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Ved at underskrive dette dokument bekræfter hvert enkelt gruppemedlem, at alle har deltaget 
lige i projektarbejdet og at alle således hæfter kollektivt for rapportens indhold. 

The aim of the current study was to investigate the feasibility of 
assessing mental load using seismocardiography by means of 
heart rate variability (HRV) analysis and machine learning. 
Twelve participants completed a mental computer task on 3 
difficulty levels, on two days separated by at least a week. 
Electrocardiography (ECG) and seismocardiography (SCG) 
recordings were concurrently obtained, and a performance 
score based on the mental task were computed. Participants 
furthermore subjectively rated their mental workload (MWL) 
using the NASA-TLX. Cardiac cycle intervals were independently 
extracted from both ECG and SCG recordings and the HRV was 
analyzed in both the time- and frequency domain. The HRV 
results, subjective ratings and performance scores were 
statistically tested using a Two-way ANOVA with repeated 
measures, between days and MWL levels. Intraclass correlation 
coefficients (ICC) were furthermore computed to assess the 
agreement between the ECG and SCG based HRV. Features from 
the cardiac cycle segmented SCG signals were extracted and 
used for classification of MWL levels using machine learning. 
Significant differences were found for both subjective ratings 
and performance scores between days and MWL levels. HRV 
measures showed significant difference in the Peak LF measure 
between MWL levels. ICC values between ECG and SCG based 
HRV varied between poor and excellent agreement. 
Classification of MWL using SCG signals was unsuccessful using 
the included features. It can be concluded that SCG seems to be 
feasible for running HRV analysis due to an automatic noise 
removal and cardiac cycle segmentation of SCG signals being 
successful. However, further work is required to potentially 
implement successful classification of MWL using SCG. 
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Assessing mental workload using seismocardiography  
Jacob Guy Diemar & Mikkel Jul Hansen 

 
Abstract 
The aim of the current study was to investigate the feasibility of assessing mental load using 
seismocardiography by means of heart rate variability (HRV) analysis and machine learning. Twelve 
participants completed a mental computer task on 3 difficulty levels, on two days separated by at least a week. 
Electrocardiography (ECG) and seismocardiography (SCG) recordings were concurrently obtained, and a 
performance score based on the mental task were computed. Participants furthermore subjectively rated their 
mental workload (MWL) using the NASA-TLX. Cardiac cycle intervals were independently extracted from 
both ECG and SCG recordings and the HRV was analyzed in both the time- and frequency domain. The HRV 
results, subjective ratings and performance scores were statistically tested using a Two-way ANOVA with 
repeated measures, between days and MWL levels. Intraclass correlation coefficients (ICC) were furthermore 
computed to assess the agreement between the ECG and SCG based HRV. Features from the cardiac cycle 
segmented SCG signals were extracted and used for classification of MWL levels using machine learning. 
Significant differences were found for both subjective ratings and performance scores between days and MWL 
levels. HRV measures showed significant difference in the Peak LF measure between MWL levels. ICC values 
between ECG and SCG based HRV varied between poor and excellent agreement. Classification of MWL 
using SCG signals was unsuccessful using the included features. It can be concluded that SCG seems to be 
feasible for running HRV analysis due to an automatic noise removal and cardiac cycle segmentation of SCG 
signals being successful. However, further work is required to potentially implement successful classification 
of MWL using SCG.  
 
Keywords: seismocardiography, heart rate variability, machine learning.  
 
Introduction 
Occupations in modern society have experienced a 
precedence of non-manual work over manual work 
(Stansfeld & Candy, 2006). This have led to an 
increase in the mental demands, which may lead to 
work related stress and the detrimental effects 
associated if the mental demands exceed the 
capabilities of the individual (Holmes, 2001). One of 
the occupations at risk is e-sport athletes, as this 
arising industry has led to increased professionalism 
and thereby prolonged exposure to high mental 
demands, as athletes needs to think strategically and 
make fast and smart decisions to achieve successful 
performance (Bányai et al., 2018). Prolonged 
exposure to these higher demands, also known as 
chronic stress, ultimately resulting in the inability to 
cope with one’s work, both psychologically and 
emotionally, is known as one of the most frequent 
health issues these days (van Daalen et al., 2009). 
For individuals with chronic stress, multiple health 
issues arise like weakened immune system, volume 
changes in certain brain areas (Mariotti, 2015), 
increased risk towards hypertension, stroke or heart 
attack, lowered reproduction capability etc. (Slavich, 
2016; APA, n.d.). 

 
Several different measures of mental workload 
(MWL) have been used in the existing literature, 
which can be differentiated as being either 
physiological, subjective or task performance 
measures. The physiological measures relate to 
respiration, blood pressure, eye-tracking, brain 
activity, electrodermal and cardiac activity, whereas 
subjective measures relates to self-reporting of the 
experienced MWL (NASA-TLX, SWAT etc.). 
Performance measures include parameters such as 
completion time, reaction time and error rate. 
Cardiac activity has been the most common 
physiological measure of MWL, due to certain 
correlations between heart rate variability (HRV) 
and MWL and the relatively simple and unobtrusive 
employment. (Charles & Nixonl. 2019)  

 
Multiple previous studies have implemented the use 
of electrocardiography (ECG) to obtain HRV 
(Taelman et. al., 2011; Blitz. et al., 1970; Charles & 
Nixon, 2019). Another emerging method for 
monitoring cardiac activity is seismocardiography 
(SCG), which utilizes highly sensitive 
accelerometers to capture heart-induced motion.  
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The first implementation of SCG dates back to 1956 
(Mounsey, 1956), using big, bulky and insensitive 
accelerometers. However, the recent advances in 
accelerometer technology, resulting in lighter, 
smaller and more sensitive accelerometers, now 
allows the technology to be used to capture new 
information regarding cardiac activity (Taebi et al., 
2019; Paukkunen, 2014). SCG signals contain 
several concurrent waveforms, representing 
distinctive systolic and diastolic components, with 
representations of specific events in the cardiac cycle 
like aortic valve opening, isovolumic contraction etc. 
(Paukkunen, 2014).  
No previous studies have investigated possible 
correlations between SCG signal morphology and 
MWL. If examined, this could potentially lead to 
new screening methods for evaluating MWL, which 
could be used to evaluate mental performance over 
time or allocate team roles, for example in high 
demanding mental tasks like e-sport. Furthermore, 
accelerometers have shown to be useful for obtaining 
information in many applications, such as physical 
activity monitoring, posture correction, balance 
evaluation etc. making for a health monitoring 
system that could evaluate multiple parameters 
(Attal et al. 2015). 
 
With existing knowledge on the use of ECG to 
evaluate mental load and the recent advances in SCG 
technology, the aim of the current study was to 
investigate the feasibility of assessing MWL using 
SCG.  
 
Method 
All  participants (12 males) (Age = 26 ± 1 year, body 
mass = 81.8 ± 9.3, BMI = 24.9 ± 1.8 kg/m2) had 
normal or corrected to normal vision and were right 
handed computer mouse users. Participants were all 
non-smokers, non-drug addicts and had no known 
mental or heart diseases. Participants were instructed 
to abstain from alcohol (24h), caffeine (12h), 
painkillers and sleep medicine (24h), prior to the 
experiment. All participants were furthermore 
instructed to sleep a minimum of 7 hours prior to the 
experiment (reported sleep = 7.4 ± 1.1 hours). All 
experimental trials were conducted between 9am - 
3pm. All participants signed a declaration of consent. 
 

  
Figure 1: ECG electrodes and SCG accelerometer 
placement. 
 
The hardware setup consisted of a combined ECG 
and SCG measuring system. A five electrodes setup 
for the ECG, as well as a single accelerometer for the 
SCG, was connected to the same amplifier/AD-
converter (IWorx 214) for synchronized data-
logging, sampling at 1000 Hz. The hardware was 
connected via USB to a computer, running a data-
logging software (IWorx LabScribe V3.62).  
 
For the recording of SCG signals, a small ±2g low-
noise (5μg/√Hz) capacitive sensing accelerometer 
(Silicon Designs model 1221) with a sensitivity of 
2000 mV/g was used. The accelerometer was 
encased in a small (10x10x8mm) lightweight 3D-
printed PLA box and was placed on the lowest part 
of sternum with double adhesive tape. Furthermore, 
the wire was secured to the participants chest 
forming a small loop, to limit wire movement noise, 
and made sure not to overlap with the ECG electrode 
wires (Figure 1). 
 
A two-lead ECG, with Lead I and II configuration 
was used, utilizing five electrodes (Ambu®️ 
Neuroline 720, Ag/AgCl wet electrode) placed with 
one acting as ground (right leg), two as Lead II 
configuration (right arm (negative) and left leg 
(positive)) and two as lead I configuration (right arm 
(negative) and left arm (positive)) (Figure 1). 
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Figure 2: Mental task. A: memorization period, B: 
washout period, C: replication period, D: 
replication period with starting-, distraction- and 
correct pattern points indicated. 
 
Mental task 
A graphical user interface running a connect-the-
dots game (WAME 1.0), developed at Aalborg 
University (Marandi et al., 2018A), was used to 
induce the MWL and consisted of cyclic computer 
operations where the participants had to recreate a 
specific pattern in a certain order. Each cycle 
involved a memorization period (MP), washout 
period (WP), and replication period (RP) (Figure 2). 
The task was displayed on a Dell E193FP 19-inch 
LCD monitor with 1280x1024 resolution and 75Hz 
refresh rate, and was placed approximately 55cm 
from the participants eyes with the center of the 
screen placed approximately 15° degrees below the 
horizontal line of sight (Marandi et al., 2018A) 
(Figure 3).  
 

  
Figure 3: Mental task workstation with eyesight 
angle and distance illustrated. 
 
The work panel contained a template panel with an 
appurtenant textual instruction and a replication 

panel, which subtended respectively 5° and 20° of 
visual angle in both horizontal and vertical direction. 
The graphical user interface subtended 
approximately 27° of visual angle horizontally and 
22° vertically. The area in which the participants 
were to complete the computer task was cordoned 
off to minimize the exposure of distracting elements 
in the surrounding environment. 
 
Each mental task cycle was initiated by the MP, 
where a specific pattern composed by a series of 
points were showed on the template section (Figure 
2, A). Each point could take various shapes i.e. plus, 
asterisk, circle, triangle, square, diamond, 
pentagram, and a short text indicated the starting 
point for the pattern. The MP was followed by the 
WP where the pattern in the template panel 
disappeared and a cross located in the center of the 
replication panel was used as indication of the WP 
(Figure 2, B). The mouse cursor was furthermore 
made invisible to avoid any prepositioning prior to 
the RP. The RP was initiated by a scaled version of 
the pattern points appearing on the replication panel, 
and the participant was now able to connect the 
points in the correct sequential order to replicate the 
same pattern shown during the MP (Figure 2, C). To 
indicate that the first point of the pattern was 
correctly clicked, the point was enlarged by a factor 
of two. Whenever the participant clicked on the 
points in the right order, a line was drawn to connect 
the newest correctly clicked point to the previous 
one, otherwise no line appeared. The number of 
pattern points (PP) to be connected and the 
geometrical complexity of the patterns were changed 
and thereby inducing three different levels of MWL 
referred to as low (PP = 4), medium (PP = 5) and 
high level (PP = 6). The geometrical complexity was 
changed such that the angles between any connecting 
lines were tightened with increased mental load 
(Marandi et al., 2018A). All MWL levels of the 
mental task also included a distraction point (DP), 
which were to be avoided in the replication of the 
pattern (Figure 2, D).  
A library of randomly generated patterns was 
predefined and the order of patterns to be completed, 
were randomized for each participant. A time 
constraint of each period was predetermined and in 
accordance with Marandi et al., 2018A, being 2.06s, 
2.34s, and 2.62s for MP and WP, and 4.11s, 5.06s, 
and 6.02s for RP in low, medium, and high levels of 
mental load respectively.  
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Experimental protocol 
After participants had arrived, received information 
about the study and signed the declaration of 
consent, height and weight was measured, and sleep 
and substances ingested prior to the experiment 
(alcohol, caffeine, painkillers, sleep medicine etc.) 
was reported. The workstation at which the 
participants would be sitting, when completing the 
mental tasks, were adjusted to each participants 
height, to ensure a standardized visual distance and 
angle. Participants randomly drew an ID number 
matching a mental task level sequence. The sequence 
of the three different MWL tasks was 
counterbalanced across the participants  
 
Next, the skin underneath each ECG electrode was 
prepared by removal of hair, light abrasion of the 
skin surface and cleansing using alcohol wipes, to 
lower the skin impedance. The accelerometer and 
electrodes were placed according to Figure 1. 
 
The mental task was explained to participants and a 
training session consisting of at least 2 x 5 min (5 
min low level and 5 min high level, repeated until 
familiar) was completed, to familiarize participants 
with the task, while equipped with the apparatus. 
After the familiarization period, participants 
weighted the different parameters of the NASA-TLX 
test, based on their experience with the task during 
the familiarization period. Next, participants rested 
for 10 min, before completing the first mental task 
level determined by the participant ID based 
sequence. After the mental task, participants were 
instructed to complete the NASA-TLX subjective 
rating. This was repeated until all 3 mental task 
levels (each consisting of 5 min) had been completed 
and rated, after which the trial was completed. The 
experimental protocol was completed twice on each 
participant on 2 different days, with at least 7 days in 
between.    

 
Data analysis 
An overall performance metric (OP) was computed 
for each task completed by each participant to 
address their dexterity. This OP metric was 
computed as the ratio of two other performance 
metrics, which quantifies how accurate and how fast 
the participant performed each task.  
To account for the participant’s clicking speed, the 
mean reaction time (MRT) was defined and 
computed in three different ways, depending on the 
degree of completion of the replication (Equation 1). 
If all the points in the pattern was correctly clicked, 

the time intervals (TI) between the correct clicks 
(CC) and the first click with respect to the task onset 
time were averaged with respect to the number of 
pattern points (PP). If only some of the PP were 
correctly clicked, the remaining time of the 
replication period (RTRP) was added to the 
summation of time in between correct clicks and 
averaged with respect to the number of PP. If no PP 
were correctly clicked, MRT was equal to the length 
of the replication period.  

                  
The MRT was normalized with respect to the 
minimum of MRT across all participants (0.5120s). 
The parameter related to accuracy, selective 
attention (SelA), was defined as the ability to keep 
focused on a set of actions despite any distracting 
stimuli (Equation 2).  

 
The SelA acquires the highest value when the 
number of CC is equal to the number of PP and 
where no incorrect clicks (IC) and clicks on the 
distraction point (DC) were performed. The OP was 
defined as the ratio between SelA and MRT, where 
a value of 1 account for the highest performance and 
0 accounts for the lowest performance (Marandi et 
al., 2018A).  
 
Subjective ratings 
Overall weighted ratings were computed for each 
task completed by each participant. A weighting of 
the six different parameters (mental demand, 
physical demand, temporal demand, performance, 
effort, frustration) were computed based on the 
pairwise comparisons of the parameters after the 
familiarization period. A total weighted rating was 
computed for each MWL task. 

 
Physiological measures 
Both ECG and SCG were included as physiological 
measures of MWL, and the general steps involved in 
the data analysis has been illustrated in Figure 4. 
These steps include segmentation of the ECG signal, 
segmentation of the SCG signal, HRV analysis, 
agreement between ECG and SCG HRV measures, 
statistical testing and machine learning based on 
SCG signals. 

(1)

(2)
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Figure 4: General steps involved in the data analysis 
of physiological measures 

 
ECG cardiac cycle segmentation 
For the analysis of ECG based HRV, a MatLab script 
was constructed to extract ECG based inter-beat 
intervals (IBI). Firstly, raw lead II data was extracted 
from the data matrix and structured based on the ID 
of each participant, test day and load level. Secondly, 
the MatLab toolbox BioSigKit (Sedghamiz, 2018) 
was implemented, using the Pan-Tompkins 
algorithm (Pan & Tompkins, 1985) for R peak 
detection. The ultimate end product is a text file 
consisting of IBI used for the HRV analysis.  
 
SCG cardiac cycle segmentation 
For the purpose of running HRV analysis based on 
SCG, another MatLab script was constructed, 
involving several steps as illustrated in Figure 5.  
 
 

 

  
Figure 6: Steps involved in the automatic noise 
detection/cancelation of SCG signal. A) filtered SCG 
signal, B) moving std with a 1000 sample window, 
C) filtered SCG signal with zeroed noisy areas. 
 
The goal was to automatically detect and remove 
noisy areas of the signal, and to segment individual 
cardiac cycles of the SCG signal without the use of 
the concurrent ECG measurements.  
 
For the auto-detection and cancellation of noisy 
areas in the SCG signal (Figure 6, A) a moving 
standard deviation was calculated (window 
length=1000 samples) (Figure 6, B). The locations 
and widths of the noisy areas peaks were found using 
a minimum peak prominence of 0.3V, and the SCG 
was zeroed out around these peaks (± 1 width of the 
peak) (Figure 6, C) for later data analysis. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Processing steps involved in the SCG segmentation and creation of IBI files 
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For the cardiac cycle segmentation, SCG data was 
filtered using a 4th order band pass Butterworth filter 
(fc,low = 0.5Hz, fc,high = 80Hz). The SCG signal was 
then differentiated, rectified and filtered using a 2nd 
order Savitzky-Golay filter with a window length of 
101 samples for segmentation purposes (Figure 7, 
A,B,C).  

 
Figure 7: Steps involved in the automatic cardiac 
cycle segmentation of SCG signals. A) raw SCG 
signal, B) filtered SCG signal, C) differentiated and 
rectified SCG signal with template illustrated by 
grey area, D) Savitzky-Golay filtered signal, E) 
match filtered SCG based on template with peaks 
located. 
 
Next, a template was defined from the Savitzky-
Golay filtered SCG signal (Figure 7 D, indicated by 
greyed area). The differentiated, rectified and 
Savitzky-Golay filtered SCG signal was then match 
filtered using the time inverted and heart rate scaled 
template, resulting in Figure 7, E, where peaks with 
lower adjacent peaks were located, resulting in 
cardiac cycle segmented SCG signals. The auto 
segmented SCG based IBI were validated against 
ECG based IBI using a Bland-Altman plot, based on 
data with no noise removal from 2 random 
participants. 

 
HRV analysis 
The IBI files were preprocessed to remove ectopic 
beats, resulting in the computation of Normal-to-
Normal intervals (NN-intervals) detected by a 
threshold of 3 standard deviations, as pure removal 
of IBI has been proved to perform superior to e.g. 

linear and cubic spline interpolation (Lippman et al., 
1994). The NN-intervals was furthermore detrended 
for low frequency trends, using the Wavelet Packet 
method. After preprocessing, the signal was 
analyzed in both the time- and frequency domain. 
The HRV time domain measures included were: 
average heart rate (MeanHR), standard deviation of 
NN intervals (SDNN), root mean square of 
successive NN interval differences (RMSSD), 
baseline width of the NN interval histogram (TINN), 
standard deviation of heart rate (sdHR), and the 
integral of the density of the NN interval histogram 
divided by its height (HRVTI). The HRV frequency 
domain measures was found using the Lomb Scargle 
method and included: the absolute power of the low-
frequency (0.04–0.15 Hz) band (aLF), absolute 
power of the high-frequency (0.15–0.4 Hz) band 
(aHF), absolute power of all frequency bands 
(aTotal), percentage of the sum of aLF and aHF for 
the low frequency band  (pLF), percentage of the 
sum of aLF and aHF for the high frequency band 
(pHF), the ratio of LF-to-HF power (LF/HF ratio), 
peak frequency of the low-frequency band (Peak 
LF), peak frequency of the high-frequency band 
(Peak HF). 
 
Statistical testing of HRV analyses 
The effect of MWL levels, and testing day, on HRV 
measures were statistically tested in SPSS, using a 
two-way ANOVA with repeated measures, followed 
by a pairwise comparison for load levels, using the 
Bonferroni correction, with a significance level of 𝛼 
= 0.05. This includes the performance measures 
obtained by the mental task in MatLab, subjective 
ratings from the NASA-TLX, as well as time and 
frequency domain measures from both the ECG and 
SCG based HRV analysis. Mauchly’s test of 
sphericity was implemented, and if violated, 
corrected for, using the Greenhouse Geisser 
correction. 
 
The agreement between SCG and ECG based HRV 
analysis was assessed using the Intraclass 
Correlation Coefficient (ICC), with a mixed effects 
ICC with single measures, ICC(3,1). The ICC values 
were interpreted based on the following guideline 
adopted from Koo & Li, 2015; ICC < 0.5 are 
indicative of poor agreement, 0.5 < ICC < 0.75 are 
indicative of moderate agreement, 0.75 < ICC < 0.9 
are indicative of good agreement and ICC > 0.9 are 
indicative of excellent agreement. ICC values were 
calculated for all HRV measures, used in the 
statistical tests. 
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Classification of SCG signals 
Machine learning was implemented to evaluate the 
ability to discriminate between MWL levels based 
on the segmented SCG signals as illustrated in 
Figure 8. Three different approaches to this 
classification process was selected, meaning that the 
classification algorithms were trained on the entire 
dataset for one approach, while the other two 
approaches were divided into participant and 
participant on the respective test day respectively. 
Different parts of the data were allocated for training 
and test purposes where 50 cardiac cycles were 
included from each MWL level, on each respective 
day, for each participant. This means that each 
approach to the classification process, all together,  

 

participant separated, and participant and test day 
separated, contained different sample sizes being 
3600, 300 and 150 samples respectively, for each 
trained model. 
 
A total of 22 features were computed for each SCG 
segmented cardiac cycle including: mean, standard 
deviation, integral, median, variance, range, 
skewness, kurtosis, length, RMS, systolic max, 
location of systolic max, diastolic max, location of 
diastolic max, time from systolic max to diastolic 
max, first systolic min occurring before systolic max, 
location of systolic min, first diastolic min occurring 
before diastolic max, location of diastolic min, time 
form systolic min to diastolic min, time from systolic 
min to max, and time from diastolic min to max.  

Figure 8: Schematic overview of the steps included to classify MWL levels using machine learning.  

Figure 9: Illustration of certain features of the SCG signal for one cardiac cycle. 
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The systolic and diastolic features were found by 
searching within 40-70% and 70-100% of the signal 
respectively. Some selected features have been 
visualized in Figure 9. All features were rescaled to 
obtain values in the range 0-1. A principal 
component analysis was performed in order to 
reduce the dimensionality of the features while 
retaining any potential inter-class variation 
(Dougherty, 2013). The number of principal 
components included for further analysis was based 
on that the principal components comprised 95% of 
the total variance (Jackson & Donald, 1993). 
Decision Trees and K-Nearest Neighbor were 
chosen as the included classification algorithms and 
trained to predict the MWL level. The algorithms 
were validated using a 5-fold cross validation and the 

superior variant of each classification algorithm 
were chosen for estimating the true error based on 
the testing data set.  

 
Results  
Table 1 provides an overview of the measures (ECG 
and SCG based HRV, performance measure, 
subjective rating) computed to assess MWL. The 
statistical analysis reveal that significant differences 
were found for ECG based Peak LF, SCG based 
aHF, aTotal and Peak LF, performance, and 
subjective rating. The appurtenant results of the two-
way ANOVA with repeated measures and the post 
hoc test have been presented in Table 2.  
 

Table 2:F and p values of two-way ANOVA with repeated measures tests, with pairwise comparison 
(Bonferroni) for load levels, for parameters with significant differences. Bold font and * indicates 

significant difference. 

Table 1: ECG and SCG based HRV results, performance measures and subjective ratings in mean±1std. 
Statistically significant differences between one or more groups/days, are marked in bold and with a *. 
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These results reveal that ECG and SCG based Peak 
LF and performance score significantly decreased 
with increments of MWL, the subjective ratings 
significantly increased with increments of MWL. 
SCG based aHF and aTotal and subjective rating 
significantly decreased while performance score 
significantly increased from the first to the second 
test day. Interactions within significant different 
measures were found for SCG based aHF and aTotal. 
The computed ICC (±95% CI) between ECG and 
SCG based HRV measures has been summarized in 
Table 3. All time domain features show good to 
excellent correlation, except for HRVTI which 
showed moderate to good agreement, while the 
frequency domain features ranged from poor to 
excellent agreement (Table 3). The validation of the 
cardiac cycle auto segmentation is presented as a 
Bland-Altman plot between ECG and SCG based IBI 
(Figure 10). The bias was found to be 0.006ms, 
upper- and lower limits ±28ms and no trend was 
discovered, representing a good agreement between 
methods when visually inspecting the location of 
datapoints in the plot. 
 

 
Table 3: Two-way mixed single measures Intraclass 
Correlation Coefficient (ICC) measuring absolute 
agreement, between ECG- & SCG based HRV 
measures. 
 
The cross-validation accuracies and true error of the 
two included algorithms classifying the three 
different levels of MWL has been presented in Table 
4. This analysis generally showed poor classification 
accuracy, while a tendency towards slightly higher 
accuracies for the participant and day specific 
approaches occurred.  

The most superior classification models associated 
to each different algorithm were coarse decision tree 
(4 splits) and a medium KNN (10 neighbors). 
 

 
Figure 10: Bland-Altman plot illustrating 
agreement between ECG and SCG based IBI, 
n=2750. 
 

 
Table 4: Classification accuracies in percentage (%) 
from the initial 5-fold cross validation, and true 
error testing of trained models fed with new data 

 
Discussion 
Using SCG and the proposed auto noise detection 
and segmentation as an alternative and easier to use 
tool for HRV analysis, showed to be feasible, as well 
as providing almost similar results compared to the 
ECG based HRV according to Table 1, 2 and 3. This 
was expected as Tadi et al., 2015 reported almost 
identical HRV measures based on both ECG and 
SCG (Tadi et al., 2015). The SCG signal are however 
prone to noise, which was also observed in the 
present study to a varying degree. This ultimately 
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results in different input data for the HRV analysis, 
as only ectopic beats were removed from the ECG 
based signal, while larger periods of data were 
removed from the SCG based signal, due to noise.  
This might inflict the HRV results as the editing of 
NN intervals has been reported to change the results 
of the HRV analysis (Peltola, 2012). The HRV 
frequency domain measures are predominantly 
prone to removal of data and especially increases the 
power of both the LF and HF band (Salo et al., 2001). 
This accord well with the findings of the present 
study, as the ICC values of the HRV time domain 
features generally showed excellent agreement, 
except for HRVTI (moderate to good) and TINN 
(good to excellent), while the ICC values of the HRV 
frequency domain features varied between poor and 
excellent agreement (Table 3). The absolute power 
of the frequencies showed poor agreement, as 
suggested by Salo et al., 2001. Thereby caution 
should be exercised when assessing MWL from SCG 
based HRV as some frequency domain measures 
might be biased due to the removal of noisy areas.  
 
Even though removal of IBI has been found to 
perform well for HRV analysis (Lippman et al., 
1994), Salo et al., 2001 reported that interpolation 
proved to be superior to the removal of data, when 
dealing with larger periods of data that needs to be 
corrected for (Salo et al., 2001). This might indicate 
that interpolation of missing IBI should be 
considered for SCG based HRV analysis. 
 
ECG and SCG based HRV analysis 
Significant differences between MWL levels were 
found for both the ECG- and SCG based HRV 
analysis in the Peak LF (Table 2). This indicates that 
MWL can be distinguished by HRV analysis and the 
Peak LF parameter, based on either ECG or SCG 
signals. However, a review concerning HRV 
analysis of MWL using ECG, reports that other 
parameters within the HRV analysis have showed 
significant differences between MWL levels (Kim et 
al, 2018). The lack of these differences in the current 
study, could however be due to the mental task used 
in this study, and each participant’s individual level 
of mental capability resulting in either an under- or 
overload. Also, the difference in difficulty between 
low, medium and high load level could have been too 
low to make a significant difference on other HRV 
parameters. This is supported by Charles & Nixon, 
2019, as the different HRV measures and their link 
to MWL is dependent on the methodologies used to 
induce the MWL (Charles & Nixon, 2019). 

Machine learning and SCG signals 
The classification of MWL levels can be perceived 
to be unsuccessful, given the fact that pure guessing 
would have resulted in almost similar accuracies 
(Table 4). It can also be observed from Table 4 that 
the trained model based on all data performed worse, 
than the participant- and participant/day specific 
ones. This is most likely due to physiological 
differences between participants, which ultimately 
causes differences in the data, not caused by 
changing levels of MWL. For example, BMI affects 
the amplitude of aortic valve opening signal 
characteristic, as described by Sørensen et al., 2017, 
which corresponds to one of the present study’s 
features: the first max value in the 40-70% interval 
of each cycle. Also, differences in arousal level 
between days, due to external factors, might be a 
contributing factor to the better accuracies found in 
the participant and day specific models compared to 
the participant specific models. This is supported by 
Lee et al., 2017 as different HR estimation 
accuracies from SCG, in different aroused situations, 
were reported (Lee et al., 2017). This indicates that 
the SCG signals morphology changes in regard to the 
level of arousal, which could complicate the 
segmentation of cardiac cycles and possibly also the 
distinction between different MWL levels.    
 
When doing machine learning, variations between 
classes is needed in order to distinguish between 
these. However, when classifying SCG signals from 
different MWL levels, these variations between 
classes might drown in higher variations caused by 
coincidences or physiological differences (Sørensen 
et al., 2018). A previous study by Javaid et al., 2016 
has shown that posture also has a big influence on 
the shape and frequency content of SCG signals, as 
“posture can (1) distort the SCG signal, for example 
due to altering the body's mechanical vibration 
response, and (2) affect a person's cardiovascular 
physiology, for example due to changes in venous 
return.”-  Javaid et al., 2016, pp. 1. Although general 
posture during the experimental trials were fixed, leg 
extension could have influenced the venous return, 
and the torso angle and amount of contact with the 
chair, could have affected the body’s vibration 
response, thereby resulting in differences in the SCG 
signal. 
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Previous studies examining classification of 
different MWL levels have reported relatively high 
classification accuracies in the range of 80-95%.  
These studies however included several different 
measure modalities such as ECG, 
electroencephalography, eye tracking and skin 
conductance, and achieved much lower 
classification accuracies when the models were not 
trained on data containing electroencephalographic 
measures (Hogervorst et al., 2014, Wilson & Russel, 
2003). This indicates that the result of the 
classification of MWL levels in the present study 
(Table 4) might be in accordance with other cardiac 
based classification models. For future work of 
classifying MWL from cardiac cycle segmented 
SCG signals, it is proposed that more features are 
extracted for the machine learning, and that these 
potentially involves more fiducial points and 
frequency domain measures, to further evaluate the 
feasibility of this methodology. Furthermore, the 
features should be corrected for posture differences, 
as suggested by Javaid et al., 2016, as accelerometers 
can concurrently determine posture to a certain 
degree (Lugade et al., 2015). 
 
Auto noise detection and cardiac cycle 
segmentation of SCG signals 
For the purpose of moving towards a fully automatic 
MWL level classification algorithm, an automatic 
cardiac cycle segmentation algorithm, using 
matched filtering, was developed. This furthermore 
limited time, resources and expert knowledge needed 
for segmentation, as all SCG signals should not have 
to be manually annotated. This methodology was 
inspired by the work of Li et al., 2015, concerning 
automatic segmentation of SCG signals, but for the 
present study, the procedure was changed 
significantly to make the algorithm more robust to 
SCG signals where fluctuations, differences in 
amplitude and number of peaks, occurred. As 
described by Sørensen et al., 2018, SCG signals are 
not similar from beat to beat, and from participant to 
participant. Likewise, the SCG signals obtained in 
the present study showed high variance in regard to 
amplitude of peaks, number of peaks and number of 
fluctuations in the systolic and diastolic complex. By 
combining the methodology of matched filtering and 
the knowledge of differences in SCG signals, this 
method was able to auto segment SCG signals with 
higher variances in the signal morphology.  
 
 

Furthermore, the algorithm for automatically 
detecting noisy areas in SCG signal was successfully 
implemented into the data analysis, as manual 
inspection showed successful removal of noisy 
intervals. 
 
Since the template used for the matched filtering 
does not cover the same area of the signal as the ECG 
based IBI, a slight difference in IBIs were found as 
expected. However, a good agreement, between the 
proposed automatic cardiac cycle segmentation of 
SCG signals and the traditional Pan-Tompkins 
algorithm for segmenting ECG signals, was found in 
the Bland-Altman plot for concurrent measurements 
of ECG and SCG based NN-intervals (Figure 10).  
 
WAME 1.0 mental computer task 
As discussed earlier, the load level differentiation 
might have been the reason for the lack of multiple 
HRV measures being significant different between 
load levels, as well as a contributing factor to the 
poor accuracies of the classification models (Table 
4). Even though the perceived MWL (based on the 
NASA-TLX) and performance measures were 
significant different between load levels (Table 2), 
these differences might not have been high enough 
to be physiologically distinguished. The parameters 
of each level could potentially be differentiated even 
more, for example by adjusting the completion time 
available or the length of memorization period, 
instead of only changing the complexity of the 
patterns and thereby the task. It is also noticeable that 
a learning effect have occurred, as both the 
performance measure and subjective rating show to 
be significantly different between the two test days 
(Table 1 & 2). This is however not conflicting with 
the purpose of the study, as only differentiation 
between the different MWL levels on both days was 
of interest. 
 
Significant differences between load levels were 
however found in the present study, in both 
performance measures, subjective ratings and the 
Peak LF parameter from the HRV analysis (Table 2). 
Combined with the significant differences in heart 
rate measures found by Marandi et al., 2018B, using 
the same mental task, the WAME 1.0 mental task 
seems appropriate in terms of inducing different 
amounts of MWL. However, higher classification 
accuracies and multiple significant different HRV 
measures, could potentially be obtained by making 
minor adjustments to the settings of each load level 
in the mental computer task. 
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Future perspectives 
Based on the findings of the present study, it is most 
likely that, with the implementation of the previously 
discussed alterations and modifications to this 
methodology, SCG measurements could be 
implemented in future methodologies for monitoring 
MWL. When compared to ECG systems, SCG is 
already easier to implement, since no electrode 
placement or skin preparation is needed. If the SCG 
could be obtained by smartphones, this would further 
ease the process. With the fast development of 
smartphones and the sensors within, it would be 
possible to assess MWL without the need for 
external equipment or expert consulting. Users 
would simply have to place their smartphone on the 
sternum, and the phone would utilize its onboard 
accelerometer to obtain the SCG signals. The use of 
smartphones for obtaining SCG signals has already 
shown to be feasible by several studies (Tadi et al., 
2016; Landreani et al., 2016).  
 
Accelerometers attached to humans also show 
potential to be applied for other purposes than heart 
rate quantification. This includes determination of 
posture and different movements as reported by 
Lugade et al., 2015, which could provide feedback 
associated to ergonomics and physical activity (Attal 
et al., 2015). With the many applications of 
accelerometers, the technology could implement 
multiple applications, making for a more combined 
and holistic health- and performance monitoring 
system. 

Conclusion        
The results of the current study suggest that the 
traditional approach to assess MWL by HRV 
analysis is feasible with the implementation of SCG 
instead of the more setup intensive ECG system. 
This is however only pertinent if interpolation can 
effectively deal with the exclusion of data due to 
noise, as missing data leads to biased HRV results 
especially in the frequency domain, where several 
associations with MWL has been reported. The 
classification of MWL based on the SCG signal 
showed to be insufficient and no additional 
association between MWL and SCG based features 
was identified. Future studies could however 
examine additional features of the signal in both time 
and frequency domain to achieve this.  
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Preface 
The present study was formed and presented by the 10th semester group 10211 as the Master 

thesis in Sports Technology at Aalborg University. The study was conducted in the period from 

1st of February to June the 6th 2019. The study was supervised by Anderson de Souza Castelo 

Oliveira, whose knowledge, skills and feedback, the study group is very thankful for. Also, a big 

thanks to Samuel Emil Schmidt who assisted with the hardware setup and Ramtin Marandi for 

supplying the mental task GUI. The following paper contains a worksheet describing, presenting 

and discussing the process from initial problem, theory, test protocol, data analysis and results, 

in continuation of the previously presented scientific article. All material is presented in English. 
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Abbreviations 
aHF  - Absolute power of the high-frequency band (0.15–0.4 Hz) 

aLF  - Absolute power of the low-frequency band (0.04–0.15 Hz) 

aTotal  - Absolute power of all frequency bands 

EEG  - Electroencephalography 

ECG   - Electrocardiography 

HRV  - Heart Rate Variability 

HRVTi  - Integral of the density of the NN interval histogram divided by its height index 

LFHF  - Ratio of LF-to-HF power 

meanHR - Mean heart rate 

Peak HF - Peak frequency of the high-frequency band (0.15–0.4 Hz) 

Peak LF - Peak frequency of the low-frequency band (0.04–0.15 Hz) 

pLF  - Percentage of the sum of aLF and aHF for the low frequency band 

pHF  - Percentage of the sum of aLF and aHF for the high frequency band 

RMSSD  - Root mean square of successive NN interval differences 

SCG  - Seismocardiography 

sdHR  - Standard deviation of heart rate 

SDNN  - Standard deviation of NN intervals 

TINN  - Baseline width of the NN interval histogram 
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1.0 Theory 

1.1 Mental workload 

The study of mental workload (MWL) established itself during the 1980s, as the development of 

technology imposed greater cognitive demands on individuals. Even though MWL has an intuitive 

appeal, a concordant definition of the concept is still lacking. A frequently used analogy is 

however often made between mental and physical load, where they are comprised of stress (task 

demands) and strain (impact on human). Stress furthermore comprises several factors associated 

to the demand, where strain relies on available resources to cope with the demands leading to a 

demand/resource balance operationalization (Young et al., 2015). The definition of MWL from 

Young & Stanton, 2005 tries to comprehend this demand/resource relationship, as MWL reflects 

“the level of attentional resources required to meet both objective and subjective performance 

criteria, which may be mediated by task demands, external support, and past experience” - Young 

& Stanton, 2005, chp. 39-1. This definition implies that MWL is affected by various factors, where 

cognitive load theory has been suggested to distinguish these factors from each other. Three 

categories of cognitive load have been distinguished, referring to either intrinsic, extraneous and 

germane cognitive load. Intrinsic cognitive load relates to the intrinsic nature of the task being 

processed such as task difficulty. Extraneous cognitive load relates to external factors influencing 

the induced load such as time pressure and noise. Germane cognitive load relates to load induced 

by scheme formation and automation to solve the task. All the aforementioned loads are 

perceived to be additive in regard to the demands of the work, where the outcome relates to 

demand/resource balance (Galy et al., 2012).  

 

One of the reasons to study MWL is to identify suboptimal workloads represented (either 

underload or overload), by linking MWL and task performance (Figure 1).  
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Figure 1: Relationship between activation level, workload and performance (Young et al., 2015). 

 

As noticeable on Figure 1 both underload and overload are believed to be detrimental to 

performance, which solidify why performance measures are one of three main measures of MWL 

(Young et al., 2015). The other two relates to either physiological measures and subjective 

measures and are all often used in combination for the triangulation of measures to assess MWL 

(Charles & Nixon, 2019).   

1.1.1 Performance measures 

A frequently used metric of MWL is based on direct performance registration of the primary task 

to be dealt with. Primary task measures are useful when the performance can be related to other 

MWL levels, where parameters such as speed, accuracy, reaction time and error rate are often 

used performance measures (Cain, 2007). The assessment of MWL may also be conducted by 

evaluating the performance of a secondary task, as it relates to the spare mental capacity, not 

used by the primary task, and thereby a measure of the MWL (Young et al., 2015). Performance 

measures are highly dependent on the task to be performed, which complicate the overall 

comparison of the correlation between performance measures and MWL. Previous studies have 

proven that different MWL levels can be quantified by performance measures of the primary task 

(Marandi et al., 2018A; Marandi et al., 2018B) 
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1.1.2 Subjective measures 

MWL can also be assessed using subjective measures such as self-reporting the degree of 

perceived MWL induced by the task (Young et al., 2015). The most used self-reporting scheme is 

the NASA Task Load Index (NASA-TLX) (Charles & Nixon, 2019), and consist of six factors 

represented by subscales exploring the mental demand, physical demand, temporal demand, 

own performance, effort and frustration level. NASA-TLX is a two-part evaluation consisting of 

determining weights of the aforementioned factors and the rating of each. The weights are based 

on pairwise comparisons of the different factors contribution to the perceived MWL of the 

specific task. The rating of each factor is given on a numerical scale (0-100), reflecting the 

magnitude of each factor in the specific task. Each scale is divided into 21 gradations 

encapsulated by bipolar descriptors, indicating the low and high end of the scale (NASA, 1986). 

The NASA-TLX has proven to be a useful tool to assess MWL (Marandi et al., 2018A; Marandi et 

al., 2018B). 

1.1.3 Physiological measures 

Several different physiological measures have been presented to assess MWL. Charles & Nixon, 

2019 identified six key measures that is noninvasive nor requires medical procedures and 

expensive static equipment, which includes cardiac activity, respiration, skin-based measures, 

blood pressure, ocular measures and brain activity (Charles & Nixon, 2019).  

 

One of the most commonly used physiological measures, have been reported to be cardiac 

activity (Charles & Nixon, 2019), where different measures associated with the cardiac cycle give 

insight into MWL. The heart rate variability (HRV) is a typically reported parameter, which can be 

analyzed in both the time and frequency domain. These measures are based on the time between 

heartbeats, also known as inter-beat intervals (IBI), and the variance within. A summary of the 

time domain features has been presented in Figure 2 and the frequency domain measures in 

Figure 3. 



Aalborg University Master Thesis, Sports Technology, Group 10211         6th of June 2019 
 

 Page 9 of 48 

 
Figure 2: Summary of time domain features (Shaffer & Ginsberg, 2017). 

 
Figure 3: Summary of frequency domain features (Shaffer & Ginsberg, 2017). 
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The frequency domain methods involve a power spectral density analysis, with three commonly 

used spectral components being very low frequency (VLF - 0.0033-0.04Hz), low frequency (LF - 

0.04-0.15Hz) and high frequency (HF - 0.15-0.4Hz) (Shaffer & Ginsberg, 2017). The HF spectrum 

reflects the parasympathetic activity and is commonly referred to as the respiratory band due to 

heart rate variations related to the respiratory cycle. These heart rate variations are known as 

respiratory sinus arrhythmia, as inhalation accelerates heart rate and slows during expiration. 

The LF spectrum reflects baroreceptor activity where the detection of arterial blood pressure 

adjusts the HR. (Shaffer et al., 2014) 

 

Several studies support the correlation between HRV and MWL in office settings. Both Cinaz et 

al., 2013 and Taelman et al., 2011 found that several different HRV measures in both time and 

frequency domain decreased accordingly to an increase of the induced MWL (Cinaz et al., 2013; 

Taelman et al., 2011). Marandi et al., 2018B furthermore showed that MWL induced from a 

mental computer task resulted in significant different cardiac measures between load levels 

(Marandi et al., 2018B). 

1.2 Cardiac cycle  

The cycle that spans from the contraction of atria to ventricular relaxation, is known as the 

cardiac cycle. Two distinct periods of the atriums and the ventricles are present within this cycle. 

The period of contraction that allows the heart to pump and circulate blood is called systole 

period. The period of relaxation where heart chambers refill with blood is called diastole period. 

The systolic and diastolic periods do not occur simultaneously for the atriums and ventricles, and 

this offset is essential for a well-functioning heart. The heart activity and the individual periods 

of the cardiac cycles can be examined by electrocardiography (ECG), by measuring the electrical 

signals from the heart. (OpenStax, 2013) 

 

The heart utilizes the aspects of pressure and flow in order to move blood through the heart and 

provide circulation in the cardiovascular system. As fluids, both liquids and gasses, move from 
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higher pressurized to lower pressurized regions, the heart is able to move blood by pressurizing 

different chambers of the heart and thereby controlling the blood flow. (OpenStax, 2013) 

 

 
Figure 4: Overview of the Cardiac Cycle. The cardiac cycle begins with atrial systole and 

progresses to ventricular systole, atrial diastole, and ventricular diastole, when the cycle begins 

again. Correlations to the ECG signal are highlighted. (OpenStax, 2013) 

 

When the heart muscles relax (diastole) blood will flow from higher pressurized veins to the 

atriums, building up pressure in the atriums and blood will passively flow to the ventricles 

through the atrioventricular valves, filling up 80% of the ventricles. This phase is called ventricular 

filling (Figure 4). The remaining 20% fills up when the action potential triggers the atrial 

contraction (atrial systole), forcing the remaining blood through the atrioventricular valves. This 

phase is represented by the P-wave of the ECG signal. The contraction of ventricles (ventricle 

systole) is divided into two phases. Initially when the ventricles start to contract, pressure will 

rise, but not high enough to force the semilunar valves to open. As pressure quickly rises, the 

pressure is now higher than that of the atria, resulting in closing of the atrioventricular valves 

and thereby preventing backflow. Since no flow is occurring, the volume of the ventricles remains 
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the same in this initial phase of the ventricle systole. This phase is called the isovolumic 

contraction. In the second phase of the ventricle systole, the ventricular ejection phase, the 

pressure within the ventricles has now reached a threshold beyond what the semilunar valves 

can withstand. Blood is now rapidly ejected into the pulmonary trunk and aorta. The ventricular 

systolic phase is represented by the QRS complex in the ECG signal. Once the ventricles start to 

relax (ventricular diastole), pressure within the ventricles will fall to a level, lower than what is 

present in the pulmonary trunk and aorta. Blood will start to flow back towards the heart 

(represented by the small dip in aortic blood pressure readings, (Figure 5) forcing the semilunar 

valves to close and prevent backflow into the heart. Since the atrioventricular valves are still 

closed at this point, the volume of the ventricles remains the same (isovolumic ventricular 

relaxation phase). As the ventricular muscles continue to relax, pressure within the ventricles will 

continue to fall, eventually lower than the pressure in the atriums. This phase is represented by 

the ECG T-wave. Pressure will force blood from the atria to the ventricles, thereby opening the 

atrioventricular valves. The semilunar valves are closed, and both the atriums and ventricles are 

in diastole, thereby completing the cardiac cycle. (OpenStax, 2013) 

 

 
Figure 5: Blood pressure during one cardiac cycle, in different areas of the cardiovascular system 

surrounding the heart (OpenStax, 2013). 
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1.3 Autonomous Nervous System  

The autonomous nervous system is a part of the efferent component of the peripheral nervous 

system, with the purpose of innervating the glands, the heart and smooth muscles and thereby 

regulation of a wide range of body functions (blood flow, heart rate, digestion, respiration etc.). 

The main function of the autonomous nervous system is to response to both internal and external 

changes and maintain body homeostasis. (Richter & Wright, 2013) 

 

The autonomous nervous system is divided into two subsystems, the sympathetic and 

parasympathetic nervous system. The sympathetic part accelerates bodily functions (for example 

in a fight or flight situation), and is associated with for example increased workload (physical or 

mental) and stress. When exposed to situations where metabolic exertion is required, either 

during physical- or higher mental activity, sympathetic activity is increased. Heart rate increases, 

blood pressure rises, and adrenaline is released, while pupils are widened, and blood flow is 

directed towards skeletal muscles to increase the ability of the body to cope with the raised 

mental or physical demands. However, prolonged and raised sympathetic activity can lead to 

stress and diseases. The parasympathetic part works in the opposite way, responsible for 

relaxation, preparing the body for recovering. (Richter & Wright, 2013) 

1.4 Electrocardiography  

With placement of electrodes on specific locations of the body, it is possible to record the 

complex electrical heart-induced signals. These electric signal recordings are recorded by ECG. 

With analysis of the ECG, a detailed picture of normal and abnormal heart function can be 

computed. The ECG normally uses 3, 5 or 12 electrodes, with more electrodes providing more 

information. However, for obtaining HRV, only a 3-electrode setup is required. (OpenStax, 2013) 

 

Recordings of a normal functioning heart contains multiple components and intervals that 

corresponds to important heart-induced electrical events, that describes the relationship 

between heart contraction and electrical signals (Figure 6). (OpenStax, 2013) 
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Figure 6: ECG from a normal operating heart. (OpenStax, 2013) 

 

Within one cardiac cycle, five eminent events are present on the ECG: the P-wave, the QRS 

complex and the T-wave. Represented by the P-wave are the depolarization of the atriums, 

where the physiological contraction occurs approximately 25ms after the start of the P-wave. 

The QRS complex represents the depolarization of the much larger ventricles, that requires a 

stronger electrical signal. Following the QRS complex, the T-wave is caused by the repolarization 

of the ventricles. Repolarization of the atriums occur simultaneously with the QRS complex, 

making it invisible in an ECG. (OpenStax, 2013) 

 

Interpretation of the ECG can reveal certain abnormalities in the cardiac function. Amplitude and  

duration for different segments and intervals, as well as vector analysis, are used to discover 

cardiac related issues, e.g. enlargement of the atria, represented by an amplified P-wave. 

Furthermore, ECG signals can be used to obtain the HRV. (OpenStax, 2013) 

 

1.5 Seismocardiography 

Using techniques derived from seismology, seismocardiography (SCG) is the measure of chest 

wall vibrations caused by heart induced movements, as the heart is contracting, ejecting blood 
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into the vascular system and closing and opening and closing of heart valves. By utilizing highly 

sensitive, low-noise accelerometers, commonly attached to the lower part of sternum, these 

mechanical vibrations can readily be detected. With implementation of tri-axial accelerometers, 

heart-induced accelerations in three axes can be obtained, and not only the most commonly used 

dorso-ventral component. (Inan et al., 2015; Salerno & Zanetti, 1990) 

 

Compared to ECG, SCG provides new information of the cardiac cycle, related to the actual 

movements of the heart, and not only the electrical signals. Fiducial points indicating e.g. the 

mitral valve closing, aortic valve opening, and closing can be identified (Figure 7). 

 

Figure 7: Dorso-ventral SCG signal compared to ECG signal showing fiducial points of MC= Mitral 

(Valve) Closure, A0 =Aortic (Valve) Opening, RE = Rapid (Ventricular) Ejection, MO = Mitral (Valve) 

Opening, RF = Rapid (Ventricular) Filling, AS =Atrial Systole, AC =Aortic (Valve) Closure (Dinh, 

2011) 

 

With advances in accelerometer technology, the sensitivity of the accelerometers has greatly 

improved over the last 60 years since SCG were first investigated. Together with the decreasing 

weight of the accelerometers, the method of SCG is becoming more and more precise and 

applicable. (Inan et al., 2015) 
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1.6 Accelerometer  

Accelerometers are basically inertial sensors that utilize force sensing to quantify linear 

acceleration. Accelerometers commonly involve a mechanical sensing element, which has a proof 

mass suspended with respect to a reference frame. Inertial force due to accelerations will cause 

deflection of the suspended proof mass according to Newton’s Second Law, which can be 

measured electrically by principles of piezo resistance, piezoelectricity and differential 

capacitance as the most common. Piezoresistive accelerometers consists of a cantilever beam 

with incorporated piezo resistors arranged as a Wheatstone bridge, which results in 

proportionality between applied acceleration and voltage output. In a piezoelectric 

accelerometer the applied accelerations cause the sensing element to bend, which results in a 

change in output voltage. In a differential capacitive accelerometer, the displacement of the 

proof mass is measured capacitively, where the mass is encapsulated between two electrodes. 

As acceleration causes deflection of the proof mass and thereby changes in the electrical 

capacitance. Differential capacitive accelerometers are usually used when high sensitivity is 

required, due to a low noise level, which makes it ideal for seismocardiographic measures. (Yang 

& Hsu, 2010) 

 

Accelerometers have been used for various purposes in the areas of sport and healthcare. This 

includes quantification of sport specific movements, which covers both gross body movement 

and interlimb kinematics by applying various numbers of accelerometers (Chambers et al., 2015). 

Accelerometers are similarly used to classify different movements and postures, which 

furthermore includes estimations on e.g. steps completed and thereby an indirect estimation of 

physical activity. In close relation, accelerometers have been used to estimate energy 

expenditure in various settings. Postural stability has also been subject to the implementation of 

accelerometers, where fall detection algorithms have been developed to identify remote fall 

incidents (Yang & Hsu, 2010). Other implementations of accelerometers include assessment of 

oral activities by a tooth prosthesis instrumented with an accelerometer and as previously 

mentioned, quantification of cardiac activity by means of ballistocardiography and 

seismocardiography (Tamura & Chen, 2018). 
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1.7 Machine learning  

Machine learning comprises the ability to transfer a learning process to a computer, which 

definitely grants the ability to make decisions based on distinguishing inequality. This entails face 

recognition, biometric authentication, and document recognition among others (Dougherty, 

2013). The purpose of applying machine learning are often to predict specific patterns in any 

given data with a supervised or unsupervised approach. Unsupervised learning implies that any 

given algorithm is trained to cluster the data without any pre definition of present clusters in the 

data. The purpose of applying unsupervised learning is thereby to discover unknown clusters, 

known as classes, which is left to be interpreted. Regarding supervised learning, classes has been 

preassigned to the data and used to train the algorithm to make predictions on future data. This 

approach ensure that the predefined classes entail relevance to the purpose of applying machine 

learning (Dougherty, 2013). A specific area within supervised learning is classification, where a 

classification algorithm is trained to cluster the data into the predefined classes. A schematic 

overview of classification is illustrated in Figure 8. 

 
Figure 8: Schematic overview of a classification process (Dougherty, 2013, pg. 4) 

 

Labelling of classes is the first step directly related to classification, and the term labelling noise 

should be considered in that process. Labelling noise relates to incorrect labelling of classes with 

the risk of invalidating the results from a classification process. The risk is however limited with 

robust definition of the classes included (Kubat, 2017). The next step in the classification process 

is feature extraction, with the purpose of assigning single valued features to represent each set 

of class labelled data. The outcome of the feature extraction has a great impact on the 
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classification performance, so several aspects should be considered. First of all, the included 

features should characterize each class with large inter-class distance and small intra-class 

difference (Dougherty, 2013). It should furthermore be secured that all relevant features are 

included while still excluding irrelevant or redundant features (Kubat, 2017). Irrelevant features 

should be avoided due to the “curse of dimensionality” which states that the amount of data 

needed to train the classifier increases as the number of features increases. In relation to a finite 

amount of data, the performance of the classifier increases as the number of features increases 

until a certain point in dimensionality followed by a decrease of performance as illustrated in 

Figure 9. 

 
Figure 9: Classification performance in relation to dimensionality (Dougherty, 2013, pg. 124). 

 

This relationship is due to overfitting, which imply that the classifier has been trained to be too 

specific and therefore not flexible in regard to classifying new data. Overfitting can also be related 

to the specificity of the classification algorithm as illustrated in Figure 10, where two boundary 

separation techniques (linear and polynomial) are compared. Instance B seems superior in regard 

to instance A to classify the white and black dots correctly, but instance B might be performing 

poorer than instance A when faced with unseen data due to the specificity of instance B.  
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Figure 10: Feature x1 and x2 is generally linearly separable as shown in instance A with one false 

classification due to noise. Instance B illustrates overfitting of the polynomial boundary due to 

the specificity of the algorithm (Kubat, 2017, pg. 82). 

  

Several classification algorithms exist, but none are superior in regard to performance as the right 

choice of classification algorithm is very case determined. The evaluation of classification 

algorithms is often a twofold process which includes a validation evaluation based on the data 

used for training and an evaluation of the true error based on unseen data referred to as the test 

set. The purpose of validation is to provide an initial estimate of the performance. This validation 

is either based on a k-fold cross validation or a simple hold out method. K-fold cross validation 

separates the training data into k number of folds, where one fold is used for validation and the 

remaining for training. This procedure is then repeated k times meaning that all the training data 

has been used to train and validate the performance of the classifier. The hold out validation 

reserves a portion of the training data for validation purposes. The process evaluating the true 

error is however crucial, as evaluating the true error based on the validation process, would result 

in a biased true error (Dougherty, 2013).  
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1.7.1 Decision Trees 

Decision trees works by conducting several tests and thereby narrowing the field of possible 

classes to be assigned. Every decision tree is initiated by a root statement that relates to a 

feature, which then leads to other test-containing nodes related to another feature. Eventually, 

leaf nodes are reached which relates to different classes and the data are assigned to this specific 

class. Decision trees are generally easy to interpret as every test node is directly relates to the 

different features used. (Kubat, 2017) 

1.7.2 Nearest Neighbor 

Nearest neighbor classification algorithm is based on similarity, as the unseen data is classified 

to the most similar class based on the features involved. The similarity is quantified by the 

Euclidean distance in an n-dimensional space which is specified by the number of features 

included. The data is thereby classified to be the same as its nearest neighbor and thereby the 

minimum Euclidean distance between the unseen data and any data used for training. The 

Euclidean distance between two instances of data in n dimensions, x = (x1,...,xn) and y = (y1,...,yn), 

is given by equation 1: 

      

              (1) 

  

 

 

The number of nearest neighbors is often valuable to consider due to noise. By increasing the 

number of nearest neighbors to be considered, the data is classified to the class that is 

represented the most in its k nearest neighbors. The nearest neighbor algorithm furthermore 

solidify why irrelevant and non-normalized data might impair the performance of the 

classification. (Kubat, 2017)  
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2.0 Method 

2.1 Participants 

All participants (12 males) (Age = 26 ± 1 years, body mass = 81.8 ± 9.3, BMI = 24.9 ± 1.8 kg/m2) 

had normal or corrected to normal vision and were right handed computer mouse users. 

Participants were all non-smokers, non-drug addicts and had no known mental or heart diseases. 

Participants were instructed to abstain from alcohol (24h), caffeine (12h), painkillers and sleep 

medicine (24h), prior to the experiment. All participants were furthermore instructed to sleep a 

minimum of 7 hours prior to the experiment (reported sleep = 7.4 ± 1,1 hours). All experimental 

trials were conducted between 9am - 3pm. All participants signed a declaration of consent 

(Appendix 1) prior to the experiment, and were informed about their rights to withdraw from the 

experiment at any time. The participants were to be excluded if they were unable to complete 

the entire experimental protocol.  

2.2 Experimental setup 

The hardware setup consisted of a combined ECG and SCG measuring system. A five electrodes 

setup for the ECG, as well as a single accelerometer for the SCG, was connected to the same 

amplifier/AD-converter for synchronized data-logging. The hardware was connected via USB to 

a computer, running a data-logging software.  

2.2.1 SCG accelerometer 

For the recording of SCG signals, a small ±2g low-noise (5μg/√Hz) capacitive sensing 

accelerometer (Silicon Designs model 1221) with a sensitivity of 2000 mV/g was used. The 

accelerometer was encased in a small (10x10x8mm) lightweight 3D-printed PLA box and was 

placed on the lowest part of sternum with double adhesive tape. Furthermore, the wire was 

secured to the participants chest forming a small loop, to limit wire movement noise, and made 

sure not to overlap with the ECG electrode wires (Figure 11). 



Aalborg University Master Thesis, Sports Technology, Group 10211         6th of June 2019 
 

 Page 22 of 48 

 
Figure 11: ECG electrodes and SCG accelerometer placement. 

 

2.2.2 ECG electrodes  

A two-lead ECG, with Lead I and II configuration using five electrodes (Ambu®️ Neuroline 720, 

Ag/AgCl wet electrode) placed with one acting as ground (right leg), two as Lead II configuration 

(right arm (negative) and left leg (positive)) and two as lead I configuration (right arm (negative) 

and left arm (positive)) in accordance with Einthoven’s triangle (Figure 12). 
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. 

Figure 12: Einthoven’s triangle of ECG electrode placement. 

 

The electrodes were placed on the torso right under the clavicula for the arms and above the 

anterior superior iliac spine for the legs, to minimize electromyogenic noise. Furthermore, 

electrode wires were securely taped in place, forming a small loop to reduce wire motion. (Figure 

11) 

2.2.3 A/D converter, amplifier and computer software 

An IWorx 214 4-channel data recorder was used to sample both SCG and ECG signals. Sampling 

frequency was set to 1000 Hz. The data recorder was connected to a MacBook Pro running OS X 

10.14.2. For the preview and recording of data, the IWorx LabScribe V3.62 was used, able to 

export data as MatLab files for later analysis. 

2.3 Mental task 

A graphical user interface (GUI) running a connect-the-dots game (WAME 1.0) developed at 

Aalborg University (Marandi et al., 2018A), was used to induce the mental load. The task has been 

designed in accordance with other standard models of computer work (Samani et al., 2009, Birch 

et al., 2001) and consisted of cyclic computer operations where the participants had to recreate 

a specific pattern in a certain order. Each cycle involved a memorization period (MP), washout 

period (WP), and replication period (RP) (Figure 13).  
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Figure 13: Mental task GUI. A: memorization period, B: washout period, C: replication period, D: 

replication period with starting-, distraction- and correct pattern points indicated. 

 

The GUI was displayed on a Dell E193FP 19-inch LCD monitor with 1280x1024 resolution and 

75Hz refresh rate, and was placed approximately 55cm from the participants eyes and the center 

of the screen was furthermore placed approximately 15° degrees below the horizontal line of 

sight (Marandi et al., 2018A) (Figure 14).  
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Figure 14: Mental task workstation with eyesight angle and distance illustrated. 

 

The work panel contained a template panel with an appurtenant textual instruction and a 

replication panel, which subtended respectively 5° and 20° of visual angle in both horizontal and 

vertical direction. The GUI subtended approximately 27° of visual angle horizontally and 22° 

vertically. The area in which the participants were to complete the computer task was cordoned 

off to minimize the exposure of distracting elements in the surrounding environment and thereby 

standardize the extraneous cognitive load related to environment (Figure 15). 

 
Figure 15: Mental task workstation with surrounding curtain to minimize distraction. 
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Each cycle was initiated by the MP, where a specific pattern composed by a series of points was 

showed on the template section (Figure 13, A). Each point could take various shapes i.e. plus, 

asterisk, circle, triangle, square, diamond, pentagram, and a short text indicated the starting 

point for the pattern. The MP was followed by the WP where the pattern in the template panel 

disappeared and a cross located in the center of the replication panel was used as indication of 

the WP (Figure 13, B). The mouse cursor was furthermore made invisible to avoid any 

prepositioning prior to the RP. The RP was initiated by a scaled version of the pattern points 

appearing on the replication panel, and the participant was now able to connect the points in the 

correct sequential order to replicate the same pattern shown during the MP (Figure 13, C). To 

indicate that the first point of the pattern was correctly clicked, the point was enlarged by a factor 

of two. Whenever the participant clicked on the points in the right order, a line was drawn to 

connect the newest correctly clicked point to the previous one, otherwise no line appeared. The 

number of pattern points (PP) to be connected and the geometrical complexity of the patterns 

were changed to increase the intrinsic cognitive load and thereby inducing three different levels 

of mental loads referred to as low (PP = 4), medium (PP = 5) and high level (PP = 6). The 

geometrical complexity was changed such that the angles between any connecting lines were 

tightened with increased mental load (Marandi et al., 2018A). All MWL levels of the mental task 

also included a distraction point (DP), which were to be avoided in the replication of the pattern 

(Figure 13, D). The patterns were predefined and randomly generated, where the order of these 

patterns was randomized for each participant to minimize the germane cognitive load. A time 

constraint of each period was predetermined and in accordance with Marandi et al., 2018A being 

2.06s, 2.34s, and 2.62s for MP and WP, and 4.11s, 5.06s, and 6.02s for RP in low, medium, and 

high levels of mental load respectively. The purpose of the level dependent time constraint was 

to standardize the extraneous cognitive load.  
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2.4 Pilot trials 

For early changes and adaptations, pilot trials were conducted. The initial assumptions and 

experimental procedures were tested for practical implementation and ease of use. 

Furthermore, the complete experimental setup was tested for bugs and for familiarization 

purposes. The pilot trials were conducted on two individuals, that corresponds to the participant 

characteristics as described in 2.1 Participants. During the pilot trials it was discovered how 

important wire placement was, to reduce noise on the ECG signal. More specifically, as the ECG 

record electrical impulses, the wire from SCG cannot be in contact with the ECG wires, as this 

strongly interfered with the ECG signal.  

2.5 Experimental protocol 

The experimental trials followed the protocol as shown in Table 1. 

 
Table 1: Experimental protocol. 

 

After participants had arrived, received information about the study and signed the declaration 

of consent, height and weight was measured, and sleep and substances ingested prior to the 

experiment (alcohol, caffeine, painkillers, sleep medicine etc.) were reported. The workstation at 

which the participants would be sitting, when completing the mental tasks, were adjusted to 

each participants height, to ensure a standardized visual distance and angle, as described in 

paragraph 2.3 Mental task. Participants randomly drew an ID number matching a mental task 
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level sequence. The sequence of the three different mental load tasks was counterbalanced 

across the participants (Table 2).  

 
Table 2: Counterbalanced mental task level sequence orders for all participants.  

 

One researcher was responsible for acquiring and scheduling participants, while the other was 

responsible for constructing the sequence matrix and running the MatLab GUI. This ensured no 

biased experiments, keeping the mental task sequence blinded from the participant responsible 

researcher. 

 

Next, the skin underneath each ECG electrode was prepared to lower the skin impedance. This 

procedure included removal of hair, light abrasion of the skin surface and cleansing using alcohol 

wipes. It was ensured that the alcohol was fully evaporated before application of electrodes 

(Crawford & Doherty, 2011). The ECG electrodes and SCG accelerometer was placed on the 

participant according to paragraph 2.2.1 and 2.2.2, while ensuring that wires from each system 

were not in contact. 

 

The mental task was explained to participants and a training session consisting of at least 2 x 5 

min (5 min low level and 5 min high level, repeated until familiar) was completed, to familiarize 

participants with the task, while equipped with the apparatus. After the familiarization period 

was completed, participants weighted the different parameters of the NASA-TLX test, based on 
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their experience with the task during the familiarization period. Next, participants rested for 10 

min, before completing the first mental task level determined by the participant ID based 

sequence. After the mental task, participants were instructed to complete the NASA-TLX 

subjective rating. This was repeated until all 3 mental task levels (each consisting of 5 min) had 

been completed and rated, after which the trial was completed. The experimental protocol was 

completed twice on each subject on 2 different days, with at least 7 days in between. However, 

participants did not weigh the NASA-TLX parameters on the second day, as all ratings use the 

weighting from the first familiarization period. 
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3. Data analysis 

3.1 Performance metrics 

An overall performance metric (OP) was computed for each task completed by each participant 

to address their dexterity. This OP metric was computed as the ratio of two other performance 

metrics, which quantifies how accurate and how fast the participant performed each task.  

To account for the participant’s clicking speed the mean reaction time (MRT) was defined. The 

MRT was computed in three different ways, depending on the degree of completion of the 

replication (Equation 2). If all the points in the pattern was correctly clicked, the time intervals 

(TI) between the correct clicks (CC) and the first click in respect to the task onset time were 

averaged with respect to the number of pattern points (PP). If only some of the PP were correctly 

clicked, the remaining time of the replication period (RTRP) was added to the summation of time 

in between correct clicks and averaged with respect to the number of PP. If no PP were correctly 

clicked, MRT was equal to the replication period.  

                   

 

 

          (2) 

 

 

 

The MRT was normalized with respect to the minimum of MRT across all participants (0.5120s). 

The parameter related to accuracy, selective attention (SelA), was defined as the ability to keep 

focused on a set of actions despite any distracting stimuli (Equation 3).  

 

                (3) 
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The SelA acquires the highest value when the number of CC is equal to the number of PP and 

where no incorrect clicks (IC) and clicks on the distraction point (DC) was performed.  

The OP was defined as the ratio between SelA and MRT, where a value of 1 account for the 

highest performance and 0 accounts for the lowest performance (Marandi et al., 2018A).  

3.2 Subjective ratings 

Overall weighted ratings were computed for each task completed by each participant. A 

weighting of the six different parameters (mental demand, physical demand, temporal demand, 

performance, effort, frustration) were computed based on the pairwise comparisons of the 

parameters after the familiarization period. This weight was multiplied to the rating from the 

numerical scale associated with each parameter. These adjusted ratings were summed and 

divided by 15, which correspond to the total number of weightings, and results in a total weighted 

rating associated to each task.  

3.3 Physiological measures  

 
Figure 16: General steps involved in the data analysis of physiological measures. 
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Both ECG and SCG were included as physiological measures of MWL, and the general steps 

involved in the data analysis has been illustrated in Figure 16. These steps include segmentation 

of the ECG signal, segmentation of the SCG signal, HRV analysis, agreement between ECG and 

SCG HRV measures, statistical testing and machine learning. 

3.3.1 ECG cardiac cycle segmentation 

 
Figure 17: Processing steps involved in the ECG segmentation and creation of IBI files. 

 

For the analysis of ECG based HRV, a MatLab script was constructed where the computational 

steps involved are illustrated in Figure 17. Firstly, raw Lead II data was extracted from the data 

matrix and structured based on the ID of each participant, test day and load level. Secondly, the 

MatLab toolbox BioSigKit (Sedghamiz, 2018) was implemented, using the Pan-Tompkins 

algorithm (Pan & Tompkins, 1985) for R peak detection, which includes several individual steps. 

The raw ECG data are filtered using a 3rd order Butterworth filter with fc,low = 5Hz as the low cut 

off frequency and fc,high = 15Hz as the high cut off frequency to eliminate baseline wander and 

high frequency noise (Sedghamiz, 2018). The filtered ECG signal are then differentiated, squared 

and ultimately integrated using a moving window integration with a window of 30 samples 

(Sedghamiz, 2018). The R peaks are then annotated if larger than ⅓ of the max value of the 

filtered ECG signal (Sedghamiz, 2018). The IBI are computed as the time between adjacent R 

peaks and are ultimately saved as IBI files and later used for the HRV analysis.  
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3.3.2 SCG cardiac cycle segmentation 

 
Figure 18: Processing steps involved in the SCG segmentation and creation of IBI files 

 

For the purpose of running HRV analysis based on SCG, another MatLab script was constructed, 

involving several steps as illustrated in Figure 18. The goal was to automatically detect and 

remove noisy areas of the signal, and to segment individual cardiac cycles of the SCG signal 

without the use of the concurrent ECG measurements.  

 

For the auto-detection and cancellation of noisy areas in the SCG signal (Figure 19, A) a moving 

standard deviation was calculated (window length=1000 samples) (Figure 19, B). The locations 

and widths of the noisy areas peaks were found using a minimum peak prominence of 0.3V, and 

the SCG was zeroed out around these peaks (± 1 width of the peak) (Figure 19, C) for later data 

analysis. 



Aalborg University Master Thesis, Sports Technology, Group 10211         6th of June 2019 
 

 Page 34 of 48 

 
Figure 19: Steps involved in the automatic noise detection/cancelation of SCG signal. A) filtered 

SCG signal, B) moving std with a 1000 sample window, C) filtered SCG signal with zeroed noisy 

areas. 

 

For the cardiac cycle segmentation, SCG data was filtered using a 4th order band pass 

Butterworth filter (fc,low = 0.5Hz, fc,high = 80Hz). The SCG signal was then differentiated, rectified 

and filtered using a 2nd order Savitzky-Golay filter with a window length of 101 samples for 

segmentation purposes (Figure 20, A,B,C). 
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Figure 20: Steps involved in the automatic cardiac cycle segmentation of SCG signals. A) raw SCG 

signal, B) filtered SCG signal, C) differentiated and rectified SCG signal with template illustrated 

by grey area, D) Savitzky-Golay filtered signal, E) match filtered SCG based on template. 

 

Next, a template was defined from the Savitzky-Golay filtered SCG signal (Figure 20 D, indicated 

by greyed area). The differentiated, rectified and Savitzky-Golay filtered SCG signal was then 

match filtered using the time inverted and heart rate scaled template, resulting in figure 20, E, 
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where peaks with lower adjacent peaks were located, resulting in cardiac cycle segmented SCG 

signals. 

The auto segmented SCG based IBI were validated against ECG based IBI using a Bland-Altman 

plot, based on data with no noise removal from 2 random participants. 

3.4 HRV analysis 

 
Figure 21: Processing steps involved in HRV analysis. 

 

As illustrated in figure 21, the IBI files were preprocessed to remove ectopic beats, detected by a 

threshold of 3 standard deviations, as pure removal of IBI has been proved to perform superior 

to e.g. linear and cubic spline interpolation (Lippman et al., 1994). The IBI are now characterized 

as Normal-to-Normal intervals (NN-intervals) as any abnormalities in the IBI has been removed. 

The NN-intervals was furthermore detrended for low frequency trends, using the Wavelet Packet 

method.  

 

After preprocessing, the signal was analyzed in both the time- and frequency domain. The HRV 

time domain features included were: average heart rate (MeanHR), standard deviation of NN 

intervals (SDNN), root mean square of successive NN interval differences (RMSSD), baseline 
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width of the NN interval histogram (TINN), standard deviation of heart rate (sdHR), and the 

integral of the density of the NN interval histogram divided by its height (HRVTI). The HRV 

frequency domain features included were: the absolute power of the low-frequency (0.04–

0.15 Hz) band (aLF), absolute power of the high-frequency (0.15–0.4 Hz) band (aHF), absolute 

power of all frequency bands (aTotal), percentage of the sum of aLF and aHF for the low 

frequency band (pLF), percentage of the sum of aLF and aHF for the high frequency band (pHF), 

the ratio of LF-to-HF power (LF/HF ratio), peak frequency of the low-frequency band (Peak LF), 

peak frequency of the high-frequency band (Peak HF). 

 

Traditional analysis of frequency domain measures (Autoregressive and Fast-Fourier Transform 

based techniques) requires evenly sampled data, which is naturally not the case for NN-intervals. 

Also, for the SCG based HRV analysis, removal of noisy areas furthermore contributes to the 

problem of acquiring evenly sampled NN-intervals. Interpolating and resampling unevenly 

sampled data can distort power spectral estimates, which can result in loss or distortion of 

information. (Fonseca et al., 2013). Instead, the Lomb Scargle method was applied as it does not 

require evenly sampled data.  

 

Since the current studies involves short recordings of 5 min, only the low frequency (LF: 0.04-

0.15Hz)  and high frequency (HF: 0.15-0.04Hz) bands are of interest, since the very low frequency 

band (VLF: 0.0033-0.04Hz) requires at least 5 min long recordings (24h is optimal) and the ultra-

low frequency band (ULF: 0-0.0033Hz) requires 24 hour recordings. (Shaffer & Ginsberg, 2017). 

Due to the short length of the recordings, certain time domain measures (SDANN, SDNNI) have 

furthermore been excluded from the data analysis. 

 

The above mentioned were conducted in a batch process, handling all sequences from all 

subjects, leading to exported spreadsheets for SCG and ECG recordings, with all time- and 

frequency domain measures, from which agreement between ECG and SCG based HRV analysis 

and statistical testing was conducted. 
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3.5 Statistical analysis 

All measures were statistically tested in SPSS, using a two-way ANOVA with repeated measures, 

followed by a pairwise comparison for load levels, using the Bonferroni correction, with a 

significance level of 𝛼 = 0.05. This includes the performance measures obtained by the mental 

task MatLab GUI, subjective ratings from the NASA-TLX, as well as time and frequency domain 

measures from both the ECG and SCG based HRV analysis. Mauchly’s test of sphericity were 

implemented, and if violated, corrected for, using the Greenhouse Geisser correction. 

 

The agreement between SCG- and ECG based HRV analysis was assessed using the Intraclass 

Correlation Coefficient (ICC), with a mixed effects ICC with single measures, ICC(3,1). The ICC 

values were interpreted based on the following guideline adopted from Koo & Li, 2015; ICC < 0.5 

are indicative of poor agreement, 0.5 < ICC < 0.75 are indicative of moderate agreement, 0.75 < 

ICC < 0.9 are indicative of good agreement and ICC > 0.9 are indicative of excellent agreement. 

ICC values for all HRV measures, used in the statistical analysis, were calculated. 

3.6 Machine learning 
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Figure 22: Schematic overview of the steps included to classify MWL levels using machine 

learning.  

 

Machine learning was implemented to evaluate the ability to discriminate between MWL levels 

based on the segmented SCG signals as illustrated in Figure 22. Three different approaches to 

this classification process was selected, meaning that the classification algorithms were trained 

on the entire dataset for one approach, while the other two approaches were divided into 

participant and participant on the respective test day respectively. Different parts of the data 

were allocated for training and test purposes where 50 cardiac cycles were included from each 

mental workload level, on each respective day, for each participant. This means that each 

approach to the classification process, all together, participant separated, and participant and 

test day separated, contained different sample sizes being 3600, 300 and 150 samples 

respectively. 

 

A total of 22 features were computed for each SCG segmented cardiac cycle including: mean, 

standard deviation, integral, median, variance, range, skewness, kurtosis, length, RMS, systolic 

max, location of systolic max, diastolic max, location of diastolic max, time from systolic max to 

diastolic max, first systolic min occurring before systolic max, location of systolic min, first 

diastolic min occurring before diastolic max, location of diastolic min, time form systolic min to 

diastolic min, time from systolic min to max, and time from diastolic min to max. The systolic and 

diastolic features were found by searching within 40-70% and 70-100% of the signal respectively. 

Some selected features have been visualized in figure 23.  

 



Aalborg University Master Thesis, Sports Technology, Group 10211         6th of June 2019 
 

 Page 40 of 48 

 
Figure 23: Illustration of certain features of the SCG signal for one cardiac cycle. 

 

All features were rescaled to obtain values in the range 0-1 by equation 4: 

        

(4) 

 

Where y denotes the scaled version of the feature x. A Principal Component Analysis was 

performed in order to reduce the dimensionality of the features while retaining any potential 

inter-class variation (Dougherty, 2013). The number of principal components included for further 

analysis was based on that the principal components comprised 95% of the total variance 

(Jackson, 1993). Decision Trees and K-Nearest Neighbor were chosen as the included 

classification algorithms and trained to predict the mental workload level. The algorithms were 

validated using a 5-fold cross validation and the superior variant of each classification algorithm 

were chosen for estimating the true error based on the testing data set.  
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4. Results  
Table 3 provides an overview of the measures (ECG and SCG based HRV, performance 

measure, subjective rating) computed to assess MWL. The statistical analysis reveal that 

significant differences were found for ECG based Peak LF, SCG based aHF, aTotal and Peak 

LF, performance, and subjective rating. The appurtenant p-values of the two-way ANOVA with 

repeated measures and the post hoc test have been presented in Table 4. These results reveal 

that ECG and SCG based Peak LF and performance score significantly decreased with 

increments of MWL, the subjective ratings significantly increased with increments of MWL. SCG 

based aHF and aTotal and subjective rating significantly decreased while performance score 

significantly increased from the first to the second test day. Interactions were found for SCG based 

aHF, aTotal, pLF, pHF and LF/HF ratio and for ECG based aHF. The computed ICC (±95% CI) 

between ECG and SCG based HRV measures has been summarized in Table 5. All time domain 

features show good to excellent correlation, except for HRVTI which showed moderate to good 

agreement, while the frequency domain features ranged from poor to excellent agreement (Table 

5). The cross-validation accuracies and true error of the two included algorithms classifying the 

three different levels of mental workload has been presented in Table 6. This analysis generally 

showed poor classification accuracy, while a tendency towards slightly higher accuracies for the 

participant and day specific approaches occurred. The most superior classification models 

associated to each different algorithm were coarse decision tree (4 splits) and a medium KNN (10 

neighbors). The validation of the cardiac cycle auto segmentation is presented as a Bland-Altman 

plot between ECG and SCG based IBI (Figure 24). The bias was found to be 0.006ms, upper- 

and lower limits ±28ms and no trend was discovered, representing a good agreement between 

methods when visually inspecting the location of datapoints in the plot. 
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Table 3: ECG and SCG based HRV results, performance measures and subjective ratings in 

mean±1std. Statistically significant differences between one or more groups/days, are marked in 

bold and with a *.  
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Table 4: F and p values of two-way ANOVA with repeated measures tests, with pairwise 

comparison (Bonferroni) for load levels. Bold font and * indicates significant difference. 

 

 
Table 5: Two-way mixed single measures Intraclass Correlation Coefficient (ICC) measuring 

absolute agreement, between ECG- & SCG based HRV analysis.  

 



Aalborg University Master Thesis, Sports Technology, Group 10211         6th of June 2019 
 

 Page 44 of 48 

 
Table 6: Classification accuracies in percentage (%) from the initial 5-fold cross validation, and 

true error testing of trained models fed with new data.  

 

 
Figure 24: Bland-Altman plot illustrating agreement between ECG and SCG based IBI, n=2750.  
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