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Abstract

Introduction: Artifacts and noise in PET imaging are caused by multiple factors, including lowered radiotracer
dose and information loss in the form of missing pixels or missing projections. Recently, deep learning based
algorithms have achieved promising results in the medical imaging field, including PET denoising and CT
sinogram inpainting, especially using the Convolutional Neural Network (CNN) and Generative Adversarial
Networks (GAN) architectures. Aim: This article aims to compare CNN and GAN approaches for missing
data reconstruction on PET sinogram domain. Methods: The end-to-end framework, from PET image to the
sinogram domain and back to PET image domain, was proposed. The Radon transform was applied to covert PET
images into sinograms. The first model was the CNN encoder-decoder based network with four skip connections.
The effective strategy was applied to efficiently train more corrupted PET sinograms by loading previously
trained weights. The second approach was the GAN network, with the generator designed similarly as the CNN
encoder-decoder, and the discriminator containing four convolutional layers to classify generated sinograms as
artificially generated or ground truth. The proposed framework ended by applying filter back projection algorithm
to transform sinograms back to PET image domain. Results: The results revealed that GAN outperformed CNN
by a small margin. The average PSNR and SSIM scores within all five corruption levels were 41.44, 0.977, and
42.34, 0.983 when predicting missing pixels. Differences of two metrics between CNN and GAN were higher
when predicting missing projections; 40.13, 0.866 versus 46.84, 0.989. Additionally, GAN performed noticeably
better when 90% of sinogram data were removed, resulting in a sharper and more detailed reconstructed image,
qualitatively comparing to CNN. Discussion: Different network architectures, chosen hyperparameters, and
objective functions, might be the reasons why GAN performed better than CNN. Even though the study had some
limitations, the promising results were achieved, which motivates to experiment further.
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1. INTRODUCTION

POsitron Emission Tomography (PET) is one of the
major imaging modalities, broadly used in hos-

pitals for diagnostic and intervention purposes [1].
High-quality PET images are often used in diagnos-
ing brain diseases and disorders, such as Alzheimer’s,
dementia [2]. Unfortunately, reconstructed PET im-
ages usually contain more noise and artifacts com-
pared to magnetic resonance imaging (MRI) and com-
puted tomography (CT) due to the constraints, such
as low number of coincidence events - photons that
reach the detector, imposed by a reduced dose of a
radiotracer.[3] Additionally, the noise and artifacts

in PET are caused by the missing pixels or miss-
ing projections which appear in high-resolution PET
scanners [4, 5]. All these factors contribute to PET
image quality by making the resulting image blurred,
unclear, and hard to interpret. Therefore, scientists
and researchers seek to come up with different solu-
tions to overcome the limitations and improve PET
image quality. Additionally, the ability to use fewer
data and predict high-quality medical images would
require less radiation to achieve the desired outcome.
There is a trade-off between high-quality PET images
and restrictions of available events from minimiz-
ing exposure for health reasons [6]. If high-quality
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PET images could be predicted from lower data rep-
resentations, a lower amount of radiotracer would
need to be used. PET system detects pairs of gamma
rays emitted from the injected radioactive tracers on
the biologically active molecule. These coincidental
gamma pairs are recorded to generate a 3D volume
using computer analysis [2]. According to the re-
port "Biological Effects of Ionizing Radiation (BEIR
VII)", the estimated risk of cancer increases about
0.04% per single PET scan, which multiplies after
repetitive examinations. On the other hand, when re-
ducing the radiation dose, the quality of PET images
are degraded, due to the lower amount of detected
photons [1], which negatively affects the diagnostic
capabilities of PET. To address radiotracer dose re-
lated issues, Shi et al. [1] used regression forest-based
framework and predicted normal dose PET images
from low-dose images. The study showed promising
results when the mean standardized uptake value
of predicted standard dose images was close to the
ground truth and proved that the machine learning
approach could be successfully used on PET images.
However, it also had limitations when images were
predicted voxelwise and did not account for the rela-
tionship with the neighboring voxels. Moreover, the
study was conducted using a small number of sub-
jects.
Recently, PET systems started using silicon photo-
multipliers (SiPMs) as a detector for photon regis-
tration. According to the literature [5], there is a
high probability that some of the SiPMSs may not
function properly, resulting in loss of counts in pix-
els. Such "dead" pixels are pixels with missing data
values causing the degraded quality of reconstructed
PET images. Additionally, the missing pixels may
arise due to the problems in processing electronics
[5]. The study by Jong et al. [4] investigated a few
methods to compensate for missing data caused by
the gaps between high-resolution PET scanner de-
tectors and faulty electric parts. Two approached
were applied: bilinear interpolation approach and
model-based approach. The model-based approach
outperformed bilinear interpolation, but with a price
of long processing time. [4]
A variety of studies used commonly know algorithms
for improving PET image quality. Firstly, Gaussian
filtering and bilateral filtering were used to improve
PET post-reconstruction; however, such filtering re-
sulted in reduced edge preservation and blurred

images [7]. Furthermore, the block-matching 3D
(BM3D) [8] approach was applied to PET images and
showed structural improvements [9]. However, the
study used simulated, not the real PET data, while
BM3D is not effective on natural images due to the
lack of highly correlated matching blocks.[10] An-
other attempt to improve medical imaging quality is
to apply filtering technique on the sinogram domain
instead of reconstructed images. A sinogram consists
of an angle based histograms. Such data format is
usually the raw format in PET systems.[2] In theory,
when saving PET data in the sinogram domain, every
detected event is stored using the angle and the offset
of the scanned tissue point, which represents a single
event. Multiple sorted events create the sinogram
(Figure 1), which usually is a smaller data format
compared to the reconstructed image.

Figure 1: Photon annihilation events in PET detector ring.

A comparison study by Yu and Muhammed [11]
suggested that signal-to-noise ratio (SNR) was
improved on pre-reconstruction denoising, where
PET sinogram are denoised before applying a recon-
struction algorithm, compared to post-reconstruction
algorithms. However, the study used only the
classical filtering approaches which tend to induce
artifacts; the study was not extended to investigate
the performance with more recent neural networks
based approaches.
Finally, most recently, convolutions neural networks
(CNN) has become a state-of-the-art technique in
terms of the image analysis [12]. A study by An et al.
[13] proposed a deep CNN for full-dose PET image
reconstruction based on the local patches from the
low-dose PET. CNN was applied to the CT sinograms
to predict the residuals - a difference between noise
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and ground truth images. Residuals were subtracted
from the noisy sinograms, resulting in a higher
quality of the reconstructed CT images [12]. Even
though the study showed promising results on CT, it
is still unknown how sinogram based reconstruction
using CNN would perform on PET images.
Another widespread machine learning approach is
Generative Adversarial Network (GAN) recently
received widespread attention [14, 15, 6]. GANs
are known as generative models, which have two
main components: generator and discriminator. The
generator learns to replicate the realistic input
images, while the discriminator tries to distinguish
between the generated and real images. A study by
Zhao et al. [16] suggested a sinogram inpainting
network which uses GAN to solve a limited angle
CT reconstruction problem. The study concluded
promising results in CT sinogram inpainting, yet
again, there were no indications of how such an
approach can be applied to PET images. Therefore, it
is still unknown how CNN and GAN would perform
on PET sinograms. This is the key interest of this
study.

This study aims to use CNN and GAN approaches
for corrupted PET image reconstruction in the sino-
gram domain. Additionally, to observe the depen-
dency of models performance to the available image
data, two data representations of multiple levels of
corruption are introduced.

2. METHODS

Data acquisition

The publicly available dataset was acquired
from the Cancer Imaging Archive (TCIA:
http://www.cancerimagingarchive.net), an archive of
the medical images of cancer created by the National
Cancer Institute (NCI) [17]. Soft-tissue-Sarcoma
dataset was chosen from TCIA, which is, based
on the thorough search of the relevant datasets
yielded a large number of tested subjects, giving
the high number of training samples, necessary
to train a deep neural network [18]. The dataset
consists of 51 patients with histologically proven
soft-tissue-sarcomas of the lower extremities in
PET/CT/MRI image formats [17, 19].

For this study PET data from all 51 subjects were
used which contained DICOM (Digital Imaging
and Communications in Medicine) images of 128 x
128-pixel resolution in a total of 13,417 2D images.

The fludeoxyglucose (FDG) radiotracer was used
when performing PET scans on a PET/CT scanner
(Discovery ST, by GE Healthcare). A median of 420
MBq of FDG was injected intravenously followed by
the 60 min of body imaging acquisition.[17] Addition-
ally, the attenuation correction was performed which
reduces severe artifacts induced due to the high num-
ber of lost photons during the procedure.[17]
From 51 data subjects, five random patients were
put aside and left as the unseen test dataset, which
approximately corresponds to the 10% of the entire
dataset. This test set is used only for the final re-
sults. The following 46 subjects correspond to the
12,082 PET images, which were divided into train-
ing and validation datasets with a ratio of 70% to
30%, respectively. Training and validation data sets
were used during the training phase and for hyper-
parameter tuning. After each training phase, the
qualitative results were observed for evaluation of
reconstructed images, in terms of visible structural
details, artifacts, blur. Qualitative results represent
the real-world scenario since this is how the doctors
perceived image information in the working environ-
ment. Any image distortions increase the risk of
misdiagnoses. Thus, the quality of reconstructed im-
ages have a direct impact on patient treatment [20].

Radon transform

The TCIA data was in reconstructed PET image for-
mat. Therefore, the Radon transform was applied to
convert data into the raw sinogram domain. Radon
transform of the image described as the function
f (x , y), is defined by the combination of the integrals
through f (x , y) in vertical and horizontal projections,
or y and x axis, respectively. [21] Radon transform
mathematical is defined as:

Rf =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − s)dxdy

where θ is the angle of the line and s is a perpen-
dicular offset of the line. [21]

In this study, the data were transformed by us-
ing skimage library in Python coding environment.
Skimage allowed to define two parameters before
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transformation: the angle theta, which was left as a
default value of 180◦, and Circle, which when set on
’True’ allows making a uniform sinogram size of 128
projections and 128 detectors, corresponding to the
size as the original image. This property was helpful
since CNN requires uniform dataset (Figure 2).

Figure 2: Radon transform applied on the PET image (a).
Resulting sinogram (b) is used for further pre-
processing.

Two data representations were created to address
missing data problems in PET imaging domain: miss-
ing pixels and missing projections. Missing pixels
are simulated by removing random data points from
the PET sinogram. The amount of randomness was
increased in 5 levels, 10%, 30%, 50%, 70% and 90%
(Figure 3 a) ), to reflect multiple scenarios of missing
patterns, also, to investigate how far CNN and GAN
can perform to compensate missing pixel values prop-
erly. The second data representation was focused on
simulating missing projections, which appear in PET
sinograms due to the gaps between detector heads in
the scanner or because of faulty detectors [4]. Also
presented in 5 different levels (Figure 3 b))

Intensity normalisation

Applying the Radon transform converted the whole
data into the sinogram domain. Therefore, further
pre-processing was applied to prepare data for the
neural networks. Data were rescaled so that all the
values would be within the range 0 and 1. Such in-
tensity normalization helped to maintain the weights
as relatively small values during the training phase.
The large weight values usually result in the poor
performance and unstable model, thus, it is critical
to rescale input and output data before presenting
data to the network. [22] Thereby, this was achieved
by applying the following equation:

Zi =
Yi − Ymin

Ymax − Ymin

where Zi is rescaled data, Yi original data.

Model architecture

In this paper, two different architectures were used
and compared for lost data reconstruction in PET
sinogram domain. Most of the hyperparameter
tuning was performed manually, where some of them
were chosen according to the literature. Rectified
linear unit (ReLu) was used as an activation function
throughout the proposed networks since it mathe-
matically simple, yet effective, also recommended
according to the literature [18]. Different optimizers
were tested, and Adam solver [23], with a learning
rate of 0,003 showed the fastest convergence and
best results and both CNN and GAN models.

CNN Architecture

The first architecture is a convolutional neural net-
work based autoencoder inspired by U-net CNN for
image segmentation [24]. Proposed network has four
convolutional layers with 32, 48, 64, 64 filters, respec-
tively. These layers encoded the image data into a
smaller form, which contained automatically learned
the most important features. Then, the compressed
data were fed through four deconvolving layers of
64, 64, 48, 32 filters, respectively. Deconvolutional
layers of the network are called a decoder part. It
reconstructed the compressed image data into the
normal size (128 x 128) images. 3 x 3 filter size was
used through the entire network, with a stride of one,
based on the similar studies [24, 25]. Additionally,
four skip connections were added which shuttled low-
level features to the high level features [16]. Such
direct connections were proven to strengthen feature
propagation, encourage feature reuse, and lower the
computational cost by reducing the number of pa-
rameters.[26] In the CNN model, the training and
validation losses after every batch were computed
between the batch of predicted and the ground truth
values using Mean-square-error (MSE) also known
as L2 loss. MSE is one of the commonly used objec-
tive function, and it is available by default on Keras
library. It was used in the CNN model since it is a de
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Figure 3: Representations of corrupted sinograms with (a) simulated missing pixels, and (b) missing projections at 5
different levels.

facto standard objective function in neural networks
[27].
Two CNN models were trained from scratch; one
with data representation of 10% of missing pixels,
and the second with a similar amount of missing
projections. Models were trained for 100 epochs un-
til MSE error stopped decreasing, which indicated
that the models started to overfit. The weights from
these models were loaded to retrain the data repre-
sentations with a higher level of corruption. This
time approximately 30 epochs per all executed train-
ing were enough until the models started to overfit.
Thus, using previously trained weights allowed to ac-
celerate training by achieving faster convergence but
maintaining the high quality of reconstructed PET
sinograms. A similar strategy was reported when pre-
trained 2D weights were used for 3D model training
[28].

GAN Architecture

In this paper, the proposed GAN was based on the
’pix2pix’ network (Figure 4) [29], since it was previ-
ously successfully applied for the image inpainting
problem when a big portion of removed sinogram was
reconstructed with promising results [15]. Unlike
conventional neural networks, GAN consist of two
models: generator and discriminator. The GAN auto-
matically learns the goal specific loss function, which

classifies the output into real (ground truth) of ’fake’
(artificially generated), while at the same time trains
the generative model to minimize the loss error Isola
et al. [29]. Blurred images are ranked as ’fake’, there-
fore, the GAN will adjust generative model weights
to generate more realistic PET images. Such GAN
working principle is the biggest advantage against
regular CNN and its pre-defined loss functions, such
as mean-square-error (MSE) [28]. For GAN gener-
ator model, the previously described CNN encoder-
decoder architecture with skip connections was used.
The discriminator consists of 4 convolutional layers
with 64, 128, 256, 512 filters, respectively. The final
output layer was a convolutional layer with one filter,
followed by a Sigmoid function.
In the GAN model, the objective function was similar
to the one used in ’pix2pix’ paper [29], and mathemat-
ically described as a combination of GAN objective
and L1 loss, also known as mean-absolute-error:

G∗ = argmin
G

max
D
LGAN (G,D) + λLL1(G)

where G∗ is a final objective, G a generator, D
a discriminator, LGAN a Laplace transform of G,D
objectives, LL1 a Laplace transform of L1 loss. G

tries to minimize the objective function against the
adversarial D that acts opposite and maximizes it
[29].

Additionally, the discriminator was designed to pe-
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Figure 4: Training a GAN by passing corrupted images (x)
through the generator (G) to synthesize indistin-
guishable images (Gx) from the real images (Y ).
The discriminator (D) learns to classify between
real and fake images, while generator tries to
fool discriminator

nalize prediction on the defined 4 x 4 pixels patch
sizes instead of the full image. Such a strategy was
suggested in the ’pix2pix’ paper [29], which demon-
strated that patches, smaller than the full-size image,
produced a high-quality outcome, had fewer parame-
ters and made the training faster.

Inverse Radon Transform

One of the easiest ways to reconstruct the image
from the sinogram domain is by using filtered back-
projection (FBP). When applying backprojection, the
blurring effect was induced on image space. The addi-
tional filtering was used to overcome this limitation
and to correct the blurring effect to some extent. [30]
In this study, different available filters were tested
to see which filter performed best for TCIA dataset.
The ramp filter showed noticeably better results and
was used when transforming the predicted test date
data back to the image space.

Evaluation and validation

Observing image quality might be very subjective
evaluation, therefore, the quantitative metrics were
introduced. A commonly used metric within differ-
ent imaging studies is the peak signal-to-noise ratio
(PSNR).[25, 28] PSNR is the ratio measure between
the power of image peak value and the power of the
corruption that affects its representation, measured

in decibels (dB) [10]. PSNR can be defined using the
mean square error (MSE) measured between ground
truth and corrupted representations:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

where m,n are image dimensions, I for
monochrome image and K for its corrupted
approximation, i , j coordination system values.
Knowing that the signals might have a wide dynamic
range, PSNR could be expressed in the logarithmic
decibels (in dB):

PSNR = 10 · log10(
DR2

MSE
)

where DR is a dynamic range of the image.
Usually, the greater value of PSNR means a higher
quality reconstruction of the image. [25]

Additionally, structural similarity index measure
(SSIM) metric Wang et al. [31] was used since PSNR
does not guarantee the best perceptual and textural
outcome, even when resulting score is high. PSNR
metric measures per-pixel intensities, which is not
a way of how a human perceives the image informa-
tion. Additionally, according to the literature, this
metric suffers from the regression-to-mean problem
resulting in blurred reconstructed images. SSIM con-
siders image corruption level as perceived change in
image structural information measured between two
images. SSIM compares groups of pixels between two
images, using three composite measure: luminance,
contrast, and structural. Simplified SSIM mathemat-
ical expression can be seen as:

SSIM(A,B) = l(A,B) · c(A,B) · s(A,B)

where A,B are groups of pixels from two images,
l - luminance measure, c - contrast measure and s

- structural measure. Since SSIM compares pixel
patches, instead of individual pixels, this metric rep-
resents results more similar to how the humans ob-
serve image data. [31] Qualitative and quantitative
results are evaluated using a test set of 1335 PET
sinograms.

3. RESULTS

Averaged PSNR, SSIM, and MSE values for different
corruption levels and for both data representations
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using CNN and GAN can be seen in (Figure 5). The
top left graph indicated the continuous decline of
PSNR value when more image information was ex-
cluded in data representations with removed pixels.
PSNR at the last level of corruption was 35.43 for
CNN and 36.91 for GAN. Interestingly, with data rep-
resentation of missing projections (bottom left graph),
the PSRN rapidly decayed only after removing more
than 50% of the data points. The middle graphs of
the SSIM metric demonstrated that both CNN and
GAN performed well with values close to the per-
fect SSIM of 1 on data representation with missing
pixels. The noticeable decline in SSIM was visible
at higher corruption levels (70,90%) when removing
data projections, but only with the CNN model. On
the other hand, GAN preserved the high quality of re-
constructed images and showed stable performance
throughout all levels of corruption. The right two
graphs identify how the MSE increases when the
number of lost information increases.
All three metrics revealed that GAN network outper-
formed CNN autoencoder throughout the all corrup-
tion level of both data representations. Exceptionally,
PSNR was higher of CNN network compared to GAN
only on data representation with 70% missing pixels,
with 40,1 for CNN and 39,98 for GAN, respectively.

Qualitatively results (Figure 6) of the sample im-
age from the test set indicated how well both CNN
and GAN models managed to reconstruct lost image
information. Even when 90% of the data points were
removed, the GAN network reconstructed the sam-
ple image with fewer artifacts, in contrary, the CNN
model performed worse when most of the data were
removed. Visually blurred reconstructed tissue and
artifacts around the scanned object are noticeably
in the presented case. By looking at the three most
extreme corruption levels less edge preservation and
structural details are visible at the results of the
CNN model compared to GAN.

4. DISCUSSION

In this paper, two image reconstruction approaches
were compared for compensating lost data informa-
tion in PET sinograms. The first approach was fea-
tured by a convolutional encoder-decoder network
with four skip connections, providing the ability to
reuse feature maps of first layers as the input to the
deeper layers, preserving high-resolution features

to the network, therefore, increasing the quality of
sinogram reconstruction. In addition, the simple yet
advantageous strategy was applied to use the pre-
trained network to train other networks; that is, the
models for a higher level of corruption (30%, 50%,
70%, 90%) were trained by using weights from a
model which was trained from scratch on 10% cor-
rupted data. This appeared to be a very effective
strategy since each model converged faster, without
the necessity to adjust hyperparameters every new
training. Hence, reusing weights allowed to achieve
better reconstruction performance and reduce com-
putational cost. The second approach was a recently
proposed Generative Adversarial Networks. GAN
had two networks; the discriminator contained four
convolutional layers to classify on the 4x4 patches if
the output sinogram was real or not and a generator
which was previously used CNN to produce more and
more realistic images. The advantage of GAN was
that it learn a loss function that adapts to the data.
On the basis of the presented results, both CNN and
GAN networks performed remarkably well, reach-
ing high PSNR and SSIM scores, throughout both
data representations on multiple levels of corrup-
tion. Such results can be explained by the beneficia-
ries provided by the raw sinogram format compared
to post-reconstructed PET images. Sinograms are
more uniform and provide a lighter data format con-
sisting of angle based histograms, compared to edgy,
noisy post-reconstructed PET images. Therefore, it
is easier for the network to learn important features
giving a promising performance. These results pro-
vide additional support to the Yu and Muhammed
[11] findings where denoising of pre-reconstructed
sinograms showed better results then denoising on
post-reconstructed PET images.
The quantitative results (Figure 6) indicated that
GAN scored higher CNN autoencoder with a small
margin when predicting lost information based on all
three metrics for both data representations. On aver-
age of all five levels of corruption, PSNR, and SSIM
when predicting missing pixels were 41.44, 0.977 and
42.341, 0.983 for CNN, GAN, respectively. When
predicting missing projections, CNN scored 40.13,
0.866 in contrary to GAN 46.84, 0.989. Even a small
improvement in average PSNR and SSIM metrics in-
dicated that the GAN was able to predict the removed
information more accurately, than CNN. Additionally,
graphical results indicated that GAN performance
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a)

b)

Figure 5: Graphs of PSNR, SSIM and MSE scores dependency on the amount of missing data for two different data
representations: (a) missing pixels, and (b) missing projections, using CNN and GAN approaches

was more stable while CNN performance perceptibly
decreased when more than half of that data were
excluded (70,90%). CNN was using MSE as an ob-
jective function, which is a simple yet effective func-
tion when training autoencoder. However, multiple
studies concluded that penalizing training with MSE
tends to produce over-smoothed and blurred images,
which eventually decreases metric scores [32, 29],
while GAN objective function was more adaptive to
the dataset.
The qualitative results confirmed that CNN blurred
the reconstructed images at the corruption level of
70% and above, while GAN produced sharp and more
realistic output even at the highest corruption level.
Beside mentioned differences in the objective func-
tion of both models, additionally, GAN discriminator
panelized structure at the size of the defined patch,
while CNN did it on the full size of the image. Accord-
ing to original pix2pix paper [29], penalizing on the
patch size is beneficial for GAN network as it makes
training faster, requires fewer parameters and still
outputs in high-quality results.

Strengths and limitations

The proposed reconstruction methods add up to the
other studies which provide novel approaches of med-

ical image reconstruction as an alternative for clas-
sical filters [33, 16]. The suggested framework has
several strengths. First, this study used real PET
dataset, which reflects real situations in the medical
field: data contains complex noise, it is not consistent,
therefore sometimes hardly readable. In contrary, the
other studies used Shepp-Logan phantom to simu-
late sinograms for denoising and reconstruction prob-
lems [9, 11], which gives the advantage of controlling
multiple simulation parameters. However, such data
does not fully reflect the real-world scenario. Further-
more, this study suggested a novel end-to-end frame-
work for using standard medical PET images in the
way that the images were transformed into the sino-
gram domain, applied on the neural network model
and converted back to the image space using filtered
backprojection algorithm. Such a framework might
be extended and used with other imaging modalities,
such as CT, MRI, SPECT, when raw data is unavail-
able.
On the other hand, the proposed framework had some
limitations too. When applying the filtered back-
projection algorithm, there was visible noise induced
on the PET image. However, the raw dataset in the
sinogram domain was not available while the study
was conducted; therefore, using Radon transform to
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Figure 6: Sample image from the testset in most extreme levels (50, 70, 90%) of corruption by removing projections and
random pixels. (a) The corrupted sinogram, (b) FBP reconstruction without missing data compensation, (c) FBP
reconstruction after compensating missing data with CNN, (d) FBP reconstruction after compensating missing
data with GAN’s, (e) ground truth image

acquire sinogram dataset was the chosen solution.
Consequently, this trade-off in decreased quality was
inevitable, but it did not contribute to the study goals.
Such limitation might be evaded be accessing raw
data directly from PET scanner. Additionally, the
more extensive hyperparameter tuning, using grid-
search or random search techniques instead of man-
ual tuning might have lead to achieving even more
impressive results. However, the study had time con-
straints, and since there were many networks to be
trained, more complex hyperparameter search was
simple out of project scope.

5. CONCLUSION

In conclusion, based on the thorough search of the
similar studies, this paper suggested the first attempt
of applying the end-to-end framework to compensate
simulated missing pixels and missing projections on

PET sinogram domain, which is an existing prob-
lem of PET scanners, inducing the additional noise
and artifacts. Two neural network based approaches
were applied, compared, and evaluated quantita-
tively and qualitatively. More complex GAN model
outperformed CNN autoencoder by scoring higher in
both PSNR and SSIM metrics and promisingly per-
forming even when 90% of data were removed. In the
future, more experiments and testing should be per-
formed to improve this initial work before translating
such framework into the clinical setting.
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and the discriminator containing four convolutional
layers to classify generated sinograms as artificially
generated or ground truth. The proposed framework
ended by applying filter back projection algorithm to
transform sinograms back to PET image domain.
Results: The results revealed that GAN outper-
formed CNN by a small margin. The average PSNR
and SSIM scores within all five corruption levels were
41.44, 0.977, and 42.34, 0.983 when predicting miss-
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and GAN were higher when predicting missing pro-
jections; 40.13, 0.866 versus 46.84, 0.989. Addition-
ally, GAN performed noticeably better when 90% of
sinogram data were removed, resulting in a sharper
and more detailed reconstructed image, qualitatively
comparing to CNN.
Conclusion: Different network architectures, chosen,
and objective functions, might be the reasons why
GAN performed better than CNN. Even though the
study had some limitations, the promising results were
achieved, which motivates to experiment further.
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SUMMARY

Noise in positron emission tomography (PET) has attracted major attention in the medical
imaging field since it directly affects the diagnostic capabilities of PET modality. Artifacts
and noise in PET imaging are caused by multiple factors, including lowered radiotracer
dose and information loss in the form of missing pixels or missing projections. Recently,
deep learning based algorithms have achieved promising results in the medical imaging field,
including PET denoising or CT sinogram inpainting, especially using the Convolutional
Neural Network (CNN) and Generative Adversarial Networks (GAN) architectures.

This article aims to compare CNN and GAN approaches for PET sinogram missing data
reconstruction task. For that purpose, two existing PET problems were simulated, including
missing pixels and missing projections of five levels of corruption.

The end-to-end framework, from PET image to the sinogram domain and back to PET
image domain, was proposed. The Radon transform was applied to convert PET images
into sinograms. The first model was the CNN encoder-decoder based network with four skip
connections. The effective strategy was applied to efficiently train more corrupted PET sino-
grams by loading previously trained weights. The second approach was the GAN network,
with the generator designed similarly as the CNN encoder-decoder, and the discriminator
containing four convolutional layers to classify generated sinograms as artificially generated
or ground truth. The proposed framework ended by applying filter back projection algorithm
to transform sinograms back to PET image domain.

The results revealed that GAN outperformed CNN by a small margin. An average PSNR
and SSIM scores within all five corruption level were 41.44, 0.977, and 42.34, 0.983 when
predicting missing pixels. Difference between two metrics using CNN and GAN were higher
when predicting missing projections; 40.13, 0.866 versus 46.84, 0.989. Additionally, GAN
performed noticeably better when 90% of sinogram data were removed, resulting in a sharper
and more detailed reconstructed image, qualitatively comparing to CNN.

Different network architectures, chosen, and objective functions, might be the main rea-
sons why GAN performed better than CNN. Even though the study had some limitations, the
promising results were achieved, which motivates to experiment further. This study showed
how CNN and GAN performance degraded when more and more data were excluded. It
also revealed how effective Generative Adversarial Networks works in terms of image re-
construction task. However, the possibles and implementation of such algorithm remained
unexplored and left for future research.
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Chapter 1

Background

In this chapter, the positron emission tomography imaging and related problems are pre-
sented. The existing and possible solutions are discussed, including machine learning based
approaches.

1.1 Positron Emission Tomography Scans

Positron Emission Tomography (PET) is one of the major imaging modalities, broadly used
in hospitals for diagnostic and intervention purposes [1]. As a nuclear medicine, functional
imaging technique PET reflects the metabolism changes by using the injected radioactive
tracers in the human body. Different radiotracers might be used to utilize PET in oncol-
ogy, cardiology, neuroimaging, and other cases. Particularly, the PET system detects pairs of
gamma rays emitted from the injected radioactive tracers on the biologically active molecule.
The tracer concentration within the human body is recorded and 3D volume is generated
using computer analysis [2].

1.2 Sinogram formation in PET
The scanner computing unit processes the raw data which are recorded during PET acqui-
sition and stored in the sinogram format. There are two common ways to collect PET raw
data, which are classified as 2-dimensional (2D) and 3-dimensional (3D) PET. Some scanners
can gather the data in both 2D and 3D settings, whereas, some of them acquire data only
in 3D or 2D. [3] Since the data used in this project are 2D PET images, the 2-dimensional
data gathering type will be described further.
Firstly, the PET radiotracer that localizes the lesion in the patient body is administrated.
Radiotracer allows emitting the protons from the tumor during the acquisition. Emitted
protons instantly find an electron; this causes annihilation. When such protons annihilate
with the electrons, the mass-energy is produced and converted into two gamma rays. Two
gamma-ray photons with momentum are traveling in opposite directions and are registered
by the PET detectors. The process when both annihilation photons reach detectors without
interacting with surrounding atoms is called the coincidence event [2]. An example of the
coincident event is visible in (Figure 1.1)
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Figure 1.1: True coincidence event (Red dot) appears then
positron-electron annihilation is recorded by a pair of detectors.
Edited from [? ]

A line between two detectors categorizes the coincident event. According to the litera-
ture, such a line is called a line of respond (LOR) [2]. By plotting multiple LORs as the
functions of their angular orientation versus their displacement, the sinogram is formed. The
displacement is the shortest distance between the LOR and center point (marked as X in
Figure 1.2). As shown in Figure 1.2a) four coincidence even detections are characterized by
4 LORs (Figure 1.2 A,B,C,D) at different angles, and distances to the center. When multiple
numbers of such LORs are plotted from the same point, the sine wave is formed (Figure 1.2
b)). A large number of coincidence events forms a sinogram (Figure 1.2 c))
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Figure 1.2: True coincidence event (Red dot) appears then
positron-electron annihilation is recorded by a pair of detectors.
Edited from [3]

PET scanner directly acquires the data into sinogram format, when each detector pair
corresponds to a particular pixel in the sinogram, based on its orientation angle and the
distance to the center. Thus, for every coincidence event detection, the LOR is determined,
and the pixel associated with that LOR is projected into the final sinogram. Each 2D PET
slice is separate sinogram acquired using a similar principle. [3].
In sinogram, the values along the horizontal rows represent the LORs at the particular angle,
and are called the "projections". Every row in the sinogram is a projection through the object
at the specific angle.[3]

1.3 Existing limitations and solutions in PET
PET images usually contain more noise and artifacts compared to magnetic resonance imag-
ing (MRI) and computed tomography (CT). The low number of coincident events imposed
by a reduced dose of a radiotracer and faulty electronics which causes the loss of information
induces additional noise and artifact in PET.
High-quality PET images are often used in diagnosing brain diseases and disorders, such as
Alzheimer’s, dementia [2]. However, to capture high-quality PET images, usually, a normal
dose of radioactive tracer needs to be used, which raises the concerns about possible health
hazards [4]. In the report “Biological Effects of Ionizing Radiation (BEIR VII)” the esti-
mated risk increment is about 0.04% per single PET scan, which multiplies after repetitive
examinations. On the other hand, if the radiation dose is reduced, the quality of resulting
images is degraded, due to the lower amount of detected photons Shi et al. [1], which neg-
atively affects the diagnostic capabilities of PET. The difference between low-dose and the
normal dose is presented in Figure 1.3 Thus, the necessity of the method to denoise low-dose
PET image in the way the resulting image would be similar to the normal-dose PET image
quality arises. Additionally, a comparison study by Yu and Muhammed [5] suggested that
signal-noise ratio (SNR) was improved by sinogram-based PET reconstruction.
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Figure 1.3: Example image of low-dose PET image versus normal-
dose PET image. Edited from [2]

Recently, PET systems started to use silicon photomultipliers (SiPMs) as a detector for
photon registration [6]. According to the literature, there is a high probability that some of
the SiPMSs may not function properly, resulting in dead pixels appearance. A dead pixel
is a pixel with a missing data value, which causes the degraded quality of reconstructed
PET images (Figure 1.4 b)). Additionally, a dead pixel might arise due to the problems in
processing electronics [6]. The study by de Jong et al. [7] investigated a few methods to com-
pensate for missing data caused by the gaps between high-resolution PET scanner detectors
and faulty parts (Figure 1.4 a). Bilinear and the model based interpolations were applied
and compared, where model-based approach outperformed bilinear interpolation, but with
a price of long processing time. [7]

A variety of studies used commonly know algorithms for improving PET image quality.
Firstly, the Gaussian filtering and bilateral filtering were used to improve PET post-recon-
struction; however, such filtering resulted in reduced edges preservation and blurred images
[8]. Furthermore, the block-matching 3D (BM3D)[9], which is a variation of non-local mean
denoising approach [10] was applied to PET images, showed structural improvements [11].
However, the study used simulated, not the real PET data, while BM3D is not effective on
natural images due to the lack of highly correlated matching blocks.[12]. Another attempt
to improve medical imaging quality is to apply a filter on the sinogram domain instead of
reconstructed images. Sinogram is an angle based histograms which is the raw data format
in PET systems.[2].
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Figure 1.4: Example image of corrupted sinograms. Edited from
[7, 6]

1.4 Common Techniques for PET Image Quality Improve-
ment

Multiple methods were proposed in order to reduce the noise in PET images and to improve
the overall image quality while maintaining image details. The study by Bagci and Mollura
[13] uses the singular value thresholding concept and Stein’s unbiased risk estimate to opti-
mize a soft thresholding rule. Another study by Visvikis et al. [14] considered to combine the
complementary wavelet and the curvelet transforms to address the issue of resolution loss
which usually appears with standard denoising techniques. Finally, Ortega Maynez et al. [15]
proposed a multi-resolution method for PET image denoising in the transform domain by
modeling each sub-band separately as a group of different regions separated by boundaries.
Besides mentioned techniques which mainly focused on normal-dose PET image denoising,
there are few recent studies which considered to reconstruct low-dose PET image. Such
an approach is useful, due to the public concerns about the health hazards of radioactive
tracers. One such study was conducted by Shi et al. [1], who trained a random forest to
estimate a full-dose PET image from low-dose. The study concluded that standard-dose
PET can be well predicted from low-dose scans and MRI combination. Similar conclusions
were generated by author Wang et al. [16], who used a mapping based sparse representation
to reconstruct full-dose PET images by utilizing both low-dose PET and multimodal MRI.
The same year, Shi et al. [17] proposed a multi-level canonical correlation analysis frame-
work to connect the low-dose and normal-dose PET images into a common space and then
performed patch-based sparse representation for the estimation, which showed the superior
performance compared to other methods. However, there were some limitations too. One of
them is that such spare learning based method was performed on small patches which makes
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the voxel-wise estimate strategy very time-consuming. Moreover, the over-smoothing effect
was noticed on qualitative results due to the averaging of the overlapped patches.

1.5 Neural Network Based Techniques for PET Image Qual-
ity Improvement

Even though the common techniques improve PET quality, they run slowly, impose addi-
tional noise. Most of the time using such algorithms, require human interaction to define
features manually. An idea to automatically learn important features, which would help
to reconstruct missing data or to remove noise is possible by using state-of-the-art neural
networks approach.

1.5.1 Convolutional Neural Network

Convolutions Neural Networks (CNN) has become a state-of-the-art technique in terms of
image analysis. It perfectly fits imaging data due to the convolving layers which help to
reduce dimensions of the input data. This CNN feature is useful for most of the natural
images due to their high-resolution pixel space [18]. Medical imaging is a field where image
resolution grows rapidly due to the technological improvements and the health-related im-
portance of high-quality image capabilities.
The study by An et al. [19] proposed a deep auto-context CNN for full-dose PET image
estimation based on the local patches from the low-dose PET and T1 weighted MRI. Worth
to mention, that the author conducted the study by extracting the 2D slices from the 3D
volumes, resulting in the lost spacial information and limiting the generalization of such
technique.

1.5.2 Generative Adversarial Network

Generative Adversarial Networks (GAN) have recently received widespread attention [20,
21, 22]. GANs know as generative models which have two main units: generator and dis-
criminator. The generator learns to replicate the input images, while the discriminator tries
to distinguish between the generated and real datasets. Using such an approach, many re-
searchers achieved promising results. [21, 22]
In terms of PET data, the most recent study which used GANs in a 3D setting was con-
ducted by Yu et al. [4]. The study proposed a conditional GANs to estimate the high-quality
full-dose PET images from low-dose ones. Specifically for the generator, they used the fa-
mous 3D U-net-like deep architecture, which can combine hierarchical feature by using skip
connection.
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Chapter 2

Methods

In this chapter, the data used in this study, and the methods applied to reach the study
goals will be presented.

2.1 Study design
The study workflow consists of 5 different steps: data acquisition, pre-processing, neural
network generation, post-processing, model evaluation, and validation. By describing each
of them, the transparency of the study shall be maintained and the necessary information
provided to the reader.

2.2 Data acquisition
Since there were no specifically collected data for this project, the publicly available dataset
was acquired from the Cancer Imaging Archive (TCIA: http://www.cancerimagingarchive.net),
an archive of the medical images of cancer created by the National Cancer Institute (NCI)
[23]. Soft-tissue-Sarcoma dataset was chosen from TCIA, which is, based on the thorough
search of the relevant datasets yielded a large number of tested subjects, giving the high
number of training samples, necessary to train a deep neural network [24]. The dataset con-
sists of 51 patients with histologically proven soft-tissue-sarcomas of the lower extremities in

Figure 2.1: Proposed study workflow which starts by gathering
data (blue color) and ends by evaluating model performance (green
color).
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PET/CT/MRI image formats [23, 25].

For this study PET data from all 51 subjects were used which contained DICOM (Digital
Imaging and Communications in Medicine) images of 128 x 128-pixel resolution (Figure 2.2)
in a total of 13,417 2D images.

Figure 2.2: PET images of Soft-tissue-Sarcoma of lower extremi-
ties .

The fludeoxyglucose (FDG) radiotracer was used when performing PET scans on a
PET/CT scanner (Discovery ST, by GE Healthcare). A median of 420 MBq of FDG was
injected intravenously followed by the 60 min of body imaging acquisition.[26] Additionally,
the attenuation correction was performed [26] which reduces severe artifacts induced due to
the high number of lost photons during the procedure [27].

2.3 Radon transform
Since the data from TCIA was obtained in standard imaging format, meaning it was already
reconstructed, data needs to be transformed back into the raw format to work in the sino-
gram domain. This might be achieved by using the Radon transform. Radon transform of
the image described as the function f (x, y), is defined by the combination of the integrals
through f (x, y) in vertical and horizontal projections, or y and x axis, respectively.[28] Radon
transform R(p, τ) (Figure 2.3) mathematical is defined as:

Rf =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(xcosθ + ysinθ − s)dxdy

where θ is the angle of the line and s is a perpendicular offset of the line.[28]
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Figure 2.3: Fundomentals of Radon transform. Edited from [29]

In this study the data was transform by using skimage library in Python coding envi-
ronment. Skimage allows to define two parameters before Radon transformation: the angle
theta, which was left as a default value of 180, and Circle, which when set on ’True’ allows to
make a uniform sinogram size of 128 projections and 128 detectors, corresponding to the size
as the original image. This property is helpful since CNN requires uniform dataset (Figure
2.4).

Figure 2.4: Radon transform applied on the PET image (a). Re-
sulting sinogram (b) is used for further pre-processing.
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Two data representations were created to address existing problems in PET imaging
domain: dead pixels and missing lines of response (LOR). Dead pixels are simulated by re-
moving random data points from the PET sinogram. The amount of randomness is increased
in five levels, 10%, 30%, 50%, 70% and 90% (Figure 2.5 a) ), to reflect multiple scenarios of
missing patterns, also, to investigate how far CNN and GAN can perform to properly com-
pensate missing pixel values. The second data representation is focused to simulate missing
projections, which appears in PET sinograms due to the gaps between detector heads in the
scanner or because of the faulty detectors [7]. Also presented in five different levels (Figure
2.5 b))

Figure 2.5: Representations of corrupted sinograms with simu-
lated dead pixels a), and missing projections b) at three different
levels.

2.4 Intensity normalization
Applying the Radon transform converted the whole data into the sinogram domain. There-
fore, further pre-processing was proceeded to prepare data for the neural networks. This
involved data rescaling and reshaping.
Data rescaling helps to control the weights of the data not to become large values during the
training phase. The large weight values usually result in the poor performance and unstable
model, thus, it is critical to rescale it before presenting data to the network. [30] According
to the literature, one of the most often used rescaling methods is to make the data elements
lie in the range between 0 and 1, [30] thereby, this was achieved by applying the following
equation:

Zi = Yi − Ymin

Ymax − Ymin

where Zi is rescaled data, Yi original data [31].
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Even though convolutional neural networks have become very popular between the re-
searchers, it came with a few restrictions. One of them is the fixed size of that input data
Ghosh et al. [32]. Different deep learning libraries in Python requires a different shape of the
input tensor. For example, PyTorch [33] library expects that the first element of the input
data would correspond to the number of channels, while in Keras [34] it should stand last.
Since this study was using Keras library, data was reshaped it the way they the first, second
and third dimensions corresponds to X, Y, Number of Channels, respectively.

2.5 Model generation
In this paper, two different architectures are presented and compared for missing data recon-
struction in PET sinogram domain. The first architecture is a convolutional neural network
based autoencoder (Figure 2.6) inspired by U-net CNN for image segmentation [35]. Pro-
posed network has 4 convolutional layers with 32, 48, 64, 64, respectively. These layers
encode the information into a dimensionally smaller data form, containing automatically
learned most important features. Then, the compressed data is fed through 4 deconvolving
layers of 64, 64, 48, 32 neurons, respectively. Deconvolutional layers of the network might
be called a decoder part. It tries to reconstruct the compressed image data into the normal
size (128 x 128) image. 3 x 3 filter size was used through the entire network, with a stride of
one, based on the similar studies [35, 17]. Additionally, 4 skip connections were added which
shuttle low-level features to the high level features [22]. Using skip connections noticeably
increased reconstructed image structural details. Finally, based on previous experience and
other studies Shan et al. [36], it was decided not to use max-pooling layers, which originally
exists in U-net architecture. Using max-pooling layers results in extra image distortions
which appear after reconstruction. Similar artifacts were found in mentioned in a study
by.Shan et al. [36]

Figure 2.6: Autoencoder CNN architecture. Input layer contains
corrupted sinograms, output layer fully reconstructed sinograms.
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The second architecture is based on recently proposed Generative Adversarial Networks
(GANs) [21, 37, 22]. Unlike the common neural networks, in GANs consist of two models:
generator and discriminator. The GAN automatically learns the goal specific lost function,
which classifies the output into real (ground truth) or fake (artificially generated), while at the
same time trains the generative model to minimize this error Isola et al. [21]. Blurred images
will be ranked as ’fake’, therefore, the GAN will try to adjust generative model weights further
in order to generate more realistic images. This is the biggest advantage against normal CNN
and its pre-defined lost functions, such as MSE, where network tries to minimize the loss
and ends up with blurred, unrealistic results. In this paper, the proposed GAN is based on
the ’pix2pix’ network (Figure ??) [21], since it was previously successfully applied for the
image inpainting problem and showed promising results [37]. Here, a generator is similar
as described autoencoder CNN with skip connections, while the discriminator consists of 4
convolutional layers with 64, 128, 256, 512 neurons, respectively. The final output layers are
also CNN with one neuron only followed by Sigmoid function, since the results are in binary
form - label for real or fake image.

Figure 2.7: Training a GAN by passing corrupted images (x)
through the generator (G) to synthesize indistinguishable images
(Gx) from the real images (Y ). The discriminator (D) learns to
classify between real and fake images, while generator tries to fool
discriminator

Most of the hyperparameter tuning was performed manually, where some of them were
chosen according to the literature. Since the project aims to compare two different neural
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network architectures with multiple data representations, using more advanced tuning tech-
niques, such as grid search, or random search would simply take too much time, therefore,
it was out of the project scope. Rectified linear unit (ReLu) as an activation function was
used throughout the proposed network since it mathematically simple, yet effective, and rec-
ommended according to the literature [24]. Different optimizers were tested, however, Adam
solver [38], with learning rate of 0,003 and, momentum parameters β1 = 0.5, β2 = 0.999,
showed the fastest convergence and best results.
Making a comparison study requires to train multiple neural networks with different data
representations, which is the overwhelming task itself due to the time it consumes, moreover,
the amount of adjustable hyperparameters grows with each separate training. To overcome
this problem, the transfer learning-based strategy was used which initializes the new model
from pretrained one. [36] In our case, it would be enough to train from scratch one model
with data representation where, for example, 10% projections, are missing. After desirable
results are reached, the training weights are saved and might be loaded when training on
more corrupted data with 30% and 50% of missing data. A similar plan is applied with
second data representation where random pixels are removed instead of the projections. In
this way, for both CNN and GAN’s, only four models need to be trained from scratch com-
pared to 12 different in total, which are compared in this study. A study by Shan et al. [36]
have used this transfer learning strategy and by experimenting confirmed that performance
through training based on transfer learning compared to the training from scratch showed
better results and faster convergence.

Objective functions

The training and validation loss after every batch is computed between the batch of predicted
and the ground truth values using Mean-square-error (MSE) also known as L2 loss, for CNN
model. MSE is one of the most used objective function and it is available by default on Keras
library. It was used in the CNN model since it is a de facto standard objective function in
neural networks [39].

For GANs model the objective function was left as it was defined originally in ’pix2pix’
paper [21], and mathematically described as a combination of GAN objective and L1 loss:

G∗ = argmin
G

max
D
LGAN (G,D) + λLL1(G)

where G∗ is a final objective, G a generator, D a discriminator, LGAN a Laplace trans-
form of GAN objective, LL1 a Laplace transform of L1 loss. G tries to minimize the objective
function against the adversarial D that acts opposite and maximizes it [21].

2.6 Inverse Radon Transform
One of the easiest ways to reconstruct the image from the sinogram domain is by using
filtered backprojection (FBP). When applying backprojection the blurring effect is induced
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on image space. To overcome this limitation the filtering is used, which corrects blurring
effect to some extent. [40] In this study different available filters were used and tested to
see which one performs better for TCIA dataset. The ramp filter showed noticeably better
results, hence, it was used when transforming the predicted test date data back to the image
space. Even when filtering applied, there is visible noise induced after backprojection from
the sinogram into image space (Figure 2.8).

Figure 2.8: The lost image details due to Radon and Inverse
Radon transforms, where orignal image a), FBP reconstructed im-
age b), and the lost details c)

The raw dataset in sinogram domain was not available while the study was conducted
and using Radon transform to acquire sinogram dataset was the only solution, therefore, this
trade-off in decreased quality was inevitable, but it did not contribute to the study goals.

2.7 Evaluation and validation
In this section, used quantitative metrics are presented, followed by the strategy of how the
model was evaluated.
From 51 data subjects, 5 random patients were put aside and left as the unseen test dataset,
which approximately corresponds to the 10% of the total dataset. This test set is used only
for the final results. The following 46 subjects correspond to the 12,082 sinograms were di-
vided into training and validation datasets with a ratio of 70% to 30%, respectively. Training
and validation data sets were used during the training phase and for hyperparameter tuning.
After each training phase, the qualitative results can be observed for evaluation of recon-
structed images, in terms of visible structural details, artifacts, blur. Qualitative results are
important in the real-world scenario since this is how the doctors perceived image informa-
tion in the working environment. Any image distortions increase the risk of misdiagnoses,
thus, the quality of reconstructed images have a direct impact on the patient treatment [41].
Observing image quality visually might be very subjective evaluation, therefore, the quanti-
tative metric should be introduced. Commonly used metrics within different imaging studies
are peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR).[17, 36] PSNR is the
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ratio measure between the power of image peak value and the power of the corruption that
affects its representation, measured in decibels (dB) [42]. PSNR can be defined using the
mean square error (MSE) measured between ground truth and corrupted representations:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

where m,n stands for image dimensions, I for monochrome image and K for its corrupted
approximation, i, j coordination system values. Knowing that the signals might have a wide
dynamic range, PSNR could be expressed in the logarithmic decibels (in dB):

PSNR = 10 · log10( DR
2

MSE
)

where DR is a dynamic range of the image. Usually, the greater value of PSNR means a
higher quality reconstruction of the image. [17]
Signal-to-Noise ratio is a ratio of the power of a signal to the power of noise and can be
defined as follows:

SNR = Ps

|x[n]− s[n]|2

where Ps is a discrete power of signal, and |x[n] − s[n]|2 is a squared error between the
original and corrupted images. Similarly as in PSNR, here the higher SNR value the better
quality of the reconstruction. [17]

However, neither of PSNR or SNR do guarantee the best perceptual and textural out-
come, even the resulting score is high. Both metrics measured per-pixel intensities, which is
not a way of how a human perceives the image information. Additionally, according to the
literature, these metrics suffer from the regression-to-mean problem resulting in blurred re-
constructed images. Thus, an additional metric such as structural similarity measure (SSIM)
Wang et al. [43] is also used.
SSIM considers image corruption level as perceived change in image structural information
measures between two images. SSMI compares groups of pixels between two images, using
three composite measure: luminance, contrast and structural. Simplified SSMI mathematical
expression can be seen as:

SSIM(A,B) = l(A,B) · c(A,B) · s(A,B)

where A,B are groups of pixels from two images, l - luminance measure, c - contrast
measure and s - structural measure. Since it compares pixel patches, not individual pixels like
PSNR and SNR, SSIM is a metric which represents results more similarly as we observe. [43]
Qualitative and quantitative results are evaluated using an only test set of 1335 reconstructed
images.

16



Chapter 3

Results

In the results chapter, three different sections are presented. The first section is the validation
results; the second section covers the quantitative results of reconstruction approaches. After
that, the third section is for the qualitative findings.

3.1 Validation results
This comparison study was conducted by training 10 networks in total for both data rep-
resentations and all five levels of corruption. In this section the convergence graphs are
presented from the 10% only, to present how model performance was evaluated.
Both CNN and GAN were trained and validated using similar datasets. The training set
contained 8 457 randomized sinograms and validation contains 3 625 randomized sinograms.
After each training procedure, the model convergence graphs were printed to observed if
model overfitted or underfitted. Additionally, to decide how many epochs are enough for the
model to generalize well.
In addition, during the training, the defined batches of 32 sinograms were fed into the net-
work and shuffled every epoch to ensure that highly correlated data would not be obtained
in each batch. According to the author Ian Goodfellow et al. [24], shuffling the data like
this results in fewer oscillations during the training. The neural network is not learning the
specific order of the data, therefore, it converges faster. Below (Figure 3.1), the convergence
graphs indicate training and validation loss performance during the training phase. The
objective function used for training was Mean-square-error.
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Figure 3.1: Convergence graphs of CNN model losses of training
and validation datasets. Left graph represents training on missing
pixels, right - training on missing projetions.

From the graphs, it is visible that the CNN model had a good performance on both data
representations. There are no indications of overfitting or underfitting since the gap between
the training and validation plots is relatively small. During multiple runs of manual hyper-
parameter tuning, it was noticed that after 100 epochs training and validation loss does not
decrease noticeably and are the MSE is a relatively small number. Therefore, the number of
100 epochs was selected for the final training.

The performance of the GAN is visible in (Figure 3.2). It is important to note that
GAN during the training does not use validation dataset. It penalizes the predictions using
the discriminator model to adjust the generator weights accordingly. From both graphs, it
is visible that generator loss was decreasing, which means that the generator was able to
produce more realistic images. Discriminator loss on the real images is fluctuating around
0.5 value, which means that discriminator guesses if the image is real or generated, which is
a good indication.

Figure 3.2: Convergence graphs of GAN model losses of training
dataset. Left graph represents training on missing pixels, right -
training on missing projetions.
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Additionally, quantitative PSNR, SSIM and MSE metrics were calculated using validation
dataset for both CNN and GAN, for further evaluation.

Missing counts PSNR(dB) SSMI MSE Missing projectios PSNR(dB) SSMI MSE

Reference (-10%) 31.3 0.673 4.521*10-6 Reference (-10%) 39.43 0.967 0.057*10-6

Predicted (-10%)
CNN 45.67 0.993 0.016*10-6

Predicted (-10%)
CNN 45.35 0.993 0.018*10-6

GAN 48.57 0.996 0.011*10-6 GAN 53.98 0.998 0.002*10-6

Reference (-30%) 31.05 0.627 1.080*10-5 Reference (-30%) 28 0.9158 0.464*10-6

Predicted (-30%)
CNN 45.11 0.992 0.002*10-5

Predicted (-30%)
CNN 45.31 0.993 0.019*10-6

GAN 45.78 0.993 0.002*10-5 GAN 52.63 0.997 0.003*10-6

Reference (-50%) 30.4 0.586 1.344*10-5 Reference  (-50%) 22.34 0.855 0.101*10-5

 Predicted (-50%)
CNN 42.75 0.988 0.003*10-5

 Predicted (-50%)
CNN 45.27 0.993 0.002*10-5

GAN 43.39 0.99 0.003*10-5 GAN 53 0.997 0.0002*10-5

Reference (-70%) 30.12 0.567 1.242*10-5 Reference (-70%) 14.59 0.575 0.218*10-5

 Predicted (-70%)
CNN 40.64 0.982 0.059*10-5

 Predicted (-70%)
CNN 41.27 0.981 0005*10-5

GAN 40.6 0.984 0.006*10-5 GAN 45.58 0.994 0.002*10-5

Reference (-90%)
29.09 0.554 0.771*10-5

Reference (-90%)
6.9 0.252 0.331*10-5

 Predicted (-90%)

CNN 36.11 0.952 0.02*10-5

 Predicted (-90%)

CNN 30.57 0.575 0.061*10-5

GAN 37.82 0.971 0.016*10-5 GAN 38.52 0.98 0.0112*10-5

a) b)

Table 3.1: Table shows average PSNR, SSIM and MSE score for
validation dataset. Table a) for data representation of missing pix-
els, and b) for missing projections. "Reference" stands for the cor-
rupted data representation.

The green color on the table indicates which of the approaches outperformed the other
on that particular data corruption level.
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3.2 Quantitative results of test set
Test set contained 1 335 PET sinograms. This data set was put aside at the beginning of
the project and left untouched until the final phase after the last models tuning and training
were done to prevent any possible data leakage. The final results are presented in Table 3.2.

Missing counts PSNR(dB) SSMI MSE Missing projectios PSNR(dB) SSMI MSE

Reference (-10%) 30.39 0.644 0.533*10^-5 Reference (-10%)
39.24

0.966
0.007*10^-5

Predicted (-10%)
CNN 45.67 0.992 0.002*10^5

Predicted (-10%)
CNN 44.56 0.941 0.002*10^-5

GAN 47.44 0.994 0.001*10^-5 GAN 51.74 0.996 0.005*10^-6

Reference (-30%) 30.27 0.601 1.281*10^-5 Reference (-30%) 27.64 0.914 0.061*10^-5

Predicted (-30%)
CNN 44.11 0.989 0.031*10^-5

Predicted (-30%)
CNN 44.35 0.989 0.003*10^-5

GAN 44.8 0.991 0.0266*10^-5 GAN 50.59 0.996 0.007*10^-6

Reference (-50%) 28.84 0.526 1.601*10^-5 Reference  (-50%) 22.08 0.856 0.133*10^-5

 Predicted (-50%)
CNN 41.91 0.985 0.006*10^-5

 Predicted (-50%)
CNN 44.51 0.992 0.003*10^-5

GAN 42.57 0.988 0.005*10^-5 GAN 50.94 0.996 0.006*10^-6

Reference (-70%) 28.99 0.527 1.493*10^-5 Reference (-70%) 14.89 0.534 0.267*10^-5

 Predicted (-70%)
CNN 40.1 0.979 0.009*10-5

 Predicted (-70%)
CNN 36.46 0.814 0.022*10^-5

GAN 39.98 0.981 0.0094*10^-5 GAN 43.5 0.98402 0.004*10^-5

Reference (-90%)
27.05 0.482 0.995*10^-5

Reference (-90%)
6.59 0.243 0.432*10^-5

 Predicted (-90%)

CNN 35.43 0.941 0.027*10-5

 Predicted (-90%)

CNN 30.79 0.580569 0.082*10^-5
GAN 36.91 0.963 0.023*10-5 GAN 37.44 0.971874 0.021*10^-5

a) b)

Table 3.2: Table shows average PSNR, SSIM and MSE score for
test dataset. Table a) for data representation of missing pixels, and
b) for missing projections. "Reference" stands for the corrupted
data representation.

By comparing PSNR, GAN model (green color) outperformed CNN by scoring higher in
all data corruption level of both data representations. Exceptionally, when predicting missing
pixels with 70% of removed data information, CNN scored barely higher then GAN. SSIM
metric confirmed that GAN performed better since it scored higher in each case without any
exceptions.
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3.3 Qualitative results of test set
Qualitative results are necessary to inspect how the model performed visually. Due to a high
number of different cases which represent qualitative results, the figures are moved to the
Appendix section and can be observed there. In general, qualitative results revealed that
reconstructed PET images by GAN were sharper and more detailed. The edges of the tissue
were more preserved, also less artificial noise and artifacts were induced by GAN, contrary
to CNN.
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APPENDIX A. APPENDIX

Figure A.1: Final results of CNN on test set when 10% of pixels
are missing.
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Figure A.2: Final results of CNN on test set when 30% of pixels
are missing.
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Figure A.3: Final results of CNN on test set when 50% of pixels
are missing.
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Figure A.4: Final results of CNN on test set when 70% of pixels
are missing.
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Figure A.5: Final results of CNN on test set when 90% of pixels
are missing.
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Figure A.6: Final results of CNN on test set when 10% of projec-
tions are missing.

32



APPENDIX A. APPENDIX

Figure A.7: Final results of CNN on test set when 30% of projec-
tions are missing.
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Figure A.8: Final results of CNN on test set when 50% of projec-
tions are missing.
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Figure A.9: Final results of CNN on test set when 70% of projec-
tions are missing.
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Figure A.10: Final results of CNN on test set when 90% of pro-
jections are missing.
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