
A Learned Bucket Index Supporting Spatial Queries

Martin Folmer
Department of Computer Science

Aalborg University
mfolme13@student.aau.dk

Raphael Neumann
Department of Computer Science

Aalborg University
rneuma14@student.aau.dk

Theevaahar Karunanithi
Department of Computer Science

Aalborg University
tkarun14@student.aau.dk

Abstract— Learned indexes have proven its potential
on one-dimensional and multidimensional relational data.
In this paper, we investigate the applicability of learned
indexes in a spatial context. We devise a projection
function that orders spatial data into a learnable or-
dering. Using this function, we train models over the
ordering of the data, and build an index consisting of a
hierarchical structure and smaller utility components. We
specifically build this index to accommodate range and
nearest neighbor queries. To perform nearest neighbor
queries, we convert them into range queries. We compare
the speed of the index to that of the R-tree on the range
and nearest neighbor queries by testing on datasets of
different distributions and sizes. Through our evaluation,
we show that the learned index is able to outperform
the R-tree in most cases. With the implementation of
our learned spatial index, we show that, despite the
challenges that exist within a spatial context and the
inherent uncertainty with models, learned indexes remain
powerful tools with potential in many types of data.

Keywords— R-tree, Machine Learning, Deep Learning,
Learned Spatial Index, Neural Network, Multidimensional
Data, Spatial Queries

1. Introduction

Machine learning has begun its advancement into
various fields of computer science and databases are
one of them. Index structures, such as B- and R-trees
[1] [2], have for a long time been the standard for
database indexing, but with the introduction of machine
learning algorithms in this field, it has become possible
to radically change the way indexes are created. This
is demonstrated in [3], wherein multiple traditional
data structures for one-dimensional data, such as B-
trees, hash indexes and Bloom filters, are replaced with
what they coin to be ”learned indexes” at an increased
performance.

The authors state that traditional indexes, such as
the aforementioned, are general purpose indexes, in
that they treat all data equivalently without making any
assumptions about patterns existing within the data.

They therefore argue that machine learning models,
which are able to learn patterns within the data, are
theoretically able to perform the same procedures as
some indexes at an increased performance. B-trees,
for example, map a value to a location in an one-
dimensional sorted container, see Figure 1. A B-tree
can therefore be regarded as a model, that takes a
value and determines its position in memory, which
is a relationship a model can learn with the use of
machine learning. This is especially simple in the case
of B-trees, due to the sorted nature of the data, which
regression models can take advantage of. It is for
the same reason a trivial task to combat the inherent
imprecision in model predictions and guarantee that the
correct result is found, since a simple local search from
the prediction can be utilized to locate the correct result.

Key

B-tree

Pos

Key

Model

Pos

Fig. 1: How a B-tree can be regarded as a model, identical to Figure
1 in [3].

The authors in [3] further argue that the same
principles for one-dimensional data can be applied to
multidimensional data by also using machine learning.
This is investigated in [4]. The authors’ focus is on
multidimensional relational data, namely the TPC-H
benchmark database [5], consisting of items, orders,
customers etc. By applying a projection function that
creates groupings for each dimension, such that rows
of the same value in a specific column are grouped
together, they are able to create indexes with increased
performance on range queries. While this strategy
works well on multidimensional relational data, there
is little to know about spatial data. This is largely due
to the fact that while spatial data is also multidimen-

1



Fig. 2: The architecture of the Learned Spatial Bucket Index.

sional data, the relationship between its dimensions
are vastly different. It is therefore inevitably harder
to reach the same effect when applying the projection
function, proposed in [4], on spatial data compared to
multidimensional data.

The main contribution of this paper is to create a
learned spatial index by devising a projection function
suitable for spatial data. We show that the inherent
problem of imprecision when using machine learning
models is not as severe, as the learned spatial index
is able to provide the same hard semantic guarantee,
that the correct result is returned, as the R-tree in a
multidimensional setting. We argue that the support
of range queries and nearest neighbor queries shows
the novelty of the Learned Spatial Bucket Index, and
furthermore the potential of answering computationally
more complex queries using a learned index.

The architecture of the index we propose, which
we name the Learned Spatial Bucket Index, is shown
in Figure 2. The offline phase, which occurs before
any queries are executed, involves applying the
projection function, which we name bucketing, on
the data, followed by training models. Furthermore,
an estimator is built based on the data to be able
to estimate bounds that are required for executing
nearest neighbor (NN) queries. This estimation is
necessary because the NN-query is translated into a
range query. The range query and the NN-query have
the same flow in the online phase, with the exception
that the NN-query is converted into a range query,
through the utilization of the aforementioned estimator.
Subsequently, the index is traversed by invoking the
required models and retrieving the correct result for

the queries. Each component will be explained in
details throughout the paper.

The rest of this paper is structured as follows: Section
2 introduces the concept of bucketing by explaining
how an order can be achieved on multidimensional
data. Section 3 describes the challenges that arise
when working with spatial data. Section 4 covers how
learning is deeply integrated into the Learned Spatial
Bucket Index. Section 5 describes the spatial queries
that the Learned Spatial Bucket Index supports, namely
range queries and nearest neighbor queries. Section 6
covers how the models are trained and the results of
the tests. Section 7 mentions work that is related to our
paper. Section 8 concludes on the paper and Section 9
proposes future directions.

2. Ordering Multidimensional Data

The inherent inaccuracies in machine learning (ML)
models requires the learned index to have the ability
to handle these. Without this ability, it is impossible
to provide the hard guarantee that the index will return
the correct result. Therefore, a projection function must
create an ordering of multidimensional data such that
this guarantee can be provided.

Bucketing is such a projection function which maps
each record of a dataset to a specific sort key, which in
turn determines its position in memory. With the use of
this projection function, it becomes possible to use ML
models, e.g. neural networks, linear regression, etc., to
learn the relationship between specific sort keys and
the locations of their content in memory, effectively

2



Fig. 3: Applying bucketing on a dataset with four dimensions, where each box represents a bucket containing the value specified on it.

creating an index.
When bucketing a multidimensional dataset, all the

records are ordered on a sequence of dimensions.
Bucketing is performed by grouping records that share
the same value on a chosen dimension. These groupings
are called buckets. The buckets and the values within
the buckets on that dimension are then sorted, and a
model is then learned on the bucket keys and their
content. Within each bucket, this process is recursively
applied for the remaining dimensions. This effectively
creates new buckets within the original buckets, that
are ordered on a different dimension than the previous
one.

The process of bucketing is seen in Figure 3, where
a table of data is transformed into buckets. Firstly,
dimension A is bucketed and sorted: Since there in
dimension A are eight rows, but only four unique
values, there will only be four buckets; one for each
unique value. This transformation of data into buckets
enables the learning of a model that can be trained on
the buckets formed by grouping dimension A, meaning
a single model would learn the association between
the four x-values to the four different buckets. Values
in dimension B that are associated to values from
dimension A, based on the rows in the dataset, are
bucketed in the next level, e.g. since both y1 and y3 in
dimension B have the value x1 in dimension A, these
are sub-bucketed in x1’s bucket. Models on dimension
B are then trained on the association between the y-
values’ position within a given x-bucket. This process
continues for each bucket in each dimension.

In a scenario with knowledge of the query workload,
it would be the most advantageous to bucket by the di-
mensions which are queried the most. Taking the TPC-
H dataset as an example, if the orders table is queried
mostly on the discount dimension, then this dimension
should be the one to bucket first. The reason for this is
due to the nested nature of the buckets. Any queries on

only latter dimensions will have their ordering shifted
by the previous dimension. The answers to queries not
containing the previous dimension are therefore slower
to locate, since the model that can quickly determine
the relevant buckets to search is not used. In a spatial
context however, since queries will almost always cover
each dimension, the question of which dimension to
order by first is less relevant.

3. The Challenge of Spatial Data

Due to the nature of spatial data, the relationship
between the dimensions is vastly different than between
dimensions of relational data. This difference is made
evident by the nature of spatial queries which includes
queries expressed as ”which object is nearest to this
object” and ”which objects are within 10 kilometers of
this object”. These types of queries do not fit the con-
text of relational data such as the TPC-H benchmark.

Trying to apply the bucketing approach presented
in Section 2, would in a spatial context result in a
large number of individual buckets as the frequency of
duplicate data points along the first dimension is low
as compared to e.g. order dates in TPC-H. The large
number of buckets will mean that the model, which is
used to locate the appropriate bucket for a given query,
will be inaccurate as there will only exist a single,
or very few, values to train the model on for each
bucket. Consider the scenario seen in Figure 4; here it
is evident that trying to bucket and closely approximate
a function, i.e. a model, capable of, for each bucket on
a given dimension, outputting the memory location of
that bucket, will be impractical as the accuracy of the
function will be poor.

The inaccuracy of the function will in turn mean that
this will have to be corrected. This was proven trivial
in [3] with one-dimensional data, as the data simply
can be sorted. However, with multidimensional data

3



−4 −2 0 2 4

−0.5

0

0.5

Fig. 4: Randomly distributed two-dimensional data points.

this issue is harder as no learnable sort order enabling
correction exists, e.g. the Z-order, which creates an
ordering of multidimensional data, is impossible to
correct and hard to learn [4]. This issue is again evident
in Figure 4, as sorting these points, such that model
imprecision can be corrected, is no trivial task. Fur-
thermore, as the function trained per definition will be
an approximation, imprecision will occur and therefore
has to be accounted for, in order to provide the hard
guarantee that the correct result is always found.

Overall these issues all arise from the nature of
spatial data and spatial queries and their vast difference
from their relational counterparts. This means that sim-
ply applying the multidimensional projection strategy,
presented in Section 2, in a spatial data context is not
sufficient to obtain promising results. Therefore, it is
crucial that a projection function suitable for spatial
data is established in order to support spatial queries.
Such a projection must enable the created buckets to
be learnable and ensure an ordering, such that any
imprecision can be corrected, in order to provide the
critical hard guarantees.

3.1 Spatial Data Bucketing
Applying bucketing on spatial data is structurally

similar to the bucketing of relational data described in
Section 2. Each bucket, however, now contains a range
of unique values. This change is needed because there
are almost exclusively unique values given the nature
of spatial data, which inherently has values of high
decimal precision. The amount of values within the
range need not to be fixed allowing for dynamic bucket
sizes. Covering ranges of values instead of single values
provides buckets with enough data to train on, thereby

producing buckets that are easier to learn. This strategy
also maintains the ordering of the buckets, thereby en-
suring that the correction of predictions is still possible.
The spatial bucketing approach is part of the offline
phase in the architecture, shown in Figure 2. Figure 5
illustrates the structure of the spatial bucketing.

Fig. 5: Spatial Bucketing, where Level 1-3 represents bucketing
performed on the first dimension and Level 4 represents bucketing
on the second dimension.

Here, given a set of 100 two-dimensional continuous
value pairs (x, y) = {(x, y)|x, y ∈ R, 1 ≤ x∧y ≤ 100}
and a bucket size of 10 values, there will at Level 1 be a
single bucket containing all values on the x-dimension.
At Level 2, there will be 10 buckets, since each bucket
can contain 10 values. In turn there will at Level 3 be 10
buckets for each Level 2 bucket. These buckets contain
only a single x-value. Each of these buckets have one or
more buckets at Level 4, where each bucket contains a
single y-value. These buckets and their associated Level
3 buckets correspond to the data points in the dataset.
If the data point (1, 5) exists in the dataset, there will,
as seen in Figure 5, be a bucket at Level 3 containing 1
and a bucket at Level 4 containing 5, which is pointed
to from 1’s buckets.

The hierarchical structure of the buckets makes it
possible to perform aggressive pruning of buckets that
would otherwise be considered in answering a query.
Section 5.1 will cover this in-depth.

4. Learning Spatial Buckets
While bucketing produces an ordering that is learn-

able, it is equally important to identify the models
that are the most advantageous, in order to have an
as optimal index as possible. E.g. if an index is created
on a column with an autoincrement value, it is adequate
to use a linear regression model, since the relationship
between the values and their positions will exhibit an
exact linear relationship. A neural network may also
be able to learn this relationship, but would be less

4



preferable, as a linear regression model has a lower
cost of inference. However, if the index is created
on data which does not exhibit an easily learnable
linear relationship, a neural network might be more
advantageous despite the higher inference cost, since
the neural network may be able to approximate the
desired function better and provide higher accuracy.
Figure 6 shows an example of an ideal function for a
given ordering, and how an approximate function could
estimate this ideal function.

Key

Po
si

tio
n

Approx. func
Ideal func

Data Points

Key

Po
si

tio
n

Approx. func
Ideal func

Data Points

Fig. 6: The ideal function covering a set of points and how an
approximate function might estimate that ideal function.

In the figure, a neural network could be learned
on the entirety of the data points, creating a func-
tion (dashed line) that approximates the relationship
between the data points’ positions and the sort keys.
While this approach may be able to learn the overall
distribution of the data, in a scenario with millions
of data points, the approximation function may have
difficulty at being precise at locating individual data
points. In contrast, a linear regression model may be
better at accurately predicting at the level of individual
data points, if the relationship between the data points
and the sort keys is sufficiently linear. This is preferable
in the setting of Figure 6, as evident by the ideal
function, as the zoom-in on the last points shows,
that these points are ordered linearly between their
position and key. This relationship would therefore be
easily learnable by a linear regression model. Having
multiple linear regression models, which have been
trained on different parts of the data, instead of a single
large model, can therefore be advantageous, since their
low cost of inference provides the index with more
speed. It is, however, an option to have a combination
of multiple types of models. A single model could

learn the overall distribution of the data, where smaller
models are trained on different subsets of the data, in
cases where the last mile accuracy is important. This
idea of combining different models is proposed in [6],
where large ML models are subdivided into smaller
models which are responsible for subsets of the data.

In an optimal scenario, the type of model to use
could be determined by building numerous different
models, e.g. multi-class classification, regression, etc.
The model providing the best performance could then
be chosen based on metrics such as accuracy and
inference cost when predicting. This approach has the
advantage of being specific to the data, meaning the
data chooses the models that are the best-performing.
However, due to the vast number of options and the
cost of building all these different types of models, it
would quickly become infeasible, whenever an index
on new data is to be built. Instead, looking at the
data itself and the ordering of it, it becomes clear that
when applying bucketing, we are essentially making the
relationship between the spatial data and their positions
linear by splitting the dimensions and sorting along
these dimensions. This effectively creates a linear, or
close to linear, relationship, since data points have been
projected to a single dimension, which are the well-
suited for linear regression models. In situations where
a linear regression model over a specific subset of
data is performing poorly, it is always a possibility to
replace that model with another type of model, which
has better accuracy, since all that is needed from a
model is a prediction. This makes the Learned Spatial
Bucket Index generic, since models can be replaced by
other models as seen fit. This flexibility allows for the
creation of a dynamic index, that is not limited to a
single type of model.

Fig. 7: Extending Spatial Bucketing to contain models.

5



In this paper, both linear regression models and a
single neural network are applied, as both are useful in
different scenarios; the single neural network is applied
at Level 1 of the bucketing structure in Figure 5 to
quickly narrow down the region of the relevant buckets
by learning the relationship between the values within
each bucket and their bucket key, while a linear regres-
sion model is created for each sub-bucket, learning the
relationship between the data points within the bucket
and their position within the bucket, to quickly locate
the relevant values within each bucket.

Figure 7 shows the new structure, which has been
expanded to contain models. Here, the single neural
network model is introduced at Level 1, which learns
the distribution of the points 1-100 into different buck-
ets at Level 2. In turn, each of the buckets at Level
2 have a linear regression model covering data points
of different ranges, e.g. Model 2.1 covers the range 1-
7. This means when a key is input into Model 1, this
model will predict the bucket, which covers that key.
The model for that bucket is then leveraged again, to
make a prediction as to which bucket at Level 3 the key
resides in. When the correct bucket is found at Level
3, a new model at Level 3 is then utilized, to make a
prediction as to where the key’s y-values reside.

5. Spatial Queries
The spatial bucketing will allow execution of differ-

ent types of spatial queries against the Learned Spatial
Bucket Index. Due to the nature of spatial data, these
types of queries can differ substantially from queries
executed against one-dimensional or relational indexes.
E.g. expressing and answering NN-queries is more
natural in a spatial data context than expressing such
queries on relational data. Section 5.1 will introduce
and address the range query and Section 5.2 likewise
for NN-queries.

5.1 Range Query
The range query is defined as follows: given a query

window qr, and a collection of spatial objects P , return
any object from P that intersects with qr.

A range query qr for two dimensions, x and y, is
defined as qr = (x1, x2, y1, y2), where x1 and x2 are
the upper and lower bounds for the x-dimension, and
y1 and y2 for the y-dimension, respectively.

When executing the range query (x1 = 1, x2 =
7, y1 = 5, y2 = 10) on the structure depicted in Figure
8, Model 1, given x1, should return the first bucket at
Level 2, since x1 = 1 and the first bucket covers 1-7.

However, in the case of producing a wrong prediction,
a local search has to be utilized in order to locate the
correct bucket. This is performed by checking the range
of the predicted bucket and identifying the direction
in which the correct bucket is found. This is possible
due to the sorted order of the buckets and each bucket
having an upper and lower bound for each dimension
for the values it contains.

Fig. 8: Example of range query being executed, highlighted in the
dashed circle

After the bucket containing x1 is found, a scan
towards x2 is initiated, returning all buckets containing
values in the interval [x1, x2]. Subsequently, the naive
approach would be to produce all (x, y)-pairs of the
returned buckets, and then check which pairs satisfy the
range query. However, as mentioned in Section 3.1, the
structure of the Learned Spatial Bucket Index allows for
aggressive pruning. Each bucket that covers a range of
x-values also has an upper and lower bound for the
y-values it covers, e.g. the first bucket at Level 2 has
the lower bound of 5 and upper bound of 7 for its y-
values. This means, that when the buckets that satisfy
the x-dimension of the range query are returned, each
bucket is also checked on whether it contains y-values
that are within the range query’s y-dimension. This
is performed by simply matching the bucket’s upper
and lower bound on the y-dimension with the range
query’s y-dimension. If the bucket’s bounds for the
y-dimension are not satisfied by the range query, the
bucket is simply pruned. In the case that the bounds are
satisfied, the entire bucket cannot be pruned. Therefore
an extra measure is taken, where each bucket at Level
3, which is a sub-bucket of the unprunable bucket, is
checked on the bounds of its y-values. Therefore, in

6



the case where a bucket at Level 2 cannot be pruned,
buckets at Level 3 are checked instead, to identify
whether the sub-buckets of the unprunable bucket can
be pruned. This process allows for the discarding of
potentially a large amount of buckets, depending on the
specific bucket configuration. After all possible pruning
has been completed and all pairs have been found, they
are returned.

5.2 Nearest Neighbor Query
A NN-query is defined as follows: given a collection

of spatial geometric objects P and a query object qnn,
return the object in P that is closest to qnn.

5.2.1 Transforming the NN-query

The R-tree exploits its minimum bounding rectangle
structure to maintain the spatial relationship between
its indexed data. When a NN-query is executed, this
structure enables the R-tree to avoid investigating un-
necessary data and only visit the optimal number of
candidates [7]. However, as explained in Section 3,
the nature of the Learned Spatial Bucket Index splits
the data into a sequence of dimensions and thereby, to
some extent, loses the spatial awareness. Therefore, it
might seem counterintuitive to use such an index for
NN-queries. Yet, from a theoretical point of view an
NN-query can be regarded as a range query, or a series
of such, centered at the query object qnn. Say an NN-
query is issued, the spatial area surrounding qnn can
be queried by establishing a bounding box centered
at qnn, with a distance-bound db from qnn in each
cardinal direction, and thereby effectively converting
it to a range query. Figure 9 shows such a scenario,
where a bounding box (Bound Box) centered at qnn is
created at a distance of the bound db from qnn.

Actual NN-region

Bound box

db

db

db

db
qnn

m

j

Fig. 9: Transformation of the NN-query to a range query.

The bounding box can be used to execute a range
query qr in the same manner as explained in Section
5.1, but this time centered at qnn. This effectively
means that the NN-query is transformed to a range
query; hence, when an NN-candidate set of objects are
returned by the range query, this set must contain the
true nearest neighbor to qnn. However, due to the shape
of the bounding box, this might not actually be the
true nearest neighbor. In Figure 9, the bounding box
illustrates the range of a given NN-query transformed
to a range query. However, if only the area covering
the bounding box is queried, it can potentially return a
point, which is covered by the bounding box, but is not
the true nearest neighbor. Figure 9 illustrates such a sce-
nario where the point m is contained by the bounding
box, and therefore will be returned by executing a range
query using this bounding box. However, the point j is
actually the true nearest neighbor to qnn, but j is not
contained within the bounding box and therefore not
returned by the range query. To correct this behavior,
the bounding box will have to be expanded such that
it at least covers the points contained in the circular
region NN-region, as depicted in Figure 9. The correct
bounding box is depicted in Figure 9 as Actual, which
wraps the NN-region in a range query region ensuring
the true nearest neighbor is returned. This effectively
means that when an NN-query is transformed to a range
query, the correct bounding box, Actual, will be utilized
and the returning set of NN-candidates, covered by
Actual, will have to be filtered to ensure that only points
within the NN-region are considered during the NN-
search. It might be the case that no NN-candidates are
found within the queried region, which means that the
query region will have to be expanded until at least a
single candidate is found residing within the NN-region.
Algorithm 1 shows the execution of an NN-query.

Algorithm 1 nearestNeighborQuery

Input: Query object qnn, Initial bound db
Return: Nearest neighbor to qnn

1: qr ← convertToRangeQuery(qnn, db)
2: candidates← rangeQuery(qr)
3: while candidates = ∅ do
4: qr ← expandBound(qr)
5: candidates← rangeQuery(qr)

6: return closest object to qnn in candidates

First the NN-query is converted to a range query by
establishing the query region surrounding qnn (line 1).

7



Secondly, range queries are executed, as explained in
Section 5.1, until at least a single candidate is found
residing within the NN-region by expanding the search
area at each iteration (line 2-5). Lastly, when a non-
empty candidate set is returned by the range query, the
set is filtered to locate the closest point to the query
object qnn (line 6).

The efficiency of the NN-query depends heavily on
the size of the bounding box and thereby the bound
distance db. A large bound means that the bounding
box will cover a larger area of the dataset and therefore
potentially return a large number of NN-candidates.
As the distance from qnn to each candidate must be
calculated in order to determine the actual nearest
neighbor, the size of the candidate set will affect the
performance of the NN-query. In contrast, a bound
too small, such that the bounding box is empty, will
force the bound to be expanded potentially many times,
until at least a single candidate is found, where for
each expansion a new range query must be executed to
retrieve the new candidate set. Therefore, the choice of
bound is essential and there exists a trade-off between
a large candidate set and executing multiple range
queries.

5.2.2 Bound Estimation

Choosing a bound is no trivial task and is highly
dependent on the query, since an efficient bound for
one query might prove extremely inefficient for another.
Therefore, it is important that the strategy for choosing
a bound takes into account the data distribution in the
area surrounding the query object such that smaller
bounds are chosen for high-density areas and vice
versa for low-density areas. The one chosen with the
needs of the estimation is Geohashing [8]. Geohash-
ing hierarchically encodes geographic locations into a
short string consisting of letters and digits, following
a Z-order space filling curve, and provides arbitrary
precision in terms of longer hashes. Spaces are divided
into a grid shape which in turn are subdivided into
smaller grids, thereby gradually increasing precision.
All points within the same grid section have the same
hash-value effectively meaning that points in proximity
of each other will have similar hashes. An example of
the hierarchical structure of Geohashing can be seen
in Figure 10 where the hash region 9q8 contains the
regions 9q80, 9q81, etc. which in turn will contain hash
regions one character longer.

In order to estimate a bound given a dataset, the
dataset is hashed recursively until a single grid section

9q8
9q82 9q83 9q86 9q87

9q80 9q81 9q84 9q85

Fig. 10: Geohash hierarchically Z-order structure.

contains at most a specific number of points. Each
grid section is assigned a bound based on the specific
strategy chosen for the dataset e.g. best-case distance
between points within the grid. This means that when
a given NN-query is issued, the query object qnn
is hashed to the maximum precision of the hashed
dataset. The bound is retrieved by looking up the bound
assigned to the grid section with the same hash as
qnn, this bound db is then used to create the bounding
box shown in Figure 9. If qnn’s hash is not present,
meaning that no point in the dataset was hashed to this
grid, the hierarchical structure of Geohashing enables
the removal of a character from qnn’s hash thereby
gradually decreasing precision until qnn’s truncated
hash is present. The truncating of qnn’s hash makes
intuitively sense, since if a hash with some given
precision is not present, then the dataset contains no
points in that grid meaning that the distance to a nearest
neighbor is larger and the bound for the parent of the
grid is a more appropriate approximation.

Multiple options exist regarding the determination of
the bound assigned to each individual hash region. The
optimal bound would exactly encapsulate the nearest
neighbor of the query object, however this is impossible
to know beforehand. Therefore, the bound will be an
approximation of the distance to the nearest neighbor
from the query object. As mentioned earlier, the bound
has a substantial impact on the performance, since a
bound too large results in a query region encapsulating
many points and a bound too small would force the
execution of multiple range queries.

Three different strategies were investigated, namely
the best-, worst- and average-case distance between
points residing in an individual hash region. The best-
case strategy is optimistic, as it will approximate the
nearest neighbor to the query object to be the distance
between the two closest points in a given hash region
away. This is rarely the case and will in most cases
require multiple executions of the range query. In

8



contrast, the worst-case strategy is pessimistic and will
potentially result in a large number of points encap-
sulated in the range query. The average-case strategy
will try to balance the two aforementioned strategies
by calculating the bound to be the average distance
between objects in a hash region. Section 6 will present
more details with regards to which estimation strategy
is chosen.

6. Evaluation
To assess the performance of the Learned Spatial

Bucket Index, it is evaluated by three different types
of tests. Firstly, the query performance of the index
is evaluated on range and nearest neighbor queries on
varying data distributions. Secondly, a scalability test
is conducted to assess the index’ performance as the
data density and data size increases. Both evaluations
are compared to an in-memory optimized R-tree [9].
Lastly, the accuracy of the models is evaluated by
measuring the time needed to local search from the
model prediction to the correct bucket. This is done
to assess to what extent the model accuracy and local
search impact the overall performance of the index.

Datasets: Three different datasets have been used
throughout the evaluation. The scalability is evaluated
on a dataset containing addresses and is split into
random subsets of varying sizes; 5, 10, 20 and 40
million entries. The query performance is evaluated
using the 10 million subset from the scalability test,
a 10 million dataset containing locations of a different
distribution and a synthetic dataset following a uniform
distribution. An overview of the dataset can be seen in
Table 1.

Dataset Size in mil.
OA5M 5

OA10M 10
OA20M 20
OA40M 40

Geonames 10
Uniform 10

Table 1.: Datasets

Training: The learning component, as presented in
the architecture on Figure 2, trains complex models
using TensorFlow [10]. These models are able to ap-
proximate which bucket is covering a value supplied
from an arbitrary query.

For each dataset, a neural network with 2 hidden
layers using the ReLU activation function with 32
neurons is applied at Level 1, see Figure 7. The output

layer uses a linear activation function and its output will
be used to locate the bucket that covers the input of the
neural network. On subsequent levels, linear regression
models are trained, since they are fast to execute and
cover a small chunk of data.

6.1 Experiments
The Learned Spatial Bucket Index is tested on

three different configurations, which correspond to how
many values a Level 2 bucket contains. The configu-
rations are 2500, 5000 and 10000 values per bucket.
Varying this size should give an indication of to which
extent the performance is affected by having buckets
of different sizes at the Level 2, and whether these
splits are appropriate for a given dataset. Models have
been trained at Level 1 and Level 2 for each of the
datasets. The tests where conducted on a system with
an i5 3.9GHz quad-core processor and 16GB RAM,
running Windows 10.

6.1.1 Range Query
Figure 11 illustrates the runtime of the different

configurations for the Learned Spatial Bucket Index
(LSBI) and the R-tree when testing how the range query
manages different types of distributions.

OA10M Geonames Uniform

0

50

100

150

200

250

19
2
.8
5

6.
66

2
.0
33
4.
37

3
.1
2

1.
05

3
3.
8
1

3.
0
5

1
.0
733

.7
5

3
.0
9

1.
08

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(m

s)

Range Queries

R-Tree

LSBI 2.5k

LSBI 5k

LSBI 10k

Fig. 11: Test results for running 1000 unique range queries on
different configurations, where each query has a selectivity of 5%.

For all three datasets, the LSBI is able to outperform
the corresponding R-tree with different speed-up fac-
tors. The LSBI is roughly twice as fast as the R-tree
on the Geonames and Uniform datasets, while there
is a much more significant speed-up on the OA10M
dataset. As evident in the figure, the bucket sizes do not

9



Range Query Nearest Neighbor Query

#Elements OA5M OA10M OA20M OA40M Geo Uni OA5M OA10M OA20M OA40M Geo Uni

2500 3.89x 4.38x 4.36x 2.02x 6.68x 5.83x 3.60x 1.66x 1.08x 0.23x 2.06x 4.05x
5000 2.71x 4.08x 2.40x 2.62x 6.99x 5.77x 3.58x 1.68x 0.95x 0.26x 2.10x 3.99x
10000 2.10x 3.80x 2.56x 1.68x 6.62x 7.73x 3.58x 1.59x 0.87x 0.25x 2.06x 3.97x

Table 2.: Speed up factors for both Range and Nearest Neighbor queries run on the Learned Spatial Bucket Index, using the R-tree as a
base case.

influence the running time of the queries. This indicates
that the buckets produced are sufficiently linear despite
the naive splitting, since if the overall data exhibits a
linear relationship between the data points and their
position, the data is still going to retain the linear
relationship regardless of where the split occurs.

In Figure 12 the results for how the LSBI scales
are depicted. The OA dataset is used in varying sizes
to measure how the index scales compared to the
scalibility of the R-tree.

OA5M OA10M OA20M OA40M
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·104

Datasets

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(µ

s)

Range Queries

R-tree
LSBI 2.5K
LSBI 5K
LSBI 10K

Fig. 12: Test results for running 5000 range queries on different
configurations.

There is generally a similar relationship between
the average running times and the data size for all
the configurations and the R-tree; for all cases the
average running time increases at the size of data
increases. Every configuration of the LSBI, however, is
able to outperform the R-tree on every dataset, which
indicates the same may be the case for even larger
datasets. An important note to make, is the gradual
increase of the runtime of the configurations, as there
is a single configuration that increases less than other
configurations as the data size increases, namely the
LSBI 5K configuration. This configuration is also the

fastest of the three, which implies that a bucket size of
5k is better for larger datasets.

It is however generally difficult to make a conclusion
based on the bucket sizes, as the LSBI 5K configura-
tion is the slowest configuration on OA20M, but the
fastest in OA40M. This can be due to a multitude of
factors. Firstly, as evident in Figure 12 the bucket size
influences the performance of LSBI more significantly
when the data size increases. This indicates that when
increasing the data size beyond 10 million, the overall
relationship between the data points and their position
is not as linear as for 5 and 10 million. Therefore,
the naive splitting approach will influence the per-
formance of LSBI. Secondly, having 5k data points
per bucket may coincidentally fit well in OA40M, but
not with OA20M. The buckets produced in OA40M
may therefore be more learnable and the cost of the
local search after leveraging the model for a prediction
may therefore be lower. Lastly, having larger buckets
means there is a higher likelihood of each bucket
having smaller minimum values for each dimension
and larger maximum values for each dimension. This
means, that when a bucket is predicted, and its bounds
are checked for whether the bucket satisfies the query
range, there may be more cases where a bucket’s
bounds are satisfied by the range, but the bucket does
not contain the correct combination of data points that
satisfy the range. This means a bucket that should have
been pruned, is not pruned. And due to the larger size
of the buckets, the likelihood of the above-mentioned
scenario happening may be larger, since more points
per buckets increases the odds of having smaller and
larger minimum and maximum bounds.

Trying to identify the factor which impacts the run-
ning times of the configurations in Figure 12 the most,
is difficult, as there always is a trade-off to consider.
Larger buckets gives the model more data to train on,
but can make pruning harder. Reversely, smaller bucket
may produce more prunable buckets, but instead give
poorer model accuracy as each model now has less
data to train on. As the buckets for each dataset is

10



different, there are most likely cases where one factor
impacts the running time more than the other factor, and
vice versa. It is therefore difficult to ascertain which
configuration works best when. A more advantageous
approach would be to revise the bucketing strategy,
such that this would produce buckets that are more
dynamic in accordance to the data, and would therefore
possibly balance the trade-off between having larger
or smaller models. This is left as a future work.
Nevertheless, in the current scenario, fixed size buckets
still produce better running times than that of the R-
tree. For this type and size of data, static bucket sizes
are therefore a viable strategy.

6.1.2 Nearest Neighbor Query
The NN-query implementation has been evaluated

on 5000 queries with the same distribution as the data.
Figure 13 shows the results of these queries on the same
three different datasets of size 10 million as in the range
query. Here, it is evident that the same relationship
applies for the different configurations of the index,
while all are still able outperform the corresponding
R-tree for the dataset. This further proves that the
arguments made about the bucket size for range queries,
presented in regards to Figure 11, also apply for NN-
queries; the bucket size is less relevant on smaller
datasets.

OA10M Geonames Uniform

100

200

300

400

500

40
3

3
00

21
4

1
41 1
45

53

14
2

1
45

5
4

1
45 14
6

5
4A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(µ

s)

Nearest Nearest Query

R-Tree

LSBI 2.5k

LSBI 5k

LSBI 10k

Fig. 13: Test results for running 5000 nearest neighbor queries on
different configurations.

Figure 14, depicts how the Learned Spatial Bucket
Index performs when scalability is investigated. The
performance of the index is dependent on the size of
the dataset. On both OA5M and OA10M, the index

OA5M OA10M OA20M OA40M
0

200

400

600

800

1,000

1,200

Datasets

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(µ

s)

Nearest Neighbor Queries

R-tree
LSBI 2.5k
LSBI 5k
LSBI 10k

Fig. 14: Test results for running 5000 nearest neighbor queries on
different configurations.

is outperforming the corresponding R-trees, but as
the data size increases to 20 million and above, the
performance of the R-trees begins to match the index,
and eventually outperform the index. There are multiple
factors as to why the performance of LSBI staggers in
comparison to the R-tree. Many of these factors are
the same as those described in the evaluation of the
scalability of the range query: non-linear relationships
with the buckets, the lack of prunable buckets, etc.
In addition, as the size of the data increases so does
the density, which means that the candidate set will
grow thereby impacting the performance of the LSBI,
as mentioned in Section 5.2.1.

As evident in Figure 14 the performance of the R-
tree exhibits an anomaly as it performs better on the 40
million dataset than on any of the other datasets. This
can be due to different factors such as the structure of
the tree which might prove more optimal with the 40
million dataset. This structure could enable the R-tree
to more aggressively prune the search space.

The overall performance evaluation of the LSBI on
NN-queries shows that in some scenarios it is able to
outperform the R-tree. This indicates that it is possible
to apply ML models to NN-queries, and open new
directions for spatial indexes. However, in some cases
considering the NN-query as a range query is too
simple and here the R-tree will outperform LSBI, hence
other strategies and optimizations are needed in order
to completely outperform the R-tree for this type of
query.

11



6.1.3 Model Accuracy
The performance of the index is directly tied to the

accuracy of the top and second level models. To assess
the efficiency of the models, these have been tested by
executing 5000 range queries, and measuring the time
it takes to correct the model predictions to the index of
the correct bucket. Figure 15 shows the these times in
nanoseconds for the model at Level 1.

OA5M OA10M OA20M OA40M
0

200

400

600

800

1,000

1,200

1,400

1,600

Datasets

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(n

s)

Level 1 Model

LSBI 2.5k
LSBI 5k
LSBI 10k

Fig. 15: Average running times of the Level 1 model’s local search.
Note that time is in ns.

Here, the average running time is illustrated for the
correction of each bucket configuration on each dataset.
In general, it takes longer time to correct the predictions
of the model at Level 1 the less data each bucket covers.
This intuitively makes sense, since the less data each
model can train on, the lower the accuracy becomes,
therefore resulting in worse predictions. However, the
graphs of all configurations indicate that the average
running time worsens as the data size increases. Since
the bucket sizes do not change when the data size does,
and the running time worsens, the issue is likely due to
the fixed-size nature of the buckets, with the splits of
the buckets occurring at every 2500, 5000 and 10000
data points. These fixed-size naive splits might prove to
be suboptimal, since this strategy can produce buckets
wherein similar data is split into multiple buckets, i.e.
data residing in a given bucket might be dissimilar,
making it difficult for the Level 1 neural network
to approximate a function capable of separating the
buckets. These splits can result in worse predictions
and therefore also worse correction times. The best
average correction time for the model at Level 1 is

the configuration OA5M-10k with a time of 243.94
ns, whereas the worst is OA40M-2.5k with a time
of 1481 ns. This again highlights the advantage of
having larger buckets. However, as evident in Figure
12, smaller buckets produce better overall execution
times of the Learned Spatial Bucket Index, indicating
that the process of local search is but a small factor in
the overall performance of the index.

Figure 16 shows the results of the same procedure
as mentioned above, but for Level 2 models.

OA5M OA10M OA20M OA40M
0

400

800

1,200

1,600

2,000

2,400

Datasets

A
ve

ra
ge

R
un

ni
ng

Ti
m

e
(n

s)

Level 2 Models

LSBI 2.5k
LSBI 5k
LSBI 10k

Fig. 16: Average running times of the Level 2 models’ local search.
Note that time is in ns.

The graph shows the same pattern as in Figure 15,
but with a higher average running time. This indicates
that the performance of the Level 2 models is also
highly dependent on the bucket size, with larger buckets
producing better predictions, but that the Level 2 mod-
els in general have a higher average running time of the
correction, due to worse predictions. These predictions
are again influenced by the bucketing strategy possibly
producing buckets containing dissimilar data.

7. Related Work
In [2], the concept of R-trees is introduced. R-

trees are highly relevant for this paper, as R-trees
serve as the baseline index for the comparison of the
learned indexes. Furthermore, the concept of MBRs is
important to understand, since MBRs are a structure
that is necessary to execute queries, since these are able
to contain and conserve the spatial relationship between
its data.

This paper is a spiritual continuation of our previous

12



paper, [11], wherein we also seek to create indexes
with the use of learned models. In that paper, we had a
focus on point and nearest neighbor queries, where we
were able to answer point queries at a faster rate than
an R-tree. The index for the nearest neighbor queries,
however, did not perform as well, and many of the
findings from [11] has helped build the foundation of
this paper.

The paper [4] is heavily relevant for the indexes
described in this paper. Here they describe the process
of ”sorting and partitioning points along a sequence
of dimensions into equally-sized cells”. This is at the
core of the bucketing strategy that is used in this paper,
which we have altered to fit spatial data.

In [3], they introduce the original concept of using
machine learning to create models that have better
performance than index counterparts such as B-trees
and Bloom filters. This paper is highly relevant for
understanding the core concepts of learned models
and the relevance of applying learned models in old
computer science fields.

In [6], they show how large neural networks can be
split into smaller gated networks thereby avoiding the
invocation of the complete model each time. The struc-
ture of the Learned Spatial Bucket Index is inspired by
this splitting of large models, such that expert models
are trained on subsets of the data which might yield
better accuracy than a large network. The notion of
leveraging multiple models is also used in [3] to create
their Recursive Model Index.

8. Conclusion
In this paper, we have investigated the application of

learned indexes in a spatial context. Based on previous
work, such as [3] and [4], we have taken principles
proven true for one- and multidimensional relational
data and extended these to spatial data. We describe
the concept of bucketing, which makes it possible to
create a learnable and correctable ordering, and use
this strategy to build models over the data. Based on
these models, we built an index, where we were able
to execute range and nearest neighbor queries. We
have shown that using ML to build spatial indexes can
provide significant increase in performance. We have
shown that this is true for range queries while varying
the data size and distribution. However, while the
Learned Spatial Bucket Index is able to perform NN-
queries faster than the R-tree, there are still some cases
where the index needs further investigation, to ensure
the performance still applies for larger datasets. While

our index currently supports fewer query types than
the R-tree, we argue that our learned index for range
and NN-queries showcases the viability and potential
of learned indexes for spatial data.

9. Future Work
This section describes possible directions to which

the research can be taken in the future.
Additional Query Types: The structure of the

Learned Spatial Bucket Index may potentially allow
for other query types to be possible such as spatial
joins and kNN-queries. The same goes for other types
of queries such as inserts, deletes and updates, how-
ever these may introduce complications, as the models
trained on the data may have to be retrained to ensure
correctness.

Bucketing Strategies: The current configuration of
bucketing is to create equally sized bucket by setting a
constant for the bucket size. This has the advantage
of ensuring each bucket has enough data to train
accurate models, however this may produce splits be-
tween relatively close data points. It could therefore be
advantageous to investigate other bucketing strategies,
that are able to produce learnable buckets that also
happen to be optimal. One strategy could be to split the
data on each dimension such that the learnability of the
pattern within the data of each bucket is maximized.

Estimators for NN-queries: Currently, the range
query is expanded every time it is not able to find
a nearest neighbor. The expansion is based on the
distance between the data points that are residing with
the Geohash of the range query. However, the nature
of data and the placement of the NN-query may result
in many iterations of the range query until it is able
to find a nearest neighbor. Investigating an improved
estimator may therefore be able to heavily cut down
on the number of range query iterations, when these
occur.

Acknowledgment
We would like to thank our supervisor Hua Lu for

proposing this research direction and for his guidance,
by providing feedback and helping us in resolving any
issues we had during the course of project.

Furthermore, we want to thank Tim Kraska for
providing us with details with regards to questions that
arose when studying some of his work.

Lastly, we want to thank our friends and family for
supporting us throughout the process of this paper.

13



References
[1] R. Bayer and E. M. McCreight, “Organization and

maintenance of large ordered indexes,” Acta Informatica,
vol. 1, no. 3, pp. 173–189, 1972. [Online]. Available:
http://link.springer.com/10.1007/BF00288683

[2] A. Guttman, “R-trees,” in Proceedings of the 1984 ACM
SIGMOD international conference on Management of data
- SIGMOD ’84, vol. 14, no. 2. New York, New York,
USA: ACM Press, 1984, p. 47. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=602259.602266

[3] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis,
“The Case for Learned Index Structures,” 2018. [Online].
Available: https://doi.org/10.1145/3183713.3196909

[4] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan,
“SageDB: A Learned Database System,” Tech. Rep.
[Online]. Available: http://alexbeutel.com/papers/CIDR2019
SageDB.pdf

[5] TPC, “TPC-H - Homepage.” [Online]. Available: http:
//www.tpc.org/tpch/

[6] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis,
Q. Le, G. Hinton, and J. Dean, “OUTRAGEOUSLY
LARGE NEURAL NETWORKS: THE SPARSELY-GATED
MIXTURE-OF-EXPERTS LAYER,” Tech. Rep. [Online].
Available: https://arxiv.org/pdf/1701.06538.pdf

[7] H. Lu, “SW7 Data Intensive Systems (DIS) 2. Spatial
Queries,” Tech. Rep., 2017.

[8] G. Niemeyer, “Geohash— Labix Blog,” 2008. [Online]. Avail-
able: https://blog.labix.org/2008/02/26/geohashorg-is-public

[9] M. Hadjieleftheriou, “libspatialindex libspatialindex 1.9.0
documentation.” [Online]. Available: https://libspatialindex.
org/

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
X. Zheng, and G. Brain, This paper is included in the
Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16). Open
access to the Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation is sponsored
by USENIX. TensorFlow: A System for Large-Scale Machine
Learning TensorFlow: A system for large-scale machine
learning. [Online]. Available: https://tensorflow.org.

[11] M. Folmer, R. Neumann, and T. Karunanithi, “Learned In-
dexes for Replacing Spatial Index Structures,” Tech. Rep.

14


