
Summary
The Case for Learned Index is an exciting new way of thinking about data struc-
tures. Replacing traditional data structures with machine learning models can
result in massive improvements for memory usage and look-up time. In our pre-
thesis, we investigated this new way of thinking. We discovered that although
we gained improvements in memory usage and look-up time, we also struggled
with choosing the correct machine learning model.

This problem was further investigated in our pre-thesis, where we tried to de-
termine the complexity of a dataset, and thereby choose the best fitting model
for this dataset. We used a measure called Complexity Curve, which attempts
to capture the complexity of the data in a single measure. The tests with these
varied in results.

We further investigate this problem in this paper, where we employ meta-
learning. Meta-learning aims to relate the characteristics of a problem to algorit-
hm performance. The characteristics of our problem are several meta-features,
which tries to capture different aspects of datasets. The meta-features were di-
vided into groups of either, linearity, smoothness, topology and normality. We
ended up choosing 8 meta-features to summarize the complexity of a data-
set. The choice of meta-features was then evaluated using correlation of these
meta-features and a Principal Component Analysis. The correlation of the meta-
features tells us, whether any of the features are describing the same aspect of
complexity. The Principal Component Analysis is a way to plot all the datasets
into a 2-dimensional graph using all 8 meta-features. This allows us to see, how
each meta-feature affects the principal components and is also a way to see if
we cover different aspects of the datasets.

In order to be able to choose the correct machine learning model, several ma-
chine learning models were also investigated. K-Nearest Neighbour, Isotonic
Regression, Spline Interpolation, Linear Regression, Multi-variate Regression
and Neural Networks were considered. For each machine learning model, their
strengths and shortcomings were identified. Each models performance on the
datasets were then used to rank which model was the best fitting for a given
dataset. The ranking was done through Multi-Criteria Decision Analysis using
the Weighted Sum Method. This is because each model had to be evaluated on
size, accuracy and inference time. Lastly, the Weighted Sum Method allows the
user to also have some saying in the ranking. This is done through a weighted
system for each metric, in which the user then can specify which metric to be
the most important for their given problem.

A meta-learner was then constructed by using a neural network as a classifi-
er. The goal of the meta-learner is to choose the correct model type for a given
dataset based on the meta-features from this dataset. The meta-learner was
constructed as a multi-class classifier.

Experiments were conducted. First, we evaluated the meta-learner using categorical-
accuracy, recall, precision and F1-score. S, the meta-learners capability to work
in the setting of the learned index were tested. Our results show an improvement
in performance on all metrics when choosing the adaptive learned index.

1

Adaptive Learned Index
Jesper Hedegaard, Aalborg University Department of Computer Science

jhedeg14@student.aau.dk
Mark Holst, Aalborg University Department of Computer Science

mholst14@student.aau.dk

Abstract—The Case for Learned Index [11] proposes to replace data structures with machine learning models. The reasoning behind
this is that most data structures are general purpose, whereas a machine learning model can be specialized to a specefic dataset. We
propose to further specialize this idea by utilizing meta-learning. By looking at data characteristics called meta-features, we determined
the complexity of datasets. Several machine learning models were tested and ranked based on their performance using Multi-Criteria
Decision Analysis. A meta-learner was constructed which, based on the meta-features and the ranking of the machine learning models,
can predict which model to use for a given dataset. Furthermore, we introduced the notion that different applications require machine
learning models that excels at different aspects. Therefore, the user is able to specify which aspects their machine learning model
should excel at. Our results showed superior performance compared to the base learned index model presented by Kraska et al. [11].

Index Terms—Data Structures, Learned Index, Supervised Learning, Data Complexity, Meta Learning

F

1 INTRODUCTION

Efficient data access requires optimized index structures
and given different access patterns various structures can
alleviate this problem. Furthermore, the dimensionality
of the data can require specific structures. This paper
focuses on one-dimensional data. For range queries the
best method is a B-tree, and for exact queries a hash
map provides the best results [11]. A new idea has
emerged in indexing presented in the paper The Case
for Learned Index by Kraska et al [11]. The idea is that
index structures used today are general purpose where a
more specialized structure might increase performance.
They introduce the idea that index structures can be seen
as models where the input is a key and the output will be
the index. They introduce the notion that the structures
could then be replaced by machine learning models
which then is specialized for each dataset. The premise
of this method is that data must be stored in a sorted
data structure. Having a model that predicts the position,
given a key inside a sorted data structure, approximate
the cumulative distribution function (CDF). This allows
retrieving the position of a key with the function shown
in Equation 1 where N is the cardinality of the dataset
and the function f(key) is a trained machine learning
model that approximates the CDF:

pos = f(key) ∗N (1)

Fig. 2: Recursive Model Index [11]

The strength of this method lies in the Recursive Model
Index (RMI) which allows staging of models as seen in
Figure 2.
The RMI is built by having the previous model predict
what data should be used for the following models
in the next stage, thereby changing the dataset by
assigning subsets to these models.
By each stage the models become more specialized
and will reduce the last mile prediction. The different
distributions contain different characteristics which
make them sensitive to which models can accurately
predict the underlying CDF [11]. In our pre-thesis [10]
we discovered that RMI relies on a static distribution
of the data to the models of each layer. Choosing the
correct model can be difficult without analyzing the
characteristics of the data as well as not having extensive
background knowledge about machine learning models.
In this paper, we propose an additional solution to this
problem called The Adaptive Learned Index.
The system is composed of two smaller systems.
An acquisition system and an advisory system shown
in Figure 1. The acquisition mode is composed of
a subsystem which analyses the overall complexity
of a dataset given the data characteristics. Another
subsystem evaluates different machine learning models

2

Fig. 1: Adaptive Learned Index

and compiles a ranking of the models based given
datasets. This data is then fed to a meta-learner which
will learn these traits. The advisory mode will then
use the meta-learner to advise on which model to use.
This is done by feeding the meta-learner with the data
characteristics of a dataset along with user preferences
on the desired ratio of speed, size and accuracy of the
machine learning model. We use the advisory mode to
construct the RMI by predicting the top stage model
from the characteristics of the dataset.
The model is then used to distribute the data to the next
layer of the RMI. The subset of data then undergoes the
same process until the entire RMI is constructed.

The main contributions of this paper are as follows:
• We propose a set of meta-features (data characteris-

tics) that will capture the overall complexity of one-
dimensional datasets.

• We evaluate a set of machine learning models and
identify their strengths and shortcomings when
trained on different datasets.

• A meta-learner is constructed to identify the best
performing model based on the data characteristics
and user preferences.

• We evaluate the solution on both synthetic and real
datasets showing an improvement in performance
compared to the static base model presented in The
Case for Learned Index. [11]

The following sections will describe the different aspects
of The Adaptive Learned Index. Section 3 will describe
the context of meta-learning. In Section 4 the meta-
features will be selected and evaluated. Section 5 will
dive into the construction of the meta-learner. The differ-

ent machine learning models are introduced in Section 6.
The ranking method for multi-criteria ranking is shown
in Section 7. Lastly, we evaluate the system in Section 8.

2 RELATED WORK

The Case for Learned Index [11] builds upon research
on machine learning and data structures. The idea of
learning characteristics of datasets and determining
complexity is based on research of meta-learning. The
following section will highlight the related areas.

Machine Learning: Learned index estimates CDFs
of distributions. Magdon-Ismail et al. [13] introduces
techniques for density estimation through the use
of neural networks. Furthermore they introduces
”monotonicity hint penalty.” However, they claim that
any sufficient machine learning model should be able to
learn a CDF. Therefore, how to most effectively model a
CDF is still remain an open question. Thier research is
related to this paper, as we aim to aid the user in finding
the best machine learning model for their distribution.
Smith et al. [18] did a study, where they systematically
investigated what effect characteristics of a dataset
have on machine learning models. They evaluated
both neural networks and regression models. Their
results showed that different models excel in different
aspects.This can be related to this paper, because we
investigate several meta-features from datasets. Based
on these meta-features, we aim to provide an intelligent
suggestion to a model for a given dataset.

Meta-Learning: Meta-learning aims to relate
characteristics of a problem to the performance of

3

algorithms. Bhatt et al. [4] tries to solve the algorithm
selection problem by using meta-learning. By examining
the meta-learning process, they outline two phases of
meta-learning; acquisition mode and advisory mode. In
the acquisition mode is meta-data is extracted from the
dataset. In order to correctly express a certain domain of
the problem, the goal is to gather as much information
as possible. Also, in the acquisition mode the evaluation
of different algorithms take part. All this information is
then saved in a meta-knowledge base. In the advisory
mode, the meta-knowledge base is exploited. New
meta-features are extracted from a dataset, and the
meta-knowledge base is used to configure a learning
system, such that a recommendation of the best available
algorithm is produced. Our system builds upon this
idea of meta-learning.

Meta-Features: Can be seen as characteristics of a
learning problem. Generally, meta-features can be
categorized into several categories. Oreski et al. [14]
categorizes meta-features into the following categories;
standard measures, sparsity measures, statistical
measures, information theoretic measures, and noise
measures. The meta-features are then evaluated on their
contribution to a binary classification problem. Lorena
et al. [12] further builds upon this categorization of
meta-features by adding linearity- and smoothness
measures. In their paper they are looking at regression
problems, where linearity and smoothness can have
a considerable impact on the result. Our approach
utilizes both approaches as we are trying to find the
best algorithm(classification) for a regression problem.

Algorithm Selection: There is a considerable amount of
research on algorithm selection, of which the majority
of those concerns using meta-learning, in order to find
the most suitable algorithm [4], [6].
Brazdil et al. [7] made a ranking method called the
Adjusted Ratio of Ratios (ARR), in which the ranking of
an algorithm is based on multiple measures. Specifically,
it is based on the ratio of success rate and adjusted time
ratio. However, as we are working on learned index,
which is an alternative to traditional data structures,
size is also a measure that has to be taken into account.
Tzeng et al. [19] made a guideline for choosing the right
Multi-Criteria Analysis Decision (MCDA) method for
a given problem. They outline 3 categories of MCDA
methods; compensatory, partially compensatory and
non-compensatory. The compensatory category states
that an absolute compensation between the evaluations
can exist. Therefore a good performance on one
criterion can counterbalance a poor performance on
another. This encourages the user to determine, what
evaluation measure is the most important. The partially
compensatory category states that there can be accepted
some kind of compensation. The problem with this
category is to evaluate the degree of compensation for
each evaluation. The non-compensatory category states

that there exist no compensation between evaluations.
Here the user decides that the inputs are enough
to determine what algorithm fits best. We propose
using either compensatory- or partially compensatory
category, as the user might have different preferences
regarding the performance of an algorithm.

Data Complexity: Our solution tries to capture the
complexity of an entire dataset by using meta-features.
Zubek et al. [24] constructed an algorithm, that attempts
to decide the data complexity in a single measure. They
managed to do this by constructing a Complexity Curve
and then calculating the Area Under Complexity Curve
value. The complexity curve is constructed by taking
subsets of the entire dataset and then calculating the
Hellinger Distance between the subsets and the entire
dataset. As the subset grows, the complexity curve will
decline. We used this measure in our pre-thesis [10]
with varying results. Therefore, we look at additional
meta-features in this paper. However, the complexity
curve is still investigated in this paper to determine,
whether or not it can give our meta-learner some
valuable information.

Succinct Data Structures: Succinct data structures
are about minimizing the amount of space used by
the data structure, but unlike other compressed data
structures, they still allow efficient query operations.
Most succinct data structures focus on H0 entropy,
which means they aim to only store the number of bits
that are necessary to encode each element in the index
[8]. This is related to this paper, as entropy can be seen
as a characteristic. Our solution also tries to optimize
data structures by using data characteristics to employ
the most fitting machine learning model.

3 META-LEARNING

Meta-learning revolves around gaining knowledge about
the characteristics of a given dataset. These character-
istics are known as meta-features and the collection of
them are regarded as meta-data. Meta-data provides
information about data itself and is used for learning
the learning process. We then define meta-learning as
the process of making the learning process more effec-
tive and optimize it by recommending the best suited
learning algorithm. Examples of meta-features could be
the number of elements in a dataset, the skewness of the
data distribution and linearity. There are a lot of meta-
features that can be discovered from a dataset and a lot
of research is focused on this area [23][15]. Most research
is focused on classification problems and research on
specific meta-features for regression problems is sparse
and especially for one-dimensional data. We will discuss
the different aspects of meta-features with regards to
regression and pick meta-features accordingly.
The most important task in meta-learning is feature
selection. There is no silver bullet for selecting the correct

4

meta-features for a given problem as per the No Free
Lunch Theorem [17]. We thus analyze the different aspects
of meta-features and select the areas that can optimize
our learning problem.
Meta-features can be split into the following categories;
simple, statistical and information-theoretic, landmark-
ing, and model-based features.
Simple features revolve around the number of instances
and classes in a dataset. Some algorithms are sensitive
to the number of instances [22].
Statistical and information theoretic features can inform
us on the distribution of the dataset along with the
entropy of the attribute values [22].
Landmarking features are computed by training simple
and significant machine learning algorithms that can
describe properties of the dataset [3].
Model based features are computed by training decision
trees without pruning them. Different properties by the
induced tree are used as meta-features such as the height
and width of the decision tree, number of leaves and
number of nodes [3].
In The Case for Learned Index, which is a special case
of regression, other features could be relevant, because
the task is to completely learn the dataset (overfitting),
which is not a traditional problem.

4 META-FEATURES

Selecting the best features for a given problem is difficult
as there is no superset of features that explains every
dataset perfectly [2]. We will investigate which charac-
teristics identify the complexity of the dataset and find
meta-features that can help measure these characteristics.
The meta-features must be able to identify different
aspects of the problem such that we can rely on them
to select the best performing algorithm for the given
dataset. We will examine whether the selected features
are informative enough by analyzing their contribution
to the problem.
Given the nature of the problem of one-dimensional
regression, features measuring feature space, feature cor-
relation or class separability cannot be used as meta-
features. The focus will be towards the following cat-
egories; linearity, smoothness, topology, and normality.

4.1 Linearity

Measuring the linearity of a dataset can tell us whether
a linear fit can be made on the dataset. If this is the case
we assume the complexity of the dataset is low because
a linear regression can model the data.

Correlation
The correlation coefficients of two variables measure
the strength of a linear relationship between variables.
A value of 0 indicates no linear relationship and a value

of 1 shows a strong linear relationship. A high value is
therefore assumed to indicate a simpler problem.

ρx ,y =
COV (x , y)

σxσy
(2)

Linear Residuals
This meta-feature is inspired by Lorena et al. [12]. Uti-
lizing a fast landmarking model, in this case linear
regression, we compute the mean absolute error of the
residues of the model. The assumption here is that higher
values equal higher complexity.

LR =
|εi|
n

(3)

4.2 Smoothness
In regression problems, a smoother function indicates a
simpler problem [12].

Smoothness of Nearest Neighbor Regressor
This meta-feature is inspired by Lorena et al. [12]. Given
a dataset, we select data points that have similar output
values. Given these pairs, we randomly interpolate new
data points into a new dataset of size l. A nearest-
neighbor regressor is then created from the old dataset.
Thereafter we measure the MSE of the new data points.
If the dataset is distributed smoothly the interpolated
data points will conform to the same distribution. The
assumption is that a high value indicates more complex
data.

SNNR =
1

l

l∑
i=1

(NN (x′i)− y′i)2 (4)

4.3 Topology
The following features will display the distribution and
density of the dataset. If the data is clumped together,
resulting in sparse areas, this can lead to a misleading
model. These features can tell us if the distribution of
a dataset calls for a complex or simple technique to
model the data.

Delta Difference
The delta difference is a measure of how inconsistent the
data is spread. We compute the mean delta difference
(∆x) and calculate how many data points are considered
outliers compared to the mean. A high number might
suggest a more spread dataset and thus we assume that
a high value equals a higher complexity.

DD =

n∑
i=2

(P (i)) (5)

where

P (x) =

{
1 if (xi − xi−1) > ∆x

0 if (xi − xi−1) ≤ ∆x

5

(a) Lognormal (b) Logistic (c) Uniform

Fig. 3: Example distributions

Log-normal Logistic Uniform
Cor 0.8032162895102859 0.9627210988060309 0.99932690189565
LR 0.148933153740203 0.0636661509718142 0.00887126206908593
SNNR 213948080592179e-07 3.5777846313717603e-07 3.99770465422413e-07
DD 50 109 159
Var 0.0250953084139718 0.0265442105773021 0.0864490981438755
CC 0.037601355013080894 0.03397587116640183 0.02843168699553596
Kurt 6.47197677866765 0.44511455900275104 -1.22952242353569
Inst 373 471 441

TABLE 1: Meta-feature value for the datasets log-normal, logistic and uniform

Variance
Variance measures the spread of the dataset. A high
spread can indicate a high complexity.

σ2
x =

∑n
i (xi − x)2

n
(6)

Complexity Curve
The Complexity Curve is a combined measure of the
complexity of the dataset. It constructs a probability
density function of the whole dataset. Afterwards, it
constructs probability density functions of subsamples of
the dataset. These subsamples eventually grow in size.
The probability density functions of the subsamples are
then compared to the probability density function of the
whole dataset using Hellinger Distance. This eventually
output a function where the Area Under Curve can be
used as a measure of how complex the data is. Higher
value equals higher complexity [24].

CC (n) = H 2 (P ,PS) (7)

4.4 Normality

Some algorithms require the data points are distributed
normally or that the sample size is relatively small.
Normality features indicate whether we can rule out
some algorithms.

Kurtosis
Kurtosis measures the combined weight of the tails of
the distribution in relation to the center of the dataset. A
high value means heavy tails, while low values indicate

flatness. Therefore, we assume that a high value equal
higher complexity.

Kurt =
µ4

µ2
2

(8)

Instances
The number of examples used. This feature is used as
some models are sensitive to the number of examples.

Inst = n (9)

In Figure 3 examples of three different distributions are
illustrated. The assumption here is, that the uniform
distribution, as seen in Figure 3c, is the least complex
of the distributions, while the log-normal distribution
in Figure 3a is the most complex. In Table 1 all meta-
features are listed with their respective values for
the distributions depicted in Figure 3. Some of the
meta-features in table 1 do not fit the assumptions we
made above. DD and Var are notable outliers. DD
should have a higher value on more complex datasets,
but as seen in the table, the Log-normal distribution has
the lowest value. This could however be explained by
the fact that a lot of the data points in the Log-normal
distribution are clustered together. In the uniform
distribution the data points are more spread, which
equals higher value for DD . The same reasoning can be
used for the Var feature. However, meta-features such
as Corr , CC and Kurt does follow the assumptions
made above.

6

4.5 Evaluation of Meta-Features

In order to determine whether the meta-features
described above captures different aspects of the
datasets, correlations between the features were
calculated. The correlations can be seen in Figure 4.
The darker the color, the stronger the correlation is. Blue
is directly correlated while red is inversely correlated.
A correlation that is worth noting is how inversely
correlated the feature linearresiduals (LR) are with
the feature correlation (Cor), as no other features have
similar correlations. This however makes sense, as
LR is a measure that calculate the errors of a linear
regression while Cor is a measure of the strength of
a linear relationship. Therefore, these will be inversely
correlated. Otherwise, the plot indicates that different
aspects are covered by the meta-features, as there are
both direct-, inverse, and no correlations.

Fig. 4: Correlation between meta-features

A Principal Component Analysis (PCA) was also
performed. The principal components were computed
using the meta-feature values from different data
distributions. Five principal components were
constructed with the variance of 95%, where the
two first components had ≈ 75% variance combined. In
Figure 5, a scatter-plot of the datasets can be seen, with
the values of the two first principal components.

Fig. 5: Scatter plot with PCA values and all datasets

The first component is responsible for 41.6% variance,
while the second component is responsible for 33.6%.
The distributions are divided into four clusters. Each
cluster containing up to two kinds of distributions.
Based on the PCA plot, a combination of the meta-
features is required in order to distinguish between
the clusters of the distributions. However, the clusters
seem to be most affected by LR, V ar and Cor. These
features focus on the complexity of the data. Inst,
DD and SNNR does not seem to contribute to the
clustering but instead divides the distributions inside
the clusters. These features focus on the sparsity of
the data. It is worth noting that these data points
represent different distribution functions and not
different machine learning models. As machine learning
models can be affected by the sparsity of the data, we
believe that including measurements for the sparsity of
datasets to be important.

In Table 2 all meta-features are listed with their
impact on the first- and second principal component
respectively. The features are divided into groups i.e.
linearity, smoothness, topology and normality. A high
value means a high direct impact on the given principal
component, while a low (negative) value indicates an
indirect impact on the principal component. As the
value goes to 0, the less impact the given meta-feature
has on the given principal component. As an example,
the meta-feature CC for PC1 has a value of −0.48,
which tells us that CC has a high indirect impact on
this specific principal component. This is also prevalent
in Figure 5. It is also clear from both Table 2 and Figure
5 that CC does not have a high impact on the PC2
because of the close to 0 value −0.19. It is worth noting
that although some meta-features are grouped together,
it varies how they affect the principal components.
This further supports the assumption, that in order to
explain the complexity of datasets, few measures are
not enough to do so.

7

Corr
LR

SNNR
IOED

DD
Var
CC

Kurt
Inst

Weight accuracy
Weight size

Weight inference

1

2

3

...

149

150

1

2

3

...

149

150

nnr

nn

ir

lr

mvr

spline

Hidden layers

Input
layer Output

layer

Fig. 6: Graphical representation of the meta-learner

PC1 PC2
Corr 0.3721975 -0.3989694
LR -0.39674234 0.39891286
SNNR -0.31758717 -0.39124821
Var 0.3040892 -0.40151084
CC -0.48117231 -0.19746618
Kurt -0.0484191 0.32764965
Inst 0.34541101 0.42730057
DD 0.39692912 0.196145

TABLE 2: PC values of meta-features

The PCA shows the combined effect of the proposed
meta-features, where the distributions are divided into
four clusters with the use of both principal components.
Combined with the correlation plot it indicates that
the chosen meta-features explain different aspects of
datasets.

5 META-LEARNER

This section explains the different aspects of the technical
implementation of the meta-learner. We introduce our
design choices and the reasoning behind them. The
meta-learner is constructed as a neural network as the
dimensionality of the meta-features is high. Also, the
relations between the meta-features are not intuitive,
but a neural network is able to deal with these relations.
The neural network consists of an input layer, two
hidden layers and an output layer. It is trained as a
multiclass-classifier, where the output is the predicted
class of the input. The input can be divided into two
parts; meta-features and preferences of the user. The
preferences of the user are three inputs, where each is
a value indicating the importance of either accuracy of
the model, inference time of the model, or size of the
model.
The meta-learner is trained using the categorical cross-
entropy loss, which is the standard loss function to
use for multi-class classification, where only one class
is applicable for each data point. This loss function
trains the meta-learner to output a probability of the

classes. Therefore, the output layer consists of six
neurons, where each neuron represents a machine
learning model type. These model types are presented
individually later in Section 6. This is done through the
use of the softmax activation function in the output
layer. The softmax function normalizes the output so
that it can be interpreted as probabilities. The hidden
layers consists of 150 neurons each, with the tanh and
relu activations functions respectively. The structure of
the meta-learner can be seen in Figure 6. The meta-
learner is trained on the datasets explained in Section
8.1. For each dataset meta-features are calculated, and
performance for each model is measured. Then the
models are ranked on the given dataset based on their
performance and user preferences - this process is
explained in Section 7.

6 MACHINE-LEARNING MODELS

The following section analyzes the different properties of
different machine learning models as they excel in dif-
ferent settings. The ideal model displays low or no bias,
such that we overfit the datasets as much as possible.
We have examined linear regression, multi-variate re-
gression and neural network in our pre-thesis [10] which
is why it will only be described brielfy in this paper.

6.1 K Nearest Neighbor Regression (KNN)

This non-parametric method is simple but effective in
this environment. This method works by calculating the
k nearest neighbours of a given point. Based on Figure
7 we want to predict the position of the red dot with
an x = 0.5. Given a k = 2 we find the nearest points
to be (0.4, 5)(0.7, 7). Calculating the y value we take the
average of y values of the k neighbours y = 5+7

2 = 6 [1].

8

Fig. 7: K Nearest Neighbours k = 2

The difficult task is selecting a fitting k. We have the
opportunity to force a low bias on this model and make
it overfit with a low k. K = 2 is therefore selected.
Another property this algorithm can exploit is that if all
points are spread evenly along the y-axis, and relatively
spread on the x-axis, such that we should choose the two
adjacent data points on each side of the point we are
trying to predict. Shortcomings of this model includes
high computation cost on inference as this model is lazy.
This means we have to compute the neighbors along
with the average of the y-axis on inference. Furthermore,
the model requires the knowledge of the entire dataset
which increases the memory needed by the model.

6.2 Isotonic Regression (IR)

Isotonic regression is either a parametric method or a
non-parametric method. The algorithm can as input take
a weight for each observation to increase the bias. As
we want a low bias we supply a weight of 1 utilizing
unweighted isotonic regression which can be considered
non-parametric. The algorithm has the constraint that
we expect the data needs to be non-decreasing. Isotonic
regression fits a free-form line to a dataset. We do this
by minimizing the objective function min

∑
i wi(yi − ŷi)

where w is the weight. This is done by scanning the
entire dataset and minimizing the objective function for
each instance.
The downside to this method is that we also need to
store the x-values for future linear interpolation of the
predicted y value.

6.3 Spline Interpolation

A spline is a piecewise polynomial of quadratic- or cubic
functions. Splines are parametric as it takes the number
of knots used for interpolation as input. The number of
knots indicates how many polynomials will be pieced
together to interpolate data points. As seen in Equation
10; between each knot, we construct a quadratic equation

and interpolate the x value if they follow the restrictions.

S(x) =


S1(x) = a1 + b1x+ c1x

2, x ∈ [x1, x2],

S2(x) = a2 + b2x+ c2x
2, x ∈ [x2, x3],

...
Sn(x) = an + bnx+ cnx

2, x ∈ [xn−1, xn],
(10)

An example of a spline can be seen in Figure 8, where
three polynomial functions representing the spline.

Fig. 8: Spline from three functions

The restriction of this algorithm is that the x values
must be increasing, otherwise we will not be able to
identify the function for the given data point.
The number of knots translates to the bias of the
model. Many knots equals low bias. One downside to
this model is the more knots the higher the memory
consumption for the model, as we need to store the
coefficients for the different functions as well as the
placement of the knots.

Linear regression (LR) tries to find the best linear
fit by calculating y = ax + b and then finding the best
values for a and b, such that given x, we find the correct
value y.
Multi-variate regression (MVR) is an extension of
linear regression which can, using multiple predictor
variables, predict non-linear functions.
Neural networks (NN) can also be used for regression.
Based on input features, it can predict the correct value
for a given number of outputs. The neural network
requires tuning in the form of number of hidden layers,
number of neurons in each layer, choice of activation
functions, etc.

Table 3 shows in what areas each machine learning
model excels and also in which areas they have
shortcomings.

The models that have a small memory size usually have
shortcomings regarding accuracy. Models that have a

9

Model Name Inference Time Training Time Memory Size Average Prediction Accuracy
LR Fastest Fastest Smallest Low
MVR Fast Fast Small Low
NN Slow Slow Largest High
NNR Fast Fast Large High
IR Fast Fast Large High
SPLINE Fast Fast Large High

TABLE 3: Summation of machine learning models

high accuracy also has a high memory size. The table
shows that a single optimal machine learning model is
not possible, as there is some sort of tradeoff. Therefore
it is required to rank the models in some other way.

7 MULTI-CRITERIA DECISION ANALYSIS

The machine learning models can vary in size, inference
speed and accuracy. Therefore, we investigate different
multi-criteria ranking methods.
Making a decision on the best model is easy with only
one criterion (accuracy for example), since we only need
to choose the alternative with the best value for the
given criterion. However, when the decision has to be
based on multiple criteria several problems arise. These
involve conflicting criteria, weights of the criteria and
also the personal preference from the user [19].

Multi-Criteria Decision Analysis (MCDA) is a way
to evaluate different criteria in the decision making
state. Usually the MCDA methods evaluate the multiple
criteria as either cost or benefit. Several MCDA methods
exists, but no such thing as a super method [9]. Each
method evaluates the criteria in different ways, and thus
ranks the models differently. Therefore, it is important
to choose a MCDA method that suits the problem in
this paper. This includes a ranking of all the alternatives
while also integrating the preferences of the user.
These criteria of the MCDA means that a compensatory
or a partially-compensatory MCDA method is needed.
These methods allows compensations between different
evaluations, meaning that a good performance on one
criterion can counterbalance a poor performance on
another [9]. This allows the user to determine which
criteria are important for their dataset.

7.1 Weighted Sum Method
A MCDA method that allows compensatory ranking is
the Weighted Sum Method. The most important aspect of
this method is that users ability to weight the importance
of the input. In ranking the models we look at three
different input parameters: Accuracy, Speed and Size. An
example of these values on a random dataset can be seen
in Table 4.
The first step in the process is to normalize the values

of the different attributes. As these have different scales
we need to ensure that they are within the same scale.
We employ Linear Max normalization as presented in
[20]. In this process we identify which attributes describe

Model Name Accuracy % Speed Sec Size Byte
IR 0.98 0.02 253520
MVR 0.54 0.05 392
LR 0.03 0.04 300

TABLE 4: Example evaluation of models

beneficial properties Bp and which are non-beneficial
(cost) properties NBp. A general rule of thumb is to
examine whether or not higher value will benefit the
model. Therefore, Bp = {Accuracy} whereas NBp =
{Speed ,Size}. Normalization of these are done as fol-
lows:

Normalized−Bpi =
Bpi

Bpmax
(11)

Normalized−NBpi = 1− Bpi
Bpmax

(12)

The normalized properties can be seen in Table 5.

Model Name Accuracy Speed Size Score Rank
IR 1 0.6 0 0.528 1
MVR 0.55 0.0 0.9984 0.511 2
LR 0.03 0.2 0.9988 0.405 3

TABLE 5: Normalized model evaluation

Following this we calculate the score of the different
models m by summing up the different normalized
properties Np while adding a user specified weight w of
importance for each property [21]. The weights in Table
5 are all 0.33.

score(mi) =

N∑
i=1

(wi ∗Npi) (13)

Lastly we rank the different models based on their scores
as seen in Table 5.

7.2 Skyline Dominance

The Skyline query can also be used for multi-criteria
ranking. The Skyline query is usually used in database
context, and can easily be used in this context as well.
A standard Skyline query optimizes two dimensions of
a dataset, where these dimensions usually anticorrelate
[5]. As an example, we want a model with high accuracy
and low size as seen in Figure 9.

10

Name Size Inference Time Accuracy
Lr 96 0.0000351 0.0001300
NNR 2219080 0.0007694 1.0000000
Ir 8865376 0.0001097 1.0000000
Mvr 424 0.0002053 0.0010562
Spline 12556008 0.0002222 1.0000000

TABLE 6: Skyline query results for a single dataset -
optimizing three dimensions

Fig. 9: Skyline query results for a single dataset - opti-
mizing two dimensions

In this figure, each model has been giving a rank. Red
is the best, green is second and blue the worst. In this
example, it is not possible to choose between LR and
NNR. LR has the lowest size of all, while NNR has the
best accuracy. While there are other models, that have
the same accuracy as NNR, they are outperformed by
the size of NNR. The Skyline query are constructed
using the Pareto composition. This means the result
contains all models from a dataset which are not Pareto-
dominated according to this preference. This means that
we are not interested in those models, which are strictly
worse in at least one dimension and worse/equal
in other dimensions. However, our solution requires
optimization for three dimensions; accuracy, size and
inference speed. The Skyline query can also account for
this. Choosing the best model based on a 3D graph can
be hard, therefore a table with the results of a Skyline
query optimizing three dimensions can be seen in Table
6.
In this table we see similar results as in Figure 9, where

LR outperforms on size but has low accuracy. However,
in this table inference time is also taken into account.
This can be seen as IR being chosen over MVR, even
though is it much larger.

The Skyline query is a powerful tool for ranking.
However, in order to use Skyline as ranking method
for our solution, it would require the meta-learner to
predict the performance of a model. In our case this

would mean predicting accuracy, size and inference
time for each model, making it a very high dimensional
regression problem. We consider this a much harder
task than making a multi-class classifier, which is why
the weighted sum method is chosen as ranking method.

8 EVALUATION

In this section we present the datasets used for
evaluation experiments. The meta-learner is then
evaluated using machine learning parameters.
Experiments was also conducted to show the
performance on the RMI.

Using the meta-features from a dataset, the meta-
learner can predict, based on the MCDA, which model
to use on a given dataset. The model with the highest
probability can then be chosen for RMI. An RMI was
constructed and evaluated in our pre-thesis [10]. This
RMI is used to test, whether the meta-learner can be
used in such a setting. This RMI consists of two layers
- a top layer with a single model, and a bottom layer
consisting of several smaller models. The top model
learns the entire distribution of the dataset, whereas the
smaller models can be seen as ’experts’ for a subset of
the dataset. The meta-learner is tested on both the top
layer and the bottom layer, where each model in the
bottom layer might have varying distributions, meaning
they should also be using different regression models.

8.1 Dataset
This section will present the datasets that will be used
for the meta-knowledge base. The datasets chosen will
vary in cardinality as this might have an impact on the
algorithms presented in Section 6:
• small = 300−600
• large = 150.000−200.000

To have as varied data as possible we have chosen a com-
bination of synthetic datasets and real world datasets.
We draw samples from six different distributions which
can be seen in Table 7.

Distribution name Function Variables
Uniform f(x) = 1

b−a a = 0, b = 1

Beta f(x) =
xα−1(1−x)β−1

B(α−β) α = 2, β = 2

Wald P (x) =
√

s
2πx3

e
−s(x−σ)2

2σ2x s = 3, σ = 0.2

Parteo p(x) = amx

xa+1 a = 3

Lognormal p(x) = 1
σx
√
2π
e
(− (ln x−µ)2

2σ2
)

σ = 1, µ = 3

Logistic P (x) = e−(x−µ)/s

s(1+e−(x−µ)/s)2
s = 2, µ = 6

TABLE 7: Synthetic distributions

Furthermore, we employ two real world datasets. The
first is a collection of log entries from the Saskatchewan
university website [16] with a cardinality of 2 million.
The second is a sample from Open Street Map with a
longitude ranging from 55.023−55.773 with a cardinality

11

Fig. 10: Scatter plot with PCA values and model types

of 1.6 million. Examples of selected distributions can be
seen in Figure 3.

8.2 Meta-Learner Evaluation
The meta-learner is evaluated through accuracy, mean-
ing how often it predicts the correct model for a given
dataset. The meta-learner is optimized using Kfold for
parameter tuning. The meta-learner is evaluated on the
test set. The training set contains 70% of the datasets,
while the test set contains the last 30%. The datasets are
shuffled in order to get better training sets and test sets.
The meta-learner has a categorical accuracy of 74.21%.
The meta-learner was also evaluated on recall, precision
and f1-score. The results of these measures can be seen
in Table 8.

Recall Precision F1-Score
0.656746 0.808157 0.717845

TABLE 8: Measurement scores for the meta-learner

For all the measurements a score of 1 equals a perfect
score, wheras the score of 0 is the worst score.
These measurements are another way of evaluating the
meta-learner. Both recall and precision are based on an
understanding of relevance. Precision scores the highest,
which is a measure of how many predictions are rele-
vant. This tells us that the meta-learner does not seem to
predict that many false-positive predictions. The recall is
lower, which means that the meta-learner is more prone
to false-negative predictions. The F1-score is the har-
monic mean between recall and precision, and is a good
measure when there is no specific focus on either recall
or precision. The F1-score has a value of 0.71, which is
acceptable. A PCA plot was also made with the meta-
features including the preferences of the user regarding
accuracy, size and inference time. However, this time
the data points represent the model types instead of the
distributions. Figure 10 shows that the model types are

not as evenly distributed as the distributions in Figure
5. All models are evenly distributed between the same
4 clusters, which also were prevalent in Figure 5. The
principal components have a variance of ≈ 75%. This is
another reason to use a neural network as the classifier,
as the model types are not distinguishable from each
other using the principal components.

8.3 Experiments on Learned Index
We evaluate The Adaptive Learned Index against the
base model presented in The Case for Learned Index.
We evaluate on the three parameters used for ranking
Accuracy, Size in MB and Time in nano-seconds as pre-
sented in in Section 7. In this section, accuracy is referred
to as error rate, as this is a better measure of the data
structures’ accuracy and time represents inference time.

Experimental Setting
The Python code used to run the experimental
setup is available at https://github.com/timiane/
adaptive-learned-index. The tests were conducted on the
datasets presented in Section 8.1. The tests were run on
a AMD 2600x Processor with 16 GB 3200 MHz ram.

Base Model
The base learned index model comes from [11] and our
pre-thesis [10]. This model is not adaptive, in the sense
that each layer contains the same machine learning mod-
els. Also, the base model relies on the user’s knowledge
of machine learning and data complexity. This means
that if the user wants an optimal solution it requires
a lot of trial and error in order to find the best fitting
model that aligns with the user’s preferences. In [11] and
our pre-thesis [10] it was suggested that we either use
a neural network or multi-variate regression as the top
layer model, and then use linear regression as the bottom
layer models.

Results
Table 9 shows the results of our experiments. The exper-
iments were conducted by first testing the performance
of the base learned index model with static machine
learning models on the datasets. In this table the base
model consists of a neural network model in the top
layer and linear regression models in the bottom layer.
The same tests were made with the adaptive learned
index. The Adaptive Learned Index takes user preference
into account, and therefore at least three tests were
conducted each with a focus on either size, time or
error rate. Lastly, an optimal solution test based on our
knowledge of learned index was conducted. This means
the top layer should have a preference on accuracy, as
this will distribute the data to the bottom layer more
evenly. The bottom layer should have a preference on
size as these distributions usually are easier to learn.

https://github.com/timiane/adaptive-learned-index
https://github.com/timiane/adaptive-learned-index

12

Type Config Size(MB) Time(ns) Error Rate
Base Model NN 47,13 (1.00x) 12646 (1.00x) 5.94 (1.00x)
Adaptive Model Accuracy 8.10 (0.171x) 4310 (0.34x) 1.09 (0.18x)

Size 4.56 (0.096x) 5347 (0.42x) 1.76 (0.30x)
Time 5.32 (0.112x) 5350 (0.42x) 1.40 (0.24x)
Optimal 4.57 (0.097x) 5257 (0.41x) 1.757 (0.30x)

TABLE 9: Adaptive learned index compared to the base learned index model

As the models with a high accuracy usually has a high
size, the focus on size for the bottom layer is chosen to
counter-balance this.
As seen in Table 9 the cells marked in green have the
best performance in the category. In parenthesis we show
the savings in size, inference time and error rate. It
should be noted that the adaptive model with focus on
accuracy has the lowest inference time. This is caused
by the top layer model because it was predicted to be
a SPLINE model. With more data and more models this
problem should subside, as not enough data is provided
for the meta-learner to correctly predict the most optimal
solution based on the user’s preference. The Adaptive
Learned Index clearly outperforms the base model on
all metrics. The preferences also seem to be taken into
account, where the adaptive model chooses the models
with the lowest error rate for accuracy preference, and
the same goes for size preference. The optimal model
does not have the best score in any of the metrics,
however it has the second-best score on all the metrics
except for error rate, which still has a good performance.

9 CONCLUSION & FUTURE WORK

We have shown that The Adaptive Learned Index
improves the already exciting Case for Learned Index
[11]. This was achieved by analyzing different features
of complexity resulting in a vector describing the
overall complexity of a dataset. We then ensured that
these features provided information about different
aspects of the datasets by analyzing their principal
components and correlation to each other. Additionally,
different machine learning models for regression were
investigated. The performance of each model was
evaluated based on different data distributions, such
that each model was ranked accordingly using the
Weighted Sum Method. This information was used to
create a meta-learner that, given a complexity vector
and user preferences on speed, size and accuracy,
would predict the best performing machine learning
model to learn the underlying CDF. The Adaptive
Learned Index was tested on synthetic and real datasets
providing results that showed this method improves the
performance compared to the base structure presented
in The Case For Learned Index [11].
Our results additionally showed that when it comes to
user preferences and different distributions, different
models should be chosen. The meta-learner aids the
user in this decision, which can be difficult without
exstensive knowledge about data complexity and
machine learning models.

The Adaptive Learned Index presented in this
paper is based on one-dimensional datasets. The
Adaptive Learned Index could be expanded to include
multi-dimensional data. This would require different
meta-features to be extracted, which inspect class
features along with expanding the model catalogue to
be able to model the CDF accordingly. Further work
could also include expanding the complexity evaluation
of datasets. The features presented in Section 4 capture
some complexity but expanding on these would deepen
the understanding of data complexity. This would
sharpen the predictions on what model to choose and
thereby improving performance.

REFERENCES

[1] N. S. Altman. An introduction to kernel and nearest-neighbor
nonparametric regression. The American Statistician, 46(3):175–185,
1992.

[2] M. F. Amasyali and O. K. Ersoy. ”a study of meta learning for
regression”. 2009.

[3] A. Balte and N. N. Pise. ”meta-learning with landmarking: A
survey”. 2014.

[4] N. Bhatt, A. Thakkar, and A. Ganatra. A survey and current
research challenges in meta learning approaches based on dataset
characteristics. International Journal of soft computing and Engineer-
ing, 2(10):234–247, 2012.

[5] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator.
In Proceedings 17th international conference on data engineering, pages
421–430. IEEE, 2001.

[6] P. Brazdil and C. Giraud-Carrier. Metalearning and algorithm
selection: progress, state of the art and introduction to the 2018
special issue, 2018.

[7] P. Brazdil and C. Soares. Ranking classification algorithms based
on relevant performance information. Meta-learning: Building
automatic advice strategies for model selection and method combination,
2000.

[8] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on, pages 390–398. IEEE, 2000.

[9] A. Guitouni and J.-M. Martel. Tentative guidelines to help choos-
ing an appropriate mcda method. European Journal of Operational
Research, 109(2):501–521, 1998.

[10] R. V. B. M. H. Jesper Hedegaard, Per Hedegaard Nielsen. Learned
index and data complexity. Aalborg Universitet, 12 2018.

[11] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data, pages 489–504. ACM, 2018.

[12] A. C. Lorena, A. I. Maciel, P. B. C. de Miranda, I. G. Costa, and
R. B. C. Prudêncio. Data complexity meta-features for regression
problems. Machine Learning, 107(1):209–246, Jan 2018.

[13] M. Magdon-Ismail and A. F. Atiya. Neural networks for density
estimation. In Advances in Neural Information Processing Systems,
pages 522–528, 1999.

[14] D. Oreski, S. Oreski, and B. Klicek. Effects of dataset character-
istics on the performance of feature selection techniques. Applied
Soft Computing, 52:109–119, 2017.

[15] D. Oreski, S. Oreski, and B. Klicek. Effects of dataset character-
istics on the performance of feature selection techniques. Applied
Soft Computing, 52:109 – 119, 2017.

13

[16] University of saskatchewan http request logs.
ftp://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html, 06 2019.

[17] M. Sewell. No free lunch theorem. http://www.no-free-
lunch.org/, 03 2019.

[18] A. E. Smith and A. K. Mason. Cost estimation predictive model-
ing: Regression versus neural network. The Engineering Economist,
42(2):137–161, 1997.

[19] G.-H. Tzeng and J.-J. Huang. Multiple attribute decision making:
methods and applications. Chapman and Hall/CRC, 2011.

[20] N. Vafaei, R. Ribeiro, and L. Camarinha-Matos. Normalization
techniques for multi-criteria decision making: Analytical hierar-
chy process case study. volume 470, 04 2016.

[21] M. van Herwijnen. Weighted summation (wsum).
[22] J. Vanschoren. Understanding Machine Learning Performance with

Experiment Databases. PhD thesis, Katholieke Universiteit, 05 2010.
[23] J. Vanschoren. Meta-learning: A survey. CoRR, abs/1810.03548,

2018.
[24] J. Zubek and D. M. Plewczynski. Complexity curve: a graphical

measure of data complexity and classifier performance. PeerJ
Computer Science, 2:e76, 2016.

	Introduction
	Related Work
	Meta-Learning
	Meta-Features
	Linearity
	Smoothness
	Topology
	Normality
	Evaluation of Meta-Features

	Meta-Learner
	Machine-Learning Models
	K Nearest Neighbor Regression (KNN)
	Isotonic Regression (IR)
	Spline Interpolation

	Multi-Criteria Decision Analysis
	Weighted Sum Method
	Skyline Dominance

	Evaluation
	Dataset
	Meta-Learner Evaluation
	Experiments on Learned Index

	Conclusion & Future Work
	References

