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Abstract:

This project covers the development of a
controller for a laboratory system that em-
ulates a sewer network. A sewer network
receives wastewater from residential ar-
eas, industries, runoff rainwater and trans-
ports them to a wastewater treatment
plant (WWTP). In one particular case, at
Fredericia, there are some heavy industries
discharging occasionally large amounts of
wastewater over a short time. Such fluc-
tuating flow and and/or contaminant con-
centrations causes a stress on the WWTP.
In this research project, we worked on a
laboratory setup imitating a sewer net-
work. We use a buffer tank to hold back
water, a gravity sewer pipe to transport
water, pumps to continuously generate a
typical pattern of water flow and a over-
flow tank to collect water from sewer pipe
outlet. Now, this led us to a problem
statement: How can a laboratory setup
that mimic a real sewer network be as-
sembled so that we can later utilize MPC,
along with disturbance predictions and a
storage tank that results in stable work-
ing conditions for the wastewater treat-
ment plant. Controlling the output flow
from the buffer tank into the top of sewer
pipe gives the possibility to smooth out the
flow of water at the end of gravity sewer
pipe. With a simplified model, prediction
of flow disturbances, performance function
and constraints, a Model Predictive Con-
troller (MPC) was developed and the final
results were promising.





Preface

This report, created by Llorenc Salleras Mestre and Pravin Karthick Murugesan docu-
ments the work of our Master Thesis in Control and Automation at Aalborg University,
2019.

The report can be understood by anyone with a control engineering background. It is
written with an intention of being a reference material for students who are going to work
with the wastewater laboratory system. MATLAB/SIMULINK and CODESYS are the
primary software tools used for this project. All figures were made by us with the appli-
cation draw.io unless a reference is included in the figure caption.

Units are indicated in a parenthesis after the variable has been defined, for example, h is
level (mm). Non-SI units such as litres, minutes have been used in parts of the thesis.
Equations are referred with an identifier in a parenthesis, for example, (4.16). The same
applies to figures and tables. A nomenclature with a list of symbols and abbreviations can
be found after the table of contents.

References of books, articles, project reports can be found in the bibliography section.
Additional information regarding the project work is included in the appendix section.

Two different flow data (measured at the inlet to the wastewater treatment plant) has been
used in this thesis. Both of them have been received from the project management group
at Fredericia Spildevand og Energi A/S. The time of flow measurements taken and their
respective use in this work is given below.

1 October 2017: For evaluating kalman filter performance in Chapter (4)

2 February-March 2019: Creation of a disturbance model in Chapter (4) and simulation
studies in Chapter (6) are based on this data

v



 



Acknowledgement

We want to thank our supervisors Carsten Skovmose Kallesøe, Tom Søndergaard Pedersen
and Jorge Val Ledesma for their timely feedback, guidance and support. Their guidance
and encouragement made it possible for us to complete our Master Thesis.

Kirsten Mølgaard and Palle Andersen, even though not part of the official supervision
group, gave us their opinions and ideas for improving the project work. Their presence in
the meetings turned out to be really helpful in many ways. We appreciate and thank their
assistance.

Special mention to Palle Andersen for his idea of modeling flow in a tube as a delay. We
thank him for showing us how it can be done.

We received all the help one can get with running experiments in the laboratory from
Jorge Val Ledesma and Carsten Skovmose Kallesøe. We sincerely and wholeheartedly
thank them for this.

vii



Contents

List of Symbols xi

1 Introduction 1
1.1 Sewer construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sewer as a chemical and biological reactor . . . . . . . . . . . . . . . . . . . 2
1.3 Working of a wastewater treatment plant . . . . . . . . . . . . . . . . . . . 3
1.4 Challenges of wastewater treatment . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Description of Laboratory Setup 9
2.1 Sewer network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.2 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Software: CODESYS . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Communication protocol: Modbus TCP/IP . . . . . . . . . . . . . . 17

3 Modeling by First Principles 19
3.1 Tank volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Flow in pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Modeling of sewer system in Fredericia . . . . . . . . . . . . . . . . . 21
3.2.2 Modeling of laboratory setup . . . . . . . . . . . . . . . . . . . . . . 24

4 Control 25
4.1 Time-series analysis in the frequency domain . . . . . . . . . . . . . . . . . 25
4.2 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Delay in the sewer network . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 In Fredericia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Cross correlation analysis in laboratory . . . . . . . . . . . . . . . . 34

4.5 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 System to control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.3 Performance function . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Implementation 45
5.0.1 YALMIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.0.2 SIMULINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



Contents Aalborg University

6 Tests and Results 49
6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1 Simulation with tank constraint . . . . . . . . . . . . . . . . . . . . . 51
6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Pump control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Valve control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.3 Manning equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.4 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.5 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.5.1 Without tank constraint . . . . . . . . . . . . . . . . . . . 61
6.2.5.2 With tank constraint . . . . . . . . . . . . . . . . . . . . . 63
6.2.5.3 Soft tank constraint . . . . . . . . . . . . . . . . . . . . . . 65

7 Discussion 69

8 Conclusion 73

9 Future work 75

Bibliography 77

A Appendix 79
A.1 Data from fredericia . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Appendix 81
B.1 Other figures and simulation results . . . . . . . . . . . . . . . . . . 81

C Appendix 85
C.1 Wetted area calculation . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix





List of Symbols

Symbol Description Unit

Q Sewage flow m3/hr
A Cross-sectional area of the sewage flow m2

x Spatial variable m
t Time s
g Acceleration due to gravity m/s2

h Sewage level inside the sewer m
Sb Slope of sewer ·
Sf Friction coefficient ·
v Sewage velocity m/s
n Gauckler–Manning coefficient ·
Rh Hydrological radius m
P Wetted perimeter m
M Total mass kg
m Mass flow rate kg/s
V Sewage volume in tank m3

Ts Sampling time s
F Force N
P Pressure bar
a Area m2

ρ Sewage density Kg
m3

Y Flow at WWTP inlet m3/hr
U Controlled pump flow into sewer line m3/hr
Qi Flow from industries m3/hr
Qh Flow from households m3/hr
τ Transport delay in sewer line s
J Performance function ·
µ Mean flow at WWTP inlet m3/hr
Hp Prediction horizon ·
Hu Control horizon ·

Abbreviation Description

WWTP Wastewater Treatment Plant
MPC Model Predictive Control
PLC Programmable Logic Controllers
HMI Human Machine Interface
DAQ Data Acquisition
SWMM Storm Water Management Model

xi





Introduction 1
A sewer system collects all the wastewater arising from our homes, neighbouring indus-
tries, rainwater from the streets and transports to a wastewater treatment plant. Once the
wastewater is processed, it is disposed to a river or sea or other water bodies depending on
the treatment plant’s location. In some scenarios, such as an event of heavy rainfall, the
surplus wastewater bypasses the later stages of the treatment plant and is discharged into
the nearest water body. By definition, a sewer system is a network of manholes, pipes,
pumps, tanks, valves and sensors located between the origin of wastewater and a wastew-
ater treatment plant (WWTP).

Sewer networks were not created in recent times. They have existed since the early his-
toric period. Mesopotamian Empire (3500–2500 BC), covering lands of Southern Europe,
Northern Africa, the Middle East and West Asia, was the first known civilization to take
care of sanitation problems that came up due to community living [Jones, 1967]. The
Indus Valley civilization (2500–2000 BC), present day Pakistan and Northwestern India,
had a wastewater management system. Two excavated sites, Harappa and Mohenjo-daro,
showed evidences of having the world’s first urban sanitation systems [Webster, 1962]. His-
torical records also show that Egyptians during the First Intermediate Period (2181-2055
BC) [Breasted, 1907] and Romans (800 BC - 476 AD) [Hodge, 2002] had their versions of
a sewer network in place. In the Industrial Age, late 18th and early 19th century, many
countries in Europe, such as Britain [Wolfe, 1999], realized the importance of wastewater
disposal and made efforts building sewer systems to improve environmental conditions in
urban areas.

However, growing population, urbanization and introduction of strict environmental laws
have created a need to improve existing sewer networks and wastewater treatment plants.
Now, the wastewater industry has to aim for better control, higher service, higher efficiency
and low direct discharge of wastewater into the environment. To meet such demands, the
wastewater industry has to examine and incorporate advanced control system(s). In this
project, one particular topic of control systems, Model Predictive Control (MPC) is ana-
lyzed for its application in the sewer network.

The project is a continuation from the previous semester [Morten Vesteraa et al., 2018]
which focused on modeling, simulation and control of a sewer system. We came up with a
simple model describing the flow in a sewer line accounting for transport delay. MPC was
used to minimize the variance of contaminants and wastewater flow entering the WWTP.
In this project work, we use the developed model and additionally foresee flow disturbances
acting on the sewer system. This prediction is done with a kalman filter and the control
strategy is implemented on a laboratory setup. The setup is built to mimic a small scale
version of a sewer network. So the idea of this project is to verify the model of the sewer
emulation setup in laboratory and test the controller to see if it is suitable for both the
laboratory setup and the real system.
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1.1. Sewer construction Aalborg University

Other notable contributions to this project by us are:

• being part of developing the software side of automation in the lab
• helping with sensor calibrations and running initial tests on the laboratory setup
• introducing soft constraints in MPC algorithm to make the controller work in a

real/practical scenario

1.1 Sewer construction

Sewer characteristics such as its construction determine the processes taking place inside a
sewer pipe. The different processes are elaborated in the next section. Sewer construction
is broadly classified into two categories: Gravity sewers and pressure sewers, figure (1.1).
In a gravity sewer, the sewage naturally flows by gravity due to its inclination. In general,
all over the world, most of the sewers are gravity sewers. When the topography does not
suit a gravity sewer, i.e. when there is no elevation differences, pumps are used to transport
sewage to the treatment plant. This is called as a pressure sewer and they can be easily
built with shallow trenches. There are additional expenses when pumps are involved. 1 -
initial cost of buying them, 2 - electricity for operation and 3 - maintenance costs.

In cold countries, where sub zero temperatures are common, the sewers lines must be
placed at a greater depth to avoid freezing of the sewage. This clogs the sewer and results
in a bad situation to the local community. Other reason for clogging could be insufficient
slope of gravity sewers. When slope is less, a minimum sewage velocity is not attained
and results in clogging. The material chosen for sewer pipes should create less friction to
sewage flow and also be able to withstand corroding effects. In comparison to pressure
sewers, it is difficult to modify and expand a gravity sewer network as the community
keeps growing.

Figure 1.1: Illustration of wastewater flow in (a) Gravity sewer and (b) Pressure sewer
line. [Morten Vesteraa et al., 2018]

1.2 Sewer as a chemical and biological reactor

The wastewater leaving our homes and industries is not the same as the wastewater en-
tering the treatment plant. As the wastewater travels long in a sewer with high residence
time, changes in its quality occur as a result of microbial, chemical, and physicochemical
processes [Hvitved-Jacobsen et al., 2013]. In that sense, a sewer network acts as a reactor
and not just as a transport system for wastewater. So both wastewater and the products
of the mentioned processes enter the treatment plant.

2



1.3. Working of a wastewater treatment plant Aalborg University

Inside a sewer, microorganisms (bacteria) digest on organic matter (wastewater) in pres-
ence of an electron acceptor (O2/ NO−3 /SO

2−
4 ) to form some low molecular organics (CO2/

H2O/NH3) and new bacteria. In some literature, organic matter is alternatively referred
as substrate and microorganisms as biomass. Organic matter is essential for the life of
existing bacteria and also for the formation of new bacteria. In a sewer network, the het-
erotrophic bacteria dominate over autotrophic bacteria.

Organic matter + Electron acceptor —> Waste products + New bacteria

Knowing the redox conditions is very important in understanding the chemical and bi-
ological transformations in a sewer. Aerobic or anaerobic process occur depending the
availability of external electron acceptors. Presence of dissolved oxygen (O2) and sulphate
(SO2−

4 ) leads to an aerobic process and anaerobic process respectively. The difference
between them is illustrated below.

Organic substrate + O2
Aerobic−−−−→ CO2 + H2O + Microbial biomass

Organic substrate + SO2−
4

Anaerobic−−−−−−→ CO2 + H2O + H2S + Microbial biomass

Aerobic transformations of the wastewater may cause a reduced capacity for nitrogen and
phosphorous removal at the treatment plant. The problem with too much nitrogen and
phosphorus in the water causes algae to grow faster. This is catastrophic to the ecosystem.
To solve this issue, preservation of readily biodegradable organic matter in sewers is impor-
tant [Hvitved-Jacobsen et al., 2013]. Formation of hydrogen sulfide leads to a substantial
degradation of the sewer network. It causes corrosion, toxicity of the sewer lines and the
odour is bad.

Construction type of the sewer influences the reactions taking place in a sewer. Aerobic
conditions exist for a partly filled gravity sewer and an aerated pressure sewer. Pressure
sewer, full-flowing gravity sewer or a gravity sewer with low slope leads to anaerobic con-
ditions [Hvitved-Jacobsen et al., 2013].

We can conclude that the biological system in a sewer is important as it affects the
biochemical processes and it is essential to manage them in sewer networks [Hvitved-
Jacobsen et al., 2013]. The redox conditions have an impact on the sewer system and
treatment process as they determine the life of microorganisms. Processes happening in
the sewer network not only affects the sewer network itself but also the treatment process at
the WWTP and the surrounding environment. So one could say that the actual treatment
of wastewater starts at the sewer network.

1.3 Working of a wastewater treatment plant

Centuries ago, when raw sewage was disposed into water bodies, there was a natural pro-
cess of purification. First, the sewage got diluted due to the huge volume of clean water in
the water bodies and second, bacteria and other microorganisms in the water consumed
the organic matter, turning it into new bacterial cells, carbon dioxide and other products.
But today’s cities generate a much greater volume of wastewater which cannot be just
purified by nature alone. For instance, in the year 1859, river Thames in Britain was so
polluted and was called "monster soup" by the Victorians [Lofrano and Brown, 2010]. Such
incidents demanded an environmental change which ultimately led to building wastewater
treatment plants. As the sewer network delivers the wastewater to a plant for treatment,

3



1.3. Working of a wastewater treatment plant Aalborg University

the role of the treatment plant is to purify wastewater and discharge it into rivers or other
receiving waters. In this way, human intervention helps speeding up the natural process
of water purification.

We can broadly segregate wastewater treatment into two stages: Primary stage and Sec-
ondary stage. The primary stage of the treatment makes use of physical methods such
as filters/screens to remove big solids from the sewage that might clog pipes or damage
equipment. The filtered sewage is then passed into a grit chamber, where sand and gravel
settle at the bottom. After going through a screen and grit chamber, the sewage still
contains some organic matter, inorganic matter and other suspended solids. To remove
them, the sewage is then stored in a sedimentation tank allowing the minute solids to
settle down, forming a mass of solids called sludge, which is later removed by pumping.
Lighter substances such as grease and oil floats at the surface and is also removed. With
strict environmental standards, primary treatment alone is not sufficient to meet the water
quality requirements before releasing into rivers. To meet them, a secondary treatment
process was put in place to remove other contaminants. In some cases, a third level of
advanced wastewater treatment was also used.

The secondary stage of the treatment uses biological processes (bacteria) to further refine
wastewater. Among many principal treatment techniques, the activated sludge process will
be discussed first and followed by others after figure (1.4). The sewage from the sedimen-
tation tank is now pumped into an aeration tank, where it is mixed with air and sludge.
The sludge contains a lot of bacteria and the sewage remains inside the aeration tank for
several hours. During this time, the organic matter in the sewage is broken down into
harmless by-products (new bacterial cells, carbon dioxide and other products) by bacteria.
The effluent then moves to a settling tank where the sludge moves to the bottom. The
sludge now contains additionally billions of bacteria and other tiny organisms. The sludge
can be used again (pumped back into the aeration tank) to treat new sewage. So in simple
terms, the activated sludge process works by bringing air and sludge into close contact
with sewage.

Figure 1.2: Different techniques for wastewater treatment [Cheremisinoff, 1997]

4



1.3. Working of a wastewater treatment plant Aalborg University

To complete the treatment process, the sewage is usually disinfected with chlorine before
being discharged into receiving water bodies [Lazarova et al., 1999]. This is practised in
United States and other countries as well. Chlorine is added to kill any pathogenic bacteria
that may be present and to reduce odor. If required by local environmental laws, excess
chlorine is removed by a process called dechlorination.

SedimentationPrimary
Treatment Sedimentation

Secondary
Treatment
(Biological)

Tertiary
Treatment

1.  Screening
2.  Grit removal

1.  Trickling Filters
2.  Activated Sludge

Wastewater Effluent

Methane Production / Power Generation

Sludge Disposal

Secondary Sludge

Prim
ary Sludge

Sludge / Biosolids
Digestion

Figure 1.3: An usual order of wastewater treatment. Methane gas produced as a result of
sludge digestion is burned to produce energy. This energy is used to power the wastewater
treatment plant. Colours illustrate the conversion of raw wastewater to clean effluent and
energy.

Other methods to treat sewage exist in the form of chemical methods and energy intensive
methods. Chemical methods rely on the application of chemicals that help in the separation
of contaminants from water. These chemicals sometimes instead of removing contaminants,
they assist in the neutralization of harmful effects associated with contaminants. Energy
intensive methods that include electrochemical techniques, are by large applied to drinking
water applications [Cheremisinoff, 2001].

Figure 1.4: Evolution of wastewater treatment through the years [Lofrano and Brown,
2010]. These are alternative methods to filtration and activated Sludge process.

In above figure, the respective terms are: AS - Activated Sludge, CW - Constructed
Wetlands, MBBR - Moving Bed Biofilm Reactors. The filtration and activated sludge
process have been briefly discussed previously. Radial flow tank is a particular type of
sedimentation tanks. All three of them are placed in a green box.
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A trickling filter is a bed of stones about five feet deep through which wastewater
flows. Microorganisms attached to these stones consume the organic matter and multiply
[Cheremisinoff, 1997]. The cleaner wastewater then trickles out to undergo further
treatment. A septic system is a simple and self-contained underground wastewater
treatment system. They do not have high treatment efficiency and can be only used in
rural areas that are not connected to a sewer system. Imhoff tank consists of a V-shaped
settling chamber with a residence time of up to three hours. It is an improvement over the
septic tank method as sludge can be separated from the effluent. Constructed wetland,
an engineered ecosystem that mimic natural wetland, can be used to treat wastewater.
They are a cheaper alternative as they do not involve any mechanical or energy consuming
equipment [Vymazal, 2010]. In a moving bed biofilm reactor, the settling tank (seen
in activated sludge process) is replaced with membrane filtration. This method results
in better solid–liquid separation and also enables a high biomass concentration to be
maintained in the bioreactor [Leyva-Díaz et al., 2017]. When level of nutrients in the
water exceed a safe limit, it could cause a significant increase in the growth of blue-green
algae [National-Geographic, 2013]. This decreases the oxygen, food resources and water
quality that is needed by marine life to survive. To avoid such problems, denitrification
and phosphor removal methods were introduced.

1.4 Challenges of wastewater treatment

The two main problems associated with methods using sludge for treating wastewater (such
as activated sludge and moving bed biofilm reactor) are variations in flow and concentration
of contaminants. These variations affect the operational efficiency of the treatment plant.
A typical flow pattern from any community would look like the figure below.

Figure 1.5: Wastewater production from a small village Frejlev, Denmark [Schlütter, 1999].
Here, it is assumed there is no infiltration by the groundwater into the sewer system.

The flow variations observed is due to the human routine. We mostly consume household
water during the day time. These variations are problematic to the treatment process
down at the plant. As discussed in section (1.3), sludge is pumped into the aeration tanks
to purify the wastewater. With proper living conditions in place, only a certain amount
of sludge can be stored for reuse. When a sudden peak in flow occurs, around 06:00, there
might not be enough sludge to completely purify the wastewater entering the plant.

6
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The flow variations are worsened by rainwater causing a scenario in which the inlet flow
to the treatment plant exceeds its capacity. When not dealt with carefully the rain water
can flush out the sludge from the bio-reactors resulting in the loss of bacteria for wastew-
ater treatment. In such cases, the wastewater only undergoes primary treatment and is
then discharged to an adjacent water body. Apart from these problems, there can be
some big industries releasing varying loads of wastewater into the sewer network. This
particular problem is clearly seen in Fredericia where industries like Carlsberg, Shell and
Arla are present. In addition, the industrial wastewater also has changing contaminant
concentration levels. The bacteria in the aeration tanks need time to accommodate to
a change in contaminant concentration. Sudden peaks in concentration level could again
cause operational inefficiency. In Fredericia, at the moment, when there is a big increase
in contaminants entering the WWTP, the management uses chemicals to coagulate them
and remove the settled products from the sedimentation tank. The effluent then moves
onto the secondary treatment stage. This is a temporary solution they have considered.

To summarize on the problems, living organisms used for biological treatment processes are
affected by movement, chemical conditions, temperature and other factors [Cheremisinoff,
1997]. The performance of these microorganisms are best under a steady environment. If
there are environmental changes, there should be enough time for the microorganisms to
acclimate to such changes. A good and well maintained biomass is needed so that it can
flocculate, settle and thicken in a sedimentation tank [Tandoi et al., 2017] while treating
wastewater.

1.5 Problem statement

From the previous section, the identified problems with wastewater treatment are:

• Flow variations due to household water consumption, rainwater and large industries
releasing wastewater

• Concentration variations in sewage due to natural phenomena and industries
releasing highly contaminated wastewater over a short time

The flow from residential areas entering the sewer network does not exactly look as in
figure (1.5). This is because groundwater present above sewer pipes could easily infiltrate
into the pipes. There can also be additional surface runoff from the streets due to rainwa-
ter. Not knowing this flow profile will make it difficult when we desire to develop a control
plan for the sewer system.

So, first part of the strategy we thought of to overcome mentioned issues is to predict
disturbances, i.e. inflows from residential areas, with a kalman filter. The second part of
the strategy is building a storage tank in the sewer network and using Model Predictive
Controller to control its output flow in a way giving the best working conditions for the
wastewater treatment plant. This idea together with a new laboratory setup that emulates
a simplified sewer system can be used to test the controller. It is also decided to use tem-
perature as a proxy for contaminant to emulate variations in contaminant concentration.
Now, from this a problem statement can be formulated:

How can a laboratory setup that mimic a real sewer network be assembled so that we can
later utilize MPC, along with disturbance predictions and a storage tank that results in
stable working conditions for the wastewater treatment plant.

7
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Having formulated the problem statement, we set the objectives of the project to be:

• Build a model describing the dynamics of the lab system with tubes, tank, valves
and pump

• Develop a performance function and suitable constraints to form the basis for
evaluation of a controller performance

• Prediction of wastewater flow from residential areas (seen as disturbance) with a
kalman filter

• Use the model, disturbance prediction, performance function and constraints to
develop a Model Predictive Controller

Outline of remaining chapters

Chapter 2 Describes the different modules and automation software used to build-up the
laboratory setup.

Chapter 3 Describes modeling of important components in a sewer system.

In Chapter 4, time-series analysis of flow data and kalman filter is presented. Then
the proposed Model Predictive Controller is described.

In Chapter 5, implementation of Model Predictive Controller is elaborated upon.

In Chapter 6, we have the results of the different tests performed.

Finally in Chapters 7 to 9, we have Discussion, Conclusion and Future work.
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Description of Laboratory Setup 2
In this chapter, we introduce you to the laboratory setup, hardware, software and
communication protocols required to emulate and control a sewer network.

2.1 Sewer network

To support the study of using MPC for control of a sewer system, we will build an equivalent
laboratory setup of a sewer system. The objective is to reproduce the sewer system as seen
in figure (2.1) and observe some physical phenomena such as wastewater transport delay in
the network, wastewater flow and wastewater concentration entering the WWTP. In this
section, we show how a modular setup can be used to build a sewer system. The modular
setup is made up of different stations.

Sea

Transport Delays in Sewer Pipe

Buffer Tank

Valve

Industry

Residential Area

WWTP

Figure 2.1: An illustration of a simple sewer network. Here, the industrial wastewater is
stored in a tank before being let into the sewer network. The valve receives control signals
and thus the outlet flow from the tank is controlled. The sewage then flows through long
sewer pipes before reaching the WWTP.

The sewage flows in both gravity and pressure sewer pipes in a network. The transport
time takes a few hours from the top to the bottom of the illustrated sewer pipe. Along
the network there are many other sewage inflows from household areas but for simplicity
we assume the that all household flow is collected and enters the sewer network at only
one point. So, a sewer system can be categorized into two storage blocks (buffer tank
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2.1. Sewer network Aalborg University

and WWTP), two source blocks (household and industrial wastewater) and one transport
block (sewer pipe).

In the lab setup, water will be used as the process liquid and temperature as the contam-
inant. Temperature is used as substitute to wastewater contaminant because the qualita-
tive effects of mixing fluids of different temperatures and fluids with different contaminant
concentrations are similar. Contaminant concentration levels are generally higher in in-
dustrial wastewater than that of household wastewater. Due to this fact, hot water in the
lab experiment represents waste from industries and cold water represents waste flow from
household areas.

Tank

Consumer Station

DP

Tank

F

Valve

F

L

DP Differential Pressure Level Sensor

Ultrasonic Level Sensor

Vortex Flow Sensors

Gravity Sewer Pipe

Sewer Station

x 4
L

Pumps
4 / 5

F

F

DP

Tanks with
Overflow

Pumps
1 / 2 / 3

Pumping Station

Figure 2.2: One possible arrangement of the modules to mimic a controlled sewer system.
The orange dashed line indicates the typical household flow and the yellow line indicates
the controlled industrial wastewater flow being added to the top of gravity pipe.

Due to time limitation and unavailability of other stations, the group was able to imple-
ment only a flow controller. More details on the system for temperature control is shown
in future work section. The green boxes are the primary components of a sewer system.
Here, tanks with overflow represents the WWTP receiving the wastewater.

The consumer station has a buffer tank with design capacity of 200 litres and a ball type
control valve. There is a differential pressure level sensor on the tank and a vortex flow
meter on the outlet line. In order to transport water from the buffer tank to the inlet of
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gravity sewer pipe, using just the valve in between, its necessary to pressurize this tank
with air. This represents the consumer tank being in an elevated position. We set this
height to be 3.75 meters.

The sewer station consists of a gravity sewer pipe. The pipe is made of transparent PVC
and is of 20 meters in length. The slope of the sewer pipe can be changed between 3 %
to 6 %. There are four ultrasonic level sensors in the pipe. The sewer station, though a
part of pumping station in practice, is chosen to be explained as a separate unit for easier
comparison of a sewer system to the laboratory system.

The pumping station has five pumps and tanks with overflow. The set of pumps serve dif-
ferent purposes when emulating a sewer system. As seen in the previous figure, one pump
set recirculates water between the pumping and consumer station and the other pump set
creates a wastewater flow pattern leaving the residential areas. The tanks with overflow
just means there is an interior and exterior tank. When the interior tank overflows, water
goes to the exterior tank. A 3D model of the pumping staion can be seen in appendix (C.3).

2.2 Instrumentation

For a control system to perform well, relevant parameter need to be measured on the
process being monitored and automated. Sensors send these measurement readings to the
control system. In our lab setup, we have sensors for finding both level and temperature
and their types are briefly discussed.

Ultrasonic level detector

The ultrasonic type level detector measures the time taken for an ultrasonic pulse to travel
to the liquid surface and back. The two advantages are the absence of any moving parts
and the capability to measure level without making physical contact with the process
liquid. In the lab, these sensors are located in the pipe sewer. Level measurements are
converted into flow measurements using hydraulic equations. They are described further in
the next chapter. The speed of sound through air is 343 meters per second in an ambient
air temperature of 20◦C.

Figure 2.3: Possible types of the sensor. In the lab setup, the sensor used is the one seen
at location B [Lipták Béla G, 2003].
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d =
Speed of Sound × Time

2

h = H − d

where d is distance measured by sensor, H is known height of container and h is the
calculated level of fluid.

Differential pressure measurement in tank

A differential pressure instrument is used to measure level. Pressure at a certain point
inside a tank depends upon the force exerted by the weight of the fluid above that point.
The deeper you go, the greater the pressure force is going to be. The instrument has two
sides: low-pressure and high-pressure side. For unpressurized tanks, the low-pressure side
(LP) is vented to atmosphere and high side (HP) is connected to the tank bottom. This
method, also known as Hydrostatic Tank Gauging, makes use of pressure difference to
calculate level of fluid. Only difference when we measure level in a pressurized tank is that
the low-pressure side is exposed to air pressure instead.

HP LP

h

Transmitter

Signal

P1

P2

Tank

Figure 2.4: Differential pressure measurement for a closed tank. The transmitter has a
diaphragm as pressure sensing element which deflects to one side by pressure difference.
The deflection gets converted into an electrical signal.

∆P = Pressure(HP )− Pressure(LP )

∆P = P1 − P2

= ρgh

where ρ is density of fluid and g is gravitational force. The transmitter calculates the level
h from the above formula.

Electromagnetic flowmeter

The operating principle is based on Faraday’s law of electromagnetic induction. When
electrically charged particles of water or any conductive fluid flows through a magnetic
field generated by field coils, voltage is induced in the charged particles. This voltage,
picked up by sensing electrodes, is directly proportional to the flow velocity of the fluid.
The magnetic field, the direction of flow, and the induced voltage are all perpendicular to
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each other.To cancel out interference due to electrochemical effects of the fluid or other
external magnetic field, its recommended to generate the magnetic field by a pulsed direct
current with alternating polarity [Lipták, 2006].

Electrode

Magnetic
Field

Coil

Charged
Particle

Figure 2.5: Cross-sectional view of the tube. There is an accumulation of positively and
negatively charged particles near the electrodes under the influence of a magnetic filed.

2.3 Automation

2.3.1 Hardware

The lab setup consist on different modules connected to a Central Control Unit. Each
module is composed of a DAQ, a HMI and a Raspberry Pi as shown in figure (2.6).

EtherCAT
Codesys
Control

Raspberry
Pi Local Unit

(LU)

Unit 1

HMI

MODBUS TCP/IP
   ( Port 503)

To CCU

DAQ

Sensors
I/O

Module
Actuator

Figure 2.6: Schematic of the different components in a laboratory module.

2.3.1.1 Data acquisition

Data acquisition (DAQ) is the process by which a physical phenomena like pressure
or temperature is measured and transformed into electrical signals and later converted
into a digital format for processing, analysis, and storage by a computer [Park et al.,
2003]. In general, a DAQ is built by bringing together a variety of blocks from different
manufacturers. The basic blocks of a data acquisition system is seen in the figure below.
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Sensor
Measurements

Data
Acquisition
Hardware

Industrial
Computer

(PC)Field
Wiring

Data
Acquisition
Software

Figure 2.7: Block diagram of a PC-based data acquisition system

Field wiring is the physical connection from the sensors to the data acquisition hardware.
Linearization is needed when sensors produce signals that are not linearly related to the
physical measurement. Data acquisition hardware is the component that processes and
converts the input analog signal into a digital format, using Analog to Digital Converters
(ADC’s). Data acquisition software is needed to merge the data acquisition hardware and
PC together. The software runs on the PC under an operating system and turns the com-
puter into a complete data acquisition, analysis and display system.

In the scenario where sensor measurement is affected by external noise, the data could get
corrupted and hence signal conditioning is required. A signal conditioning unit usually
contains a low pass filter that remove high frequency noise and/or an amplifier to amplify
the filtered signal. The unit is placed before data acquisition hardware.

In table (2.1) it can be seen the different sensors and actuators in the pumping module as
an example to show the different types of signals between the field and the I/O modules.
All the I/O modules are connected to the Raspberry Pi by EtherCAT.

I/O Module I/O Signal type
Pumps Beckhoff EL2502 Digital output 24 V PWM
ON/OFF Valves Beckhoff EL2008 Digital output 24 V
Temperature and pressure Beckhoff EL3068 Analog input 0-10 V
Flow sensor Beckhoff EL3048 Analog input 0-20 mA
Conductivity sensor Beckhoff EL3048 Analog input 0-20 mA
Differential pressure Beckhoff EL3048 Analog input 0-20 mA
Level sensor Beckhoff EL3068 Analog input 0-10 V
Ball valves Beckhoff EL4008 Analog output 0-10 V

Table 2.1: Actuators, sensors and its signal type.

In order to maximize the resolution of the sensor reading, it is desired that the maximum
and minimum of the signal matches with the physical range of the sensor or actuator. For
example, the differential pressure sensor readings will be constrained by the size of the
tank, so it is desired that the minimum level matches with the minimum of the signal and
analogously for the maximum level. The resultant signal will be then converted to a 16
bit integer with a value between 0 to 65535 in case of unsigned integer or between -32767
to 32767 for signed integers.

It is worth mentioning that some sensors and actuators have different signal range than
the I/O module. For example, flow sensors in table (2.1) use the well-known 4-20 mA
signal although the I/O module is prepared for a 0-20 mA signal. That will cause the
minimum reading to be 4 mA. This issue has to be taken in account when converting
the integer value to a real value which represents the physical magnitude. This will be
explained further in section (2.3.2) .
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2.3.1.2 Raspberry Pi

The Raspberry Pi is a full-blown desktop PC that is really cheap. It runs on Linux, a free
operating system. The user could also choose from a wide range of programming languages
to implement his/her projects. The Pi contains a processor (CPU), a graphics processing
unit (GPU), and some memory.

The HMI is a tactile display connected to the Raspberry Pi with a ribbon cable. It shows
a graphical interface with the relevant sensor data using a web browser. The Raspberry
Pi will run Codesys Control that will allow to use the Raspberry Pi as a softPLC.

As a precaution to avoid overflowing in the two tanks (consumer and pumping stations),
a simple level control is in place. When the level in the tank reaches a certain high limit,
the in-feed valves are closed and similarly for a certain low limit, the out-feed valves are
closed. This level control is implemented by the Raspberry Pi.

2.3.2 Software: CODESYS

Codesys is an automation development software that control engineers can program. It
converts any PC or embedded device into an industrial controller.

Codesys supports five different programming languages: Instruction List (IL), Structured
Text (ST), Ladder Diagrams (LD), Function Block Diagrams (FBD) and Sequential
Function Chart (SFC) which allow to use a common software to work with different PLCs
brands and automation components. Codesys consist in two major components:

• Codesys Development System: Allows to configure and program controller applica-
tions

• Codesys Control: Execution on the target device of the application code compiled
by Codesys Development System

Once the controller application has been transfer to the Codesys Control in the target
device, this can run autonomously. In the present project a Raspberry Pi has been used
as target device. The controller application can be transfer to the Raspberry Pi via Secure
Shell (SSH) protocol.

Figure (2.8) shows a network with a workstation running Codesys Development. This
workstation is able to load the application code to the different target systems, in this
case to the four Raspberry Pi which will be running Codesys Control. At the bottom are
shown the different I/O devices which will interface with Codesys Control.
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CODESYS Control

Unit 1 Unit 2 Unit 3 Unit 4

Application programming

Call of device-speci!c system libraries

Compilers for di"erent CPU families

Loading of application code as binary code 

to the selected target system

Communication of debugger with         

CODESYS Control

CODESYS Development System

Figure 2.8: Network with a workstation running Codesys Development and four Raspberry
Pi running Codesys Control. Source [CODESYS, 2019]

The Raspberry Pi will be running a Codesys Control code, previously loaded by Codesys
Development via SSH protocol. Codesys Control will take care of the following tasks:

• Receive and send outputs and inputs from/to the DAQ via EtherCAT
• Correct sensors offset and linearize its output to get as much resolution as possible.
• Publish the system information to the localhost so it is accessible from a web browser.
• In case Remote Control is selected, it will run a Modbus slave to communicate with

the CCU.
• In case Local Control is selected, it will run a Modbus slave to communicate with

the LU.

Codesys Control will receive the integer value send by the DAQ and will convert this value
to a real value with a more meaningful value. This is done by taking in account the range
of the sensor. For example, consider a flow sensor that can give a minimum reading of 0
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L/min and a maximum of 32 L/min which will correspond to 4 mA and 20 mA respec-
tively. When converting the integer value send by the DAQ to L/min we will convert the
integer value 6554 (4 mA) to 0 L/min, 65535 (20 mA) to 32 L/min and the values in
between accordingly to the linear relationship.

From the HMI it is possible to switch from Local Controller to Remote Controller. In
case Local Controller is selected, Codesys Control will communicate with the Local Unit
(LU) running inside the Raspberry Pi. This LU consist of a Python code with some preset
configurations which can be modified from the HMI.

In case Remote Controller is selected, Codesys Control will communicate with the Central
Control Unit (CCU). The HMI will be no longer able to modify actuators values and it
will only display information.

2.3.3 Communication protocol: Modbus TCP/IP

In order to send control inputs to actuators and receive sensor outputs a communication
protocol has to be implemented. A communication protocol is a set of rules that allows
reliable transmission of information. Some industrial communication protocols have been
developed in order to ensure compatibility for the different hardware and software manu-
facturers.

MODBUS is an industrial standard communications protocol. It is simply a messaging
service that runs on different physical layers. Two particular versions are: 1. Serial MOD-
BUS, that use RS-485 / RS-232 as physical layer and 2. MODBUS TCP or MODBUS
TCP/IP, that use Ethernet as physical layer. The latter version is the one used in the
laboratory.

In the MODBUS protocol, data is exchanged in a master–slave relationship. Each slave has
a unique address, which helps the master in identifying them while communicating. Some
characteristics of the MODBUS protocol cannot be changed such as the frame format,
frame sequences and handling of communications errors. The user is allowed to change
the following: baud rate, parity check method, number of stop bits and transmission mode
(ASCII or RTU).

Modbus TCP/IP uses Ethernet as physical layer, IP as network layer and TCP as transport
layer. Figure (2.9) shows how a Modbus TCP/IP packet is constructed by a Modbus
Application Protocol (MBAP) header and a PDU. The MBAP header is 7 bytes long and
has the following fields:

• Transaction Identifier: Is used to associate the future response with the request.
• Protocol Identifier: Always 0 for Modbus.
• Length: Number of following bytes.
• Unit Identifier: Used to identify a server located on a non TCP/IP network.

UNIT

ID.
LENGTH

PROTOCOL

ID.

TRANSICTION

 ID.
DATA

FUNCTION

CODE

PDUMBAP HEADER

Figure 2.9: Format of Modbus TCP/IP packet
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The function code contain one byte that tells the slave what kind of action to take. Table
(2.2) shows the most important functions.

Code Function
01 (01H) Read Coil Status
02 (02H) Read Discrete Inputs
03 (03H) Read Holding Registers
04 (04H) Read Input Registers
05 (05H) Write Single Coil
06 (06H) Write Single Holding Registers
15 (0FH) Write Multiple Registers
16 (10H) Write Multiple Holding Registers

Table 2.2: Standard function codes used on Modbus

Data Type Master Access Comments
Discrete Input Boolean Read Only Provided by an I/O system
Coils Boolean Read/Write Alterable by an application program
Holding Registers 16 bit word Read/Write Alterable by an application program
Input Registers 16 bit word Read Only Provided by an I/O system

Table 2.3: Modbus data format

As in the present project any boolean sensors/actuators are used, the functions used in
the project are:

• Read Input Registers (04H): Input registers are used for the value of the analog
inputs from the field (read only). This function allows to read the content of analog
input registers.

• Write Single Holding Register (06H): Holding registers are used for the value of
analog outputs to the field (Read/write). This function allows to write the contents
of an specific analog output holding register.

• Write Multiple Holding Register (10H): Write a block of contiguous registers.

The slave may provide additional information in the data field such as starting register,
number of register to be read etc. When the slave responds, it uses the same function code
to indicate an error-free response followed by the required data in the data field.

MODBUS still remains as a popular choice for data exchange in the industrial automation
community because it is a simple protocol that requires little programming effort to setup
and get it running. Some advantages are [MODBUS, 2019]:

• Minimum hardware is enough, development cost is less and development is easy for
any operating system

• The Modbus protocol is open and there are no licensing fees

• Interoperability among devices from different manufacturers

• Easy to add devices to the network
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Modeling by First Principles 3
In this chapter, deterministic (or white-box) models are developed to describe the dynam-
ics of some key components of the sewer network. We model the buffer tank in the sewer
network, flow in a gravity sewer pipe. We also show how the flow in a sewer pipe can be
seen as a delay model.

The dynamics of the sewer system has to be understood if one desires to design a control
system. Such understanding of the complex dynamic behavior is formulated as dynamic
models. In this project, we do not intend to develop a very detailed description of the
involved processes but rather intend on developing simple models that suits the purpose
of prediction and control.

3.1 Tank volume

Critical situations arise when the inlet flow to the wastewater plant exceeds its treating
capacity. In those situations, some untreated wastewater has to be discharged to the re-
ceiving waters. The idea of building storage tanks to hold back excessive wastewater until
the treatment plant is ready to handle them has been extensively used before.

A simplified mathematical model, using continuity equation, is developed to analyze a
buffer tank storing wastewater. The continuity equation is an expression of the principle
of conservation of mass. For a control volume with a single inlet and a single outlet, the
mass balance equation would be:

dM(t)

dt
= min(t)−mout(t) (3.1)

where M is the total mass (kg), min, mout are mass inflow and outflow rates. Rewriting
the same equation with volumetric flow rates (with ρ as sewage density (Kg

m3 ) and taking
into account the overflow Qover:

ρdV (t)

dt
= ρQin(t)− ρQout(t)− ρQover(t) (3.2)

or

dV (t)

dt
= Qin(t)−Qout(t)−Qover(t) (3.3)

where density ρ is cancelled out as it is very close to a constant in the relevant temperature
range. The discrete-time or difference equation describing the same phenomena would be

Vk+1 = Vk + Ts(Qin,k −Qout,k −Qover,k)
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where Vk is the tank volume (m3) at instance k and Ts is sampling time.

The model is also later used for determining the appropriate tank size needed to optimally
store and release wastewater into the sewer network down at the municipality of Fredericia.
The potential benefit of adding a tank in the sewer system is to take care of the temporal
variations in wastewater flow and the concentration of contaminants at the inlet of the
treatment plant.

3.2 Flow in pipe

The transportation of water through a channel or a network of channels and pipes is
governed by the conservation of mass and momentum equations. The Saint-Venant equa-
tions [de Saint-Venant A, 1871] describe one-dimensional unsteady open channel flow.
Sewage flow in sewer mains can be considered as an open channel flow because the sewage
is not subjected to any parallel shear stresses from the empty space above. The flow profile
is similar to what we see in rivers.

The flow of water through a channel is a distributed process because the flow rate and
level vary in time and space throughout the length of the channel. The general form of
Saint-Venant equations is given by:

∂A

∂t
+
∂Q

∂x
= 0 (3.4)

1

gA

∂Q

∂t
+

1

gA

∂

∂x

(Q2

A

)
+
∂h

∂x
+ Sf − Sb = 0 (3.5)

where Q is sewage flow (m3/s), A is the wetted area or cross-sectional area of the sewage
flow (m2), h is sewage level inside the sewer (m), Sb is slope of sewer, Sf is friction
coefficient, x is the spatial variable measured in the direction of the sewage flow (m), t is
time (s) and g is acceleration due to gravity (m/s2). Equation (3.4) is about the mass
conservation and equation (3.5) is about momentum. Rewriting (3.5) as:

1

A

∂Q

∂t
+

1

A

∂

∂x

(Q2

A

)
+ g

∂h

∂x
− g(Sb − Sf ) = 0 (3.6)

The above 5 terms describe the following physical quantities [Te et al., 1988]: 1 - Local
acceleration, 2 - Convective acceleration, 3 - Pressure force, 4 - Gravity force and 5 - Fric-
tion force. Terms 1 and 2 are together known as Inertia.

Some assumptions taken while deriving the Saint-Venant equations are:
• The flow is one-dimensional
• The longitudinal axis of the channel is approximated as a straight line
• The fluid is incompressible and of constant density throughout the flow
• Only hydrostatic pressure exists

Manning’s equation

This empirical equation [Manning et al., 1890], is commonly used to analyze uniform steady
state flow in open channels. The channel shape can be circular, rectangular, triangular,
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etc. It is hence used in studies of sewer systems with large diameter circular pipes. Flow
velocity is given by:

v =
Kn

n
R2/3S

1/2
f (3.7)

where v is sewage velocity (m/s), Kn is a constant whose value depends on the
measurement units used in above equation, n is the Gauckler–Manning coefficient, which
depends on sewer characteristics such as the flow resistance, roughness and curves in the
network. The variable R is the hydraulic radius (m), ratio of cross-sectional area of the
sewage flow and the wetted perimeter. Sf is friction coefficient. Volumetric flow is nothing
but

Q = v ·A

Q =
Kn

n
AR2/3S

1/2
f

(3.8)

Figure 3.1: Cross-sectional view of flow in a circular pipe

3.2.1 Modeling of sewer system in Fredericia

For real-time control of sewer networks, we need a simplified version of Saint-Venant equa-
tions. Even though equations (3.4) and (3.5) captures a high level of detail of the system’s
dynamic behaviour, using them often leads to increased complexity and high computa-
tional cost [Crossley, 1999].

Manning’s roughness coefficient
Type of Conduit Minimum Normal Maximum

Steel (lockbar and welded) 0.010 0.012 0.014
Cast Iron (coated) 0.010 0.013 0.014

Cement (neat surface) 0.010 0.011 0.013
Concrete (finished) 0.011 0.012 0.014

Brick (lined with cement mortar) 0.012 0.015 0.017
Polyvinyl Chloride (smooth inner walls) 0.009 0.010 0.011

Table 3.1: Some examples to compare different manning’s roughness coefficients [Chow,
1959].
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One approximation of Saint-Venant equations is neglecting the first two terms of
momentum equation (3.5) because in most practical cases they are very small compared
to the third term [Wanka and Königer, 1984].

∂h

∂x
= Sb − Sf (3.9)

Now, using equations (3.7) and (3.9), the flow velocity can be written as

v =
Kn

n
R

2/3
h

√
Sb −

∂h

∂x

Q =
Kn

n
AR

2/3
h

√
Sb −

∂h

∂x

(3.10)

Then equations (3.4) and (3.10) can form the basis for a hydrodynamically modelled sewer.

Model with delay

The transport of fluids such as water could also be seen as a wave propagation. Since
there is a net mass transfer involved, the waves are translatory. To understand the wave
phenomena in gravity and pressure driven fluid mass flows, kinematic wave or dynamic
wave analysis is important. When the inertial and pressure forces are not significant in
momentum equation (3.5), kinematic waves govern the flow. Dynamic waves govern flow
when these forces are important. In a kinematic wave, the flow does not accelerate con-
siderably as the gravity and friction forces balance out each other.

Figure 3.2: Motion of a wave. The propagation of small fluctuation in flow is shown.

In equation (3.5), disregarding the first three terms, the remaining two terms can be
replaced by a flow expression for a fully filled pipe, equation (3.20) and an expression
which gives the flow for a partially filled pipe (relative to flow for a fully filled pipe),
equation (3.22). The wetted area (derivation shown in appendix (C.1)) can be expressed
as

A = r2 · acos
(
r − h
r

)
−
√
h(2r − h)(r − h) (3.11)

Inserting the approximate expressions of Q and A in the continuity equation (3.4):

∂A

∂h

∂h

∂t
+
∂Q

∂h

∂h

∂x
= 0 (3.12)
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The two factors ∂Q
∂h and ∂A

∂h will be work dependent. But here, we use a linearized version
of this equation and apply small fluctuations to flow Q and therefore water level h. The
two factors are treated as constants (assuming the fluid does not gain kinetic energy and
no work is done on the fluid) and the relationship between them is

c =
∂Q

∂A
=

∂Q
∂h
∂A
∂h

(3.13)

and we get the equation

∂Q

∂t
+ c

∂Q

∂x
= 0 (3.14)

This equation describe waves propagating with unchanged shape and speed c. It can be
verified by assuming that the flow (or water level) in position x = 0, Q(0, t) is known as a
function of time t. The flow in an arbitrary position x will then be given by

Q(x, t) = Q(0, t− x

c
) (3.15)

Taking the partial derivatives with respect to t and x

∂Q

∂t
=
∂Q(0, t− x

c )

∂(t− x
c )

∂(t− x
c )

∂t
=
∂Q(0, t− x

c )

∂(t− x
c )

(3.16)

∂Q

∂x
=
∂Q(0, t− x

c )

∂(t− x
c )

∂(t− x
c )

∂x
=
∂Q(0, t− x

c )

∂(t− x
c )

(
−1

c

)
(3.17)

and inserting these two expressions into equation (3.14) results in

∂Q(0, t− x
c )

∂(t− x
c )

+ c
∂Q(0, t− x

c )

∂(t− x
c )

(
− 1

c

)
= 0 (3.18)

which satisfies the equation for wave propagation. The kinematic wave model is described
by the continuity equation and manning’s formula for a uniform and steady flow. But by
introducing small fluctuation in flow, we see that this fluctuation travels a distance x in
time x

c without changing its shape. Hence, for a nonuniform flow, the transport of water
can be seen as a delay model.

This approach of modeling the flow in a pipe as a delay leads to a simplified version of
a sewer system model. The Saint-Venant equations are not used when describing flow.
A simple model describing the proposed sewer system for Fredericia can be represented
as [Morten Vesteraa et al., 2018]:

V (k + 1) = V (k) + Ts(Qi(k)− U(k))

Y (k + τ) = Qh(k + τ) + U(k)
(3.19)

where V corresponds to the volume in the buffer tank (m3), Qi describes the wastewater
flow from the industries (m

3

hr ), Qh describes the wastewater flow from the households (m
3

hr ),
U is the input (controlled flow from buffer tank) in (m

3

hr ) , τ is the transport delay (hr),
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Y is the overall measured flow at the WWTP inlet (m
3

hr ) and Ts is the sampling time.

Qh(k) describes the flow at present time, while Qh(k+ τ) describes the flow after account-
ing for delay. The reason for using the delay is that, since there is a distance between the
tank and the inlet to the WWTP, it takes some time for the wastewater to travel that
distance. This means that when a pump input is given, it will only affect the overall inflow
after the delay τ .

3.2.2 Modeling of laboratory setup

Tank dynamics can be found from the differential pressure level sensor measurements. The
output of the sensor after linearization is in millimeters. Using the known radius of the
tank, this level is then converted into volume in litres.

Regarding overall flow measurement, in section (2.2) we saw that level measurements can
be obtained from sensors placed along the length of gravity sewer pipe. The process of
converting level measurements into flow measurements is shown below. From equations in
(3.21), a equation for full flow (filled) pipe can be written as:

Qf =
Kn

n
AfR

2/3
f S

1/2
f (3.20)

where Qf , Af and Rf are flow, wetted area and hydraulic radius for a full flow pipe.

Af = πr2 =
πd2

4

Rf =
A

P
=
πr2

2πr
=
d

4

(3.21)

When level of water in a pipe is known, the flow can be calculated with the empirical
formula [Michelsen, 1976]:

Q =

(
0.46− 0.5 · cos

(
π
h

d

)
+ 0.04 · cos

(
2π
h

d

))
·Qf (3.22)

where h is level and d is the pipe diameter.

Manning’s equation describes flow in an open channel but can also be used for closed pipes
with a a free or exposed water surface. A comparison of level and flow is made between
manning equation and SWMM (hydraulic water quality simulation model), shown in the
appendix (C.2).
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Control 4
This chapter will first describe how the flow (at the WWTP inlet) is modeled. The model
is used with a Kalman filter to make predictions of flow patterns. The importance of
predicting flow disturbance is discussed in section (4.4) and subsequently, a disturbance
model (flow from residential areas) is created. Then, we discuss about Model Predictive
control (MPC), control objectives, development of performance function and constraints.
This chapter is more about theory whereas the implementation and analysis is described
in chapter (5).

Kalman Filter
Model

Predictive
Control

Sewer
System

Disturbance Predictions Control Signal

Tank Level & Flow MeasurementsFlow Measurement

Disturbances

Figure 4.1: Block diagram of the control system.

4.1 Time-series analysis in the frequency domain

A time series is just consecutive data points separated by a unit time interval. From Fred-
ericia Spildevand og Energi A/S, we have flow measurements at the WWTP inlet for one
month sampled at 5 minutes, seen in appendix (A.1). These flows are averaged out and
the resulting average flow for a single day is selected and analyzed. This is done because
we desire to find variations in flow with a period of one day.
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Figure 4.2: Average flow for one day entering the WWTP. Each measurement is taken at
every 5 minutes. This roughly resembles the flow pattern seen in figure 1.5 in chapter (1).

Flow entering the WWTP is assumed to be periodic with time period of one day. Now
we use fourier analysis to approximate this data with a weighted combination of sine and
cosine terms whose frequencies are integral multiples of a fundamental frequency. This
approximation is described by the fourier series.

y(t) = a0 +
N∑
n=1

ansin(nωt) + bncos(nωt) (4.1)

where y(t) is the flow data, a0/an/bn are the fourier coefficients, ω is the fundamental
frequency and N is the data length. The approximation in equation (4.1) is perfect for
periodic signals as the value of N tends to infinity.

In order to convert our time series data into the form above, we first need to determine
the frequency content of the data. The Discrete Fourier Transform (DFT) algorithm can
be used to determine which all frequencies a complicated data is composed of. Then we
describe this data as a sum of many individual frequency components thereby transforming
a complicated signal/data into much simpler parts.

The equation for DFT and its inverse looks like:

Y (k) =
1

N

N−1∑
n=0

y(n)e−i2πkn/N k = 0, 1, ... N − 1 (4.2)

y(n) =

N−1∑
k=0

Y (k)ei2πkn/N n = 0, 1, ... N − 1

where Y (k) is the Fourier transform. After expanding the exponential term, we get

Y (k) =
N−1∑
n=0

y(n)cos
(2πkn

N

)
− i

N−1∑
n=0

y(n)sin
(2πkn

N

)
(4.3)
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4.2. State-space model Aalborg University

From the above expression, its evident the algorithm calculates the correlation between
the data y(n) and a cosine/sine of a certain frequency. To identify the dominant frequency
components, we plot the power spectrum as seen in figure (4.3). The spectrum is symmetric
about its middle (N/2) and hence it is sufficient to display only the left half of the spectrum
(up to the nyquist frequency at the centre).

Power Spectrum of Y(t)
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Figure 4.3: Bar plot of power spectrum which is the square of DFT’s magnitude. At low
frequencies, the magnitudes are large. A zoomed out version can be seen in appendix (B.1).

Here, to find those dominant frequencies, we look at instances at which the power spectrum
of Y (k) is greater than a specified threshold. To convert these instances into actual
frequencies (Hz), we use the following formula:

f =
k · fs
N

k = 0, 1, ...N/2 (4.4)

where k can be any value between 0 and N/2, fs is the sampling frequency and N is the
number of samples in our data.

4.2 State-space model

Alternatively writing a continuous time sinusoidal in amplitude phase form as

y(t) = a0 + a · cos(ωt+ φ) (4.5)

where a0 is the mean or zero frequency term, a is the amplitude, ω is the frequency and φ
is the phase difference.

We can define an autonomous state space model (SSM)

ẋ = Ax+Bu (4.6)
y = Cx+Du (4.7)
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4.2. State-space model Aalborg University

whose state vector, system matrix, input and output matrix are

x(t) =

 a0
a · cos(ωt+ φ)
a · sin(ωt+ φ)

 (4.8)

and

A =

0 0 0
0 0 −ω
0 ω 0

 B =
[
0
]

C =
[
1 1 0

]
D =

[
0
]

(4.9)

y(ω) is the fourier transform of y(t). Real part and imaginary part of the fourier transform
coefficients are used in C. The above SSM contains just a single frequency. When we have
multiple frequencies, the sinusoidal signal and SSM would look like

y(t) = a0 +
N∑
n=1

an · cos(nωt+ φn)

x(t) =



a0
a1 · cos(ω1t+ φ1)
a1 · sin(ω1t+ φ1)
a2 · cos(ω2t+ φ2)
a2 · sin(ω2t+ φ2)

.

.

.

.

.
ak · cos(ωkt+ φk)
ak · sin(ωkt+ φk)



A =


0 0 0 0
0 A1 0 ...
0 0 A2 ...
. . . Ak

 where Ai =

[
0 −ωi
ωi 0

]
i = 1, 2 ... k

C =
[
1 1 0 1 0 ... 1 0

]
The discrete-time equivalent of A in equation (4.9), with sampling time τ is

Φ(τ) = eAτ

and

Φ(τ) =

1 0 0
0 cos(ωτ) −sin(ωτ)
0 sin(ωτ) cos(ωτ))

 (4.10)
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Now we perform these steps:

1. Load the flow data
2. Calculate the discrete fourier transform
3. Set a threshold ′h′ for the power spectrum |P (f)|
4. Identify frequencies ′f ′ for which |P (f)| > ′h′
5. Build the state space model
6. Simulate the model to compare with flow data

In the figure below, three threshold values of the power spectrum was chosen and the
consequent models were simulated and compared.
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Figure 4.4: Different model approximations of the original flow data. The thresholds set
for the model 1, 2 and 3 are respectively 2500, 900 and 400. The purple curve considered
10 frequencies in the model. The blue curve considered only 5 frequencies in the model.
The latter model is used in the subsequent section.

4.3 Kalman filter

The Kalman filter has been used for data prediction tasks and other purposes for the last
50 years or so [Kalman, 1960]. Using state space method to build the Kalman filter also
simplifies the implementation of the filter in the discrete domain.

The discrete state space model is written as

xk+1 = Φxk + wk

yk = Hxk + vk

where xk is the state vector of the process at time k, Φ is the state transition matrix of
the process from the state at k to the state at k + 1, wk is the associated process noise
with covariance Q, yk is the actual measurement of x at time k, H is the output matrix;
vk is the measurement noise with covariance R. Both wk and vk are assumed to be a white
gaussian noise processes.
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Error term ek is the difference between the estimate x̂k and xk itself. The Kalman filter
tries to minimize the mean squared error. To get to that, we must first describe the error
covariance matrix Pk at time k:

Pk = E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)T ]

The trace of this matrix is the sum of the mean squared errors. Therefore the mean squared
error can be minimized by minimizing the trace of Pk.

The two important steps of the Kalman filter are the prediction step and measurement
update step with Kalman gain K.

Measurement update Step:

Kk = (PkH
T )(HPkH

T +R)−1

x̂k = x̂k +Kk(yk −Hx̂k)
Pk = (I −KkH)Pk

Prediction Step:

x̂k+1 = Φxk

Pk+1 = ΦPkΦ
T +Q

The state space model used in this section has considered 5 different frequencies and the
dimensions are as follows:

xk = [ ]11 X 1 Φ = [ ]11 X 11 H = [ ]1 X 11

The Kalman filter algorithm was tested for different scenarios and the estimation results
are plotted. The estimate is compared against the actual flow measurements.
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Figure 4.5: The Kalman filter estimation for the days 14 to 17. The process noise (Q) and
measurement noise (R) had a variance of 0.01 and 25 respectively.
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The above figure shows the result when Kalman filter is used for 1-step prediction. It is
however only useful when we can make predictions of flow pattern much ahead in time.
The Kalman filter can be used for n-step prediction as well. To illustrate such predictions,
we first choose the days when it is not raining. Then we discard some of the measurement
readings. Whenever there are no measurements available, the Kalman filter algorithm just
performs the prediction step for flow without the updation step. Some results are shown
below for different prediction horizons.

Figure 4.6: The Kalman filter estimation for the first 6 hours of day 15. No new
measurements were taken in this period. The process noise (Q) and measurement noise
(R) had a variance of 0.01 and 25 respectively.

Figure 4.7: The Kalman filter estimation for the first 12 hours of day 15. No new
measurements were taken in this period. The process noise (Q) and measurement noise
(R) had a variance of 0.01 and 25 respectively.

Ideally, we would need to make predictions for a 24 hour period since the controller
optimization window (prediction horizon) is one day.
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Figure 4.8: The Kalman filter estimation for day 15. No new measurements were taken in
this period. The process noise (Q) and measurement noise (R) had a variance of 0.01 and
25 respectively.

4.4 Delay in the sewer network

So far, we have predicted the flow that would enter the WWTP. The flow changes in value
for a 24 hour window. To even out this flow, it is necessary to predict wastewater flow
from the residential areas. Having information about this flow disturbance would make it
easier for the controller to release wastewater from the buffer tank accordingly to end up
with a smooth flow at WWTP inlet. The controller also has to account for the delay in
wastewater transport from the buffer tank to treatment plant, figure (2.1).

To calculate the flow from residential areas, we need to subtract the industrial wastewater
flow from the WWTP inlet flow keeping the delay in mind. This delay can be measured
by noting the time it enters the sewer pipe and the time it leaves the sewer pipe and comes
into WWTP. In a real sewer network, this is not possible to measure but for the laboratory
setup with transparent sewer pipe it is easy to do so. The other way to find out transport
delay of wastewater in a real sewer network would be to calculate it by performing cross
correlation analysis.

4.4.1 In Fredericia

From the results seen in section 4.3, it is clear that finding a flow model close enough to
the actual flow measured in a day can be really helpful. The kalman filter was able to use
this model and make good predictions of flow.

Now, we move on to find a model for flow disturbances from the residential areas. Wastew-
ater at the WWTP inlet is a mix of wastewater from industries and houses. To find real
flow measurements leaving the houses, it is mandatory to know the exact delay in the
sewer line. Subtracting the industrial flow from the flow measured at WWTP inlet after
taking care of transport delay can give us the disturbance flow.

Figure (4.9) shows how wastewater enters the treatment plant in Fredericia. Referring to
the same figure, we have information of flow leaving the heavy industries and the flow at
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the WWTP inlet. If we have knowledge of flow leaving the pumping station, it is possible
to calculate the delay in the thick blue line using cross correlation analysis.
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Inlet
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2

Figure 4.9: Simple illustration of wastewater transport and collection in the city of
Fredericia.

With this tiny problem present, we can not obtain the exact flow measurements from the
households. So instead, we created a flow pattern that resembles the actual flow data
(which can be seen in appendix (A.3)). The magnitude and periodic behaviour is very
much similar to actual flow data.
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Figure 4.10: Bar plot of wastewater flow from residential areas for a period of 5 days.

Therefore, with this flow profile, we take the average flow for a day and repeat the same
steps mentioned in section (4.1) to obtain a model using fourier analysis. For the rest of
the project work, this model is used for the prediction of household wastewater flow.
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4.4.2 Cross correlation analysis in laboratory

Lenght = 10 m

Slope avg = 6 %

Flow avg = 2.5 L/min

Delay = 20 seconds

Lenght = 10 m

Slope avg = 3 %

Flow avg = 18 L/min

Delay = 17 seconds

Total delay = 37 seconds
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Figure 4.11: Layout of the sewer pipe with its flow inlets and level sensors. This was chosen
in order to minimize the backwards flow of water from households in the middle section.
The delays were measured separately using a timer.

For the laboratory setup, apart from measuring delays with a timer, we also calculated the
delay from the middle to bottom section of sewer pipe using cross correlation. Data used
to do this analysis is shown in appendix (B.4). The theory of correlation is explained below.

Cross correlation is a technique to find out the degree to which two time series are similar
with each other. Consider two time series x(i) and y(i) where i = 1, 2, ... N . The cross
correlation r at delay d is expressed as:

r =

∑
i

(
(x(i)− µx) ∗ (y(i)− µy)

)
√∑

i(x(i)− µx)2
√∑

i(y(i)− µy)2
(4.11)

Where µx and µy are the means of the corresponding time series. The above equation is
computed for all delays d = 0, 1, 2, ... N − 1 and results in a cross correlation series of
length 2 ∗N . The denominator in the equation is used to normalize the correlation coef-
ficients such that −1 ≤ r(d) ≤ 1, the bounds (−1 and 1) indicates maximum correlation
and 0 indicates no correlation.

While evaluating the cross correlation, there is small issue to consider for the indexes i−d
< 1 and i− d > N . The common approach (as done in Matlab) is assigning zero to these
points. The second method is assuming one series is circular and the indexes exceeding
the dimension (N) are wrapped back within range, for example x(N + 10) = x(10). With
this method, its not possible to compute the normalized cross-correlation of the two time
series (of different lengths) as Matlab does not support it.
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Figure 4.12: Delay analysis for the bottom half of the sewer pipe. Cross correlation done
between the flow entering in the middle and the flow at the end of the sewer pipe. The
matlab command ’xcorr’ was used. Data used to do this analysis is shown in appendix
(B.4).

As seen from the figure, the two flow data have highest correlation at 16 seconds and 17
seconds. Hence, we can confirm that the measured delay of 17 seconds is accurate. This
analysis is merely done to defend the delay value used in our system model.

4.5 Model predictive control

Monitoring and control of any complex system like a sewer network is not easy and straight-
forward. Such a challenging system requires a control method that can reduce the burden
of complexity and make real-time control possible. The controller should also be capable
of handling multiple inputs and outputs because a sewer network will indeed have many
sensors and actuators for measurement and control. The controller should also compensate
for the effects of undesirable dynamics such as delays and dead times, consider physical
constraints and nonlinear behaviours [Ocampo-Martinez, 2010].

Hence, in the field of wastewater system control, one of the well suited method is the use
of Model Predictive Control (MPC), also referred to as Receding Horizon Control. The
basic idea of MPC, [Maciejowski, 2002], is:

• Computation of a control sequence that minimizes a cost (objective) function
• The use of a model to predict the process output over a horizon of fixed length
• The application of the first control signal from the computed sequence and moving

the horizon one timestep forward

4.6 System to control

In chapter (2), we described the laboratory system built to carry out the experiments.
However, we used the system, shown in figure (4.14) to run our tests. The reasons for
this decision were to use make use of more accurate and reliable flowmeters. These flow
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Figure 4.13: Overview of how MPC works. To reach a set point, the controller calculates
a sequence of optimal control inputs (U) that minimizes a certain cost function. With
this sequence of control inputs (U), the output of the system (Y) is predicted over some
prediction horizon. Then, the first value of (U) is given to the system, and this procedure
is repeated for each time step. [de Oliveira Kothare and Morari, 2000]

.

measurements are needed for the local PI/PID controllers ensuring good performance of
the valve and pumps. This setup also brings us closer in replicating a sewer network
because of using pressurized pipes in pipe station. Both gravity and pressure sewer lines
make up the construction of a real sewer network. For simplification of the model, we only
consider flow in gravity sewer pipes.
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Figure 4.14: This is the final configuration used for the study. The minimum flow
measurement is now 0.5 L/min when using flowmeters from Endress+Hauser in pipe
station. The tubes in pipe station have a small diameter and results in a full tube flow.
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Now, while describing the system in detail, we also relate it to the real-life scenario of the
sewer network at Fredericia in parallel. Looking at figures (4.11) and (4.14) will help with
the explanation.

The project idea is to use a large buffer tank (in consumer station) to hold back water.
This replicates a tank holding industrial wastewater from heavy industries in the north
of Fredericia. We send a periodic flow of water to the middle of sewer pipe to simulate
disturbances of wastewater from household areas. From the mentioned tank, we send a
controlled flow to the top of sewer pipe (in pumping station) in moments when the flow
from the household is low. Right now in Fredericia, there is no tank readily available. This
study will help in proving the feasibility of building such a tank. The industrial wastew-
ater directly enters the sewer network and household wastewater has multiple entries to
the gravity sewer network.

The tank in consumer station is equipped with a level sensor, so that change in volume
of the tank can be calculated at any given time. Release of water from the tank is done
through a valve, controlled by a local PID controller which constantly receives a reference
from MPC.

4.6.1 Control objective

While choosing the control objectives for this project, we wanted them realistic enough to
be implemented in the near future. The challenges faced by the wastewater industry were
presented in Chapter (1). With those in mind, we have three main control objectives:

1 Minimize flow variation at the WWTP inlet
2 Minimize variation of contaminants flowing into the WWTP
3 Minimize energy consumption

The group has decided to focus on the first objective, reducing variance in the wastewater
flow into the WWTP. Now, in the lab, this translates to minimizing the flow variation at
the bottom of sewer pipe. To be specific, we minimize the variance of Y . This can be done
by adding water to the top of pipe from the buffer tank whose flow outlet is controlled by
MPC.

4.6.2 Model

As seen from the figure (4.11), the two flows (controlled industry water and household
water) mix together and exit the sewer pipe from the bottom. This combined flow then
pours down into overflow/weir in the pumping station. In reality, this would be the flow
entering the WWTP.

With V corresponding to the volume in the buffer tank (L), Qi the wastewater flow from
industries (L/min), Qh the predicted water flow from the households (L/min), U being
the input (valve flow) that is controlled (L/min), τ the transport delay of water in the
pipe (s), Y being the measured overall flow into the WWTP (L/min) and Ts the sampling
time, our sewer network can be defined as [Morten Vesteraa et al., 2018]:

V (k + 1) = V (k) + Ts(Qi(k)− U(k))

Y (k + τ) = Qh(k + τ) + U(k)
(4.12)

There is a distance of 20 meters between the top and bottom of the sewer pipe and it takes
some time (approximately 37 seconds) for the water to travel this distance, refer figure
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(4.11). This is the reason for using delay term in our model. This also means that when a
flow input is introduced at the top of sewer pipe, it will only affect the overall inflow after
the delay of τ seconds.

4.6.3 Performance function

To optimize the system using MPC, we develop a performance (cost) function. This
function can be used to control the plant output (flow at the bottom of pipe) and minimize
control action (flow input to at the top of pipe). The cost function is of the form:

J =

Hp∑
k=1

(
Qh(k + τ) + U(k)− µ

)2
(4.13)

subject to system dynamics and constraints

V (k + i+ 1) = V (k + i) + Ts(Qi(k + i)− U(k + i))

Y (k + i+ τ) = Qh(k + i+ τ) + U(k + i)

Vmin ≤ V ≤ Vmax
Umin ≤ U ≤ Umax

(4.14)

Where J is the cost function to be minimized, R and S are weighing parameters. Hp

and Hu are the prediction and control horizon respectively, where the condition Hu ≤ Hp

should hold. Regarding the control/prediction horizon, we have kept Hu equal to Hp. By
choosing this, we get better predictions at the cost of higher computation.

Now expanding the first term in equation 4.13 gives

J =

Hp∑
k=1

(
Qh(k + τ) + U(k)−

Hp∑
i=1

(
Qh(i+ τ) + U(i)

)
Hp

)2

=

Hp∑
k=1

(
Q2
h(k + τ) + U2(k) +

( Hp∑
i=1

(
Qh(i+ τ) + U(i)

)
Hp

)2

+ 2Qh(k + τ)U(k)

− 2Qh(k + τ)

Hp∑
i=1

(
Qh(i+ τ) + U(i)

)
Hp

− 2U(k)

Hp∑
i=1

(
Qh(i+ τ) + U(i)

)
Hp

)
(4.15)

Without further expansion, it is evident that adding the above equation and the mean of
Y (≥ 0) leads to an expression containing quadratic and linear terms in U and it is similar
to the form

J = U(k)THU(k) + GTU(k) + constant (4.16)

where all the linear terms of U are collectively shown as G, quadratic terms are shown by
H and remaining terms are regarded as a constant. By doing this, we have reformulated
the optimization problem with a quadratic performance function. As seen in figure (4.15),
a quadratically constrained problem is a convex problem. With a performance function
that is quadratic in the control variable U and constraints that are linear in U , standard
optimization tools like CVX and YALMIP are readily available to solve such minimization
problems.
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Figure 4.15: Convex optimization problem set. Linear Programming is a subset of
Quadratic Programming which is a part of Semidefinite Programming.

4.6.4 Constraints

Flow sensor

MPC PID Actuator+ -

Figure 4.16: Before moving onto constraints, the reader should take note that output from
MPC is sent as setpoint to a local controller for valve and pumps.

One mentioned benefit of MPC is its capability to consider constraints while calculating a
control signal. These constraints can be given as inequalities and used in the optimization
process. Some of the constraints are:

• Actuator range - which describes the limitations of the actuator. For instance, it
could be the maximum flow leaving a pump outlet. An example what happens when
you do not consider such actuator limitations is shown in the below figure. This can
also be seen as a constraint on the control input (U).
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Figure 4.17: In subplot 1, when the MPC output exceeds the actuator limit, there is an
overshoot in flow due to the buildup of error in PID. This slightly increases the variance
of overall flow. In subplot 2, when suitable constraint is imposed on MPC output, we do
not see this undesired overshoot.

• Actuator slew rate - which describe how fast the actuator can react. For instance,
it could be how fast a valve can open. The valve would need time to overcome static
friction (stiction) before opening to a required amount. Knowing this detail could
very helpful while analyzing the controller performance.
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Figure 4.18: Reaction time for the valve. On average the valve takes 12 seconds to respond
to the control signal.

• Other physical constraints - for instance it could be the maximum flow in a pipe
or maximum storage in a tank.
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Figure 4.19: Maximum flow that can possibly flow through the sewer pipe of diameter 50
millimeters. Flow calculated with manning equation.

For the laboratory setup, two constraints were taken into account and reasons for focusing
on these constraints are pointed out subsequently.

Vmin ≤ V (k) ≤ Vmax
Umin ≤ U(k) ≤ Umax

(4.17)

• Maximum volume Vmax in the tank. The physical tank can store only a certain
amount of volume. The tank has a design capacity of 200 litres. Furthermore, the
minimal volume Vmin must always be bigger than or equal to zero as the volume
cannot be negative.

• Maximum input signal Umax. As seen in figure (4.17), the maximum value of U
should be limited to avoid an undesired overshoot in flow leaving the buffer tank.
Again the minimum input signal Umin should result in a flow bigger than or equal
to zero.

With regard to the first constraint, at a given time k, V (k) is known as it is measured
with a level sensor in the tank. With this measurement, future volumes of the tank can
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be predicted as:

V (k + 1) = V (k) + Ts(Qi(k)− U(k))

V (k + 2) = V (k + 1) + Ts(Qi(k + 1)− U(k + 1))

= V (k) + Ts(Qi(k)− U(k)) + Ts(Qi(k + 1)− U(k + 1))

V (k + 3) = V (k + 2) + Ts(Qi(k + 2)− U(k + 2))

= V (k) + Ts(Qi(k)− U(k)) + Ts(Qi(k + 1)− U(k + 1)) + Ts(Qi(k + 2)− U(k + 2))

= V (k) + Ts(Qi(k) +Qi(k + 1) +Qi(k + 2)− (U(k) + U(k + 1) + U(k + 2)))

...

...

V (k +Hp) = V (k) + Ts

(Hp−1∑
m=1

Qi(m)−
Hp−1∑
m=1

U(m)
)

(4.18)

4.7 Disturbances

For this system, the inlet to the buffer tank, denoted as Qi is a disturbance. It is because
wastewater released from the heavy industries in Fredericia can vary and be unpredictable
at times. The water flow from residential areas Qh is also seen as a disturbance. It has a
periodic flow pattern which we used to build a model. We then use a Kalman filter that
uses this model and takes in real-time flow measurements to give a predicted flow to MPC.
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4.8 Summary

Control 
Algorithm Cycle

Flow Measurements

Kalman Filter

Prediction of 
Household Flow

Model Predictive Control

Calculates optimal U

Influences the overall flow

Figure 4.20: The figure should help in summarizing this chapter.

To interpret the figure, let’s start with flow measurement block at the top. Real-time
measurements are recorded for flow at the WWTP inlet (or the end of sewer pipe). Then
the kalman filter takes in measurement to update its prediction of household flow (over
a horizon of 1 day). This prediction is given to MPC which uses this prediction of flow
disturbances and accordingly calculates the control signal. This control signal acts on a
valve that releases water from the tank and thereby influencing the overall flow in the sewer
pipe. Now, a new flow measurement is taken and the loop repeats for each iteration.
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Implementation 5
In this chapter the implementation of the controller on the laboratory version of sewer
system is explained through a flowchart. The Model Predictive Controller is implemented
in MATLAB/SIMULINK. Here we briefly explain how it is done.

5.0.1 YALMIP

In the field of control and systems theory, one of the most important tool is Semidefinite
Programming (SDP). YALMIP, a free MATLAB toolbox, can be used to model and solve
SDP’s by interfacing external solvers. As Quadratic Programming (QP) falls within SDP,
YALMIP was chosen for this project study purposes. In general, it is simple to develop an
optimization problem in YALMIP. Another benefit is that YALMIP automatically detects
the kind of problem defined by the user and selects a suitable solver [Löfberg, 2004].

The MPC problem is formulated in YALMIP to solve the optimization problem -
minimizing a cost function over a finite horizon while satisfying user defined constraints.
It is crucial for a real-time controller to be able to compute the output signal in less time
than the time step. Given that our time step is 1 second and during this time other
computational tasks must be done, it is extremely important that the YALMIP code is
as efficient as possible. For this reason, the optimizer function has been used instead of
optimize. The optimizer function allows to set up the optimization problem only once for
each simulation so at each iteration only solving the optimization problem is needed.

5.0.2 SIMULINK

SIMULINK runs on the laboratory computer which is connected to the Local Area Network
(LAN) via an ethernet cable. The physical system (stations/modules) are connected to
LAN in the same way. We found satisfactorily performance of using SIMULINK for real-
time simulation and testing.
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Figure 5.1: Software implementation. The control signal is sent to the input registers and
measurements are read from the output registers.
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The household flow (Qh) block is coloured different because it is the fundamental part of
the experiment. There should be a constant supply of water to carry out an experiment.
Flow as a timeseries is fed to a PI controller as reference and output of PI (control signal)
is sent to the pumps.

As SIMULINK compiler is not compatible with object oriented code, YALMIP code has
been placed inside a Interpreted Matlab Function. Modbus Read and Modbus Write have
been placed in S-Functions, two for each lab module. The computational time has been
verified to be lower than the time step, which allows real-time control.
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5.1 Flowchart

START

t<41 seconds?

Set U=0

YES
INITIALIZATION

Use Manning Equation to convert L22
(mm) to L/min

Calculate 
Qh(k-d2)= WTTP_Flow(k) - U(k-d1-d2)

Use Kalman Filter to predict Qh vector
from k to k+L+d1+d2

Use MPC to find optimal U
to minimize var(Y):

Y(k+d1+d2) = Qh_pred(k+d1+d2) + U(k)
subject to contraints

WTTP_Flow(k)

Qh_pred

L22

Tank Level

NO

Pump Household flow (Qh)

k=k+1

k=0

Apply U(k) to the plantU(k)

Figure 5.2: Flowchart

Figure (5.2) shows how an experiment is done. For the first 40 seconds there will be flow
only coming from the households. The household flow Qh is a defined timeseries from
which the Fourier analysis has taken the model for the Kalman filter. This initialization
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process is done in order to avoid the first measurements which may have overshoot and
oscillations. Note that for the first d2 seconds (delay between the middle point to the end
of the sewer pipe) there will be no flow where the level sensor (L22) is placed.

After the initialization we will use the measurements from level sensor L22 to compute
what was the flow from the households d2 seconds ago. This is done using the Manning
equation to convert the measurement in mm to L/min as described in Chapter (3), equa-
tion (3.22). We then subtract the flow from the consumer station U that was sent d1 + d2
seconds ago (that is the delay between the top and the end of the sewer pipe).

Based on the last computed value and the previous ones, the Kalman Filter will predict
the household flow from the current time step until L+ d1 + d2.

Finally, the MPC will compute the the optimal U which minimizes the the variance of
Y taking in account the current level of the industry tank and subject to the defined
constraints.
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Tests and Results 6
In this chapter, different tests and their results will be discussed. Firstly, the simulation
results are shown to prove that the control methodology works. The simulations have been
done with real data from Fredericia. Later, laboratory tests are shown. The laboratory
tests were carried with a scaled version of the real data.

Without Tank Constraints

With Tank Constraints

With Soft Tank Constraints

With Tank Constraints

Figure 6.1: Structure of this chapter. The green boxes are simulation results and blue boxes
are experimental results from the lab.
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6.1 Simulation results

System and performance function

Transport Delay

Figure 6.2: Here we assume all the household flow enters the sewer line at the end. There
is a delay of 4 hours for the wastewater from buffer tank to reach the WWTP.

For the simulation studies, the performance function has been modified slightly. µ is the
mean flow of Y . The reason for adding an extra term can be understood by comparing
figure (6.3) and figure (6.5). Figure (6.3) represents the controller performance for an
objective function without mean.

J =

Hp∑
k=1

(
Qh(k + τ) + U(k)− µ

)2
R

+

Hp∑
k=1

(
µ
)
S

(6.1)

subject to system dynamics and constraints

V (k + i+ 1) = V (k + i) + Ts(Qi(k + i)− U(k + i))

Y (k + i+ τ) = Qh(k + i+ τ) + U(k + i)

Vmin ≤ V ≤ Vmax
Umin ≤ U ≤ Umax

(6.2)

In this section, different simulations are shown to prove how the MPC is able to achieve
the goal of minimizing the variance of the flow at the WWTP inlet.

For the next simulations, the Kalman Filter will be used to predict the household flow
for the next 288 timesteps (1 day) at each iteration. This predicted flow will be fed to
the MPC which must find an optimal controlled industrial flow that minimizes (6.1) con-
strained by equation (6.2).

The household flow, based on real measurements from the city of Fredericia was described
in section (4.4) in chapter (4). This is used for the following simulation studies.
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Figure 6.3: A six days simulation. The blue bars shows the household flow predicted by the
Kalman Filter. Prediction window is 288 timesteps (or 1 day). The red bars shows the
controlled industry flow computed by the MPC, these are summed on top of each other after
shifting them 48 timesteps to visualize overall flow to the WWTP. No tank constraints and
no mean in the performance function.

6.1.1 Simulation with tank constraint

Different tank sizes have been considered to show the performance of the controller. The
tank will be fed by the uncontrolled industrial flow from which the MPC has knowledge
for the next 288 timesteps ahead.

For the first simulation the tank volume has been set to 5000 m3 and the initial vol-
ume to full. Figure (6.4) shows what is the flow from the tank and the household at
each timestep. Although the MPC computes the optimal industry flow for the next 288
timesteps, only the first one is used and plotted. Note that the controlled industrial flow
takes 48 timesteps more than the household flow to reach the WWTP. If the industry flow
is shifted 48 timesteps forward as in figure (6.5) the stacked flow will show the total flow
at the inlet of the entry of the WWTP.
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Figure 6.4: A six days simulation. The blue bars shows the household flow predicted by the
Kalman Filter. Prediction window is 288 timesteps (or 1 day). The red bars shows the
controlled industry flow computed by the MPC, these are summed on top of each other to
visualize overall flow to the WWTP.
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Figure 6.5: The top plot shows shows the household flow shifted 48 timesteps. The bottom
plot shows the overall inlet flow to the WWTP.

As it can be seen in the bottom plot of figure (6.5), the MPC is able to reduce the variation
of flow to a great extent.
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Figure 6.6: Tank volume.

If the tank volume is decreased to 500 m3 and the initial volume is set to zero the MPC
will have less margin to not violate the constraints, hence the performance will decrease.

As shown in figure (6.8) and figure (6.9), industrial water has to be released when the
household flow is at its peak, increasing the variance, to avoid overflow of the tank. The
remaining water in the tank is not enough to fill up the valleys of the household flow.

52



6.1. Simulation results Aalborg University

0 200 400 600 800 1000 1200 1400 1600

Timesteps (5 min)

0

200

400

600

800

1000

1200

1400

F
lo

w
 (

m
3
/h

)

Household flow

Controlled Industry flow

Figure 6.7: A six days simulation. The blue bars shows the household flow predicted by the
Kalman Filter. Prediction window is 288 timesteps (or 1 day). The red bars shows the
controlled industry flow computed by the MPC, these are summed on top of each other to
visualize overall flow to the WWTP.
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Figure 6.8: The top plot shows shows the household flow now shifted 48 timesteps. The
bottom plot shows the overall wastewater flow into the WWTP. The results are not as good
as figure (6.5) when there is a constraint on tank size.
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Figure 6.9: Change in tank volume. When the upper limit is reached, the tank is forced to
release wastewater into the sewer. This still results in a varying flow at the WWTP inlet.

6.2 Experimental results

In order to prove the results obtained in the simulations, the same tests will be done in the
lab. A scaled version of the flows is needed in order to execute the tests. The scaled flow
has to be of a reasonable magnitude so all the actuators and sensors work on its operating
range. The main constraint is that the outlet of the pressurized tank is only able to deliver
up to 6.5 L/min with the current configuration. Consequently, the difference between the
peaks and valleys of the household flow has to be below the mentioned limit.

Flows have to be also scaled in time so multiple test can be performed in one day. If the
scaled period is too short the error of the delays determination will play a big role. As the
total delay was found to be approximately 37 seconds, the period has to be much higher so
an inaccuracy of a few seconds do not have a big impact in the performance. The decision
was to scale a day of the real measurements to 4 minutes and 48 seconds so a complete
test of a week will take around 29 minutes.
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Figure 6.10: Scaled household flow used for the laboratory study.
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6.2.1 Pump control

A set of pumps (pumps 4/5 in pumping station) will be used to deliver the household flow
to the middle point in the sewer pipe. The household flow is a predefined timeseries. In
order to follow the reference, a local PI controller has been designed.
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Figure 6.11: Reference and delivered flow by the pumps

6.2.2 Valve control

In figure (6.12), flow characteristic of the installed control valve, a curve mapping the per-
centage of flow versus the given valve opening is shown. This is how the valve operates in
the real process, low gain for smaller opening (%) and high gain for larger opening (%).
This was determined by measuring flow rates for different valve opening (%) spanning the
operating range of the controller output and under steady-state conditions.
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Figure 6.12: Nonlinear flow characteristic curve of the control valve (Type - Ball Valve)

This flow characteristic has a direct influence of the process gain. So, ideally, the
characteristic should be linear to have a constant process gain. If the curve’s slope varies
a lot, the control loop performance can be considerably affected. Now instead of replacing
the valve, one could easily change the valve characteristic by modifying the controller
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output signal. This is done with a linearizer, a curve f(x) placed between the controller
and the valve [Lipták, 2006].
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Figure 6.13: Design of the linearizer is configured to be the inverse of the flow curve
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Figure 6.14: Linearizing a nonlinear valve characteristic

Later, the accuracy of the linearizer was tested to check whether the opening (%) and
flow measurement are approximately at the same percentage of full scale for the entire
operating range of the valve.
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Figure 6.15: Linearized flow characteristic of the valve
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Figure (6.16) shows the performance of the valve control after implementing the linearizer.
It can be seen that the react time of the valves, around 8 seconds, is slower than the pumps.
This difference in reaction time introduces a delay that should be taken in account in the
MPC. Note also that for reference flows below 0.5 L/min the valve will be closed. This
is done on account that the flow sensor is not able to get accurate readings for such a low
flows. For a 0 L/min reference flow, the flow sensor may indicate that the flow is 0 L/min
when the real flow could be slightly below 0.5 L/min.
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Figure 6.16: In blue, the reference signal to the local controller. In red, the flow measured
after the controlled valve.

6.2.3 Manning equation

As it is desired to know the flow at the outlet of the sewer pipe but no flow sensor is placed
there, it is needed to convert the readings from the level sensor to flow. This will be done
using the Manning equation previously explained in chapter (3).

A test was done to check the accuracy of using a level sensor to estimate the flow. For the
test, only household flow was delivered to the sewer pipe.

Figure (6.17) shows the raw readings of the level sensor. The next step is to apply the
Manning equation to these raw readings to convert it to flow.
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Figure 6.17: Level of water in mm at the outlet of the sewer pipe

Figure (6.18) shows the conversion result of applying the Manning equation.
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Figure 6.18: Estimated flow at the outlet of the sewer pipe.

To check if the conversion is good enough, the previous data was made smooth by applying
a moving average filter and then compared with the household flow. The comparison can
be seen in figure (6.19). With both of them being close to each other, the use of manning
equation for flow estimation should not be a problem.
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Figure 6.19: Comparison between the household flow fed to the sewer pipe (blue) and the
estimation of the flow from applying the Manning equation to the level sensor readings
(red).

6.2.4 Kalman filter

To achieve a good performance, the MPC should have knowledge of the household flow
for the entire control horizon. As the exact household flow is unknown and may vary from
day to day, a Kalman filter was implemented in order to predict it.

To obtain the actual measurement of Qh at time k, denoted as yk, we need to subtract the
industry flow U from the total flow at the outlet of the sewer pipe (Y (k)) which will be
estimated using the Manning equation. If we subtract from the total flow at the current
timestep the inlet flow at the top of the sewer k− d1− d2 time steps before, we will obtain
what the inlet household flow at the middle point of the sewer pipe k − d2 steps earlier in
time. If it is confusing, the below figure will surely help.

yk = Qh(k − d2) = Y (k)− U(k − d1 − d2) (6.3)

L
L22

U (k)

Qh (k)
Y (k)

d1

d2

U (k) takes d1 + d2 seconds to influence Y Qh (k) takes d2 seconds to influence Y

Figure 6.20: Gravity sewer tube with transport delays.
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The value obtained will be fed to the Kalman filter at the measurement update step. Then,
it will predict Qh flow for the next L + d1 + d2 time steps. Note that the controller can
not act on the first d1 + d2 time steps so only the predictions from d1 + d2 to L+ d1 + d2
are taken in account in the MPC.

Figure (6.21) shows a prediction of the Kalman filter at time step k=800. Based on the
measurements (black), the Kalman filter predicts the future values from the time step k+1
until k+L+ d1 + d2 (red). The dashed blue line shows the predictions that will be fed to
the MPC, from k+ d1 + d2 until k+L+ d1 + d2. To check if the Kalman filter is reliable,
the measurements obtained afterwards are also plotted (green).
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Figure 6.21: In black the measured flow until time step k=800, in green the future
measurements unknown at that time step. The red line shows the L + d1 + d2 predictions
of the future flows. The dashed blue lines represent which of the predictions are useful for
the MPC. Q=0.005 and R=4.

Figure (6.22) shows all the measured flow at the outlet of the sewer pipe and all the
k+ d1 + d2 predictions of the Kalman Filter. If the prediction is shifted d1 + d2 timesteps
forward, both lines should follow the same trend as shown in figure (6.23).

200 400 600 800 1000 1200 1400 1600

Time (seconds)

0

2

4

6

8

10

12

14

16

18

20

F
lo

w
 (

L
/m

in
)

Measured Q
h

Predicted Q
h

Figure 6.22: A d1 + d2 step prediction and a comparison of the measured Qh flow with the
predicted Qh flow.
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Figure 6.23: Comparison of the measured and the predicted Qh flow with the latter being
shifted d1 + d2 timesteps.

6.2.5 Model predictive control

6.2.5.1 Without tank constraint

For the first test of the MPC, the tank volume constraint was omitted. Figure (6.24) shows
the optimal U computed by the MPC that minimizes the variance of flow Y at k = 1000.
The blue line are the values from k + d1 + d2 to k + d1 + d2 + L of the Kalman filter
predictions, and the red line are the optimal U from k to k+L. Only the first value U(k)
will be used.
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Figure 6.24: Optimal flow that minimizes the performance function at time step k=1000

Figure (6.25) shows all the U(k) computed during a test. In red is also plotted the first
useful value of the predicted household flow at each time step, Qh(k + d1 + d2).
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Figure 6.25: Predicted household flow and optimal U

The resultant total flow Y of applying the computed optimal flow U are shown in figure
(6.26). It can be seen that the variation of flow has been reduced significantly.

Variance Variance (after smoothing)
Without controller 8.240 7.070
With controller 1.660 0.988

Table 6.1: Flow results before and after implementation of the controller. The variance is
calculated over a period of 5 days or 1440 seconds. A moving average filter was used to
smooth the data for a window size of 25 seconds.
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Figure 6.26: Total flow estimated by the level sensor L22
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6.2.5.2 With tank constraint

As illustrated in figure (2.1), chapter (2), wastewater leaving the industry gets collected
in a tank. From now on, the tests include the addition of water into the tank in consumer
station. When MPC computes an optimal input while satisfying constraints on the tank
volume, it also has to deal with the input flow to the tank. We send a prediction of this
industrial inflow to MPC. The prediction horizon is 288 seconds. The industrial inflow
used for the experiments is shown below. It is a scaled version of actual industrial flow
data from Fredericia.
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Figure 6.27: Water entering the buffer tank. This flow is seen as disturbance from heavy
industry.

For the following tests, the tank constraints have been implemented. It is desired to keep
the volume of the tank between certain bounds. For the first test, the maximum volume
was set to 160 L and the minimum to 120 L.
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Figure 6.28: Total flow Y estimated by the level sensor L22
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Figure 6.29: Top: Tank volume for constraints (shown in green) Vmax = 160 Vmin = 120.
Bottom: Predicted household flow and optimal U.

It can be seen in figure (6.28) that the constraint does not have a significant impact in
the performance. In figure (6.29), one quick observation shows you the volume of water in
the tank keeps reducing. This is because the net outlet flow of water is more than the net
inlet flow.

With the next test, we introduce tighter constraints. The volume of the tank was reduced
further to 20 L by setting the maximum volume to 150 L and the minimum to 130 L. The
intention of this test is to make the situation close to reality and challenge the controller
more. In the real world, there could easily be instances when the buffer tank is close to
getting full. The performance of the controller in such a case is compared to other results
later.
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Figure 6.30: Total flow estimated by the level sensor L22
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Figure 6.31: Top: Tank volume for constraints (shown in green) Vmax = 150 Vmin = 130.
Bottom: Predicted household flow and optimal U.

Although the controller is able to keep the volume of the tank between the constraints, the
performance of minimizing the flow variance is not as good as the previous test results,
figures (6.26) and (6.28), especially for the last 400 time steps.

6.2.5.3 Soft tank constraint

To prevent the optimizer in YALMIP to stop working when no feasible solution can be
found, the tank constrains have been ’softened’. This allows to cross the boundaries
occasionally if it is necessary. To implement the soft constraints, the optimization problem
was modified to [Maciejowski, 2002]:

J =

Hp∑
k=1

(
Qh(k + τ) + U(k)− µ

)2
+ ρε (6.4)

subject to

Vmin − ε ≤ V ≤ Vmax + ε

0 ≤ ε
(6.5)

where ε is a so called slack variable and ρ a non-negative parameter. By choosing ρ to
be large enough gives the same solution as the ’hard’ constrained problem if a feasible
solution can be found.

We performed a test to check this modified algorithm (6.4), (6.5) in work while having
some unexpected disturbances acting on the system. The results are shown below.
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Figure 6.32: Total flow estimated by the level sensor L22
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Figure 6.33: Top: Tank volume for constraints Vmax = 160L Vmin = 140L. Middle:
Predicted household flow and optimal U. Bottom: Expected Qi and actual Qi after applying
disturbances
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For the present test, ρ was set to 3. In order to force the violation of constraints, distur-
bances have been added to the inflow to the industry tank as shown in the bottom plot of
figure (6.33). At time step k = 400 and k = 950 the MPC is expecting some inflow but Qi
was set to zero flow. As a result, no feasible solution can be found leading to a violation
of the tank constraint.

As anticipated, the controller continued to work despite violating the constraints on the
tank. It is in a way an improvement over the standard algorithm (6.1), (6.2). Hence, we
have also designed and tested an on-line control strategy that dealt with the problem of
infeasibility.
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Discussion 7
This chapter will lay out some issues identified with the project setup and discuss the
results.

Laboratory setup

• Pumps 1/2/3 has to make sure the tank in pumping station does not overflow. When
it does not pump water out as expected, the tank overflows. This tank represents a
WWTP so in theory we exceed the treating capacity of the plant. A solution is to
lower the height of the three pumps so that there is continuous circulation of water
between stations.

Figure 7.1: A good and detailed 3D model of the pumping station created by Poul Due
Jensen Foundation, Grundfos. A blue box is put around the pumps.

• Another function of pumps 1/2/3 in pumping station is to pump water as seen in
figure (4.14) to include flow disturbances from an industry. If the pumps do not per-
form as required, it results in less volume in the consumer tank. With this change,
our MPC’s decision also gets affected.
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Figure 7.2: Water entering the buffer tank. This flow is seen as disturbance from heavy
industry. In this case, the pumps are not able to send water as desired.

• If required, the transport delay from the top to bottom of sewer pipe can be in-
creased by lowering the slope (placing the tube on top of each other) and increasing
the length of the pipe.

• Air pockets in the tubes can be a big problem for the pumps and flow sensors to
work efficiently. The user has to be careful in avoiding air flow into the tubes. The
first precaution would be to not drain the two tanks completely. As long as the level
control is active, this should not be an issue.

• Ultrasonic level sensors in the gravity sewer tube is used to measure water level and
this reading is converted into flow. For this study, the output of the level sensor was
taken up to 2 decimals. Taking 3 or more decimals for higher resolution could have
perhaps helped with better flow measurement.

• Measurements from the level sensors were also different each day for the same flow.
This is due to a slight change in position of the sensors. Due to this, every day, we
had to tune the parameters in our Manning equation to get the correct flow values.

• The valve used for controlling flow from the buffer tank had to overcome a big stic-
tion during operation. This inhibits the ability of valve to track the reference signal
very well.

• In order to implement online MPC, it is crucial to be real-time. With the current
setup it is possible to get a sampling time of 500 ms and compute the control
signal each second. Mainly, the computed time is taken by YALMIP (around
500 ms/iteration) and Modbus read/write (around 20 ms/sampling and station).
Setting the control horizon of the MPC to be larger could cause YALMIP not being
able to compute the control signal on time.
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Experimental results

• Looking at figure (6.23), we see the predictions of household flow is accurate enough.
The weights in the Kalman filter was chosen to trust the model more. The values
were (Q = 0.005) and (R = 4). The intention of not trusting the measurements so
much was because the flow estimations were based on readings of a noisy sensor and
then converted to flow using Manning equation (not a perfect conversion), leading
to an accumulation of errors.

• From figure (6.26), the flow control performance was good for an unconstrained tank.
The variations are less when compared to overall flow without a controller.

• With the introduction of tank constraints, the variations of flow is somewhat more
as seen in figure (6.28). When the filled volume of the tank approaches the lower
limit of the constraint, the output flow from the tank does not meet with required
flow. This eventually does not minimize flow variations as expected.

• When the constraints on the tank volume became more stringent, the performance
in minimizing the flow variance is not that good. The result is shown in figure (6.30).

• With soft constraints in place, we have a more realistic real-time controller. This
makes sure the controller works at all times even when large disturbances act on the
system, seen in figure (6.33). The tank volume goes below 140 L but the experiment
keeps running with an abrupt stop.

• If the research in biotechnology leads to the development of microorganisms immune
to environmental changes, focus on controlling the conditions at the WWTP inlet
will no longer be necessary.
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Conclusion 8
The focus of this thesis was to predict flow disturbances and implement a Model Predictive
Control algorithm on a laboratory setup replicating a wastewater collection and transport
system. The objective was to have a control on flow variations at the inlet of a wastewater
treatment plant. A problem statement was formulated accordingly:

How can a laboratory setup that mimic a real sewer network be assembled so that we can
later utilize MPC, along with disturbance predictions and a storage tank that results in
stable working conditions for the wastewater treatment plant.

Three different stations/modules was put together to get the desired system in the labo-
ratory. A model was also developed for a typical flow disturbance seen everyday. Using
a kalman filter, disturbance model and real-time flow measurements, a good prediction of
disturbance was possible. Making use of the system model and disturbance prediction, we
successfully implemented a working Model Predictive Controller. This controller handled
constraints on the buffer tank volume and the input signal to the valve and was able to
minimize the flow variations significantly.

To conclude, the group claims a real-time Model Predictive Control can be implemented
on a complex system such as a sewer system.

Va
ria

nc
e 

of
 F

lo
w

1.66

8.24

Without Controller

With Controller

Figure 8.1: Effectiveness of the controller in minimizing the flow variance
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Future work 9
This chapter mentions some future work to do for continuation and/or improvement of
this project.

Temperature control

In this thesis, only flow control has been tested on the laboratory setup. As mentioned
in chapter (2), temperature can be a proxy for contaminants. This section informs the
reader about the configuration needed to implement temperature control together with
flow control. A description of temperature sensor is also given.
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Figure 9.1: Original configuration to replicate a sewer network. A second pumping station
is expected to arrive shortly thus making this setup possible.

Here, the green boxes indicate the essential components of a sewer network. The pumps
4/5 are the final control elements. Clear distinction has been made between hot water
(red) and cold water line (blue). Temperature after mixing is shown with (pink).

The water from the reservoir is taken into the heating station and the hot water moves to
the tank. From here, the hot water is pumped into the pipe sewer in a controlled manner.
After flowing in the gravity sewer pipe, water moves to overflow tank. Then the water
is led into the consumer station where cooling fans helps the water to cool down faster.
Water is then stored and used again to continue this cyclic process. In the sewer line, cold

75



Aalborg University

water is also pumped in to simulate the household wastewater flow. At the WWTP (tanks
with overflow) inlet, temperature and flow readings of this mixed flow are taken and fed
back to the controller.

Resistance temperature detector (RTD)

The principle behind this method is that there is an increase in electrical resistance of the
conductors with increasing temperature. The material may be platinum, copper or nickel.
The most commonly used one is platinum (PT100) because of its excellent stability and
repeatability. RTD’s are very precise, accurate and reproducible. They are also highly
sensitive to small changes in temperature [Lipták Béla G, 2003]. In the lab, these sensors
are located near the pumps and the heating station. Additionally, a sensor is used to
measure the temperature at the tank overflow after the mixing.
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Appendix A
A.1 Data from fredericia
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Figure A.1: Flow measurements taken for a month at the inlet of wastewater treatment
plant on October 2017. The huge spikes in flow are due to rain events. Here, each time
step corresponds to 5 minutes.
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Figure A.2: Average flow for 3 days entering the WWTP. Each measurement is taken at
every 5 minutes. We can see that the flow profile roughly repeats each day (288 samples).
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Figure A.3: Flow measurements taken for 6 days at the inlet of wastewater treatment plant
on Feb-Mar 2019. The spikes in flow are due to addition of industrial flows. Here, each
time step corresponds to 5 minutes.
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Figure A.4: The orange curve is the average flow for a single day. If fourier analysis was
done on this data, the model chosen would be the blue curve. The threshold set for the
power spectrum is 1521 and the number of frequency components is 3.
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Appendix B
B.1 Other figures and simulation results

Power Spectrum of Y(t)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency (Hz)

0

2

4

6

8

10

12

|P
(f

)|

104

Figure B.1: Bar plot of power spectrum. Zoomed out version of figure 4.3 in chapter (4).
This figure is to simply show there are no other frequencies of interest.

Referring to figure (4.9), to know more on the delay in the red line, cross-correlation was
done on two flow data: 1. Flow from industry (south) and 2. Flow at WWTP inlet. The
flow data and correlation results are shown in the next page.
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Figure B.2: Flow for 6 days measured at the industry outlet. Here, the flow measurements
are recorded for every 5 minutes and we have 288 measurements in total for a one day.
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Figure B.3: Cross correlation analysis between the flow leaving heavy industry (south) and
flow measured at WWTP inlet. The option ’coeff’ was chosen for normalization..

At lag 20, the correlation value is the highest. Each lag unit corresponds to 5 minutes.
Hence we say that the strongest correlation seen was for a delay of 100 minutes (1 hour
and 40 minutes).
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Delay analysis for flow in laboratory setup
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Figure B.4: Flow profile used to calculate the delay in transporting water from the middle
to end of sewer pipe. The result of cross correlation analysis is seen in figure (4.12) in
chapter (4).
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Figure B.5: Water entering the buffer tank. This flow is seen as disturbance from heavy
industry. In this case, the pumps are able to send water as required.
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Appendix C
C.1 Wetted area calculation

Figure C.1: Cross-sectional view of flow in a pipe. Angle θ is in radians.
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The wetted area A is twice the area of PEC
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Using Pythagoras theorem in triangle OEC, we have
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√
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Manning equation and SWMM
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Figure C.2: A comparison of circular pipe ratios between manning equation and SWMM.

How this comparison was done:
• Define a level vector (H1), [0.011 : 0.001 : 0.1]. Level gets incremented by 1 mm

from 1.1 cm to 10 cm.
• Use manning equation, (3.22), to calculate flow (F ) for these levels
• In SWMM, create a conduit with same properties (friction coefficient, slope,

roughness factor and diameter) used in manning equation
• Use (F ) and create a time series for flow to the inlet of the conduit
• Run the SWMM simulation and save the measured levels (H2)

86



C.1. Wetted area calculation Aalborg University

Pumping Station

Figure C.3: 3D model of the pumping station created by Poul Due Jensen Foundation,
Grundfos. The tube highlighted in red is the region of the sewer pipe in which water from
household areas flow.
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