
Enhancing a Virtual Reality
Game through Sonic

Interaction and Adaptive
Music

Martin Maunsbach

Master’s Thesis

S
T

U

D
E

N
T R E P O R T

Copyright © Aalborg University 2019

Department of Architecture, Design, and
Media Technology

Aalborg University Copenhagen
http://www.aau.dk

Title:
Enhancing a Virtual Reality Game
through Sonic Interaction and Adaptive
Music

Theme:
Virtual Reality Musical Instruments
Adaptive Music

Project Period:
Spring Semester 2019

Participant:
Martin Maunsbach

Supervisor:
Stefania Serafin

Page Numbers: 81

Date of Completion:
May 28, 2019

Abstract:

This thesis researches whether sonic
interaction and adaptive music can
enhance a Virtual Reality beat slicing
game. The sonic interactions take the
form of Virtual Reality Musical Instru-
ments and are based on knowledge
of existing physical instruments and
synthesis techniques. Adaptive music
techniques are explored and appro-
priate uses created. A base game of an
already existing game concept is cre-
ate in the Unity game engine along-
side the sonic interactions and adap-
tive music. The features are subjected
to user testing and discussed. Future
improvements are suggested.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Institut for Arkitektur, Design og
Medieteknologi

Aalborg Universitet Koebenhavn
http://www.aau.dk

Titel:
Forbedring af et Virtual Reality spil med
sonisk interaktion and adaptiv musik

Tema:
Virtual Reality Musik Instrumenter
Adaptiv Musik

Projektperiode:
Foraarssemestret 2019

Deltager:
Martin Maunsbach

Vejleder:
Stefania Serafin

Sidetal: 81

Afleveringsdato:
28. maj 2019

Abstract:

Dette projekt undersoeger hvorvidt
sonisk interaktion og adaptiv musik
kan forbedre et Virtual Reality beat
skaerende spil. Den soniske interak-
tion er lavet med Virtual Reality mu-
sik instrumenter og er basered paa vi-
den om eksisterende instrumenter og
syntese tekniker. Adaptiv musik tek-
niker er undersoegt og passende brug
er af dem foregaar. Et grundspil af
et allerede eksisterende spil koncept
er lavet i Unity game engine sammen
med den soniske interaktion og adap-
tiv musik. Funktionerne er testet og
diskuteret. Fremtidige forberedninger
er foreslaaet.

Rapportens indhold er frit tilgaengeligt, men offentliggoerelse (med kildeangivelse) maa kun ske efter aftale med

forfatterne.

http://www.aau.dk

Contents

Preface ix

1 Introduction 1
1.1 Project Description . 1
1.2 Motivation and General Research . 2

2 Background 3
2.1 Game Concept . 3
2.2 Virtual Reality Music Instruments . 3

2.2.1 Extended Possibilities with VR 3
2.2.2 Feedback in VR . 4

2.3 Adaptive Music in Games . 5
2.3.1 Uses and Techniques . 6
2.3.2 Transitions . 7

2.4 Physical Modelling for Real-Time Synthesis 8
2.4.1 Extended Karplus-Strong . 9
2.4.2 Low-Level Friction . 10
2.4.3 Bilinear Transform . 12
2.4.4 Eliminating Delay-Free Loops 12
2.4.5 Approximating a Solution to the Non-Linearity 13

2.5 Tools . 14

3 Design 17
3.1 Cylindrical Guitar Anatomy . 17
3.2 Carving Friction . 20
3.3 Adaptive Music Remix Mode . 20
3.4 Adaptive Music Endless Mode . 21

4 Implementation 23
4.1 Beat-Slashing Game . 23
4.2 Adaptive Music . 24

4.2.1 Adaptive Segments . 24

vii

viii Contents

4.2.2 Outro Transitions . 27
4.3 Guitar Saber . 31

4.3.1 Ideal String Synthesis . 31
4.3.2 Audio Effects . 36
4.3.3 Controlling the Guitar Saber 38

4.4 Mechanical Oscillator for Friction . 42
4.4.1 Non-Linear Friction Synthesis 42
4.4.2 Controlling Wall Synthesis . 49

5 Evaluation 51
5.1 Adaptive Song Replayability . 51
5.2 VRMI: Guitar Saber . 52

5.2.1 Observational Usability Test 52
5.2.2 Audio User Experience . 53
5.2.3 Assessment of In-Game Use 54

6 Discussion 57
6.1 Adaptive Remix Mode . 57
6.2 Adaptive Endless Mode . 58
6.3 Guitar Saber . 58
6.4 Friction Walls . 59

7 Conclusion 61

Bibliography 63

A Appendix 67
A.1 Videos . 67
A.2 Beat-Slashing Game . 67
A.3 MatLab: Extended Karplus-Strong . 68
A.4 Native Audive SDK: Extended Karplus-Strong 69
A.5 MatLab: Friction Synthesis . 73
A.6 Native Audive SDK: Friction Synthesis 77

Preface

This project perfectly sums up my work from the last four semesters. It grew from
a static MatLab impact synthesis in the first semester, to a usable dynamic Unity
implementation in the second, to Virtual Reality in the third semester and now
combining all in this project. Also, a guitar lightsaber.

Thank you, Stefania Serafin. For guidance and support with this project, for
help with and article, opportunities at conferences and, most importantly, for mak-
ing a degree in Sound & Music Computing possible. Grazie mille.

Aalborg University, May 28, 2019

Martin Maunsbach
<mmauns17@student.aau.dk>

ix

Chapter 1

Introduction

1.1 Project Description

This thesis combines the areas of game development and sound synthesis by ex-
ploring audio features for an interactive Virtual Reality (VR) application. The ap-
plication is based on an already existing concept where players use gestures to
interact with 3D cube-like objects to the rhythm of a linear song. Apart from an
impact sound effect, no music is created from the gestures. The aim of this thesis is
to research and test additional contributions to make the concept more musically
interactive.

The first contribution is to add sonic interaction with the creation of Virtual
Reality Musical Instruments (VRMIs). By designing a VRMI inside an existing
concept, the instrument should conform to the aesthetics and design of the game.
This creates restrictions on the visual aspect, physical controller, input modalities
and soundscape. The instruments should also fit within the context of the game
by enhancing the experience in a new way and not as a separate experience with
the same design aesthetics.

The second contribution is adaptive music. Instead of a linear song that always
progresses the same way from beginning to end, it can change depending on ac-
tions by the user. Adaptive music can be used in many ways. In this project it is
used to change parts of a song depending on the actions of a user and to transition
another song to create an endless experience.

To evaluate the contributions, the game is created from the ground up in the
Unity game engine and is not a modified version of the original game. The me-
chanics and overall control of the game is coded using C# and the digital signal
processing (DSP) is implemented using C++ for efficiency. JSON files are used
to store the information on what gestures the user must produce. To have seam-
less transitions with adaptive music, the audio middleware FMOD is used. The
usability of the contributions are evaluated and discussed.

1

2 Chapter 1. Introduction

1.2 Motivation and General Research

Basing the VRMI on an existing framework has led to the creation of original
instruments instead of virtual counterparts to existing instruments. This VR-first
approach is chosen to adopt the existing user-friendly interactions within the VR
environment as opposed to creating new ones. There are three main motivations
behind the VRMI. Firstly, it is to create an instrument that is rooted in VR. This
is to make the instrument approachable by utilizing mechanics players already
are familiar with, but also by not using custom hardware and instead relying on
controllers available for most head mounted displays (HMDs). Secondly, it is done
to increase the interactivity of the game and let the user affect the soundscape.
The freedom to create music while playing can lead to a new experience on every
play-through. Thirdly, by letting the user create music, it can be a gateway to
musicianship for players . This was observed with other musical rhythm games like
Guitar Hero [1, 2]. The game inspired users to "explore new ideas and concepts"
[3].

For the adaptive music, the motivation is different for version with adaptive
segments and the endless version. The goal of the version with adaptive segments
is to observe if it increases the replayability of a song. By adding segments the
user can unlock by a better in-game performance, it should be motivating by the
sheer power of curiosity, as the segments otherwise will remain secret. The endless
mode is not to increase replayability, but to keep the user playing, making it useful
for players who use the game as a workout routine.

Chapter 2

Background

2.1 Game Concept

The game concept is based on the VR game Beat Saber by Beat Studios [4]. The
concept of the game revolves around a user making gestures in Virtual Reality
while a linear song is played back. By slicing small cubes as they are coming
towards the player, the player accumulates points that can be used to obtain a high
score in an arcade-style setting. To slice a cube, the player is equipped with sabers
resembling the lightsabers from Star Wars. In the default setting, the left hand is a
red saber while the right is a blue saber. How to slice the cube is varied by which
hand to use as well as the direction of the slice. The cube and the saber slicing
it must match in color and a directional symbol on the cube must point in the
same direction of the slice. Apart from the small cubes, obstacles like walls and
bombs are also present. The timing of each cube and obstacle is preset to match
the composition of a song by creating a beat mapping of the objects.

2.2 Virtual Reality Music Instruments

As the name implies, Virtual Reality Musical Instruments are instruments created
for use inside a VR environment. Although VRMIs emerged in some form in the
beginning of the millennium [5, 6], the accessibility to VR granted by its resurgence
through higher quality head mounted displays has led to the creation of new and
exciting VRMIs.

2.2.1 Extended Possibilities with VR

One of the exciting aspects of VRMIs are the extended possibilities they can pro-
vide. An aspect of Virtual Musical Instruments (VMIs) is the possibility to extend
sound beyond what is otherwise achievable. The same is valid for VRMIs, while

3

4 Chapter 2. Background

VRMIs also has the potential for a more immersive experience due to seeing ev-
erything in 3D and being inside the interactive environment with VR. Serafin et
al. described the expanded possibilities as "magical" interactions as opposed to
natural interactions stating [6]

"[...] an interaction or an instrument will qualify as magical if it is
not limited by real-world constraints, such as the ones imposed by the
laws of physics, human anatomy, or the current state of technological
development. On the other hand, interactions and instruments qualify
as natural if they conform to real-world constraints."

The interactions presented with the game concept can quickly be identified as mag-
ical, as the "lightsabers" used to play the game do not adhere to the laws of physics
or the current state of technological development, as it can be computed that the
power of such an object would be around two orders of magnitude smaller than
what can be produced by smaller nuclear generators [7], depending on the color
of the saber [8]. VRMIs allows the user to experience new interactions or exten-
sions upon existing interactions that were otherwise impossible. Interactions can
be mapped in whatever way the designer can imagine and implement. The inter-
actions can then control parameters of an unlimited number of sound processes
[9].

Since VR opens up doors to new interactions and experiences, it has been dis-
cussed whether replicating real instruments is useful. Mäki-Patola et al. argued
interfaces should be created to be best suited for VR and that users might not even
be interested in virtual replicas, when the originals work fine [5]. Cook called
copying an instrument dumb, but recommended leveraging the techniques found
in existing physical instruments [10]. The use of existing skills has been reiterated
by others, while familiarity of techniques from an existing instrument can help
grasp the virtual one [5, 6].

Extended opportunities arise from what input devices are used as a controller.
Previous VR experiences relied heavily on custom controllers as seen from Mäki-
Patola [5]. Controllers from the NIME community could increase the input possi-
bilities, as most standard VR controllers are gloves, remote controllers or joysticks
[6]. Using controllers created with sound control in mind can match the complex-
ity of some sound models [5], though this quickly can exclude many users who do
not have access to these controllers.

2.2.2 Feedback in VR

Visual feedback is an important factor in VR to create a more natural interaction
with the instrument [6, 11]. The visual feedback does not have to be realistic, as car-
toonish representations can give a better sense of control than realistic. The same

2.3. Adaptive Music in Games 5

can be seen when it comes to the fidelity of interactions. Low-fidelity interactions
were observed to be better for users than semi-natural interactions, that also could
create an uncanny valley effect [12]. Another drawback is cybersickness, that can
arise from conflicting information from the visual and the vestibular senses [6]. Vi-
sual feedback is especially needed if the instrument does not resemble any existing
counterpart, as it can use any form of sound synthesis technique and any mapping
between gestures and sound [11]. Fortunately, the visual feedback is not restricted
in the virtual environment. It can take any form that is needed to understand or
use the instrument. Compared to the static appearance of real instruments, where
the feedback is limited to the physics of the object, virtual instruments can intelli-
gently change in real-time to fit the user’s needs.

While the game concept does not present a traditional performer-audience re-
lation as the performer is the player who is trying to achieve a high score for them-
selves and not playing for the audience, the relation is still present when watching
another person play either in the same room or through a video. A disconnect
can occur when the audience can not share the experience of the performer [6, 11].
Improving the audience experience by adding stereoscopic glasses to share the
spectacular aspect was previously suggested [9], but does not seem relevant any-
more. VRMIs are often experienced by seeing the performer and a screen showing
a 2D presentation of what the performer sees. This way the audience can share
most of the visual experience, with notable exceptions being the 3D view and hap-
tic feedback. Today, many "performances" are shared through online videos. When
the audience is not physically present, it is still important to show both the per-
former and what the performer sees. This can be done by creating Mixed Reality
videos, where a video of the performer is mixed with what they see.

2.3 Adaptive Music in Games

The interactive aspect of video games separate them from the linearity of tradi-
tional film and television shows. This is why adaptive music is ideal for many
video games, as they are "inherently interactive and involve unpredictable real-
time state change" [13]. The interactive, non-linear aspect of games is also one of
the most complicating problems facing game composers, as direction and timing of
the player can change in a branching fashion [14]. Adaptive music is heard when
actions by a player is reflected in the music [15]. These actions should not stem
from the intention of playing music. The changes should come from non-musical
actions [16]. It is also not to be confused with interactive audio content, that arises
directly from player actions, like the "swoosh" sound effect of swinging a sword
[17].

Collins described adaptive music as a train on a track [17] . Linear music is
on a straight track, going from point A to point B using the same route and speed

6 Chapter 2. Background

every time. Non-linear, adaptive music can at any time change tracks, you might
want to change the car you are in, and it can at any point speed up or slow down.
On a technical level, the adaptive music is triggered by sending events from the
game engine to a music engine or middleware [14]. Interactive art installations can
also benefit from this adaptiveness [13].

Although it is not common today, adaptive music was used in the production
stages of early Western movies, though it could not be noticed by moviegoers. This
was because composers were tasked to finish their composition before the movie
had been edited, meaning the music should be able to be shortened or lengthened
without becoming incoherent [14]. One of the first instances of adaptive music in
video games was seen with the Interactive MUsic Streaming Engine (iMUSE) [13,
14, 16, 18]. iMUSE was used to synchronize game actions with audio.

Examples of adaptive music in video games include Monkey Island 2 and Grim
Fandango, which used iMUSE to make music continuous while it reacted to spon-
taneous player actions by transitioning between audio files or altering MIDI [14].
The Legend of Zelda: Ocarina of Time from 1998, a long-lasting adventure game,
required music that would adapt to help the player complete challenges [17]. Sim-
ilarly, changes in the music from the 2012 game Journey "sets the pacing of the
game" [19]. In Super Mario Brothers from 1985, the tempo of songs doubled when
players ran out of time [17].

2.3.1 Uses and Techniques

The composer of Super Mario Brothers, Koji Kondo, described four components
for dynamic music [20]1:

1. The ability to create music that changes with each play-through

2. The ability to create a multicolored production by transforming themes in the
same composition

3. The ability to add new surprises and increase gameplay enjoyment

4. The ability to add musical elements as gameplay features

Dynamic music encompasses both interactive audio and adaptive music [17]. The
components can be separated into the first and second describing adaptive music,
the fourth describing interactive audio and the third can be used for both.

Brown et al. described five techniques used to create adaptive audio [13]:

1. Templates are used to provide a musical "backbone" for generated music.
Chord progressions, melodies and more can be pre-described and music is
then generated or combined following these harmonic templates.

1Summarized by Collins [14]

2.3. Adaptive Music in Games 7

2. Abstraction is used to generalize information into output. This can be gestures
to create musical phrases.

3. Recombination is when alternative tracks or patterns are used. This can be a
any segment of a song that is interchanged with another, effectively recom-
bining the whole song. A simple state variable can be used to decide whether
to use an alternate track.

4. Transformation of musical parts like chords or a melody is used to modify
music. This can be as simple as changing the rhythm of a chord progression
or transposing a motif.

5. Probability is used to create add randomization to computer generated com-
position.

The primary technique to be used in for this project is recombination, as seen in
sections 3.3 and 3.4, where transitions between audio files are used.

2.3.2 Transitions

A choice that the sound designer or composer must make is the timing of a transi-
tion. Music being rooted in time can an obstacle when composing to video games
that are not rooted in the same time or to the same beat [15]. The transition might
happen immediately, possibly using cross-fading. When making an instant tran-
sition, a short segment can be composed as a bridge between two parts. The
transition can also take place after a sequence is completed. The latter is used to
avoid sudden changes that mess up the beat of a song, for instance if a transition
occurs at a random point in time of a bar. Beginning a transition at the end of a
bar so the part that is transitioned to starts on the beat of the next bar creates a
seamless transition. This type of transition is known as cue-to-cue [17] and was
even patented as part of iMUSE [21].

How to compose a musical transition can be a challenge both for computers and
humans. Hoffert described seven musical elements to focus on when composing
a transition: volume, tempo, rhythm, key, harmony, texture, and style [14, 22]. Of
those elements, among the most common to affect how the music is perceived are
tempo and key [13].

In music theory, key modulation can be used to create tension or a form of
resolution. A common technique is to end on a dominant seven chord to the chord
that follows the next transition. This leads to a tension that is resolved by the next
chord and is also useful when transitioning between songs in different keys.

As seen with Super Mario Brothers, altering the tempo can increase the inten-
sity, but it can also be necessary when transitioning between tracks with different
beats per minute (BPM). In music theory, this is known as accelerando when in-
creasing the tempo and ritardando when decreasing. While an accelereando can

8 Chapter 2. Background

lead to tension, a ritardando often has the opposite effect of leading to an ending.
If this is not the intention of the transition, other elements can be used to preserve
the tension and energy.

One of these elements is the rhythm. The frequency of events in a time period
is known as rhythmic density [13]. Rhythmic density thinning can be achieved by
removing some events, starting with those that are placed in "less dominant metric
positions". In quadruple time, the most dominant position is the first down beat
on beat one, then the downbeat on beat three followed by the upbeats on beat
two and then beat four. While rhythmic density thinning decreases tension, the
opposite effect can be achieved by increasing the density.

2.4 Physical Modelling for Real-Time Synthesis

Physical modelling for synthesis is the act of modelling sound synthesis based
on the physical properties of a source. The approach is useful for synthesizing
sources such as strings, rigid bodies, vocal tracts as well as like impact, friction, air
pressure and more. By using physical properties to explain and synthesize sound,
real world sounds can be replicated and controlled realistically. An advantage
of physical modelling synthesis beyond mirroring the real world is that physical
models often can be exploited to exceed what is physically possible or practical.
Strings are a perfect example of this. In the digital domain there is no limit to how
long a vibrating string can be. It can go around the world and farther while still
being tightly enough wound to be picked at the force of a comet crashing into it.
Objects can appear to magically change and the sound can change similarly. This
change can come in real-time from physical parameters like mass, elasticity and
more. Even complete deformations can occur with the sound following suit [23].

A heuristic approach is often taken when using physical modelling. Taking into
account all the physical properties of a source can be too complicated to mathe-
matically model and too complex for real-time computation. This can at time lead
to simplistic and "cartoonish" sounding synthesis, as some physical properties are
neglected. For speech synthesis, it would be too complicated to model every detail
of the vocal tract and how it moves.

A common method for physical modelling is modal synthesis [24, 25]. Modal
synthesis exploits that many sources have prominent peaks in its spectral content.
These peaks are known as normal modes and even simple models using sinusoids
or band-pass-filtered noise based on these modes can sound like a unique ma-
terial. Modal synthesis has a low complexity, which makes it ideal for real-time
computation.

Digital waveguide models are well-suited for strings and wind instruments
[26]. By modelling how audio propagates through a medium using delay lines,
digital waveguide models are computationally efficient. Bidirectional delay lines

2.4. Physical Modelling for Real-Time Synthesis 9

Z-N

Low	Pass

Noise	excitation Output

Figure 2.1: The simplest version of the Karplus-Strong algorithm with a delay loop and a low-pass
filter.

are used in a one-dimensional system with losses and dispersion at points on the
waveguide. The one-dimensional aspect of digital waveguide synthesis is limiting
when it comes to more complex sources. To account for this, a digital waveg-
uide mesh can be used, where digital waveguides are connected together as a
two-dimensional array at a certain wave impedance [27]. Waveguide meshes are
useful for 2D sources like plates, percussion instruments [28] and reverberations.
Another approach in the waveguide family is banded waveguide synthesis [29].
Banded waveguide synthesis takes an approach similar to modal synthesis, where
bands of digital waveguides are used to model a resonating normal mode. Some
of the sources that are useful with this method are bowed friction and idiophones.
Impact sounds were also achieved using banded waveguide [30]. An ideal vibrat-
ing string can be easily modelled using digital waveguides, as will be explained in
section 2.4.1

2.4.1 Extended Karplus-Strong

The Karplus-Strong algorithm was invented by Karplus and Strong in 1983 [31].
The digital waveguide method is an extension of the Karplus-Strong algorithm.
The algorithm models an ideal string based on a delay line with a simple loss
filter.

A string is excited by a short burst of white noise that is equal in length to the
desired pitch period. The simplest version of the Karplus-Strong algorithm can be
seen in figure 2.1. The white noise is used as an excitation and repeated at a loop
delay N determined by the pitch period, but each time it is looped, a loss occurs
due to the low-pass filter. At initial conditions, the first N output samples are pure
white noise. The simplest version of the low-pass filter is a one-zero filter and can
be written as:

y[n] = 0.5x[n− N] + 0.5x[n− N − 1] (2.1)

Extension to the algorithm were published by Jaffe and Smith [32]. The extensions
used for this project was later described again by Smith [33]. The algorithm works

10 Chapter 2. Background

Z-N

LPD

OutputNoise

LI

CombLPP LPL

Figure 2.2: The Karplus-Strong algorithm extended with changes to the excitation burst, a dynamic
level and string tuning.

similarly to the original Karplus-Strong, but with additional filters to model vari-
ous aspects of strings and to alleviate shortcomings. The algorithm can be seen in
figure 2.22.

LPP is a low-pass filter used to model the pick direction up or down.

Comb is a comb filter used to model the pick position between the nut and the
bridge. The position used is usually over the soundhole on acoustic guitars.

LPL is a dynamic low-pass filter that models how more energetic picking of a
string increases the spectral centroid.

LPL is the low-pass damping filter used to create the loss. It is used in place of
the low-pass filter of figure 2.1.

LI is a filter used for more precise string tuning. Since N is an integer if frac-
tional delay lines aren’t used, the strings can get out of tune due to the round-
ing up or down. The filter makes up for the lost precision by linearly inter-
polating between the current and previous sample..

All these extensions add to the realistic aspect of the Karplus-Strong algorithm.
Especially the string-tuning is essential, since modelling an instrument would yield
imprecise tones except at very high sampling rates.

Even with the additional filters, the Extended Karplus-Strong is still computa-
tionally efficient. How the filters are implemented is described in section 4.3.1

2.4.2 Low-Level Friction

The low-level friction synthesis is a system of mass-spring interactors coupled to-
gether [34]. The mass-spring system is a mechanical oscillator described by its
displacement, velocity, acceleration and the force acting upon it. Assuming no
other forces are acting upon it, the system can be seen in figure 2.3, where x is the

2One filter, the string-stiffness all-pass filter, is omitted here.

2.4. Physical Modelling for Real-Time Synthesis 11

m

x

f

g

k

Figure 2.3: A mass-spring system with damping.

displacement, f is the force, k is the elastic constant, g is the damping and m is the
mass. The vibrations lead to the displacement, which is used as the audio output.
The system can be written in a continuous-time system as:

ẍ + gẋ + ω2x =
1
m

f (2.2)

where ω2 is equivalent to the elastic constant, and ẋ and ẍ are the velocity and
acceleration respectively.

The oscillator is useful for modelling interactions with rigid bodies. This was
seen in impact collisions with a hammer-resonator relationship and various ap-
proaches using the model to create position-dependent excitation exist using a
contact force equation proposed by Hunt and Crossley [35–37]. Using friction as
the force, the model can be used in bowed instruments like the cello and objects
like squeaking doors or wheels grinding to a halt [34, 38].

Equation 2.2 requires a force equation. Which force equation is used can set
it apart from sounding like an impact and more like friction. An equation of the
steady force using the Coulomb force fc and stiction force fs is given by

f (v) = sgn(v)(fc + (fs − fc)e−(v/vs)2
) (2.3)

where v is the velocity and vs known as the Stribeck velocity.
The equation for the friction force uses the elasto-plastic modelling approach

and is given by

f (z, ż, v, w) = σ0z + σ1ż + σ2v + σ3w (2.4)

where w is a random value to add noise and v is the velocity. Each component de-
scribes an aspect of the friction. σ0z is an elastic term, σ1ż describes the dissipation
and σ2v is the viscosity. The remaining equations making up the system are taken
from Rocchesso [34].

12 Chapter 2. Background

2.4.3 Bilinear Transform

Since equation 2.2 is in continuous time, it must be discretized before being used
of sound synthesis. Using a substitution formula, the continuous time system
can become a discrete-time z-transfer of numerical approximations. Various z-
transform methods exist, with some of the most common being the forward Euler,
the backward Euler and the bilinear transform. The transforms are given by:

s = Sr(1− z−1) (Backward Euler)

s = Sr(1 + z−1) (Forward Euler)

s = 2Sr
1− z−1

1 + z−1 (Bilinear Transform)

(2.5)

where Sr is the sampling rate and z−1 will become equivalent to a delay of one
sample. The transforms are substituted with the s from the state-variable form of
a continuous time system. The continuous time system should take the form

ẇ = Aw + Bu

ws = Aw + Bu
(2.6)

where ẇ is the derivative of the states and w and u are the states transformed by A
and B. Substituting s with the bilinear transform and isolating w, it can be written
in discrete time of sample n as:

w[n] = H(αI + A)w[n− 1] + HB(u[n] + u[n− 1])

H = [αI − A]−1 (2.7)

Assuming the input and output are not mutually dependent and form a delay-free
loop, this form of the state-variable system can be used. If not, the K method can
be used to eliminate the delay-free loop.

2.4.4 Eliminating Delay-Free Loops

The K method solves the computation problem of delay-free loops [39]. The
method adds an additional variable and state transform to equation 2.6 with

ẇ = Aw + Bu + Cy (2.8)

where y is the mutual dependent variable. New state transforms D, E, and F are
used to describe y:

y = f (Dw + Eu + Fy) (2.9)

2.4. Physical Modelling for Real-Time Synthesis 13

Equation 2.8 is discretized using the bilinear transform just like equation 2.7:

w[n] = H(αI + A)w[n− 1] + HB(u[n] + u[n− 1]) + HC(y[n] + y[n− 1])

H = [αI − A]−1 (2.10)

The inside of the function f is discretized using the found form for w:

DH(αI + A)w[n− 1] + (DHB + E)u[n] + DHBu[n− 1] + DHCy[n− 1]

+ (DHC + F)y[n])
(2.11)

This is separated into a linear combinations current and past computable values in
p(n) and a weighting matrix K to the mutually dependent variable y

y = f (p(n) + Ky)

p(n) = DH(αI + A)w[n− 1] + (DHB + E)u + DHBu[n− 1] + DHCy[n− 1]

K = (DHC + F)
(2.12)

An explicit solution can not be found if y is non-linear, but an approximation
method can be used to estimate the value. One method that can be used is Newton-
Rhapson.

2.4.5 Approximating a Solution to the Non-Linearity

The value of a system with a non-linearity can be approximated using the root-
finding algorithm Newton-Rhapson. The approach here is adopted from Rocchesso
[34]. The value the root-finding algorithm is looking for is denoted as h, which
serves as the mutual dependent variable y from the K method. h is found by
repeating the process

hk+1 = hk −
g(hk)

g′(hk)
(2.13)

where k counts each time the process is repeated until the function converges below
and error margin of the absolute difference of the current and next h. h0 starts out
as an estimated guess.

Combining the process with the K method, g(h) becomes

g(hk) = f (p[n] + Khk)− hk (2.14)

The maximum error and a maximum amount of times the process may repeat is
determined. The error is calculated as the absolute value of the difference between
the current and previous h.

14 Chapter 2. Background

2.5 Tools

Implementing the VR game concept required a game engine and efficient digital
signal processing. The following software and tools were used.

Unity Unity is a game engine that can be used to create 2D and 3D audio-visual
applications. The game engine includes all the components necessary to implement
the base game concept. This includes 3D objects, shaders, a collision detection
system, audio playback and more. Programming in the game engine uses the
C# language with the base class MonoBehaviour that all other Unity scripts derive
from. It is possible to create real-time synthesis inside the MonoBehaviour function
OnAudioFilterRead in C#. The function can act as a filter if audio is passed through
it or create new sound. It is not as computationally efficient as C++, which is why
it is not used in this project.

Native Audio Plugin SDK The Native Audio Plugin SDK for Unity adds the
possibility to create native plugins in C++ that can be compiled to work as plugins
in Unity’s mixers. It is similar to a VST3. The native plugin acts as a part of an
audio chain, meaning it can take in values of a plugin before it and pass it on
to the next. Audio is operated on a specified buffer at a time. The buffer size
and sampling rate is set in Unity. Compiling the C++ file to .dll for the specific
platform in use and adding it to the Unity project makes it available as and effect
for an audio mixer component.

Code is added to five parts of the framework. They are the parameters to
expose to Unity, dynamic unexposed parameters, constant unexposed parameters,
a callback when parameters are changed in Unity, and a process callback, which is
where most DSP takes place and fills the buffer.

HTC VIVE The standard HTC VIVE VR head mounted display was used for
this project. The HMD has a refresh rate of 90 Hz, a field of view of 110 degrees
and supports six degrees of freedom. Most HMDs could have been used for this
project, since no specific interactions except moving the controllers and pressing
standard buttons were required.

OpenVR OpenVr enables VR support for building VR applications in Unity. The
package requires the use of STEAMVR, which can be used to calibrate the sur-
roundings used for the VR application.

3Virtual Studio Technology, an audio plugin usually running in a digital audio workstation (DAW)

2.5. Tools 15

FMOD FMOD is an audio middleware. It is used to control audio and effects
with control options that are not available natively in Unity. Since it is a middle-
ware, parameters in FMOD is controlled through C# code in Unity. One use of
FMOD is adaptive music, where a song can be set up with transitions based on
conditions, that can be altered using the control parameter.

Chapter 3

Design

3.1 Cylindrical Guitar Anatomy

The VRMI "Guitar Saber" is designed to rely on existing knowledge of musical
instruments but with a new interaction. As the name suggest, the instrument is a
combination of the functionality of a guitar with the visuals of sabers. The design
aims to preserve many aspect of traditional guitar playing to make users instantly
familiar with it. These functionalities include the layout of strings and frets, up and
down picking, glissando effects and more. Keeping the game mechanic of using
no buttons, the Guitar Saber relies on gestures to control the synthesis. An initial
mock-up and final design can be seen in figure 3.1 It will here be explained how
every musical functionality is adapted to the sabers.

Picking a String The interaction of plucking or picking a string is designed to be
a simple tap of one saber on the other. The original game includes haptic feedback
whenever the sabers collide, and the Guitar Saber adds a fully-fledged musical
aspect to this interaction. The pick can occur from any direction, but due to how
the sabers are held, it is usually a top-down or bottom-up tap. Picking is designed
to be done by slashing the right blue saber onto the stable left red saber similarly to
right-handed guitar players using one hand to pluck and the other to rest on frets.
Due to both sabers being similar cylindrical objects, the pick can be done by any
colliding interaction. In the top of figure 3.1 the pluck occurs at the intersection of
the two sabers, at the C. The note C is determined by the frets and strings.

Frets The anatomy of a guitar includes a fretboard, where raised elements called
"frets" are used to fixate the string length between the fret and the nut. Pressing
down on the string between two frets makes it fixated on those two frets. In the
standard western system, each fret represents a semitone.

The same semitonal approach can be seen on the left red saber in figure 3.1.

17

18 Chapter 3. Design

Figure 3.1: The mock-up prototype (top) with note placements resembling a two-dimensional array.
It is realized in the Unity (bottom) with the two sabers including frets and string indicators.

3.1. Cylindrical Guitar Anatomy 19

The saber represents the fretboard and frets are placed to visually distinguish the
tones, since there is no string that will be fixated on it. As the frequency increases
on a single string, the distance between frets decreases. It is based on the 12 tone
equal temperament, which results in a ratio of 12

√
2 ≈ 1.0595 between each fret.

Using this ratio, the longest distance would be between the lowest frets near to
the handle and the shortest distance would be at the nut. This was not practical
for the Guitar Saber, as the angle formed by the two sabers usually gets sharper
when interacting at the far edge of the sabers. A sharper angle makes it harder to
precisely slash between two frets. Therefore, the sabers are designed with the ratio
progressing in the opposite direction of a standard guitar. This means the distance
between frets near the far edge are longer than the distances closer to the handle.

Position inlays can be placed on to help guide the player where tones lie. They
are often placed at the 3rd, 5th, 7th, 9th, 12th tone position. This pattern can be
repeated on subsequent octaves on the same string. The visual aids are added to
the fretboard of the left red saber as seen in the bottom of figure 3.1.

By using semitonal frets, guitar tablatures can be used to play songs on the
Guitar Saber. The lowest tone, represented by the handle, is the same as playing
an open string.

Strings Which string to use is determined by the position on the right blue saber.
For a standard western guitar, there are six strings, as seen in figure 3.1. The mock-
up shows how this results in a two-dimensional map of tones. Moving from one
string to the next is similar to moving from one fret to the next, except it is not
a semitonal step but instead relates to a guitar tuning. In this example, it is the
standard tuning EADGBE.

Discrete Glissando Glissando is the effect of sliding discretely from tone to tone.
From early user testing it was observed that participants naturally tried to glide
from one tone to the next it while the sabers where staying in a state of collision.
The glissando effect works by sliding the left hand position on a fret up or down in
one dimension on the fretboard. On a guitar it is not possible to have a glissando
between strings, but the Guitar Saber is not limited by this, which allows it to
become two-dimensional, both along the frets and the strings.

Overdrive The futuristic and electric look of the sabers do not fit with the natural
sound of an ideal string without any additional effects. As previously discussed
in section 2.2.1, the power of a theoretical light saber is enormous and the sound
should follow this thought. Distortion and overdrive effects are useful for this, as
they amplify the signal, often resulting in clipping. This gives off a compressed
and intensified sound that is better suited for the sabers.

20 Chapter 3. Design

Wah-Wah The wah-wah effect is commonly used as pedals for electric guitars to
add a spectral glide to the sound. Getting its name from the audio phenomenon
of vocalizing "wah-wah", the effect focuses on a center frequency that can change
according to user input. For the wah-wah pedal, the center frequency depends on
the pressure on the pedal. The Guitar Saber can control this effect by angling the
left red saber up and down, just like the pedal is angled when pressure is applied
to it.

3.2 Carving Friction

As is the case with Guitar Saber, the carving friction sonic interaction is designed
to add a musical aspect to where a collision previously only triggered haptic feed-
back. Instead of the two sabers colliding, it is the case of a saber colliding with
the wall obstacle. In the game, players should avoid the walls, but the sabers can
safely interact with them for no apparent advantage except being a gimmick. The
carving friction adds the musical aspect to the interaction.

The intersection of the saber-wall interaction controls the frequency of the fric-
tion sound. The closer to the ground floor it is, the lower the frequency. Compared
to the discrete separation the frets on a guitar can create, friction-based instruments
like the violin and cello are continuous. The friction interaction with the wall can
be set to a value linearly between a maximum and minimum or to a key.

Visually, there is not change from when the wall friction is on or off. Compared
to the Guitar Saber, this means it fits directly into the game without changing what
the player sees, while adding a musical aspect to the walls.

3.3 Adaptive Music Remix Mode

The primary focus of the first adaptive music mode is to observe whether it can
increase replayability. This is done by changing the song that is being slashed
along to from a linear song to include recombinations. Adaptive recombinations,
as described in section 2.3.1, are where alternate tracks are used in certain parts.
Figure 3.2 shows how this works when part of an intro can change. A correspond-
ing implementation in FMOD can be found in figure 4.1.

The mode does not randomly select when to do a recombination, but it is
instead triggered by a condition based on the actions of the player. This can be the
need to achieve a high streak of slicing cubes correctly in a row or having obtained
enough points or another aspect. By having it be a point-positive condition, i.e.
something that encourages getting a better score, the condition is not limiting the
player’s possible result in points achieved. The conditions can be seen as a gate
that can be unlocked. If the condition is not met, the gate is visibly locked to the

3.4. Adaptive Music Endless Mode 21

if	0

if	1

Intro Intro	A

Intro	B

Intro
Seam

Figure 3.2: Beginning of a remix mode example, where part of the introduction can change depend-
ing on a simple boolean condition.

Song1

Exit

Selection Transition
1to2

Transition
1toN

Snooze

Song2

Exit

Selection Transition
2to3

Transition
2to1

Snooze

Song3

Exit

Selection Transition
3to4

Transition
3to2

Snooze

SongN

Exit

Selection Transition	
Nto1

Transition
Nto(N-1)

Snooze

Figure 3.3: An overview of how the endless version can progress from song to song. Starting from
any song number, it plays the main song before going to the selection segment. This segment can be
snoozed, exited or the next song can be selected, which will trigger the transition leading to the next
song, where the process is repeated.

player and the alternate track is kept secret. The hypothesis is that this sparks the
players curiosity to replay the song and unlock the locked gate.

The adaptive remixing is underlined by the visuals, that changes the color of
most objects when entering a remixed segment. A short time before an adaptive
remix can be entered, a form of countdown appears as well as a user interface
explaining what the player must do to unlock the remixed segment.

3.4 Adaptive Music Endless Mode

The endless mode is designed to avoid the need to stop playing and return to a
selection screen. This would be especially useful for people who use the game as
a workout exercise. The endless mode is also a version of adaptive recombination,
and a diagram of the transitions can be seen in figure 3.3. Every box in the diagram
requires a musical composition and a mapping. The parts are explained in the
following paragraphs.

Song The song can be any song linearly composed and mapped song. Each time
a now song starts, a variation in color of the environment changes to signal the
new beginning.

Selection The selection is a musically composed and lets the player select the
next song without the need of a menu. During the selection segment, the player

22 Chapter 3. Design

can pick the next song by slashing a cube that symbolizes this song. If no song
is selected, the game effectively "snoozes", and the selection segment is seamlessly
repeated along with the ability to select the next song. This is useful for taking a
breather between songs while working out. Instead of selecting a song, exiting the
mode can also be selected. Musically, the selections in this project are designed
to sound as natural extensions to their respective song by keeping the BPM, key,
instruments and musical themes used. The same chord progression is used in all
songs, though in different keys, to have a consistent aspect that makes the players
associate it with the selection segment.

Transition The transitions are composed and mapped to seamlessly go from one
song to the next. Section 2.3.2 explains how this can include altering the tempo, key
and mixing themes from both songs. Each transition is composed to link a specific
pair of songs together. To create a familiar aspect in all transitions, an increase
in rhythm density is used at the end of the transition, leading to an increase in
intensity, signalling a new song is about to start.

Chapter 4

Implementation

4.1 Beat-Slashing Game

The game concept is recreated from the ground up using the Unity game engine.
Appendix A.2 includes a link to the whole project including all code. The game
includes many components that will not be discussed in detail here. Some of them
are listed below. They were created specifically for this project unless otherwise
listed.

• Menu scene design

• Song scene design

• Song mappings1

• JSON importation to mapping classes

• Coordination of mapping data

• Object spawner

• Audio playback

• Scoring system

• UI for point system

• UI for selection menu

• Raycast interaction with UI

• Controller input hook

• Haptic feedback hook

• Custom 3D meshes (using Blender2)

• Use of collision system

• Cube object controller

• Wall object controller

• Bomb object controller

• Saber interaction controller

• Saber angle calculations

• Mesh slicing3

• Environment animation

23

24 Chapter 4. Implementation

How a beat mapping results in a spawned object is explained here, as it will be-
come relevant for timing of the adaptive segments.

When a beat mapping is created, it is specified when a type of object should be
slashed by the player, or avoided, if it is an obstacle. The timing of this is set in
quaters at a BPM matching the song. If the player should hit the first four quater
notes, they are placed at time 0, 1, 2 and 3. This is then exported to a JSON file
containing the timing, object type, and possibly slashing direction for cubes or
duration for the length of walls.

The mapping data is imported into classes in Unity matching the data struc-
tures in the JSON files. From there, a coordinator can check when it is time to
spawn an object. The timing in this coordinator matches the BPM by converting a
timer in seconds to quaters. Since the timing in the mapping is when it reaches the
player, there is a window of time before where it must spawn and move towards
the player. If the objects move at 10 units per second, also known as the "note
jump speed", and it spawns 10 units in front of the player, it takes it one second
to reach the player. One unit in this Unity project is one meter. To synchronize
the music and beat mapping, the music must start a second after the mapping. An
additional visual spawning part is added to the cubes lasting 0.3 seconds, making
the synchronization spawn window last 1.3 seconds for a note jump speed of 10.
An increase in note jump speed makes the game harder.

4.2 Adaptive Music

Implementing the adaptive music is achieved by setting up a song with transitions
in the audio middleware FMOD, creating a beat mapping and synchronizing it
with events in Unity.

4.2.1 Adaptive Segments

The song is set up so segments smoothly can recombine to another version. In this
implementation, a song is used alongside a remixed version of it. The remixed
version follows the same structure and segments from it can be interchanged with
the original. Figure 4.1 shows part of the composition in FMOD with the first
recombination.
The gray flags are destination markers while the green are transitions. In this ex-
ample, part of the intro can change to an alternate track depending on a condition.
This condition is checked in the transition marker "To Intro B". If the condition

1Community created mapping tools were used to create the JSON files containing the mapping
and info. https://github.com/squeaksies/MediocreMapper.

2Blender is an open source 3D creation suite.
3An open source mesh-slicing framework was used from https://github.com/DavidArayan/

ezy-slice.

https://github.com/squeaksies/MediocreMapper
https://github.com/DavidArayan/ezy-slice
https://github.com/DavidArayan/ezy-slice

4.2. Adaptive Music 25

Figure 4.1: A snapshot of the FMOD setting for the adaptive remix song. The green flags are transi-
tion markers and can make the audio timeline jump to on the gray destination markers depending
on a condition.

is met, the timeline jumps to the destination marker "Intro B" and carries on from
there. If not, the timeline continues until it meets the transition marker "To Intro
Seam". This transition has no condition, and the timeline immediately jumps to
the "Intro Seam" destination marker.

To create a beat mapping of this, the audio is exported from FMOD where no
transition is triggered, meaning both segments are heard, creating a recording with
all the audio files that are used for the song. This song is then mapped using the
beat mapping software and exported to JSON. The JSON file is manually modified
by inserting when the transitions occur as seen in the JSON code below.

Listing 4.1: JSON File with Recombination Timing

1 "_secrets": [
2 {
3 "_time": 16,
4 "_durationA": 16,
5 "_durationB": 16,
6 "_condition": 2,
7 "_value": 10
8 },
9 {

10 "_time": 152,
11 "_durationA": 32,
12 "_durationB": 32,
13 "_condition": 1,
14 "_value": 100000
15 },

26 Chapter 4. Implementation

16 {
17 "_time": 284,
18 "_durationA": 36,
19 "_durationB": 36,
20 "_condition": 2,
21 "_value": 50
22 },
23 {
24 "_time": 404,
25 "_durationA": 36,
26 "_durationB": 36,
27 "_condition": 1,
28 "_value": 150000
29 }

The recombination data structures are here called "secrets". The first secret matches
the FMOD of figure 4.1, as the time of 16 is when the recombination condition is
checked, since FMOD’s counter starts from 1 and the counter implemented in C#
starts from 0. The durations explain how long either variations last, making it
possible for them to differ in length. The condition determines which goal in the
game the player must achieve and the value is connected to the goal. The first
condition of 2 is linked to having a streak of slicing at minimum 10 cubes correctly
in a row. The second, condition 1 and its value of 100000, checks whether the
player has reached a score in points of 100000.

The time and duration also separates the beat mapping into regular and remix
through an import function in C#. Using the first secret, it can be seen that all beat
mapping between time 16 and 32 is part of the regular because of the time 16 and
duration of 16. Knowing 4 quaters of silence are inserted after this, the remixed
part can be calculated to be between 36 and 52. All beat mappings between 36 and
52 are then part of the remix and is moved to another data structure. The time
values in the segment is also subtracted by 20 (16+4 quaters of silence) moving
it into the same 16 to 32 space as the regular. All values following the remixed
segment are also subtracted by 20. This continues with the next secret. In the end,
the regular and remixed beat mappings are running in parallel using the same
counter.

There are two reason for doing it this way. Firstly, the beat mapping can be
created in a single instance using the beat mapping software and be contained in
a single file. Secondly, the counter does not have to skip any segment of time,
making it run from 0 and until the song is over at the same tempo.

Similarly to how the music must be started after the spawn window as de-
scribed in section 4.1, the condition checking is also done before recombination
takes place. This is set to the same window as the song, which is 1.3 seconds for a
note jump speed of 10.

Visually, the player is notified that a change is about to happen. This is done

4.2. Adaptive Music 27

by adding frames one at a time to resemble a countdown while a UI shows what
is required to unlock the gate. Figure 4.2 shows what this looks like with a gate
where the condition is not going to be met (top) and where the condition has been
met and the remixed beat mapping is being spawned (bottom).

The UI includes a tick that is filled when the goal is achieved, a word to explain
the goal (in this case "combo"), as well as the value and what the player currently
has. On the top in the figure, the player has not correctly sliced a single cube and
the combo is zero. To unlock the gate, a combo of minimum 4 had to be achieved,
and the frames will disappear again. On the bottom the combo has be exceeded
and the change is occurring. This is also underlined by the change in color, as the
red and blue is part of the regular, while green and purple is part of the remix. A
red cube is still visible in the bottom, as the change is just about to happen. At the
end of the remixed segment, the frames disappear and the colors change back.

A coordinator C# script controls when to spawn regular or remixed objects,
when to check a condition and when to spawn the frames. If a condition is met, it
signals FMOD by sending a value to it using setParameterValue("Trigger", f),
where f is 1 for a remixed section and 0 otherwise.

Other versions were tested before settling on this version with frames several
quater beat beats before the change and the condition being checked at the same
window as the song.

In one version, the condition was checked a single quater before, after the
remixed objects were already spawned. This was possible as the remixed objects
were spawned on the opposite site of the long track in front of the player. If the
condition was met, the track rotated 180 degrees, resulting in the regular track be-
ing upside down. This version was better at visually depicting there was a change,
but the transition time made it impractical.

4.2.2 Outro Transitions

How to synchronize the outro transitions for endless playback required a different
implementation, as it needed to transition to a song with another BPM and should
possibly repeat itself in the "snooze" section.

Three songs were composed to work with endless playback. Each had a transi-
tion explicitely composed to transition into one of the other based on the transition
elements described in section 2.3.2. All songs were then set up in FMOD with
transitions leading into each other as seen in figure 4.3

The songs include a the main song, a selection and two transitions each. Just
like the recombination transitions based on a condition, the endless transitions
at the end of the selection and each transition based on a condition signaled in
Unity. The timings of the selections and transitions are manually obtained along
with the length of the transitions. For simplicity, all transitions linearly interpolate

28 Chapter 4. Implementation

Figure 4.2: A view of the remix mode in action. Top shows an instance where the goal is not
achieved and the gate will not be unlocked. The tick is not filled, the combo is below the minimum
of 4. Bottom shows a combo above the minimum. The colors have begun to change and another
colored not is visible. In FMOD, the transition is synchronized to start at the time the player slices
the visible green cube.

4.2. Adaptive Music 29

Figure 4.3: The FMOD implementation of the endless music and their transitions. Three songs are
used in the example.

the BPM it is transitions to so the average BPM of the two songs can be used for
synchronization.

When the song is at a selection segment, special cubes are spawned including
song titles or "Quit", that the user can slice. If the user does not slice one of the
cubes, the music adapts by repeating the selection segment. Slicing the "Quit"
object stops the song after the selection. The following function is triggered after a
song can be selected, in the middle of the selection segment.

Listing 4.2: C# Code Synchronizing the Endless Transition

1 private void Shif t2Song (ref float q , float secTransi t ionTime , ref float
endTime , bool isOtherColor , float timeMult , ref bool gateSpawned)

2 {
3 musicControl . SetSongNumber (shift2SongNumber) ;
4
5 float b a r s 2 S h i f t = 8 ;
6
7 if (shift2SongNumber == 0)
8 {
9 Invoke ("StopSong" , b a r s 2 S h i f t /timeMult) ;

10 return ;
11 }
12
13 q = secTransi t ionTime * timeMult - b a r s 2 S h i f t + 1 . 3 f * timeMult ;
14
15 float nextBPM = data . songBPM[shift2SongNumber] ;
16
17 float avgBPM = curBPM / (0 . 5 f * (curBPM + nextBPM)) ;
18
19 float t rans i t ionBarTime = b a r s 2 S h i f t + 16 f * avgBPM ;
20

30 Chapter 4. Implementation

21 endTime = secTransi t ionTime * timeMult + 17 f * avgBPM ;
22
23 float translateBPM = nextBPM / curBPM ;
24
25 Invoke ("ColorSwitch" , (t rans i t ionBarTime -2 f) / timeMult) ;
26
27 float newOffset = data . b a r S t a r t O f f s e t [shift2SongNumber] - (

t rans i t ionBarTime * nextBPM/curBPM) + (1 . 3 f * nextBPM /60 f) ;
28
29 BeginWithSong (shift2SongNumber , newOffset , ! i sOtherColor) ;
30 }

The function can be described with the following steps with the codes line number
in parenthesis:

1. (3) Signal FMOD the next song number. If it is the same as the current song,
the transition in FMOD repeats the selection segment.

2. (5) This happens in the middle of a selection segment of 16 bars, so the
amount of bars until the shift is 8.

3. (7-11) Song number 0 is set to stopping the song. This is invoked after the
selection is over by converting from quaters to seconds. The function the
returns.

4. (13) The timing counter q affects which beat mapping objects to spawn. The
counter is synchronized to the beginning of the transition subtracted by the
time until the shift and the spawn window. Compared to the adaptive remix,
altering the counter q is unavoidable when it also needs to be able to the
repeat selection segment indefinitely.

5. (15) BPM of the next song is found.

6. (17) A multiplier to convert current bars to the average.

7. (19) Transitions last 16 bars if the tempo is kept, but this is altered with the
multiplier.

8. (21) The time to end the use of the current song’s beat mapping is set one
bar after the transition is over. Beat mappings of the two songs overlap for a
while in code, but not visually.

9. (23) A multiplier to translate the current bars from the current BPM to the
next.

10. (25) Similarly to the color change seen in figure 4.2, the colors are changed
just before the transition

4.3. Guitar Saber 31

11. (27) The offset in time of the next beat mapping is found. It can have an
additional offset in barStartOffset, if the song should not start from the be-
ginning. The previously calculated values and spawn window are subtracted,
meaning the next counter usually starts as a negative value.

12. (29) The beat mapping for the next song is begun with the song number, the
counter offset and which color of objects to use.

With this synchronization of timing it is possible to play endlessly. One drawback
is that the timing of the song in FMOD and the counter for each beat mapping
runs independently of each other. If there is latency in either instance, it will only
be reflected on that part and the song and beat mapping will become out of sync.

4.3 Guitar Saber

This section will explain how the string sound synthesis was implemented and
realized as a VRMI.

4.3.1 Ideal String Synthesis

The implementation is based on a FAUST version by Smith [33] and can be seen
in figure 2.2. MatLab code for prototyping can be found in appendix A.3 and the
C++ code using Native Audio SDK can be found in appendix A.4. The filters and
their implementation are described in the following paragraphs.

Noise Excitation The noise burst is N white noise samples, where N is the sam-
pling rate divided by the fundamental frequency. This value is rounded down to
become an integer delay. The rounding error is later accounted for with the linear
interpolation. Part of the filling an array with N white noise samples is seen below.

Listing 4.3: C++ Initial noise burst

1 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ] - 1 . 0 f) ;
2
3 for (int n = 0 ; n < data - >N; n++)
4 data - > noiseBurs t [n] = data - >random . GetFloat (- 1 . 0 f , 1 . 0 f) ;

Variables of the type data->p[var] are created to be exposed to Unity. In this
example, var is the fundamental frequency P_FREQ. Using data-> without the p
array, like the frequency, are unexposed dynamic parameter. Loop delay N is such
a parameter, as it is used over many buffer windows and similarly will all arrays
containing previous data, like data->noiseBurst[].

32 Chapter 4. Implementation

Pick Direction Lowpass The pick direction lowpass filter is given by the transfer
function

Hp(z) =
1− p

1− pz−1 (4.1)

and its discrete-time difference equation is

y[n] = (1− p)x[n] + py[n− 1] (4.2)

The pick direction is determined by the value of p, which is a value between 0 and
1.

Listing 4.4: C++ Pick Direction

1 data - > outPickDir [n] = (1 - data - >p [P_PICKDIR_P]) * data - > noiseBurs t [n] +
data - >p [P_PICKDIR_P] * data - > outPickDir [(n - 1) & 0x3FF] ;

The code snippet is applied to the noise burst only, which makes it part of the
initial excitation. Bit shifting 1023 with & 0x3FF is used for modulo 1024 to keep
the indexing from going out of bounds. This bit shifting trick is used for indexing
throughout the implementation.

Pick Position Comb Filter The comb filter simulates the pick position from the
nut to the bridge of a guitar, where 0 is the bridge and 1 is the nut. The transfer
function is given by

Hβ[z] = 1− z−βN (4.3)

and the difference equation becomes

y[n] = x[n]− y[n− βN] (4.4)

where N is the loop delay and β is the 0 to 1 value. Combining this with the pick
direction and white noise, the initial excitation burst is seen in the code below.

Listing 4.5: C++ Complete Initial Excitation Burst

1 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ] - 1 . 0 f) ;
2 int combDel = f l o o r (data - >p [P_PICKPOS_BETA] * data - >N) ;
3
4 for (int n = 0 ; n < data - >N; n++)
5 {
6 data - > noiseBurs t [n] = data - >random . GetFloat (- 1 . 0 f , 1 . 0 f) ;
7 data - > outPickDir [n] = (1 - data - >p [P_PICKDIR_P]) * data - > noiseBurs t [

n] + data - >p [P_PICKDIR_P] * data - > outPickDir [(n - 1) & 0x3FF] ;
8 data - > outPickPos [n] = data - > outPickDir [n] - data - > outPickDir [(n -

combDel) & 0x3FF] ;
9 }

4.3. Guitar Saber 33

The pick position of the sabers follow the frets whereas the pick position of a
guitar usually is above the soundhole for an acoustic guitar and above the pickups
for an electric guitar. The value β is exposed in Unity, but does not currently
change when playing.

Loop Delay In the Native Audio SDK method "ProcessCallback", which allows
data to be inserted into the audio buffer, it is ensured that the noise only is used as
the initial excitation.

Listing 4.6: C++ Loop Delay

1 float noise = 0 . 0 f ;
2 for (unsigned int n = 0 ; n < length ; n++)
3 {
4 noise = 0 . 0 f ;
5 if (data - > noiseIdx < data - >N)
6 {
7 noise = data - > outPickPos [data - > noiseIdx] ;
8 data - > noiseIdx ++;
9 }

10 data - > outDel [data - >n] = noise + data - > outStringTuning [(data - >n -
data - >N) & 0x3FF] ;

11
12 // Rest of filter and buffer operations here...
13 }

The buffer of outStringTuning is the output of the linear interpolation, that will
be explained later. The counter noiseIdx is what ensures the noisy excitiation only
last the cycle of the first loop delay. Since the data is delayed immediately, the
data->n counter starts out equal to the loop delay, as the first output otherwise
would be N samples of zero.

Damping Lowpass The damping filter introduces the loss. The transfer function
for the second-order filter is

Hd[z] = b1 + b0z−1 + b1z−2 (4.5)

and the difference equation

y[n] = b1x[n− 1] + b0(x[n] + x[n− 2]) (4.6)

where

b0 = ρ
1 + B

2
; b1 = ρ

1− B
4

;

ρ = 0.0011/(f0t60);
(4.7)

34 Chapter 4. Implementation

The damping filter has two control parameters. The brightness is controlled by B,
a value between 0 and 1. Control parameter t60 is how long in seconds it takes to
reach a decay of -60db. With a delay of one sample for all frequencies in the range
that is used, the filter has tuning invariance. This is an important factor with the
string tuning filter.

A part of the ProcessCallback method containing the damping filter operations
is seen below.

Listing 4.7: Second-Order Damping Filter Code Snippet

1 float dampRho = pow(0 . 0 0 1 f , (1 . 0 f / (data - >p [P_FREQ] * data - >p [P_DAMP_SEC
]))) ;

2 float damph0 = (1 . 0 f + data - >p [P_DAMP_B]) * 0 . 5 f ;
3 float damph1 = (1 . 0 f - data - >p [P_DAMP_B]) * 0 . 2 5 f ;
4
5 for (unsigned int n = 0 ; n < length ; n++)
6 {
7 data - >outDamp [data - >n] = dampRho * (damph1 * (data - > outDel [data - >n] +

data - > outDel [(data - >n - 2) & 0x3FF]) + damph0 * data - > outDel [(data
- >n - 1) & 0x3FF]) ;

8 }

String-Tuning Filter The string-tuning filter makes up for the lack of precision
associated with the integer delay. The filter performs linear interpolation using the
first-order transfer function

Hη [z] = (1− η) + ηz−1 (4.8)

and the difference equation

y[n] = (1− η)x[n] + ηx[n− 1] (4.9)

where η is the rounding error in samples. This makes the filter linearly interpolate
between the current and past input sample.

Listing 4.8: C++ String Tuning

1 data - > nStringTuning = SAMPLERATE / data - >p [P_FREQ] - data - >N - 1 . 0 f ;
2
3 for (unsigned int n = 0 ; n < length ; n++)
4 {
5 data - > outStringTuning [data - >n] = (1 . 0 f - data - > nStringTuning) * data - >

outDamp [data - >n] + data - > nStringTuning * data - >outDamp [(data - >n - 1)
& 0x3FF] ;

6 }

4.3. Guitar Saber 35

Dynamic Level Filter A dynamic level low-pass filter is used to make the gain
equal for all fundamental frequencies. The transfer function is given by

HL,ω1 [z] =
ω̃1

1 + ω̃1

1 + z−1

1− (1−ω̃1
1+ω̃1

)z−1
(4.10)

with ω̃1 = π f0. The difference equation becomes

y[n] = c0(x[n] + x[n− 1]) + c1y[n− 1]

c0 =
ω̃1

1 + ω̃1
; c1 =

1− ω̃1

1 + ω̃1

(4.11)

On top of this, the input to this filter, from the loop delay, and the output is mixed
together with the formula

L · L0(L)x[n] + (1− L)y[n]

L0(L) = L1/3
(4.12)

The parameter L is controlled to achieve the dynamic level. It is set between 0 and
1, where a higher value results in a more energetic pick.

A code snippet of the dynamic level filtering can be seen below, where the
exposed parameter P_DYNLEV_L can change at any sample.

Listing 4.9: C++ Dynamic Level

1 float w = (kPI * data - >p [P_FREQ]) / SAMPLERATE;
2 float enerC0 = w / (1 . 0 f + w) ;
3 float enerC1 = ((1 . 0 f - w) / (1 . 0 f + w)) ;
4 float L0 = pow(data - >p [P_DYNLEV_L] , (1 . 0 f / 3 . 0 f)) ;
5
6 for (unsigned int n = 0 ; n < length ; n++)
7 {
8 data - >outDynLev [data - >n] = enerC0 * (data - > outDel [data - >n] + data - >

outDel [(data - >n - 1) & 0x3FF]) + enerC1 * data - >outDynLev [(data - >n -
1) & 0x3FF] ;

9 data - >outDynLev [data - >n] = data - >p [P_DYNLEV_L] * L0 * data - > outDel [data - >
n] + (1 . 0 f - data - >p [P_DYNLEV_L]) * data - >outDynLev [data - >n] ;

10 }

Filling the Buffer For each channel, the value of the dynamic level filter is in-
serted, the data->n index is incremented and the bit shifting is applied. A mixing
flag wetTarget is multiplied to final value, which is 1 if the application is running,
is not muted and is not paused. The code for this part can be seen below.

36 Chapter 4. Implementation

Listing 4.10: C++ Buffer Filling

1 for (unsigned int n = 0 ; n < length ; n++)
2 {
3 for (int i = 0 ; i < outchannels ; i ++)
4 {
5 outbuf fer [n * outchannels + i] = data - >outDynLev [data - >n] *

wetTarget ;
6 }
7 }
8 data - >n = (data - >n+1) & 0x3FF ;

4.3.2 Audio Effects

The audio effects are implemented as a separate native plugin. The exposed pa-
rameters here are the pregain of the overdrive, the center frequency of the wah
wah and the mix of the wah wah.

Overdrive The overdrive (or distortion) is a simple operation that adds a gain to
a single input value. The effect is adapted from Zölzer [40]. No previous values
are needed. The equation is given by the function

f (x) =

2x for 0 ≤ x ≤ 1/3
3−(2−3x)2

3 for 1/3 ≤ x ≤ 2/3

1 otherwise

(4.13)

This is implemented as a float function in C++ since it only needs to return a value
and not save any as delayed values.

Listing 4.11: C++ Soft Clipping Overdrive

1 const float th = 1 . 0 f / 3 . 0 f ;
2
3 float Overdrive (float x)
4 {
5 float y = 0 . 0 f ;
6 if (fabs (x) < th)
7 return 2 . 0 f * x ;
8 else if (fabs (x) > 2 . 0 f * th)
9 {

10 if (x > 0)
11 return 1 . 0 f ;
12 if (x < 0)
13 return - 1 . 0 f ;
14 }
15 else
16 {
17 if (x > 0)

4.3. Guitar Saber 37

18 return (3 . 0 f - (2 . 0 f - 3 . 0 f * x) * (2 . 0 f - 3 . 0 f * x)) / 3 . 0 f ;
19 else
20 return - (3 . 0 f - (2 . 0 f - fabs (x) * 3 . 0 f) * (2 . 0 f - fabs (x) * 3 . 0 f))

/ 3 . 0 f ;
21 }
22 }

Before the value is used as input in the function, a pregain is applied to it. This
pregain parameter is the exposed parameter in Unity and is calculated as 102d

where d is the 0 to 1 pregain. The overdrive in combination with the pregain as
seen in the code below.

Listing 4.12: C++ Pregain

1 float preGain = pow(1 0 , 2 . 0 f * data - >p [P_DRIVE]) ;
2
3 x = x * preGain ;
4 x = Overdrive (x) ;

The initial x is taken from the input buffer. It is the value put into the buffer from
the Extended Karplus-Strong, when the wah wah and drive plugin follows it in the
audio chain.

Wah Wah The wah wah acts as a band-pass filter with a moving center frequency.
It also includes a low-pass and high-pass component. Different wah wah effects
exists and this one is adapted from Marshall [41]. The difference equations, where
the subscript denotes the type of filter (low-pass, band-pass and high-pass), is
given by

yl [n] = F1yb[n] + yl [n− 1]

yb[n] = F1yh[n] + yb[n− 1]

yh[n] = x[n]− yl [n− 1]−Q1yb[n− 1]

(4.14)

where
F1 = 2sin(π fc/ fs); Q1 = 2d (4.15)

The center frequency is fc, fs is the sampling rate and d is a damping factor. Single
float variables are used to store the delayed values.

Listing 4.13: C++ Wah Wah

1 float F1 = 2 * s in ((kPI * data - >p [P_WAHCENTER]) / SAMPLERATE) ;
2
3 for (unsigned int n = 0 ; n < length ; n++)
4 {
5 data - > delY = F1 * (inX - data - >delLow - 0 . 4 * data - > delY) + data - > delY ;
6 data - >delLow = F1 * data - > delY + data - >delLow ;

38 Chapter 4. Implementation

Figure 4.4: The compiled native audio plugin added to a mixer in Unity. Parameters exposed to C#
scripting have an arrow to the right of them. The possible values of the sliders are set in the C++
framework.

7
8 x = data - >p [P_WAHMIX] * data - > delY + (1 . 0 f - data - >p [P_WAHMIX]) * inX ;
9 }

A constant of 0.4 is used for the damping Q1 while the center frequency and mix
is exposed to a mixer in Unity.

4.3.3 Controlling the Guitar Saber

Once compiled, the native plugin is added to a mixer object. Figure 4.4 shows
the audio chain of the Extended Karplus-Strong (Demo EKS) followed by the au-
dio effects (WahDrive). The parameters can be controlled by using the sliders and
be exposed to scripting, which is indicated by the arrows. The possible values
of the sliders are set in the C++ script in a "RegisterParameter" method. See ap-
pendix A.4 lines 72 through 78. Selected code snippets are used to explain how the
synthesis is controlled and visualized here, while the whole project can be found
in appendix A.2.

This section will go through how each parameter is controlled from Unity in-
teractions and scripting.

The Trigger is used to signal when a new pick occurs. It refills the excitation
burst with N samples depending on the frequency and resets the noiseIdx counter,

4.3. Guitar Saber 39

so the model is excited again. Since the parameter is a floating point number, it
can not trigger the refill and reset like the "bang" object of pure data would. At
the same time, the Native Audio SDK only registers changes in parameters, which
means sending a repeated 1 does not work. A simple workaround is achieved by
switching between sending -1 and 1 from a C# script and 0 when it should be
turned off. The code below summarises the essential parts of how this works.

Listing 4.14: C# Code for Guitar Pick Trigger

1 private float t r i g g e r S w i t c h = 1 f ;
2
3 private void Awake ()
4 {
5 audioMixer . S e t F l o a t ("Trigger" , 0 . 0 f) ;
6 }
7
8 void OnColl is ionEnter (C o l l i s i o n c o l)
9 {

10 if (c o l . transform . tag == "Saber")
11 {
12 audioMixer . S e t F l o a t ("Trigger" , t r i g g e r S w i t c h = - t r i g g e r S w i t c h) ;
13 }
14 }
15
16 private void OnApplicationQuit ()
17 {
18 audioMixer . S e t F l o a t ("Trigger" , 0 . 0 f) ;
19 }

To ensure there is no sound when the application starts, the trigger is set to
zero in Awake, which runs before the game starts. The trigger is also set to zero
when the game ends in OnApplicationQuit. By changing between 1 and -1,
the triggerSwitch variable is passed to the native plugin which registers it as
a change. The code is attached to the right blue saber and the triggering happens
when it collides with another objects tagged as a "saber", which is the left red saber.

Frequency As mentioned, the frequency is determined by the location of the
collision along the sabers. Figure 3.1 shows this in the top as a two-dimensional
array of frequencies and the bottom figure shows the implementation with the
frets. The collision system determines when one saber is colliding with the other,
but not which part of it. Fortunately, the collision system supplies the contact point
of the impact as a 3D point (Vector3 type in Unity). By calculating the distance
between the handle and the tip of the saber along with the ratio used to place the
frets, the frequency is determined. This can be a continuous value in the scale, but
is for the Guitar Saber discretized to fit the tuning.

The tuning of the guitar can be changed. Using the guitar as inspiration, only
the open string turnings are set and the rest are calculated from it. The amount of

40 Chapter 4. Implementation

Figure 4.5: The Guitar Saber implementation where the drive (pregain) is being changed. The UI for
the drive is seen by holding down a trigger.

frets and strings can also also be set, though a higher number makes it harder to
correctly trigger a desired note.

Dynamic Level The dynamic level is set using the velocity of the right blue saber.
Velocity of the saber is already calculated as part of the base game, so this variable
is reused here. Testing it for possible values, it was observed that the largest values
were around 20, so the number sent to the mixer is scaled by a division of 20 and
clamped between 0 and 1.

Drive and WahMix The drive and mix of the wah wah is the only interaction that
requires the use of a button. Figure 4.5 shows it in use. A button is held down,
and a UI interface is seen above the handle of the saber. By twisting the saber in
a positive direction the value decreases, while twisting it in a negative direction
increases it. The UI shows the effect name, the current value and a color indicator
for the value. While twisting the saber, the UI component remains static while the
color indicator changes. Once the button is let go, the UI is not shown anymore.

Other ways to control the value was created before settling on this one. One
was to change it without using the button. This was done by twisting the saber like
throttling a motorbike. Unfortunately, the throttling could be accidentally triggered
while using the Guitar Saber to play on.

Wah Center The wah center is controlled by the angle of the left red saber. The
angle is calculate using the bottom of the saber as origo. When a pick occurs, the
angle is set as the initial angle and upon angling the saber further up or down, the
center frequency is changed. The complete function is seen in the code below.

4.3. Guitar Saber 41

Listing 4.15: C# Code for Guitar Pick Trigger

1 private void WahCenter (float angle)
2 {
3 float a n g l e D i f f = Mathf . Clamp (angle - i n i t i a l A n g l e , -30 f , 20 f) ;
4 newWahCenter = 2000 f + 50 f * a n g l e D i f f ;
5 audioMixer . S e t F l o a t ("WahCenter" , newWahCenter) ;
6 }

The center frequency has a minimum value of 500 Hz and a maximum of 3000 Hz.
Starting with a default of 2000 Hz, the center value in Hz can increase to 3000 by
with a positive difference in angle of 20 degrees, while it can decrease to 500 Hz
with a negative difference in angle of 30 degrees.

Discrete Glissando The discrete glissando is also implemented using Unity’s col-
lision system. Instead of detecting the entering of a collision, the glissando is af-
fected at each frame the sabers stay in a state of collision. The frequency is then
calculated similarly to how it is upon entering a collision, but the difference is that
a new excitation is not triggered. Instead, the frequency only changes and the
delay loop along with it.

Visual Indicators Visual indicators are created to see which position has been
struck. This is done using particle effects of a circle enlarging to resemble an
outgoing wave like a drop in water as seen in figure 4.6.

It is created using Unity’s particle system and the speed at which the waves
move increase with higher tones to resemble an increase in frequency. On a change
of strings, the position of the indicator also moves to fit in line with the string
indication on the right blue saber.

Novice Version By decreasing the amount of frets and strings it can be easier to
have an overview of the tone possibilities. For players unfamiliar with the layout of
a guitar, the meaning of the frets and the strings might not indicate which tones to
play. Because of this, a novice version of the instrument is also implemented. The
novice Guitar Saber includes two strings with eight notes each, that are mapped
to a scale. There is an octave in difference between the two strings. Removing the
connection with the semitonal guitar layout takes away one of the visual aspects
that makes it the most familiar to musicians, but makes it easier for novices to play
along to a song, if the key of the saber and song matches. The change is determined
by a boolean when initializing the instrument as seen in the code example below.

Listing 4.16: C# Code for Novice Guitar Saber

1 if (novice)
2 {
3 str ingCount = 2 ;
4 fretCount = 9 ;

42 Chapter 4. Implementation

Figure 4.6: An early version of the Guitar Saber. The particle effects show which notes have been hit
recently.

5 f r e q u e n c i e s = new float [,] { {0 f , 116 .54 f , 130 .81 f , 138 .59 f , 155 .56 f ,
174 .61 f , 185 .00 f , 207 .65 f , 233 .08 f } , { 0 f , 233 .08 f , 261 .63 f ,
277 .18 f , 311 .13 f , 349 .23 f , 369 .99 f , 415 .30 f , 466 .16 f } } ;

6 }

Making this change is simple, as it only requires bypassing the string tuning for a
fixed scale (hardcoded Bb minor here) and making sure the position inlays are not
instantiated.

4.4 Mechanical Oscillator for Friction

Implementing the friction synthesis follows the same procedure as the Extended
Karplus-Strong. A prototype was created in MatLab (see appendix A.5) before it
was coded in C++ for the native plugin (appendix A.6) and controlled through a
mixer in Unity.

4.4.1 Non-Linear Friction Synthesis

The friction synthesis implementation can be split into four parts. The initializa-
tion of state-variables and constants, processing using known variables, approx-
imation using Newton-Rhapson and updating the variables to include the value
from Newton-Rhapson.

4.4. Mechanical Oscillator for Friction 43

State-Variables and Constants As described in section 2.4.2 on low-level friction
and the mechanical oscillator, the system can be decomposed into state space form.
From the mechanical oscillator in equation 2.2 and using the bilinear transform to
discretize the K method as seen in equation 2.10, the matrices become

A = H(αI + A(K)) = detH ·
[

α2 + αg−ω2 2α

−2αω2 α2 − αg−ω2

]
b = HB = detH ·

[1
m
α
m

]
detH =

1
α2 + αg + ω2

(4.16)

where A(K)) is from the state-variable as seen in equation 2.8 and the leftmost A is
the reduced form. Upon triggering the friction the constants in the transformation
matrices are computed once, as they do not change unless a parameter like the
frequency changes. The code below shows how this works when 3 resonators are
used in a slightly optimized version.

Listing 4.17: C++ Computation of Transformation Matrice Variables

1 for (int i = 0 ; i < 3 ; i ++)
2 {
3 omega_r [i] = 2 . 0 f * m_pi * f r e q [i] ;
4 g_r [i] = omega_r [i] / q_r ;
5 detTemp = (Fs * Fs + g_r [i] * Fs / 2 . 0 f + (omega_r [i] * omega_r [i]) / 4 . 0

f) ;
6
7 data - >A_r [0] [0] [i] = 1 . 0 f / detTemp * (detTemp - (omega_r [i] * omega_r [

i]) / 2 . 0 f) ;
8 data - >A_r [1] [0] [i] = 1 . 0 f / detTemp * (- Fs * omega_r [i] * omega_r [i]) ;
9 data - >A_r [0] [1] [i] = 1 . 0 f / detTemp * Fs ;

10 data - >A_r [1] [1] [i] = 1 . 0 f / detTemp * (2 . 0 f * Fs * Fs - detTemp) ;
11
12 data - > b_r [0] [i] = (1 . 0 f / m_r) * (1 . 0 f / (4 . 0 f * detTemp)) ;
13 data - > b_r [1] [i] = (1 . 0 f / m_r) * (1 . 0 f / (4 . 0 f * detTemp)) * 2 . 0 f * Fs ;
14
15 data - > bv_r += data - > b_r [1] [i] ;
16 }

A three-dimensional array is used for the resonators, so they can indexed over
through a loop. The matrices are computed on a trigger or frequency change,
similar to the re-excitation from the Guitar Saber. To compute the K components,
data->bv_r is summed in this loop, which is a sum of the velocities.

For the bow, the frequency is set to zero as the sound resonating from the bow
is neglected. It is used as the exciter in this system and only has a single instance
of transformation matrices.

44 Chapter 4. Implementation

Other constants affected by a change in normal force, Stribeck velocity or fre-
quency are also set here. The code below shows an excerpt of these.

Listing 4.18: C++ Initial Constants for Friction Synthesis

1 data - > f _ s = mu_s * data - >p [P_FN] ;
2 data - > f _ c = mu_d * data - >p [P_FN] ;
3 data - >Zba = 0 . 7 f * data - > f _ c / s ig 0 ;
4
5 data - > fe_b = data - > f _ c + (data - > f _ s - data - > f _ c) * expf (- (data - >p [P_STRIBECK

] / v_s) * (data - >p [P_STRIBECK] / v_s)) + s i g 2 * data - >p [P_STRIBECK] ;
6
7 data - >K2 = 1 . 0 f / (2 . 0 f * Fs) ;
8
9 data - >bv_b = data - >b_b [1] ;

10 data - >bv = data - >bv_b + data - > bv_r ;
11
12 data - >K1 = - data - >bv / (1 . 0 f + s i g 2 * data - >bv) * (s i g 0 / (2 . 0 f * Fs) + s i g 1

) ;

The values for all σ, masses and more are set as unexposed constants. The K
constants are explained in the paragraph on Newton-Rhapson.

While the system can continue without resetting state variables like the com-
pression x and velocity v, there is a risk of it becoming unstable. To limit this,
the option to reset it is added to the native plugin. This can be used on the first
instance of interaction. The code below shows the reset.

Listing 4.19: C++ Initial Constants for Friction Synthesis

1 if (! data - > stateOn)
2 {
3 data - > stateOn = true ;
4 data - >h0 = 0 . 0 f ;
5 data - > zPrev = 0 . 0 f ;
6 data - > yPrev = 0 . 0 f ;
7 data - > f _ t o t _ b = 0 . 0 f ;
8 data - > f _ t o t _ r = 0 . 0 f ;
9

10 for (int j = 0 ; j < 3 ; j ++)
11 {
12 data - > xv_r [0] [j] = 0 . 0 f ;
13 data - > xv_r [1] [j] = 0 . 0 f ;
14 }
15 data - >xv_b [0] = 0 . 0 f ;
16 data - >xv_b [1] = 0 . 0 f ;
17 }

A simple boolean is used to reset the data if it is the first interaction. The boolean
stateOn is set to false when the value of the trigger (used like in Guitar Saber) is
zero. The state values are set in data->xv_b for the bow and data->xv_r for the
resonators.

4.4. Mechanical Oscillator for Friction 45

Computable Part In the computation of each sample, the computable parts are
first applied to the state variables as temporary values, that are used in the Newton-
Rhapson.

Listing 4.20: C++ Computable Parts for Each Sample

1 for (unsigned int n = 0 ; n < length ; n++)
2 {
3 // Resonators
4 v_rSum = 0 . 0 f ;
5 for (int j = 0 ; j < 3 ; j ++)
6 {
7 tempX = data - >A_r [0] [0] [j] * data - > xv_r [0] [j] + data - >A_r [0] [1] [j] *

data - > xv_r [1] [j] + data - > b_r [0] [j] * data - > f _ t o t _ r ;
8 data - > xv_r [1] [j] = data - >A_r [1] [0] [j] * data - > xv_r [0] [j] + data - >A_r

[1] [1] [j] * data - > xv_r [1] [j] + data - > b_r [1] [j] * data - > f _ t o t _ r ;
9 data - > xv_r [0] [j] = tempX ;

10
11 v_rSum += data - > xv_r [1] [j] ;
12 }
13
14 // Bow
15 tempX = data - >A_b [0] [0] * data - >xv_b [0] + data - >A_b [0] [1] * data - >xv_b

[1] + data - >b_b [0] * data - > f _ t o t _ b ;
16 data - >xv_b [1] = data - >A_b [1] [0] * data - >xv_b [0] + data - >A_b [1] [1] *

data - >xv_b [1] + data - >b_b [1] * data - > f _ t o t _ b ;
17 data - >xv_b [0] = tempX ;
18
19 v_bSum = data - >xv_b [1] ;
20
21 // Computable parts
22 float z_Ti = data - > zPrev + 1 . 0 f / (2 . 0 f * Fs) * data - > yPrev ;
23
24 float w = data - >random . GetFloat (- 1 . 0 f , 1 . 0 f) * abs (v_bSum) ; // * f_n
25
26 v_Ti = 1 . 0 f / (1 . 0 f + s i g2 * data - >bv) * ((v_bSum + data - >bv_b * (data - >

fe_b - s ig 0 * z_Ti)) + (- v_rSum - data - > bv_r * (s i g 0 * z_Ti))) ;
27
28 // NEWTON-RHAPSON HERE //
29
30 // COMPLETE SYSTEM HERE //
31 }

The first parts of the resonators and bow follow equation 2.10 without the friction
force. The computable part of z, z_Ti, is found using the trapezoidal rule as and
removing the unknown part ż[n]

z̃[n] = z[n− 1] +
1
α

ż[n− 1] (4.17)

For the velocity, this is more complicated, as it it needs to take into account all the

46 Chapter 4. Implementation

computable parts from the friction force equation 2.4 as well as the state-variables
and transformations. Combining each resonators state-variables together simplifies
the equation to

ṽ[n] =
1

1 + σ2b
((ẋ(b) + b(2)(b)(f (b)e − σ0z̃[n]))− (ẋ(r) + b(2)(r)σ0z̃[n])) (4.18)

where b(2) is value transforming the velocity in (b) of equation 2.10. It is denoted
by either a b for bow, (r) for resonator or nothing, when it is the sum of both. The
random noise in w is attenuated by the absolute value of the latter.

Newton-Rhapson approximation To approximate the value of ż the values of z̃
and ṽ are used with their K component and the process described in section 2.4.5.
The K components are the missing transformations of the unknown friction forces
that makes ṽ and z̃ become v and z. For z this value is found by looking at equa-
tion 4.17 without removing the unknown component ż.

z[n] = z̃[n] +
1
α

ż

z[n] = z̃[n] + K(2)ż
(4.19)

For the velocity, this includes a couple more components.

v[n] = ṽ[n] +
b

1 + σ2b
(σ0α + σ1)ż

v[n] = ṽ[n] + K(1)ż
(4.20)

Listing 4.21: C++ Newton-Rhapson v and z Approximations

1 const float errMax = 1e -13 f ;
2 float count = 1 ;
3 float e r r = 9 9 ;
4 while (e r r > errMax && count < 10 && wetTarget == 1 . 0 f)
5 {
6 float vNew = v_Ti + data - >K1 * data - >h0 ;
7 float zNew = z_Ti + data - >K2 * data - >h0 ;
8 }

The new values for v and z (vNew and zNew) are updated each round of the Newton-
Rhapson loop as the approximation of ż changes in h0. A maximum error is set as
well as a maximum number of iterations to avoid an infinite loop. The wetTarget
is the same as in the Guitar Saber.

To use the Newton-Rhapson approach described in section 2.4.5, the new values
for v and z are computed for this iteration of the while loop. The code can be seen
below.

4.4. Mechanical Oscillator for Friction 47

Listing 4.22: C++ Mean Bristle Velocity

1 // Find Zss
2 float Zss = (s ign (vNew) / s i g 0) * (data - > f _ c + (data - > f _ s - data - > f _ c) * expf

(- (vNew / v_s) * (vNew / v_s))) ;
3 float aNew = 0 . 0 f ;
4 // Find alpha tilde
5 if (s ign (zNew) != sign (vNew))
6 aNew = 0 . 0 f ;
7 else if (fabs (zNew) < data - >Zba)
8 aNew = 0 . 0 f ;
9 else if (fabs (zNew) > Zss)

10 aNew = 1 . 0 f ;
11 else
12 aNew = 0 . 5 f * (1 . 0 f + s i n (m_pi * ((zNew - 0 . 5 f * (Zss + data - >Zba)) / (Zss -

data - >Zba)))) ;
13
14 // Compute derivatives needed for derivative of g
15 // Zss / v, a / z, a / v to compute dotz / v and dotz / z
16 float ZssvDeri = - s ign (vNew) * (2 . 0 f * vNew) / (s i g 0 * v_s * v_s) * (data - > f _ s

- data - > f _ c) * exp (- (vNew / v_s) * (vNew / v_s)) ;
17
18 float azDeri = 0 . 0 f ;
19 float avDeri = 0 . 0 f ;
20
21 if ((data - >Zba < fabs (zNew)) && (fabs (zNew) < Zss) && (sign (vNew) == sign (

zNew)))
22 {
23 float temp = 0 . 5 f * m_pi * cos (m_pi * (zNew - 0 . 5 f * (Zss + data - >Zba)) / (

Zss - data - >Zba)) ;
24 azDeri = temp * (1 . 0 f / (Zss - data - >Zba)) ;
25 avDeri = temp * ((ZssvDeri * (data - >Zba - zNew)) / ((Zss - data - >Zba) * (

Zss - data - >Zba))) ;
26 }

The root-finding can then start with equation 2.13 and using the steady velocity
friction force in equation 2.3. The derivative becomes

∂g
∂h

=
∂ż
∂v

K(1) +
∂ż
∂z

K(2)− 1 (4.21)

where the K components are previously found and the derivatives according to x
and v are taken from Rocchesso [34].

Listing 4.23: C++ Newton-Rhapson Root Finding

1 // Compute g
2 float gNom = vNew * (1 . 0 f - aNew * zNew / Zss) - data - >h0 ;
3
4 float derZ = - (vNew / Zss) * (zNew* azDeri + aNew) ;
5 float derV = 1 . 0 f - zNew * (((aNew + vNew * avDeri) * Zss - aNew * vNew*

ZssvDeri) / (Zss * Zss)) ;

48 Chapter 4. Implementation

6 float gDeri = derV * data - >K1 + derZ * data - >K2 - 1 . 0 f ;
7
8 float h1 = data - >h0 - gNom / gDeri ;
9

10 e r r = fabs (h1 - data - >h0) ;
11 data - >h0 = h1 ;

The code shows how the next value for h is found and the error is computed,
converging if the error is below the maximum allowed.

Updating Variables After the Newton-Rhapson, the variables are updated to fac-
tor in the approximated value of ż. The actual v and z is found, which then allows
for computing the friction force. If other forces are acting on the bow or resonator,
they are taken into account as the total force acting on the object. The resonators
and bow state-variables are then updated as seen in the code below.

Listing 4.24: C++ Updating the Variables

1 float dotz = data - >h0 ;
2 float v = v_Ti + data - >K1 * dotz ;
3 float z = z_Ti + data - >K2 * dotz ;
4
5 float f _ f r = s i g0 * z + s ig 1 * dotz + s i g 2 * v + data - >p [P_NOISE] * w;
6
7 data - > f _ t o t _ b = data - > fe_b - f _ f r ;
8 data - > f _ t o t _ r = f _ f r ;
9

10 x = 0 . 0 f ;
11 for (int j = 0 ; j < 3 ; j ++)
12 {
13 data - > xv_r [0] [j] = data - > xv_r [0] [j] + data - > b_r [0] [j] * data - > f _ t o t _ r ;
14 data - > xv_r [1] [j] = data - > xv_r [1] [j] + data - > b_r [1] [j] * data - > f _ t o t _ r ;
15 x += data - > xv_r [0] [j] ;
16 }
17
18 data - >xv_b [0] = data - >xv_b [0] + data - >b_b [0] * data - > f _ t o t _ b ;
19 data - >xv_b [1] = data - >xv_b [1] + data - >b_b [1] * data - > f _ t o t _ b ;
20
21 data - > fader = data - >p [P_TRIGGER] == 0 . 0 f ? fmax (data - > fader - 0 .001 f , 0 . 0 f

) : fmin (data - > fader + 0 .001 f , 1 . 0 f) ;
22
23 for (int i = 0 ; i < outchannels ; i ++)
24 outbuf fer [n * outchannels + i] = data - >p [P_PICKUP] * x * wetTarget *

data - > fader ;

An additional smoothing component with data->fader is added to smoothly tran-
sition when ending and starting the synthesis. The audio is filled into the buffer
and multiplied by a pickup that acts as a gain. This value is exposed as a parameter
in Unity.

4.4. Mechanical Oscillator for Friction 49

(a) (b)

Figure 4.7: The mixer controlling the friction and the wall with separated colliders.

4.4.2 Controlling Wall Synthesis

Several of the friction synthesis parameters are hardcoded in the native plugin
leaving three exposed parameters alongside the trigger. As seen in figure 4.7a,
these parameters are the frequency, a pickup and noisiness. The Stribeck velocity
can also be exposed, though the value must be kept in a tight range as the system
otherwise becomes unstable. In this implementation the range found to be between
0.1 and 0.3 while the frequency still can change.
The friction is mapped to a scale on a wall by dividing the wall into eight colliders
fitting an octave on a scale. When a saber enters a collider, the name of the collider
is converted to a frequency that is sent to the mixer. Moving the saber from one
collider to the next while staying in contact with the whole wall gives a discrete
glissando effect like with the Guitar Saber. Figure 4.7b shows how these colliders
are placed separate in the wall. When the wall scales, the collider scale along with
it. The trigger is set to 1 (or -1) upon entering the collision and 0 when exiting.

Chapter 5

Evaluation

Four tests were conducted with more to come. The tests included 9 participants (9
men) and all went through the four tests in one session lasting 15 to 20 minutes.

The tests were conducted in the following order:

1. Assessment of the adaptive remix mode

2. Observational usability of the Guitar Saber

3. Audio User Experience of the Guitar Saber

4. Assessment of using the Guitar Saber in-game

5.1 Adaptive Song Replayability

Participants played the remix mode until they had passed two possible recombina-
tion segments. All participants unlocked the first segment. Each participant was
explained how to play the game, though only three had not played the original be-
fore and of those three, two had knowledge of the game. After playing the mode,
they were explained that segments could change.

Only one participant did not notice that the visuals changed to fit with the
remix segment. This can be due to focusing on the playing immediately in front
of them. Most participants (66 %) answered that they did not know how to unlock
the gate to the remixed segment. Another participant, who claimed they knew,
answered that it was achieved by slicing green cubes, which is incorrect. This
means that the visuals in figure 4.2 should be changed to make it clearer what is
required. It can also be that participants would need to play the mode for longer
than two possible segments.

The participants were asked to rate the following statement from 1 to 7, where
1 means they disagree strongly and 7 means they agrees strongly:

51

52 Chapter 5. Evaluation

Playing a song where remixed segments can be unlocked will increase the
chance that I will replay the song, in case I can unlock previously unheard
segments.

1 2 3 4 5 6 7

0

2

4

Rating

Pa
rt

ic
ip

an
ts

The ratings can be seen in the bar plot above. All participants agreed to some
degree, indicating that this mode could increase replayability.

5.2 VRMI: Guitar Saber

Three tests were conducted using the Guitar Saber VRMI to evaluate its stand-alone
use and in-game use.

5.2.1 Observational Usability Test

The first test of the Guitar Saber was conducted as an observational test. Each
participant was tasked with exploring the instrument. They were not told how to
play it nor that it was based on the layout of a guitar. They were told that they
were allowed to use one button, but not what it does. The button is the trigger
used to control the mix of the wah wah and drive.

The stacked bar plot below shows how many participants where able to figure
out the various features without instructions on how to use them.

The player figured out how to use the feature on their own.

Pick
Driv

e

W
ah

M
ix

W
ah

Use

Glis
sa

ndo Fre
ts

Glis
sa

ndo Str
in

gs
2
4
6
8

Pa
rt

ic
ip

an
ts

Yes No

5.2. VRMI: Guitar Saber 53

All participants quickly figured out the instrument was played by a collision
of the two sabers. The glissandos were also easily found, sometimes by accident,
but participants then went on to use it purposefully. Holding the trigger down
and changing the mix of the drive and wah was not intuitive for most participants.
They mostly held the button down and did not let it go before playing, meaning
the value would change drastically on play. Some participants also pressed the
trigger when colliding with the sabers, though did not have any intended effect.
How to use the wah wah was only figured out by one user.

After playing for a while, the participants were presented with the novice ver-
sion of the Guitar Saber while they were explained all the functionalities they had
missed.

5.2.2 Audio User Experience

The second test using the Guitar Saber was based on the BUZZ: Audio User Ex-
perience (audioUX) Scale [42]. The questions are used to measure the usability
of an auditory display by rating them on a scale of 1 to 7, where 1 means they
disagree strongly and 7 means they agrees strongly. Five selected questions from
the questionnaire were asked after participants had tried the VRMI.

The sounds were interesting.

1 2 3 4 5 6 7

0

2

4

Rating

Pa
rt

ic
ip

an
ts

It was difficult to understand how the sounds changed from one variable to the
next.

1 2 3 4 5 6 7

0
2
4
6

Rating

Pa
rt

ic
ip

an
ts

It was fun to listen to these sounds.

54 Chapter 5. Evaluation

1 2 3 4 5 6 7

0
2
4
6

Rating

Pa
rt

ic
ip

an
ts

It was confusing to listen to these sounds.

1 2 3 4 5 6 7

0

2

4

Rating

Pa
rt

ic
ip

an
ts

It was easy to understand what each sound represented.

1 2 3 4 5 6 7

0

1

2

3

Rating

Pa
rt

ic
ip

an
ts

The participants generally found the sounds interesting and fun. It was more split
on how easy the instrument was to understand.

5.2.3 Assessment of In-Game Use

Each participant was asked to play a game of the original concept where it at times
would be possible to use the Guitar Saber. They were then asked 4 questions in
the same style as the BUZZ questionnaire.

It was fun to create sounds while playing the game.

5.2. VRMI: Guitar Saber 55

1 2 3 4 5 6 7

0

2

4

Rating

Pa
rt

ic
ip

an
ts

I would prefer to play the game without playing the instrument.

1 2 3 4 5 6 7

0

2

4

Rating

Pa
rt

ic
ip

an
ts

If I were playing the game, I would occasionally choose to play the game with
the instrument.

1 2 3 4 5 6 7

0

1

2

3

Rating

Pa
rt

ic
ip

an
ts

Playing the game with an instrument was confusing.

1 2 3 4 5 6 7

0

1

2

3

Rating

Pa
rt

ic
ip

an
ts

Participants generally found it fun to use the instrument and would occasionally
use it to play the game. It confusing to some to use this new instrument while
in-game.

Chapter 6

Discussion

This section will look at what worked, what did not, improvements and further
possibilities with each feature.

6.1 Adaptive Remix Mode

Although 9 participants are not enough to conclude anything with certainty, it
was clear the participants found replayability value in the mode. This probably
stems from the being curious about what other parts are possible to hear and that
unlocking the remixed parts also mean that the player is performing better. As
noted from Koji Kondo in section 2.3.1, the dynamic music has the ability to add
new surprises and increase gameplay enjoyment.

Participants visually noticed the change, but did not understand why it hap-
pened or what they could do to unlock it. This means that either the visuals must
become more user-friendly or that there is a learning curve to understanding what
needs to be achieved. Since it is a simple task, it is probably the former. Several
version can be implemented and tested to see what works the best.

There are many more possibilities with the adaptive remix and the gates that
are used to unlock them. This version includes two condition examples; a min-
imum point value and a minimum streak. It can be changed to many different
conditions or a combination of conditions. It can even be made into a puzzle by
not showing what the condition is but only whether it has been met. This way,
a player can replay the same song multiple times while trying different combina-
tions to see what unlocks the gate. This can end up affecting the goal of a gate
challenging the player to perform better, but can have other positives. If very hard
puzzles are created, it might lead to communities working together to unlock the
gates or if song with a hard puzzle is available to all players at the same time, there
might arise a race to be the first to unlock the gate. The audio of the unlocked
remix segment can then be viewed as a prize for the player.

57

58 Chapter 6. Discussion

6.2 Adaptive Endless Mode

The implementation of the endless version shows that it is possible to create a
mode with endless playback. This can be useful for players who use the game as
a workout routine, but requires testing from participants who has done this be-
forehand. The implementation can also use more songs as well as a beat mapping
specifically created as a workout routine.

Additional features can be implemented to keep track of the players workout,
like a calorie counter. The points obtained for each song can be stored to create
highscore that can be compared to versions without the endless mode. A common
feature in video games is playing against a previous version of one self. This
version is often called a "ghost" mode. Since there is no multiplayer function, the
player can instead play against the ghost, which can be a recording of how many
points the player previously has had at times in a song.

From a technical standpoint, the counter controlling the audio and the beat
mapping should be the same to avoid the risk of getting out of sync. One way of
achieving this is by using Unity’s function PlayScheduled to stich audio files to-
gether sample-accurately. This will eliminate the use of FMOD. The built-tin func-
tions runs on a timer based on how many samples the audio system has processed
and the beat mapping can use the same timer using the double AudioSettings.dspTime
to control the counter.

6.3 Guitar Saber

The participants were mostly positive about the Guitar Saber’s sound and its use. It
was easy to understand how it worked and how the sound changed from variable
to the next. This indicates that using the guitar as a layout is a good choice for the
instrument, though more testing is required for a better assessment.

By observing each participant’s use the instrument it was clear that some fea-
tures were not intuitive enough. Especially controlling the mix of the effects and
how to use the wah wah. A test where participants are presented with specific
tasks could be conducted to get a better understanding. In this test they were not
told there was a wah wah, but by tasking them to figure out how to use it, they
might look for it more systematically. Participants were quick to understand how
to use the features once they were explained and used them while in-game.

Using the instrument in-game was also mostly fun and something participants
saw as a possibility. Multiple even strongly agreed to it being fun. This could
because it allows them to be creative and improvise something unique to their
play-through, that is otherwise not possible.

Some found it confusing to play the instruments in-game. This can be due to
only having played it for a few minutes before using it in-game. It can also be

6.4. Friction Walls 59

because some players are so focused on the task of slicing cubes that they don’t
notice the ability to play the instrument. Few participants missed some windows
of time it was possible to play the instrument, though all participants played it
at some point during the song. Having an instrument "on rails" might be too
restricting for an instrument that is otherwise meant to give the player freedom to
improvise.

Many improvements can be added to the VRMI. There exists many refinements
to the Karplus-Strong synthesis and a vast amount of audio effects can be used
instead of the wah wah and overdrive. Other string synthesis techniques can also
be used. Testing what sound fits with the visuals is also important, as the overdrive
was selected specifically to fit with the sabers’ energetic and high-powered visuals.

The visual aspect can be improved. Some users noted that they did not under-
stand what the circular particle effects represented. This can be changed to be part
of the saber instead of floating on top of it, so the effect is like waves on the surface
of the sabers instead of floating in the air above.

6.4 Friction Walls

The friction of walls, which is yet to be subjected to user testing, is more of a
gimmick in the game than a fully-fledged instrument. It is simple as it is fitted to
a scale and the points of interaction used to control it are large compared to the
Guitar Saber. The interaction lacks expanded features the Guitar Saber has. It does
not have any audio effects nor control of the dynamic level. This can be changed
by mapping an angle or velocity of the saber to the Stribeck velocity or the normal
force, though it needs to be in a fixed range and change gradually to avoid the
system becoming unstable. A simple implementation of the friction could also be
used when slicing the small cubes.

Whether the sound of friction fits with carving a wall with a lightsaber should
also be a subject of user testing. The BUZZ testing would be good for such a test.

Chapter 7

Conclusion

This aim of this thesis was to enhance a VR game experience through sonic inter-
action and adaptive music.

A VRMI "Guitar Saber" was created with the intention of rooting it in existing
VR technology and interactions. This was realized by using the same collision
interactions already used in the original game concept and not using standard VR
controllers. The instrument was based on existing knowledge from guitars, which
was translated to a new cylindrical anatomy. Users found it fun to use both for
standalone and in-game use, indicating that the initial motivations mentioned in
section 1.2 yielded the desired results, though it is prone for further user testing.
The string synthesis technique used was computationally efficient and no audio
glitches were noticed by participants in the test or afterwards. This shows the
efficiency of the Karplus-Strong algorithm and the extensions that can be used.
Other synthesis techniques are also possible to add other aspects and it is possible
to build upon this VRMI instrument with effects and features.

It was possible to implemented the friction carving while not visibly changing
any part of the original concept, which is an ideal way to keep it rooted in VR. The
synthesis is more computationally complex than the Karplus-Stong, while it can be
argued that it is less flexible since it is prone to becoming unstable if parameters
are not carfully selected. It should be evaluated whether this synthesis technique is
worth what ends up being a small part of the game, whether the interaction should
be revised away from a wall, or a simpler synthesis technique could be used that
still gives the desired effect.

The adaptive songs showed how moving away from a linear song can affect the
player. The goal was to research whether the remix mode could increase replaya-
bility, which the participants agreed with it achieving. An endless adaptive music
mode was implemented, showing the possibilities that such a version can bring
and what components are useful for creating it.

The VR game was enhanced with four features, that each added a new aspect

61

62 Chapter 7. Conclusion

to the concept and at the same time set out to research different hypotheses on
VRMIs and the effects of adaptive music.

Bibliography

[1] Music games lead kids to real instruments. https://www.techradar.com/news/
consoles/gaming/music-games-lead-kids-to-real-instruments-491180.
Retrieved 2019/05/27. 2008.

[2] Biamonte, N. Pop-Culture Pedagogy in the Music Classroom. 2010. Chap. 8,
pp. 133–147.

[3] Hoffmann, L. “Learning Through Games”. In: Communications of the ACM
(2009).

[4] Beat Studios. Beat Saber. Prague, Czech Republic, 2018.

[5] Mäki-Patola, T., Laitinen, J., Kanerva, A., and Takala, T. “Experiments with
Virtual Reality Instruments”. In: Proceedings of the 2005 Conference on New
Interfaces for Musical Expression. NIME ’05. National University of Singapore,
2005, pp. 11–16. url: http://dl.acm.org/citation.cfm?id=1085939.
1085946.

[6] Serafin, S., Erkut, C., Kojs, J., Nilsson, N., and Nordahl, R. “Virtual Reality
Musical Instruments: State of the Art, Design Principles, and Future Direc-
tions”. In: Computer Music Journal 40 (Sept. 2016), pp. 22–40. doi: 10.1162/
COMJ_a_00372.

[7] Willcocks, L. “Calculating the Power Output of Qui-Gon Jinnâ€™s Lightsaber”.
In: Journal of Interdisciplinary Science Topics 6 (2017).

[8] Willcocks, L. “Calculating the Power Change of a Lightsaber Due to Colour”.
In: Journal of Interdisciplinary Science Topics 6 (2017).

[9] Florent Berthaut, M. D.-C. and Hachet, M. “Interacting with 3D Reactive
Widgets for Musical Performance”. In: Journal of New Music Research 40.3
(2011), pp. 253–263. doi: 10.1080/09298215.2011.602693. eprint: https:
//doi.org/10.1080/09298215.2011.602693. url: https://doi.org/10.
1080/09298215.2011.602693.

[10] Cook, P. R. “Principles for Designing Computer Music Controllers”. In: NIME.
2001.

63

https://www.techradar.com/news/consoles/gaming/music-games-lead-kids-to-real-instruments-491180
https://www.techradar.com/news/consoles/gaming/music-games-lead-kids-to-real-instruments-491180
http://dl.acm.org/citation.cfm?id=1085939.1085946
http://dl.acm.org/citation.cfm?id=1085939.1085946
https://doi.org/10.1162/COMJ_a_00372
https://doi.org/10.1162/COMJ_a_00372
https://doi.org/10.1080/09298215.2011.602693
https://doi.org/10.1080/09298215.2011.602693
https://doi.org/10.1080/09298215.2011.602693
https://doi.org/10.1080/09298215.2011.602693
https://doi.org/10.1080/09298215.2011.602693

64 Bibliography

[11] Berthaut, F., Zappi, V., and Mazzanti, D. “Scenography of immersive virtual
musical instruments”. In: 2014 IEEE VR Workshop: Sonic Interaction in Virtual
Environments (SIVE). Mar. 2014, pp. 19–24. doi: 10.1109/SIVE.2014.7006285.

[12] McMahan, R. P., Lai, C., and Pal, S. K. “Interaction Fidelity: The Uncanny Val-
ley of Virtual Reality Interactions”. In: Virtual, Augmented and Mixed Reality.
Ed. by S. Lackey and R. Shumaker. Cham: Springer International Publishing,
2016, pp. 59–70.

[13] Brown, A. and Kerr, T. “Adaptive music techniques”. In: (Jan. 2009).

[14] Collins, K. Game Sound; An Introduction to the History, Theory and Practice of
Video Game Music and Sound. Aug. 2008. doi: 10.7551/mitpress/7909.001.
0001.

[15] Collins, K. From Pac Man to Pop Music: Interactive Audio in Games and New
Media. Jan. 2008.

[16] Aska, A. Introduction to the Study of Video Game Music. Lulu.com, 2017. isbn:
1387037137.

[17] Collins, K. “An Introduction to the Participatory and Non-Linear Aspects of
Video Games Audio”. In: (Jan. 2007).

[18] Land, M. and McConnell, P. iMUSE. 1994.

[19] Valerie Kobylski Ruiting Ji, T. A.-S. and Badea, M. Symbiosis in Multiplayer:
How Journey Offers a Novel Perspective on Online Cooperative Play. https://
gamesandaslit2017.wordpress.com/2017/03/03/symbiosis-in-multiplayer-
how- journey- offers- a- novel- perspective- on- online- cooperative-
play/. [Online; accessed 17-May-2019]. 2007.

[20] Kondo, K. Painting an Interactive Musical Landscape. Paper presented at the
annual Game Developerâ€™s Conference, San Francisco, March 4â€“ 9. 2017.

[21] Land, M. Z. and McConnell, P. N. Method and Apparatus for Dynamically Com-
posing Music and Sound Effects using a Computer Entertainment System. United
States Patent Number 5,315,057. 1994.

[22] Hoffert, P. Music for New Media: Composing for Video Games, Websites, Presenta-
tion, and Other Interactive Media. Boston: Berklee Press, 2007. isbn: 0876390645.

[23] Ren, Z., Yeh, H., and Lin, M. C. “Example-guided Physically Based Modal
Sound Synthesis”. In: ACM Trans. Graph. 32 (). doi: 10 . 1145 / 2421636 .
2421637. url: http://doi.acm.org/10.1145/2421636.2421637.

[24] Adrien, J.-M. “The missing link: Modal synthesis”. In: Representations of mu-
sical signals. 1991, pp. 269–298.

[25] Van Den Doel, K. and Pai, D. K. “Modal synthesis for vibrating objects”. In:
Audio Anectodes. AK Peter, Natick, MA (2003), pp. 1–8.

https://doi.org/10.1109/SIVE.2014.7006285
https://doi.org/10.7551/mitpress/7909.001.0001
https://doi.org/10.7551/mitpress/7909.001.0001
https://gamesandaslit2017.wordpress.com/2017/03/03/symbiosis-in-multiplayer-how-journey-offers-a-novel-perspective-on-online-cooperative-play/
https://gamesandaslit2017.wordpress.com/2017/03/03/symbiosis-in-multiplayer-how-journey-offers-a-novel-perspective-on-online-cooperative-play/
https://gamesandaslit2017.wordpress.com/2017/03/03/symbiosis-in-multiplayer-how-journey-offers-a-novel-perspective-on-online-cooperative-play/
https://gamesandaslit2017.wordpress.com/2017/03/03/symbiosis-in-multiplayer-how-journey-offers-a-novel-perspective-on-online-cooperative-play/
https://doi.org/10.1145/2421636.2421637
https://doi.org/10.1145/2421636.2421637
http://doi.acm.org/10.1145/2421636.2421637

Bibliography 65

[26] Smith, J. O. “Principles of Digital Waveguide Models of Musical Instru-
ments”. In: Applications of Digital Signal Processing to Audio and Acoustics. Ed.
by M. Kahrs and K. Brandenburg. Boston, MA: Springer US, 2002, pp. 417–
466. isbn: 978-0-306-47042-4. doi: 10.1007/0-306-47042-X_10. url: https:
//doi.org/10.1007/0-306-47042-X_10.

[27] Smith, J. O. “A New Approach to Digital Reverberation Using Closed Waveg-
uide Networks”. In: STAN-M-31. Burnaby, B.C., Canada, 1985, pp. 47–53.
url: https://ccrma.stanford.edu/files/papers/stanm31.pdf.

[28] Fontana, F. and Rocchesso, D. “A new formulation of the 2D-waveguide
mesh for percussion instruments”. In: (May 2019).

[29] Essl, G., Serafin, S., Cook, P. R., and Smith, J. O. “Theory of Banded Waveg-
uides”. In: Computer Music Journal 28.1 (2004), pp. 37–50. doi: 10 . 1162 /
014892604322970634.

[30] Aramaki, M. and Kronland-Martinet, R. “Analysis-synthesis of impact sounds
by real-time dynamic filtering”. In: IEEE Transactions on Audio, Speech, and
Language Processing 14.2 (Mar. 2006), pp. 695–705. issn: 1558-7916.

[31] Karplus, K. and Strong, A. “Digital Synthesis of Plucked-String and Drum
Timbres”. In: Computer Music Journal 7 (June 1983), pp. 43–55. doi: 10.2307/
3680062.

[32] A. Jaffe, D. and Smith, J. “Extensions of the Karplus-Strong Plucked-String
Algorithm”. In: Computer Music Journal 7 (June 1983), pp. 56–69. doi: 10.
2307/3680063.

[33] Smith, J. O. “Virtual electric guitars and effects using FAUST and Octave”.
In: Proceedings of the 6th International Linux Audio Conference (LAC-08) (2008).

[34] Rocchesso, D. and Fontana, F. “The Sounding Object”. In: IEEE Multimedia -
IEEEMM (Jan. 2003).

[35] Avanzini, F., Rath, M., and Rocchesso, D. “Physically-based audio rendering
of contact”. In: vol. 2. Feb. 2002, 445 –448 vol.2. isbn: 0-7803-7304-9. doi:
10.1109/ICME.2002.1035636.

[36] Hunt, K. and Crossley, E. “Coefficient of restitution interpreted as damping
in vibroimpact”. In: Journal of Applied Mechanics (1975). doi: 10.1115/1.
3423596. url: https://hal.archives-ouvertes.fr/hal-01333795.

[37] Maunsbach, M. and Serafin, S. “Non-Linear Contact Sound Synthesis for
Real-Time Audio-Visual Applications using Modal Textures”. In: 2019.

[38] Serafin, S., Avanzini, F., and Rocchesso, D. “Bowed string simulation using
an elasto-plastic friction model”. In: 2003.

https://doi.org/10.1007/0-306-47042-X_10
https://doi.org/10.1007/0-306-47042-X_10
https://doi.org/10.1007/0-306-47042-X_10
https://ccrma.stanford.edu/files/papers/stanm31.pdf
https://doi.org/10.1162/014892604322970634
https://doi.org/10.1162/014892604322970634
https://doi.org/10.2307/3680062
https://doi.org/10.2307/3680062
https://doi.org/10.2307/3680063
https://doi.org/10.2307/3680063
https://doi.org/10.1109/ICME.2002.1035636
https://doi.org/10.1115/1.3423596
https://doi.org/10.1115/1.3423596
https://hal.archives-ouvertes.fr/hal-01333795

66 Bibliography

[39] Borin, G., De Poli, G., and Rocchesso, D. “Elimination of delay-free loops in
discrete-time models of nonlinear acoustic systems”. In: IEEE Transactions on
Speech and Audio Processing 8.5 (Sept. 2000), pp. 597–605. issn: 1063-6676. doi:
10.1109/89.861380.

[40] Zölzer, U. DAFX: Digital Audio Effects, Second Edition. 2011.

[41] Marshall, D. and Sidorov, K. Digital Audio Effects. http://users.cs.cf.
ac.uk/Dave.Marshall/CM0268/PDF/10_CM0268_Audio_FX.pdf. Accessed:
2019-05-26.

[42] J. Tomlinson, B., Noah, B., and N. Walker, B. “BUZZ: An Auditory Inter-
face User Experience Scale”. In: Apr. 2018, pp. 1–6. doi: 10.1145/3170427.
3188659.

https://doi.org/10.1109/89.861380
http://users.cs.cf.ac.uk/Dave.Marshall/CM0268/PDF/10_CM0268_Audio_FX.pdf
http://users.cs.cf.ac.uk/Dave.Marshall/CM0268/PDF/10_CM0268_Audio_FX.pdf
https://doi.org/10.1145/3170427.3188659
https://doi.org/10.1145/3170427.3188659

Appendix A

Appendix

A.1 Videos

Open "links.pdf" for external links or "Videos.zip" for files. Attached are links to
5 videos showing the features in use. Most audio and video glitches are from the
screen recording, especially the Guitar Saber sounds. Only the first video is edited.
The videos are:

1. Adaptive Remix (First Recombination) - showing the adaptive remix mode and
the first recombination. This was used for testing. As well as an early proto-
type.

2. Adaptive Endless - showing that the endless mode is synchronized properly.
Transitions begin at 1:45, 3:35 (with snoozing) and 5:30.

3. Guitar Saber - The Guitar Saber and its functionalities are showed. This in-
strument was used for testing.

4. Guitar Saber Game - The guitar saber being used in a game. This was used for
testing.

5. Friction Wall - The carving friction being used on a wall.

A.2 Beat-Slashing Game

The Unity project is attached as "Saber Appendix.zip". All C# scripts are in the
folder Saber Appendix/Assets/Scripts and C++ native code can be found in Saber
Appendix/NativeCode.

67

68 Appendix A. Appendix

A.3 MatLab: Extended Karplus-Strong

1 % Noise burs t
2 noise = 2* rand (4 0 0 0 , 1) - 1 ;
3 % Sampling Rate , fundamental frequency and length
4 Fs = 48000 ; len = 12* Fs ; f0 = 4 4 0 ;
5
6 % Delay
7 N = f l o o r (Fs/f0 - 1) ;
8
9 % I n i t i a l i z e e x c i t a t i o n and output arrays

10 X = [noise (1 :N) ; zeros (len -N, 1)] ; Y = zeros (len , 1) ;
11
12 % FILTER PARAMETERS %
13 % Delay
14 outDel = zeros (len , 1) ;
15 % Pick D i r e c t i o n lowpass
16 p = 0 . 9 ; outPickDir = zeros (len , 1) ;
17
18 % Pick - P o s i t i o n comb f i l t e r
19 beta = 0 . 1 3 ; combDel = f l o o r (beta *N) ; outPickPos=zeros (len , 1) ;
20
21 % Damping second order lowpass
22 B = 1 . 0 ; S = B/2; sec = 1 4 ; rho = 0 .001^(1/(f0 * sec)) ;
23 h0 = (1+B) /2; h1 = (1 -B) /4; outDamp = zeros (len , 1) ;
24
25 % Str ing - Tuning a l l p a s s
26 outStringTuning = zeros (len , 1) ; nt = Fs/f0 -N- 1 ; ;
27
28 % Energe t i c dynamic lowpass
29 w = (pi * f0) /Fs ; enerC0 = w/(1+w) ; enerC1 = ((1 -w) /(1+w)) ; L = 1 . 0 0 ; L0 = L

^(1/3) ;
30 outEner = zeros (len , 1) ;
31
32 % I n i t i a l N samples
33 f o r n=1:N
34 outPickDir (n) = (1 - p) * X(n) + p* del (outPickDir , n - 1) ;
35 outPickPos (n) = outPickDir (n) - del (outPickDir , n - combDel) ;
36 end
37
38 % Samples a f t e r the f i r s t N
39 f o r n=(N+1) : len
40 outDel (n) = del (outPickPos , n -N) + del (outStringTuning , n -N) ;
41
42 outDamp (n) = rho * (h1 * (del (outDel , n) +del (outDel , n - 2)) + h0 * del (outDel

, n - 1)) ;
43 outStringTuning (n) = (1 - nt) *outDamp (n) + nt * del (outDamp , n - 1) ;
44
45 outEner (n) = enerC0 * (del (outDel , n) + del (outDel , n - 1)) +enerC1 * del (

outEner , n - 1) ;

A.4. Native Audive SDK: Extended Karplus-Strong 69

46 outEner (n) = L* L0 * del (outDel , n) +(1 -L) * outEner (n) ;
47 Y(n -N) = outEner (n) ;
48 end

A.4 Native Audive SDK: Extended Karplus-Strong

1 #include "AudioPluginUtil.h"
2 #include <algorithm >;
3
4 namespace Plugin_EKS
5 {
6 const int MAXDEL = 1024 ;
7 const float SAMPLERATE = 48000 .0 f ;
8
9 enum Param

10 {
11 P_FREQ ,
12 P_TRIGGER ,
13 P_PICKDIR_P ,
14 P_PICKPOS_BETA ,
15 P_DAMP_B,
16 P_DAMP_SEC,
17 P_DYNLEV_L,
18 P_NUM
19 } ;
20
21 struct Ef fec tData
22 {
23 struct Data
24 {
25 float p [P_NUM] ;
26 int N;
27 int n ;
28 float noiseBurs t [MAXDEL] ;
29 int noiseIdx ;
30 float outPickDir [MAXDEL] ;
31 float outPickPos [MAXDEL] ;
32 float outDel [MAXDEL] ;
33 int combDel ;
34 float outDamp [MAXDEL] ;
35 float outStringTuning [MAXDEL] ;
36 float nStringTuning ;
37 float outDynLev [MAXDEL] ;
38
39 float out [MAXDEL] ;
40 Random random ;
41 } ;
42 union
43 {

70 Appendix A. Appendix

44 Data data ;
45 unsigned char pad [(sizeof (Data) + 15) & ~ 1 5] ;
46 } ;
47 } ;
48
49 static void ReTrigger (E f fec tData : : Data * data)
50 {
51 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ] - 1 . 0 f) ;
52 data - > nStringTuning = SAMPLERATE / data - >p [P_FREQ] - data - >N - 1 . 0 f ;
53 int combDel = f l o o r (data - >p [P_PICKPOS_BETA] * data - >N) ;
54
55 R e s e t B u f f e r s (data) ;
56
57 for (int n = 0 ; n < data - >N; n++)
58 {
59 data - > noiseBurs t [n] = data - >random . GetFloat (- 1 . 0 f , 1 . 0 f) ;
60 data - > outPickDir [n] = (1 - data - >p [P_PICKDIR_P]) * data - >

noiseBurs t [n] + data - >p [P_PICKDIR_P] * data - > outPickDir [n] ;
61 data - > outPickPos [n] = data - > outPickDir [n] - data - > outPickDir [(n -

combDel) & 0x3FF] ;
62 }
63
64 data - >n = data - >N;
65 data - > noiseIdx = 0 ;
66 }
67
68 int I n t e r n a l R e g i s t e r E f f e c t D e f i n i t i o n (Uni tyAudioEf fec tDef in i t ion&

d e f i n i t i o n)
69 {
70 int numparams = P_NUM;
71 d e f i n i t i o n . paramdefs = new UnityAudioParameterDefinit ion [numparams] ;
72 Regis terParameter (d e f i n i t i o n , "Trigger" , "" , - 1 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f

, 1 . 0 f , P_TRIGGER , "Trigger a signal") ;
73 Regis terParameter (d e f i n i t i o n , "Frequency" , "Hz" , 6 0 . 0 f , 3000 .0 f ,

440 .0 f , 1 . 0 f , 3 . 0 f , P_FREQ , "Frequency of sine oscillator that
is multiplied with the input signal") ;

74 Regis terParameter (d e f i n i t i o n , "Pick Direction" , "" , 0 . 0 f , 1 . 0 f , 0 . 9 f
, 1 . 0 f , 1 . 0 f , P_PICKDIR_P , "Pick direction. 0 is up, 0.9 is down
.") ;

75 Regis terParameter (d e f i n i t i o n , "Pick Position" , "" , 0 . 0 f , 1 . 0 f , 0 . 1 3 f
, 1 . 0 f , 1 . 0 f , P_PICKPOS_BETA , "Ratio of pick position on
fretboard. 0 is bridge, 1 is nut.") ;

76 Regis terParameter (d e f i n i t i o n , "Damping" , "" , 0 . 0 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f
, 1 . 0 f , P_DAMP_B, "Brightness 0-1") ;

77 Regis terParameter (d e f i n i t i o n , "Damping Time" , "s" , 0 . 5 f , 1 4 . 0 f , 1 4 . 0
f , 1 . 0 f , 1 . 0 f , P_DAMP_SEC, "Time in seconds to get to -60db.") ;

78 Regis terParameter (d e f i n i t i o n , "Dynamic Level" , "" , 0 . 0 f , 1 . 0 f , 0 . 0 f ,
1 . 0 f , 1 . 0 f , P_DYNLEV_L, "Dynamic level for more energetic pick.

") ;
79 return numparams ;
80 }

A.4. Native Audive SDK: Extended Karplus-Strong 71

81
82 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK CreateCal lback (

Uni tyAudioEffec tSta te * s t a t e)
83 {
84 Ef fec tData * e f f e c t d a t a = new Ef fec tData ;
85 memset (e f f e c t d a t a , 0 , sizeof (E f fec tData)) ;
86 s t a t e - > e f f e c t d a t a = e f f e c t d a t a ;
87 In i tParametersFromDef in i t ions (I n t e r n a l R e g i s t e r E f f e c t D e f i n i t i o n ,

e f f e c t d a t a - > data . p) ;
88 return UNITY_AUDIODSP_OK ;
89 }
90
91 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK ReleaseCal lback (

Uni tyAudioEffec tSta te * s t a t e)
92 {
93 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
94 delete data ;
95 return UNITY_AUDIODSP_OK ;
96 }
97
98 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK SetFloatParameterCal lback

(Uni tyAudioEffec tSta te * s t a t e , int index , float value)
99 {

100 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
101 if (index >= P_NUM)
102 return UNITY_AUDIODSP_ERR_UNSUPPORTED;
103 data - >p [index] = value ;
104
105 if (index == P_TRIGGER)
106 {
107 if (data - >p [P_TRIGGER] != 0 . 0 f)
108 ReTrigger (data) ;
109 }
110 else if (index == P_FREQ)
111 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ]) ;
112 return UNITY_AUDIODSP_OK ;
113 }
114
115 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK GetFloatParameterCal lback

(Uni tyAudioEffec tSta te * s t a t e , int index , float * value , char *
v a l u e s t r)

116 {
117 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
118 if (index >= P_NUM)
119 return UNITY_AUDIODSP_ERR_UNSUPPORTED;
120 if (value != NULL)
121 * value = data - >p [index] ;
122 if (v a l u e s t r != NULL)
123 v a l u e s t r [0] = 0 ;
124 return UNITY_AUDIODSP_OK ;
125 }

72 Appendix A. Appendix

126
127 int UNITY_AUDIODSP_CALLBACK GetF loa tBuf ferCal lback (

Uni tyAudioEffec tSta te * s t a t e , const char * name , float * buffer , int
numsamples)

128 {
129 return UNITY_AUDIODSP_OK ;
130 }
131
132 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK ProcessCal lback (

Uni tyAudioEffec tSta te * s t a t e , float * inbuf fer , float * outbuffer ,
unsigned int length , int inchannels , int outchannels)

133 {
134 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
135 float wetTarget = ((s t a t e - > f l a g s &

Uni tyAudioEf fec tS ta teF lags_ IsP lay ing) && ! (s t a t e - > f l a g s & (
UnityAudioEffectStateFlags_IsMuted |
UnityAudioEffec tStateFlags_IsPaused))) ? 1 . 0 f : 0 . 0 f ;

136
137 float dampRho = pow(0 . 0 0 1 f , (1 . 0 f / (data - >p [P_FREQ] * data - >p [

P_DAMP_SEC]))) ;
138 float damph0 = (1 . 0 f + data - >p [P_DAMP_B]) * 0 . 5 f ;
139 float damph1 = (1 . 0 f - data - >p [P_DAMP_B]) * 0 . 2 5 f ;
140
141 float w = (kPI * data - >p [P_FREQ]) / SAMPLERATE;
142 float enerC0 = w / (1 . 0 f + w) ;
143 float enerC1 = ((1 . 0 f - w) / (1 . 0 f + w)) ;
144 float L0 = pow(data - >p [P_DYNLEV_L] , (1 . 0 f / 3 . 0 f)) ;
145
146 for (unsigned int n = 0 ; n < length ; n++)
147 {
148 // Only apply noise in the beginning
149 float noise = 0 . 0 f ;
150 if (data - > noiseIdx < data - >N)
151 {
152 noise = data - > outPickPos [data - > noiseIdx] ;
153 data - > noiseIdx ++;
154 }
155
156 data - > outDel [data - >n] = noise + data - > outStringTuning [(data - >n -

data - >N) & 0x3FF] ;
157
158 data - >outDynLev [data - >n] = enerC0 * (data - > outDel [data - >n] + data

- > outDel [(data - >n - 1) & 0x3FF]) + enerC1 * data - >outDynLev [(
data - >n - 1) & 0x3FF] ;

159 data - >outDynLev [data - >n] = data - >p [P_DYNLEV_L] * L0 * data - > outDel [
data - >n] + (1 . 0 f - data - >p [P_DYNLEV_L]) * data - >outDynLev [data
- >n] ;

160
161 data - >outDamp [data - >n] = dampRho * (damph1 * (data - > outDel [data - >n]

+ data - > outDel [(data - >n - 2) & 0x3FF]) + damph0 * data - >
outDel [(data - >n - 1) & 0x3FF]) ;

A.5. MatLab: Friction Synthesis 73

162 data - > outStringTuning [data - >n] = (1 . 0 f - data - > nStringTuning) *
data - >outDamp [data - >n] + data - > nStringTuning * data - >outDamp [(
data - >n - 1) & 0x3FF] ;

163
164 for (int i = 0 ; i < outchannels ; i ++)
165 {
166 float x = data - >outDynLev [data - >n] ;
167
168 outbuf fer [n * outchannels + i] = x * wetTarget ;
169 }
170
171 data - >n = (data - >n+1) & 0x3FF ;
172 }
173
174 return UNITY_AUDIODSP_OK ;
175 }
176 }

A.5 MatLab: Friction Synthesis

1 % Control parameters
2 Vb = 0 . 1 ;
3 f r e q = 1 0 0 * (1 : 3) ;
4
5 % I n i t i a l values
6 modes = length (f r e q) ;
7 q_r = 5 0 0 ;
8 oneMass = 1e - 3 ;
9 m = ones (1 , modes) * oneMass ;

10
11 Fs = 48000 ;
12 timeStep = 1/Fs ;
13 h = 2* Fs ;
14
15 omega_r = zeros (1 , modes) ;
16 g_r = zeros (1 , modes) ;
17
18 b_r = zeros (2 , modes) ;
19 A_r = zeros (2 , 2 , modes) ;
20 xv_r = zeros (2 , modes) ;
21
22 f o r i =1:modes
23 omega_r (i) = 2* pi * f r e q (i) ;
24 g_r (i) = omega_r (i) /q_r ;
25 detTemp = (Fs^2+g_r (i) * Fs/2+omega_r (i) ^2/4) ;
26
27 A_r (1 , 1 , i) = 1/detTemp * (detTemp - omega_r (i) ^2/2) ;
28 A_r (2 , 1 , i) = 1/detTemp * (- Fs * omega_r (i) ^2) ;
29 A_r (1 , 2 , i) = 1/detTemp * Fs ;

74 Appendix A. Appendix

30 A_r (2 , 2 , i) = 1/detTemp * (2 * Fs ^2 -detTemp) ;
31
32 b_r (1 , i) = (1/m(i)) * (1 / (4 * detTemp)) ;
33 b_r (2 , i) = (1/m(i)) * (1 / (4 * detTemp)) * 2 * Fs ;
34 end
35
36 % Bow
37 q_b = 1 ; m_b = 50e - 3 ;
38
39 b_b = zeros (2 , 1) ; A_b = zeros (2 , 2) ; xv_b = zeros (2 , 1) ;
40
41 omega_b = 0 ;
42 g_b = 0 ;
43 detTemp = (Fs^2+g_b * Fs/2+omega_b^2/4) ;
44 A_b (1 , 1) = 1/detTemp * (detTemp - omega_b^2/2) ;
45 A_b (2 , 1) = 1/detTemp * (- Fs * omega_b^2) ;
46 A_b (1 , 2) = 1/detTemp * Fs ;
47 A_b (2 , 2) = 1/detTemp * (2 * Fs ^2 -detTemp) ;
48 b_b (1) = (1/m_b) * (1 / (4 * detTemp)) ;
49 b_b (2) = (1/m_b) * (1 / (4 * detTemp)) * 2 * Fs ;
50
51
52 % Force
53 s i g0 = 10000 ; s i g1 = . 1 * s q r t (s ig 0) ; s ig 2 = 0 . 4 ; s i g3 = 0 . 0 ; v_s = 0 . 1 ;
54 mu_d = 0 . 2 ; mu_s = 0 . 4 ; Zss = 0 ; c = 0 . 7 ;
55 f_N = 1 ; f _ s = mu_s* f_N ; f _ c = mu_d* f_N ; Zba = c * f _ c /s i g0 ;
56
57 fe_b= f _ c +(f_s - f _ c) * exp (- (Vb/v_s) ^2) +s i g2 *Vb ; % with w=0 and sgn (Vb) =1
58
59 % K components
60 K2 = 1/(2* Fs) ;
61
62 bv_r = sum(b_r , 2) ;
63 bv_r = bv_r (2) ;
64 bv_b = b_b (2) ;
65
66 bv = bv_r+b_b (2) ;
67 K1 = -bv/(1+ s i g2 * bv) * (s i g 0 /(2* Fs) +s i g 1) ;
68
69 % I n i t i a l values
70 smplen = 4* Fs ;
71 s i g = zeros (smplen , 1) ;
72 yPrev = 0 ;
73 zPrev = 0 ;
74 z_Ti = 0 ;
75 f _ t o t _ b =0; % t o t a l f o r c e on bow
76 f _ t o t _ r =0;
77
78 errMax = 10^(-13) ;
79 hs = zeros (smplen , 1) ;
80 h0 = 0 ;

A.5. MatLab: Friction Synthesis 75

81 maxIt = 0 ;
82 f _ f r = zeros (smplen , 1) ;
83
84 f o r t =1: smplen
85 % Computable part of x , v and z
86 f o r j =1 :modes
87 xv_r (: , j) = A_r (: , : , j) * xv_r (: , j) + b_r (: , j) * f _ t o t _ r ;
88 end
89
90 xv_b = A_b* xv_b + b_b * f _ t o t _ b ;
91 z_Ti = zPrev + 1/(2* Fs) * yPrev ;
92
93 v_rSum = sum(xv_r , 2) ;
94 v_rSum = v_rSum (2) ;
95 v_bSum = xv_b (2) ;
96
97 w = (rand (1) * 2 - 1) * abs (v_bSum) * f_N ;
98
99 v_Ti = 1/(1+ s i g2 * bv) * ...

100 ((v_bSum+bv_b * (fe_b - s i g 0 * z_Ti - s i g 3 *w)) +...
101 (- v_rSum - bv_r * (s i g 0 * z_Ti+s i g 3 *w))) ;
102
103 % Newton Rhapson
104 count = 1 ;
105 e r r = 9 9 ;
106 while e r r > errMax && count < 1000
107 vNew = v_Ti + K1* h0 ;
108 zNew = z_Ti + K2* h0 ;
109
110 % Find Zss
111 Zss = (s ign (vNew) /s i g0) * (f _ c +(f_s - f _ c) * exp (- (vNew/v_s) ^2)) ;
112 i f vNew==0
113 zss= f _ s /s i g0 ;
114 end
115
116 % Find alpha t i l d e
117 i f s ign (zNew) ~= sign (vNew)
118 aNew = 0 ;
119 e l s e i f abs (zNew) < Zba
120 aNew = 0 ;
121 e l s e i f abs (zNew) > Zss
122 aNew = 1 ;
123 e l s e
124 aNew = 0 . 5 * (1 + s i n (pi * ((zNew- 0 . 5 * (Zss+Zba)) /(Zss - Zba)))) ;
125 end
126
127 % Compute g
128 gNom = vNew* (1 -aNew*zNew/Zss) - h0 ;
129
130 % Compute d e r i v a t i v e s needed f o r d e r i v a t i v e of g
131 % Zss/v , a/z , a/v to compute dotz/v and dotz/z

76 Appendix A. Appendix

132 ZssvDeri = - s ign (vNew) * ...
133 (2 *vNew) /(s i g 0 * v_s ^2) * (f_s - f _ c) * exp (- (vNew/v_s) ^2) ;
134
135 i f Zba < abs (zNew) && abs (zNew) < Zss && sign (vNew) == sign (zNew)
136 temp = 0 . 5 * pi * cos (pi * (zNew- 0 . 5 * (Zss+Zba)) /(Zss - Zba)) ;
137 azDeri = temp * (1/ (Zss - Zba)) ;
138 avDeri = temp * ((ZssvDeri * (Zba -zNew)) /(Zss - Zba) ^2) ;
139 e l s e
140 azDeri = 0 ;
141 avDeri = 0 ;
142 end
143
144 derZ = - (vNew/Zss) * (zNew* azDeri+aNew) ;
145 derV = 1 -zNew * (((aNew + vNew* avDeri) * Zss -aNew*vNew* ZssvDeri) /(Zss

^2)) ;
146 gDeri = derV *K1 + derZ *K2 - 1 ;
147
148 h1 = h0 - gNom/gDeri ;
149
150 count = count +1;
151 maxIt = max(count , maxIt) ;
152
153 e r r = abs (h1 - h0) ;
154
155 h0 = h1 ;
156 end
157 hs (t) = count ;
158
159
160 dotz = h0 ;
161 v = v_Ti+K1* dotz ;
162 z = z_Ti+K2* dotz ;
163 zPrev = z ;
164 yPrev = h0 ;
165
166 % Newton Rhapson over and out
167 f _ f r (t) = s i g0 * z + s ig 1 * dotz + s i g 2 *v+s i g 3 *w;
168
169 f _ t o t _ b =fe_b - f _ f r (t) ;
170 f _ t o t _ r = f _ f r (t) ;
171
172
173 f o r j =1 :modes
174 xv_r (: , j) = xv_r (: , j) + b_r (: , j) * f _ t o t _ r ;
175 end
176
177 xv_b = xv_b + b_b * f _ t o t _ b ;
178
179 s i g (t) = sum(xv_r (1 , :)) ;
180 end

A.6. Native Audive SDK: Friction Synthesis 77

A.6 Native Audive SDK: Friction Synthesis

1 #include "AudioPluginUtil.h"
2 #include <algorithm >;
3
4 namespace Plugin_EKS
5 {
6 const int MAXDEL = 1024 ;
7 const float SAMPLERATE = 48000 .0 f ;
8
9 enum Param

10 {
11 P_FREQ ,
12 P_TRIGGER ,
13 P_PICKDIR_P ,
14 P_PICKPOS_BETA ,
15 P_DAMP_B,
16 P_DAMP_SEC,
17 P_DYNLEV_L,
18 P_NUM
19 } ;
20
21 struct Ef fec tData
22 {
23 struct Data
24 {
25 float p [P_NUM] ;
26 int N;
27 int n ;
28 float noiseBurs t [MAXDEL] ;
29 int noiseIdx ;
30 float outPickDir [MAXDEL] ;
31 float outPickPos [MAXDEL] ;
32 float outDel [MAXDEL] ;
33 int combDel ;
34 float outDamp [MAXDEL] ;
35 float outStringTuning [MAXDEL] ;
36 float nStringTuning ;
37 float outDynLev [MAXDEL] ;
38
39 float out [MAXDEL] ;
40 Random random ;
41 } ;
42 union
43 {
44 Data data ;
45 unsigned char pad [(sizeof (Data) + 15) & ~ 1 5] ;
46 } ;
47 } ;
48

78 Appendix A. Appendix

49 static void ReTrigger (E f fec tData : : Data * data)
50 {
51 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ] - 1 . 0 f) ;
52 data - > nStringTuning = SAMPLERATE / data - >p [P_FREQ] - data - >N - 1 . 0 f ;
53 int combDel = f l o o r (data - >p [P_PICKPOS_BETA] * data - >N) ;
54
55 R e s e t B u f f e r s (data) ;
56
57 for (int n = 0 ; n < data - >N; n++)
58 {
59 data - > noiseBurs t [n] = data - >random . GetFloat (- 1 . 0 f , 1 . 0 f) ;
60 data - > outPickDir [n] = (1 - data - >p [P_PICKDIR_P]) * data - >

noiseBurs t [n] + data - >p [P_PICKDIR_P] * data - > outPickDir [n] ;
61 data - > outPickPos [n] = data - > outPickDir [n] - data - > outPickDir [(n -

combDel) & 0x3FF] ;
62 }
63
64 data - >n = data - >N;
65 data - > noiseIdx = 0 ;
66 }
67
68 int I n t e r n a l R e g i s t e r E f f e c t D e f i n i t i o n (Uni tyAudioEf fec tDef in i t ion&

d e f i n i t i o n)
69 {
70 int numparams = P_NUM;
71 d e f i n i t i o n . paramdefs = new UnityAudioParameterDefinit ion [numparams] ;
72 Regis terParameter (d e f i n i t i o n , "Trigger" , "" , - 1 . 0 f , 1 . 0 f , 0 . 0 f , 1 . 0 f

, 1 . 0 f , P_TRIGGER , "Trigger a signal") ;
73 Regis terParameter (d e f i n i t i o n , "Frequency" , "Hz" , 6 0 . 0 f , 3000 .0 f ,

440 .0 f , 1 . 0 f , 3 . 0 f , P_FREQ , "Frequency of sine oscillator that
is multiplied with the input signal") ;

74 Regis terParameter (d e f i n i t i o n , "Pick Direction" , "" , 0 . 0 f , 1 . 0 f , 0 . 9 f
, 1 . 0 f , 1 . 0 f , P_PICKDIR_P , "Pick direction. 0 is up, 0.9 is down
.") ;

75 Regis terParameter (d e f i n i t i o n , "Pick Position" , "" , 0 . 0 f , 1 . 0 f , 0 . 1 3 f
, 1 . 0 f , 1 . 0 f , P_PICKPOS_BETA , "Ratio of pick position on
fretboard. 0 is bridge, 1 is nut.") ;

76 Regis terParameter (d e f i n i t i o n , "Damping" , "" , 0 . 0 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f
, 1 . 0 f , P_DAMP_B, "Brightness 0-1") ;

77 Regis terParameter (d e f i n i t i o n , "Damping Time" , "s" , 0 . 5 f , 1 4 . 0 f , 1 4 . 0
f , 1 . 0 f , 1 . 0 f , P_DAMP_SEC, "Time in seconds to get to -60db.") ;

78 Regis terParameter (d e f i n i t i o n , "Dynamic Level" , "" , 0 . 0 f , 1 . 0 f , 0 . 0 f ,
1 . 0 f , 1 . 0 f , P_DYNLEV_L, "Dynamic level for more energetic pick.

") ;
79 return numparams ;
80 }
81
82 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK CreateCal lback (

Uni tyAudioEffec tSta te * s t a t e)
83 {
84 Ef fec tData * e f f e c t d a t a = new Ef fec tData ;

A.6. Native Audive SDK: Friction Synthesis 79

85 memset (e f f e c t d a t a , 0 , sizeof (E f fec tData)) ;
86 s t a t e - > e f f e c t d a t a = e f f e c t d a t a ;
87 In i tParametersFromDef in i t ions (I n t e r n a l R e g i s t e r E f f e c t D e f i n i t i o n ,

e f f e c t d a t a - > data . p) ;
88 return UNITY_AUDIODSP_OK ;
89 }
90
91 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK ReleaseCal lback (

Uni tyAudioEffec tSta te * s t a t e)
92 {
93 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
94 delete data ;
95 return UNITY_AUDIODSP_OK ;
96 }
97
98 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK SetFloatParameterCal lback

(Uni tyAudioEffec tSta te * s t a t e , int index , float value)
99 {

100 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
101 if (index >= P_NUM)
102 return UNITY_AUDIODSP_ERR_UNSUPPORTED;
103 data - >p [index] = value ;
104
105 if (index == P_TRIGGER)
106 {
107 if (data - >p [P_TRIGGER] != 0 . 0 f)
108 ReTrigger (data) ;
109 }
110 else if (index == P_FREQ)
111 data - >N = (int) f l o o r (SAMPLERATE / data - >p [P_FREQ]) ;
112 return UNITY_AUDIODSP_OK ;
113 }
114
115 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK GetFloatParameterCal lback

(Uni tyAudioEffec tSta te * s t a t e , int index , float * value , char *
v a l u e s t r)

116 {
117 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
118 if (index >= P_NUM)
119 return UNITY_AUDIODSP_ERR_UNSUPPORTED;
120 if (value != NULL)
121 * value = data - >p [index] ;
122 if (v a l u e s t r != NULL)
123 v a l u e s t r [0] = 0 ;
124 return UNITY_AUDIODSP_OK ;
125 }
126
127 int UNITY_AUDIODSP_CALLBACK GetF loa tBuf ferCal lback (

Uni tyAudioEffec tSta te * s t a t e , const char * name , float * buffer , int
numsamples)

128 {

80 Appendix A. Appendix

129 return UNITY_AUDIODSP_OK ;
130 }
131
132 UNITY_AUDIODSP_RESULT UNITY_AUDIODSP_CALLBACK ProcessCal lback (

Uni tyAudioEffec tSta te * s t a t e , float * inbuf fer , float * outbuffer ,
unsigned int length , int inchannels , int outchannels)

133 {
134 Ef fec tData : : Data * data = &s t a t e - > GetEffectData <Effec tData > () -> data ;
135 float wetTarget = ((s t a t e - > f l a g s &

Uni tyAudioEf fec tS ta teF lags_ IsP lay ing) && ! (s t a t e - > f l a g s & (
UnityAudioEffectStateFlags_IsMuted |
UnityAudioEffec tStateFlags_IsPaused))) ? 1 . 0 f : 0 . 0 f ;

136
137 float dampRho = pow(0 . 0 0 1 f , (1 . 0 f / (data - >p [P_FREQ] * data - >p [

P_DAMP_SEC]))) ;
138 float damph0 = (1 . 0 f + data - >p [P_DAMP_B]) * 0 . 5 f ;
139 float damph1 = (1 . 0 f - data - >p [P_DAMP_B]) * 0 . 2 5 f ;
140
141 float w = (kPI * data - >p [P_FREQ]) / SAMPLERATE;
142 float enerC0 = w / (1 . 0 f + w) ;
143 float enerC1 = ((1 . 0 f - w) / (1 . 0 f + w)) ;
144 float L0 = pow(data - >p [P_DYNLEV_L] , (1 . 0 f / 3 . 0 f)) ;
145
146 for (unsigned int n = 0 ; n < length ; n++)
147 {
148 // Only apply noise in the beginning
149 float noise = 0 . 0 f ;
150 if (data - > noiseIdx < data - >N)
151 {
152 noise = data - > outPickPos [data - > noiseIdx] ;
153 data - > noiseIdx ++;
154 }
155
156 data - > outDel [data - >n] = noise + data - > outStringTuning [(data - >n -

data - >N) & 0x3FF] ;
157
158 data - >outDynLev [data - >n] = enerC0 * (data - > outDel [data - >n] + data

- > outDel [(data - >n - 1) & 0x3FF]) + enerC1 * data - >outDynLev [(
data - >n - 1) & 0x3FF] ;

159 data - >outDynLev [data - >n] = data - >p [P_DYNLEV_L] * L0 * data - > outDel [
data - >n] + (1 . 0 f - data - >p [P_DYNLEV_L]) * data - >outDynLev [data
- >n] ;

160
161 data - >outDamp [data - >n] = dampRho * (damph1 * (data - > outDel [data - >n]

+ data - > outDel [(data - >n - 2) & 0x3FF]) + damph0 * data - >
outDel [(data - >n - 1) & 0x3FF]) ;

162 data - > outStringTuning [data - >n] = (1 . 0 f - data - > nStringTuning) *
data - >outDamp [data - >n] + data - > nStringTuning * data - >outDamp [(
data - >n - 1) & 0x3FF] ;

163
164 for (int i = 0 ; i < outchannels ; i ++)

A.6. Native Audive SDK: Friction Synthesis 81

165 {
166 float x = data - >outDynLev [data - >n] ;
167
168 outbuf fer [n * outchannels + i] = x * wetTarget ;
169 }
170
171 data - >n = (data - >n+1) & 0x3FF ;
172 }
173
174 return UNITY_AUDIODSP_OK ;
175 }
176 }

	Front page
	English title page
	Danish title page
	Contents
	Preface
	1 Introduction
	1.1 Project Description
	1.2 Motivation and General Research

	2 Background
	2.1 Game Concept
	2.2 Virtual Reality Music Instruments
	2.2.1 Extended Possibilities with VR
	2.2.2 Feedback in VR

	2.3 Adaptive Music in Games
	2.3.1 Uses and Techniques
	2.3.2 Transitions

	2.4 Physical Modelling for Real-Time Synthesis
	2.4.1 Extended Karplus-Strong
	2.4.2 Low-Level Friction
	2.4.3 Bilinear Transform
	2.4.4 Eliminating Delay-Free Loops
	2.4.5 Approximating a Solution to the Non-Linearity

	2.5 Tools

	3 Design
	3.1 Cylindrical Guitar Anatomy
	3.2 Carving Friction
	3.3 Adaptive Music Remix Mode
	3.4 Adaptive Music Endless Mode

	4 Implementation
	4.1 Beat-Slashing Game
	4.2 Adaptive Music
	4.2.1 Adaptive Segments
	4.2.2 Outro Transitions

	4.3 Guitar Saber
	4.3.1 Ideal String Synthesis
	4.3.2 Audio Effects
	4.3.3 Controlling the Guitar Saber

	4.4 Mechanical Oscillator for Friction
	4.4.1 Non-Linear Friction Synthesis
	4.4.2 Controlling Wall Synthesis

	5 Evaluation
	5.1 Adaptive Song Replayability
	5.2 VRMI: Guitar Saber
	5.2.1 Observational Usability Test
	5.2.2 Audio User Experience
	5.2.3 Assessment of In-Game Use

	6 Discussion
	6.1 Adaptive Remix Mode
	6.2 Adaptive Endless Mode
	6.3 Guitar Saber
	6.4 Friction Walls

	7 Conclusion
	Bibliography
	A Appendix
	A.1 Videos
	A.2 Beat-Slashing Game
	A.3 MatLab: Extended Karplus-Strong
	A.4 Native Audive SDK: Extended Karplus-Strong
	A.5 MatLab: Friction Synthesis
	A.6 Native Audive SDK: Friction Synthesis

