributed (color of data points = color
feature) and clusters are clearly separated.

Fig. 30. PCA and t-SNE (left to right respectively) visualizations of complete (all)
feature set

Further clustering analysis performed on these visualizations confirms the
clear visual separation of data points both visually (Figure 31) and reflected in
terms of Silhouette score (Firgure 29). Suggested number of clusters match the
initial predictions and the visualizations allowed for more confident Silhouette
scores indicating stronger identities of the separation clusters.

46 O. Spetko, A. Lunterova et al.

Fig. 31. Silhouette scores of clustering and respective visualizations using Gaussian
Mixture on t-SNE (top left) and PCA (top right) and using K-means on t-SNE (bottom
left) and PCA (bottom right)

Finally the density distribution in clusters shows that the density of data is
relatively evenly distributed in both PCA and t-SNE.

Fig. 32. Probability distribution function of PCA and t-SNE (left to right respec-
tively) performed on complete feature set using K-means algorithm with 5 clusters for
clustering

From the evaluation of the selection of all features available it can be ob-
served that the separation is well defined indicating the importance of the fea-
tures. However, when looking at the explained variance ratio for PCA reduction
operation of these features, it is clear that topic (0,1) feature has substantially
higher importance than other features.

Exploring emotion detection in textual data.. 47

Fig. 33. Explained variance ratio of PCA performed on complete feature set

From the same PCA variance ratio we can also see that image scraping is
ranked to be not that important in the visualization. The color feature is clearly
influencing the results despite the low variance ratio shown from PCA.

When further inspecting image scraping features of entropy and HSV color
channels, it was shown that feature of color value (V) is not very informative
compared to other features and was decided to exclude it from further observa-
tions.

Fig. 34. Explained variance ratio of PCA performed on features of color channels (H,
S, V)

7.2 No image scraping features

In order to explore the informative potential of the scraping features, as was
initial purpose of this project, the scraping features were excluded from the

48 O. Spetko, A. Lunterova et al.

feature selection and the visualizations and observations were repeated in the
similar manner.

From the PCA and t-SNE visualizations it is obvious that the color separation
of the visualizations is not present anymore.

Fig. 35. t-SNE and PCA visualization of the complete feature set without image scrap-
ing features of entropy, h, s and v

The visualization of t-SNE also take upon more diverse separation at cost of
lower definition. PCA explained variance ratio also shown the weakest feature in
this feature selection being subjectivity which would be possible to conclude from
the previous feature-selection measures as well. The information obtained from
the observation of this feature selection appear to support the strong influence
of image scraping color that was excluded from this selection.

7.3 Valence, arousal, subjectivity features

So far we observed full feature set and compared it to the absence of the scraping
features which provided us clues that the scraping in fact has a dramatic impact
on the data separation.

Next step in the exploration of the feature set was observing the isolated be-
havior of valence, arousal and subjectivity. In this feature selection the expected
dominant feature in terms of variance ratio value was sentiment (valence) thanks
to its more separated (binary like) distribution of values as opposed to subjec-
tivity and arousal that are relatively normally distributed. From the observed
results this expectation is obvious from the values of variance ratio for PCA
performed on this feature selection.

Exploring emotion detection in textual data.. 49

Fig. 36. Explained variance ratio of PCA performed on features of valence, arousal
and subjectivity

Compared to previous feature selection (no scraping) where the topic feature
was present, the visualization of this selection shows even less diversity which
was expected thanks to reduction in features.

Fig. 37. t-SNE and PCA visualizations of feature set of valence, arousal and subjec-
tivity

7.4 No topic feature

The next selection tries to explore the distribution data without features of topic.
As mentioned earlier the value (V) was excluded from the image processing
features.

The initial clustering analysis on the raw feature set for this selection shows
that the separation of data is less diverse (fewer visual clusters) with similar

50 O. Spetko, A. Lunterova et al.

definition compared to the complete feature set (all feature selection). This could
be explained by exclusion of topic and absence of value-of-color (V) feature.

Fig. 38. Plot of silhouette score for feature selection of complete feature set without
topic features

Density distribution of the data points in the both t-SNE and PCA map
appears to be even with one or two dominating clusters in terms of density.

Fig. 39. t-SNE and PCA visualizations of complete feature set without topic features

7.5 Topic and image scraping features

The initial clustering measures indicate that this selection has less defined sepa-
ration of data points indicated by less radical fallout of the silhouette scores as

Exploring emotion detection in textual data.. 51

the number of clusters increase and overall smoother appearance of the silhouette
score curves.

Fig. 40. Plot of silhouette scores for feature set of image scraping and topic

This suggestion is proved in the t-SNE visual map as well.

Fig. 41. t-SNE and PCA visualizations of feature set of image scraping and topic

On the other hand the loss of definition is traded for gain in diversity indi-
cating more variance in topic features compared to previous selection of valence,
arousal and subjectivity. This fact can be observed in the variance ratio of fea-
tures from the first feature selection (complete feature set). Similarly to the
previous selection of features the PCA map preserves pretty defined separation.
However, the density distribution is inclined towards one cluster more than oth-

52 O. Spetko, A. Lunterova et al.

ers in a very significant manner. This uneven density distribution of PCA map
can be also observed in the probability distribution map as well.

Fig. 42. Visualization of probability distribution function of t-SNE and PCA (respec-
tively) performed on feature set of image scraping and topic using K-means clustering
with 6 and 5 clusters (respectively)

8 Evaluation of visualization phase

Based on the final problem statement following null hypothesis was chosen:
H0: The affective visualization of mapped data values does not communicate

the data characteristics.
The aim of the evaluation chapter is to use the defined methods and outline

an experiment that will seek to reject the above hypotheses. Although there is
only one experimental group, the idea of using the null hypothesis is to have
clearly stated sentence of the opposite of the aim of the experiment, that could
be refused using the combination of the measured results.

The previously defined measured variables were the communicativeness of
the visual, and the effectiveness of the algorithm. The communicativeness is
divided into communicativeness of the valence, and the communicativeness of
the metaphors.

Valence : For measuring the communicatived of the perceived valence, a likert
scale question from 1-9, negative to positive, will be given, asking about the
perceived mood of the visual. This will be compared with the original valence
value, mapped into the scale from 1-9. Measurements will include: Precision -
how far from the real value the assigned value was. Correct overall mood - how
many from the total number of movies were assigned correct for the positive
ones, and how were assigned correct for the negative movies.

Metaphors : Metaphors can be divided into two kinds. Four of them were con-
nected to the data qualities (random, diverse, separate, noisy) and the rest (har-
monious, deep, calm, simple, loose, cold, strong, movement) were connected to

Exploring emotion detection in textual data.. 53

the visual perception of the artwork, and taken from the art attributes assess-
ment questionnaire from the background research. This was to evaluate the con-
sistency in perception between people.

For the measurements, each metaphor and its antonym (e.g. deep vs flat,
harmonious vs dissonant, etc.) will be given, and the task will be to choose the
appropriate word that the participant would use to characterize the visual.

– Data qualities. For the data qualities Krippendorff’s alpha (coefficient be-
tween 0-1) will be calculated, answering for how many visuals right answer
was chosen

– Visual qualities. How much in agreement are the chosen perceived qualities
of the visual between the participants.

Additionally, qualitative data in form of keywords that the participant would
assign to the visuals will be asked and then compared. This is to approximately
compare the consistency in perception when translated freely into words, com-
pared to the consistency when the specific words are given. Although this ques-
tion might result in quite large range of different words that might be hardly
compared as intended, this question also served as an investigative question of
how people assign words cognitively to the perceived visuals.

Apart of the overall communicativeness, the second defined measurement
was the effectiveness of the created generative art tool. This will be evaluated
by asking people to pair the visualized movie with its pair, in a form of another
visual, and the correctness of answers will be measured. This is to see if people
could guess which visual describes the reviews of the same movie, where the
value will inform about the scale of the algorithms effective complexity.

Starting from the final problem statement, this part of the evaluation chapter
served for further defining the aimed outcomes of the experiment. In the next
chapter, the experiment procedure will be described.

8.1 Experiment procedure

The testing was in a form of an online questionnaire, shared on the social media,
mainly through testing groups on Facebook. This allowed to have higher number
of participants in a shorter time. Although five experiments were done also in
person as a pre-test evaluations, the rest of the participants went through the
experiment online. Total number of 79 participants filled the questionnaire. The
questionnaire was created as an interactive website, with the answers linked to
the google form. The complete questionnaire can be found in the appendix A2.
The test consisted of 8 questions together. After the introduction, first question
was the pairing exercise, to get people accustomed to how the different visuals
might look like. The participant was asked to assign the most similar visual from
the six pictures. This question was asked twice for different visual. Next part
consisted of looking at a specific picture, and answering three questions related
to it. First question was regarding the perceived mood, and the second one was
an open question, to assign which first words comes to the mind describing the

54 O. Spetko, A. Lunterova et al.

visual. The third question consisted of the twelve metaphors and their antonyms,
and the task was to choose which characteristics belongs to the visual. The
complete list of characteristics can be seen on the figure below.

Fig. 43. List of possible characteristics to choose from to describe the visual

The same three questions were repeated for another visual. Doubling the
number of same questions allowed to get double the number of visuals evaluated.
The given visuals for each participant were randomized, resulting in different
visuals given at each experiment. The total number of visuals equals the number
of visualized movies which is twenty. The movie signature siblings of the visuals
were used only for pairing. After the eight questions, the participant was again
thanked for participating, and as a gift the participant could choose a movie
which he wishes to have visualized and add his email address. To not affect
the results, this was done by surprise and was not shared with the participant
beforehand the experiment.

8.2 Communicativeness results

Results of the visual representation phase were divided into two categories, com-
municativeness and effectiveness of the algorithm. For the communicativeness,
the communicated valence, metaphors and keywords were analyzed separately.
The raw data from the results can be found in appendix A3. The results were
analyzed using Excel and Jupyter Notebook. Since the rating questions were
doubled for each participant, together 158 evaluations of visuals was collected
for the analysis. One participant filled only half of the questionnaire.

Valence. From answers regarding the scale for rating the mood of the visual,
the answers were saved in a number ranging from 0 to 8. This was compared with

Exploring emotion detection in textual data.. 55

the movies original value of valence, which ranged from -1 to 1. The valence val-
ues for each movie was mapped into the scale of 0-8. The difference between the
two values was calculated, and then the mean difference was obtained, which re-
sulted in 1.9 point difference on the scale. Therefore the precision of the assigned
valence and original valence is fluctuating approximately 2 points.

To evaluate how well the overall positiveness and negativeness was mapped,
the results were further divided into two groups- for positive movies and negative
movies. The results showed that 75 were assigned correctly as positive, from the
total number of 135 positive visuals, which is around 57% of correctness. From
the negative visuals 22 out of 22 were assigned right, with 100% correctness. That
is together, 97 out of 157 correct guesses, approximately 62% of respondents
perceived correct value. Interesting to note, there were together 135 positive
visuals, but only 76 visuals were perceived as positive, while 81 visuals were
perceived as negative, although there were only 22 negative visuals altogether.

Metaphors. Metaphors describing the data qualities and visual qualities were
analyzed separately. For all visuals, the correct, or rather the intended quality to
be communicated, was assigned in the table to compare with the obtained values.
All answers were separated by movies, and analyzed separately for each movie
before calculating the overall coefficient. Firstly, the data qualities were analyzed.
For the characteristic of random vs structured, the result is coefficient of 0.57.
This means 57% of answers assigned the aimed communicated characteristic of
random or structured. For diversity vs uniformness, it is coefficient of 0.65, for
unitedness vs separation = 0.54 and finally for smoothness vs noisiness coefficient
of 0.62 was obtained. The total coefficient of success for assigning all four data
qualities is 0.6. The table for the above calculations is on the figure below. The
movies with negative valence are marked as dark red.

Fig. 44. Correct assigned values of data qualities for each movie

56 O. Spetko, A. Lunterova et al.

For the visual qualities, the aim was to measure the correlation between the
obtained answers from the participants. This was done by firstly calculating the
total amount of chosen words for each pair of words, again divided by the movie.
Then percentage of mostly chosen word was obtained, for each pair of words, and
which was the winning word was marked down. The mean percentage of mostly
chosen word for all movies together, and for each pair of words was taken as
the final value. The final value representing the agreement rate from the 8 differ-
ent visual qualities (Harmonious/Dissonant, Deep/Flat, Calm/ Vibrant, Simple/
Complex, Loose/Tight, Cold/ Warm, Strong/Weak, In movement/ Static), was
averaged resulting in coefficient of 0.74, with standard deviation being 0.03. The
final values for agreement of each pair of words, as well as the mostly chosen
column marked as L for left and R for right can be seen on the table below.

Fig. 45. Agreement on visual qualities for each movie. L or R means which column was
the mainly selected one. Left is the first word in the column, and right is the second.
The number is the agreement coefficient, representing how much percentage from the
total the same word was selected.

On the table it can be observed that whereas for some movies the agreement
on particular quality was between all the participants, for some movies the 0.5
value stays for the same amount of answers for both two opposite words.

Keywords. Analysis of the total of 373 assigned words to the visuals was
done by calculating the words density. This was done for all movies together.
The figure below shows the visualization of the mostly used words, describing
the visual.

Exploring emotion detection in textual data.. 57

Fig. 46. The keyword density visualization

8.3 Effectiveness of the algorithm results

The aim of the pairing exercise was to evaluate how many correct movies vi-
suals were assigned. From the total of 158 pairings completed, 78.8% were well
matched and 22.2% of the visuals were mismatched. This informs about the
effective complexity of the algorithm.

8.4 Summary of results

Multiple observations can be noted from the results of evaluations. Firstly, the
measurement of the communicativeness of the visuals mood, which was com-
pared to the original mean valence of the total reviews for each movie will be
summarized. Although the average difference between the assigned value and
original value is 2 points, which is not too high, the standard deviation from
the mean is also 2. This marks quite high variance between the answers correct-
ness. This suggests that the mood was only somewhat communicated. However
from the further investigation of the answers, where they were divided only into
group of positive and negative, more correctly assigned answers were marked,
resulting in 0.57 correctness rate for positive visuals and 1.0 for the negative
visuals, meaning all negative visuals were marked as negative. It is important
to note that the number of negative and positive visuals were not the same.
Since only three analyzed movies had negative valence, and all the visuals were
shown in random order, this resulted in only 22 negative visuals shown from the
total of 157 questionnaires. That means the sample size for the positive visuals

58 O. Spetko, A. Lunterova et al.

and negative visuals is quite unequal. Additionally, since many more answers
were marked as negative than the total number of negative visuals, this shows
that big number of the positive visuals were still perceived as negative, and this
influenced the total coefficient of connectedness of both positive and negative,
which is 0.62. This suggests that the mapping of valence for the visuals might
have been correctly assessed, but adjustment in the range of the ramping needs
to be lowered for the positive visuals, to result in higher number of positively
affected states. This might affect also the overall precision in correctness of vi-
suals mood on the scale, however this adjustment will need to be only part of
the next iteration and evaluation.

Secondly, the communicativeness of the data qualities translated into the vi-
suals metaphors is to be looked into. From the results in the included previous
figure (44) it can be seen that while for some movies the correctness is quite
high, for some is even lower than half of the answers, meaning that the opposite
quality than intended was more chosen. Additionally, some qualities were better
mapped than others. For example diversity vs uniformness, compared to unit-
edness and separation, had much higher success rate of correctly assessed value.
Further investigations are needed into which visuals are generally better at com-
municating the data qualities and which had the lowest ranking, to see if there
is any correlation between their form, and to assess needed calibration perhaps
of both, the algorithm and the representative elements of the visual. This will be
part of the next iteration. For now, the overall rate of correctly assessed words
representing the mapped data quality, 0.6 is considered as quite low. However,
the results from analyzed data answers are still positively affirmative towards
the possibility of the data communication, and although the success rate is low,
the qualities can be considered as partially communicated.

From the evaluation of communicativeness of the visual qualities, more pos-
itive results were obtained. This confirms that the perception of visual qualities
is common among people, and the overall agreement rate is 0.74. However, re-
garding the previous figure (45) from the results chapter, interesting pattern can
be observed, that also for these results, some movies visuals had much higher
agreement rate than others. Further investigation into which movies had higher
and which lower agreement rate needs to be done, to see if there are any corre-
lations. The results from this part of the evaluation affirms that since there are
general patterns in perceiving given visual, the possibility to map the right data
qualities into the visual elements is confirmed, although the process of mapping
needs further research.

From the analyzed keywords, it can be seen that quite various words were
used, with only few repetitions of words such as calm, smooth, chaos, waves,
messy, broken, etc. The words for all movies were analyzed together, since the
answers divided by movies would result in too low number of words for analysis.
From the total of 373 words there was high number of unique words, together
257. The analysis of the keyword density, in comparison to the results of commu-
nicativeness of visual qualities, shows, that although from the suggested words
there are patterns in perceiving the same qualities across visuals, when people

Exploring emotion detection in textual data.. 59

are asked to write their own words to describe the visual, these answers vary
greatly. This can be to numerous of reasons, such as the type of visual attribute
that is more obvious for each person is very different, and other differences in
perceiving visual qualities. However, when particular visual quality would be
asked about, the focus is shifted towards perceiving and evaluating that specific
quality of the picture. This was observed also during the in person observations
of going through the questionnaire, where the participants would scroll up to
re-check the visual and back down to rate the particular visual quality, multiple
times for each quality, suggesting that the remembering of the feeling from the
visual might not be enough. To conclude the keywords analysis, although there
are few more common words, the open questions about the perceived visual
quality yielded very different results compared to the intended visual qualities
that were communicated. This suggests differences in hierarchy of perception
between individuals, and it opens many further questions regarding perception,
such as the difficulty to transcribe feelings into words. To further investigate
this assumptions, as well as re-question the results from the keyword analysis,
analysis using dictionary of synonyms should be done, to see if the amount of
unique clusters of synonymous words would be lower.

To evaluate the effectiveness of the algorithm, the pairing exercise served
as a measurement of effective complexity, (balance between order and chaos),
to see if the visuals for each movie were similar enough to be paired together.
This was to see if the visuals are not too random to be assessed. The results of
78.8 % success rate in matching shows that most visuals are well matched. Low
number of unsuccessful rates might mean various conclusions. Firstly, that there
are few visuals that are difficult to match because of too high similarity and too
little distinction between multiple movies, or that the visuals are too different to
be matched together. After evaluating which movies were less successful to be
paired, it was seen that it was the movies with very similar clusters, see figure
47 below.

60 O. Spetko, A. Lunterova et al.

Fig. 47. The issue of few very similar visualization for the pairing exercise. The picture
shows three different movies visualized twice each. The results of the reviews t-SNE
points clustering on the left shows that this was the issue with the movies that had
only noise and no clusters.

This means that it was rather a problem of having too similar movies in
the analysis, and the similarity was most probably high enough for matching.
However, the evaluation did not include the assessment of whether the results
are not too structured and still different enough. Since this was only guessed
by the authors and then forgotten about during evaluation, this brings a bias
into the results, and the effective complexity can not be properly evaluated from
both sides of the scale. Whether or not more randomness is needed in the visuals
should be investigated further.

Taking into account the findings from the various parts of the experiment,
the results are positive towards the possibility to communicate data character-
istics through an affective visualization, and both for the valence and for the
data qualities, the intended characteristics were somewhat communicated. This
informs about the null hypothesis, and the findings are positive towards rejects
it. Although the success rate varied for different movies, and particularly for
the movies with positive overall valence the success rate was only below 60%,
when considering also findings from the agreement rate of visual qualities, it
seems that higher success rates might be achieved by calibrating the mapping
in the algorithm. Further iterations and evaluations are necessary to test this
assumption, and additional research into mapping needs to be done.

Especially valuable might be to: 1. consider the most common keywords as
the main visual elements for mapping, 2. Use the findings and success rates
from the data and visual qualities questions, which could be used to inform
about the perceived characteristics, and only then connect characteristics to the
specific data qualities, that would be only afterwards used for the mapping in

Exploring emotion detection in textual data.. 61

the algorithm. These two suggestions propose an opposite bottom up approach
to data mapping, starting from the user evaluating the visual example to inform
and test the perception of visual rather then assumings based on the background
research and studies of different visuals. Additionally, testing equal number of
negatively and positively reviewed movies, including only movies with cluster
characteristics distinct enough, and only movies with enough ratings will most
likely bring clearer results.

This concludes the evaluation chapter, the procedure, measurements, results
and summary of the results together with few insights towards the improve-
ments of the next iteration. The final problem statement, which was, How can
characteristics of complex metadata from multivariate analysis of movie reviews
be mapped and communicated through an affective visualization?, was answered
and the tool was evaluated.

9 Discussion

The discussion includes perspectives on the reliability and validity of the overall
process and its phases, together with the needed improvements for the future
perspective.

The analysis provided a better understanding of quite various fields such
as natural language processing algorithms for sentiment and semantic analysis,
visual representation approaches (functional and aesthetic), and their state of
the art techniques, uses and advantages. Additionally, the most closely related
papers from the state of the art were looked into. This had taken the research
from the initial problem statement, focused on enhancing the traditional recom-
mender systems and communicating the emotional qualities of the textual data
towards two different final problem statements. One was focused on bringing
deeper understanding of emotion-content in textual data, and other on com-
municating resulted metadata through an affective visualization. The aim and
preliminary research requirements of each phase were different, and their fields of
interest were not necessarily connected, however the choice was to connect into
two phases of one research, merging two fields and using results of one phase for
another phase. The choice of two separate problem statements influenced the
bandwidth of the whole research and the fields that needed to be considered,
which might have restricted the possible achievable depth of understanding. Yet
it allowed us to combine two distinct phases and their distinct approaches, re-
sulting in a new experimental approach of emotion-content aware textual data
communication, through affection. While looking back at the analysis, and what
could have been improved, would be rather earlier interest in the visual represen-
tation aesthetic approach, since the field of neuroaesthetics and the relationship
between design and cognition needs to be further explored. Even though the
scope of analysis was large, deficit considered as primary was that the time
taken for analysis was longer than planned, resulting in a shorter time for design
iterations.

62 O. Spetko, A. Lunterova et al.

9.1 NLP phase

From the observations of the NLP phase it is apparent that the image scraping
had drastic influence on the organisation of the clustering. This can have good
and bad implications depending on the validity and identity of the informative
value carried by the image processing features.

The image scraping features are extracted using experimental approach and
the informative value (meaning) of the features extracted is not proven nor
tested. It is only assumed that the resulting color and entropy features repre-
senting a review carry some relevant information about the text. The low color
diversity may also indicate that the method of color extraction from the scraped
images is biased or inaccurate. Other explanation of low color diversity could be
present under assumption that the information the color and entropy represent
is relevant. In that case the reviews are simply distributed with low diversity
in the domain of the color and entropy just like the sentiment feature was dis-
tributed (almost binary) in this project. Going into the experimental phase, due
to the tight time frame of the project, the latter was assumed.

Similarly to the image scraping features the lexicon based arousal feature is of
experimental origin and the informative validity (does the feature really describe
arousal of the text) of the feature is not proven nor tested. The relevancy is
however assumed while relying mostly on the informative validity of the NRC-
VAD lexicon that was used to measure the feature.

9.2 Visualization phase

For the design of the visual representation, although clear design requirements
were stated, further investigations of the needs for each requirements would
bring higher reliability. From the summarizing results of the design representa-
tion evaluation, it is suggested that including one smaller test during the design
of metaphors mapping process might have bring more clarity, and increasing the
later success rates of communicativeness. Additionally, because of the lack of
time resources, multiple smaller choices regarding the overall design aesthetics
were based on assumptions and not evaluated from the general publics point
of view. Evaluation of the design tool consisted only of self reported measures
through an online questionnaire and five in-person questionnaires, without any
data source triangulation. Adding further quantitative data gatherings, such as
measuring pupil dilation, or measuring brain activity through MRI could bring
further insights about the focus of the participants during the questionnaire, and
further understand and correlate the effects of the visuals between the people.
Also including qualitative data, in form of semi-structured interviews, focused
on the perception of the visual could be triangulated with the results from the
questionnaire. This opens door into possibly many specific further investigations
of each experimental variable, that were in this research all combined into one
evaluation, which might yielded imprecise and skewed results. For example, com-
parison of different communicativeness strategies with different mapping trials,
between control and multiple experimental groups, would help to better clarify

Exploring emotion detection in textual data.. 63

and evaluate the potential of this approach and the created tool. To conclude,
suggestions for the most important future work regarding affective visual rep-
resentation are: further research into neuroaesthetics, pre-evaluations regarding
visual qualities perception, using multiple experimental groups to evaluate var-
ious types of mapping, include data triangulation, compare the perception of
qualities from the raw textual data and from the visual, changing the amount of
randomness in the algorithm, and more equal sample of movies and rather less
movies. Other investigations of the possibility to communicate data through an
affect intent could be done for different types of high dimensional data. Although
there are many suggestions for further investigations, we believe there is a big
potential in merging the functional and aesthetic approach through generative
art. The goal of mapping specific data qualities, intended to be communicated
in form of feelings through an affective visualization was partially achieved.

10 Conclusion

The aim of the research was to answer two distinct final problem statements: How
can image scraping and arousal lexicon help improve information about emotion-
content in textual data for purpose of recommender systems? and How can char-
acteristics of complex metadata from multivariate analysis of movie reviews be
mapped and communicated through an affective visualization?. The background
research consisting of various fields such as natural language processing algo-
rithms for sentiment and semantic analysis, visual representation approaches
(functional and aesthetic), and their state of the art techniques, uses and ad-
vantages. The design consisted of two separate phases, NLP phase and visual
representation.

10.1 NLP phase

In this phase it was attempted to retrieve experimental features of arousal, en-
tropy and color of textual data that could hold an informative value about
emotional print of the text along with the traditional features of NLP. The ob-
servations supported the significance of the influence of the experimental features
on the dataset but user tests of the informative relevancy of the experimental
features together with further technical adjustments is highly suggested to en-
sure potential practical implementation into recommender systems. It is believed
that this approach could have interesting impact on the current recommender
systems.

10.2 Visualization phase

Results from the processing of textual data of the movie reviews dataset that
was chosen, were then passed into the next phase as metadata. The visualization
phase focused on creation of affective visualizations, where generative algorithms
were taken as a tool for making affective visuals based on data-driven rules. The

64 O. Spetko, A. Lunterova et al.

passed metadata from the previous phase were further analyzed, and specific
data qualities were chosen to be communicated. Those were valence, represent-
ing the overall mood of the reviews for a given movie, and various qualities of
the clusters from the t-SNE point map generated during the first phase. These
data qualities were then mapped into visual elements of the final visualization,
by using generative algorithm, specifically attractors and Perlin noise. 20 dif-
ferent movies were visualized twice, to compare and assess the effective com-
plexity of the artwork. For evaluating the visual form, two aspects were looked
into, its communicativeness of the data and visual qualities, and effectiveness
of the algorithm. The evaluation procedure consisted of an online questionnaire
with 6 questions regarding two of the randomly given visuals for each partici-
pants, and two matching exercises. Total number of 79 participants completed
the questionnaire. Although further investigations into calibrating the mapping
are needed to evaluate whether higher success rates for communicativeness could
be obtained, the results confirmed the opportunity to communicate data char-
acteristics through an affective visualization For both, the valence and for the
data qualities, the intended characteristics were somewhat communicated. This
answers the second final problem statement, and the aim of mapping and commu-
nicating specific data qualities, through an affective visualization was partially
achieved.

We believe there is a big potential in merging the functional and aesthetic
approach, through the use of NLP processing and generative art, such, as inves-
tigated in this paper, for the aim of understanding and communicating textual
data qualities through an affect intend.

Exploring emotion detection in textual data.. 65

APPENDIX A1

Final Visualizations

APPENDIX A2

Evaluation Questionnaire

APPENDIX A3

Evaluation Results

APPENDIX A4

Implementation

APPENDIX B

Image scraper code

APPENDIX C

Entropy code

APPENDIX D

Preprocessing code

APPENDIX E

NLP code

66 O. Spetko, A. Lunterova et al.

References

1. Part of sentence tagging (pos), https://www.nltk.org/book/ch05.html
2. Ahmad, U., Zahid, A., Shoaib, M., AlAmri, A.: Harvis: An integrated social media

content analysis framework for youtube platform. Information Systems 69, 25–39
(2017)

3. Bohnacker, H., Gross, B., Laub, J., Lazzeroni, C.: Generative design: visualize,
program, and create with processing. Princeton Architectural Press (2012)

4. Brown, S., Gao, X., Tisdelle, L., Eickhoff, S.B., Liotti, M.: Naturalizing aesthetics:
brain areas for aesthetic appraisal across sensory modalities. Neuroimage 58(1),
250–258 (2011)

5. Cairo, A.: The Functional Art: An introduction to information graphics and visu-
alization. New Riders (2012)

6. Cairo, A.: The truthful art: Data, charts, and maps for communication. New Riders
(2016)

7. Cawthon, N., Moere, A.V.: Qualities of perceived aesthetic in data visualization
(2007)

8. Chatterjee, A.: The neuropsychology of visual art: Conferring capacity. Interna-
tional review of neurobiology 74, 39–49 (2006)

9. Chatterjee, A., Vartanian, O.: Neuroaesthetics. Trends in cognitive sciences 18(7),
370–375 (2014)

10. Chatterjee, A., Widick, P., Sternschein, R., Smith, W.B., Bromberger, B.: The
assessment of art attributes. Empirical Studies of the Arts 28(2), 207–222 (2010)

11. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world
web image database from national university of singapore. In: Proceedings of the
ACM international conference on image and video retrieval. p. 48. ACM (2009)

12. Corp., A.: Amazon mechanical turk, https://www.mturk.com/
13. De Gemmis, M., Lops, P., Semeraro, G., Basile, P.: Integrating tags in a seman-

tic content-based recommender. In: Proceedings of the 2008 ACM conference on
Recommender systems. pp. 163–170. ACM (2008)

14. Desmet, B., Hoste, V.: Emotion detection in suicide notes. Expert Systems with
Applications 40(16), 6351–6358 (2013)

15. Ekman, P.: An argument for basic emotions. Cognition & emotion 6(3-4), 169–200
(1992)

16. Feng, C., Bartram, L., Gromala, D.: Beyond data: Abstract motionscapes as affec-
tive visualization. Leonardo 50(2), 205–206 (2017)

17. Feng, C., Bartram, L., Riecke, B.E.: Evaluating affective features of 3d motion-
scapes. In: Proceedings of the ACM Symposium on Applied Perception. pp. 23–30.
ACM (2014)

18. Friendly, M., Denis, D.J.: Milestones in the history of thematic cartography, sta-
tistical graphics, and data visualization. URL http://www. datavis. ca/milestones
32, 13 (2001)

19. Galanter, P.: What is generative art? complexity theory as a context for art theory.
In: In GA2003–6th Generative Art Conference. Citeseer (2003)

20. Gedikli, F.: Recommender systems and the social web: Leveraging tagging data
for recommender systems. Springer Science & Business Media (2013)

21. Graves, M.E.: The Art of Color and Design. Psychological Corporation (1941)
22. Ha, H., Hwang, W., Bae, S., Choi, H., Han, H., Kim, G.N., Lee, K.: Cosmovis:

Semantic network visualization by using sentiment words of movie review data.
In: 2015 19th International Conference on Information Visualisation. pp. 436–443.
IEEE (2015)

Exploring emotion detection in textual data.. 67

23. Healey, C.G., Booth, K.S., Enns, J.T.: Visualizing real-time multivariate data using
preattentive processing. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 5(3), 190–221 (1995)

24. Honnibal, M.: spacy industrial-strength natural language processing in python,
https://spacy.io/

25. Hope, C., Ryan, J.C.: Digital Arts: An Introduction to New Media. Bloomsbury
Publishing USA (2014)

26. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representa-
tions via global context and multiple word prototypes. In: Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long Papers-
Volume 1. pp. 873–882. Association for Computational Linguistics (2012)

27. Hupka, R.B., Zaleski, Z., Otto, J., Reidl, L., Tarabrina, N.V.: The colors of anger,
envy, fear, and jealousy: A cross-cultural study. Journal of cross-cultural psychology
28(2), 156–171 (1997)

28. Hutchins, J.: The history of machine translation in a nutshell. Retrieved December
20, 2009 (2005)

29. Hutto, C.J., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In: Eighth international AAAI conference on weblogs
and social media (2014)

30. Kao, E.C.C., Liu, C.C., Yang, T.H., Hsieh, C.T., Soo, V.W.: Towards text-based
emotion detection a survey and possible improvements. In: 2009 International Con-
ference on Information Management and Engineering. pp. 70–74. IEEE (2009)

31. Klee, P.: The Notebooks of Paul Klee: The thinking eye, vol. 15. G. Wittenborn
(1964)

32. Kret, M.E., Bocanegra, B.R.: Adaptive hot cognition: How emotion drives infor-
mation processing and cognition steers affective processing. Frontiers in psychology
7, 1920 (2016)

33. Lang, A.: Aesthetics in information visualization. Trends in information visualiza-
tion 8 (2009)

34. Li, Q.: Data visualization as creative art practice. Visual Communication 17(3),
299–312 (2018)

35. Liu, N.: word2color, https://github.com/nelson-liu/word2color
36. Lockyer, M., Bartram, L.: Affective motion textures. Computers & Graphics 36(6),

776–790 (2012)
37. Loria, S.: Simplified text processing, https://textblob.readthedocs.io/en/dev/
38. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word

vectors for sentiment analysis. In: Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies-volume 1.
pp. 142–150. Association for Computational Linguistics (2011)

39. Manning, C.D., Manning, C.D., Schütze, H.: Foundations of statistical natural
language processing. MIT press (1999)

40. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The stanford corenlp natural language processing toolkit (2014)

41. MATSON, P., MUELLER, M., TIPTON, E.: Affective data visualization: A pre-
liminary study. In: International Symposium on Affective Science and Engineering.
pp. 1–6. Japan Society of Kansei Engineering (2018)

42. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for
machine translation. arXiv preprint arXiv:1309.4168 (2013)

43. Mischel, W., Shoda, Y.: A cognitive-affective system theory of personality: recon-
ceptualizing situations, dispositions, dynamics, and invariance in personality struc-
ture. Psychological review 102(2), 246 (1995)

68 O. Spetko, A. Lunterova et al.

44. Moere, A.V.: Aesthetic data visualization as a resource for educating creative de-
sign. In: Computer-Aided Architectural Design Futures (CAADFutures) 2007, pp.
71–84. Springer (2007)

45. Mohammad, S.: Colourful language: Measuring word-colour associations. In: Pro-
ceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguis-
tics. pp. 97–106. Association for Computational Linguistics (2011)

46. Mohammad, S.M.: Obtaining reliable human ratings of valence, arousal, and dom-
inance for 20,000 english words. In: Proceedings of The Annual Conference of the
Association for Computational Linguistics (ACL). Melbourne, Australia (2018)

47. Mulcrone, K.: Detecting emotion in text (2012)
48. Murray, S.: Interactive data visualization for the web: an introduction to designing

with. ” O’Reilly Media, Inc.” (2017)
49. Nalbantian, S.: Neuroaesthetics: Neuroscientific theory and illustration from the

arts. Interdisciplinary Science Reviews 33(4), 357–368 (2008)
50. Nasser, A., Hamad, D., Nasr, C.: Visualization methods for exploratory data analy-

sis. In: 2006 2nd International Conference on Information & Communication Tech-
nologies. vol. 1, pp. 1379–1384. IEEE (2006)

51. Nell, V.: Lost in a book: The psychology of reading for pleasure. Yale University
Press (1988)

52. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Emoheart: conveying emotions
in second life based on affect sensing from text. Advances in Human-Computer
Interaction 2010, 1 (2010)

53. Ngoc, P.T., Yoo, M.: The lexicon-based sentiment analysis for fan page ranking
in facebook. In: The International Conference on Information Networking 2014
(ICOIN2014). pp. 444–448. IEEE (2014)

54. Norman, D.A.: Emotional design: Why we love (or hate) everyday things. Basic
Civitas Books (2004)

55. Pearson, M.: Generative Art. Manning Publications Co. (2011)
56. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-

sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

57. Perikos, I., Hatzilygeroudis, I.: Recognizing emotions in text using ensemble of
classifiers. Engineering Applications of Artificial Intelligence 51, 191–201 (2016)

58. Picard, R.W.: Affective computing mit press. Cambridge, Massachsusetts (1997)
59. Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: An

integrative approach to affective neuroscience, cognitive development, and psy-
chopathology. Development and psychopathology 17(3), 715–734 (2005)

60. Ramirez Gaviria, A.: When is information visualization art? determining the crit-
ical criteria. Leonardo 41(5), 479–482 (2008)

61. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Recommender systems handbook, pp. 1–35. Springer (2011)

62. Russell, J.A.: A circumplex model of affect. Journal of personality and social psy-
chology 39(6), 1161 (1980)

63. Sack, W.: Aesthetics of information visualization. Context providers: Conditions
of meaning in media arts pp. 123–50 (2011)

64. Schnall, S.: Affect, mood and emotions. Social and emotional aspect of learning
pp. 59–64 (2010)

65. Sebastiani, F.: Machine learning in automated text categorization. ACM comput-
ing surveys (CSUR) 34(1), 1–47 (2002)

66. Seyeditabari, A., Zadrozny, W.: Can word embeddings help find latent emotions in
text? preliminary results. In: The Thirtieth International Flairs Conference (2017)

Exploring emotion detection in textual data.. 69

67. Shaheen, S., El-Hajj, W., Hajj, H., Elbassuoni, S.: Emotion recognition from text
based on automatically generated rules. In: 2014 IEEE International Conference
on Data Mining Workshop. pp. 383–392. IEEE (2014)

68. Shivhare, S.N., Khethawat, S.: Emotion detection from text. CoRR
abs/1205.4944 (2012), http://arxiv.org/abs/1205.4944

69. Skilling, J., Bryan, R.: Maximum entropy image reconstruction-general algorithm.
Monthly notices of the royal astronomical society 211, 111 (1984)

70. Steven Bird, Edward Loper, E.K.: Natural language toolkit, https://www.nltk.org/
71. Strapparava, C., Valitutti, A., et al.: Wordnet affect: an affective extension of

wordnet. In: Lrec. vol. 4, p. 40. Citeseer (2004)
72. Tateosian, L.G., Healey, C.G., Enns, J.T.: Engaging viewers through nonphotore-

alistic visualizations. In: Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering. pp. 93–102. ACM (2007)

73. Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation
of passage retrieval algorithms for question answering. In: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in in-
formaion retrieval. pp. 41–47. ACM (2003)

74. Terwogt, M.M., Hoeksma, J.B.: Colors and emotions: Preferences and combina-
tions. The Journal of general psychology 122(1), 5–17 (1995)

75. Tufte, E.R.: The visual display of quantitative information, vol. 2. Graphics press
Cheshire, CT (2001)

76. Tufte, E.R., Robins, D.: Visual explanations. Graphics Cheshire (1997)
77. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general

method for semi-supervised learning. In: Proceedings of the 48th annual meet-
ing of the association for computational linguistics. pp. 384–394. Association for
Computational Linguistics (2010)

78. Vartanian, O., Goel, V.: Neuroanatomical correlates of aesthetic preference for
paintings. Neuroreport 15(5), 893–897 (2004)

79. Viégas, F.B., Wattenberg, M.: Artistic data visualization: Beyond visual analytics.
In: International Conference on Online Communities and Social Computing. pp.
182–191. Springer (2007)

80. Vrehuuvrek, R., Sojka, P.: Gensimstatistical semantics in python. statistical se-
mantics; gensim; Python; LDA; SVD (2011)

81. Ware, C.: Information visualization: perception for design. Elsevier (2012)
82. Warriner, A.B., Kuperman, V., Brysbaert, M.: Norms of valence, arousal, and

dominance for 13,915 english lemmas. Behavior research methods 45(4), 1191–
1207 (2013)

83. You, Y.S., Lee, S., Kim, J.: Design and development of visualization tool for movie
review and sentiment analysis. In: Proceedings of the Sixth International Confer-
ence on Emerging Databases: Technologies, Applications, and Theory. pp. 117–123.
ACM (2016)

84. Zhai, C.: Fast statistical parsing of noun phrases for document indexing. In: Pro-
ceedings of the fifth conference on Applied natural language processing. pp. 312–
319. Association for Computational Linguistics (1997)

Appendix A1
Results of metadata analysis and final visualizations for each movie

Data Vibes

Dear participant,

Thanks for being part of this experiment!

This is a short interactive questionnaire, where you can help us in questioning our
hypothesis. During our project we played around with analyzing IMDb reviews, with focus on
the text characteristics such as its sentiment, topic, subjectivity and assigned color value.
Afterwards, the data of analyzed reviews, led us into idea of creating a “movie signature”
visualization. The following pictures are communicating the results, where each picture
represents reviews of one movie.

How are they representing them? That’s part of the secret :).
Let’s start.

1/4

Looking at the following picture and its features (balance, depth, curvature,
complexity, animacy, emotion, etc.) can you find a picture that you feel like is most
similar ?

Appendix A2

Looking at the following picture and its features (balance, depth, curvature,
complexity, animacy, emotion, etc.) can you find a picture that you feel like is most
similar ?

2/4

On a scale between positive and negative, how do you perceive the mood of the
visual?

Negative Positive

What first words comes to your mind describing the visual?

Type the words here...

From the following words, what characteristics do you think the visual
communicates?

Random Structured
Harmonious Dissonant
Simple Complex
In movement Static
Diversity Uniformness
Deep Flat
Loose Tight
Unitedness Separation
Calm Vibrant
Cold Warm
Smooth Noisy
Strong Weak

3/4

On a scale between positive and negative, how do you perceive the mood of the
visual?

Negative Positive

What first words comes to your mind describing the visual?

Type the words here...

From the following words, what characteristics do you think the visual
communicates?

Random Structured
Harmonious Dissonant
Simple Complex
In movement Static
Diversity Uniformness
Deep Flat
Loose Tight
Unitedness Separation
Calm Vibrant
Cold Warm
Smooth Noisy
Strong Weak

4/4

That’s it. Thanks for participating!

PS: If you wish to receive signature of your favourite movie, include your email and name of
the movie and you will get a mail from me after the end of this research:

If you have any comments, please let us know:

Email Movie name

Type any comments you have here...

Submit

Timestamp Correct1 Main1 Selected1 Correct2 MainPic2
5/20/2019 8:02:55 YES 71 72 YES 01
5/20/2019 8:38:23 YES 121 122 YES 11
5/20/2019 8:41:57 YES 41 42 YES 01
5/20/2019 8:49:39 YES 91 92 YES 121
5/20/2019 9:39:07 YES 71 72 YES 111
5/20/2019 9:39:16 NO 51 62 YES 81
5/20/2019 9:44:17 YES 31 32 NO 151

5/20/2019 10:21:17 YES 201 202 NO 111
5/20/2019 10:21:26 NO 111 61 YES 31
5/20/2019 10:22:14 NO 21 122 YES 61
5/20/2019 10:23:25 NO 31 181 NO 91
5/20/2019 10:26:19 NO 51 62 YES 11
5/20/2019 10:26:32 NO 161 121 NO 191
5/20/2019 10:33:17 YES 171 172 YES 21
5/20/2019 10:38:51 YES 81 82 YES 101
5/20/2019 10:41:26 YES 41 42 YES 11
5/20/2019 10:42:25 YES 161 162 YES 141
5/20/2019 10:42:27 YES 81 82 YES 131
5/20/2019 10:43:14 YES 61 62 YES 201
5/20/2019 10:43:33 YES 201 202 YES 51
5/20/2019 10:55:01 YES 41 42 YES 31
5/20/2019 10:59:06 YES 131 132 NO 11
5/20/2019 11:06:53 NO 61 71 YES 191
5/20/2019 11:10:30 NO 161 21 YES 131
5/20/2019 11:36:14 YES 101 102 NO 131
5/20/2019 11:39:49 YES 171 172 YES 91
5/20/2019 11:57:18 YES 61 62 NO 161
5/20/2019 12:12:42 YES 51 52 YES 81
5/20/2019 12:17:13 YES 01 02 YES 171
5/20/2019 12:44:42 YES 161 162 YES 91
5/20/2019 12:57:38 YES 41 42 YES 71

Appendix A3

SelectedPic2 RatePic1 Mood1 Words1 Pairs1 [Row 1] Pairs1 [Row 2]
02 81 6 calm, smooth Column 1 Column 1

12 21 6 fluffy cotton none none
02 152 5 mysterious, hidden secrets, subtle discomfort, balanced. Column 2 Column 2

122 71 5 nothing happens Column 2 Column 1
112 61 5 Looks like a fingerprint or a face with no eyes. Kind of neutral leaning more towards positive than negativeColumn 2 Column 1

82 172 3 crooked Column 2 Column 2
162 42 3 Dark, vibrant Column 1 Column 2
151 12 5 wood, map, military, planetColumn 2 Column 1

32 12 6 Focus Column 2 Column 2
62 82 5 Baby, calm Column 2 Column 1
31 112 7 Calming, whole Column 2 Column 1
12 151 3 paper baby Column 1 Column 2

121 71 1 Moody, static none none
22 72 4 Calm, cold, melancholic, smoothColumn 2 Column 1

102 192 7 smooth Column 2 Column 1
12 101 1 Anger Column 1 Column 2

142 42 2 Disruption, frequency, note, music, chaosColumn 1 Column 2
132 182 4 calm Column 2 Column 1
202 111 2 Ueven and starting chaos Column 2 Column 2

52 32 2 erratic Column 1 Column 2
32 161 7 harmonious calm waves with only the slightest of surface disturbancesColumn 2 Column 1
51 182 6 calm but energetic Column 2 Column 1

192 161 3 none Column 2 Column 2
132 192 2 Opposites, fight Column 1 Column 2
121 02 5 none Column 2 Column 1

92 121 1 Agression Column 2 Column 2
72 101 2 Messy, outliers Column 1 Column 2
82 101 1 disturbed, in motion none none

172 31 2 Wringed out Column 2 Column 1
92 31 1 Grumpy Column 1 Column 2
72 191 1 anger Column 1 Column 2

Pairs1 [Row 3] Pairs1 [Row 4] Pairs1 [Row 5] Pairs1 [Row 6] Pairs1 [Row 7] Pairs1 [Row 8]
Column 1 Column 1 Column 2 Column 1 Column 1 Column 2
none Column 1 none none Column 1 none
Column 1 Column 2 Column 1 Column 2 Column 2 Column 1
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
Column 1 Column 2 Column 2 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 1 Column 1 Column 2 Column 1 Column 2 Column 1
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 Column 2 Column 2 Column 1 Column 1 Column 1
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 Column 1 none none none none
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
Column 2 Column 1 Column 1 Column 2 Column 1 Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 2
Column 1 Column 2 Column 2 Column 1 Column 2 Column 1
none none none none none none
Column 1 Column 2 Column 1 Column 2 Column 1 Column 1
none Column 1 none Column 1 Column 2 Column 2
Column 1 Column 1 Column 2 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2

Pairs1 [Row 9] Pairs1 [Row 10] Pairs1 [Row 11] Pairs1 [Row 12] RatePic2 Mood2
Column 1 Column 1 Column 1 Column 1 91 2
Column 1 none Column 1 none 52 7
Column 1 Column 1 Column 1 Column 2 111 6
Column 1 Column 1 Column 1 Column 2 02 5
Column 1 Column 2 Column 1 Column 1 01 3
Column 2 Column 2 Column 2 Column 1 01 2
Column 2 Column 2 Column 2 Column 1 102 3
Column 1 Column 1 Column 1 Column 1 31 2
Column 1 Column 1 Column 1 Column 1 21 2
Column 1 Column 2 Column 1 Column 2 152 2
Column 1 Column 1 Column 1 Column 1 192 4
Column 2 Column 1 Column 2 Column 1 31 2
Column 2 none none none 182 7
Column 1 Column 1 Column 1 Column 1 121 1
Column 1 Column 2 Column 1 Column 1 62 2
Column 2 Column 1 Column 2 Column 1 91 7
Column 2 Column 2 Column 2 Column 2 72 6
Column 1 Column 1 Column 1 Column 1 171 4
Column 2 Column 2 Column 2 Column 1 52 7
Column 2 Column 1 Column 2 Column 1 182 4
Column 1 Column 1 Column 1 Column 1 192 3
Column 1 Column 2 Column 1 Column 1 162 2
Column 2 Column 2 Column 2 Column 1 32 4
Column 2 Column 2 Column 1 Column 1 102 0
Column 1 Column 2 Column 1 Column 1 141 2
none none none Column 1 12 6
Column 1 Column 1 Column 2 Column 2 82 5
none Column 1 none Column 1 122 3
Column 2 Column 1 Column 2 Column 1 102 4
Column 2 Column 1 Column 2 Column 1 22 5
Column 2 Column 1 Column 1 Column 1 22 3

Words2 Pairs2 [Row 1] Pairs2 [Row 2] Pairs2 [Row 3] Pairs2 [Row 4] Pairs2 [Row 5]
jagged, nervous Column 1 Column 2 Column 1 Column 1 Column 2
vortex none Column 1 Column 1 Column 1 none
calm, pleasant, smooth curves, Column 2 Column 1 Column 1 Column 2 Column 2
none Column 2 Column 1 Column 1 Column 1 Column 1
DissonantInterrupted by some external forceColumn 1 Column 2 Column 2 Column 1 Column 1
broken Column 1 Column 2 Column 2 Column 1 Column 1
Alien head Column 2 Column 2 Column 2 Column 2 Column 2
defected ball, damage, illness, Column 1 Column 2 Column 2 Column 1 Column 1
none Column 1 Column 2 Column 2 Column 1 Column 1
Disorientation, mess Column 1 Column 2 Column 2 Column 1 Column 1
Light turmoil Column 2 Column 2 Column 1 Column 1 Column 1
none Column 1 Column 2 Column 2 Column 1 Column 2
Vibrant, evolving none none Column 2 Column 1 none
Chaotic, violent Column 1 Column 2 Column 2 Column 1 Column 1
unconnected Column 1 Column 2 Column 1 Column 1 Column 1
Calm Column 2 Column 1 Column 1 Column 2 Column 2
Harmony, peaceful, still, calm, noteColumn 2 Column 1 Column 1 Column 1 Column 2
energitic, un-calm Column 1 Column 2 Column 2 Column 1 Column 1
Whirlpool Column 2 Column 1 Column 2 Column 1 Column 2
twisted Column 1 Column 1 Column 1 Column 1 Column 2
random twisted human earColumn 1 Column 2 Column 2 Column 1 Column 1
sad unenergized Column 2 Column 1 Column 1 Column 2 Column 1
none none none none none none
Dissonans Column 1 Column 2 Column 2 Column 2 Column 1
none Column 1 Column 2 Column 2 Column 1 Column 1
Frustrated apex none none none none none
Clear, normal Column 2 Column 2 Column 1 Column 2 Column 2
in progress Column 2 none Column 2 Column 1 none
mitosis Column 2 Column 1 Column 2 Column 1 Column 2
Waves. Column 2 Column 1 Column 1 Column 1 Column 1
cyclone Column 1 Column 2 Column 1 Column 1 Column 1

Pairs2 [Row 6] Pairs2 [Row 7] Pairs2 [Row 8] Pairs2 [Row 9] Pairs2 [Row 10] Pairs2 [Row 11]
Column 2 Column 2 Column 2 Column 2 Column 1 Column 2
none none none none none Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 Column 1 Column 2 Column 2 Column 2 Column 2
Column 1 Column 1 Column 2 Column 2 Column 1 Column 2
Column 2 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 1 Column 2 Column 2 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 1 Column 2 Column 1 Column 2
Column 1 Column 1 Column 1 Column 2 Column 1 Column 2
Column 1 none none Column 2 none none
Column 2 Column 2 Column 2 Column 2 Column 1 Column 2
Column 2 Column 1 Column 2 Column 1 Column 2 Column 2
Column 1 Column 1 Column 1 Column 1 Column 2 Column 1
Column 2 Column 2 Column 1 Column 1 Column 2 Column 1
Column 1 Column 1 Column 1 Column 2 Column 1 Column 2
Column 1 Column 1 Column 1 Column 2 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
none none none none none none
Column 2 Column 1 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
none none none Column 1 none Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
none none none none none none
Column 2 Column 2 Column 2 Column 2 Column 2 Column 1
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1

Pairs2 [Row 12] Gift Movie
Column 1 YES cast away
none NO none
Column 1 YES Monty python and the holy grail.
Column 1 YES Into the wild
Column 2 NO none
Column 2 NO none
Column 1 NO none
Column 1 NO none
Column 1 NO none
Column 1 NO none
Column 1 YES Howl's moving castle
Column 1 NO none
none YES Eternal sunshine of a spotless mind
Column 1 NO none
Column 1 YES Warrior
Column 1 NO none
Column 1 YES Astroguru
Column 1 NO none
Column 1 NO none
Column 2 NO none
Column 1 YES Lord of the rings: Return of the King
Column 2 NO none
none NO none
Column 1 NO none
Column 2 NO none
none YES *
Column 2 NO none
Column 1 YES Leon
Column 1 NO none
Column 2 NO none
Column 2 YES Avengers End Game

Timestamp Correct1 Main1 Selected1 Correct2 MainPic2
5/20/2019 13:51:00 YES 71 72 YES 121
5/20/2019 14:09:28 YES 151 152 NO 01
5/20/2019 14:12:30 YES 121 122 YES 201
5/20/2019 14:15:57 YES 111 112 NO 201
5/20/2019 14:39:38 NO 21 132 YES 201
5/20/2019 15:25:21 YES 111 112 YES 201
5/20/2019 15:33:02 YES 201 202 NO 21
5/20/2019 15:42:27 NO 111 201 YES 151
5/20/2019 17:08:41 YES 201 202 YES 31
5/20/2019 18:04:41 YES 191 192 YES 31
5/20/2019 18:11:32 YES 01 02 YES 131
5/20/2019 19:00:12 YES 91 92 YES 51
5/20/2019 19:05:21 YES 111 112 YES 201
5/20/2019 19:16:51 YES 81 82 YES 111
5/20/2019 20:12:59 NO 81 151 YES 171
5/20/2019 20:36:05 YES 41 42 YES 71
5/20/2019 20:58:27 NO 191 161 YES 181
5/20/2019 21:45:51 YES 41 42 YES 61
5/20/2019 21:58:55 YES 151 152 YES 101
5/20/2019 22:27:48 YES 151 152 YES 191
5/20/2019 23:11:33 YES 101 102 YES 21
5/20/2019 23:50:41 YES 171 172 YES 51

5/21/2019 4:51:56 YES 171 172 YES 41
5/21/2019 6:26:51 YES 91 92 NO 01
5/21/2019 7:04:15 YES 111 112 YES 201
5/21/2019 7:01:54 NO 101 192 NO 61
5/21/2019 8:25:39 NO 181 31 YES 41
5/21/2019 8:57:32 NO 11 51 YES 131

5/21/2019 10:26:31 YES 191 192 NO 51
5/21/2019 10:52:20 YES 81 82 YES 91

SelectedPic2 RatePic1 Mood1 Words1 Pairs1 [Row 1] Pairs1 [Row 2]
122 82 6 gentle touches, slowly playing with the table cloth Column 2 Column 1
182 121 0 complex none none
202 192 5 Face none Column 1

62 61 5 Fingerprint Column 2 Column 1
202 161 2 In shock Column 1 Column 1
202 142 3 brain, chaos Column 1 Column 2
182 172 2 Complexity Column 1 Column 2
152 21 1 Scull Column 2 Column 1

32 22 3 Writhing Column 2 Column 2
32 162 2 Imperfect, weak, messy Column 1 Column 2

132 121 2 hectic none none
52 01 2 Disturbance Column 2 Column 2

202 51 8 Romantic, gentle, soft and thoughtful. Column 2 Column 1
112 71 5 none Column 1 Column 1
172 181 0 devil covered by silk Column 1 Column 2

72 122 3 it feels kind of broken and uncontinuousnone Column 2
182 152 2 Boring rough Column 2 Column 2

62 91 4 Comet Column 1 none
102 201 2 Tense none Column 2
192 62 2 Valleys Column 2 Column 1

22 162 2 Scared scream Column 1 Column 2
52 01 2 Broken but not irreparable Column 1 Column 2
42 32 5 Wrinkles, bumpy, Column 2 Column 2
11 32 8 Mouvement none Column 1

202 51 8 Romantic, gentle, soft and thoughtful. Column 2 Column 1
11 151 5 Ears Column 1 Column 1
42 152 2 Wrinly, irritated. Column 2 Column 2

132 41 2 none Column 1 Column 2
62 31 2 Disruption and little bit of chaosColumn 1 Column 2
92 161 6 Ear or baby Column 1 Column 1

Pairs1 [Row 3] Pairs1 [Row 4] Pairs1 [Row 5] Pairs1 [Row 6] Pairs1 [Row 7] Pairs1 [Row 8]
Column 1 Column 1 Column 1 Column 2 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 none none
none Column 1 none none none Column 2
Column 1 Column 1 none none none none
Column 1 Column 1 Column 2 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
Column 1 Column 2 Column 2 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 2
Column 2 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 none none none Column 2 Column 2
Column 1 Column 1 Column 1 Column 1 Column 2 Column 2
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 none none Column 1 Column 1 Column 1
Column 2 Column 1 Column 2 Column 1 Column 2 Column 2
none Column 2 Column 1 Column 2 none Column 2
Column 1 Column 2 Column 2 Column 2 Column 2 Column 1
none none none none none none
none none none none none none
Column 1 Column 2 Column 2 Column 1 Column 2 Column 1
Column 2 Column 2 Column 2 Column 1 Column 1 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 1 Column 1 Column 2 Column 2 Column 1 Column 2
none Column 1 none Column 1 none none
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 Column 1 Column 2 Column 1 Column 2 Column 2
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 1 Column 2 Column 1 Column 1 Column 2 Column 2
Column 2 Column 2 Column 1 Column 1 Column 1 Column 2
Column 1 Column 2 Column 2 Column 1 Column 1 Column 1

Pairs1 [Row 9] Pairs1 [Row 10] Pairs1 [Row 11] Pairs1 [Row 12] RatePic2 Mood2
Column 1 Column 1 Column 1 Column 1 151 7
Column 2 Column 1 Column 2 Column 1 112 5
none none Column 1 none 182 8
none none none none 31 4
Column 1 Column 2 Column 1 Column 1 62 0
Column 2 Column 2 Column 1 Column 1 161 3
Column 2 Column 1 Column 2 Column 2 102 0
Column 1 Column 1 Column 1 Column 1 72 0
Column 2 Column 1 Column 1 Column 1 91 4
Column 1 Column 2 Column 2 Column 2 02 6
none none Column 2 Column 1 12 5
Column 1 Column 1 Column 2 Column 2 31 1
Column 1 Column 2 Column 1 Column 1 101 1
Column 1 Column 2 Column 1 Column 2 51 0
Column 2 Column 1 Column 2 Column 1 52 1
Column 2 Column 1 Column 2 Column 2 81 5
Column 1 Column 1 Column 2 Column 2 01 5
none none none none 52 6
none none none none 91 6
Column 2 Column 1 Column 2 Column 2 161 5
Column 2 Column 2 Column 2 Column 1 111 7
Column 2 Column 2 Column 2 Column 1 22 6
Column 1 Column 2 Column 1 Column 2 111 6
Column 1 none none none 201 6
Column 1 Column 2 Column 1 Column 1 101 1
Column 1 Column 1 Column 1 Column 2 81 6
Column 2 Column 1 Column 2 Column 1 191 6
Column 2 Column 1 Column 2 Column 1 191 4
Column 2 Column 1 Column 2 Column 1 171 4
Column 1 Column 1 Column 1 Column 1 171 2

Words2 Pairs2 [Row 1] Pairs2 [Row 2] Pairs2 [Row 3] Pairs2 [Row 4] Pairs2 [Row 5]
cloth twirls, movement imprintsColumn 2 Column 1 Column 1 Column 1 Column 1
smooth Column 2 Column 1 Column 1 Column 2 none
Degenerated Column 2 none Column 2 Column 1 none
none Column 2 Column 1 Column 1 Column 1 Column 2
hard Column 2 Column 2 Column 1 Column 2 Column 2
mountains, obsession Column 1 Column 2 Column 1 Column 2 Column 2
Anxiety Column 1 Column 2 Column 2 Column 1 Column 1
� ant Column 2 Column 1 Column 1 Column 2 Column 2
Symbol Column 2 Column 1 Column 1 Column 2 Column 2
none Column 1 Column 1 Column 2 Column 1 Column 1
structure Column 2 none Column 1 Column 1 none
Wrinkles Column 1 Column 2 Column 2 Column 1 Column 2
Crush, mixing up, echo, hard. Column 2 Column 2 none Column 1 Column 1
none none none Column 2 Column 1 Column 2
lava Column 2 Column 1 Column 1 Column 1 Column 2
smooth none Column 1 Column 1 none none
Smooth interesting Column 2 Column 1 Column 1 Column 2 Column 2
Fingerprint none Column 1 none none none
Soft none none none Column 1 none
Smooth Column 1 Column 1 Column 1 Column 1 Column 1
Moon chill Column 2 Column 1 Column 2 Column 1 Column 1
Life in motion Column 2 Column 1 Column 1 Column 1 Column 2
Calm Column 2 Column 1 Column 1 Column 2 Column 2
Calm none none Column 1 none Column 1
Crush, mixing up, echo, hard. Column 2 Column 2 none Column 1 Column 1
River Column 2 Column 1 Column 2 Column 1 Column 2
calm Column 1 Column 1 Column 2 Column 1 Column 1
none Column 2 Column 1 Column 1 Column 1 Column 2
Neither good nor bad Column 1 Column 2 Column 1 Column 1 Column 1
Waves Column 1 Column 2 Column 1 Column 1 Column 2

Pairs2 [Row 6] Pairs2 [Row 7] Pairs2 [Row 8] Pairs2 [Row 9] Pairs2 [Row 10] Pairs2 [Row 11]
Column 2 Column 1 Column 1 Column 1 none Column 1
Column 2 none none Column 1 none Column 1
none Column 1 none none Column 1 none
Column 1 Column 1 Column 1 Column 2 Column 2 Column 1
Column 2 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 1 Column 1 Column 2 Column 1 Column 2
Column 1 Column 1 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 2 Column 2 Column 1 Column 1 Column 2 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
none none none Column 1 none Column 1
Column 2 Column 2 Column 1 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 2 Column 2 none Column 2 Column 1 Column 2
Column 1 Column 1 Column 1 Column 2 Column 2 Column 2
Column 1 Column 1 none none none Column 1
Column 2 Column 2 Column 1 Column 2 Column 2 Column 1
none none none none none none
none none none none none none
Column 1 Column 1 Column 2 Column 1 Column 2 Column 1
Column 1 Column 1 Column 1 Column 1 Column 1 Column 1
none Column 1 none Column 1 Column 2 Column 1
Column 2 Column 1 Column 2 Column 1 Column 2 Column 1
none none none Column 1 none none
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 2 Column 1
Column 1 Column 1 Column 1 Column 2 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 2 Column 1
Column 2 Column 1 Column 2 Column 2 Column 1 Column 2
Column 2 Column 1 Column 2 Column 2 Column 2 Column 1

Pairs2 [Row 12] Gift Movie
none NO none
Column 2 YES The Hunt(danish movie)
Column 2 YES Malena
Column 1 NO none
Column 1 NO none
Column 2 NO none
Column 2 NO none
Column 1 YES Bad Boys 2
Column 1 YES Porco Rosso
Column 1 NO none
Column 1 NO none
Column 2 YES scott pilgrim and the seven evil exes
Column 1 YES About time
none NO none
Column 1 NO none
none YES The last samurai
Column 1 YES Butterfly effect
none NO none
none YES Inception
Column 1 YES Your Name
Column 1 YES Blood in blood out
Column 1 YES Amélie
Column 2 NO none
none NO none
Column 1 YES About time
Column 2 NO none
Column 1 NO none
Column 2 NO none
Column 2 YES Deadpool
Column 2 YES The Notebook

Timestamp Correct1 Main1 Selected1 Correct2 MainPic2
5/21/2019 12:24:54 YES 51 52 YES 31
5/21/2019 13:23:36 YES 161 162 YES 51
5/21/2019 13:30:26 YES 121 122 YES 181
5/21/2019 13:32:48 NO 181 51 NO 161
5/21/2019 14:59:43 YES 131 132 YES 191
5/21/2019 15:30:59 YES 71 72 YES 201
5/21/2019 15:51:25 YES 121 122 YES 81
5/21/2019 17:00:21 YES 21 22 YES 71
5/21/2019 20:32:22 NO 51 62 YES 191

5/22/2019 4:44:48 YES 101 102 NO 141
5/22/2019 6:35:56 YES 11 12 YES 191
5/22/2019 6:43:58 YES 81 82 YES 121
5/22/2019 9:44:43 YES 191 192 YES 141

5/22/2019 14:11:21 YES 181 182 YES 01
5/22/2019 15:03:02 YES 21 22 YES 41
5/22/2019 22:26:12 NO 181 131 YES 191

5/24/2019 6:24:58 NO 01 72 YES 131
5/24/2019 11:11:32 YES 151 152 NO 01

SelectedPic2 RatePic1 Mood1 Words1 Pairs1 [Row 1] Pairs1 [Row 2]
32 12 7 Calm but edgy Column 2 Column 1
52 21 4 Waves Column 1 Column 1

182 111 4 Perturbed Column 1 Column 2
112 121 2 Messy, chaotic Column 1 Column 2
192 102 2 unease, shakey, intense, conflict, oppositesColumn 1 Column 2
202 12 2 Sad personMountain Column 2 Column 1

82 161 3 Contour, heightmap Column 2 Column 1
72 112 1 crawling, despair, hiding, impactColumn 2 Column 1

192 171 2 Chaos, disturbance Column 1 Column 2
121 152 6 Beautiful, uniform, pure, lifeless, emotionlessColumn 2 Column 1
192 181 2 Face with a judging mouth Column 1 Column 1
122 12 4 Geographical map without colloring of depthColumn 2 Column 2
142 92 2 nervous, sharp Column 2 Column 2

02 131 2 Nerves, earthquake, sound, Column 1 Column 2
42 51 5 simple, calm Column 2 Column 1

192 21 1 none Column 1 Column 2
132 11 7 Calm, water Column 2 Column 1
202 11 5 Flow with small jerks in the middleColumn 2 Column 1

Pairs1 [Row 3] Pairs1 [Row 4] Pairs1 [Row 5] Pairs1 [Row 6] Pairs1 [Row 7] Pairs1 [Row 8]
Column 1 Column 1 Column 2 Column 1 Column 1 Column 1
Column 2 Column 1 Column 2 Column 1 Column 2 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
Column 2 Column 2 Column 1 Column 1 Column 1 Column 2
Column 2 Column 1 Column 1 Column 2 Column 2 Column 2
Column 1 Column 2 Column 2 Column 1 Column 2 Column 1
Column 2 Column 1 Column 1 Column 1 Column 1 Column 2
Column 2 Column 1 Column 2 Column 1 Column 2 Column 1
Column 1 Column 1 Column 1 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 1
Column 2 Column 1 Column 1 Column 2 Column 1 Column 1
Column 2 Column 1 none Column 1 Column 2 Column 2
Column 2 Column 1 none Column 1 Column 2 Column 1
Column 1 Column 1 Column 1 Column 1 Column 2 Column 2
Column 1 Column 1 Column 2 Column 2 Column 1 Column 1
none Column 2 Column 1 Column 1 none none
Column 1 Column 1 Column 1 Column 2 Column 1 Column 2
Column 1 Column 1 Column 2 Column 2 Column 2 Column 1

Pairs1 [Row 9] Pairs1 [Row 10] Pairs1 [Row 11] Pairs1 [Row 12] RatePic2 Mood2
Column 1 Column 1 Column 1 Column 1 61 3
Column 2 Column 2 Column 1 Column 1 131 2
Column 1 Column 1 Column 1 Column 2 32 3
Column 2 Column 1 Column 2 Column 1 201 6
Column 1 Column 1 Column 2 Column 1 12 7
Column 1 Column 1 Column 1 Column 1 162 2
Column 1 Column 1 Column 1 Column 1 111 6
Column 1 Column 2 Column 1 Column 1 41 4
Column 2 Column 1 Column 2 Column 2 182 2
Column 1 Column 1 Column 1 Column 2 42 3
Column 1 Column 1 Column 1 Column 1 142 3
Column 2 Column 2 Column 2 Column 2 161 4
Column 2 Column 2 Column 2 Column 1 111 6
Column 2 Column 1 Column 2 Column 1 192 7
Column 1 Column 1 Column 1 Column 2 101 1
Column 2 none Column 2 none 01 1
Column 1 Column 2 Column 2 Column 2 142 2
Column 1 Column 2 Column 1 Column 1 91 5

Words2 Pairs2 [Row 1] Pairs2 [Row 2] Pairs2 [Row 3] Pairs2 [Row 4] Pairs2 [Row 5]
Sad Column 2 Column 1 Column 1 Column 2 Column 2
Hurricane Column 1 Column 2 Column 2 Column 1 Column 1
Uneven Column 1 Column 2 Column 2 Column 1 Column 1
Subtlety, change Column 2 Column 1 Column 2 Column 1 Column 1
sea, horizont, landscape, breeze, time, relaxed, Column 2 Column 1 Column 1 Column 1 Column 1
WrinkleLaundry Column 1 Column 2 Column 2 Column 1 Column 2
Moon crater Column 1 Column 1 Column 1 Column 2 Column 1
dance, excitement, change, breakColumn 1 Column 2 Column 2 Column 1 Column 1
light pain Column 2 Column 2 Column 2 Column 1 Column 1
Complicated, twisting, interesting, ambivalent, clever, kindColumn 2 Column 2 Column 2 Column 1 Column 1
Doodling Column 1 Column 2 Column 2 Column 2 Column 1
weather forecast in depth Column 2 Column 2 Column 2 Column 1 none
slow Column 2 Column 1 Column 1 Column 2 Column 2
Circles, flow, river, Column 2 Column 1 Column 1 Column 1 Column 1
aggressive, angry, harsh, in conflictColumn 1 Column 2 Column 2 Column 1 Column 1
none Column 1 Column 2 none none Column 1
Tear apart Column 2 Column 2 Column 2 Column 1 Column 1
Some sort of symmetry makes it pleasantColumn 2 Column 1 Column 2 Column 1 Column 2

Pairs2 [Row 6] Pairs2 [Row 7] Pairs2 [Row 8] Pairs2 [Row 9] Pairs2 [Row 10] Pairs2 [Row 11]
Column 1 Column 1 Column 1 Column 1 Column 1 Column 1
Column 1 Column 1 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 1 Column 2
Column 1 Column 1 Column 1 Column 1 Column 2 Column 1
Column 1 Column 1 Column 1 Column 1 Column 1 Column 1
Column 2 Column 1 Column 2 Column 2 Column 1 Column 2
Column 2 Column 1 Column 2 Column 2 Column 2 Column 1
Column 2 Column 2 Column 1 Column 2 Column 1 Column 2
Column 1 Column 1 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 2 Column 2
Column 2 Column 1 Column 2 Column 2 Column 1 Column 2
Column 1 Column 2 Column 2 Column 2 Column 2 Column 2
Column 2 Column 1 Column 2 Column 1 Column 1 Column 1
Column 1 Column 1 Column 1 Column 1 Column 2 Column 1
Column 1 Column 2 Column 2 Column 2 Column 2 Column 2
none none Column 2 none none Column 2
Column 1 Column 1 Column 1 Column 2 Column 2 Column 2
Column 1 Column 2 Column 1 Column 2 Column 2 Column 1

Pairs2 [Row 12] Gift Movie
Column 1 YES Den eneste ene
Column 1 YES Fight club
Column 1 YES Catch me if you can
Column 1 YES Your Name
Column 1 YES Eyes wide shut
Column 2 YES Avatar
Column 1 NO none
Column 1 YES Gladiator
Column 1 NO none
Column 1 YES Kung Fu Panda
Column 1 NO none
Column 2 YES donnie darko
Column 2 YES Pesho
Column 1 YES Juno
Column 1 NO none
Column 2 NO none
Column 2 YES Limitless
Column 1 YES Back to the Future

In [3]: %matplotlib inline

In [1]: import numpy as np

import pylab
import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler

In [2]: MovieTsnePoints=pd.read_csv("0F.csv")
MovieTsnePoints.columns
MovieTsnePoints=MovieTsnePoints[['t1','t2']]
MovieTsnePoints.dropna()
print(np.mean(MovieTsnePoints))

MovieSentiment=pd.read_csv("0F.csv")
MovieSentiment.columns
MovieSentiment=MovieSentiment[['valence','arousal']]
MovieSentiment.dropna()
print(np.mean(MovieSentiment))

MovieTsnePoints = StandardScaler().fit_transform(MovieTsnePoints)

t1 0.201741
t2 -0.245986
dtype: float64
valence 0.511266
arousal -0.121217
dtype: float64

Appendix A4

In [3]: # Compute DBSCAN
db = DBSCAN(eps=0.4, min_samples=10).fit(MovieTsnePoints)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

counts = np.bincount(labels[labels>=0])

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print(counts)
print(np.std(labels))

In []:

Estimated number of clusters: 2
Estimated number of noise points: 10
[108 31]
0.5052759791870796

In [4]: # Black removed and is used for noise instead.

import matplotlib.pyplot as plt

unique_labels = set(labels)
colors = [plt.cm.Spectral(each)

for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
 if k == -1:

Black used for noise.
col = [0, 0, 0, 1]

 class_member_mask = (labels == k)

 xy = MovieTsnePoints[class_member_mask & core_samples_mask]
 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),

markeredgecolor='k', markersize=14)

 xy = MovieTsnePoints[class_member_mask & ~core_samples_mask]
 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),

markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print(counts)

print(type(labels))

plt.show()

Estimated number of clusters: 2
Estimated number of noise points: 10
[108 31]
<class 'numpy.ndarray'>

In [5]: from sklearn.cluster import KMeans
import numpy as np
X = MovieTsnePoints
kmeans = KMeans(n_clusters=n_clusters_, random_state=0).fit(X)
kmeans.labels_

kmeans.cluster_centers_

In [90]: pocitamStd = (labels == 0)
pocitamStd2 = (labels == 1)
MovieTsnePoints[pocitamStd]

print(np.std(MovieTsnePoints[pocitamStd][:,0]), np.std(MovieTsnePoints[p
ocitamStd][:,1]))
print(np.std(MovieTsnePoints[pocitamStd2][:,0]), np.std(MovieTsnePoints[
pocitamStd2][:,1]))

In []:

Out[5]: array([[-1.50228259, 1.39148265],
[0.4786033 , -0.44330421]])

0.5944361799422452 0.38463891107136006
0.32256469887245603 0.3643187044030861

403 lines (295 sloc) 11.2 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Raw Blame History

import generativedesign.*;

import processing.pdf.*;

import java.util.Calendar;

import java.util.Date;

boolean savePDF = false;

boolean saveToPrint = false;

boolean recording = false;

int h=1600;

int w=1600;

float cnt01, cnt02;

int currentDrawIterationForCluster = 0;

float valenceMean ; //calculated inside load data

float pointX, pointY; //used for mapping X and Y position of attractors

int count = 250; //int(random(40,90)); //number of dots

int crclSize=w/2‑200;

int crclDist=int(sqrt(pow(crclSize, 2)/2));

//attractors parameters

int radius; //radius for attractors

https://github.com/TheAnn
https://github.com/join?source=prompt-blob-show
https://github.com/TheAnn/Generative-Art-Attractors/find/master
https://github.com/TheAnn/Generative-Art-Attractors/raw/master/HDPixelsAttraction0.pde
https://github.com/TheAnn/Generative-Art-Attractors/blame/master/HDPixelsAttraction0.pde
https://github.com/TheAnn/Generative-Art-Attractors/commits/master/HDPixelsAttraction0.pde
https://desktop.github.com/

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

float ramp; //ramp default before mapping

String fileName="0F.csv";

int clusterCount = 2; //number of clusters ******

int time = clusterCount*120;

int c1x = int(map(‑1.50228259, ‑2, 2, w/2‑crclDist, w/2+crclDist)); //mapping mean of f

int c1y = int(map(1.39148265, 2, ‑2, w/2+crclDist, w/2‑crclDist));

int r1 = int(map(31, 0, 150, 100, 800)); //mapping radius to be each cluster's size

int c2x = int(map(0.4786033, ‑2, 2, w/2‑crclDist, w/2+crclDist)); //mapping mean of sec

int c2y = int(map(‑0.44330421, 2, ‑2, w/2+crclDist, w/2‑crclDist));

int r2 = int(map(108, 0, 150, 100, 800));

int c3x = int(map(0, ‑2, 2, 150, w‑150)); //mapping mean of third cluster for x,y posit

int c3y = int(map(0, 2, ‑2, h‑150, 0+150));

int r3 = int(map(0, 0, 150, 100, 800));

int c4x = int(map(0, ‑2, 2, 150, w‑150)); //mapping mean of 4 cluster for x,y positions

int c4y = int(map(0, 2, ‑2, h‑150, 0+150));

int r4 = int(map(0, 0, 150, 100, 800));

int c5x = int(map(0, ‑2, 2, 150, w‑150)); //mapping mean of 5 cluster for x,y positions

int c5y = int(map(0, 2, ‑2, h‑150, 0+150));

int r5 = int(map(0, 0, 150, 100, 800));

int c6x = int(map(0, ‑2, 2, 150, w‑150)); //mapping mean of 6 cluster for x,y positions

int c6y = int(map(0, 2, ‑2, h‑150, 0+150));

int r6 = int(map(0, 0, 150, 100, 800));

float noise= 10*100/150 ; // noise in percentage, based on number of noise points (first nu

int drawingRadius= int(map(noise, 0, 100, 100, 600));

float strength = 45*int(random(‑2, 2));//map(0.9, 0, 1, 0, 45); //strength of attractors

float rampS= 0.19; // ramp on starting= initial point effect

float circleRadius = map(100‑noise, 0, 100, 0.98, 1); //how spreaded are the initial points

float finalnodeY, finalnodeX;

color range;

int coloredline;

int left [][]=new int [2][count]; //2 2D arrays with values

int right [][]=new int [2][count];

int xCount=0; //initial value

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

ArrayList<ClusterXY> clusterStartPoints = new ArrayList<ClusterXY>();

ArrayList<Node> nodeArraylist; //vsetky spolu

ArrayList<ArrayList> linesList; //vsetky lines

Attractor myAttractor;

PointAnna[]points;

Table table;

void setup() {

 size(1600, 1600);

 smooth();

 pixelDensity(2);

 strokeCap(ROUND);

 strokeJoin(ROUND);

 loadData();

 setupClusterPoints();

 float mappedValence=map(valenceMean, 1, ‑1, count‑20, 20);

 coloredline=floor(mappedValence);

 int colorMapped=int(map(valenceMean, 1, ‑1, 340, 220));

 colorMode(HSB, 360, 100, 100);

 range=color(colorMapped, 42, 73);

 ramp = map(valenceMean, ‑1, 1, ‑0.99, 0.99); //ramp radius to be based on valence

 println("points= " +count + " strength= " + strength+" ramp= " +ramp+ " radius= " +radius

 makepoints(); //calculates the positions of points around a circle, and stores them in th

 sortMe(left); //sorting all left points by y value, smallest to highest

 sortMe(right);

 nodeArraylist = new ArrayList<Node>(10000);

 linesList=new ArrayList();

 initGrid(); // setup node grid. This is where I save the position of each node (from all

 myAttractor = new Attractor(0, 0); // setup attractor

 myAttractor.strength = strength;

 myAttractor.ramp = ramp;

 myAttractor.radius=radius;

}

boolean first=true;

int c = 0;

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

//float noiseMax = map(noise, 0, 100, 1, 5);

void setupClusterPoints()

{

 for (int i=0; i< clusterCount; i++)

 {

 if (i==0)

 clusterStartPoints.add(new ClusterXY(c1x, c1y, r1));

 else if (i==1)

 clusterStartPoints.add(new ClusterXY(c2x, c2y, r2));

 else if (i==2)

 clusterStartPoints.add(new ClusterXY(c3x, c3y, r3));

 else if (i==3)

 clusterStartPoints.add(new ClusterXY(c4x, c4y, r4));

 else if (i==4)

 clusterStartPoints.add(new ClusterXY(c5x, c5y, r5));

 else if (i==5)

 clusterStartPoints.add(new ClusterXY(c6x, c6y, r6));

 }

}

void draw() {

 if (savePDF) beginRecord(PDF, fileName+ c+".pdf");

 background(0, 0, 100);

 strokeWeight(0.3);

 stroke(0);

 fill(0);

 float lastx=0;

 float lasty=0;

 float directionx=random(‑1, 1);

 float directiony=random(‑1, 1);

 int randomizedDrawingRadiusX=int(random(0, drawingRadius)*directionx);

 int randomizedDrawingRadiusY=int(random(0, drawingRadius)*directiony);

 ClusterXY currentClusterPoint = clusterStartPoints.get(currentDrawIterationForCluster);

 pointX = currentClusterPoint.x;

 pointY = currentClusterPoint.y;

 myAttractor.radius=currentClusterPoint.radius;

 currentDrawIterationForCluster++;

 c++;

 cnt01+=0.7;

 cnt02+=0.34;

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

 if (first) {

 myAttractor.ramp = rampS;

 myAttractor.radius = 150;

 myAttractor.x = pointX;

 myAttractor.y = pointY;

 //first=false;

 } else {

 myAttractor.ramp = ramp;

 myAttractor.x = pointX+(noise(cnt01)‑0.5)*350‑randomizedDrawingRadiusX;

 myAttractor.y = pointY+(noise(cnt02)‑0.5)*350‑randomizedDrawingRadiusY;

 }

 if (c%20==0 & directionx<0)myAttractor.strength*=‑1;

 //if(c%30==0 & directionx>0)myAttractor.strength= int(random(25,45))*directionx;

 for (int i = 0; i < linesList.size(); i++) { //loop for going through the nodes drawing

 ArrayList pointsOnLine=linesList.get(i);

 if (i==coloredline ||i==coloredline‑2 || i==coloredline+2) {

 stroke(range);

 strokeWeight(0.8);

 } else {

 stroke(0);

 strokeWeight(0.3);

 }

 for (int j=0; j<pointsOnLine.size(); j++) {

 Node node = (Node)pointsOnLine.get(j);

 myAttractor.attract(node);

 node.update();

 finalnodeX=node.x;

 finalnodeY=node.y;

 if (lastx>0) {

 line(finalnodeX, finalnodeY, lastx, lasty);

 }

 lastx=finalnodeX;

 lasty=finalnodeY;

 }

 lastx=0;

 lasty=0;

 }

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

 if (currentDrawIterationForCluster==clusterCount)

 {

 currentDrawIterationForCluster = 0;

 first=false;

 }

 if (recording)saveFrame("output/attractingPixs_####.png");

 if (c%50==0)

 {

 println("saving shot");

 saveFrame(timestamp()+"_####.png");

 }

 if (c==time)

 {

 println("I'm done. Thanks");

 saveFrame(timestamp()+"_####.png");

 noLoop();

 }

 if (savePDF) {

 savePDF = false;

 println("saving to pdf – finishing");

 endRecord();

 }

}

void loadData() {

 Table table = loadTable(fileName); //data file

 float[][] points = new float[2][table.getRowCount()‑1];

 for (int i=1; i<table.getRowCount(); i++) { //accesing all table rows and storing them as

 TableRow row=table.getRow(i);

 float xax=(float)row.getDouble(4);

 float yax =(float)row.getDouble(5);

 points[0][i‑1] = xax;

 points[1][i‑1] = yax;

 }

 float[] meanX = meanAndStd(points[0]);

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

 float[] meanY = meanAndStd(points[1]);

 println(" mean for valence and arousal is " + meanX[0], meanY[0]);

 println("std is " + meanX[1], meanY[1]);

 valenceMean= meanX[0];

 //arousalMean=meanY[0];

 //valenceStd=meanX[1];

 //arousalStd=meanY[1];

}

float[] meanAndStd(float numArray[])

{

 float[] ret = new float[2];

 float sum = 0.0, standardDeviation = 0.0;

 int length = numArray.length;

 for (float num : numArray) {

 sum += num;

 }

 float mean = sum/length;

 for (float num : numArray) {

 standardDeviation += Math.pow(num ‑ mean, 2);

 }

 ret[0] = mean;

 ret[1] = (float)Math.sqrt(standardDeviation/length);

 return ret;

}

void sortMe(int[][] arr) {

 String [] sortArray= new String[count];

 for (int j = 0; j < count; ++j) { //Moving the data from Matrix to single array to

 String combineColumns;

 combineColumns = str(arr[0][j]); //Adding the two columns together, seperated by a "d

 //Converting the datatype to String, to fit a single array

 combineColumns = str(arr[1][j]) + "‑" + combineColumns; //saving string with y position

 sortArray[j] = combineColumns;

 }

 sortArray = sort(sortArray); //Sorting, using processings sorting function

 for (int i = 0; i < count; ++i) { //Moving the sorted data back in the Matrix

 String[] tmp = split(sortArray[i], "‑"); //Using the split function, for each string in

 arr[0][i] = int(tmp[1]);

 arr[1][i] = int(tmp[0]); //Using the temp array, to write the data into the matrix agai

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

 }

 // println(""); println("FINAL RESULT"); //checking if sorting worked

 //for(int i = 0; i < 10; ++i) {

 // print(arr[0][i],arr[1][i]);

 // println("");

 //}

}

void makepoints() {

 for (int i=0; i<count; i++) { //calculating coordinates for each point on the right sid

 float angle = radians(180/float(count));

 float randomX = random(0, width);

 float randomY = random(0, height);

 float circleX = width/2 + sin(angle*i)*(crclSize);

 float circleY = height/2 + cos(angle*i)*(crclSize);

 int x = floor(lerp(randomX, circleX, circleRadius));

 int y = floor(lerp(randomY, circleY, circleRadius));

 right [0][i]=x;

 right [1][i]=y;

 }

 for (int i=0; i<count; i++) { //calculating coordinates for each point on left side

 float angle = radians(‑180/float(count));

 float randomX = random(0, width);

 float randomY = random(0, height);

 float circleX = width/2 + sin(angle*i)*(crclSize);

 float circleY = height/2 + cos(angle*i)*(crclSize);

 int x = floor(lerp(randomX, circleX, circleRadius));

 int y = floor(lerp(randomY, circleY, circleRadius));

 left [0][i]=x;

 left [1][i]=y;

 }

}

void initGrid() {

 for (int y = 0; y < count; y++) {

 int middleToPoint = int(dist(width/2, left[1][y], left[0][y], left[1][y]));

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

 ArrayList<Node> nodesInOneLine =new ArrayList(); //vsetky body v jednej line

 for (int x = left[0][y]; x <= left[0][y]+2*middleToPoint; x++) {

 int xPos = x;

 int yPos = left[1][y];

 Node myOneNode = new Node(xPos, yPos); //save position in Node object

 myOneNode.setBoundary(0, 0, width, height);

 myOneNode.setDamping(0.8); //// 0.0 ‑ 1.0

 nodeArraylist.add(myOneNode);

 nodesInOneLine.add(myOneNode);

 }

 linesList.add(nodesInOneLine);

 }

}

/////

void keyReleased() { //saving

 if (key == 's' || key == 'S') saveFrame(timestamp()+"_####.png");

 if (key == 'p' || key == 'P') savePDF = true;

 println("I'm safed!");

 if (key == 'r' || key == 'R') {

 recording = !recording;

 if (recording) println("recording on");

 if (!recording) println("recording stopped");

 }

}

String timestamp() {

 Calendar now = Calendar.getInstance();

 return String.format("%1$ty%1$tm%1$td_%1$tH%1$tM%1$tS", now);

}

Appendix B

1 from bs4 import BeautifulSoup
2 import cv2
3 import numpy as np
4 from numpy import genfromtxt
5 import os
6 import re
7 import requests
8 import urllib3
9 urllib3.disable_warnings()

10 from IPython.display import clear_output
11 from sklearn.cluster import KMeans
12 import argparse
13
14 clusters = 5
15 colorSpace = 'BGR'
16 combined = True
17 resizeW = 250
18
19 class YahooScraper():
20 def get_soup(self, url):
21 return BeautifulSoup(requests.get(url).text, "html.parser")
22
23 def download_images(self, color, num_images):
24
25 # Num of images
26 if num_images > 9:
27 raise ValueError('Number of images to download must be less than 20.')
28
29 download_directory = 'images/' + color
30
31 # Dir check
32 if not os.path.exists(download_directory):
33 os.mkdir(download_directory)
34
35 # Images check
36 nfiles = len([name for name in os.listdir(download_directory) if '.jpg' in name])
37 if nfiles >= num_images:
38 return False
39
40 # Query
41 query = color
42 url = 'https://images.search.yahoo.com/search/images?p=' + query

+'&imgty=photo&imgsz=medium'
43
44 soup = self.get_soup(url)
45 images = [a['src']
46 for a in soup.find_all('img', {'src': re.compile('http')})]
47 images = images[nfiles:num_images]
48
49 if len(images) < 1:
50 return False
51
52
53 for img in images:
54 http = urllib3.PoolManager()
55 raw_img = http.request('GET', img).data
56 image = np.asarray(bytearray(raw_img), dtype="uint8")
57 image = cv2.imdecode(image, cv2.IMREAD_COLOR)
58
59 x_size, y_size, _ = image.shape
60 cropped_image = image[0:y_size, int(x_size*.18):int(x_size*1.18)]
61
62 cntr = len([i for i in os.listdir(download_directory)
63 if color in i]) + 1
64 filename = ("images/" + color + '/' + color +
65 "_" + str(cntr) + '.jpg')
66 cv2.imwrite(filename, cropped_image)

67
68 return True
69
70 # Combine images into one for processing
71 def combine_images(folder, img_array):
72 if len(img_array) == 0 or img_array is None:
73 return (None, None)
74
75 # Make combined image
76 h = []
77 w = []
78
79 # Sizes
80 for i in img_array:
81 img = cv2.imread(i)
82 h.append(img.shape[0])
83 w.append(img.shape[1])
84
85 # Final shape
86 image = np.zeros((max(h), sum(w),3), np.uint8)
87
88 # Join to final
89 pivot = 0
90 for i, j in enumerate(img_array):
91 img = cv2.imread(j)
92 image[:h[i], pivot:pivot+w[i],:3] = img
93 pivot = pivot + w[i]
94
95 # Scale down to 250px width
96 r = resizeW / image.shape[1]
97 dim = (resizeW, int(image.shape[0] * r))
98 image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
99

100 # Save combined
101 cv2.imwrite(folder+'/combined.jpg', image)
102
103 return folder+'/combined.jpg'
104
105 # Get Dominant colors of input images
106 def get_dominant_colors(img_array):
107 if len(img_array) == 0 or img_array is None:
108 return (None, None)
109
110 colors_list = []
111 cluster_list = []
112 for image in img_array:
113 dominant_colors, cluster = get_dominant_colors_img(image)
114 colors_list.append(dominant_colors)
115 cluster_list.append(cluster)
116
117 return (colors_list, cluster_list)
118
119 # Dominant colors of an image
120 def get_dominant_colors_img(image_path):
121 global clusters
122
123 image = cv2.imread(image_path)
124 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if colorSpace == 'RGB' else image
125
126 # reshape the image to be a list of pixels
127 image = image.reshape((image.shape[0] * image.shape[1], 3))
128
129 # cluster the pixel intensities
130 clt = KMeans(n_clusters = clusters)
131 clt.fit(image)
132
133 # print(clt.cluster_centers_)

134
135 # show our color bart
136 return (clt.cluster_centers_, clt)
137
138 def getColors(color, n):
139 color = color.replace('/', ' ')
140
141 download_directory = 'images/' + color
142
143 # Fetch images and store in images/<color>
144 scraper = YahooScraper()
145 new = scraper.download_images(color, n)
146
147 # Read from files
148 # BGR
149 if colorSpace == 'BGR':
150 # Updated BGR file exists
151 if os.path.exists(download_directory+'/color.txt') and not new:
152 return (genfromtxt(download_directory+'/color.txt', delimiter=',',

dtype=int).tolist(), None, False)
153
154 # Updated RGB file exists : Load, transform and save as BGR
155 if os.path.exists(download_directory+'/color_rgb.txt') and not new:
156 temp = genfromtxt(download_directory+'/color_rgb.txt', delimiter=',',

dtype=int).tolist()
157 temp = swap3(temp)
158 np.savetxt(download_directory+'/color.txt', temp, delimiter=",")
159 return (temp, None, False)
160 # RGB
161 else:
162 # Updated RGB file exists
163 if os.path.exists(download_directory+'/color_rgb.txt') and not new:
164 return (genfromtxt(download_directory+'/color_rgb.txt', delimiter=',',

dtype=int).tolist(), None, False)
165
166 # Updated BGR file exists : Load, transform and save as RGB
167 if os.path.exists(download_directory+'/color.txt') and not new:
168 temp = genfromtxt(download_directory+'/color.txt', delimiter=',',

dtype=int).tolist()
169 temp = swap3(temp)
170 np.savetxt(download_directory+'/color_rgb.txt', temp, delimiter=",")
171 return (temp, None, False)
172
173 # Get list of resulting images
174 images = list(map(lambda x: download_directory + '/' + x,

os.listdir(download_directory)))
175 images = [x for x in images if '.jpg' in x]
176 images = images[:n]
177
178 # No images
179 if len(images)<1:
180 return ([0], None, False)
181
182 # Separate clustering
183 if not combined:
184 dom_colors, clusters = get_dominant_colors(images)
185
186 # Combined clustering
187 if combined:
188 dom_colors, clusters = get_dominant_colors([combine_images(download_directory,

images)])
189
190 return (dom_colors, clusters, True)
191
192 # Color (phrase, number of images, clusters per image, color treshold, clusters in

colors only)
193 def scrape(s, n, ct, t, cd, cs, comb):

194 global clusters, colorSpace, combined
195 combined = comb
196 clusters = ct
197 colorSpace = cs
198 download_directory = 'images/' + s
199
200 # Image colors
201 color, clts, new = getColors(s, n)
202
203 if not new:
204 return (color, False)
205
206 # 3D into 2D
207 final = []
208 for img in color:
209 for c in img:
210 final.append(list(c))
211
212 colorTreshold = t
213
214 # Filter out colors only
215 temp = [a for a in final if np.std(a) > colorTreshold]
216
217 # Any colors >> continue
218 if not temp:
219 return ([0], True)
220
221 # More than 1 color >> choose dominant one
222 if len(temp) == 1:
223 result = temp[0]
224 else:
225 result = domColor(temp, cd)
226
227 if colorSpace == 'BGR':
228 np.savetxt(download_directory+'/color.txt', result, delimiter=",")
229 else:
230 np.savetxt(download_directory+'/color_rgb.txt', result, delimiter=",")
231
232 return (result, True)
233
234 def domColor(d, c):
235 # Clusters
236 clt = KMeans(n_clusters = c)
237 clt.fit(d)
238
239 # Max population of dominant colors
240 numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1)
241 (h, _) = np.histogram(clt.labels_, bins = numLabels)
242 h = h.tolist()
243 m = h.index(max(h))
244
245 return [int(i) for i in clt.cluster_centers_[m]]
246
247 def show(c, mode):
248 c = c if mode == 'BGR' else swap3(c)
249 w = 512
250 h = 512
251
252 img = np.zeros((w,h,3), np.uint8)
253
254 cv2.rectangle(img, (0,0), (w,h), c, cv2.FILLED)
255
256 cv2.imshow("Image", img)
257 cv2.waitKey(0)
258 cv2.destroyAllWindows()
259
260 def showAll(c, mode):

261 c = c if mode == 'BGR' else [swap3(a) for a in c]
262 w = 512
263 h = 512
264 size = [int(w/len(c)), h]
265
266 img = np.zeros((w,h,3), np.uint8)
267
268 for j in range(len(c)):
269 cv2.rectangle(img, (size[0]*j,0), (size[0]*j+size[0],size[1]), c[j], cv2.FILLED)
270
271 cv2.imshow("Image", img)
272 cv2.waitKey(0)
273 cv2.destroyAllWindows()
274
275 def swap3(c):
276 c = [c[2], c[1], c[0]]
277 return c

Appendix C

1 import numpy as np
2 from skimage import io, color, img_as_ubyte
3 from sklearn.metrics.cluster import entropy
4 import os
5 from numpy import genfromtxt
6
7 def e(img):
8 rgbImg = io.imread(img)
9 grayImg = img_as_ubyte(color.rgb2gray(rgbImg))

10
11 return entropy(grayImg)
12
13 def ent(phrase, n, new):
14 download_directory = 'images/' + phrase
15
16 # Entrophy file exists
17 if os.path.exists(download_directory+'/entrophy.txt') and not new:
18 x = None
19 with open(download_directory+'/entrophy.txt', 'r') as f:
20 x = float(f.readline())
21 f.close()
22 if x:
23 return x
24
25 # Get list of resulting images
26 images = list(map(lambda x: download_directory + '/' + x,

os.listdir(download_directory)))
27 images = [x for x in images if '.jpg' in x]
28 images = images[:n]
29
30 if len(images)<1:
31 return 0
32
33 x = 0
34 for image in images:
35 x = x + e(image)
36 x = x/len(images)
37
38 # Save entrophy file
39 with open(download_directory+'/entrophy.txt', 'w') as f:
40 f.write('%f' % x)
41 f.close()
42
43 return x

Appendix D

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 1/8

In [8]:

import urllib.request, json
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from textblob import TextBlob
from textblob import Word
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import warnings
import re
from string import punctuation

warnings.filterwarnings("ignore", category=FutureWarning)

nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')

In [3]:

limit = 1000
#mode = 'duckling'
mode = 'imbd'

C:\Users\OndrejSpetko\Anaconda3\lib\site-packages\gensim\utils.py:1209: Us
erWarning: detected Windows; aliasing chunkize to chunkize_serial
 warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")

[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\OndrejSpetko\AppData\Roaming\nltk_data...
[nltk_data] Package stopwords is already up-to-date!
[nltk_data] Downloading package punkt to
[nltk_data] C:\Users\OndrejSpetko\AppData\Roaming\nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\OndrejSpetko\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!

Out[8]:

True

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 2/8

In [6]:

##JSON

if mode == 'duckling':
 # tags = 'tech%2Cfood%2Clove%2Cfamily'
 tags = ''

 u = "https://api.duckling.me/v3/public/api/stories?tags="+tags+"&offset=0&limit="+s
tr(limit)+"&fbclid=IwAR0LTjyryCcI5Y_5AXdGOQeKWxfAL4n-L6JcIWSphnBDB4qgqg2uOk7q_CQ";
 with urllib.request.urlopen(u) as url:
 data = json.loads(url.read())
 #data
 len(data['stories'])
print(mode)

imbd

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 3/8

In [15]:

##JSON to DataFrame
##User ID?
##Short text provides no info

if mode == 'duckling':
 minTextLen = 4
 minTagLen = 4

 stories = data['stories']
 nodes = []
 count = 0
 #final = ""

 for story in stories :
 slides = story['story']['slides']
 tags = story['story']['tags']
 content = ""
 content2 = ""

 #content
 for slide in slides :

 f = None
 if 'layers' in slide['slide'] :
 f = slide['slide']['layers']['foreground']['layer']['content']
 #let b = slide.layers.background.layer.content.overlayText
 #print(f)
 if f and 'overlayText' in f:
 content += f['overlayText']['text']+" "
 #tags
 for tag in tags :

 f = None
 if 'text' in tag['tag'] :
 f = tag['tag']['text']
 #print(f)
 if f :
 content2 += f+" "

 if len(content) > minTextLen :
 count = count + 1
 nodes.append({"text":content, "tags":content2 if len(content2)>minTagLen el
se " "})

 if count == limit:
 break

 #final = final.join(nodes)
 #type(nodes[0])
 df = pd.DataFrame(nodes)

if mode == 'imbd':
 d = pd.read_csv('IMBD.tsv', '\t')[:limit]
 df = pd.DataFrame(data={'text':d['review'], 'sentibin':d['sentiment']})

##Save raw

df.to_csv(r'dataRaw.csv',index=False)

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 4/8

df.index
df['text'][3]
print(df.index)
df.head()

RangeIndex(start=0, stop=1000, step=1)

Out[15]:

sentibin text

0 1 With all this stuff going down at the moment w...

1 1 \The Classic War of the Worlds\" by Timothy Hi...

2 0 The film starts with a manager (Nicholas Bell)...

3 0 It must be assumed that those who praised this...

4 1 Superbly trashy and wondrously unpretentious 8...

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 5/8

In [16]:

Remove "." where it glues sentances/words

df['text'] = df['text'].apply(lambda x: " "+re.sub('(?<=[a-zA-Z])[\.](?=[a-zA-Z])', '',
x, re.I|re.A))

df['text'][4]

Out[16]:

' Superbly trashy and wondrously unpretentious 80\'s exploitation, hooray!
The pre-credits opening sequences somewhat give the false impression that
we\'re dealing with a serious and harrowing drama, but you need not fear b
ecause barely ten minutes later we\'re up until our necks in nonsensical c
hainsaw battles, rough fist-fights, lurid dialogs and gratuitous nudity! B
o and Ingrid are two orphaned siblings with an unusually close and even sl
ightly perverted relationship. Can you imagine playfully ripping off the t
owel that covers your sister\'s naked body and then stare at her unshaven
genitals for several whole minutes? Well, Bo does that to his sister and,
judging by her dubbed laughter, she doesn\'t mind at all. Sick, dude! Anyw
ay, as kids they fled from Russia with their parents, but nasty soldiers b
rutally slaughtered mommy and daddy. A friendly smuggler took custody over
them, however, and even raised and trained Bo and Ingrid into expert smugg
lers. When the actual plot lifts off, 20 years later, they\'re facing thei
r ultimate quest as the mythical and incredibly valuable White Fire diamon
d is coincidentally found in a mine. Very few things in life ever made as
little sense as the plot and narrative structure of \\White Fire\\", but i
t sure is a lot of fun to watch. Most of the time you have no clue who\'s
beating up who or for what cause (and I bet the actors understood even les
s) but whatever! The violence is magnificently grotesque and every single
plot twist is pleasingly retarded. The script goes totally bonkers beyond
repair when suddenly \x96 and I won\'t reveal for what reason \x96 Bo need
s a replacement for Ingrid and Fred Williamson enters the scene with a big
cigar in his mouth and his sleazy black fingers all over the local prostit
utes. Bo\'s principal opponent is an Italian chick with big breasts but a
hideous accent, the preposterous but catchy theme song plays at least a do
zen times throughout the film, there\'s the obligatory \\"we\'re-falling-i
n-love\\" montage and loads of other attractions! My God, what a brilliant
experience. The original French title translates itself as \\"Life to Surv
ive\\", which is uniquely appropriate because it makes just as much sense
as the rest of the movie: None!"'

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 6/8

In [17]:

Punctuation, digits, ?lowercase(if not sentiment)

remove_terms = punctuation + '0123456789'

#df['text'] = df['text'].apply(lambda x: " ".join(("".join(z for z in y if z not in rem
ove_terms)).lower() for y in x.split()))
df['text'] = df['text'].apply(lambda x: " ".join(("".join(z for z in y if z not in remo
ve_terms)) for y in x.split()))

df
df['text'][4]

Out[17]:

'Superbly trashy and wondrously unpretentious s exploitation hooray The pr
ecredits opening sequences somewhat give the false impression that were de
aling with a serious and harrowing drama but you need not fear because bar
ely ten minutes later were up until our necks in nonsensical chainsaw batt
les rough fistfights lurid dialogs and gratuitous nudity Bo and Ingrid are
two orphaned siblings with an unusually close and even slightly perverted
relationship Can you imagine playfully ripping off the towel that covers y
our sisters naked body and then stare at her unshaven genitals for several
whole minutes Well Bo does that to his sister and judging by her dubbed la
ughter she doesnt mind at all Sick dude Anyway as kids they fled from Russ
ia with their parents but nasty soldiers brutally slaughtered mommy and da
ddy A friendly smuggler took custody over them however and even raised and
trained Bo and Ingrid into expert smugglers When the actual plot lifts off
years later theyre facing their ultimate quest as the mythical and incredi
bly valuable White Fire diamond is coincidentally found in a mine Very few
things in life ever made as little sense as the plot and narrative structu
re of White Fire but it sure is a lot of fun to watch Most of the time you
have no clue whos beating up who or for what cause and I bet the actors un
derstood even less but whatever The violence is magnificently grotesque an
d every single plot twist is pleasingly retarded The script goes totally b
onkers beyond repair when suddenly \x96 and I wont reveal for what reason
\x96 Bo needs a replacement for Ingrid and Fred Williamson enters the scen
e with a big cigar in his mouth and his sleazy black fingers all over the
local prostitutes Bos principal opponent is an Italian chick with big brea
sts but a hideous accent the preposterous but catchy theme song plays at l
east a dozen times throughout the film theres the obligatory werefallingin
love montage and loads of other attractions My God what a brilliant experi
ence The original French title translates itself as Life to Survive which
is uniquely appropriate because it makes just as much sense as the rest of
the movie None'

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 7/8

In [18]:

##Special chars, whitespaces, length>=4

wpt = nltk.WordPunctTokenizer()
stop_words = nltk.corpus.stopwords.words('english')

def process_doc(doc):
 # lower case and remove special characters\whitespaces
 doc = re.sub(r'[^a-zA-Z\s]', '', doc, re.I|re.A)
 #doc = doc.lower()
 doc = doc.strip()
 # tokenize document
 tokens = wpt.tokenize(doc)
 # filter stopwords out of document
 filtered_tokens = [token for token in tokens if token not in stop_words and len(tok
en)>=4]
 # re-create document from filtered tokens
 doc = ' '.join(filtered_tokens)
 return doc

df['text'] = df['text'].apply(lambda x: process_doc(x))

df
df['text'][4]

Out[18]:

'Superbly trashy wondrously unpretentious exploitation hooray precredits o
pening sequences somewhat give false impression dealing serious harrowing
drama need fear barely minutes later necks nonsensical chainsaw battles ro
ugh fistfights lurid dialogs gratuitous nudity Ingrid orphaned siblings un
usually close even slightly perverted relationship imagine playfully rippi
ng towel covers sisters naked body stare unshaven genitals several whole m
inutes Well sister judging dubbed laughter doesnt mind Sick dude Anyway ki
ds fled Russia parents nasty soldiers brutally slaughtered mommy daddy fri
endly smuggler took custody however even raised trained Ingrid expert smug
glers When actual plot lifts years later theyre facing ultimate quest myth
ical incredibly valuable White Fire diamond coincidentally found mine Very
things life ever made little sense plot narrative structure White Fire sur
e watch Most time clue whos beating cause actors understood even less what
ever violence magnificently grotesque every single plot twist pleasingly r
etarded script goes totally bonkers beyond repair suddenly wont reveal rea
son needs replacement Ingrid Fred Williamson enters scene cigar mouth slea
zy black fingers local prostitutes principal opponent Italian chick breast
s hideous accent preposterous catchy theme song plays least dozen times th
roughout film theres obligatory werefallinginlove montage loads attraction
s brilliant experience original French title translates Life Survive uniqu
ely appropriate makes much sense rest movie None'

5/28/2019 Data

localhost:8888/nbconvert/html/Projects/MED10/Python/Data.ipynb?download=false 8/8

In [20]:

Lemmatization

df['text'] = df['text'].apply(lambda x: " ".join([Word(word).lemmatize() for word in x.
split()]))
df['text'][4]

In [21]:

NaN clear

temp = df[df['text']==""].index
l = int(len(temp))

df = df.drop(temp).reset_index(drop=True)
print(len(temp))

In [22]:

##Save

df.to_csv(r'data.csv',index=False)

Out[20]:

'Superbly trashy wondrously unpretentious exploitation hooray precredits o
pening sequence somewhat give false impression dealing serious harrowing d
rama need fear barely minute later neck nonsensical chainsaw battle rough
fistfight lurid dialog gratuitous nudity Ingrid orphaned sibling unusually
close even slightly perverted relationship imagine playfully ripping towel
cover sister naked body stare unshaven genitals several whole minute Well
sister judging dubbed laughter doesnt mind Sick dude Anyway kid fled Russi
a parent nasty soldier brutally slaughtered mommy daddy friendly smuggler
took custody however even raised trained Ingrid expert smuggler When actua
l plot lift year later theyre facing ultimate quest mythical incredibly va
luable White Fire diamond coincidentally found mine Very thing life ever m
ade little sense plot narrative structure White Fire sure watch Most time
clue who beating cause actor understood even le whatever violence magnific
ently grotesque every single plot twist pleasingly retarded script go tota
lly bonkers beyond repair suddenly wont reveal reason need replacement Ing
rid Fred Williamson enters scene cigar mouth sleazy black finger local pro
stitute principal opponent Italian chick breast hideous accent preposterou
s catchy theme song play least dozen time throughout film there obligatory
werefallinginlove montage load attraction brilliant experience original Fr
ench title translates Life Survive uniquely appropriate make much sense re
st movie None'

0

Appendix E

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 1/34

In []:

import urllib.request, json
import numpy as np
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from textblob import TextBlob
from textblob import Word
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import warnings
import re
from string import punctuation
from IPython.display import clear_output
import importlib
import matplotlib.pyplot as plt
import matplotlib as mpl

warnings.filterwarnings("ignore", category=FutureWarning)

nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger')
nltk.download('brown')

Data

In []:

mode = 'duckling'
mode = 'imbd'

In []:

Load IMBD raw 20
df = pd.read_csv('data.csv')
df

In []:

Load pre-processed data
df = pd.read_csv('data.csv')
df

In []:

df['text'][0]

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 2/34

In []:

Load raw data
dfR = pd.read_csv('dataRaw.csv')
dfR

In []:

dfR['text'][0]

In []:

temp = [a for a in TextBlob(df['text'][0]).noun_phrases if len(a.split())>1 and len
(a.split())<4]
temp = TextBlob(df['text'][0]).noun_phrases
temp

In []:

temp = nltk.word_tokenize(dfR['text'][40])
nltk.pos_tag(temp)

In []:

##Tokenize
df['tokens'] = df['text'].apply(lambda x: list(pd.Series(x.split())))
df['tokens'] = df['text'].apply(lambda x: list(nltk.word_tokenize(x)))
dfR['tokens'] = dfR['text'].apply(lambda x: list(nltk.word_tokenize(x)))
df.head()

Glove

In []:

word2vec from pre-trained data: glove (100 dimensions)
dim = 300
dimS = str(dim)

glove_input_file = 'glove.6B.'+dimS+'d.txt'
word2vec_output_file = 'glove.6B.'+dimS+'d.txt.word2vec'
glove2word2vec(glove_input_file, word2vec_output_file)

In []:

filename = 'glove.6B.'+dimS+'d.txt.word2vec'
model = KeyedVectors.load_word2vec_format(filename, binary=False)
#(model['go'] + model['away'])/2
#model.most_similar(positive=['woman', 'king'], negative=['man'])[:1]

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 3/34

In []:

Words, count columns
df['words'] = df['text'].apply(lambda x: list(pd.Series(x.split()).value_counts().index
))
df['counts'] = df['text'].apply(lambda x: list(pd.Series(x.split()).value_counts().valu
es))
df['wordsT'] = df['text'].apply(lambda x: len(pd.Series(x.split()).value_counts().value
s))

df.head()

Feature: Topic

In []:

model['car']

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 4/34

In []:

Average vector per document: topicV

def average_word_vectors(words, counts):

 global model, dim
 feature_vector = np.zeros(dim,dtype="float64")
 nwords = 0
 vocab = model.vocab

 for w in range(len(words)):
 word = words[w]
 if word in vocab:
 c = counts[w]
 nwords = nwords + c
 feature_vector = np.add(feature_vector, model[word]*c)

 if nwords:
 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

df['topicV'] = df['tokens'].apply(lambda x: average_word_vectors(x, model, dim))

temp = []
wordsLimit = 5

for line in range(len(df)):
 temp.append(average_word_vectors(df['words'][line][:wordsLimit], df['counts'][line]
[:wordsLimit]))

type(temp[:5])
topicV = pd.DataFrame({'topicV': temp})
df['topicV'] = topicV
topicV = pd.DataFrame(topicV.topicV.values.tolist(), index= topicV.index)
topicV.head()

df.head()

In []:

Top n similar words to the average of a document
topn=10

df['topicWS'] = df['topicV'].apply(lambda x: np.array(model.most_similar([np.array(x)],
topn=topn))[:, 0])
df

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 5/34

In []:

Affinity propagation for unsupervised clustering: Similarities

from sklearn.cluster import AffinityPropagation

ap = AffinityPropagation()
ap.fit(topicV)
cluster_labels = ap.labels_
cluster_labels = pd.DataFrame(cluster_labels, columns=['cluster'])
df = pd.concat([df, cluster_labels], axis=1)
df

In []:

inc = int(255/np.array(df['cluster'].tolist()).max())
inc

In []:

PCA from topic vectors

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import matplotlib as mpl

pca = PCA(n_components=2, random_state=0)
pcs = pca.fit_transform(topicV)

In []:

K-means
from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=10, random_state=0).fit_transform(topicV)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 6/34

In []:

import plotly
import plotly.graph_objs as go

plotly.offline.init_notebook_mode(connected=True)

trace = go.Scatter(
 x = pcs[:,0],
 y = pcs[:,1],
 mode = 'markers',
 hoverinfo = 'text',
 text = list(df.index),
 marker = dict(
color = df['cluster'].tolist(),
 colorbar=dict(
 title='Colorbar'
),
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="PCA of topic vectors from IMBD reviews (color=clusters)"
)
})

In []:

from sklearn.manifold import TSNE

X_embedded = TSNE(n_components=2).fit_transform(topicV)

In []:

trace = go.Scatter(
 x = X_embedded[:,0],
 y = X_embedded[:,1],
 mode = 'markers',
 hoverinfo = 'text',
 text = list(df.index),
 marker = dict(
 color = df['cluster'].tolist(),
 colorbar=dict(
 title='Colorbar'
),
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="t-SNE of topic vectors of IMBD reviews (color=clusters)"
)
})

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 7/34

Feature: Sentiment

In []:

from nltk import tokenize

def vaderThis(paragraph):
sentence_list = tokenize.sent_tokenize(paragraph)
paragraphSentiments = 0.0
for sentence in sentence_list:
vs = analyzer.polarity_scores(sentence)
paragraphSentiments += vs["compound"]
return round(paragraphSentiments / len(sentence_list), 4)

In []:

vaderSentiment on Raw data (emoticons and punctuaction)

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

analyzer = SentimentIntensityAnalyzer()
Paragraph level
df['sentiment'] = dfR['text'].apply(lambda x: analyzer.polarity_scores(x)['compound'])
Sentence level
df['sentiment'] = dfR['text'].apply(lambda x: vaderThis(x))

df['sentiment'].head()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 8/34

In []:

Vader sentiment precision against labeled IMBD dataset sentiment
vader/nrc
senti = 'vader'

if mode == 'imbd' :
 if senti == 'nrc':
 temp = pd.DataFrame(df)
 temp['v'] = temp['VA'].apply(lambda x: x[0])
 temp['v'] = pd.DataFrame(data={'v':np.interp(np.array(temp.v.values.tolist()),
(0, 1), (-1, +1))})

 pos = temp[temp['v'] > 0]
 posA = np.array(pos.sentiment.values.tolist()).mean()

 posT = pos[pos['sentibin'] == 1]
 posTA = np.array(posT.sentiment.values.tolist()).mean()

 posN = pos[pos['sentibin'] == 0]
 posNA = np.array(posN.sentiment.values.tolist()).mean()

 posAcc = len(posT)/len(pos)*100

 neg = temp[temp['v'] < 0]
 negA = np.array(neg.sentiment.values.tolist()).mean()

 negT = neg[neg['sentibin'] == 0]
 negTA = np.array(negT.sentiment.values.tolist()).mean()

 negN = neg[neg['sentibin'] == 1]
 negNA = np.array(negN.sentiment.values.tolist()).mean()

 negAcc = len(negT)/len(neg)*100

 if senti == 'vader':

 pos = df[df['sentiment'] > 0]
 posA = np.array(pos.sentiment.values.tolist()).mean()

 posT = pos[pos['sentibin'] == 1]
 posTA = np.array(posT.sentiment.values.tolist()).mean()

 posN = pos[pos['sentibin'] == 0]
 posNA = np.array(posN.sentiment.values.tolist()).mean()

 posAcc = len(posT)/len(pos)*100

 neg = df[df['sentiment'] < 0]
 negA = np.array(neg.sentiment.values.tolist()).mean()

 negT = neg[neg['sentibin'] == 0]
 negTA = np.array(negT.sentiment.values.tolist()).mean()

 negN = neg[neg['sentibin'] == 1]
 negNA = np.array(negN.sentiment.values.tolist()).mean()

 negAcc = len(negT)/len(neg)*100

 print('Sentiment: '+senti)
 print('---')

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 9/34

 print("Positive: "+str(len(pos))+" ~ "+str("%.2f" % posA))
 print("PositiveT: "+str(len(posT))+" ~ "+str("%.2f" % posTA))
 print("PositiveN: "+str(len(posN))+" ~ "+str("%.2f" % posNA))
 print("Acc: "+str("%.2f" % posAcc)+" %")

 print("---")

 print("Negative: "+str(len(neg))+" ~ "+str("%.2f" % negA))
 print("NegativeT: "+str(len(neg[neg['sentibin'] == 0]))+" ~ "+str("%.2f" % negTA))
 print("NegativeN: "+str(len(neg[neg['sentibin'] == 1]))+" ~ "+str("%.2f" % negNA))
 print("Acc: "+str("%.2f" % negAcc)+" %")

 print("---")

 print(str("%.2f" % ((posAcc+negAcc)/2))+" %")

In []:

trace = go.Scatter(
 x = X_embedded[:,0],
 y = X_embedded[:,1],
 mode = 'markers',
 hoverinfo = 'text',
 text = list(df.index),
 marker = dict(
 color = df['sentiment'].tolist(),
 colorbar=dict(
 title='Colorbar'
),
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="t-SNE of topic vectors of IMBD reviews (color=sentimen
t)")
})

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 10/34

In []:

Heatmap of sentiments

import seaborn as sns;
sns.set()

l = len(df.groupby('cluster').groups.keys())
l

temp = []
clusters = []
for i in range(l):
 temp.append([])
 clusters.append([])

for i in range(l):
 index = df['cluster'].apply(lambda x: x==i)
 temp[i] = np.asarray(index)

temp = np.asarray(temp)
temp.shape

for c in range(l):
 for index in range(len(temp[c])):
 if temp[c][index]:
 #clusters[c].append({'cluster':c, 'sentiment':df['sentiment'][index]})
 clusters[c].append(df['sentiment'][index])
 else :
 clusters[c].append(-1.1)

ax = sns.heatmap(clusters, center=0)

Feature: Subjectivity

In []:

Returns average subj 0-1
def subjThis(sentences):
 temp = 0.0
 for sentence in sentences:
 temp = temp + sentence.sentiment.subjectivity
 return temp/len(sentences)

def polarThis(sentences):
 temp = 0.0
 for sentence in sentences:
 temp = temp + sentence.sentiment.polarity
 return temp/len(sentences)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 11/34

In []:

TextBlob seubjectivity on raw

Paragraph level
df['subjectivity'] = dfR['text'].apply(lambda x: TextBlob(x).sentiment.subjectivity)
Sentence level
df['subjectivity'] = dfR['text'].apply(lambda x: subjThis(TextBlob(x).sentences))
df['sentiment'] = dfR['text'].apply(lambda x: polarThis(TextBlob(x).sentences))
df.head()

In []:

df['sentiment'].min()

In []:

trace = go.Scatter(
 x = df['subjectivity'].tolist(),
 y = X_embedded[:,1],
 mode = 'markers',
 hoverinfo = 'text',
 text = list(df.index),
 marker = dict(
 color = df['subjectivity'].tolist(),
 colorbar=dict(
 title='Colorbar'
),
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="t-SNE of topic vectors of IMBD reviews ordered by subjec
tivity [X Axis] (color=subjectivity)")
})

Feature: Arousal

In []:

Load NRC-VAD lexicon
file = "NRC\\NRC-VAD-Lexicon\\NRC-VAD-Lexicon.txt"
dfL = pd.read_csv(file,'\t')
dfL.head()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 12/34

In []:

NRC-VA from tokens
iters = 0
length = len(df)
def getVA(tokens):
global iters, length
vec = np.zeros(2)
count = 0
for token in tokens:
tokenL = token.lower()
if (dfL['word'] == tokenL).any():
temp = dfL[dfL['word'] == tokenL].as_matrix(columns=dfL.columns[1:3])
vad = np.array(temp[0])
count = count + 1
print(tokenL, temp, vec, vad)
vec = vec + vad
clear_output(wait=True)
iters = iters + 1
print("("+str(iters)+") "+str("%.0f" % (iters/length*100))+"%")
return np.divide(vec, count) if count>0 else np.array([0.5, 0.5])

In []:

NRC-VA Arousal from unique words
length = len(df)
def getVA(tokens, counts):
 global iters, length
 vec = np.zeros(2)
 count = 0
 for t in range(len(tokens)):
 tokenL = tokens[t].lower()
 if (dfL['word'] == tokenL).any():
 temp = dfL[dfL['word'] == tokenL].as_matrix(columns=dfL.columns[1:3])
 c = counts[t]
 vad = np.array(temp[0])*c
 count = count + c
print(tokenL, temp, vec, vad, c, count)
 vec = vec + vad
 r = np.divide(vec, count)
 clear_output(wait=True)
 iters = iters + 1
 print("("+str(iters)+") "+str("%.0f" % (iters/length*100))+"%")
 return r[1] if count>0 else 0.5

In []:

iters = 0
df[:5].apply(lambda x: getVA(x['words'], x['counts']) if len(x['words']) < wordsLimit
else getVA(x['words'][:wordsLimit], x['counts']), axis=1)

In []:

iters = 0
wordsLimit = 5
df['VA'] = df['tokens'].apply(lambda x: getVA(x))
df['arousal'] = df.apply(lambda x: getVA(x['words'], x['counts']) if len(x['words']) <
wordsLimit else getVA(x['words'][:wordsLimit], x['counts']), axis=1)
df.head()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 13/34

In []:

x = np.array(df.sentiment.values.tolist())
np.var(x)

In []:

import plotly
import plotly.graph_objs as go

plotly.offline.init_notebook_mode(connected=True)

temp = df.arousal.values

x = temp[:,0]
x = np.interp(x, (0, 1), (-1, +1))
x = np.array(df.sentiment.values.tolist())

y = temp
y = np.interp(y, (0, 1), (-1, +1))

z = np.array(df.sentiment.values.tolist())

trace = go.Scatter(
 x = x,
 y = y,
 mode = 'markers',
 hoverinfo = 'text',
 text = list(df.index),
 marker = dict(
 color = 'blue',
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="NRC-VA distribution of stories in space of Circumplex of
Affection as clusters")
})

In []:

dfR['text'][71]

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 14/34

In []:

temp = np.array(df.VA.values.tolist())
emoCut = 0.1

x = temp[:,0]
x = np.interp(x, (0, 1), (-1, +1))
x = np.array(df.sentiment.values.tolist())

y = np.array(df.arousal.values.tolist())
y = np.interp(y, (0, 1), (-1, +1))

r = np.clip(y, 0, 1)
r = np.where(r < emoCut, 0, r)

g = np.clip(x, 0, 1)
g = np.where(g < emoCut, 0, g)

bb = np.clip(x, -1, 0)
b = np.interp(bb, (-1, 0), (+1, 0))
b = np.where(b < emoCut, 0, b)

plt.figure(figsize=(12, 12))
plt.margins(.1, .1)
plt.title('NRC-VA distribution of stories in space of Circumplex of Affection as emot
ions > 0.2')

for i in range(len(x)):
m = (r[i]+b[i]+g[i])/1
m = m if m>0.1 else 0
m = m if m<=1 else 1
color = (r[i], g[i], b[i], m)
#annotation_label = str(i)+'-'+str(ap.labels_[i])
xx = x[i]
yy = y[i]
plt.scatter(xx, yy, c=color)
#plt.scatter(xx, yy, c=color, edgecolors='k')
#plt.annotate(annotation_label, xy=(xx+1e-4, yy+1e-3), xytext=(0, 0), textcoords
='offset points')

plt.show()

In []:

X_embedded = TSNE(n_components=2).fit_transform(topicV)

In []:

print(math.degrees((np.arctan2([1,1], [1, 0]))[0]))

In []:

temp = np.interp(X_embedded, (X_embedded.min(), X_embedded.max()), (-1, +1))

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 15/34

In []:

wMult = 1
tMult = 1
#full vectors
dfF = pd.DataFrame(topicV.values.tolist(), index= topicV.index)
#tsne n= 2 of vectors
dfF = pd.DataFrame(temp*tMult, index= topicV.index)
dfF = pd.DataFrame(X_embedded*tMult, index= topicV.index)
dfF['valence'] = pd.DataFrame(x*wMult)
dfF['arousal'] = pd.DataFrame(y*wMult)
dfF['subjectivity'] = pd.DataFrame(df.subjectivity.values.tolist()*wMult, index=df.inde
x)
dfF.head()

In []:

copy features
dfF = pd.concat([dfF, dfF['valence'], dfF['arousal'], dfF['valence'], dfF['arousal'],
dfF['valence'], dfF['arousal'], dfF['valence'], dfF['arousal'], dfF['valence'], dfF['ar
ousal']], axis=1)
dfF.head()

In []:

##PCA from topic vectors, valence, arousal

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import matplotlib as mpl

pca = PCA(n_components=2, random_state=0).fit_transform(dfF)

In []:

labels = ap.labels_
categories = list(df.index)
plt.figure(figsize=(15, 13))
plt.title('PCA distribution of IMBD reviews by Arousal, Sentiment and topic (color=se
ntiment)')

for i in range(len(labels)):
m = (r[i]+b[i]+g[i])/1
m = m if m>0.1 else 0
m = m if m<=1 else 1
color = (r[i], g[i], b[i], m)
#annotation_label = categories[i]
x, y = pca[i]
plt.scatter(x, y, c=color)
#plt.annotate(annotation_label, xy=(x+1e-4, y+1e-3), xytext=(0, 0), textcoords='o
ffset points')

plt.show()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 16/34

In []:

from sklearn.manifold import TSNE

X_embedded2 = TSNE(n_components=2, perplexity=30, n_iter=1000).fit_transform(dfF)

In []:

labels = ap.labels_
categories = list(df.cluster)
plt.figure(figsize=(15, 13))
plt.title('t-SNE distribution of IMBD reviews by Arousal(1), Sentiment(1) and Topic(2)
(color=sentiment)')

for i in range(len(labels)):
 m = (r[i]+b[i]+g[i])/1
 m = m if m>0.1 else 0
 m = m if m<=1 else 1
color = (r[i], g[i], b[i], m)
 color = (r[i], g[i], b[i], 1)
 annotation_label = i
 x, y = X_embedded2[i]
 plt.scatter(x, y, c=color)
 plt.annotate(annotation_label, xy=(x+1e-4, y+1e-3), xytext=(0, 0), textcoords='offs
et points')

plt.show()

In []:

dfR['text'][609]

(Image) Feature: Color, Entrophy

In []:

temp = [a for a in TextBlob(df['text'][0]).noun_phrases if len(a.split())>1 and len
(a.split())<4]
len(temp), temp

In []:

Phrase count
count = 0
iters = 0
for text in df['text']:
iters = iters +1
count = count + len([a for a in TextBlob(text).noun_phrases if len(a.split())>1 a
nd len(a.split())<4])
clear_output(wait=True)
print(iters/len(df)*100, '%')
count

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 17/34

In []:

Scraper hook function
from Scraper import scraper
from Entrophy import entrophy
import colorsys
importlib.reload(scraper)
importlib.reload(entrophy)

BGR!
scrape(phrase, number of images, clusters per image, color treshold, clusters in colo
rs only)
c = scraper.scrape('tranquility', 5, 5, 35, 2)

def color_entrophy(text, row, total, chunk, chunkSize, chunks):
 combined = True
 imgClusters = 5
 colTreshold = 35
 colOnlyClusters = 2
 numImages = 5
 phraseCountLimit = 10
 temp = [a for a in TextBlob(text).noun_phrases if len(a.split())>1 and len(a.split
())<4]
 temp = temp[:phraseCountLimit]
 mode = 'RGB'
 colors = []
 ent = 0
 faults = []
 iters = 0

print('Total: (', row, '/', total, ') ', row/total, ' %')

 for phrase in temp:
 s, new = scraper.scrape(phrase, numImages, imgClusters, colTreshold, colOnlyClu
sters, mode, combined)
 e = entrophy.ent(phrase, numImages, new)

 # Color add
 if len(s)>1:
 colors.append(s)
 else:
 faults.append(phrase)

 # Entrophy add
 ent = ent + e

 iters = iters + 1
 clear_output(wait=True)
 print('Total: (', row+(chunk*chunkSize), '/', chunkSize*chunks, ') ', ((row+ch
unk*chunkSize)/(chunkSize*chunks))*100, ' %')
 print('Chunk: (', row, '/', total, ') ', (row/total)*100, ' %')
 print("Phrase: (",iters,"/", len(temp), ") : [",phrase,", ",s,", ",e,"]")
print("\t(",iters,"/", len(temp), ": ",phrase,", ",s,", ",e,") ")

 # Final color
 if len(colors)>1:
 c = scraper.domColor(colors, colOnlyClusters)
 else:
 if len(colors)>0:
 c = colors[0]
 else:

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 18/34

 c = [0,0,0]

 # RGB normalized
 rgbn = (np.array(c)/255).tolist()
 if mode == 'BGR':
 rgbn = scraper.swap3(rgbn)

 # RGB to HSV
 c = colorsys.rgb_to_hsv(rgbn[0], rgbn[1], rgbn[2])

 # Final entrophy
 if iters > 0:
 ent = ent/iters

print('Phrases:', len(temp), 'True:', len(colors), ' False:', len(faults), 'Colo
r:', c, ' Entrophy:', e)

 return pd.Series({'h': c[0], 's': c[1], 'v':c[2], 'entrophy': ent})

In []:

%%time
imgClusters = 5
colTreshold = 35
colOnlyClusters = 2
numImages = 5
scraper.scrape('tranquility', numImages, imgClusters, colTreshold, colOnlyClusters,
'RGB', True)

In []:

source = pd.DataFrame(data=df['text'][:2])
source
temp = source.apply(lambda x: color_entrophy(x['text'], x.name+1, len(source)), axis=
1)
df = pd.concat([df, temp], axis=1, join='inner')
df.head()

In []:

result = pd.concat([temp,temp]).reset_index(drop=True)
result

In []:

test = pd.DataFrame(data={'h':[], 's':[], 'v':[], 'entrophy':[]})
result = pd.concat([result,test]).reset_index(drop=True)
result

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 19/34

In []:

500 done
150 Full
350 restricted(10 phrases per text)
wall = 500
chunkSize = 50
packSize = 500

Final
result = pd.DataFrame(data={'h':[], 's':[], 'v':[], 'entrophy':[]})
print(result)

Chunks (each chunk starts with double check on 1st row; use chunkSize>5)
for chunk in range(int(packSize/chunkSize)):
pivot = int(chunk * chunkSize)+wall
source = pd.DataFrame(data=df['text'][pivot:(chunk * chunkSize + chunkSize + wal
l)])
temp = source.apply(lambda x: color_entrophy(x['text'], x.name-pivot+1, len(sourc
e), chunk, chunkSize, int(packSize/chunkSize)), axis=1)
result = pd.concat([result,temp]).reset_index(drop=True)

result

In []:

##Save

result.to_csv(r'result5002.csv',index=False)

In []:

Load
resultT = pd.read_csv('result500.csv')
resultT
result2 = pd.concat([result, resultT])
result2 = pd.read_csv('result1000.csv')
result2

In []:

resultF = result2.reset_index(drop=True)
resultF

In []:

##Save

resultF.to_csv(r'result1000.csv',index=False)

In []:

result = pd.read_csv('result1000.csv')

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 20/34

In []:

Interpolate entrophy

Entrophy
zz = np.array(result.entrophy.values.tolist())
zz = pd.DataFrame(np.interp(zz, (zz.min(), zz.max()), (-1, +1)))

h
hh = np.array(result.h.values.tolist())
hh = pd.DataFrame(np.interp(hh, (hh.min(), hh.max()), (-1, +1)))

s
ss = np.array(result.s.values.tolist())
ss = pd.DataFrame(np.interp(ss, (ss.min(), ss.max()), (-1, +1)))

v
vv = np.array(result.v.values.tolist())
vv = pd.DataFrame(np.interp(vv, (vv.min(), vv.max()), (-1, +1)))

In []:

500
HSV >> TSNE >> 2?
eMult = 0.25

Join
temp = pd.DataFrame(dfF[:len(result)])
dfF2 = pd.concat([temp,result], axis=1).reset_index(drop=True)

Mult?
dfF2['entrophy'] = pd.DataFrame([a*eMult for a in dfF2.entrophy.values.tolist()])
dfF2['entrophy'] = zz
dfF2['h'] = hh
dfF2['s'] = ss
dfF2['v'] = vv

dfF2.head()

In []:

##Save

dfF2.to_csv('dfF2.csv',index=False)

In []:

from sklearn.decomposition import PCA

resultPCA = PCA(n_components=2, random_state=0).fit_transform(pd.DataFrame(data=dfF2[[
'h','s','v']]))

In []:

from sklearn.manifold import TSNE

resultTSNE = TSNE(n_components=2, perplexity=30, n_iter=1000).fit_transform(result)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 21/34

In []:

s1 = pd.DataFrame(resultPCA[:,0])
s2 = pd.DataFrame(resultPCA[:,1])

In []:

dfF2.head()

Feature Selection

In []:

dfF2 = pd.read_csv('dfF2.csv')

In []:

Feature list

dfF2

In []:

Feature selection

dfF22 = pd.DataFrame(data=dfF2[['arousal', 'subjectivity', 'entrophy', 'h', 's', 'v']])
dfF22.head()

In []:

Reduced Scraping features

dfF22['s1'] = r1
dfF22['s2'] = r2

dfF22.head()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 22/34

In []:

import plotly
import plotly.graph_objs as go

plotly.offline.init_notebook_mode(connected=True)

trace = go.Scatter(
 x = resultPCA[:,0],
 y = resultPCA[:,1],
 mode = 'markers',
 hoverinfo = 'text',
 marker = dict(
 color = hh[0],
 colorscale='Viridis'
)
)

plotly.offline.iplot({
 "data": [trace],
 "layout": go.Layout(title="PCA of HSV features")
})

In []:

pca = PCA()
X_pca = pca.fit_transform(pd.DataFrame(data=dfF2[['h','s','v']]))

np.set_printoptions(formatter={'float_kind':'{:f}'.format})
ev = pca.explained_variance_ratio_

plt.plot(pd.DataFrame(data=dfF2[['h','s','v']]).columns, ev)

In []:

dfF2 = pd.DataFrame(data=dfF22)
dfF2.head()

Feature statistics

Correlation

In []:

import seaborn as sb
from pylab import rcParams

corrcoef = dfF2.corr()
rcParams['figure.figsize']=10, 9
sb.heatmap(corrcoef, xticklabels=corrcoef.columns.values, yticklabels=corrcoef.columns.
values)

Mean, Variance, Std

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 23/34

In []:

mx=dfF2.mean()
stdx=dfF2.std()
var=dfF2.var()

mx, stdx, var
sb.heatmap([mx,var,stdx], xticklabels=dfF2.columns.values, yticklabels=['Mean', 'Varian
ce', 'STD'])

Feature clustering

In []:

clusters_ = np.arange(3, 12, 1)
repeat = 20

DBSCAN

In []:

from sklearn.cluster import DBSCAN
from sklearn import metrics

Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=7).fit(dfF2)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(dfF2, labels))

Silhouette score (GaussianMixture)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 24/34

In []:

from sklearn.mixture import GaussianMixture
from scipy.stats import multivariate_normal as mvn
from sklearn.metrics import silhouette_samples, silhouette_score

rawScores1 = np.zeros(9)

for i in range(repeat):
 for clusters in range(3,12):
 gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(dfF2)
 prediction_gmm = gmm.predict(dfF2)
 probs = gmm.predict_proba(dfF2)

 silhouette_avg = silhouette_score(dfF2, prediction_gmm)
 rawScores1[clusters-3] = rawScores1[clusters-3]+silhouette_avg

rawScores1 = rawScores1/repeat

for i in range(len(rawScores1)):
 print(i+3," clusters ",rawScores1[i])

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (Gaussian Mixture)')
ax.plot(np.arange(3, 12, 1), rawScores1)

Silhouette score (K-means)

In []:

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

rawScores2 = []

for n in range(3,12):
 kmeans = KMeans(n_clusters=n, random_state=0).fit(dfF2)
 silhouette_avg = silhouette_score(dfF2, kmeans.labels_)
 rawScores2.append(silhouette_avg)
 print(n," clusters ",silhouette_avg)

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (K-means)')
ax.plot(np.arange(3, 12, 1), rawScores2)

Summary

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 25/34

In []:

fig, ax = plt.subplots()
ax.grid()
ax.plot(clusters_, rawScores1, color='blue', linestyle='dashed', linewidth=2, markersiz
e=12, label='Original data (GM)')
ax.plot(clusters_, rawScores2, color='blue', linewidth=2, markersize=12, label='Origina
l data (K-means)')
ax.set(xlabel='N. of clusters', ylabel='Score', title='Average silhouette score for clu
ster number')
ax.legend(loc='upper right', shadow=True, fontsize='x-large')
plt.show()

t-SNE

In []:

from sklearn.manifold import TSNE

X_embedded2 = TSNE(n_components=2, perplexity=30, n_iter=1000).fit_transform(dfF2)

PCA

In []:

from sklearn.decomposition import PCA

X_embedded3 = PCA(n_components=2, random_state=0).fit_transform(dfF2)
X_embedded3R = PCA(n_components=2, random_state=0).fit(dfF2)

Saving/Loading

In []:

Join
X_embedded2 = np.interp(X_embedded2, (X_embedded2.min(), X_embedded2.max()), (-1, +1))
dfF3 = pd.DataFrame(data={'t1': X_embedded2[:,0],'t2': X_embedded2[:,1]})
dfF33 = pd.DataFrame(data={'p1': X_embedded3[:,0],'p2': X_embedded3[:,1]})
dfF4 = pd.concat([dfF3, dfF33, dfF2], axis=1)
dfF4.head()

In []:

Save
dfF4.to_csv('Final.csv',index=False)

In []:

dfF4 = pd.read_csv('Final.csv')
dfF4.head()

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 26/34

In []:

X_embedded2 = dfF4.as_matrix(columns=dfF4.columns[0:2])
X_embedded3 = dfF4.as_matrix(columns=dfF4.columns[2:4])

t-SNE

In []:

plt.figure(figsize=(15, 13))

HSV
tt = np.array(dfF2.h.values.tolist())
r = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = np.array(dfF2.s.values.tolist())
g = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = np.array(dfF2.v.values.tolist())
b = np.interp(tt, (tt.min(), tt.max()), (0, +1))

Reduced HSV
tt = hh[0]
r = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = ss[0]
g = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = vv[0]
b = np.interp(tt, (tt.min(), tt.max()), (0, +1))

for i in range(len(dfF2)):
 c = colorsys.hsv_to_rgb(r[i], b[i], g[i])
 m = (c[0]+c[1]+c[2])/1
 m = m if m>0.1 else 0
 m = m if m<=1 else 1
 color = (c[0], c[1], c[2], 1)
 x, y = X_embedded2[i]
 plt.scatter(x, y, c=color)

plt.show()

PCA

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 27/34

In []:

plt.figure(figsize=(15, 13))

HSV
tt = np.array(dfF2.h.values.tolist())
r = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = np.array(dfF2.s.values.tolist())
g = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = np.array(dfF2.v.values.tolist())
b = np.interp(tt, (tt.min(), tt.max()), (0, +1))

Reduced HSV
tt = hh[0]
r = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = ss[0]
g = np.interp(tt, (tt.min(), tt.max()), (0, +1))

tt = vv[0]
b = np.interp(tt, (tt.min(), tt.max()), (0, +1))

for i in range(len(dfF2)):
 c = colorsys.hsv_to_rgb(r[i], b[i], g[i])
 m = (c[0]+c[1]+c[2])/1
 m = m if m>0.1 else 0
 m = m if m<=1 else 1
 color = (c[0], c[1], c[2], 1)
 x, y = X_embedded3[i]
 plt.scatter(x, y, c=color)

plt.show()

In []:

pca = PCA()
X_pca = pca.fit_transform(dfF2)

np.set_printoptions(formatter={'float_kind':'{:f}'.format})
ev = pca.explained_variance_ratio_

plt.plot(dfF2.columns, ev)

In []:

comps = pd.DataFrame(pca.components_,columns=dfF2.columns)
sb.heatmap(comps)

In []:

scraper.showAll(colors, mode)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 28/34

In []:

RGB!

scraper.show(c, mode)

Saving/Loading complete dataset

In []:

final = pd.read_csv('Final.csv')

In []:

dfF = pd.concat([final,dfR['text']], axis=1).reset_index(drop=True)
dfF.head()

In []:

Save
dfF.to_json('FinalText.json')

Clustering & Validation

Silhouette score (GaussianMixture) : t-SNE

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 29/34

In []:

from sklearn.mixture import GaussianMixture
from scipy.stats import multivariate_normal as mvn
from sklearn.metrics import silhouette_samples, silhouette_score

avgs1 = np.zeros(9)

for i in range(repeat):
 for clusters in range(3,12):
 gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(X_embe
dded2)
 prediction_gmm = gmm.predict(X_embedded2)
 probs = gmm.predict_proba(X_embedded2)

 silhouette_avg = silhouette_score(X_embedded2, prediction_gmm)
 avgs1[clusters-3] = avgs1[clusters-3]+silhouette_avg

avgs1 = avgs1/repeat

for clusters in range(3,12):
 gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(X_embedded
2)
 prediction_gmm = gmm.predict(X_embedded2)
 probs = gmm.predict_proba(X_embedded2)

 print('Silhouette_avg for ',clusters,' cluster: ',avgs1[clusters-3])

 centers = np.zeros((clusters,2))
 for i in range(clusters):
 density = mvn(cov=gmm.covariances_[i], mean=gmm.means_[i]).logpdf(X_embedded2)
 centers[i, :] = X_embedded2[np.argmax(density)]

 n = clusters - 2
 plt.subplot(int(str(33)+str(n)))
 plt.title(str(clusters))
 plt.scatter(X_embedded2[:, 0], X_embedded2[:, 1],c=prediction_gmm ,s=50, cmap='viri
dis')
 plt.scatter(centers[:, 0], centers[:, 1],c='black', s=300, alpha=0.6);

plt.show()

In []:

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (GaussianMixture)')
ax.plot(np.arange(3, 12, 1), avgs1)

Silhouette score (GaussianMixture) : PCA

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 30/34

In []:

from sklearn.mixture import GaussianMixture
from scipy.stats import multivariate_normal as mvn
from sklearn.metrics import silhouette_samples, silhouette_score

avgs2 = np.zeros(9)

for i in range(repeat):
 for clusters in range(3,12):
 gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(X_embe
dded3)
 prediction_gmm = gmm.predict(X_embedded3)
 probs = gmm.predict_proba(X_embedded3)

 silhouette_avg = silhouette_score(X_embedded3, prediction_gmm)
 avgs2[clusters-3] = avgs2[clusters-3]+silhouette_avg

avgs2 = avgs2/repeat

for clusters in range(3,12):
 gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(X_embedded
3)
 prediction_gmm = gmm.predict(X_embedded3)
 probs = gmm.predict_proba(X_embedded3)

 print('Silhouette_avg for ',clusters,' cluster: ',avgs2[clusters-3])

 centers = np.zeros((clusters,2))
 for i in range(clusters):
 density = mvn(cov=gmm.covariances_[i], mean=gmm.means_[i]).logpdf(X_embedded3)
 centers[i, :] = X_embedded3[np.argmax(density)]

 n = clusters - 2
 plt.subplot(int(str(33)+str(n)))
 plt.title(str(clusters))
 plt.scatter(X_embedded3[:, 0], X_embedded3[:, 1],c=prediction_gmm ,s=50, cmap='viri
dis')
 plt.scatter(centers[:, 0], centers[:, 1],c='black', s=300, alpha=0.6);
plt.show()

In []:

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (GaussianMixture)')
ax.plot(np.arange(3, 12, 1), avgs2)

K-means

t-SNE

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 31/34

In []:

t-SNE

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

scores1 = []

for clusters in range(3,12):
 kmeans = KMeans(n_clusters=clusters, random_state=0).fit(X_embedded2)

 silhouette_avg = silhouette_score(X_embedded2, kmeans.labels_)
 scores1.append(silhouette_avg)
 print(clusters," clusters ",silhouette_avg)

 n = clusters - 2
 plt.subplot(int(str(33)+str(n)))
 plt.title(str(clusters))
 plt.scatter(X_embedded2[:, 0], X_embedded2[:, 1],c=kmeans.labels_ ,s=50, cmap='viri
dis')
 plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],c='black',
s=300, alpha=0.6);
plt.show()

In []:

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (K-means)')
ax.plot(np.arange(3, 12, 1), scores1)

PCA

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 32/34

In []:

PCA

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

scores2 = []

for clusters in range(3,12):
 kmeans = KMeans(n_clusters=clusters, random_state=0).fit(X_embedded3)

 silhouette_avg = silhouette_score(X_embedded3, kmeans.labels_)
 scores2.append(silhouette_avg)
 print(clusters," clusters ",silhouette_avg)

 n = clusters - 2
 plt.subplot(int(str(33)+str(n)))
 plt.title(str(clusters))
 plt.scatter(X_embedded3[:, 0], X_embedded3[:, 1],c=kmeans.labels_ ,s=50, cmap='viri
dis')
 plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],c='black',
s=300, alpha=0.6);
plt.show()

In []:

fig, ax = plt.subplots()
ax.grid()
ax.set(xlabel='N. of clusters', ylabel='Score',
 title='Average silhouette score for cluster number (K-means)')
ax.plot(np.arange(3, 12, 1), scores2)

Summary

In []:

fig, ax = plt.subplots()
ax.grid()
ax.plot(clusters_, avgs1, color='green', linestyle='dashed', linewidth=2, markersize=12
, label='t-SNE (GM)')
ax.plot(clusters_, scores1, color='green', linewidth=2, markersize=12, label='t-SNE (K-
means)')
ax.plot(clusters_, avgs2, color='blue', linestyle='dashed', linewidth=2, markersize=12,
label='PCA (GM)')
ax.plot(clusters_, scores2, color='blue', linewidth=2, markersize=12, label='PCA (K-mea
ns)')
ax.plot(clusters_, rawScores1, color='red', linestyle='dashed', linewidth=2, markersize
=12, label='Original data (GM)')
ax.plot(clusters_, rawScores2, color='red', linewidth=2, markersize=12, label='Original
data (K-means)')
ax.set(xlabel='N. of clusters', ylabel='Score', title='Average silhouette score for clu
ster number')
ax.legend(loc='upper right', shadow=True)
plt.show()

PDF (t-SNE)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 33/34

In []:

import plotly
import plotly.plotly as py
import plotly.graph_objs as go
from scipy.stats import multivariate_normal

plotly.offline.init_notebook_mode(connected=True)

clusters = 6
kmeans = KMeans(n_clusters=clusters, random_state=0).fit(X_embedded2)

d = []
temp = np.array(kmeans.labels_)

for n in range(clusters):

 dfF4Temp = dfF4[['t1','t2']].loc[np.where(temp==n)]
 mu = dfF4Temp.mean()
 Sigma = dfF4Temp.cov()
 X_embeddedTemp = X_embedded2[np.where(temp==n)]

 X, Y = np.meshgrid(X_embeddedTemp[:,0], X_embeddedTemp[:,1])

 F = multivariate_normal(mu, Sigma)
 Z = F.pdf(X_embeddedTemp)

 d.append(go.Mesh3d(
 x = X_embeddedTemp[:,0],
 y = X_embeddedTemp[:,1],
 z = Z,
 colorscale = [[0, 'rgb(0, 0, 255)'],
 [0.5, 'rgb(0, 255, 0)'],
 [1, 'rgb(255, 255, 0)']],
 intensity = Z,
 name = 'y',
 showscale = False
))

data = d

layout = go.Layout(
 xaxis=go.layout.XAxis(
 title='x'
),
 yaxis=go.layout.YAxis(
 title='y'
)
)

fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='PDF_all_TSNE.html')

PDF (PCA)

5/28/2019 Final

localhost:8889/nbconvert/html/Projects/MED10/Python/Final.ipynb?download=false 34/34

In []:

import plotly
import plotly.plotly as py
import plotly.graph_objs as go
from scipy.stats import multivariate_normal

plotly.offline.init_notebook_mode(connected=True)

clusters = 5
kmeans = KMeans(n_clusters=clusters, random_state=0).fit(X_embedded3)

d = []
temp = np.array(kmeans.labels_)

for n in range(clusters):

 dfF4Temp = dfF4[['p1','p2']].loc[np.where(temp==n)]
 mu = dfF4Temp.mean()
 Sigma = dfF4Temp.cov()

 X_embeddedTemp = X_embedded3[np.where(temp==n)]

 X, Y = np.meshgrid(X_embeddedTemp[:,0], X_embeddedTemp[:,1])

 F = multivariate_normal(mu, Sigma)
 Z = F.pdf(X_embeddedTemp)

 d.append(go.Mesh3d(
 x = X_embeddedTemp[:,0],
 y = X_embeddedTemp[:,1],
 z = Z,
 colorscale = [[0, 'rgb(0, 0, 255)'],
 [0.5, 'rgb(0, 255, 0)'],
 [1, 'rgb(255, 255, 0)']],
 intensity = Z,
 name = 'y',
 showscale = False
))

data = d

layout = go.Layout(
 xaxis=go.layout.XAxis(
 title='x'
),
 yaxis=go.layout.YAxis(
 title='y'
)
)

fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig, filename='PDF_all_PCA.html')

	AppA
	appB
	appC
	appDa
	appDb

