
1

Cost Models for Learned Index with Insertions
Rasmus Bilgram, Department of Computer Science, Aalborg University, Denmark.

Per Hedegaard Nielsen, Department of Computer Science, Aalborg University, Denmark

Abstract—Machine learning models have recently been used as indexing structure. This novel approach, termed learned index show
an increase in lookup performance compared to B-Trees. In this exploratory paper we further study the potential and limitations of
this novel approach. In many real-world scenarios the data maintained is dynamic, thus new elements are inserted. We show how
insertions can be supported and propose cost models to assist in decisions of when the machine learning models should be retrained
and if learned index should be used in a given setting. We also analyzed the effect of insertions. Based on our analysis we propose
structural optimizations to increase the insertion and lookup performance efficiency of learned index. Finally we evaluated the influence
of machine learning model training and argue that overfitting makes the learned index less susceptible to insertions. This contradicts
the objective of the machine learning models in the learned index structure.

Index Terms—Learned index, Insertion, Cost models, Overfitting, Mixture of Experts, Machine Learning

F

June, 2019

1 INTRODUCTION

Efficient data access is useful and valuable in many
systems. One way to achieve this is by applying in-
dexing structures. Indexing structures such as B-Tree,
Hash-maps and Bloom Filters perform well in different
contexts and can be used regardless of the dataset, which
makes them uniformly applicable. In [4] by Kraska et
al. a new concept is introduced, learned indexes. Learned
indexes is used for efficient data access by utilizing
machine learning models to learn the data pattern of
a specific dataset. The traditional indexing structures as
stated above are all general purpose, hence they do not
exploit data patterns. In real-world scenarios, indexing
structures are often specialized for various use cases,
but this requires additional engineering efforts, which
reduces applied attractiveness [4]. Since learned indexes
utilize machine learning models, the concept uses each
dataset’s unique patterns to improve efficiency without
imposing significant additional engineering efforts.

Given that learned indexes is a new concept there
are many properties to study. An attrachtive property
is insertion. In [4], insertion is at first sight referred
to as the achilles’ heel of learned indexes, however later
argued that since the machine learning models learn data
patterns it would only require O(1) operations to update
the Learned index if the insertions follow the training
distribution. This argument raises several questions. In
the learned index, overfitting is generally considered a
good thing, however, Kraska et al. [4] argue that it could
make the learned index less susceptible to inserts. This
hypothesis is further studied in this paper.

In this paper we explore how insertions affect the per-
formance of learned index. When inserting elements into a
dataset indexed by learned index the insertions reduce the
lookup performance of the learned index. Subsequently,

the machine learning models in the learned index must
be retrained to maintain efficient lookup performance.
Additionally, there may be settings, where the learned
index is not suitable due to frequent insertions. Such
challenges can be accommodated in several ways, one
of which is by using cost models. Inspired by query op-
timization where cost models are used to determine the
most efficient strategy to execute a given query [11]. In
this paper, we apply that approach and create estimates,
which provide information to decide if a learned index
is suitable for a given setting and if retraining should
be conducted. This paper focuses on insertions and as a
consequence, deletion and updates are not considered,
which means that our setting is always growing. We
also assume a standalone system, which implies that all
training and prediction is performed on the same system.

Additionally, by analyzing the relationship between
learned index and insertions, we are able to optimize the
structure of the learned index, which increases the number
of insertions it can handle. This creates a baseline, which
ensures that further testing is fair and that the different
models have a comparable starting performance inde-
pendent of the data distribution trained upon.

This thesis contributes to the research domain in the
following ways:
• We create cost models to assist in decisions of when

retraining of the learned index should be conducted
and if learned index should be used in a given setting.
The former estimates the cost of retraining specific
models or every model in the learned index. The latter
estimates the number of insertions that learned index
can handle before it has poorer lookups than binary
search.

• We analyze the learned index and implement struc-
tural optimizations, which makes it capable of han-
dling more insertions.

• We study the influence of overfitting machine learn-
ing models in regards to insertions when the data



2

distribution changes.
• We evaluate using synthetic data distributions to

verify model accuracy. This provides an environ-
ment where we can, thoroughly, test hypotheses
such as: What happens when the data distribution
changes.

The rest of the paper is organized as follows: Section
2 reviews related work within this research domain.
Section 3 describes our proposed cost models. Section 4
explains the experimental setup of our testing. Section
5 reports and analyzes our results. Finally, Section 6
concludes the paper and discusses directions for future
research.

2 RELATED WORK

Cost estimation is useful, because it can provide im-
portant information efficiently. The learned index has
multiple areas to be explored.

2.1 Query Optimization
Query optimization is the process of finding the most
efficient query execution plan among many depending
on the query complexity. There are multiple aspects of
query optimization. Some exist at the relational-algebra
level, where the focus is to perform transformations
that make the query more efficient. Another approach
is selecting a strategy to process a query. This could be
choosing a suitable algorithm to perform a certain oper-
ation based on cost estimations. The cost of an operation
depends on statistics maintained in the database-system
catalog and the size of its inputs. Such statistics could
be the height of the B+-Trees indices and the number of
leaf pages in the indices. By using the statistics and the
size of its inputs, estimates on the results of different
operations can be created. The estimates may not be
accurate because they depend on various assumptions
that may not be upheld. Such an assumption could
be all values which may occur, have equal probability.
Additionally, to maintain accurate statistics they must be
updated each time a relation is modified, however, such
updates lead to overhead, hence most systems do not
update at each modification [11].

In this study, the cost modeling approach has also
been utilized to create estimates that help the learned
index, handle insertions. As an example, the estimates
provide information about when it is worth to re-train
the models. Furthermore, the statistics are updated at
each modification in order to provide the most accurate
tests.

2.2 Mixture of experts
Shazeer et al. [10] discusses the concept of using experts,
based on the original idea proposed by jacobs et al. [3].
Essentially they use a gating network that outputs an
n-dimensional vector of experts. The only requirement
for the experts is that they accept the same input size

Fig. 1: B-Tree and learned index similarity [4].

and produce the same output size. They also mention
that if the number of vectors is large, they are able to
reduce the branching factor by introducing a hierarchical
model. In the hierarchical model, the experts themselves
are gating networks allowing them to distribute further.
Furthermore, they also take steps to balance the usage
of the experts, however, this is not done in this paper.
This approach remains similar to learned index since the
models at each stage predict the models to be used at
the next stage. In addition, aspects such as making the
model deeper to reduce the branching factor is also a
possibility.

2.3 Learned Index
The Case for Learned Index [4] by Kraska. et al. re-
place database indexing structures with machine learn-
ing models. This novel approach called learned index is
based on the idea that indexing structures, such as B-
trees can be seen as models. The indexing structure maps
the key to the position of the corresponding record. As
an example, B-tree ”predicts” a space in which the record
exists, which can also be achieved by machine learning
models. Figure 1 shows this similarity.

Using machine learning models for indexing provides
low memory consumption and a possible speed up in
lookups as shown by Kraska et al. [4]. Additionally,
structures such as B-Trees, Hash-maps or Bloom Filters
are general purpose and provide strong semantic guar-
antees, such as error margins and complexity. Machine
learning models learn from the data and are able to
exploit data patterns. To provide similar semantic guar-
antees as traditional structures Kraska et al. created the
recursive model index (RMI). It is inspired by the mixture
of experts approach using a hierarchy of models where
each model takes a key as input and selects a model,
expert, in the next stage. In the final stage, the models
predict the position of the record with an error bound.
Figure 2 illustrates the RMI and the path of predicting a
position.

2.3.1 Building the RMI
There are multiple ways of building the RMI. It can be
done bottom up, top down, using gated neural networks,
etc. In this paper it is done similar to Algorithm 1 in
[4], however, Algorithm 1 is unclear about how the data



3

Fig. 2: Recursive Model Index [4].

is distributed. Imagine Model 1.1 in Figure 2 the data
is distributed across the models in stage 2. One could
distribute the data evenly, thus each model retrieves
the same amount of data. It does not seem appropriate,
because some models could receive data in which they
are not experts. In this paper, we distribute the data in a
top down fashion by dividing the prediction of a model
with a distributor d. d is created with the following
formula:

d =
D

Mnext
(1)

D is the data cardinality and Mnext is the number
of models in the next stage. How Mnext is selected is
explained in Section 4.3.1. We create d assuming the
data are distributed equally, but we do not restrict how
the data is distributed, which solely depends on the
predictions of the models. As an example, if we have
10000 data points and an RMI with two stages; the top
stage with a single model and the second stage with
4 models. If the model in the top stage, the top model,
predicts index 10 then we calculate the next model index
by b10/(10000/4)c = 0. Using this setup the top model
must predict 2500 or above in order to distribute data
into the model with index of 1.

2.3.2 Error

In this paper, error measures the distance from the
predicted index to the actual index given a key. The error
is only measured in the last stage of the RMI. The error
of a model is split into a minimum and a maximum
error. The minimum error is the largest underestimate
of the predicted indices covered by the model, whereas
the maximum error is the largest overestimate. Figure
3 represents the area covered by the minimum and
maximum error of a model based on a prediction.
E, the average error of the RMI, is calculated by

summing the minimum and maximum error, which for
each model is multiplied by the number of elements
covered by a model. The multiplied values are summed
and then divided by the data cardinality. This calculation

Fig. 3: A prediction and the area covered by the mini-
mum and maximum error.

is shown in Equation 2.

E =
1

D

M∑
m=1

Dm ∗ (Errormin + Errormax) (2)

Dm is the number of data points used to train a given
model. We multiply with Dm to get the most accurate
E since the data is not necessarily evenly distributed.
Therefore the occurrence of each model must be consid-
ered. We assume that each element has an equal chance
of being accessed, which means that the probability of
accessing a model depends on the amount of elements
it covers. As an example, if we have two models with
a combined data cardinality of 100 and first is trained
on 25 elements with an error of 3, while the second is
trained on 75 elements and has an error of 12. If we do
not consider the number of elements covered by each
model, we get E = (3 + 12)/2 = 7.5 which is inaccurate
in the average case since 12 occurs 3 times as often as 3.
Using Equation 2 we get E = (3∗25+12∗75)/100 = 9.75,
which we consider a more accurate result. We consider
this more accurate because there will be more cases
where the model with error 12 occurs. Compared to the
cases where the model with error 3 is used.

Besides the average error E there also exists a maxi-
mum and minimum error across the entire RMI. When
elements are inserted, it is probable that a single model
receives more elements compared to the other models.
This depends on the distribution of the inserted data and
the data used for RMI construction. Potentially, the max-
imum error across the entire RMI could increase equal
to the amount of inserted elements if a single model
received every element. This aspect also influences the
performance of the RMI, as lookups in such models are
slower, due to the larger error. In this paper we focus on
the average case, hence this problem is a topic for future
work.

2.3.3 Prediction based binary search
In order to ensure we find the actual index, we employ
the prediction based binary search. This initially checks if
the key is located at the predicted index and if it is,
the element is returned. Otherwise, it checks whether
or not the key in the array is greater or smaller than



4

Fig. 4: Overfitting [6].

the searched key. If it is greater a left subset is searched
otherwise a right subset is searched. These subsets are
based on the minimum and maximum error of the model
performing the prediction and searched using binary
search. As an example, the subsets of a model with a
minimum error of 2 and a maximum error of 3 has a
cardinality of 2 and 3 respectively.

2.3.4 Overfitting
In machine learning, overfitting happens when a model
makes predictions based on regularities that occur in the
training data but not in the test data. This means that
the model learns the training data instead of learning
from the training data [9]. Consequently, a less overfitted
model makes more accurate predictions on new data.
This relationship is visualized in Figure 4, where the
overfitted models gain error on future data.

As explained in [4] B-trees are good at overfitting the
data, which makes them an excellent indexing structure.
By replacing B-trees with machine learning models the
objective of overfitting the data still stands. This contra-
dicts the machine learning theory that overfitting gener-
ally should be avoided. However, a well performing RMI
can still be created using models that do not overfit, such
as linear regression. This is due to the fast execution of
linear regression, hence it becomes a trade off between
execution time and accuracy, but that is beyond the scope
of this paper. Kraska et al. [4] made the hypothesis that
there is a trade off between the generalizability of the
model and the last mile predictions. This is a matter of
overfitting and this hypothesis is further investigated in
this paper.

3 COST MODELS

The cost models for different metrics are presented and
explained. The primary notations used in this paper is
shown in Table 1.

3.1 Lookup
We create a cost model for lookup to quickly determine
the lookup performance of the RMI. Additionally, it also

Notation Definition
τ Cost of step in binary search
β Cost of model prediction
γ Cost of retrieving a model
αtrain Average cost of training a single data element
αprediction Average cost of prediction
H Height of the RMI
M Number of models in last stage of the RMI
Mtotal Total number of models in the RMI
E Average error of the RMI
D Number of elements in data (data cardinality)
Dpath Number of data elements in RMI path
Dnew Number of new data elements

Table 1: Notations.

provides an overview, of what is impacted when addi-
tional data points are added to the data, which is used to
create other estimates. Finally, it also gives insight about
when the RMI is not performing adequately, and should
be retrained.

The cost of lookup using the learned index can be
divided into two parts. The first part is the cost from
the RMI and the second part is the last mile search.
In the RMI part, we must first retrieve the required
model in order to perform predictions. Retrieving the
model and predicting with it has a constant cost, which
are executed at each stage. The last mile search in the
paper is done using prediction based binary search and
the number of steps performed by prediction based binary
search is log(N) where N is the error of a given model.
We are to calculate the cost, hence the number of steps
performed by prediction based binary search should be
multiplied with the cost of a single step. Adding these
two parts we get the following cost formula:

costlookup = H ∗ (β + γ) + log(E + 1) ∗ τ (3)

H is the height of the RMI, β is the cost of model
prediction and γ is the cost of retrieving the model. E is
the average error as shown in Equation 2.

Using the RMI as shown in Figure 2. We assume β =
14ns, γ = 13.5ns E = 15 and τ = 10ns. β, γ, β and τ
depend on the hardware, however β also depends on
the model type, which in this paper is linear regression.
Linear regression is used because it has fast training and
prediction. The estimate then becomes costlookup = 3 ∗
(14 + 13.5) + log(15 + 1) ∗ 10 = 122.5.

3.2 Training
A cost model for retraining can be useful in order to
determine if retraining should be done. As an example, if
an actual system used learned index as indexing structure
and the lookup performance was not satisfactory, a
training estimate could provide value to the decision of
retraining. Finally, the cost of building the RMI is the
same as retraining every model in the RMI.

3.2.1 Building the RMI
The cost of creating the RMI is based on the cost of
training and prediction. First, every model in each stage



5

must be trained and the sum of the trained data points
of a stage is equal to the data cardinality D. This means
that by multiplying the cost of training a single element
by the height of the RMI and D, we get the total cost of
training the models. Second, in order to build the RMI
each data point must be predicted to determine, which
models cover certain data points. The prediction is done
by each model in every stage except the last stage be-
cause there are no further models to be selected. Finally,
the prediction part can be calculated by multiplying the
cost of a single prediction with D and the height H
subtracted by 1. Combining the training and prediction
part we get the following formula to estimate the cost
of building the RMI:

costfull retrain = (αtrain∗H∗D)+(αprediction∗D∗(H−1))
(4)

αtrain is the average cost of training a single data point
and αprediction is the average cost of predicting a single
data point. αtrain and αprediction is shown in Equation
5 and 6 respectively. D is the data cardinality and H
is the number of stages in the RMI. We use an average
cost of training a single data element because analysis
has shown that the cost of training a single model on
D is approximately the same as training two models on
D/2 each.
αtrain is calculated by the average cost of training

every model in the RMI. We multiply D with H because
this is done across all stages. costtrain actual is the com-
bined cost, it took to train the RMI initially.

αtrain =
1

D ∗H

Mtotal∑
m=1

costtrain actual (5)

αprediction is determined by the average prediction cost
of a single model on all data. costprediction actual is the
cost for a model, to predict on every element.

αprediction =
1

D

D∑
d=1

costprediction actual (6)

costtrain actual and costprediction actual also depend on
the hardware. To calculate αtrain we sum the cost of
training all models and then divide by all data points
multiplied by H . As an example, if we have a data
cardinality of 10000, an RMI with H = 2 and a total
costtrain actual of 332.167.625. The estimate then becomes

1
D∗H ∗ 332.167.625 = 11072. αprediction is calculated in
the same fashion except it is done by summing the
prediction cost of a single model and then the average
is determined.

3.2.2 Retraining
Retraining the RMI can be done by retraining every
model or only specific models. Retraining every model
has the same cost as building the RMI as shown in
Equation 4, and is referred to as full retrain. It is not

always necessary to train every model instead models
can be selected based on a threshold. These models are
trained on the new data which they cover in addition to
the data they trained on previously. This is referred to as
partial retrain. Using this intuition we get the following
estimate:

costpartial retrain =αtrain ∗ (Dpath +Dnew)

+ (H ∗ β ∗D ∗ 2)
(7)

Dnew is the number of new data points to be used for
training and Dpath is the former training data of the spe-
cific models. This way each model that is to be retrained
is trained on both old and new data in order to make
it more robust. The remaining cost accounts for finding
the elements each model was initially trained on and
recalculating the average error E. The threshold property
is set to 32 in order to retrain a significant number of
models. The threshold property is an interesting topic to
further research.

3.2.3 When to retrain?
When inserting elements the error E of the RMI increase.
At some point, it becomes so large that binary search on
all data has a lower cost than using the RMI. Deciding
when to retrain is based on Equation 3 and the cost of
using binary search. We consider binary search because if
it has faster lookups than the RMI we should replace
the RMI with a B-Tree as explained in [4]. The idea is to
compare the reduced steps of binary search and the last
mile search using the RMI.

In other words, if we subtract the prediction based
binary search cost of the RMI from the binary search,
the remaining cost of the RMI must be less than the
remaining binary search cost. In short, costlookup must be
less than the cost of using binary search on D in order to
use the RMI. This constraint is shown below:

costlookup > log(D) ∗ τ (8)

costlookup is equal to Equation 3 and log(D) ∗ τ is
the cost of binary search on the entire dataset. Using
this constraint one can achieve suitable RMI lookup
performance if the lookup performance is to be as fast
as possible, retraining should be done by each insertion.
The constraint can also be represented as a decision tree
as shown in Figure 5.

3.3 Insertion
With learned index being a novel approach it can be
difficult to determine whether to use it or not. There are
many aspects which should be considered one of which
is insertions. We propose an estimate which indicates the
number of insertions an RMI can handle, before it should
be retrained to maintain a low costlookup. This could help
decide whether or not learned index should be used.

This estimate is constructed based on the lookup
estimate and multiple assumptions. We assume that the



6

Fig. 5: Retraining decision tree.

RMI can learn the data distribution and that there is a
correlation between the average error E and the amount
of insertions the RMI can handle before it becomes worse
than binary search. The latter is based on Equation 3, since
it increases as E increases, which means that costlookup
approximate the lookup cost of binary search. In short,
a large E yield a costlookup close to the lookup cost
of binary search, hence fewer insertions can be handled
before they equal each other. Additionally, we assume
that E increases by approximately 0.5 for every insert,
since insertions in the dataset shifts the index of all
elements to the right by 1. Also, an insert at the end of
the dataset shifts zero elements. Then based on an initial
RMI we can estimate, the amount of inserts required
before the RMI has worse lookup performance than
binary search. The estimate is shown below:

∆cost = log(D) ∗ τ − h ∗ (β + γ)

steps = ∆cost/τ

E′ = 2steps

inserts = (E′ − E) ∗ 2

(9)

First, we calculate the ∆cost between binary search on
the entire dataset and the prediction part of the RMI. The
∆cost is the cost the lookup of the RMI may increase
before it is equal to binary search. The ∆cost is then
converted into steps, so we can calculate the average
error E′ the RMI must have to equal binary search in
lookup using the inverse logarithmic function. Finally,
we use the assumption that E increases by 0.5 for every
insert by multiplying the ∆cost between the start error
E and the estimated error E′.

As an example on a dataset with a cardinality of 10000,
an RMI with height H = 2, E = 5, τ = 10, β = 15 and
γ = 15 the ∆cost are log(10000)∗10−2∗(15+15) = 72.88.
The error E′ will then be 2

72.88
10 = 156.28 and the amounts

of insertions the RMI can handle is (156.28 − 5) ∗ 2 =
302.56.

4 EXPERIMENTAL SETUP

This section describes the applied datasets and how the
tests are conducted. In addition, it is described how the
number of models and stages in the RMI are determined.

Fig. 6: Normal distribution

4.1 Hardware specifications

The tests were conducted on a machine with the follow-
ing specifications:
• CPU: Intel(R) Core(TM) i9-9900k CPI @ 3.60 GHz
• RAM: 16 GB 2666 MHz

4.2 Datasets

In order to do the tests we created two different synthetic
datasets; Normal and Log-normal. Both datasets are static
and the names represent the distribution used for the
given dataset. The distributions are also used for insert-
ing elements to either keep or change the distribution of
a given dataset. Furthermore, we assume that the index
is a continuous variable.

4.2.1 Normal

The Normal distribution is a continuous probability dis-
tribution. It is widely used since it has many properties
[7]. This often occurs in nature, as the sum of inde-
pendent random variables added to a sample, tends to
follow a normal distribution, this is the central limit
theorem [8]. The Normal distribution has a shape of a
bell curve as shown in Figure 6.

4.2.2 Log-normal

The Log-normal distribution is also a continuous prob-
ability distribution. However, in the Log-normal distri-
bution, it is the logarithm of a random variable that
follows a Normal distribution. Using the parameters, as
used in this paper; mean = 1 and sigma = 1 the distri-
bution becomes long tailed. Long tailed distributions are
generally considered difficult to learn in recommender
systems using traditional machine learning algorithms
[13]. This is caused by different data points with low
quantity. Additionally the Log-normal distribution has a
large application area [5] [2].



7

Fig. 7: Log-normal distribution

4.2.3 Insertions

All insertions in this paper are random but can be
performed in two different manners. The first is a static
insertion, where the insertions follow the known dis-
tribution of the dataset, thus the properties of a given
dataset are approximately maintained. This means that
for Normal such insertions do not change the mean or
standard deviation significantly.

The second insertion manner is a dynamic insertion,
where the inserted elements change the distribution of
the original dataset. In [4] the question of the influence
of such insertions is raised.

Recalculating error: Whenever elements are inserted
into the RMI, the error bounds must be updated. If
the error bounds are not updated, the inserted elements
may not be found. This is similar to rebalancing a B-
Tree, where the tree is rebalanced whenever elements
are added. In every test where insertions are performed
this recalculation is executed for every insert. If mul-
tiple elements are inserted before the next lookup, the
recalculation of error may only occur once since the
error bounds of every model are updated. The cost of
recalculating the error bounds are shown below:

D ∗ (H ∗ (β + γ)) (10)

D is the data cardinality, H is the height of the RMI, β
is the cost of predicting a single element and γ is the cost
of retrieving a model. This procedure could be optimized
by using the RMI to find the model, which is to cover the
new elements. Then only the models that cover data with
larger indexes are to be updated as well. This is in the
average case faster than iterating D. This optimization
does not affect our results and is therefore a topic which
is beyond the scope of this paper. It should be optimized
if learned index was to be used in an actual system.

4.3 Test setup

The estimates created in Section 3 must be tested before
they can be used. Every cost model is tested and various
related hypotheses that provide insights about learned in-
dex and insertions are evaluated. The codebase is written
in C++ and compiled using GCC.

4.3.1 Model and stage count

When creating the lookup and training test, we study the
cost with regards to the data cardinality D. However,
there are multiple variables that influence the perfor-
mance of the RMI such as the height H and the number
of models in the last stage M . It can be difficult to
represent all these variables at the same time, which is
why we made the influence of H and M constant by
selecting an optimal H and M at each RMI creation. To
determine these variables we analyzed the influence of
H and M , in regards to the average error E, in order to
determine patterns.

For optimizing H we used Condition 11 and for M
we selected the number of models that provided a low
E. The idea of Condition 11 is that the number of steps
reduced in binary search when adding an additional stage
must have a lower cost than the cost of the additional
stage. It boils down to the number of steps performed
by the binary search vs the cost of the additional stage.

costlookup > (H + 1) ∗ (β + γ) + log(E′ + 1) ∗ s (11)

The constraint denotes that if the current costlookup is
larger than the costlookup with an additional stage and a
different error E′ we add the stage.

For M we optimized for a low E, and Figure 8 illus-
trates the relationship between M and E. In this analysis
we included data following a Uniform distribution as our
ideal baseline [12]. By comparing with the Uniform dis-
tribution we reduce the influence of model type, because
linear regression fit the Uniform distribution well. By
analyzing the graph we determined that as M increase
E is decrease. This is because each model covers less
data points, thus the prediction become more accurate. In
our experiments we wanted the average model to cover
more than two data elements, while maintaining a low
E. Finally we decided to use a model count of D

10 , which
is where E begins to flat line with respect to M .

Empty models: Using Figure 8 we optimized for
the average error E, however, new issues arose. When
optimizing the number of models M for Log-normal, we
ended up with a lookup performance similar to an RMI
train on Normal. Log-normal is significantly less linear
than Normal, hence using linear regression as model
type, the lookup performance should be worse. This is
caused by empty models being added since M is not
suitable for the prediction accuracy of the top model. E
is low because the data is still distributed across many
models, although some are empty. When building the



8

Fig. 8: The Average error E with respect to Model count
M .

RMI we primarily focus on improving lookup perfor-
mance with regards to H and M but we also consider
the H and M with a low number of empty models.

The empty models could be removed, but then the
learned index would no longer work as the indexes of
the models would be shifted. This could be solved by
reconstructing the RMI using the new M . This procedure
was executed, but the RMI on Log-normal consistently
had empty models at the beginning of the last stage.
Consequently, the procedure was carried out recursively,
but only few models would remain, thus its lookup
performance was inferior to binary search. In addition,
we gave up the advantage of having M being a specific
fraction of D. Having empty models is memory inef-
ficient, but as this paper does not have memory as a
focus point, the empty models are kept to investigate
the performance potential of learned index. Keeping the
empty models improves the performance because M re-
mains a specific fraction of D, which greatly reduces the
starting error of the RMI. This does not effect Equation
1, since the manner in which the data is distributed
remains the same. However, it can cause larger worst
case performances and jumps in the average case, when
inserted elements are distributed to the empty models.
This happens because the empty models always predicts
0, then their error must cover the entire data cardinality,
D.

4.4 Nanoseconds
The primary part of the conducted tests depends on time
in nanoseconds. When measuring the time with such a
small unit it is probable that the outliers that occur are
significant. This could be solved by running the tests
many times, however, that can be time consuming, when
there are numerous tests.

Besides running the tests multiple times we also made
each run more valid by executing the time measuring
part may times, where we removed outliers by calcu-
lating the standard deviation. This yielded a vector that

Fig. 9: Decay test. Lookup cost with respect to inserts
comparing each distribution.

was used to calculate the actual average. For instance, if
we were to calculate the average lookup time of an RMI,
we would measure the average lookup time multiple
times, remove the outliers and then return the average
of the remaining times. This significantly smoothed the
results.

5 RESULTS

This section describes our results. In the tests where the
lookup cost is visualized with respect to insertions, we
do not plot every distribution, because the results are
similar. Instead, we created a test, 5.1, to show how
similar the results are.

5.1 Decay test

Figure 9 shows the lookup performance when elements
are inserted. The test is conducted by constructing an
RMI for each distribution, and gradually inserting ele-
ments while continuously measuring the average lookup
time. In addition to the Normal and Log-normal distri-
butions we added the Uniform distribution to illustrate
the ideal data distribution for our models. The rates of
which the lookup performance deteriorates across the
distributions is similar. Since the rates are similar, it is
indicated as general applicability of the RMI regardless
of the data distribution. The rates also indicates other
measurements such as estimates of insertions before
requiring to retrain, which can be applied regardless of
the data. As an example in Figure 10 we do not show
every distribution, since the result is the same, due to
this test.

5.2 Lookup

In Figure 10 a comparison between Equation 3 and
actual lookup is visualized. This is done by creating
an RMI trained on data following a Normal distribution



9

Fig. 10: Lookup test. Lookup cost with respect to inserts
using data following the normal distribution.

with a data cardinality of 10000. Then 1000 elements
are inserted and for each insertion, the actual lookup
time is measured and the estimate is calculated. For this
test we calculate an overhead of the prediction to be
9.5 ∗H . The overhead has the purpose of ensuring that
the predicted models are not out of bounds as well as
calculating the selected model index in the next stage.
The estimate is consistent and only deviates slightly near
the final insertions. This is an acceptable result because,
as the insertions increase the more likely we are to have
retrained.

5.3 Insertion

We conduct test to determine the correlation between
error and inserts and show the accuracy of the estimate
presented in Section 3.3.

5.3.1 Error
The insertion estimate as explained in Section 3.3 is
based on various constants and a single variable. The
variable is the average error E, which increases as in-
sertions are performed. This assumption is important
and must be true if the estimate is found correct. To
verify it, we test if there exists a correlation between the
E and insertions by creating multiple RMIs’ with very
different errors. These RMIs’ are then tested by inserting
until Constraint 8 is true. The intuition is that a small E
provides more insertions than a larger E.

The test was conducted using a data cardinality D of
10000. Figure 11 illustrates the correlation between error
and inserts. The y-axis is termed Value because it repre-
sents two different domains: Insertion count and average
error. Because these domains are close the correlation
is visible. The inferior models are trained on the same
data as the good models. However, a high error is forced
through worse distribution of data in the RMI, in order
to test this premise.

Fig. 11: Error test. Relationship between inserts and error
with respect to the model count M . Tested on data
following the normal distribution.

The behavior of E and the number of inserts mirror
each other, hence when E decreases, inserts increase,
and vice versa. This confirms the hypothesis that E is
an indicator of how many inserts the model can handle
before condition 8 is true.

It is evident that the larger E is, a less amount of
insertions can be handled. In the final peak in E, it is
notable, that the inserts are less than the previous peak
in E.

5.3.2 Estimate
The inserts estimation test was conducted by creating an
RMI of some data cardinality D, the first being 500 and
increasing at 500 with each step. Then we used Equation
9 to estimate the amount of insertions that the RMI could
handle before Constraint 8 is true. The estimated inser-
tions were performed and the actual average lookup cost
was measured. The lookup cost of the RMI should then
equal the lookup cost of binary search on D, post inserts.

Figure 12 shows the comparison of the lookup cost
using the RMI after the insertions and the lookup cost
using binary search. The estimate are slightly underesti-
mating, the actual amount of insertions we can handle.
This is because Equation 9 only consider the initial binary
search, thus the increase in cost as more elements are
added are not included. This could be remedied by
recursively calculating the expected insert with the pre-
vious result added to the cardinality, until the increase
in inserts is negligible. There are minor fluctuations in
the estimate, due to the slight variations of the average
error E. It is not guaranteed that E increases in the same
manner as D.

5.4 Training

We show the accuracy of the two training estimates
explained in Section 3.2.



10

Fig. 12: Insertion estimate test. Lookup cost with respect
to the data cardinality D. Tested on data following the
normal distribution.

Fig. 13: Full retrain test. Training cost with respect to
the data cardinality D, where the data follows a normal
distribution..

5.4.1 Full retrain

The training test is conducted by training every model
in the RMI, thus a full retrain. The results are presented
in Figure 13. We use RMI configuration based on the
explanation in Section 4. The training cost is increasing
linearly with the data cardinality and the estimate is
similar to the actual.

5.4.2 Partial retrain

The retraining test was conducted using a data cardi-
nality of 10000. After the RMI was created, we began
inserting 300 elements at each step and use partial retrain
to retrain the RMI. The cardinality of the dataset was
25000 when all insertions had been performed. Using
this workload we retrained 50 times, one after each 300th
insert. The results are shown in Figure 14.

Fig. 14: Partial retrain test. Training cost with respect to
the data cardinality D, where the data follows a normal
distribution.

The graph fluctuates because of the number of models
retrained after inserting 300 elements. Since we only
train models with large error, the amount of models
retrained is inconsistent. In this case, they vary because
if 150 models were retrained. Then it is less probable that
any of those are retrained in the next iteration, hence it
is likely to be a different amount. The fluctuations could
be reduced by retraining more infrequently. The estimate
is similar to the actual although it is fluctuating by every
retraining. Finally, there is an increasing trend, which is
expected since there is more data to be retrained.

5.5 Comparison

The hypothesis states that some models become worse
more frequently than others. By using partial retrain such
models should be trained often, thus training of less in-
fluential could be spared. The partial retrain is compared
with full retrain and binary search. The data cardinality on
this test is 1000 following a Normal distribution. The drop
in lookup time occurs when neither model satisfies the
constraint described in Condition 8, hence retraining is
conducted. The reason why full retrain drops more than
partial retrain is that partial retrain only trains the last
stage model which is performing poorly, therefore the
increase in performance is less significant.

Figure 15 visualizes the two retraining methods and
this shows that few inserts are necessary to reduce the
lookup performance gained from full retrain compared
to partial retrain. This is because the models retrained by
partial retrain can handle data more efficiently since they
previously received more data. Additionally insertions
received by models that have a large error has little effect
on the error compared to models that were freshly re-
trained. Although full retrain can receive more elements,
the number of elements handled by partial retrain is
done using a smaller retraining cost. Considering the



11

Fig. 15: Lookup comparison test. Lookup cost with re-
spect to inserts to compare retraining methods. Con-
ducted on data following a normal distribution.

retraining cost, partial retrain has the advantage in terms
of handling inserts, which Section 5.6 describes.

5.6 Total cost
As seen in Section 5.4.2 the retraining cost is much larger
than the lookup cost. By using Condition 8 the RMI can
maintain a lower lookup cost than binary search. This
does not necessarily mean that it is worth retraining
in all situations, because some may require a low total
cost when using the learned index. This means that the
reduced cost of lookups gained by retraining, multiplied
by the expected number of lookups must be less than the
cost of retraining.

Our analysis showed that a large amount of lookups
were required since the retraining cost is major com-
pared to the lookup cost. To visualize this hypothesis we
created a total cost test by summing the retraining and
lookup cost during insertions. The lookups and inser-
tions were carried out following a Poisson distribution, to
indicate real-world events [12]. Figure 16 illustrates the
total cost of three simple approaches to handle insertions
with learned index. A step consists of an average of 100
inserts and then an average of 100 lookups. Retraining is
conducted according to Condition 8. It is clear that the
untrained RMI has the lowest cost, thus learned index
would be geared towards better performance in settings
where retraining is possible. This could be during peri-
ods of low workload. The difference between full retrain
and partial retrain is also large because full retrain trains
models, which does not necessarily require retraining.

5.7 Generalization
As explained in Section 2 Kraska et al. formulated the
hypothesis that overfitting could make the learned index
less susceptible to inserts [4]. This is based on the theory
that not overfitting increases the prediction accuracy on

Fig. 16: Total cost test. Total cost with respect to steps on
data following a normal distribution.

Cardinality 10000 1000
Training Overfitted General Overfitted General
Normal 19.74137 19.6166 19.7888 19.79623
Log-normal 19.79887 19.67453 19.7885 19.77517
Uniform 19.7546 19.66967 19.7356 19.7688

Table 2: Lookup performance of RMI with neural net-
work as top model.

future data points. Based on our estimates it is primarily
the average error E which influences the number of
insertions that the RMI can handle, but more general
models could influence the gradient of how E increases
with inserts.

To investigate this hypothesis we created four neural
networks each with four fully connected hidden layers
using ReLU activation functions. The four layers made
overfitting straightforward. The neural networks was
created using Python, but imported in C++ for testing.
The first two were trained on a data cardinality D of
1000, whereas the others were trained on a D of 10000.
One of the neural networks for each D was overfitted
and the other was general. This was achieved by either
training by a lot of epochs or a few, since more epochs
overfit more. The neural networks were then used to
replace the top model of the RMI, which decides how
the data is distributed. An overfitted top model is able
to distribute the data more evenly.

The neural networks were all trained on data follow-
ing a Normal distribution. We then created three RMIs on
data following the Normal distribution, while using the
neural networks as top model. Afterwards we inserted
1
10D data points following either Normal, a Log-normal or
a Uniform distribution. After the insertions, we measured
the average lookup time on the inserted elements only,
which is presented in Table 2.

The results in Table 2, is the lookup represented in
microseconds. Compared to our previous results the
lookup time increases because neural networks require
more computations than linear regression. When the



12

data cardinality is 10000 the general models had the
fastest lookup performance, hence the hypothesis in [4]
holds in this case. We expected the overfitted neural
networks to be faster on the Normal inserts, but that
is not the case. A reason for this can be that evenly
distributing data among the bottom models does not
necessarily increase the performance on future data.
Another explanation can be that although the data is
evenly distributed, it does not necessarily mean that the
linear model receiving the data, is able to construct a
suitable model. However, when the data cardinality is
1000 the lookup performance between the overfitted and
general models is similar. We believe this is due to the
number of inserts becoming too low to make an actual
difference.

6 CONCLUSION
In this paper we proposed cost models to estimate
certain aspects of the learned index. We estimated lookup
cost, training cost and the number of insertions the
learned index could handle, before its lookup performance
became worse than binary search. Our estimates has
a maximum error percentage of 10%. These estimates
have various use cases such as assisting in the decision
of: When retraining should be conducted based on its
estimated retraining cost and estimated lookup cost,
since it is used in our proposed retraining constraint.
Additionally, the insertion estimate supports in deciding
whether or not learned index should be used instead of
other indexing structures.

In order to handle as many insertions as possible
and compare various retraining methods on different
data cardinalities, this paper studied how to create a
better RMI with regard to lookup. We considered the
depth and width of the RMI and used those results as
a baseline of how we ideally wanted the RMI structure.
In this decision, we also considered empty models and
ensured that the structure contained as few as possible
of these while being insertion efficient. Also, we argue
that the minimum number of models in the last stage
of the RMI should be 1

10 of the data cardinality, to
ensure an efficient RMI. Finally, we investigated the
question of overfitting the top model in the RMI when
the data distribution changes. Our analysis showed that
overfitting may reduce lookup performance compared to
a more general model.

We also compared two training methods, one that
retrained every model in the RMI, and one that retrained
models in the last stage within some error boundary. We
compared two training methods, full retrain and partial
retrain with respect to lookup performance and total
cost. In terms of total cost, partial retrain was found
to be superior, while in terms of lookup performance
full retrain had the advantage, as expected. Deciding
which to use would be a design choice depending on
the specific use case. We also conclude that in settings
where the total cost and fast lookups is of importance
learned index is not preferable.

6.1 Future work

The test conducted in this paper is based on synthetic
data. Although we used the Poisson distribution in cer-
tain tests to simulate real world events, it is not sufficient.
It could be interesting to further study whether the
estimates are robust enough to work on a real dataset.
Additionally, the estimates could also be integrated into
a database system to test their influence.

Another topic that has a significant impact on in-
sertions in regards to learned index is how inserts are
performed. A method for doing this is delta-indexing,
as used in [1], where the new elements are stored in a
buffer. That buffer is then searched if the RMI fails to find
the key. Delta-index would increase the average cost of
lookup to H ∗ (β + γ) + log(E + 1) ∗ τ + log(N) ∗ τ ∗ N

D .
N is the cardinality of new data elements and N

D is
the probability of using the buffer. Consequently, the
average error would remain static until retraining, which
would be conducted based on the cardinality of the
buffer.

A different approach is to create spaces in the dataset
where new elements could be stored. By using this
method the error would probably increase at slower rate
because more insertions would be required before the
average error increases.

To train, we only used linear regression except in
the generalization test. Other machine learning models
could differently improve the learned index differently
in terms of insertion handling since there is plenty of
regression models to test. Perhaps the average error
could be reduced and more insertions could be handled,
however, that also depends on the prediction speed and
accuracy of the machine learning models.

The generalization test could also be further expanded
upon, since it can be essential to datasets with frequent
insertions. The test conducted in this paper is brief and
only on two different data cardinalities with insertions
equal to 1

10 th of the given data cardinality. It could be
interesting to test on larger data cardinalities and more
insertions. The data distribution trained upon, and the
distributions which the insertions follow could also be
adjusted to gain more insight. Also, generalized and
overfitted models could be added in every stage of the
RMI.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[2] E. L. Crow and K. Shimizu. Lognormal distributions. Marcel Dekker
New York, 1987.

[3] R. Jacobs, M. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive
mixture of local expert. Neural Computation, 3:78–88, 02 1991.

[4] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, pages 489–504. ACM, 2018.

[5] K. Krishnamoorthy. Handbook of statistical distributions with appli-
cations. Chapman and Hall/CRC, 2016.

[6] T. D. Nielsen. Lecture notes in machine intelligence, October 2016.



13

[7] J. K. Patel and C. B. Read. Handbook of the normal distribution,
volume 150. CRC Press, 1996.

[8] P. Z. Peebles. Probability, random variables, and random signal
principles, volume 3. McGraw-Hill New York, NY, USA:, 2001.

[9] D. L. Poole and A. K. Mackworth. Artificial Intelligence: foundations
of computational agents. Cambridge University Press, 2010.

[10] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean. Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538,
2017.

[11] A. Silberschatz, H. F. Korth, S. Sudarshan, et al. Database system
concepts, volume 4. McGraw-Hill New York, 1997.

[12] C. Walck. Hand-book on statistical distributions for experimen-
talists. Technical report, 1996.

[13] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail
recommendation. Proceedings of the VLDB Endowment, 5(9):896–
907, 2012.



1 Summary
This study is based on the paper a Case for Learned Index Structures which
propose a novel approach to data indexing by using machine learning models
to learn the data distribution. From this paper as well as our pre-thesis several
points of interest could be further investigated. One of these points is inserts,
which the original paper describes as the Achilles heel of learned index.

This paper explores learned index with respect to insertions, but in order to
conduct such investigations fairly, we create a stable baseline for a efficient
learned index. This is achieved by running multiple tests in regard to what
makes an optimal structure with respect to insertions.

We propose cost models that estimate the cost of the different properties of
the learned index. We consider the cost of rebuilding the learned index and the
cost of a single lookup. Additionally, we propose an estimate, which indicate the
number of inserts the learned index can receive before it should to be retrained.
In order to create that estimate we investigated the relationship between the
starting error of the learned index, and the number of inserts it can handle.

To determine when a learned index model needs to be retrained, we consider
its average lookup performance, which is compared with the lookup performance
of binary search. We also propose an alternative training method and a cost
model to estimate its training cost. This alternative training method only trains
specific models on their associated data.

We show several tests to evaluate our cost models, where we compare our es-
timations to the actual performance of the learned index. We also test the
different training methods, to study the performance differences. The lookup
and training performance is better when using the alternative training method,
but the learned index can handle less insertions. This is as expected because
training every model in the learned index should make is able to handle more
insertions. To get an overall impression of the alternative training method,
we also measured the total cost of the two approaches. This was carried out
because the cost of training every model is significantly larger than training
specific models. In order to test the total cost of the models, the data inserts
and the lookups performed follow a Poisson distribution. We also explore the
rate at which the lookup performance of the learned index deteriorates, across
various data distributions, as more elements are inserted. Lastly, we investigate
a hypothesis regarding overfitting of models by comparing an overfitted model
to a general model. This is carried out on both known and unknown data, where
the unknown data follows a different distribution.

In the end, we developed accurate cost models that provide insights about var-
ious properties of the learned index. Some of these insights assist in deciding
if learned index should be used in a given scenario. Based on our analysis we
found what part of learned index that is affected by insertions. This also bring


	Introduction
	Related Work
	Query Optimization
	Mixture of experts
	Learned Index
	Building the RMI
	Error
	Prediction based binary search
	Overfitting


	Cost Models
	Lookup
	Training
	Building the RMI
	Retraining
	When to retrain?

	Insertion

	Experimental Setup
	Hardware specifications
	Datasets
	Normal
	Log-normal
	Insertions

	Test setup
	Model and stage count

	Nanoseconds

	Results
	Decay test
	Lookup
	Insertion
	Error
	Estimate

	Training
	Full retrain
	Partial retrain

	Comparison
	Total cost
	Generalization

	Conclusion
	Future work

	References

