
Functional Connectivity Analysis on
Resting State

Electroencephalography Signals
Following Chiropractic Spinal
Manipulation in Chronic Stroke

Patients

Toby Steven Waterstone
Biomedical Engineering & Informatics

4th Semester

Master’s Thesis
Department of Health Science & Technology



Spring 2019

ii 19gr10404



4rd Semester, Master’s Thesis

School of Medicine and Health

Biomedical Engineering & Informatics

Fredrik Bajers Vej 7A, 9220 Aalborg

Title: Functional Connectivity
Analysis on Resting State Electroen-
cephalography Signals Following
Chiropractic Spinal Manipulation in
Chronic Stroke Patients

Theme:
Master’s thesis

Project period:
Spring 2019
1st February 2019 - 6th June 2019

Project group:
19gr10404

Participants:
Toby Steven Waterstone

Supervisors:
Afshin Samani
Imran Khan Niazi

Pages: 62
Appendix: 9
Handed in: 06/06/2019

The content of this report is freely
available, but publication (with reference)
may only be done with agreement with the
authors.

Abstract

Background Stroke is a global problem affecting bil-
lions of people. Many of these patients suffers from
post stroke impairments, which can both be present
as cognitive and motor deficits, which results in a de-
cline in life quality. Early and effective rehabilitation
are therefore important for these patients, as recovery
and mechanisms, like neuroplasticity, linked to recov-
ery are maximized at the early stages of stroke.
Methods The present study investigated chiroprac-
tic spinal manipulation (SM) and its effects on rest-
ing state functional connectivity in chronic stroke pa-
tients. Functional connectivity analysis were com-
puted through the metrics of Mutual Information (MI)
and Phase Lag Index (PLI). Non-parametric cluster
based permutation test were used to asses the statisti-
cal significance of the dataset within both SM session
and a control session and between the two, in order to
evaluate the effect of the interventions.
Results Significantly increased functional connectiv-
ity of PLI were found within the Default Mode Net-
work (DMN), between the posterior cingulate cortex
and parahippocampal regions, for the SM session. No
significant changes occurred for the control session or
for the MI metric.
Conclusion These findings suggests that SM alters
functional connectivity in the brain of chronic stroke
patients. The patients might have experienced a de-
creased pain perception, episodic memory and spatial
representation and navigation. But it is uncertain, as
these effects were not included in the study. Therefore
further research regarding the effects of these results
and SM, taking into account further information, are
needed in order to validate if stroke patients can ben-
efit from SM in a rehabilitation program.
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Chapter 1. Introduction

1 | Introduction
Stroke is a health care problem that affects millions of people world wide and it is the
number one cause of chronic disability in patients [Brody et al. (2014)]. the prevalence of
stroke is estimated to be 9.6 million people in Europe and the third most likely cause of
death in industrialized countries, killing approximately 5.7 million people world wide each
year [Hennerici et al. (2012)]. Stroke also accounts for a big part of the economical and
occupational burden within the health care sector, as it is estimated that 2 to 3% of all
health care services are contributed by stroke, in Europe. In 2006 the cost were estimated
€38 billion. Even though stroke accounts for a lot health care services, it is estimated
that only 40% of stroke survivors gets the optimal treatment in order to get full recovery
and in gaining independence post stroke. The disabilities that stoke survivors experience
are often long lasting and can be present as both impaired cognitive and motor function
[Hennerici et al. (2012)]. Rehabilitation of stroke patients are of great importance, espe-
cially in the early stages after the acute phase, as mechanisms like neuoplasticity plays a
big part of the recovery, where the brain reorganizes and adapts to the lesion which the
stoke have caused [Mir et al. (2014), Endres et al. (2008)]. Rehabilitation methods which
take these properties into account are therefore effective in getting a successful recovery
of the patients [Endres et al. (2008)] During the past decades a growing body of research
concerning chiropractic spinal manipulation (SM) in relation to its effects on the central
nervous system (CNS), has been established [Haavik & Murphy (2012), Haavik (2014),
Niazi et al. (2015), Christiansen et al. (2018)]. The chiropractic profession considers the
relationship between the spine and nervous system. Research suggests that SM alters the
way the brain processes information related to afferent input [Haavik & Murphy (2012)].
Some of the previous studies that interests SM have done research on several aspects of the
nervous system, like motor output, sensory processing, functional performance and sen-
sorimotor integration [Johnson (2013)]. These studies all contribute to the hypothesized
model, described by Haavik & Murphy (2012), which gives detail about the mechanisms
of chiropractic on an scientific level and how SM alters the bodies function, by inducing
optimal function of the CNS [Haavik & Murphy (2012)].
A recent study by Holt et al. (2019) demonstrated that SM altered neural threshold related
to neural mechanisms, along with an increased force production of planter flexor muscle,
in chronic stroke patients. Although there are evidence on the mechanisms behind some
of the effects following SM, the mechanisms that concerns CNS and more specifically the
changes that happens in the cortex level has only scarcely been investigated. One study
by Gay et al. (2014) investigated the effect of manual therapy, including SM, and found
alterations within the functional connectivity of brain regions along with a decrease in
pain perception. The aim of this study is therefore to explore the effects of SM in chronic
stroke patients, in order to see if neurophysiological changes are present following sin-
gle session SM, by performing functional connectivity analysis on electroencephalography
(EEG) signals in these patients, in order to review the relevance of chiropractic SM in a
rehabilitation program.

19gr10404 1 of 71



Chapter 2. Background

2 | Background

2.1 Stroke
In this section, the definition of stroke and its mechanisms are presented. Initially, before
the definition of stroke is explained, the anatomy of the brain is outlined, in order to
better understand the mechanisms of stroke and how it emerges.

2.1.1 Anatomy of the brain
The brain is an important organ, as it is the organ responsible for many vital functions
of the human body. It is comprised of billions of neurons with high demands for oxygen
and nutrients from the blood circulatory system. In order to understand how stroke
emerges and affects the brain, the brain and circulatory system that supplies the brain
with oxygenated blood is important to understand, as stroke can have very different
symptoms when patients experience a stroke, depending on the type and location in the
circulatory system a stroke emerges [Mir et al. (2014)]. The brain can be divided into
lobes as regions that are responsible for different functions in the body. Figure figure 2.1
shows how the brain is divided into regions [et. al. Martini (2012)].

Figure 2.1: Location of the different regions of the brain, lateral view [et. al. Martini (2012)].

The brain, or more specifically the cerebrum is divided into four lobes, the frontal lobe,
the parietal lobe, the temporal lobe and the occipital lobe. The frontal lobe contains
regions responsible for cognitive tasks such as concentration, planning and problem solv-
ing, voluntary movement and speech. The parietal lobe contains regions responsible for
sensory input and body awareness. The temporal lobe contains regions responsible for
hearing, language, emotions and long term memory. The occipital lobe contains regions
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Chapter 2. Background

responsible for vision. Finally the cerebellum is responsible for fine motor control, balance
and coordination [et. al. Martini (2012)]. From this knowledge the location of a stroke can
be related to functions corresponding to specific parts of the brain and will be expressed
by decreased activity of these functions [Hennerici et al. (2012)]. Symptoms can range
from sudden weakness or numb extremities, such as difficulties controlling the arms, legs
or face muscles. Speech or language understanding problems, vision decrease, headache,
dizziness and loss of balance are also common symptoms [Mayfield (2019)].

Figure figure 2.2 shows the organization of the arteries that supplies the different regions
of the brain with blood.

Figure 2.2: Blood circulatory system of the brain arteries, inferior view [et. al. Martini (2012)].

The blood supply to the brain is delivered by two paired arteries originating close to
the aorta. These arteries are the internal carotid originating from the common carotid
arteries, and the ventral arteries, which merge into the basilar arteries. In the brain these
arteries communicate through the so called Circle of Willis, which branches out to smaller
arteries that goes to different regions of the brain. The internal carotid arteries mainly
supply the anterior and middle regions of the brain. It is responsible for supplying the
eyes through the ophthalmic artery, the frontal and parietal lobes through the anterior
cerebral artery, the midbrain and cerebral hemisphere lateral surface through the middle
cerebral artery. The ventral arteries mainly supply the posterior regions of the brain.
These include the spinal cord, pons, medulla oblongata, the occipital lobe and cerebellum
[et. al. Martini (2012)].
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Chapter 2. Background

2.1.2 Definition of stroke
Stroke is characterized by abrupt loss of brain function caused by interference of the
blood supply to the central nervous system. An amount of 50 - 60 ml/100g/min is the
normal volume of blood, which flows through the brain. If this flow decreases to under
10 ml/100g/min it results in ischemia and therefore damage to the brains tissue, which
lack the blood flow, caused by starvation of necessary oxygen and nutrients to the tissue
in the center of the stroke. The surrounding tissue might have more perfusion, thus still
being reduced. As the brain have no energy reserves or ways to store energy, a constant
supply of oxygen and nutrients are needed [Ovbiagele & Nguyen-Huynh (2011)]. Stroke
can be divided into two categories, ischemic and hemorrhagic, depending on the cause of
the stroke [Mir et al. (2014), Ovbiagele & Nguyen-Huynh (2011)].

2.1.2.1 Ischemic
Ischemic stroke is caused by insufficient blood flow to the tissue of the brain. This can be
caused by thrombosis, when a thrombus develops and blocks the artery to a local region
of the brain, often caused by plague buildup in the artery, an embolism, which is a part of
a thrombus that breaks off elsewhere in the body and travels to the brain and block the
blood flow. Lastly systemic hypoperfusion is the result of insufficient blood supply, which
can be due to low circulatory blood flow. Ischemic stroke causes a deprivation of oxygen
and nutrients to flow to the tissue of the brain and therefore fails to meet its energy
demands. If left untreated this results in damage to neurons or necrosis within minutes
of oxygen deprivation. It is estimated that 85% of stokes are caused as an ischemic stroke
[Mir et al. (2014)]. Figure figure 2.3 (A) and (B) illustrates an example of ischemic stroke
in the middle cerebral artery, right hemisphere, which blocks off blood flow and causes
oxygen starvation in the tissue beyond the thrombus. Warning signs of an ischemic stroke
often comes in the form of transient ischemic attack (TIA), which symptoms disappear
after a couple of minutes or hours and lasts maximum 24 hours [Mayfield (2019)].

2.1.2.2 Hemorrhagic
Hemorrhagic stroke is caused by bursting or rupturing of a blood vessel supplying the
brain with blood, which can be categorized either intracerebral or subarachnoid. This
form of stroke is often accompanied with a sudden headache. Hemorrgagic stroke is the
deadliest form of stroke because it often leads to an interruption of blood flow, similar to
ischmic stroke, while also causing tissue compression from the blood build up. This form
of stroke accounts for about 15% of all strokes [Mir et al. (2014)]. Figure figure 2.3 (C)
and (D) illustrates an example of hemorrhagic stroke, (C) illustrates a ruptured aneurysm
on the middle cerebral artery, left hemisphere, which is a weakened part of the artery wall
and (D) illustrates bursting of the small arteries, caused by hypertension.
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Chapter 2. Background

Figure 2.3: Illustration of ischemic (A) and (B), and hemorrhagic (C) and (D), stroke [Mayfield
(2019)].

2.1.3 Neurological mechanisms of stroke
During the onset of stroke the brain undergoes a series of events, both destructive and
protective mechanisms are involved.

Destructive mechanisms
When a stroke emerges, a number of neurological mechanisms are started by the body.
The ischemic cascade is one of these, which creates local depletion of oxygen and glucose
at the core of the stroke. This causes the production of adenine triphosphate (ATP) to
fail because oxidative phosphorylation cannot take place without oxygen. This affects
the energy dependent processes, which results in injury or necrosis of cells, because the
ionic gradients across membranes cannot be maintained, as the sodium (NA+) potassium
(K+) pump cannot function without ATP. The release of excitatory neurotransmitter
such as glutamate and aspartate are triggered, which results in activation of receptors
like N-methyl-d-aspartate (NMDA) and alpha-3-hydroxy-5-methyl-4-isocanole propionate
(AMPA), which allows influx of sodium (NA+) and calcium (CL−) and water (H2O) into
the already ATP depleted cells. This results in exotoxicity which results in necrosis of
neuronal cells and failure of mitochondria cells. Stroke mediators of inflammation are
activated by recruited leukocytes. These are in the form of oxygen free radicals, nitric
oxide, cytokines and apoptosis, preprogrammed cell death. This inflammation can cause
secondary damage and expansion of the stroke area, hours and days after onset [Mir et al.
(2014), Endres et al. (2008)].

Protective mechanisms
Shortly after the onset of the stroke protective mechanisms are promoted in order to pro-
tect the brain from the ischemic cascade and inflammation in order to reduce damage.
This is achieved by defending against necrosis and apoptosis and promoting growth of
new neurons in the brain. Among these mechanisms are Bcl-2 gene family molecules and
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neurotrophic factors like Neurotrophin-3. Bcl-2 gene family molecules takes part in regu-
lating apoptosis and can inhibit the molecules that take part in the apoptosic process and
by reducing mitrocondria destruction. Neurotrophin-3 is a nerve growth factor protein
which helps in survival of neurons and stimulates growth of new neurons and synapses
[Mir et al. (2014)].

To illustrate the destructive and protective mechanisms that follows stroke, figure figure
2.4 is provided, showing the time line of the stages for these mechanisms.

Figure 2.4: Destructive and protective timeline following stroke. On the y-axis are the condition and
on the x-axis the time is displayed. [Endres et al. (2008)]

The protective mechanisms are of great importance in the regeneration and repairing of
neurons and is a great example of the plastic properties of the brain, which is of great
importance during rehabilitation stages [Mir et al. (2014), Endres et al. (2008)].

2.1.3.1 Rehabilitation post stroke
After the acute treated which takes place the first hours of treatment, early mobilization
of the patients is initiated in the first hours and days post stroke. During these days
motor, cognitive and sensory impairments are diagnosed, in order to structure a plan
specific rehabilitation intervention of the patient. The following days, weeks and months
the patient should follow the the rehabilitation program and adapt to the environment.
Following the next month and years physical condition is maintained with regular checkups
[Langhorne et al. (2011)]. Post stroke recovery can be classified as neurological recovery,
which is affected by lesion site and pathogenesis of the stroke and functional, which is
affected by rehabilitation consistency, environment and motivation [Lee et al. (2015)]. The
neuroprotective mechanisms plays an important role in the early stages of rehabilitation
as these are the most crucial for the patient in order to regain lost function and to
avoid adopting bad compensatory patterns. Early rehabilitation is of great importance
for patients undergoing stroke, in order to recover from their impairments as much as
possible. The first one to three month post stroke is the time where the utmost changes
happens in regards to factors involving neuroplasticity and remodeling of the brain [Zeiler
& Krakauer (2013), Alia et al. (2017), Lee et al. (2015)]. Early mobilization and training
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is put high emphasis on, when it comes to rehabilitation post stroke, because of the
increased sensitivity to stimuli caused by an increase in neuroplasticity in the early stages
post stroke. The study by Lee et al. (2015) showed that recovery occurred with most
progression in the first three month of rehabilitation and thereafter declined until their
six month follow up period. Despite increased recovery capabilities early post stroke,
increased recovery outcomes has been shown with longer rehabilitation periods. This
was demonstrated by the study by Cauraugh et al. (2011), which showed an increase in
recovery in patients with a long term training protocol (16 month) versus patients with
a short term training protocol (two month). Although the increase in recovery early post
stroke, overtraining close to the acute stage of stroke may lead to expansion of the cortical
lesion. This was observed from 24 hour training post stroke in rats [Summary (2000)].
The cause of tissue loss from early training can be caused by the release of glutamate,
which is a necessary neurotransmitter, but oxygen deprived neurons may be vulnerable
to excitation because of imbalances between excitatory and inhibitory synaptic function
and the presence of ecotoxicity in the early stages of stroke. Although a bigger tissue
loss early training was observed, better recovery outcomes has been linked to the early
training [Summary (2000), Zeiler & Krakauer (2013)].
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2.2 Neuroplasticity
Reorganization and adaptation of neural networks and pathways happens throughout the
entire life. A general term for this is also know as neuroplasticity. Many machanisms are
involved in neuroplasticity and it consists of a combination of ongoing processes in the
body. [Augustine et al. (2004)]

During recovery the neurons of the brain are prone to reorganization through a couple of
different mechanisms. When the CNS is damaged by either neurons undergoing necrosis or
apoptiois, causing neural connection interruption, the potential of restoring the function
of these neurons are possible trough the processes of unmasking or sprouting. Unmasking
is the process in which synapses that are not efficient, which could be due to lesion, have
the possibility to connect to neurons adjacent to themselves. Sprouting is the result of
axons creating new connections from the damaged axon, at the site where it was damaged.
[Mir et al. (2014), Thompson (2000), Taub et al. (2002)] The process of unmasking and
sprouting is illustrated in a simplified way in figure 2.5, where a lesion has been induced.

Figure 2.5: Illustrating lesion to a neuron (A), restoring of neuron function through unmasking (B)
and sprouting (C) [Taub et al. (2002)]

Jordan Grafman, an American neuroscientist describes four forms of neuroplasticity. Ho-
mologous area adaptation, compensatory masquerade, cross-modal reassignment and map
extension [Thompson (2000)].

• Homologous area adaptation, the process of the brains ability to take over functions
by the interplay of left and right hemisphere, meaning that the right hemisphere

8 of 71 19gr10404



Chapter 2. Background

can take over functions from the left, and visa versa.

• Compensatory masquerade, the ability of the brain to compensate and use new
strategies for problem solving, if regions of the brain dedicated to a specific function
is damaged.

• Crossmodal reassignment, when the brain assigns new functions to an area of the
brain, if the intended function cannot be acquired.

• Map expansion, when areas of the brain are assigned to a specific task if it is
stimulated simultaneously, which makes the area to grow, resulting in enhanced
task ability.

Synaptic plasticity, the ability of synaptic connections to be functionally dynamic, plays
a great role in neuroplasticity and especially in cortical reorganization [Summary (2000)].

2.2.1 Synaptic plasticity
Synaptic plasticity is the ability for the synapses to strengthen or weaken the connec-
tion between neurons, dependent on the activity of the synapses. Plasticity enables the
connection between neurons to be strengthened and thus enhance function.

An important form of neural plasticity when considering rehabilitation is long term plas-
ticity, which can persists for weeks, month or even years are the mechanisms of long-term
plasticity . Long term plasticity cause a long lasting change between the synapses. A long
lasting strengthening of the synapses is known as long-term potentiation (LTP) while a
long lasting decrease in synaptic strength i known as long-term depression (LTD). These
processes happens based on different cellular and molecular mechanisms and history of
activity, which is involved in procuring LTP or LTD at the synapses. It is believed that
long-term plasticity is part of learning and memory linked with hippocampus [Augustine
et al. (2004)].

Long-term potentation
NMDA receptors plays an important role in LTP. The opening of these channels are of
great importance and can only happen at synaptic inputs that are active and release
the neurotransmitter glutamate. During high frequency stimulations a prolonged de-
polarization in the synapse takes place. This results in mg2+ being expelled from the
NDMA channel, allowing Ca2+ to enter the postsynaptic neuron. This results in in-
creased Ca2+ concentration in the post synaptic neuron, which induces LTP as a second
messenger signal, which in turn increases excitatory postsynaptic potentials [Augustine
et al. (2004)].Figure 2.6 illustrates this process.
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Chapter 2. Background

Figure 2.6: Illustaration of long-term potentiation at neuromuscular synapse. (A) mg2+ blocks the
NMDA receptor channel. (B) mg2+ is expelled from the NMDA receptor channel allowing Ca2+ to

enter the postsynaptic neuron [Augustine et al. (2004)]

Long-term depression
In order to make strengthening of synapses useful, weakening of others must take place to
enhance the efficacy. LTD is this process and it takes place at low frequencies during long
periods. LTD, in contrast to LTP, have the ability to reduce excitatory postsynaptic po-
tentials. LTD is released in a similar way to LTP, by activation of NMDA-type glutamate
receptors, which results in an inflow of Ca2+ to the post-synaptic synapse. What deter-
mines if LTD or LTP is released are the amount of Ca2+ in the post-synaptic synapse.
Small amounts trigger LTD and large amounts triggers LTP. LTD is associated with a
loss of synaptic AMPA receptors, which reduces the amount of Ca2+ that can enter the
postsynaptic neuron [Augustine et al. (2004)]. Figure 2.7 illustrates this process.

Figure 2.7: Illustaration of long-term depression at neuromuscular synapse. Low frequency of Ca2+

into the postsynaptic neuron activates protein phosphatases, triggering AMPA receotors. This reduces
glutamate sensitivity [Augustine et al. (2004)]
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2.2.2 Neurotrophic factors
Neurotrophic and nerve growth factors are of great importance during recovery of stroke.
These molecules has been linked with increased memory and motor function. As briefly
mentioned in section 2.1.3 Neuotrophin-3 is one of these, other nerve growth factors that
has been found important during especially early recovery is brain-derived growth factor
(BDNF), insulin growth factor, glia cell line-derived neurotrophic factor and transforming
growth factor β1. [Summary (2000)] A study by Peterson et al. (2012) points out that
physical activity has a positive impact on neurogenesis, because it promote growth of
new nerve cells from neural stem cells and release of neurotrophic factors, which both
promotes neuroplasticiy. One of the nerve growth factors of great importance for the
survival of neurons and motor learning and memory is BDNF, which has been shown to
ease the process of LTP, one of the processes that strengthen connections between neural
synapses, a part of synaptic plasticity. [Mang et al. (2013)] The study by Mang et al.
(2013) found aerob excersice to increase BDNF in patients rehabilitating from a stroke
and thus and enriched environment is contributing to an increase in recovery post stroke
[Mang et al. (2013), Summary (2000)]. As a side note, the study by [Peterson et al. (2012)]
found that stress and depression decreases recovery and thus decreases neurogenesis.

2.2.3 Adaptive and maladaptive neuroplasticity
Neuroplasticity allows the body to enhance and adapt, thus being adaptive neuroplastic-
ity. This kind of neuroplasticity is expressed when professions that enhances our skills,
like learning new motor skills or recovering from disorders like stroke Haavik & Murphy
(2012). In some cases, neuroplasticity can have bad outcomes, thus being maladaptice
neuroplasticity. This form of neuroplasticity can lead to disorders like phantom limb pain
or movement disorders like parkinson’s or dystonia. [Haavik & Murphy (2012), Takeuchi
& Izumi (2012)] Recovery from stroke may cause such bad habits, why some patients
develop compensatory strategies to complete daily tasks, which prevent a normal motor
pattern of the injured side,thus resulting in decreased recovery [Haavik (2014), Takeuchi
& Izumi (2012)].
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2.3 Chiropractic
Chiropractic is a health care profession with special focus on the relationship between the
CNS and the spine, why the central anatomic structures initially are outlined before the
description of chiropractic is presented. This includes information about the vertebral
column, the CNS and muscle spindles, as these anatomical structures have been found
to be important in the effects of chiropractic SM (SM), indicated by the newest research
within the field. [Haavik & Murphy (2012)]

2.3.1 The vertebral column
The vertebral column consists of 24 vertebrae, sacrum and coccyx, and is part of the
axial skeleton which supports the thorax and head. The vertebral column serves the
important role of housing and protecting the spinal cord [et. al. Martini (2012)]. The
vertebral column is divided into the cervical, thoracic, lumbar and sacral parts, making
up the spinal curve, which benefits in efficient support of the body, as external weight
often is placed anterior in relation to the vertebral column. Nerve roots extend from
each vertebrae, extending from the spinal cord, branching out into the peripheral nervous
system (PNS), with the purpose of innervating different tissues of the body. [et. al.
Martini (2012)] The prior mentioned structures are shown in figure 2.8.
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Figure 2.8: Illustaration of the vertebral column and CNS, lateral view. Modified from [HEBA
SOFFAR (2018)].

Each vertebra are connected by three joints. One of these is the intervertebral disc,
which separate and act as shock absorber between vertebral bodies. The other joints are
the facet joints, with the function of limiting movement of vertebrae segments. [Haavik
(2014), et. al. Martini (2012)]. A popping sound is often a characteristic during SM. This
is caused by gas release of the facet joints [Haavik (2014)]. The muscles that stabilize and
support the vertebral column, hence each vertebrae, are the semispnalis group, multifidus
and interspinales, intertransversal and rotators [et. al. Martini (2012)]. These muscles
makes up the paraspinal muscles, not only important in spinal support, but also in per-
ceiving proprioceptive information from the muscle spindles. [Haavik (2014)]. Figure 2.9
illustrates a section of the vertebral column (A) and the paraspinal muscles that attaches
to the vertebrae (B).
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Figure 2.9: Illustration of intervertebral disc and facet joints from a part of the vertebra, posterior
view (A). Illustration of the paraspinal muscles of the vertebral column, posterior view (B). Modified

from [et. al. Martini (2012)]

2.3.2 Muscle spindles
Muscle spindles are specialized stretch reflexes, sensing changes in muscle length. They
consist of always active intrafusel muscle fibers, sending sensory information via afferent
nerve fibers to the CNS. This allows the body to monitor the activity of the muscles in the
body, by sensing how much the muscle spindles are stretched, which plays an important
role in proprioception. The mechanism of the muscle spindle works by increasing the
frequency of action potentials, when the stretched and decreases when decompressed.
The information goes the spinal cord via the afferent nerve fibers of the muscle spindle,
stimulating Alpha motor efferent neurons, making the extrafusal muscle tissue contract,
as a protective mechanism. The CNS adapts the sensitivity of the muscle spindles via the
gamma motor efferent neurons of the muscle spindle. [et. al. Martini (2012)].

Muscle spindles and the stretch reflex plays a great role in proprioception as mentioned,
examples of this are posture and cooperation between agonist and antagonistic muscle
groups, ensuring an upright posture and even balanced body during movement. This is
achieved by sensitive stretch reflexes and their ability to keeps a firm muscle tonus. [et. al.
Martini (2012)]. The mechanism in which this is achieved is also denoted feedback control.
Proprioception is the ability to get information about the state of position and hold this
up against a desired state. Disturbances from the external environment will influence
muscle tonus in order to compensate for the changing environment and to maintain the
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desired state. Another mechanism known as feed-forward control is utilizes in the case
of rapid movement and information about external environmental factors are registered
beforehand in order to prepare the feedback control mechanism, which could be achieved
through vision or past experience, why brain regions like the hippocampus and prefrontal
cortex are activated [Preston & Eichenbaum (2013), Ghez & Krakauer (2000), Kolb et al.
(2012)].

2.4 Definition of chiropractic
Chiropractic is defined by the world health organization as "A health care profession
concerned withh the diagnosis, treatment and prevention of disorders of the neuromus-
culoskeletal system, and the effects of these disorders on general health" [Salehi A et al.
(2015)]. The first theories on chiropractic hypothesized that nerve roots where being com-
pressed from misaligned vertebrae. The hypothesis has been changed several times and
the latest research are showing the the muscle spindles of the paraspinal muscles plays a
role in the effects of chiropractic treatment. It is thus being hypothesized that the effects
of chiropractic SM is caused by stimulation of the muscle spindles of the paraspinal mus-
cles, resulting in improvement in health and wellbeing from altered proprioceptive input.
[Haavik (2014), Robert F. Schmidt & Gerald F. Gebhart (2013), Horowitz (2007)]. The
segments of the vertebral column that are being adjusted are characterized as vertebral
subluxations, which are causing the joints of the vertebrae to be unable to move in their
full range of motion, thus the muscles paraspinal muscles cannot be stretched properly.
This is believed to causing interference in the afferent nerve signaling and thus creating
imbalance in the communication between the spine and the CNS. [Haavik (2014)]. Dur-
ing a chiropractic session vertebral subluxations are identified through palpation of the
vertebrae and inspection of the patient, in order for the chiropractor to know how to
adjustment the patient through SM. From high velocity, low amplitude trusts, which is
the essence of SM, triggers a reflex response in the muscle spindles, which is thought to
reset the muscle spindle and restores muscle tonus of the external muscle tissue [et. al.
Martini (2012), Haavik et al. (2018), Pickar (2002)]. Causes of vertebral subluxations can
be explained by the paraspinal muscles which stabilize the vertebral column. Tight or
stiff muscles are believed to create imbalances in the joints of the vertebrate and improper
proprioception from the muscle spindle related to the muscle. The improper propriocep-
tion is caused by improper movement of the vertebral joints. Physical injury, bad posture
or stress, can all contribute to segments of the vertebral column to become subluxated
[Haavik (2014)]. Tight paraspinal muscles might pull on bones of the vertebral column in
an uneven way, which induces a stiff or misalignment joint, resulting in abnormal move-
ment of the joint, which affects the somatosensory signaling from the muscle spindles
[Haavik (2014)]. Information from muscle stretch sensed by the muscle spindles is highly
important in sensorimotor integration for precise and coordinated movement, while also
serving as a protective mechanism for spinal stability [et. al. Martini (2012)]. If the mus-
cle cannot be stretched properly, the vertebrae related to that muscle is likely subluxated,
as this segment is not able to move in its full range of motion, which in turn can lead to
maladaptive plasticity, explained in section 2.1.3.1. [Haavik & Murphy (2012)] Through
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SM muscle spindles are stimulated and altered in order to gain normal functionality,
illustrated in figure 2.10. [Pickar & Kang (2006), Fritz et al. (2011)]

Figure 2.10: Illustration of how the muscle spindles of the paraspinal muscles are stimulated during
chiropractic SM, from high velocity, low amplitude thrust [Morgan (2014)]

.

The most practiced form of chiropractic is the so called diversified technique, where the
technique involved applying high-velocity, low amplitude thrusts to the spine, delivered
in under 200 ms, in order to improve and restore movement of subluxated joints [Blum
(2002)]. Other practiced forms of chiropractic utilizes different equipment to assists in
the adjustments, like the Gonstead or Thompson technique, which uses a special table
or the activator method, where a spring loaded hand held tool are used. [Blum (2002)]
Techniques are often practiced in combination in order to support each other. [Haavik
(2014), Sung et al. (2005), Pickar & Kang (2006)].
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Research show that SM has an effect on the CNS, by altering somatosensory processing
and early sensorimotor integration from afferent input perceived from the muscle spindles.
A hypothesized model that describes the effect and idea of chiropractic SM are described
by Haavik & Murphy (2012). The model describes the effects of postponed vertebral
subluxations and basic consequences of this, where maladaptive neuroplasticity may play
a role in leading to bad function. This is illustrated in figure 2.11.

Figure 2.11: Illustration postponed joint dysfunction, which leads to altered motor function. Modified
from [Haavik & Murphy (2012)]

.

By inducing the intervention of SM, normal function of muscle spindles are achieved and
the patient will enhance in several ways by correcting vertebral subluxations, which further
has benefits to health and wellbeing, because proprioception is precieved in a proper way
from the muscle spindles. [Haavik & Murphy (2012)] This is illustrated in figure 2.12.

Figure 2.12: Illustration of joint dysfuntion, which is taken care of through SM, thus promoting
normal function of the nervous system. Modified from [Haavik & Murphy (2012)]

2.4.1 Applications for chiropractic
Chiropractic care has shown beneficial in treating conditions of pain, especially back and
neck pain and also headaches. Other effects that has been observed from chiropractic
care are muscle relaxation, improved muscle coordination, improvement in posture, me-
chanical stress on joints reduction and degeneration reduction [Horowitz (2007)]. These
benefits can all be due to enhanced neural function and it has been shwon that chiroprac-
tic care can improve reaction time, reflex excitability, joint position sense error, cortical

19gr10404 17 of 71



Chapter 2. Background

processing, motor control, lower limb muscle strength and cortical sensorimotor integra-
tion [Lelic et al. (2016), Haavik & Murphy (2012), Niazi et al. (2015)]. Every age group
can benefit from chiropractic and is well considered in regards to proactive treatment.
Other application for chiropractic are being investigated, for instance the possibility of
application in rehabilitation in patients with motor disabilities, like stroke or Parkinson’s
disease. [Haavik (2014), Lelic et al. (2016), Khlebopros (2015), Sell et al. (2012)]

2.4.2 Chiropractic and neuroplasticity
Neuroplasticity induced changes have been linked with SM by several studies [Haavik
et al. (2018), Christiansen et al. (2018), Johnson (2013)]. The research suggests that
CNS nerve signaling is modified following SM, explained by altered proprioceptive input
to the brain [Haavik (2014)]. This is for instance found through modified sensorimotor
integration and increased maximal bite force in patients suffering from subclinical neck
pain [Johnson (2013), Haavik et al. (2018)]. Previous studies performed on animals show
that altered sensory input affects muscle activity [Morimoto et al. (1989)]. It is sug-
gested that this effect could be the result of altered cerebellar output to motor cortex
areas, thus enhancing movement pattern quality and force production [Johnson (2013)].
These findings are confirmed a study by Lelic et al. (2016), which also shows alterations in
early sensorimotor integration following SM. An interesting finding is that the same study
found these alterations of early sensorimotor integration mainly in areas of the prefrontal
cortex. The study by Niazi et al. (2015) demonstrate muscle strength increase in planer
flexor muscles. These finding was explained by increased spinal alpha-motoneurons ex-
citability and reflects transmission efficiency, indicated by altered H-reflex response and
increased efferent motor output magnitude from the alpha-motoneuron pool, indicated by
altered V-wave. Both H-reflex and V-wave has been shown to be altered from resistance
training, showing increased V-wave and H-reflex amplitude. The strength gains following
resistance training might not originate from increased cross sectional area of the muscle,
but rather an increased neural drive to muscle fibers [Aagaard et al. (2002), Vila-Chã
et al. (2012), Dalgas et al. (2013)]. A recent study by Holt et al. (2019) showed that
patients suffering from chronic stroke gained increased plantar flexor muscle force pro-
duction following single session SM, along with H-reflex and V-wave threshold increase.
The patients participating in the study had suffered from stroke for a minimum of 12
month and showed symptoms of planter flexor muscle weakness. It is thought that these
results was obtained as a result of modulation of neuroplasticity, which could be caused
by cortical plastic reorganization in relation to increased cortical drive to the muscle, as
the SM had an impact in preventing maladaptive neuroplasticity and improvements by
correcting vertebral subluxations, improving spinal function [Haavik & Murphy (2012),
Taylor et al. (2010)]. The study by Gay et al. (2014) looked at pain perception and
functional connectivity following manual therapy, including SM, showed that functional
connectivity increased as an immediate effect of the treatment, along with a decrease
in pain perception. The authors of the previous mentioned study suggests that changes
within the nervous system is altered by SM, which may play a role in pain relief effects.
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2.4.3 Methods for investigating mechanisms of spinal manipu-
lation

The ability to measure neurolasticity is important in determining neurological recovery.
Neuroplasticity can be observed by utilizing different measuring techniques that record
the activity of the brain from either structural or functional changes. Structural changes
refer to the structure and thickness of gray matter density, while functional changes refers
to neural activity between neurons. [Warraich & Kleim (2010)] Popular techniques are
positron emitted tomography (PET), single-photon emission computerized tomography
(SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG)
and magnetoencephalography (MEG). Every technique have their benefits and drawbacks.
Spatial and temporal resolution, invasiveness and price varies dependent on the technique.
EEG has shown to have good temporal and descent spatial resolution and the cost is
reasonably low compared to the other techniques while also being non-invasive. EEG
measurement makes it possible to measure neuroelectrical potentials, which can be used
to measure functional changes in the brain. One technique to achieve this is functional
brain connectivity analysis, which measures the functional connections between brain
regions. Prior studies have been using this technique in order to asses recovery in stroke
patients and changes in relation to neuroplasticity. [Lystad & Pollard (2009), Westlake &
Nagarajan (2011), Wu et al. (2015)] Markers of reduced efficiency in sensorimotor signals
has been shown by reduced connectivity between nodes of the cortical motor system of
the cortical motor cortex M1 (FC3 and FC4) and frontal premotor cortex PM (C3 and
C4) of the stroke hemisphere in post stroke patients [Wu et al. (2015), Rosjat et al.
(2016)]. Results from functional brain connectivity analysis in fMRI studies have also
shown reduced connectivity across the stroke hemisphere of cortical motor area during
movement motor deficits and reduced connectivity between stroke hemisphere M1 and
non-stroke hemisphere M1 post stroke, which increases after therapy. It is thus likely
that measures of cortical motor connectivity can contribute as a biomarker of post stroke
sensorimotor signal function and neuroplasticity [Wu et al. (2015)].

2.5 Functional brain connectivity
Functional brain connectivity is a measure by means of statistically estimated connection
and shared changes between regional neural activity of the brain [Ni & Chen (2012)].
Functional connectivity can thus be represented as a network, expressing the coupling
between brain regions, using measurements from modalities like PET, fMRI, MEG and
EEG. [Manuscript (2013)]. Task performance functional connectivity is one application
where functional connectivity is utilized for task performance assessment. In the recent
research resting state functional connectivity has become more popular in studying func-
tional brain organization [Chen et al. (2015), Puig et al. (2018), Gay et al. (2014)]. This
method benefits from it not requiring the participant to perform specific tasks and are
therefore well suited for experiments where participants might have impairments, which
can make task performance difficult [Ni & Chen (2012)]. Several studies have utilized
resting state data in order to study functional connectivity in stroke suffers [Chen et al.
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(2015), Puig et al. (2018)]. Especially the well studied resting state network, the default
mode network (DMN) are of special interest when studying resting state data [Smith et al.
(2018a), Van Den Heuvel & Pol (2011)]. The DMN are made up of connections between
specific brain regions which has been shown to be especially active during rest and less
active during task related work, in healthy participants. The involved regions of the brain
are the precuneus, medial frontal, inferior parietal cortical and medial temporal regions
of the brain [Van Den Heuvel & Pol (2011)].

There are several ways of calculating functional connectivity, Coherence and Phase Lock-
ing Value (PLV) are examples of methods in the frequency domain and correlation and
Mutual Information (MI) are examples of methods in the time domain of possible ways
to obtain functional connectivity networks from modalities like EEG [Manuscript (2013)].
Both correlation and covariance only accounts for linear dependencies between variables,
but as EEG signals often exhibit a complex form of nonlinear properties MI and PLV are
well suited for analysis of such signals as these measures also take non-linear interactions
into account [Wang et al. (2009), Sakkalis et al. (2006)]. MI accounts for both linear
and non linear dependencies, meaning that these methods can give a measure of coupling
between two signals and does not make assumptions about linearity while also providing
stable estimates with data sets of reasonable length. MI also allows for narrow frequency
band analysis, which can be used to determine different spectral bands. [Ramanand et al.
(2011), Sakkalis et al. (2006)] Studies utilizing MI analysis on EEG signals have inves-
tigated patients suffering from conditions like sleep deprivation, Alzheimer’s disease and
depression, whom also showed lowered information of functional connectivity across spe-
cific brain regions [Ramanand et al. (2011), Ming et al. (2018)]. EEG signals recorded
from scalp makes for a problematic dilemma, as these signals often are affected by volume
conduction and field spread, where signals originating from the same source are being
picked up from the adjacent electrodes Lai et al. (2018). Several methods exist to solve
these problems, including EEG source reconstruction and using functional connectivity
metrics that are robust to these effects. A variation of the PLV, known as Phase Lag
Index (PLI) are among these Colclough et al. (2016). These aspects will be elaborated in
the method section 3.2.1.

2.6 Problem statement
Stroke is a global problem with devastating consequences for the patients, as it affects life
quality negatively. Stroke survivors often have to deal with disabilities of varying degree
post stoke. Rehabilitation is therefore of great importance in order to the maximize suc-
cessful recovery. During stroke, highly degenerative processes and cascades are initiated
in the brain which causes damage to the stroke site which lack oxygen and nutrients, but
protective mechanisms are also initiated by the brain to minimize damage and promote
recovery post stroke. Neuroplasticy is one of these processes and it plays a big role in
recovery and is essential for optimal recovery and regaining lost functions in utilizing new
task execution strategies for the brain. A growing body of research is being conducted to
empirically show the effects of chiropractic SM and what mechanisms that drives these
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effects. Several studies have already shown that chiropractic SM alters neural pathways
at the level of the CNS, thus inducing neuroplasticity. This is indicated by altered areas
of the prefrontal cortex, reduced pain sensitivity and cortical drive following SM [Johnson
(2013), Lelic et al. (2016)]. Increased force production has also been linked with single
session SM by several studies, also in stroke patients [Niazi et al. (2015), Haavik et al.
(2017), Holt et al. (2019)]. Despite these findings, the effects of SM are not fully in-
vestigated, especially not the mechanisms related to neuroplasticity in patients suffering
from conditions like stroke or other neurological diseases. The effects of SM therefore still
needs further research in order to establish evidence on how it affects the body, especially
the CNS, in order to find purpose of chiropractic care and implications in rehabilitation
settings relating to stroke. Non-invasive methods such as EEG functional brain connec-
tivity analysis can be a useful tool in analyzing how brain regions communicate between
each other, both during task performance and at rest, through the analysis of MI and
PLI connectivity metrics and thus give an estimate of brain function and recovery post
stroke.

2.6.0.1 Aim
The aim of this study is therefore to explore the effects of chiropractic SM by utilizing
the method of MI and PLI to estimate resting state EEG functional brain connectivity,
in chronic stroke patients.
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3 | Material and methods

3.1 Subjects
24 chronic stroke patients were recruited to participate in the experiment, all male, mean
age, 54.9 ±11.4. The patients had suffered from stroke for a period between 2 and 60
month, mean 18.2 ±14.4 months. Location of the stroke varied between patients. The
affected hemispheric region of the brain was distributed as 13 right hemispheric and 11
left hemispheric affected, all of ischemic stroke type.

3.1.1 Spinal manipulation session
Vertebral subluxations where assessed in the subjects before and after performing SM by
inspecting the whole spine along with the sacroiliac joints, performed by a New Zealand
registered chiropractor. Indicators of vertebral subluxaions was found by manual palpa-
tion and characterized as restricted intersegmental range of motion, intervertebral muscles
asymmetric tension, restricted range of motion of intersegmental vertebrae, joints tender-
ness to palpation and other abnormal joint play. High velocity, low amplitude thrusts or
instrument assisted adjustments were performed during the SM adjustments.

3.1.2 Control session
During the control session the subjects was examined according to the procedure of the
SM session and moved into the adjustment position but without performing any adjusting
thrusts. This procedure was performed to account for changes which could happen due
to muscular, cutaneous or vestibular effects in the SM session. This procedure was done
between Pre and Post recordings by the same chiropractor, similar to the study done by
[Holt et al. (2019)].

3.2 Experimental protocol and equipment
The conducted experiment were carried out as a randomized crossover study design where
each participant participated in control and SM session. In order to reduce bias like carry
over effect, all subjects were randomly allocated into one of the intervention in order to
determine their first session, before the experiment was initiated. A washout period of at
least one week was given to the subject between experimental sessions. An overview of
the of cross over study design is illustrated in figure 3.1.
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Figure 3.1: Illustration of the cross over study design and recording allocation.

Resting state EEG signals were recorded for all subjects during two consecutive sessions
pre and post intervention of either control or SM. For recording of the EEG signals, a
Refa 72 channel TMSi device (The Netherlands) was used, connected to a 64 electrode
EEG cap which was placed on the scalp of the subject according to the extended 10-20
system [Siuly et al. (2016)]. Furthermore the setup was connected to ground through
electrode at location FZ , see figure 3.2. Impedance were below 10 ohm. A computer were
used for storing and acquiring the data. The recording setup were powered by a battery
source in order to minimize power line noise. During the EEG acquisition the subjects
where positioned sitting comfortably in a chair asked to sit still with eyes open and relaxed
keeping the gaze on a cross located on the wall 1.5 meters opposite to the participant. Two
to three minutes of of resting state EEG was acquired during each session, were subjects
were asked to keep movement and eye blink minimal. Sampling frequency of 2048 Hz.
After a washout period of at least seven days the subject repeated the experiment with
the second experimental session in the cross-over design. Data recordings was carried
out at Railway General Hospital in Rawalpindi, Pakistan, between 2016 and 2019, by
researchers from the New Zealand College of Chiropractic.

3.2.1 EEG acquisition
EEG is a non invasive measurement method, which measures electrical postsynaptic po-
tential activity, generated by pyramidal neuron cells making electrical dipoles between
soma and apical dendrites in the brain. These potentials can be measured by electrodes
placed on the scalp. EEG is most often recorded as a multichannel signal with electrode
numbers ranging from 1 to 256 parallel recordings, where one electrode is referred to as
one channel [Im (2018), Siuly et al. (2016)].

Electrode placement are of great importance as each electrode is responsible to record
signals from different brain regions. Standards have been made in order to achieve stan-
dardized measurements of EEG signals, the international 10-20 electrode placement sys-
tem is one of those, which is shown in figure 3.2 and the one used in during the recordings
of the EEG signals in this project. Even numbers indicates the right hemisphere and odd
numbers indicates the left hemisphere location [Siuly et al. (2016)].
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Figure 3.2: Illustration of the 10-20 electrode placement system setup on the scalp [Siuly et al. (2016)].

Recording can take place as either bipolar or unipolar montage. During bipolar montage,
electrode pairs are recorded as the potential difference between electrodes adjacent to
each other, while during unipolar montage, electrode channels are represented for each
electrode with a common reference, desirably placed at a midline position in order to
avoid amplification in one hemisphere over the other [Im (2018)]

3.2.2 Characteristics of the EEG signal
, The amplitude of EEG signals ranges from 1 to 100 uV and the frequencies of the EEG
signal is contains meaningful information about changes and status of the brain. Oscil-
latory waves of the brain are often divided into the following frequency bands, typically
defined in the ranges, Delta (1.3-3.5 Hz), Theta (4 - 7.5 Hz), Alpha (7.5 - 12.5 Hz), Beta
(12.5 - 30 Hz) and Gamma (30 - 40 Hz) Newson & Thiagarajan (2019). Delta waves is
an expression of sleep, serious brain disorders and waking state [Im (2018), Siuly et al.
(2016)]. Theta waves expresses emotional stress, frustration and disappointment. Alpha
waves indicates activity in posterior regions and often happens in the occipital lobe dur-
ing relaxed state, intense mental activity, stress and tension. The alpha waves are also
linked with sensorimotor areas. Beta oscillations often happens in the frontal lobe and
are associated with arousal and are actively engaged in mental activities, attention and
outside focus along with problem solving tasks. Lastly are the gamma osculations, which
expresses cognitive and motor function, these waves can have frequencies up to 100 Hz
[Siuly et al. (2016), Im (2018)].
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3.3 Data analysis
Offline data analysis was conducted in MATLAB R2018a. Toolboxes used during the
analysis were, EEGLAB version 14.1.2 for preprocessing, Brainstorm version May 2019
for source reconstruction and EEGNET version 1 was used for network visualization in
the cortex.

Initially a pipeline of the methodological approach for the data analysis is outlined in
order to give an overall overview, this is illustrated in figure 3.3.

Figure 3.3: Pipeline illustrating the steps performed during the data analysis.

The following chapters will contain further explanations of the approaches for each of step
performed during the data analysis from the pipeline in figure 3.3.

3.4 Preprocessing
The EEG signals both contain the desired signals originating from the postsynaptic po-
tentials generated by the neurons, but the electrodes also pick up signals in the form of
artifacts from non-cerebral origin. Artifacts are always very likely to contaminate the
EEG signals and can disturb further analysis and interpretation of results, therefore pre-
processing of the signals are needed in order to enhance signal to noise ratio. Well known
artifacts in EEG arises as line noise, eye movement, blinks and generally excitation of the
facial muscles and muscles of the of the eyeball. Bad electrode contact are also a cause
of artifact as this leads to high impedance between skin and electrode [Im (2018)]. In
order to remove these artifacts and prepare the signals for further analysis, a pipeline for
the pre-processing are outlined and illustrated in figure 3.4. Preprocessing of the data
was done using EEGLAB, where data was loaded into and channel locations were defined
before the initialization of the preprocessing steps.

Figure 3.4: Illustration of the steps performed during the pre-processing of the EEG signals.

3.4.1 Digital filtering
Digital filtering of the EEG signals were applied in order to remove linear trend and
unwanted line noise originating from signals picked up from connectors and cables, main

19gr10404 25 of 71



Chapter 3. Material and methods

supply connected devices and devices in the same circuit as the amplifier, which allows
propagation of noise to the recording setup. This noise often show itself at frequencies
at either 50 or 60 Hz along with its harmonics [Cutmore & James (1999)]. A spectrum
analysis of the EEG signals revealed that most of the signals were contaminated with 50
Hz noise and its harmonics, in varying degree. A digital bandpass filter of zero phase finite
impulse response (FIR) was applied to the signals using a windowed hamming. The filter
were defined with the bandwidth 1 - 45 Hz of order specified automatically in EEGLAB
by a heuristic process, which determines the order based on the high edge frequency and
sampling rate. When these parameters were defined the default filter order in EEGLAB
was 6760, with transition band width of 1 Hz. The bandwidth of 1 - 45 Hz was chosen
because the frequency range of interest lies between 8 - 40 Hz, thus removing line noise
along with linear trends and high frequency components, which will not be included in the
further analysis. The narrow frequency range also made preprocessing more convenient in
regards to artifact removal, which is one of the later steps in the preprocessing pipeline.

3.4.2 Re-referencing
During the recordings of the signals in the experiment, monopolar recordings was obtained
using the mastoids for reference electrodes. Another option is to use a common average
reference for all electrodes, which is using the averaged sum of the electrode output, as
positive and negative currents will sum to zero, when summed across electrodes, accord-
ing to ohm’s law. Even distribution of electrodes over the scalp are assumed. Average
reference is often used as potential difference varies on the scalp [Siuly et al. (2016), Im
(2018)]. During the preprocessing, re-referencing was done to achieve common average
reference, excluding the two mastoid references, leaving 62 electrodes for further analysis.

3.4.3 Bad channel detection and artifact removal
Artifacts og disturbances in the EEG signals originate from both internal and external
sources. Internal sources are from physiological systems, including electrical interference
emanating from the heart, eyes and muscles, while external sources include all other signals
from environments which can contaminate the signal. These include wireless device,
electronic devices, wires, etc [Im (2018), Siuly et al. (2016)]. Before artifact removal, bad
channels where marked using EEGLAB plug-in clean_rawdata, which marks the data by
searching for flat line, noisy signals with excessively large amplitudes or poorly correlated
to neighboring channels. The channels marked as bad were manually inspected, validated
and excluded if the channels where considered bad [Chang et al. (2018)].

Artifact subspace reconstruction (ASR) is a part of the cleanrawdata plug-in in EEGLAB
and were used to mark artifacts in the data. The way that ASR works is by initially
selecting parts of the data that are considered clean, as calibration data. This selection
is based on distribution of signal variance, by calculating channel-wise root mean square.
A principal analysis sliding window analysis is then performed based on z-score statistics
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to find high variance signal components which exceed a user defined threshold of 200
relative to the covariance of the calibration data Manley (2013), Mullen et al. (2015),
Pedroni et al. (2018).

The threshold of 200 was chosen on the bases of the study by, which mentions that a mild
threshold of 100 or above is preferred. Lastly the signals determined by the ASR algorithm
was removed after visual inspection, in order to validate the the marked artifacts[Chang
et al. (2018)].

After rejection of bad channels and artifact removal, channel count would be unequal
for individual subjects which would be cause of error if not handled [Hatz et al. (2015)].
Therefore the removed channels where reconstructed using spherical interpolation where
information from neighboring channels were used for reconstruction after artifacts were
removed [Bigdely-Shamlo et al. (2015)].

3.4.4 Independent component analysis
Independent component analysis (ICA) is method used in blind source separation (BSS)
and is an often used method to remove artifacts in the EEG signal [Hatz et al. (2015)].
ICA are based on either second or higher order statistics and assumes mutual linear
independence between estimated sources along with non-Gaussianity. In BSS a linear
mixture model is used in which the observed multi-channel EEG signals are assumed to
be a linear mixture of unknown sources with little knowledge about sources or a mixing
matrix. Assumption about mutually independence are made in order to achieve optimal
source and mixing matrix estimation. If we have an observed EEG signal x(t), this can
be explained as a mixture of an unknown source vector s with mixing matrix A and white
noise n [Im (2018)].

x(t) = As+ n (3.1)

Sources can then be made as independent as possible by estimating A, to obtain the
inverse matrix given by

W = A−1 (3.2)

This inverse matrix can then be used to find the sources by the equation.

s = Wx (3.3)

Before computation of ICA, the EEG signals were down sampled to a sampling rate
of 512 Hz, in order to optimize computation efficiency. The IC components were semi
automatically marked as bad or good components using Multiple Artifact Rejection Algo-
rithm (MARA) to mark bad components [Pedroni et al. (2018)]. MARA is an opensource
EEGLAB plugin, based on a supervised machine learning algorithm, which automatically
labels the independent components for artifact rejection. The components were visually
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inspected and verified before removal. MARA classifies EEG signal components and arti-
fact components, based on a supervised learning algorithm which has been trained from
expert ratings of 1290 components, six features are considered from spectral, spatial and
temporal domains. IC components that are considered bad and originate from artifact
components are subtracted from the data, leaving the good EEG components, which are
considered making up the features of the EEG signal [Islam et al. (2016), Pedroni et al.
(2018)].

3.5 Sensor level EEG
EEG sensor level connectivity analysis have its limits, as problems like volume conduction
and field spread arises, because common signals are being picked up by adjacent elec-
trodes on the scalp [Rutkove (2007)].The term volume conduction describes the effects of
measuring electrical potentials at distances from where the source originates, because the
electrodes that are recording the signals are not directly placed to contact the nerve at the
specific location which are being measured. Far field potentials and near field potentials
are considered when considering volume conduction. Far field potentials are generated
a distance from the recording electrodes, while near field potentials are obtained close
to the recording electrode and the source of interest [Rutkove (2007)]. Interpretation of
sensor level EEG can for this reason be problematic, as the recordings are affected by
the effects of volume conduction . Ideally connectivity between two physically-distinct
brain regions would be if the electrodes only measured the neural activity right below the
electrodes. But as the sensor signals are an expression of complex mixture of overlapping
signals from a number of brain regions, this ideal scenario cannot directly be achieved
[Hassan & Wendling (2018)]. Sensor level EEG measures all sources at a certain degree,
depending on the source to sensor distance and orientation of equivalent dipoles associ-
ated with the sources. Figure 3.5, illustrated the problem of volume conduction, showing
an ideal scenario and what is the reality.

Figure 3.5: Illustration of the volume conduction problem. A) Ideal scenario, each electrode picks up
signals only related from sources generated at a specific brain region. B) Volume conduction occurring
due to signals from different sources are being picked up from multiple electrodes [Hassan & Wendling

(2018)]
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In order to solve the problem of volume conduction, one solution is to do EEG source
reconstruction from the recorded sensor level EEG [Hassan &Wendling (2018), Im (2018)].

3.6 Source level EEG
EEG source reconstruction is a strategy to solve the the problem of volume conduction and
also enhances the spatial resolution of the data, as the cortical activity are being reflected
as sources reflecting dipoles, instead of sensors reflecting the mixture of multiple source
signal. EEG source reconstruction is a process where location, direction and distribution
of EEG sources are estimated by solving forward and inverse mathematical problems.
This includes a procedure where modeling of the head and relationship between the EEG
sources and scalp potentials are being approximated [Im (2018)]. EEG source reconstruc-
tion consists of two main problems, forward modeling and inverse modeling, which are
dependent on each other for correct source reconstruction. Forward modeling involves
the calculations and modeling of the human head, including scalp, skull and cortex and
sensor array electromagnetic properties, while the inverse problem uses information from
the forward modeling problem in order to identify most likely locations and strengths of
cortical activity [Tadel et al. (2011), Im (2018)].

3.6.1 Source reconstruction
To do EEG source reconstruction four essential pieces of information are needed, the
sensor EEG signals, information about the electrode placement on the head in 3D space,
a head model containing information about electrical and geometric characteristics of the
head and a model which provides information about the location and orientation of dipole
sources that is being estimated [Hassan & Wendling (2018)]. Figure 3.6 illustrates the
four pieces needed in order to achieve EEG source reconstruction.

Figure 3.6: Illustration of the four essential pieces of information needed to do EEG source
reconstruction. (1) illustrating the EEG sensor time series, (2) the electrode placement, (3) the head

model, (4) dipoles location and orientation. Modified from [Im (2018)].
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Post synaptic potentials generated in cortical pyramidal neurons of cerebral cortex are
assumed to be orientated approximately normal to the cortex, which is assumed in the
model and it is the mass effect of these cells are being modeled. This can done on a spatial
level by making up electric current dipoles, which are distributed along and perpendicular
to the cortex, which then will represent an approximation of the brain activity [Im (2018)].

For both forward and inverse modeling, the toolbox Brainstorm May 2019 was used in
MATLAB R2018a in order to reconstruct the sources from the sensor level EEG signals
[Tadel et al. (2011)].

3.6.1.1 Forward modeling
For the forward modeling approach, the location and orientation of current dipoles needs
to be defined in order to explain the cortical sources relation to the EEG sensors. This
is done on a voxel grid space resembling an approximation of the cortical space. This
set of dipoles are called the source space. During the forward modeling the source space
is constrained to the cortex and with current dipoles orientated perpendicular to the
cortex assigned to 15000 verticies using a default generic head model from Brainstorm
for all subjects [Tadel et al. (2011)]. In order to relate the source space to the sensor
space, eg. sensor EEG time series signals, the different head tissues must be defined in
order to make it possible to solve estimate the current dipole potentials generated in the
cortex. This is where the forward problem must be solved. In order to solve this, the
symmetric boundary element method (OpenMEEG BEM) was used to calculate the head
model in Brainstorm May 2019. This model uses a three layer compartment with the
compartments, scalp, skull and brain, where each of these tissues conductivities need to
be defined. These values where defined by [Lin & Scott (2012)] and assigned according to
their study, with the following values for scalp = 1, Skull = 0.0125 and Brain = 1. The
forward model was calculated after defining and locating the 62 electrode locations on the
scalp. Locations of the electrode was defined according to the 10-20 electrode placement
system as in 3.2.1, and is illustrated in figure 3.6, (2). With the defined head model the
forward problem is described by the following equation:

V = G · J + n (3.4)

In equation 3.4 V describes the measurement matrix in relation to the number of electrodes
and time samples, which is [62x31744] from the preprocessed data, illustrated in figure
3.6. G is a lead field matrix, which is compromising of the recorded channels and the
time varying current dipole source, which has the dimensions of [62x15000], defined by
the number of electrodes and verticies. J describes the magnitude of the dipole sources
and n is a noise matrix [Im (2018)].

With the forward problem defined, it is now possible to estimate how the cortex sources
determine the values in relation to the EEG sensors obtained from the scalp.For this
solution the inverse problem must be solved in order to achieve the the EEG sources, eg.
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how the sources of the defined dipoles are estimated in relation to the EEG sensor level
recordings.

3.6.1.2 Inverse modeling
In the inverse problem, the activity from the 62 EEG sensors needs to be estimated from
the defined dipoles in the forward model, hence the inverse problem is defined from the
forward problem, equation 3.4, as:

Ĵ = M · V (3.5)

Here Ĵ is the sources which are being estimated and M is the inverse operator. The
inverse problem is an ill posted problem as the number of estimated sources are greater
compared to the number of electrodes from the EEG sensor recordings. In order to achieve
a solution for this problem, the method of minimum-norm solution is utilized by applying
a linear kernel in the form of a matrix that multiplies the spatial data at each point in
time. This method estimates cortical current source densities which fits approximately
to the data of the forward model, by minimizing overall power of the activity from the
estimated sources [Im (2018)]. An ill posedness problem can cause hassles, as a unique
solution might not exist for all data [Tadel et al. (2011)]. This is delt with by introducing
a prior in the form of a noise covariance matrix, which is an identity matrix assuming
equal noise from all EEG sensors, as previously done by [Lai et al. (2018)].

The result of the minimum norm estimate is represented as a current density map, which
is the currents found for each point current dipole, in the unit of ampere per meter.
The minimum norm estimate have a drawback as it tends to place source activity in
superficial regions of the cortex, resulting in a drop in resolution of deeper tissues of
the cortex [Tadel et al. (2011), Pascual-Marqui (2002)]. Normalization of the current
density map is therefore applied in order to improve localization of the deep sources,
using a normalization methods of standardized LOw Resolution brain Electromagnetic
TomogrAphy (sLORETA), which has shown to have good localization, with small error.
sLORETA works by normalizing the current density power at each data point by adding
the theoretical signal covariance added to the the the noise covariance [Pascual-Marqui
(2002)].

With sources constrained with dipole orientation perpendicular to the cortex, the sources
are now represented as normalized current densities perpendicular to the cortex. The
number of reconstructed sources are of very high resolution and would be inefficient to
calculate functional connectivity from. Therefore a technique of clustering the sources
based on a pre-defied atlas with regions of interest (ROIs) on the cortex surface are
utilized. In order to define these ROIs a predefined atlas named the Desikan Killiany
atlas is used, which defines 68 ROIs on the cortex surface. The regions on the cortex of
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the Desikan Killiany atlas can be found in appendix E The sources were clustered as the
average time series within the pre-defined ROIs [Tadel et al. (2011), Hassan & Wendling
(2018)]. Before averaging the sign of the dipoles with opposite direction were flipped,
in order to avoid cancellation of activity because of opposite direction of dipole sources
[Hassan & Wendling (2018), Lai et al. (2018)]. With the clustered source time series,
the matrix becomes [ROIs x time]. This matrix will be used in the further analysis to
calculate the functional connectivity.

3.7 Functional connectivity analysis
For the further analysis of functional connectivity, 60 seconds of artifact free signal were
selected from all data sets [Jin et al. (2011)]. Both measures for functional connectivity,
MI and PLI were being computed on the source reconstructed EEG signals. MU is a
non-direced, information based method for estimating functional connectivity based on
the amplitude of the signal, while PLI is a non-directed data driven method based on the
phase difference between signals [Im (2018)]. Only PLI accounts for the effects of volume
conduction [Im (2018), Ramanand et al. (2011)]

Before the calculation of MI and PLI, the data was divided into narrow band signals. As
mentioned in section 3.2.2 physiological interpretation of the signals in the brain can be
divided into different frequency bands of different physiological meaning. A 4’th order
butterworth filter was used in order to acquire the three frequency bands, Alpha, Beta
and Gamma. As the consistency between studies are not consistent in the definition
of the frequency ranges, the values where chosen on behalf of the study by [Newson &
Thiagarajan (2019)], who defined frequency bands of oscillatory waves of the brain from
the most used ranges reported among studies, with the following values, Alpha (7.5-12.5
Hz), Beta (12.5-30 Hz) and Gamma (30-40 Hz).

3.7.1 Mutual Information
Mutual information expresses the shared information between two signals based on Shan-
non entropy, which is the average amount of information that is needed in order to encode
a discrete variable [Im (2018)].

Entropy of a discrete variable X is calculated as:

H(X) = −
∑
x

p(x) log p(x) (3.6)

Here entropy is calculated as the uncertainty of variable X being within the probability
distribution of observed variables. Here, p(x) in the formula is the likelihood of the
variable x being within the probability distribution of observed variables.

When two variables are being considered, this is denoted the joint entropy and is calculated
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as:

H(X, Y ) = −
∑
x;y

p(x, y) log(p(x, y)) (3.7)

Uncertainty within variables X and Y together is being considered here and the proba-
bility of these variables existing in the same probability distribution.

Mutual information uses the idea of entropy in order to estimate the amount of shared
information which lies between two variables, which is the idea of how much information
variable X contains about variable Y , and visa versa. Mutual information is consequently
calculated as:

I(X;Y ) =
∑
x

∑
y

P (x, y) log P (x, y)
P (x)P (y) (3.8)

The dependence between variables are expressed through MI. A greater value is corre-
lated with higher dependence between the variables. MI only gives values that are equal
to or higher than zero, zero meaning total independence between variables, but only if
the variables are statistically independent. MI accounts for both linear and non-linear
dependencies [Batina et al. (2010), Wang et al. (2010)].

MI was computed between every electrode. To do this, firstly the probability distribution
of signals sY and sY were defined:

PsX,sY (i, j) = b(i, j)
N

(3.9)

The number of observations per bin in the histogram defining the joint probability distri-
bution of sX and sY is defined as b(i, j) and N is the amount of samples used [Bingham
et al. (2017)]. In order to estimate the number of bins represented in the histogram, the
following equation was used [Rosenblum et al. (2001)]:

Nbins = exp(0.626 + 0.4 ∗ log(N − 1)) (3.10)

For the computation of the MI from the EEG signals, entropy of signal X and Y were esti-
mated by the probability distribution 3.9 and the MI were then calculated from equation
3.8.

As MI has shown to give rise to more errors when calculated over small sample counts
and calculation of MI over epochs of longer sample lengths has shown greater Gaussian
distribution characteristics [Roulston (1999), Wang et al. (2009), Sazonov et al. (2009)],
MI were therefore calculated over four second non-overlapping epochs, which was equiva-
lent to 2048 samples. This gave a bin size of 40 from equation 3.10. The size of the bins
were defined from the possible data range, from the lowest to the highest value within the
dataset, in order to keep equal bin size. The range of the data can be found in D. After
the computation of MI between every two channels in a pair, the MI computed for each
four second epoch were averaged to give one value representing the MI value per channel
dependence.
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3.7.2 Phase Lag Index
PLI quantifies the asymmetry of the distribution of differences in instantaneous phase,
either positive or negative differences, between two signals, if non zero phase lag are
present between the two signals. Non zero phase difference between the signals are implied
for, in the asymmetry, in case the phase synchronization is caused by common sources[Im
(2018)].

In order to estimate PLI, the phase information must be calculated from the signals of
interest. This can be achieved by the Hilbert transform [Siuly et al. (2016), Seraj (2018),
Im (2018)] The Hilbert transforms of a signal x(t) can be simply explained as a shift in
phase from the original signal by π

2 for positive frequencies and −π
2 for negative frequencies

and is defined as:

Hx(t) = 1
π
PV

∫ ∞
−∞

x(τ)
t− τ

dτ (3.11)

Because of a potential singularity at t=τ , the integral in the Hilbert transform is calculated
by means of the Cauchy Principal value PV [Seraj (2018)] In order to calculate the phase
of the signal, the analytic signals must be defined, this can be done as:

Z(t) = A(t)ejφ(t) (3.12)

A(t) is defining the instantaneous amplitude, while φ defines the instantaneous phase
[Seraj (2018), Colclough et al. (2016), Stam et al. (2007)]. The phase information can
then be extracted using the Hilbert transform:

φ(t) = arctan
Hx(t)
x(t) (3.13)

The PLI between two signals can then be calculated from the average phase difference
between two signals x(t) and y(t) using equation Fraga González et al. (2018). The sign
determines if the phase difference is positive, negative or zero value [Im (2018)].

PLIx,y =
∣∣∣∣∣ 1
N

N∑
t=1

sign[sin((φx(t) − φy(t))]
∣∣∣∣∣ (3.14)

The computation of PLI were done between every two channels in a pair from the EEG
signals, by first computing the analytic signal from equation 3.12, where after the phase
of the signals where calculated by equation 3.13, in order to calculate the PLI from
equation 3.14. The result of the computed PLI lies in the interval from zero to one,
where one means that there is no coupling between the two signals, and the signals is
most likely within the interval of less than 0< phase difference <φ and one indicated as
perfect coupling between the signals. PLI were calculated over epoch of lengths similar
for MI computations, 4 second epochs, equivalent to 2048 samples, in order to keep
consistency.The PLI data were stored in s similar adjacency matrix of dimension NcxNr,
with zeros along the diagonal.
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3.8 Statistics
As the EEG signals are composed of multi-channel data, a problem arises in the form
of the multiple comparison problem (MCP), as the family wise error (FWER) are not
being controlled. With many comparisons the risk of making a type one error increases,
thus giving rise to poor interpretation of the results. One solution of controlling the
FWER is by Bonferroni correction, but this method increases the risk of making a type
two error, thus being very conservative, lowering the power of the statistical test [De
Leon & Fernandez Donoso (2017)]. For this reason the less conservative method cluster
based permutation test are the used for comparing the data within and between subjects
[Huang & Zhang (2017)]. For the statical test the source reconstructed EEG signals were
divided into the three frequency bands Alpha, Beta and Gamma, prior to calculating the
functional connectivity metrics [Lai et al. (2018), Kabbara et al. (2017)]. Linear regression
analysis were used to asses the relationship between results obtained from PLI and MI
metrics.

3.8.1 Non-parametric cluster based permutation test
The non-parametric cluster based permutation test were computed using MATLAB 2018a,
utilizing the toolbox FieldTrip developed at Donders Institute, Brain, Cognition and
Behavior, Nijmegen in the Netherlands, by researchers .

Non-parametric cluster based statistical test is a method to do statistical testing while
controlling the FWER [Maris & Oostenveld (2007)]. The basic idea of the non-parametric
cluster based permuation test is to construct a histogram of the test statistic through
permutation of the samples, resembling a non parametric estimate of the probability
distribution for the test statistic. This distribution is then used to asses p-values in
order to reject the null hypothesis. It is possible to choose the test statistic for specific
applications and different information. For this project clustering in space are the chosen
approach of cluster statistic as the adjacency matrices resembles the connectivity between
brain regions. This cluster statistic tm is used as test static by clustering in the form of
summed pixels tm for a specific amount of clusters with pm amounts of pixels contained
in each cluster [Hald (2017)], defined by:

tm =
pm∑
i=1

ti (3.15)

The histogram for the test statistics were calculated using Monte Carlo sampling with
5000 permutations at a significance level of 0.5. The t-values which exceeds the critical
t-value corresponding to the alpha-level of 0.05, were being clustered in sets dependent
on their adjacency. The biggest clustered t-value in each round, calculated from 3.7,
were assigned to the permutation distribution of test statistics. The p-values were then
assessed to find cluster level statistics in the observed data which exceed the threshold of
the critical level of the constructed permutation distribution, which are then considered
statistically significant [Huang & Zhang (2017)]. Figure 3.7 illustrates an example of the
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assessment of significant clusters in the observed data, to give a better understanding of
the test. In the figure both the permutation test critical value, corrected by clustering and
uncorrected critical value are displayed to give an idea of how the FWER is controlled.

Figure 3.7: Illustration of the assessment of the significance of the observed data, assessed from
permutation testing. In the figure one observed cluster are observed to exceed the critical value of the
permutation distribution, while many significant data points are observed in case the critical value is

not corrected [Maris & Oostenveld (2007)]

Prior to the cluster based permutation test the adjacency matrices where thresholded to
only show 20% of the strongest connections, as the strongest connectivity counts have
been shown to reflect greater information of the underlying network architecture [Ming
et al. (2018)]. Furthermore the well studied resting state network, the DMN were derived
from the adjacency matrices, only considering brain regions within the network [Kabbara
et al. (2017)]. The cluster based permutation test where then computed to look for
differences within the whole brain connectivity and DMN connectivity, which respectively
corresponded to the full adjacency of 68x68 brain regions and DMN adjacency matrices
of 14x14 brain regions. For the DMN analysis only regions of the brain considered within
the DMN were included . This yielded a 14x14 matrix. [Van Den Heuvel & Pol (2011),
Kabbara et al. (2017), Dunkley et al. (2018)] In appendix A a list of the brain regions
contained in the whole brain adjacency matrices and DMN matrices ae shown.

3.8.2 Linear regression analysis
In order to view the relationship between the two connectivity metrics MI and PLI, a linear
regression analysis were performed. Linear regression is a statistical model considering
the relationship between two variables X and Y [Asuero et al. (2006), Miller (2013)] The
model can be expressed as:

Y = α + βX + ε (3.16)

In equation 3.16 X is a independent variable and Y is a dependent variable. Both α and
β are constants, while ε is a term of random error. A way of computing the relationship
between the variables the coefficient of determination can be computed for the linear
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regression model, known as R2. The residual sum of squares (RSS) and the total sum of
squares (TSS) can be used for calculating R2 [Asuero et al. (2006), Miller (2013)]. These
are defined as:

RSS =
n∑
i=1

(yi − α− βxi)2 (3.17)

TSS =
n∑
i=1

(yi − Ȳ )2 (3.18)

Where Ȳ is the mean of Y, in equation 3.18. The coefficient of determination can now be
computed from the following equation:

R2 = 1 − RSS

TSS
(3.19)

The method explains the amount of total variation in regards to the mean, which is
explained by the regression R2 and results in a computed output value between zero and
one, where zero means that there is no relationship between the variables and one meaning
that there is a perfect relationship between the variables [Asuero et al. (2006)]. R2 can
also be negative in case of a negative relationship [Miller (2013)]

For the linear regression analysis the data obtained from the control session at the pre
stage were used, as it is assumed that the rest of the data will have same trends, as the
same methods were applied to all data. Linear regression were computed between PLI
and MI at Alpha, Beta and Gamma band.
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4 | Results
In this section, the results of the data analysis will be presented.Initially a presentation
of the results from the cluster based permutation test will be presented, followed by
a network visualization of the significant differences in functional connectivity, showing
which brain regions are involved. PLI and MI metrics are compared by linear regression
analysis, in order get an objective measure on the similarity in results between the two
metrics.

4.1 Cluster based permutation test
The cluster based permutation test were used in order to localize any significant clusters
in the connectivity differences between brain regions of the adjacency matrices.

From the whole brain analysis no significant clusters where found at an Alpha level of
0.05. However, the clusters tended to be significant were highlighted when p-value were
lower than 0.1, in order to look for trends in the data. A trend were present for the
PLI metric within the SM session in the form of Alpha and Gamma oscillatory changes.
Also between SM and control sessions changes where seen in the Alpha frequency range.
Within the MI metric only a trend within SM Alpha oscillatory changes where present.
Within the DMN network, significant clusters where present at the Alpha band frequency
range for SM session and between SM and control for the PLI metric at a significance
level below 0.05. No significant results or trends where found within the control group.
The results of the cluster basted permutation test shown from the adjacency matrices
are illustrated in appendix A. Tables 4.1, 4.5 and 4.7, shows an overview of the results
from the cluster based permutation test. In the tables, ’SM’ denotes the comparison of
Pre to Post measurement in the SM session, while ’Ctrl’ denotes the comparison of Pre
to Post measurement in the control session. These comparisons show if any changes are
present within any of the two sessions. ’SM vs. Ctrl’ denotes the comparison between
SM and control session as the absolute difference from Pre to Post, in order to view how
each intervention compare against each other. Positive (+clusters) clusters indicates
an increase in connectivity while negative clusters (−clusters) indicate a decrease. The
cluster count is determined from the amount of clusters that exceeded the significance
level of the critical t value, t(23) = ± 2.0687, without the FDR correction, with 24-1
degrees of freedom, at the significance level of 0.05.

In order to get a better understanding of the changes found, which are presented in the
tables 4.1, 4.5 and 4.7, they are visualized at the cortex level with the connected brain
regions and by a circular graph plot. The circular graph plots shows the effect size of the
difference in connectivity, while the visualization of the networks in the cortex shows the
strength of each brain region (nodes) and connectivity (weighted edges) between these
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regions. The edges denotes how each node are interconnected between nodes and vary in
size according to their weight. The nodes are represented as the strength of the connec-
tivity within the node and shows how much influence they have in the network. Bigger
node size are correlated with a bigger influence in the network. Red nodes corresponds
to increase in connectivity, while blue nodes corresponds to a decrease. During explana-
tion of connections between certain brain regions, they will be refereed with the following
notation, ’node - metric - node’, for easier explanation and reader compliance.

4.1.1 Whole brain functional connectivity
The whole brain connectivity compromised of all brain regions of the 68x68 adjacency
matrices. Tended clusters which exceed the permutation distribution threshold at a sig-
nificance level of 0.1 were highlighted. In the result section this will be represented as
circular graph plots and network visualization at the cortex level. The adjacency matrices
with highlighted clusters can be found in appendix B, names of the brain regions and their
abbreviation are also found in the appendix A and are listed in a table with the order
corresponding to the order they are outlined in, in the adjacency matrix, starting from
the left upper corner pixel, or lower left corner pixel. Firstly results from the PLI metric
will be presented, followed by the MI metric.

4.1.1.1 Phase Lag Index
The cluster based permutation test performed on the whole brain PLI connectivity metric
are shown in table 4.1. One cluster is showing a trend in both within SM session and
between the SM vs. Ctrl comparison at the Alpha frequency band. A cluster is also
present at the Gamma band within the SM session, which exceeds the Alpha level of 0.1.

Table 4.1: Whole brain functional connectivity comparison for PLI. Positive (+) and negative (-)
cluster count are shown, with t-value and p-values in case of any significant clusters were present.

p<0.1 If significant If significant
+clusters t-value p-value −clusters t-value p-value

Alpha Ctrl 136 - - 98 - -
SM 130 - - 98 -12.66 0.068
SM vs. Ctrl 114 - - 134 -12.62 0.074

Alpha Ctrl 94 - - 84 - -
SM 110 - - 116 - -
SM vs. Ctrl 92 - - 108 - -

Gamma Ctrl 94 - - 110 - -
SM 120 11.97 0.071 90 - -
SM vs. Ctrl 94 - - 94 - -

From table 4.1 tended clusters were present from the comparison between SM and control
session and within the SM session comparison at the Alpha frequency band. Also One
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significant cluster is present at the Gamma frequency band within the SM session.

SM - Alpha band
Within the SM session decreased connectivity in the Alpha band were seen in table 4.1 (t=-
12.66, p=0.068), this is illustrated by figure 4.1. Here the right insula were mainly driving
this decrease. Decreases were seen between ’left insula - PLI - right parahippocampal’,
’right insula - PLI - light parahippocampal’, ’right insula - PLI - right parahippocampal’,
’right insula - PLI - left lingual’, ’right insula - PLI - right lingual’.

Figure 4.1: Illustration of the connectivity change between brain regions, greater value indicates
bigger decrease in PLI in the circular graph, located to the right in the figure. The network visualizes
the nodes as blue colors as they decrease in connectivity within the cortex level, located to the left in

the figure.

Table 4.2 shows the effect size which were occurring from the connectivity change in figure
4.1.

Table 4.2: Effect size of tended clusters in the whole brain PLI Alpha band comparison, within the
SM session

Nodes Effect size
L Ins - PLI - R ParaH −0.0743
R Ins - PLI - L ParaH −0.0614
R Ins - PLI - R ParaH −0.0417
R Ins - PLI - L Lin −0.0829
R Ins - PLI - R Lin −0.0638

SM vs. Ctrl - Alpha band
A negative trend in Alpha band functional connectivity change between SM and control
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session were seen from table 4.1 by the negative t-value (t=-12.62, p=0.074). The brain
regions which were involved in this change are illustrating a decrease in PLI, illustrated
in figure 4.2. The involved brain regions that contributes mostly to this decrease were the
left inferior parietal lobule and the left caudal middle frontal gyrus. Decreases were seen
between ’right pars opercularis - PLI - left inferior parietal lobule’, ’left caudal middle
frontal gyrus - PLI - right superior partial lobule ’, ’left caudal middle frontal gyrus - PLI
- left inferior partial lobule’, ’left caudal middle frontal gyrus - PLI - right inferior partial
lobule’, ’right caudal middle frontal gyrus - PLI - left inferior parietal lobule’.

Figure 4.2: Illustration of the connectivity change between brain regions, greater value indicates
bigger decrease in PLI in the circular graph, located to the right in the figure. The network visualizes
the nodes as blue colors as they decrease in connectivity within the cortex level, located to the left in

the figure.

Table 4.3 shows the effect size which were occurring from the connectivity change in figure
4.2.

Table 4.3: Effect size of tended clusters in the whole brain PLI Alpha band comparison, between SM
vs. Ctrl

Nodes Effect size
R POC - PLI - L IPL −0.0898
L CMFG - PLI - R SPL −0.1009
L CMFG - PLI - L IPL −0.0773
L CMFG - PLI - R IPL −0.0787
R CMFG - PLI - L IPL −0.0737
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SM - Gamma band
Within the Gamma band a trend showed as an increased connectivity in the SM session
(t=11.97, p=0.071) within the frontal part of the cortex, illustrated by figure 4.3. In-
creased connectivity were present between ’left frontal pole - PLI - right frontal pole’,
’left frontal pole - PLI - left superior frontal gyrus’, ’left frontal pole - PLI right superior
frontal gyrus’ and ’right frontal pole - PLI - right superior frontal gyrus’.

Figure 4.3: Illustration of the connectivity change between brain regions, greater value indicates
bigger decrease in PLI in the circular graph, located to the right in the figure. The network visualizes
the nodes as red colors as they increase in connectivity within the cortex level, located to the left in the

figure.

Table 4.4 shows the effect size which were occurring from the connectivity change in figure
4.3.

Table 4.4: Effect size of tended clusters in the whole brain PLI Gamma band comparison, within the
SM session

Nodes Effect size
L FP - PLI - R FP 0.0399
L FP - PLI - L SFG 0.0281
L FP - PLI - R SFG 0.0562
R FP - PLI - R SFG 0.0551

4.1.1.2 Mutual Information
The cluster based permutation test performed on the MI connectivity metric are shown
in table 4.5. One cluster showed a trend from the SM session comparison at the Alpha
frequency band, which exceeded the Alpha level of 0.1 were present.
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Table 4.5: Whole brain functional connectivity comparison for MI. Positive (+) and negative (-)
cluster count are shown, with t-value and p-values in case of any significant clusters were present

p<0.1 If significant If significant
+clusters t-value p-value −clusters t-value p-value

Alpha Ctrl 44 - - 24 - -
SM 64 - - 98 - -
SM vs. Ctrl 92 - - 86 - -

Alpha Ctrl 44 - - 58 - -
SM 46 9.7700 0.0830 74 - -
SM vs. Ctrl 58 - - 74 - -

Gamma Ctrl 38 - - 54 -
SM 58 - - 64 - -
SM vs. Ctrl 60 - - 76 - -

SM - Alpha band
A trend in the form of an increase within the Alpha band frequency range (t=9.77,
p=0.083) are shown in table 4.5. Tended increase were seen between ’left precuneus - MI
- left inferior partial lobule’, ’right precuneus - MI - right superior partial lobule, ’right
precuneus - MI - left partial lobule’, ’left posterior cingulate cortex - MI left inferior partial
lobule’. These increases are visualized in figure 4.4

Figure 4.4: Illustration of the connectivity change between brain regions, greater value indicates bigger
decrease in MI in the circular graph, located to the right in the figure. The network visualizes the nodes
as red colors as they increase in connectivity within the cortex level, located to the left in the figure.

Table 4.6 shows the effect size which were occurring from the connectivity change in figure
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4.4.

Table 4.6: Effect size of tended clusters in the whole brain MI Beta band comparison, within the SM
session

Nodes Effect size
L Precun - MI - L IPL 0.0482
R Precun - MI - R SPL 0.0546
R Precun - MI - L IPL 0.0420
L PCC - MI - L IPL 0.0359

4.1.2 Default mode network connectivity
Within the DMN, significant results where seen from the SM session and between SM
and control sessions in DMN functional connectivity for the PLI metric at a significance
level of 0.05. No significant results where observed in the control group, nor for the MI
metric. The significant results are illustrated in table 4.7. Results from the MI metric for
the DMN can be found in the appendix C.

Table 4.7: DMN comparison for PLI. Positive (+) and negative (-) cluster count are shown, with
t-value and p-values in case of any significant clusters were present

p<0.05 If significant If significant
+ clusters t-value p-value - clusters t-value p-value

Alpha Ctrl 0 - - 6 - -
SM 8 10.4500 0.0048 6 - -
SM vs. Ctrl 6 10.3600 0.0120 0 - -

Beta Ctrl 4 - - 0 - -
SM 6 - - 4 - -
SM vs. Ctrl 2 - - 2 - -

Gamma Ctrl 6 - - 8 - -
SM 2 - - 4 - -
SM vs. Ctrl 4 - - 2 - -

SM - Alpha band
Figure 4.5 shows the significant cluster found by the cluster based permutation test for the
SM session within the DMN (t=10.36, p=0.012). These changes were found as an increase
in Alpha band connectivity between nodes of significant size. The involved nodes which
exhibit an increased connectivity were found between ’left parahippocampal - PLI - left
posterior cingulate cortex’, ’left parahippocampal - PLI - right posterior cingulate cortex’,
’right parahippocampel - PLI - left posterior cingulate cortex’, ’right parahippocampel -
PLI - right posterior cingulate cortex’. This difference were greater in the left hemisphere,
compared to the right.
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Figure 4.5: Illustration of the connectivity change between brain regions, greater value indicates
bigger increase in PLI in the circular graph, located to the right in the figure. The network visualizes

the nodes in red as they increase in connectivity.

Table 4.8 shows the effect size which were occurring from the connectivity change in figure
4.5.

Table 4.8: Effect size of significant clusters in DNM PLI Alpha band comparison, within the SM
session

Nodes Effect size
L ParaH - PLI - L PCC 0.0752
L ParaH - PLI - R PCC 0.0755
R ParaH - PLI - L PCC 0.0444
R ParaH - PLI - R PCC 0.0483

SM vs. Ctrl - Alpha band
The significant results from the comparison between SM and control session are illustrated
in figure 4.6, (t=10.45, p=0.0048). The same brain regions where involved as in figure
4.5 with an additional difference in increased connectivity between ’left parahippocampel
- PLI - right parahippocampel’ and loss of a significant difference between ’right parahip-
pocampal - PLI - right posterior cingulate cortex’. The greatest changes present here
were increased connectivity between the left parahippocampal regions to the right and
left posterior cingulate cortex.
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Figure 4.6: Illustration of the connectivity change between brain regions, greater value indicates
bigger increase in PLI in the circular graph, located to the right in the figure. The network visualizes

the nodes in red as they increase in connectivity.

Table 4.9 shows the effect size which were occurring from the connectivity change in figure
4.6.

Table 4.9: Effect size of significant clusters in DNM PLI Alpha band comparison, between SM vs. Ctrl

Nodes Effect size
L ParaH - PLI - R ParaH 0.0863
L ParaH - PLI - L PCC 0.1080
L ParaH - PLI - R PCC 0.1179
R ParaH - PLI - R PCC 0.0767

4.2 Metric comparison
From the results shown in the prior section, PLI and MI do not reflect same results. In
order to see their relationship in a more objective way, a linear regression analysis were
performed between PLI and MI metrics. The signal range for the three frequency bands
can be found in appendix D, which where the values uses for the binning during the MI
calculations.

Figure 4.7 shows the results from the linear regression analysis between PLI and MI
metrics for both Alpha, Beta and Gamma frequency bands. The linear regression analysis
were based on the pre control measurements after source reconstruction and frequency
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band computation, results can be seen in table 4.10. Figure 4.7 illustrates the results as
an example from subject one.

Figure 4.7: Illustration of the linear regression analysis from subject one pre control measurement.
The red, blue and green values represent Alpha, Beta and Gamma frequency band respectively. A line
is plotted through the data showing the coefficient of determination R2. The histograms displaying the

distribution of the values.

The coefficient of determination R2 were not reflecting a relationship between PLI and MI
in regards to computing the same connectivity values for the data. PLI have a narrower
range of values which are considered within the results, while the MI results shows more
variation. In order to show the variation within the data and thus between metrics, the
median along with the standard deviation are computed over the entire dataset of control
session at the pre stage, this is shown in table 4.10. The median are shown as this is more
robust for outliers in the data Zomet et al. (2001).

Table 4.10: Median values of pre control measurement, showing median values for the coefficient of
determination R2 and median values for Alpha, Beta and Gamma band

Median R2 Median PLI Median MI
Alpha 0.0007 ± 0.0071 0.1698 ± 0.0402 0.0832 ± 0.0954
Beta 0.0008 ± 0.0042 0.0837 ± 0.0174 0.0387 ± 0.0780
Gamma 0.0023 ± 0.0027 0.1076 ± 0.0218 0.0391 ± 0.0701
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5 | Discussion
From the authors knowledge, this is the first study to address the mechanisms of SM
through functional connectivity analysis on resting state EEG data in chronic stroke
patients. Significantly increased functional connectivity within nodes of the DMN were
found in PLI alpha band between posterior cingulate cortex nodes and parahippocampal
nodes within SM session t(23)=10.45, p=0.0048. Similar results where observed in the
SM vs. contro comparison, t(23)=10.36, p= 0.012. The discussion will mainly focus on
these findings as they are more consistent. The brain regions that where found to have
tended differences might be drawn parallels to within the discussion with reference to
the figures in these cases. Furthermore PLI and MI expresses no relationship between
calculated connectivity results, from the linear regression analysis. This can be caused
for several reasons, which will be discussed here.

5.0.1 Increased functional connectivity between brain regions
within the DMN

Not many studies address the relationship between manual therapy, like SM, with func-
tional connectivity in the brain, therefore the literature is limited. One study by Gay
et al. (2014) that addresses manual therapies role, including SM, on functional connec-
tivity in healthy subjects, shows immediate changes in functional connectivity between
certain brain regions, including regions of the DMN, for instance increased connectivity
from the posterior cingulate cortex. These findings where found along with a decrease of
pain perception following manual therapy. Studies investigating the role of the DMN in
stroke patients, have mainly found decreased functional connectivity, compared to healthy
subjects [Gay et al. (2014), Li et al. (2014), Baliki et al. (2014), Alshelh et al. (2018)].
This makes default mode activation and connectivity of special interest when examining
cognitive dysfunction in psychiatric and neurologic brain disorders [Van Den Heuvel & Pol
(2011)]. Stroke has been often shown to lead to chronic pain O’Donnell et al. (2013). SM
therapy have been studied in relation to relieving pain and evidence for this method to
alter pain threshold exists [Li et al. (2014), Salehi A et al. (2015), Palmgren et al. (2006)].
An altered pain threshold might have been a result of increased functional connectiv-
ity from regions of the DMN, during this study, as a result of SM, assumable reflecting
relief of pain in the stroke patients [Li et al. (2014)]. Disrupted functional connectiv-
ity within the DMN is linked with patients suffering from chronic pain [Alshelh et al.
(2018)]. The fact that the specific nodes of the posterior cingulate cortex and parahip-
pocampal showed significant differences, might be caused by the function of these regions
to modulate functional connectivity between DMN nodes. The posterior cingulate cortex
is one of the major regions within the DMN and the connectivity between this and the
parahipocampal has been shown to link the hippocampus with the medial temporal lobe
[Karafin et al. (2016)]. Reduction of functional connectivity between these regions have
been found to be involved in pain modulation and the development of chronic pain syn-
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drome via functions that are implicated in chronic pain, including introspection, emotion
and memory. Altered dynamics of the DMN is therefore believed to be part of chronic
pain development [Karafin et al. (2016), Ward et al. (2013)]. These changes can be seen
as maladaptive neuroplasticity of the adult brain caused by a disease, showing as a loss in
functional connectivity within the DMN [Karafin et al. (2016)]. The cause of this decrease
in connectivity can be explained from the DMNs activation responsibility for non task
related work. In the healthy brain the DMN is one of the essential networks that are
activated during rest and deactivated during task related work. Disruptions during rest
within this network is linked with neorulogic diseases like stroke [Smith et al. (2018a)].
One explanation of the decreased DMN connectivity can be postulated by the fact that
the brain of chronic pain patients never fully rest, as the pain perception is involved in the
background activity of the brain during rest in these patients, while in healthy patients
regions of the DMN shows higher connectivity during rest, as this network is believed
to reflect mind attention, memory, self processing and proseption [Baliki et al. (2008),
Alshelh et al. (2018)]. If counter intuitive emerging stimuli, not related to the normal
function of the DMN at rest demonstrates absence of a task, the brain is not at full rest
because it processes this information. Because the perception of pain is not being coupled
with noxious stimuli, thus it is linked to background functions, which is also present at
rest. Introspection and memory are thought to play a role in the pathogenesis of chronic
pain [Karafin et al. (2016)]. Furthermore increased insular cortex connectivity have been
found to increase with pain intensity [Baliki et al. (2014)]. The tended decreases in the
SM group in figure 4.1 might reflect this as a decrease in the pain perception, while the
nodes within the DMN network increased, which controversially has been show to de-
crease in chronic pain patients [Baliki et al. (2014)].The fact that this change happens in
the alpha band makes sense, as this frequency band reflects brain activity of relaxed state
as mentioned in section 3.2.2.

As it is unknown whether the subjects in this study were in pain at the time of the study,
nor whether this changed after SM, changes in pain perception may not be the only ex-
planation of the results of this study. As mentioned, the current study has shown that
SM in a chronic stroke patients increased functional connectivity between the posterior
cingulate cortex and the parahippocampal regions within the DMN in alpha band con-
nectivity. These results could also reflect improved cognitive function, such as improved
episodic memory following SM. Abnormal connectivity in the posterior cingulate cortex
and hippocampus has been identified in early Alzheimer’s disease and mild cognitive im-
pairment patients. Reductions in connectivity from both the posterior cingulate cortex
and hippocampus to the wider brain as well as between these two regions are thought
to be primary factors in episodic memory impairment associated with early Alzheimer’s
disease Zhou et al. (2008). It is therefore possible that the increased connectivity found
after spinal manipulation in the current study reflects improved episodic memory for the
stroke patients. Also both imaging and animal experiments link especially the poste-
rior cingulate cortex and hippocampus parts of the DMN to spatial representation and
navigation, which might have been altered following SM [Smith et al. (2018b)].
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Future studies are needed in order to see whether SM leads to altered chronic pain percep-
tion, cognitive improvements and improved spatial navigation in this population, which
might be indicated in this study.

5.0.2 Poor relationship between PLI and MI metrics
From the linear regression analysis the PLI and MI metrics did not show high correlation
from the calculated connectivity measures, which presumably wouldn’t be expected either.
There can be several explanations for the missing relationship between these metrics.
MI shows greater variability within the computed connectivity data, which might be
caused by non robustness to field spread. Estimation of functional connectivity within
the sensor level suffers from volume conduction as mentioned in section 3.5, but even in
the source level from solving the inverse problem trivial spatial correlations still exists,
decreasing with distance and affected by the sampling density [Liu et al. (2018), Colclough
et al. (2016)]. For this reason it is recommended to use connectivity measures that
accounts for field spread and are robust against this [Colclough et al. (2016)]. This might
explain the high values within MI estimates, as this metric doesn’t account for zero lag
correlations. The drawback of using measures that account for field spread is that they
are less consistent, compared to methods which doesn’t [Colclough et al. (2016)]. MI is
an estimation of shared information between two signals from their marginal probability
distributions and the entropy, as a statistical measure of dependence, based on the signals
amplitude values. The PLI is a measure of phase synchronization, which measures the
similarity in the two signals phase angle, by looking at the instantaneous phase difference
of the two signals, not accounting for the amplitude. These two approaches can implicate
differences in the estimated values.

The shape of the probability distribution during MI computation are highly affected from
the method of quantization of the data with respect to bin number and size. The optimal
number of bins where estimated from equation 3.10 in section 3.7.1. The bin size of the
histograms making up the probability distributions was set in regards to the possible
data range within the collected data, D. If bins are big, information can be lost and MI
is not estimated properly, on the other hand, if the bins are small, extreme bins might
be populated sparsely, which creates an unreliable probability distribution [Legg et al.
(2007)]. This might mean that MI could be overestimating in case of smaller amplitude
values. There are also suggestions that there the different functional connectivity metric
methods simply find different characteristics of physiological meaning within the signals
of information, which also could be a reason for difference between them [Colclough et al.
(2016)].

5.0.3 Limitations and future work
Several limitations of the study should be considered within the study design and analysis
of the result. As the analyzed data is from resting state EEG signals, it can only provide
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information about the underlying resting state organization of functional connectivity
between brain regions. It should also be kept in mind that resting state data are more
abstract to interpret as there is no specific goal for the subject or hypothesis to be inves-
tigated, thus this study is more for exploratory purposes. A more direct approach would
be to look into specific task related experiments which would imply subjects to improve
in a specific task or give information about pain states, which would make comparison of
functional connectivity in relation to performance or decreased pain perception possible,
and therefore make for a more direct and clear concussion. This would also give a more
clear picture on the effects and implications of SM and its clinical use in rehabilitation
for stroke patients. The results found from this study are still meaningful as they are
among the fist to show that SM likely have some effects on functional connectivity in the
brain of chronic stroke patients. It should thus be kept in mind that the found changes
in this study are fairly small and it is questionable if it is enough to make a significant
difference in relation to rehabilitation of stroke patients. Despite this study showing that
the instantaneous effects of SM are small, the long term effects are still unexplored, and
would be relevant to prove, as these effects would have more implications in a rehabilita-
tion program. Also the tested patients are chronic stroke patients with different durations
of stroke. In case of SM for utilization in rehabilitation of stroke, an intervention might
benefit in the early stages of stroke rather than at the chronic stage, in order to get the
potential full outcome of the treatment during rehabilitation, as neuroplasticity is max-
imized here, mentioned in section 2.2. From the findings in this study, these benefits
would likely be in the form of a pain relief of post stroke pain, which approximately 10.6
% of all post stroke patients suffers from and has been shown to impair optimal outcome
and participation of rehabilitation, thus affecting future quality of life for those patients
[Treister et al. (2017)].
The experimental group of participants consisted of a very broad range of stoke sufferers
with different lesion site within the hemisphere, either right and left. Thus this study
gives a very general overview of changes that happens in the brain, not taking into ac-
count for stroke location. Other analysis of the results could be dividing the subjects into
right and left hemispheric stroke, which would lead to a more specific analysis in regards
to the actual lesion [Liu et al. (2015)]. Another problem in regards of subject variance
related to the anatomy is the forward modeling of the head and dipole locations, which
might not be precise with the generalized head model, which were used for all subjects
in order to solve the forward model in order to do the source reconstruction [Liu et al.
(2018)]. This may likely have caused some imprecise dipole location estimates of the
different regions of the brain, which would yield for some unreliable comparison. But the
method of using a generalized head model when each individual anatomy is unknown,
are the best option and have been used by other studies for estimating source level EEG,
and sampling density has been shown to have more influence on forward modeling than
precision of the head model [Lai et al. (2018), Liu et al. (2018)].
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6 | Conclusion
The aim of this study was to explore the effects of chiropractic SM by utilizing the
method of MI and PLI to estimate resting state EEG functional brain connectivity, in
chronic stroke patients. Through the analysis of the results altered resting state functional
connectivity following single session chiropractic SM treatment was found in chronic stroke
patients during this study. These changes where only significant within the DMN, and
showed as an increased functional connectivity between the posterior cingulate cortex and
parahippocampal, which has previously been found to be an important link within the
DMN in relation to chronic pain modulation. This increased connectivity might therefore
alter information within the brain that processes chronic pain, episodic memory and
spatial representation and navigation. Though it is difficult to draw clear conclusiveness
to these effects, as these parameters where not included in the study. The mechanisms of
SM in stroke patients are therefore uncertain, as it is unknown, thus further research are
needed, preferably collecting additional data from the participants in order to gain more
specific and robust results and insights into the mechanisms and effects of SM in stroke
patients. Though these findings provided by this study are still valid in proving that
SM does have an effect promoting neurophysiological changes within the brain of chronic
stroke patients. Furthermore the study show that there is a poor relationship between
PLI and MI when calculating functional connectivity, even on source reconstructed EEG
signal, which should handle the effects of volume conduction.
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Appendix A. Brain region labeling

A | Brain region labeling
Table A.1: Brain region labels with abbreviation - Part 1. Whole brain connectivity includes all the
listed regions. DMN connectivity only includes regions marked with (DMN) in the abbreviation

Brain region Shortening
1 L Frontal Pole L FP
2 R Frontal Pole R FP
3 L Superior Frontal Gyrus L SFG
4 R Superior Frontal Gyrus R SFG
5 L Rostral Middle Frontal Gyrus L RMFG
6 R Rostral Middle Frontal Gyrus R RMFG
7 L Medial Orbitofrontal L MOF (DMN)
8 R Medial Orbitofrontal R MOF (DMN)
9 L Lateral Orbitofrontal L LOF (DMN)
10 R Lateral Orbitofrontal R LOF (DMN)
11 L Pars Orbitalis L POT
12 R Pars Orbitalis R POT
13 L Pars Triangularis L PSG
14 R Pars Triangularis R PSG
15 L Pars Opercularis L POC
16 R Pars Opercularis R POC
17 L Caudal Middle Frontal Gyrus L CMFG
18 R Caudal Middle Frontal Gyrus R CMFG
19 L Precentral L PreC
20 R Precentral R PreC
21 L Postcentral L PostC
22 R Postcentral R PostC
23 L Paracentral L ParaC
24 R Paracentral R ParaC
25 L Superior Temporal gyrus L STG
26 R Superior Temporal gyrus R STG
27 L Transverse Temporal L TT
28 R Transverse Temporal R TT
29 L Middle Temporal Gyrus L MTG
30 R Middle Temporal Gyrus R MTG
31 L Inferior Temporal Gyrus L ITG
32 R Inferior Temporal Gyrus R ITG
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Appendix A. Brain region labeling

Table A.2: Brain region labels with abbreviation - Part 2. Whole brain connectivity includes all the
listed regions. DMN connectivity only includes regions marked with (DMN) in the abbreviation

Brain region Shortening
33 L Fusiform L Fus
34 R Fusiform R Fus
35 L Temporal pole L TP
36 R Temporal pole R TP
37 L Insula L Ins
38 R Insula R Ins
39 L Entorhinal L Ent
40 R Entorhinal R Ent
41 L Parahippocampal L ParaH (DMN)
42 R Parahippocampal R ParaH (DMN)
43 L Lingual L Lin
44 R Lingual R Lin
45 L Isthmus Cingulate Cortex L ICC (DMN)
46 R Isthmus Cingulate Cortex R ICC (DMN)
47 L Precuneus L Precun (DMN)
48 R Precuneus R Precun (DMN)
49 L Posterior Cingulate Cortex L PCC (DMN)
50 R Posterior Cingulate Cortex R PCC (DMN)
51 L Cuneus L Cun
52 R Cuneus R Cun
53 L Lateral Occipital Gyrus L LOG
54 R Lateral Occipital Gyrus R LOG
55 L Superior Parietal Lobule L SPL
56 R Superior Parietal Lobule R SPL
57 L Inferior Parietal Lobule L IPL
58 R Inferior Parietal Lobule R IPL
59 L Bank Of The Superior Temporal Sulcus L BTSTS
60 R Bank Of The Superior Temporal Sulcus R BTSTS
61 L Caudal Anterior Cingulate L CAC
62 R Caudal Anterior Cingulate R CAC
63 L Pericalcarine L Peri
64 R Pericalcarine R Peri
65 L Rostral Anterior Cingulate Cortex L RACC (DMN)
66 R Rostral Anterior Cingulate Cortex R RACC (DMN)
67 L Supramarginal Gyrus L SMG
68 R Supramarginal Gyrus R SMG
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Appendix B. Adjacency matrices with tended and significant clusters

B | Adjacency matrices with tended
and significant clusters

Figure B.1: Significant clusters in the adjacency matrices from whole brain Alpha of comparison
within SM session, illustrated by their t-values. Negative t-values are reflecting a decrease in

connectivity while positive t-values are reflecting an increase. Labels can be found in appendix B
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Appendix B. Adjacency matrices with tended and significant clusters

Figure B.2: Significant clusters in the adjacency matrices from whole brain Gamma of comparison
within SM session, illustrated by their t-values. Negative t-values are reflecting a decrease in

connectivity while positive t-values are reflecting an increase. Labels can be found in appendix B

Figure B.3: Significant clusters in the adjacency matrices from whole brain Alpha of comparison
between SM vs. Ctrl, illustrated by their t-values. Negative t-values are reflecting a decrease in
connectivity while positive t-values are reflecting an increase. Labels can be found in appendix B
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Appendix B. Adjacency matrices with tended and significant clusters

Figure B.4: Significant clusters in the adjacency matrices illustrated by their t-values. Negative
t-values are reflecting a decrease in connectivity while positive t-values are reflecting an increase. Labels

can be found in appendix B

Figure B.5: Significant clusters in the adjacency matrices from DMN Alpha of comparison within the
SM session, illustrated by their t-values. Negative t-values are reflecting a decrease in connectivity while

positive t-values are reflecting an increase. Labels can be found in appendix B
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Appendix B. Adjacency matrices with tended and significant clusters

Figure B.6: Significant clusters in the adjacency matrices from DMN Alpha of comparison between
SM vs. Ctrl, illustrated by their t-values. Negative t-values are reflecting a decrease in connectivity

while positive t-values are reflecting an increase. Labels can be found in appendix B
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Appendix C. DMN MI result table

C | DMN MI result table
Table C.1: DMN comparison for MI. Positive (+) and negative (-) cluster count are shown, with

t-value and p-values in case of any significant clusters were present

p<0.05 If significant If significant
+ clusters t-value p-value - clusters t-value p-value

Alpha SM vs. Ctrl 114 - - 134 - -
SM 130 - - 98 - -
Ctrl 136 - - 98 - -

Beta SM vs. Ctrl 92 - - 108 - -
SM 110 - - 116 - -
Ctrl 94 - - 84 - -

Gamma SM vs. Ctrl 94 - - 94 - -
SM 120 - - 90 - -
Ctrl 94 - - 110 - -
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Appendix D. Signal variation

D | Signal variation
Table D.1: Possible signal range within the dataset

Alpha Beta Gamma

Max. 9.65 e-09 7.91 e-09 2.59 e-09

Min. -9.28 e-09 -8.01 e-09 -2.58 e-09
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Appendix E. Desikan-Killarney atlas brain regions

E | Desikan-Killarney atlas brain
regions

Figure E.1: Illustration of the organization of brain regions of the Desikan-Killarney atlas [Klein &
Tourville (2012)]
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