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Abstract
In the matter of constitutive modelling of frictional material, two major models are the Mohr-Coulomb and
the Drucker-Prager yield criteria. However, contradictions arises as the former neglects the intermediate
principle stress and all stresses are of equal importance in the latter. Evidently both statements cannot be
true and the actual material behaviour is somewhere in between. The Mohr-Coulomb model is in general
a better limit stress representation for frictional soil, however, especially conservative in plane strain
calculations, where it to some extent has become the norm to increase the angle of friction with some
empirical expression. Yield surfaces to better describe the actual material behaviour has been proposed
in plenty, however, as more advanced models thrive in academia, these have failed to gain a widespread
use by practitioners.

In this thesis, a concept of yield surfaces denoted the General Parametric Yield Surface Format,
proposed by Lars Damkilde, is explored. Three novel yield surfaces, which encompasses several existing
models are formulated and implemented in a numerical framework. When evaluating the numerical
performance of a plasticity model, discrepancy, computation time and robustness are of interest, where
the latter two are somewhat connected. The first proposed yield surface operates on four parameters, of
which two can be omitted to obtain the Mohr-Coulomb model. This model has proven efficient, however,
lacks robustness, especially in the analyses of three-dimensional systems. The second proposed yield
surface is therefore developed as a smooth continuous approximation of the first model for a numerically
robust implementation. It is formulated by employment of a new concept of local corner rounding,
which, to the authors knowledge is not presented elsewhere in the literature. Furthermore, this model
enables a smooth tension cut-off, and can serve as an optimised material fit, provided the existence of
experimental data. The first two models are formulated with linear hydrostatic stress dependency, as a
common simplification. A widely accepted formulation of the nonlinear hydrostatic stress dependency
for common sands was proposed by Bolton, which is incorporated in the third yield surface formulation.
The result of this is an advanced nonlinear model, which operates on the well-known parameters from
Bolton, and constitutes the most optimized material calibration conducted in this thesis, and demonstrates
the generality of the new yield surface concept.

The novel yield surface models are implemented in a computational framework, in MATLAB as
well as a Fortran source code for use in Abaqus. The models are calibrated to data from true triaxial
experiments and employed in a series of elasto-plastic finite element analysis of typical geotechnical
problems, to investigate the influence of the intermediate principal stress and computational performance
of the models. The simulation results reveals a vast unused potential in comparison with the Mohr-
Coulomb criterion in plane strain conditions, and a considerable increase in general 3D as well. A notable
increase in bearing capacity can be obtained if the model is calibrated with standard triaxial tests in
both extension and compression, which is not a possibility with the Mohr-Coulomb model. The novel
corner rounded model comes with a cost in computation time, however, it is found numerically robust,
especially in three-dimensional analyses. It is therefore the recommended model by the authors, as
robustness is a desired quality of the numerical implementation.
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Preface
The present master thesis is the results of the one year masters program at Aalborg University Esbjerg,
Department of civil engineering. The objective is to investigate possible material optimisation in the
field of geomechanics, especially towards frictional soil. For this purpose, a new yield surface concept,
proposed by Lars Damkilde, which encompasses a wide range of the existing plasticity models in the
field, is explored and implemented in a numerical framework. No material experiments are conducted in
coherence with this thesis, as the works relies solely on numerical analysis. The model calibrations are
therefore conducted with experimental results from the existing literature.

Frequently used mathematical symbols are listed in the nomenclature, and less frequently used is
described posterior to its first use. Vectors and matrices are denoted with lower and upper case boldface
font, respectively. References to literature are marked in square brackets as [Author,year of publish],
figures, tables and equations is referenced to by type followed by a number referring to (Chapter.Number).
All figures in this thesis are composed by the authors.

The herein proposed constitutive models are implemented in a numerical framework and are available
in MATLAB scripts and Fortran source code for use in Abaqus software. The source code is handed in
along with the thesis, and can be acquired from the AAU web page or by correspondence to the authors.

In coherence with this thesis, two articles have been composed and submitted for possible publication:

• Nielsen J, Jepsen KS, Damkilde L. Parametric Transition from Mohr-Coulomb to Drucker-Prager by
Implementation of the General Parametric Yield Surface Format. International Journal for Numerical
and Analytical Methods in Geomechanics. Submitted 2019

• Jepsen KS, Nielsen J, Damkilde L. A Concept of Local Rounding Applied to a Multi-Surface
Plasticity Model with Sharp Edges. International Journal for Numerical Methods in Engineering.
Submitted 2019

These are attached in appendices C and D and considered as part of the content in the thesis. Therefore,
the majority of their content is not documented within this report, to avoid unnecessary repetition, and
results from the articles are incorporated in the conclusion in Chapter 6.

The following software are used in the presented numerical studies in this thesis:

- MATLAB R2017b by MathWorks, release September 2017

- Abaqus 2017 by Dassault Systemes Simulia , release 2017

- Intel Fortran 2013 by Intel, release 2013
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Nomenclature
Frequently used symbols throughout the report are listed here. Less frequently used or symbols used in a different
context are defined where they are used. Matrices and vectors are denoted with upper- and lower-case boldface
letters, respectively.

Latin Letters
f Yield criterion

g Plastic potential

e Void ratio

Id Relative density

c Cohesion

k Friction parameter

E Modulus of elasticity

p Hydrostatic stress

r ρc-normalized deviatoric radius

x, y, z Cartesian coordinates

u, v, w Displacement components

i, j Counter variables

Greek Letters
ν Poisson’s ratio

γ Mass density

ϕ Static angle of friction

ψ Angle of dilatation

ε, γ Normal strain and engineering
shear strain

σ Stress

∇ Differential operator

∆ Increment

∆λ Plastic multiplier

µ Slope of Mohr-Coulomb compres-
sive generator

Ω Domain (Element area/volume)

ρ Stress deviator norm

θ Lode angle

α Meridional eccentricity parameter

β Curvature parameter

Matrices and Vectors
ε Strain vector

σ Stress vector

f Load vector

u Displacement vector

c∗ ρc-normalized deviatoric centre of
curvature

B Strain interpolation matrix

D Elastic constitutive matrix

Dep Elasto-plastic constitutive matrix

Depc Consistent elasto-plastic constitu-
tive matrix

J Jacobian matrix

K Stiffness matrix

N Displacement Interpolation matrix

Acronyms
GPYS General Parametric Yield Surface

-LD Linear discontinuous

-LC Linear continuous

-NC Nonlinear continuous

d.o.f. Degrees of freedom
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1 | Introduction
Constitutive modelling of geotechnical materials engages in the design of structures or facilities, which
include soil materials as a load-bearing element, such as structural foundations, retaining walls or
freestanding slopes. Soil materials is roughly categorised as clays, sand, and rock masses, and often occurs
as some combination of these. In this thesis, constitutive modelling of the frictional soil types, namely
sands or rock masses, is the main consideration. Frictional soil is composed of macroscopic grains, and the
ideal analysis would include the details of each grain in the soil skeleton. However, such a representation
would require unrealistic computational power, and the tools from elasto-plastic continuum mechanics
has proven a feasible compromise. An elasto-plastic constitutive model is composed of a yield criterion, a
plastic potential (or flow rule) and a hardening law. The yield criterion is a limit on the domain of elastic
stress states, the flow rule is a model for the plastic strains and the hardening law describes how the yield
criterion changes during plastic straining. The latter two are not given much attention in this thesis.

Frictional soil is an anisotropic material with hydrostatic stress dependency, however, often simplified
as homogeneous, isotropic and with linear hydrostatic stress dependency. Here, two of the major linear
plasticity models in the field of geomechanics, are the Mohr-Coulomb, which dates back to 1773 [Coulomb,
1773] and the Drucker-Prager model [Drucker and Prager, 1951]. Principle stress representation often
simplifies the mathematical expressions in plasticity modelling, and enables geometrical arguments,
which can be utilised for efficient numerical implementations of elasto-plastic material models, see for
instance [Clausen et al., 2005]. In principle stress space, the Mohr-Coulomb yield criterion shapes a
hexagonal pyramid and the Drucker-Prager surface as a right circular cone, as depicted in Figure 1.1.

p

1 2

3

(a)

p

1 2

3

(b)

Figure 1.1: Yield surfaces in principle stress space (a) Mohr-Coulomb and (b) Drucker-Prager.

The Mohr-Coulomb and Drucker-Prager yield criteria stands out as two extrema, as the former
neglects the intermediate principle stress and all stresses are of equal importance in the latter. The
true material behaviour is evidently somewhere in-between, as supported by numerous experimental
evidences [Bishop, 1966]. The popularity of the Drucker-Prager model mainly stems from its continuous
shape as seen in Figure 1.1b, which renders it efficient and robust in numerical analysis. The Mohr-
Coulomb model is in general a better limit stress representation of frictional soil than the Drucker-Prager
model, however, not as robust in numerical analysis due to its sharp edges. As the intermediate principle
stress is absent in the Mohr-Coulomb criterion, the question remains:

“What is the influence of the intermediate principle stress?”

Some knowledge of the intermediate principle stress influence can be obtained by considering the ϕb-plot
in Figure 1.2. It shows the angle of friction with respect to the principle stress ratio, obtained from true
triaxial tests performed by [Bønding, 1977]. The typical laboratory tests of soil materials is the standard
cylindrical triaxial compression test, b = 0, where the intermediate principle stress cannot be analysed.
However, as the more advanced true triaxial tests has been performed by researchers, it is found that the

1



2 1. INTRODUCTION

lowest angle of friction is measured under triaxial compression, see for instance [Lade, 1977], [Bønding,
1977], [Reddy and Saxena, 1993], [Praastrup, 2000], or [Wang and Lade, 2001]. Sands of different relative
densities are considered in Figure 1.2, and the dependency on the principle stress ratio is in general more
pronounced for dense sands. This is a general tendency, however, varies with different types of sand
see for instance [Lade, 2006]. Yield surfaces to better describe the actual material behaviour has been
proposed in plenty, see for instance [Matsuoka and Nakai, 1974], [Lade, 1977], [Hoek and Brown, 1980] to
mention a few. Such models may be more accurate, however, the majority of the more complex criteria
have failed to gain commercial use. An elaboration on some of these models are given in Chapter 3.
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40
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65

Figure 1.2: ϕb-plot of data from true triaxial tests performed by [Bønding, 1977], see Appendix A.1. The approximation lines
are generated with ϕ = ϕtr(1 + 0.163 tanh(5b)) as proposed by S. Krabbenhøft, for ϕtr = 41.40, ϕtr = 36.00 and ϕtr = 31.60,
respectively, included for illustrative purposes.

In conventional geotechnical calculations, an angle of friction and an internal cohesion are used
to define the linear Mohr-Coulomb failure envelope as sketched in Figure 1.3a, first brought forth
by [Coulomb, 1773], and later generalized by Mohr in 1883, see for instance [Ottosen and Ristinmaa,
2005, sec. 8.5]. This early linearisation has to some extend become the assumption of the actual material
behaviour outside the world of academia. However, most frictional materials does not obey to a linear
failure envelope, and more accurate material models operates with a secant, or an instantaneous angle of
friction, as illustrated in Figure 1.3b. A widely accepted model which expresses the angle of friction as
a function of the dilatancy, relative density and the hydrostatic stress level, was proposed by [Bolton,
1986]. Both the Mohr-Coulomb and Bolton failure criteria are elaborated in this thesis, and enters the
formulations of the proposed yield surface concept in chapter 4.

σ
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ϕσ3 σ1

τ = tan(ϕ)σ + c

(a)
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τ

ϕ′

τ = f(σ)

(b)

Figure 1.3: Failure envelopes in Mohr diagrams for (a) the linear Coulomb failure criterion and (b) the general nonlinear Mohr
failure criterion.

From the early days in geotechnical engineering, some problems have been solved with empirical
solutions, and some of a certain simplicity have been solved with analytical mathematics. In the past few
decades, the finite element method has been implemented as a powerful tool in the engineering industry
as computer technology has advanced. Limit loads of geomechanical systems can efficiently be found by
use of upper and lower bound analysis in finite element context, as available in for instance the “Optum”
software [Krabbenhoft et al., 2016c]. However, elasto-plastic analysis is a more general approach, and
is conducted if the deformation under load is desired, or if response history affects the solution in for
instance soil-structure interaction. The finite element method is a general mathematical method, which
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enables the implementation of advanced material models in analysis. Other numerical tools, such as the
finite difference method, is frequently used in geomechanics as well, see for instance [Martin, 2003]. Some
more advanced methods for numerical analysis of soils are gaining ground in academia, for instance the
particle finite element method see for instance [Zhang, 2014], which may be more suited for slip line or
erosion problems etc. The latter two methods are not explored further in this thesis, as solely the finite
element method is used. However, the constitutive models are not restricted to this method.

Project specification
The scope of this thesis is to investigate the intermediate principle stress influence for frictional soil,
through numerical studies. For this purpose, a new yield surface concept, as proposed by professor Lars
Damkilde, denoted the General Parametric Yield Surface(GPYS) Format, is explored. It can parametrically
include the intermediate principle stress and are developed to encompass several of the existing models,
and optimized material utilisation. A second topic in this thesis is the computational performance of
multi-surface plasticity models, and a total of three new yield criteria are formulated based on the GPYS
format. Prior to the numerical analyses, the proposed constitutive models are implemented in both a
MATLAB and Fortran code as a user-defined subroutine for use with the the Abaqus software, intended
for commercial use.

Several material specific constitutive models have been proposed, however, failed to gain a widespread
use in the geotechnical community. Therefore, it is intended to formulate a yield surface, which encom-
passes some of the numerous existing models, at least their overall characteristics, whilst maintaining
simplicity and familiarity in the parameters. The first proposed yield surface operates on four parameters,
two of which are the well-known parameters of the Mohr-Coulomb model. It is intended as a general
model, which in a simple manner can be used as the familiar Mohr-Coulomb or Drucker Prager model,
whilst being capable of more advanced material calibrations as well. The implementation in numerical
analysis of this model is efficient, however, the surface discontinuities leads to poor convergence. There-
fore, the second proposed yield surface is a smooth continuous approximation of the first model, for
improved robustness. It is based on a new concept of corner rounding, which mainly exploits vector
calculus, opposed to trigonometric functions as the methods in the existing literature. Furthermore, it
enables an even more advanced material calibration, with the optionality of a smooth tension cut-off. The
third proposed yield surface is based on Bolton’s formula, to accommodate nonlinear hydrostatic stress
dependency. The result is an advanced nonlinear model, which operates on the well-known parameters
from Bolton, and constitutes the most optimized material calibration conducted in this thesis. The model
includes a smooth continuous tension cut-off as well, and it demonstrates the generality of the new yield
surface concept. The first two plasticity models presented in this thesis are submitted for peer review in
technical journals as well, these papers are attached in Appendices C and D.

Throughout this thesis, linearly elastic perfectly plastic material behaviour and associated flow is
assumed, which does not compromise the appeal to the civil engineering practices, where these are
common assumptions. The novel plasticity models are, however, not restricted to these assumptions
and the mathematical expressions are given in a non-associated format for generality. The analyses are
conducted to investigate the influence of optimised material fits, and the results are not design values as
no statistical safety are incorporated etc. The set of experimental data, used in the studies, is naturally
not transferable to other grading’s and material types. The finite element analysis are conducted both in
a program written by the authors in MATLAB script, and some are conducted in the Abaqus software
through a user-defined subroutine with the novel constitutive model. The plasticity models are not
restricted to soils, however, this is the sole group of materials analysed in this project.
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2 | Methodology
Some of the fundamentals of continuum mechanics and the mathematical theory of plasticity are pre-
sented in this section. This includes a review of some stress invariants, followed by elasto-plastic
constitutive modelling and some specifics towards the finite element method.

The materials considered in this thesis are assumed to act as linear elastic perfectly plastic. The
principle of the stress strain relation under this assumption is sketched in Figure 2.1. The stress strain
relation in the elastic stress range is linear and when a certain level of stress causes yielding, it cannot be
exceeded, and additional strains are irreversible. Figure 2.1 is, however, a simple one-dimensional case,
and elastic strains can occur during plastic loading in general 3D conditions. Soil is sometimes modelled
with nonlinear elastic response, for instance by the elasticity modulus proposed by [Lade, 1977], however,
the assumption of linear elasticity mainly affects the displacement results.

ε

σ

E E

Unloading/reloading branch

∆εp ∆εe

∆εe: Elastic strain
∆εp: Plastic strain

Figure 2.1: One-dimensional linearly elastic perfectly plastic stress strain curve.

2.1 Stress Invariants and Their Geometrical Interpretations

As a preliminary consideration in formulating and understanding the yield criteria discussed in subse-
quent sections, some of the important stress invariants and their geometrical interpretations are presented
in this section. It can be shown that there exists a unique coordinate system, where the shear stresses are
zero and the normal stresses are referred to as principal stresses. These are conveniently found from the
symmetric eigenvalue problem of the stress matrix, see for instance [Ottosen and Ristinmaa, 2005, sec.
3.3],

([σ]− λiI3)vi = 0, [σ] =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ23 σ33

 , (2.1)

where the eigenvalues, λi, as mentioned yields the principal stresses, and the eigenvectors, vi, contains
the direction cosines with the principal axis as

vi =


li
mi

ni

 .

The direction cosines between the reference coordinate system, xyz, and the local coordinate system,
x′y′z′, can be used to establish the following transformation matrix, see fore instance [Cook et al., 2002, p.
274]

Tε =



l21 m2
1 n21 l1m1 m1n1 n1l1

l22 m2
2 n22 l2m2 m2n2 n2l2

l23 m2
3 n23 l3m3 m3n3 n3l3

2l1l2 2m1m2 2n1n2 l1m2 + l2m1 m1n2 +m2n1 n1l2 + n2l1
2l2l3 2m2m3 2n2n3 l2m3 + l3m2 m2n3 +m3n2 n2l3 + n3l2
2l3l1 2m3m1 2n3n1 l3m1 + l1m3 m3n1 +m1n3 n3l1 + n1l3

 , (2.2)

5



6 2. METHODOLOGY

where, li, mi, and ni, are direction cosines as illustrated in Figure 2.2. The following ordering of the stress
and strain components are assumed by Equation (2.2)

σ =
[
σxx; σyy; σzz; τxy; τyz; τxz

]T
.

The stresses, strains and the constitutive matrix can be transformed by the relations,

ε′ = Tεε ∧ σ′ = T−Tε σ ∧ D′ = TTε DTε,

x

y

z

V

u′

v′

w′

u

v

w

Direction cosines
x y z

x’ l1 m1 n1

y’ l2 m2 n2

z’ l3 m3 n3

Figure 2.2: Illustration of the local and global components for describing the same vector V, inspired by [Cook et al., 2002, p. 272].

The principal stresses, obtained from Equation (2.1) are invariants, and the general 6D stress state
in xyz-space can be visualized as a point in the the 3D principle stress space, enabling spatial geometry.
To further exploit the geometrical interpretations, the stress matrix is conveniently decomposed into a
deviator and a hydrostatic component asσ11 σ12 σ13

σ21 σ22 σ23
σ31 σ23 σ33

 =

s11 σ12 σ13
σ21 s22 σ23
σ31 σ23 s33

+

p 0 0

0 p 0

0 0 p

 ,
where the hydrostatic stress, p, which also is an invariant, is given as

p =
1

3
(σ11 + σ22 + σ33).

The decomposition of the stress state into a deviatoric and a hydrostatic part in principle stress space can
conviniently be formulated as vector equation as

σ1
σ2
σ3

 = p + s =


p

p

p

+


s1
s2
s3

 , (2.3)

as the deviatoric shear strains is definitively zero in principle stress space. Further stress invariants used
in this thesis, in tensor notation,

I1 = σii First invariant of the stress tensor

I2 = σijσji Second invariant of the stress tensor

I3 = σijσjkσki Third invariant of the stress tensor

J2 = 1/2sijsji Second invariant of the stress deviator

J3 = 1/3sijsjkski Third invariant of the stress deviator.

(2.4)

It is often advantageous to adopt the cylindrical Haigh-Westergaard coordinate system denoted ξρθ in
the principal stress space, as depicted in Figure 2.3. The normal vector along the space diagonal are
given as, n = 1/

√
3
[
1; 1; 1

]
, and the line defined by this vector is referred to as the hydrostatic axis,

as σ1 = σ2 = σ3 for all points on the line. The cylindrical coordinates are related to the stress invariants
as, see fore instance [Ottosen and Ristinmaa, 2005, sec 8.1]

ξ =
I1√
3
, ρ =

√
2J2, cos 3θ =

3
√
3

2

J3

J
3/2
2

(2.5)
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The principle stresses are recovered from the Haigh-Westergaard coordinates by the relation

σ (ξ, ρ, θ) =
ξ√
3


1

1

1

+
√

2/3 ρ


cos θ

cos 2π/3− θ
cos 2π/3 + θ

 . (2.6)

σ2

σ1

σ3

ρ

n
ξ

P (σ1, σ2, σ3)

(a)

σ1 σ2

σ3

θ

P (σ1, σ2, σ3)

ρ

(b)

Figure 2.3: Illustration of cylindrical coordinates for a stress state in principal stress space (a) sideview of space diagonal and (b)
view in the deviatoric plane.

2.2 The Yield Criterion and the Plastic Potential

In this sections, some of the fundamental assumptions for performing elasto-plastic analysis is presented.
The term elasto-plastic, refers to the mechanism that a strain state is considered as composed of purely
elastic and plastic components. A yield criterion, a plastic potential and a hardening law are usually
adopted to model such material behaviour. Hardening of the material is not considered in this thesis and
perfect plasticity is assumed in all the analysis. Therefore, the yield criterion and the plastic potential are
introduced in this section. To evaluate whether plastic strains occur in a material point, a yield criterion,
which fits the behaviour of the material, is needed. The yield criterion, f , is a function of the stresses and
some strength parameters of the material, which defines the state as

f(σ,α) < 0 Elastic stress state,

f(σ,α) = 0 Plastic stress state, (2.7)

f(σ,α) > 0 Inadmissible stress state,

whereα represents material parameters. The yield criterion can be depicted as a hypersurface in principle
stress space, representing the failure surface when f = 0, and is often conveniently formulated through
stress invariants. The yield criterion itself is an invariant as well, as it must yield the same value regardless
of the coordinate system orientation. For isotropic materials, the trace in the deviatoric plane is of six-fold
symmetry in the Lode angles θ = {0, π/3, 2π/3, π4π/3, 5π/3}, as indicated in the sketch in Figure 2.4. For a
thorough discussion on the yield criterion, see for instance [Ottosen and Ristinmaa, 2005]. As a note to
isotropy, the behaviour of frictional soils may be more accurately presented by a cross-anisotropic model,
see for instance [Praastrup, 2000].

In nonlinear analysis, an incremental approach is used to accommodate nonlinearities. When a strain
increment results in material yielding, and plastic strains occur, There is no longer a unique relation
between the stress and strain increments. The strain increment is decomposed in a purely elastic and a
purely plastic component as

dε = dεe + dεp. (2.8)

The elastic part of the strain increment obeys Hooke’s law, and the plastic part is described by the flow
rule

dεp = dλ∇g, ∇g =
∂g

∂σ
,

where, dλ, is called the plastic multiplier, and, g, is a scalar function called the plastic potential. As
plastic strains are irreversible, the plastic multiplier is restricted to dλ > 0. In geomechanics, the dilative
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σ1 σ2

Line of symmetryLine of symmetry

Line of symmetry

σ3

θ

Figure 2.4: The deviatoric trace of some yield surface for an isotropic material.

behaviour of the material is a fundamental issue, that is, the change in volume during plastic straining.
The plastic potential function dictates the dilative behaviour as the direction of plastic strain increments
are derived by its gradient. In granular materials, the dilatation is often described by the angle of
dilatation, ψ, which gives the inclination of the plastic potential with respect to volumetric strains. In
soils, the angle of dilatation is typically well below the angle of friction, for instance ψ ≈ ϕ− 30, however,
associated flow, ϕ = ψ, is often assumed. The principle of the yield criterion (2.7) and associated
and non-associated plasticity is sketched in Figure 2.5. A plastic potential with a significantly smaller
inclination with the hydrostatic axis as sketched in Figure 2.5b is typical for soil materials.

I1, εv

ρ, εs

f = g = 0

f < 0

f > 0

(a)

I1, εv

ρ, εs

f = 0

g = 0

(b)

Figure 2.5: Yield surface and plastic potential meridians (a) associated plasticity f = g and (b) non-associated plasticity f 6= g.

The angle of dilatation is zero during the ideal shear failure of frictional soils, which means, no
volumetric straining during pure shear failure. As mentioned, the numerical analysis of non-associated
materials, often fails due to numerical instability, to which a solution has been proposed, see for in-
stance [Krabbenhoft et al., 2012]. To analyse non-associated materials, with an associated flow rule, the
following modification of shear strength parameters was argued by [Davis et al., 1968]

ϕass =
cosψ sinϕ

1− sinψ sinϕ
,

cass =
c cosψ cosϕ

1− sinψ cosϕ
, (2.9)

where, ϕ, ψ and c, are the internal angle of friction, angle of dilatation and cohesion, respectively. The
plastic potential surface must be convex as a direct consequence of positive plastic work. Therefore, as
associated plasticity is considered in this thesis, the yield surface is restricted to convex shapes.

2.3 Elasto-Plastic Finite Element Analysis

In this section the overall tasks in an elasto-plastic finite element analysis is described. A linear quasi
static finite element analysis solves the well known system of equations

Ku = f,
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where the force vector can be composed of various types of forces. In this thesis, these are body forces
from the gravitational pull, the consistent nodal forces from surface traction and concentrated loads,
which are given respectively by the expressions

fbody =

∫
Ω

NTb dΩ, fc =
∫
Ω

NT q dΩ, fn = NTP,

where, N, b, q, and P is the field interpolation matrix, the body force vector, a surface traction and a
point force, respectively. The stiffness matrix K is assembled in the usual manner by the element stiffness
matrices, which are calculated with the integral

Kelement =

∫
Ω

BTDB dΩ, (2.10)

where, B and D, is the strain interpolation matrix and the constitutive matrix, respectively. The stiffness
matrix becomes non-linear when a material point in the element is subjected to yielding, as the constitutive
matrix, D, evidently changes. The Newton-Raphson scheme for conducting nonlinear finite element
analysis, is described in the following. The approach in solving the nonlinear system equations is to
increment the load, to obtain a displacement increment

Kt∆u = ∆f. (2.11)

Index t on the system stiffness matrix indicates a tangent system matrix. The stresses in the system due
to the displacement increment are then integrated to obtain a vector of internal forces. The internal forces
in an element is found by [Cook et al., 2002, p. 412]

q =

∫
Ω

BTσ dΩ. (2.12)

Equilibrium requires the external and internal forces to equate. however this will not be true with
nonlinearities present, so a residual is calculated instead

r = f− q,

where, r, is the global residual force vector. The global residual force vector is then used to calculate a
correction in the displacement increment as

Ktδu = r.

The displacement increment, ∆u, is then adjusted with, δu. This procedure is continued until the residual
becomes sufficiently small, and another global load increment is then added, see Table 2.1 for the full
schematics of the Newton-Raphson procedure. Initial stresses and gravitational forces are calculated and
checked for equilibrium prior to the Newton-Raphson algorithm, as it is a typical step in geotechnical
analysis.

Table 2.1: Schematics of the Newton Raphson algorithm for nonlinear elasto-plastic finite element analysis.

Initialize, u0 = 0, f0 = 0 and Kt,i.
Calculate fbody, initial stresses, σ0

1 and ensure equilibrium, fbody − q(σ0
1) = 0

Global incrementation: i = 1, 2, . . . , number of loadsteps

∆u1
i = K−1

t ∆fi

Inner iterations: j = 1, 2, . . .

For all integration points, σji = σj−1
i + Dj

iB∆uji .
Check yield condition. If f(σji ) ≥ 0, update σji and Dji , in return algorithm subroutine.
Update tangent stiffness matrix, Kjt,i+1 = K(Dj

i ).
Calculate residual, rj = fbody + fi−1 +∆f− q(σji ).
Calculate displacement adjustment, δuj = (Kjt,i+1)

−1rj

Update displacement increment, ∆uj = ∆uj−1 + δuj

End iterations when ‖ rj ‖ < TOL ‖ fi−1 +∆f ‖

ui = ui−1 +∆uj

fi = fi−1 +∆f

End of loadstep
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One of the main tasks in the algorithm presented in Table 2.1 is to update the stresses and constitutive
matrices at the Gauss integration points in all elements. This is done according to the procedures described
in Sections 2.5 and 2.4, and in thorough detail for the proposed yield surface models in Appendix C and D.
It can be advantageous for the convergence rate of the analysis to apply a forced displacement instead of
an external load. This can easily be implemented by defining a forced displacement in a number of nodes
and separating those from the unknown displacements as

Kt(uunknown + uknown) = fext ⇔ Ktuunknwon = fext −Ktuknown.

Thereby, the load increment, ∆f, depends on the stiffness of the finite element domain, Kt, and naturally
drops in magnitude, as the extend of plastic strains increase in the model. A task for the analyst is
to determine the tolerance for accepting convergence, TOL. A decent value for this, is for instance
TOL = 5 · 10−3, which is the default setting in Abaqus.

2.4 Elasto-Plastic Stress Strain Relation

In all the analysis conducted in this thesis, the materials are assumed to act homogeneous and isotropic.
The linear elastic stress strain relation is given as, see fore instance [Ottosen and Ristinmaa, 2005, sec. 4.6]

σ = Dε



σxx
σyy
σzz
σxy
σyz
σzx


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1

2
(1− 2ν) 0 0

0 0 0 0
1

2
(1− 2ν) 0

0 0 0 0 0
1

2
(1− 2ν)





εxx
εyy
εzz
γxy
γyz
γzx


, (2.13)

where, ν, and E, are Poisson’s ratio and the modulus of elasticity, respectively. In geomechanics, the
mechanical systems under consideration can often be simplified from general 3D to either plain strain or
axis symmetric conditions. In plain strain conditions, the model is considered planar, and the out of plain
displacements are zero εzz = γyz = γzx = 0, and the stress strain relation is reduced to

σxx
σyy
σzz
σxy

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0
1

2
(1− 2ν)



εxx
εyy
εzz
γxy

 .

The strain interpolation matrix, as described in Appendix A.3, ensures εzz = 0, in the analysis. When
yielding occurs in a material point, Hooke’s law of Equation (2.13) is no longer applicable, and a
relation between increments in stresses and strains are needed. A relation for the yield criterion with an
infinitesimal stress increment is given as

f(σ + dσ) = f(σ) + (∇f)T dσ = 0, ∇f =
∂f

∂σ
.

As f(σ) = 0 the second term is zero as well, this is referred to as the consistency condition

(∇f)T dσ = 0 (2.14)

An infinitesimal stress increment during plastic loading can be expresses by Hooke’s law and the flow
rule as

dσ = Ddεe = D(dε− dεp) = D (dε− dλ∇g) . (2.15)

Substituting Equation (2.15) into (2.14) and isolating the plastic multiplier yields

(∇f)T (D (dε− dλ∇f)) = 0 ⇔ dλ =
(∇f)T Ddε

(∇f)T D∇g
. (2.16)
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The plastic multiplier inserted in (2.15) yields the elasto-plastic constitutive matrix, which relates infinites-
imal stress and strain increments during plastic loading,

dσ = Depdε =

(
D− D∇g (∇f)T D

(∇f)T D∇g

)
dε, (2.17)

which was first derived by [O. C. Zienkiewicz and King, 1969]. The elasto-plastic constitutive matrix
does not conform with a finite increment analysis as conducted in a numerical framework, and leads to
poor convergence rate if in the nonlinear finite element analysis. It is therefore modified to relate changes
in finite increments as

d(∆σ) = Depcd(∆ε),

where, epc, denotes a consistent elasto-plastic quantity. To arrive at an expression for Depc, the stress
update algorithm from Equation (2.21) is considered as

p = −∆σ + D∆ε−∆λD∇g = 0,

which is merely a finite increment formulation of Equation (2.15). Differentiation of p gives,

d(p) =
(
∂p
∂∆ε

)T
d(∆ε) +

(
∂p
∂∆σ

)T
d(∆σ) +

(
∂p
∂∆λ

)T
d(∆λ)

= D̂d(∆ε)−
(

I +∆λD̂∇2g
)

d(∆σ)− d(∆λ)D̂∇g = 0.

Rearranging yields the relation between changes in finite stress and strain increments as

d(∆σ) =
(
I +∆λD∇2g

)−1 D (d(∆ε)− d(∆λ)∇g) = Dcd(∆εe),

where the consistent constitutive matrix, Dc, has been introduced. Insertion in Equation (2.17) yields the
consistent tangent as

Depc = Dc − Dc∇g (∇f)T Dc

(∇f)T Dc∇g
, Dc =

(
I +∆λD∇2g

)−1 D. (2.18)

This expression was first derived by [Simo and Taylor, 1984] and is described in the majority of literature
on the subject since. Some further considerations of the consistent elasto-plastic constitutive matrix are
made at singularities with multi-surface plasticity models, as described thoroughly in Appendix C.

2.5 Stress Update by Return Mapping

When a material point in the finite element model reaches a plastic stress state, Hooke’s law no longer
applies as a unique relation between stress and strain increments. Therefore, the stress increment needs
to be calculated by other means. In this thesis, a conventional return mapping scheme is utilised for this
purpose, see for instance [de Borst et al., 2012] for a thorough elaboration on this. All the calculations are
carried out in principal stress representation, which enables geometrical arguments and interpretations
of the steps in the return mapping algorithm.

Assuming the complete decomposition of strains into elastic and plastic components, gives an
infinitesimal stress increment according to Hooke’s law as

dσ = D dεe = D (dε− dεp) . (2.19)

Integration over a finite increment yields

∆σ = ∆σe −∆σp = D ε−
∫ λ+∆λ

λ

D∇g dλ, (2.20)

where, ∆σe, is referred to as the elastic predictor, and, ∆σp, the plastic corrector. As the return path is
unknown, the integral for the plastic corrector is approximated as a linear incrementation, where the
gradient of the potential function is evaluated at the return point on the yield surface as

∆σp ' ∆λD∇g(σC),
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where subscript C denotes the return point on the yield surface, as indicated in the sketch in Figure 2.6.
Inserting in Equation (2.20) and employing the yield criterion as an additional constrained equation
yields the system of equations to be solved in the implicit return mapping scheme as

σC = σB −∆λ D ∇g(σC)
f(σC) = 0

(2.21)

Utilising the expression for the plastic multiplier in Equation (2.16), and the notation from Figure 2.6, the
plastic corrector is given as

∆σp = ∆λ D∇g(σC) =
f(σ

B
) D∇g(σC)

∇gT
C

D∇f(σC)
= σB − σC . (2.22)

σ1σ2

σ3

A

B
C

∆σ e
= Dε

∆σp = Dεp

∆σ
f = g = 0

(a)

p

ρ

f = g = 0

O

B

σB ∆σp

σC

(b)

Figure 2.6: Geometrical illustration of return mapping in principal stress space, associated plasticity assumed. (a) deviatoric plane
and (b) meridian plane ν = 0.

The expression in Equation (2.22) can be evaluated directly if the gradient at point C is known, that is,
the gradient at point C is the same as in point B. This is the case for some criteria, fore instance Mohr
Coulomb and Drucker Prager. The approximation of taking the gradient at point C for the updated stress
is referred to as a fully implicit scheme, as the updated stress depends solely on information from the
”next step”. It has proven to be robust and is a common approach [de Borst et al., 2012]. Some further
considerations of the return map scheme are made with multi-surface plasticity, for stress returns to yield
surface discontinuities, see Appendix C for elaboration.

2.5.1 Accuracy of return mapping

In Equation (2.21) the potential gradient is assumed constant over the stress path. An approach to avoid
this assumption is to adopt the infinitesimal elasto-plastic stress strain relation of Equation (2.17). The
updated stress state can be obtained directly by integration as

σj+1 = σj +∆σ = σj +

εj+∆ε∫
εj

Depdε.

As the elasto-plastic constitutive matrix depends on the current stress state, a numerical integration
scheme is called for. An explicit Euler integration with sub incrementation of the strain increment is
applied as

σj+1 = σj +

N∑
i=1

δσi, δσi+1 = Dep

(
σj +

i∑
k=1

δσk

)
δε, ε = δ

ε

N
. (2.23)

The outcome of stress integration with the explicit integration scheme in Equation (2.23) is compared
to the implicit return mapping in Figure 2.7. A yield surface of no hydrostatic stress dependency is
utilized here, to visualize in the deviatoric plane. A surface with some curvature reveals the differences
as the gradient clearly influences the outcome, whereas the linear surface has constant gradient, and
the methods yields the same updated stress. A different outcome of the updated stress state is obtained
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(a)

Sub-incrementation of implicit return map

Explicit integration
Implicit return map

(b)

Figure 2.7: Stress update by explicit integration with a sub-incrementation of the strain increment,N = 10, implicit return mapping
and successive implicit return mapping with sub-incrementation (a) von Mises plasticity (b) Tresca plasticity.

by sub-incrementation of the strain increment, and successively applying the implicit return mapping
scheme, as illustrated in Figure 2.7a.

The true stress path is evidently better described by an explicit integration, however, with the obvious
downfall that the yield criterion is not necessarily fulfilled, and the updated stress state drifts away from
the yield surface as seen in Figure 2.7a. Return algorithms, which are not fully implicit, operating on
average gradients has been used, see for instance [Ottosen and Ristinmaa, 2005], as these are considered
a more accurate of the stress increment. However, the fully implicit return map is by far the most widely
used method and is generally efficient and robust. The size of the strain increment has influence on
the accuracy. The point of first contact with the yield surface needs to be calculated both with explicit
integration and average gradient return mapping schemes, which is unnecessary in the implicit return
map.

2.5.2 General solution algorithm for the implicit return map

The system of equations in (2.21) can readily be solved by Newtons method. The equations are stacked in
a solution vector as

q =

{
σC − σB +∆λ D∇g

C

f(σC)

}
= 0, (2.24)

which is solved by Newton’s method, where the solution in iteration j + 1 is calculated by,{
σC
∆λ

}
j+1

=

{
σC
∆λ

}
j

− J−1j qj ,

where, J, is the Jacobian matrix given as

J =


∂q1/∂σxx

∂q1/∂σyy . . . ∂q1/∂∆λ
∂q2/∂σxx

∂q2/∂σyy . . . ∂q2/∂∆λ
...

...
. . .

...
∂q7/∂σxx

∂q7/∂σyy . . . ∂q7/∂∆λ

 =

[
I +∆λD∇2g D∇g

(∇f)T 0

]
,

for the general 6D stress space. A typical initial guess to initiate the Newton iterations is

σ0 =
[
σTB 0

]T
.
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The Newton iterations are terminated when the incrementation is sufficiently low, that is

‖ J−1j qj ‖< ε,

where, ε, is a prescribed tolerance of which the numeric value should depend on the units. The system of
equations in Equation (2.24), can be reduced from seven equations in general stress space, to four if the
calculations are carried out in principal stress space.



3 | Constitutive Models in Geomechan-
ics

In this section, some widely used yield criteria in geomechanics are introduced for an overview. The yield
criterion is the sole extraction from the constitutive models referenced in this chapter, as flow rule and
hardening law are beyond the scope of the following discussion. Yield criteria of various characteristics
for different purposes are available, some derived on an empirical basis and some with offset in a
mathematical formulation. In the following, the yield surfaces are categorised on their hydrostatic stress
dependency, either with none, linear or nonlinear. Some of the more advanced criteria is of a higher-order
deviatoric trace and is formulated to accommodate results of true triaxial tests. To be further noted
in the yield surface models in this chapter, is whether the ρt/ρc−ratio, or meridional eccentricity, is
adjustable or fixed. Another characteristic of yield surfaces, with importance in numerical calculations, is
the continuity of the deviatoric trace. All the criteria in this section are lastly presented in a complete
schematic overview.

3.1 No Hydrostatic Stress Dependency

Yield surfaces without hydrostatic stress dependency are few, and not for modelling of frictional materials.
Within geomechanics, however, the Tresca criterion can be highlighted.

3.1.1 The Tresca Criterion

The Tresca yield criterion was proposed by Tresca in 1864, and described in fore instance [Ottosen and
Ristinmaa, 2005, sec. 8.7]. The criterion was proposed in relation to his works with metal plasticity,
however, in geotechnical context used extensively in constitutive modelling of undrained clay. The yield
criterion can be expressed as

f = σ1 − σ3 −m, σ1 ≥ σ2 ≥ σ3, (3.1)

where, m, is a material parameter. For metals it is related to the yield strength, σY , and for undrained
clay it is related to the undrained shear strength (or cohesion), cu. The physical interpretation of this
criterion is that the elastic extend of the material is limited by a certain maximum shear stress, (σ1−σ3)/2,
independent of the hydrostatic stress. The yield surface is sketched in deviatoric and meridian planes
in Figure 3.1. The deviatoric radius is smallest at the shear meridian, θ = pi/3, as seen clearly in the
deviatoric plane, and constituted by the mathematical expression in Figure 3.1b.

σ1 σ2

σ3

(a)

p

ρ

√
3
2
m/(cos(θ)−cos( 2

3
π+θ))

(b)

Figure 3.1: The Tresca yield surface sketched in (a) deviatoric plane and (b) meridian plane.

3.2 Yield Surfaces with Linear Generators

In the analysis of frictional materials, a dependency on the hydrostatic pressure is inherent. The Mohr-
Coulomb and Drucker-Prager yield surfaces is examples with linear generators, and are described in

15
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some detail in this section. These are amongst the oldest yield criteria and are used extensively in soil
mechanics to this date.

Some more advanced models with linear generators is for instance the surface of Matsuoka-Nakai, as
proposed in [Matsuoka and Nakai, 1974], developed for frictional materials. An efficient implementation
of this criterion has been proposed by for instance [Panteghini and Lagioia, 2014]. An example of a
yield surface with a more parametrically controlled deviatoric trace is the Modified Drucker-Prager
model, which is a built-in plasticity model in the commercial software, Abaqus [Simulia, 2014, Sec.
23.3.2]. It is a modification of the Drucker-Prager criterion, with a continuous deviatoric trace, and an
additional parameter to adjust the ρt/ρc-ratio. A yield surface model with quite some coverage in the
deviatoric plane is the Reuleaux plasticity model [Coombs, 2010]. This surface is composed of three
cone segments, and has a deviatoric discontinuity under triaxial compression. It is mentioned here, as it
bears some resemblance, and is a special case of the yield surface proposed in this thesis. As a concept,
the Paul-Mohr-Coulomb criterion [Paul, 1968] was proposed as a surface, composed of any number of
linear segments. The amount of discontinuities is a disadvantage and the Paul-Mohr-Coulomb model
has not gained commercial use, however, adopted in some researches as for instance [Meyer and Labuz,
2013]. Another yield surface which is similarly composed of linear segments in the deviatoric trace, is the
Unified Strength theory [Yu, 2018]. This has been applied to a wider extend, at least within the academic
community, for instance in studies of the intermediate principle stress effects [Ma et al., 2011] and [Zhou
et al., 2013].

3.2.1 The Mohr-Coulomb criterion

The Mohr-Coulomb criterion is described in some detail in this section. This criterion dates back
to [Coulomb, 1773] and is described in much literature since, fore instance [Ottosen and Ristinmaa, 2005,
Sec. 8.5]. It is still used extensively in analysing soil, along with other frictional materials, for instance
concretes. The yield criterion can be expressed in principle stresses as

f(σ1, σ3) = σ1 − σ3 + (σ1 + σ3)− 2c cosϕ

f(σ1, σ3) = kσ1 − σ3 − σc
, σ1 ≥ σ2 ≥ σ3, (3.2)

where, k and σc, is the friction parameter and the uniaxial compression strength, respectively. Note the
explicit absence of the intermediate principal stress, σ2, in Equation (3.2), which motivates the studies in
Chapter 5. The Mohr Coulomb criterion is a restriction of the maximum shear as the Tresca criterion,
however, the maximum shear capacity depends on the hydrostatic stress as well. The friction parameter,
given through the internal angle of friction, and the uniaxial compression strength are given as

k =
1 + sinϕ

1− sinϕ
∧ σc = 2c

√
k, (3.3)

The Mohr Coulomb criterion can be visualized in principle stress space as an irregular hexagonal pyramid.
It is delineated in the deviatoric and meridian plane in Figure 3.2. The Mohr-Coulomb yield surface
resembles the Tresca surface in the deviatoric trace for ϕ = 0, and the trace resembles a triangle for
ϕ = π/2. The Mohr-Coulomb yield surface is of constant ρt/ρc-ratio given as

ρt
ρc

=
3− sinϕ

3 + sinϕ
,

unlike for instance the Paul-Mohr-Coulomb model.

3.2.2 The Drucker-Prager criterion

The Drucker Prager criterion was suggested by [Drucker and Prager, 1951], and the surface forms a cone
around the hydrostatic axis in principal stress space. The shape of the yield surface renders it more robust
in numerical analysis than Mohr-Coulomb, as the only discontinuity is the apex. The yield criterion can
be expressed though the first invariant, I1, and the second deviatoric stress invariant, J2, as

f(I1, J2) =
√

3J2 + αI1 − β, (3.4)



3.3. Yield Surfaces with Nonlinear Generators 17

σ1 σ2

σ3

(a)

p

ρ
θ = 60

θ = 0

| |σc
k − 1

(b)

Figure 3.2: The Mohr-Coulomb yield surface in (a) deviatoric plane and (b) meridian plane.

where, α and β, are material parameters. These could for instance be expressed by the angle of friction and
the cohesion, to fit the Mohr-Coulomb pyramid in some manner. The same limit load can be obtained with
a Drucker-Prager model in plane strain conditions, see for instance [Drucker and Prager, 1951], however,
the displacement response is rather different than with the Mohr-Coulomb model. A three-dimensional
problem is, however, poorly described by the Drucker-Prager model, as discussed by for instance [Bishop,
1966] and [Alejano and Bobet, 2012]. The Drucker-Prager criterion equals Mohr-Coulomb in plane strain
and circumscribes the Mohr-Coulomb pyramid, in the following settings of the parameters,

α =
sinϕ√

3 + sin2 ϕ

β =
3c cosϕ√
3 + sin2 ϕ

 Drucker-Prager equals Mohr-Coulomb in plane strain, (3.5)

α =
2 sinϕ

3− sinϕ

β =
6c cosϕ

3− sinϕ

 Drucker-Prager circumscribes Mohr-Coulomb. (3.6)

The failure surface is depicted in the deviatoric and meridian plane in Figure 3.3. The Drucker-Prager
criterion is independent on the Lode angle, θ, as opposed to the Mohr-Coulomb criterion, seen clearly in
the deviatoric plane in Figure 3.3a. The ρt/ρc−ratio is fixed and equal to one, opposed to the Modified
Drucker-Prager criterion.

σ1 σ2

σ3
α and β from Equation (3.6)

α and β from Equation (3.5)

(a)

p

ρ

| |
β

α3

|√
2

3
β

(b)

Figure 3.3: The Drucker-Prager surface in (a) deviatoric plane inscribing and circumscribing the Mohr-Coulomb surface and (b)
meridian plane.

3.3 Yield Surfaces with Nonlinear Generators

Frictional soil materials often exhibits a decrease in the angle of friction, as the hydrostatic stress level
increases. It is therefore more appropriate to operate with yield criteria of nonlinear hydrostatic stress
dependency. Some famous yield criteria with nonlinear generators are briefly described in this section.
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The surface of Lade [Lade, 1977], the Hoek-Brown criterion [Hoek and Brown, 1980] and the Bolton
criterion [Bolton, 1986], are explored in some further detail in the following.

3.3.1 The Lade criterion

Lade’s plasticity model is used to model purely frictional soil materials [Helwany, 2007, Sec. 2.10], and
was presented by [Lade, 1977]. The mathematical expression of the failure criterion is given as

f(I1, I3) =

(
I31
I3
− 27

)(
I1
pa

)m
− η1 = 0, (3.7)

where, η1 and m determines the shape of the surface, and is determined through laboratory tests and pa
is the atmospheric pressure. The deviatoric trace is continuous with fixed ρt/rhoc−ration, and a yield
surface with linear generators is rendered with m = 0. The failure surface is plotted in the deviatoric
plane, with η1 such that it circumscribes the Mohr Coulomb pyramid, in Figure 3.4. Lades’s yield criterion

(a)

I1

ρ

(b)

Figure 3.4: (a) The Lade yield surface made to circumscribe the Mohr-Coulomb surface with m = 0 and (b) Nonlinear generators
of the Lade yield surface, m 6= 0

is found to describe purely frictional soil material quite well, and may obtain further popularity being
of a particularly elegant mathematical formulation, with merely two parameters. The deviatoric trace
seen in Figure 3.4a is a fairly good representation of the more dense sand types, as seen in true triaxial
experiments [Lade and M. Duncan, 1973].

3.3.2 The Bolton criterion

This failure criterion is based on the works of [Bolton, 1986], where he examined experimental results
from plane strain and triaxial compressions tests of 17 different types of sand. An empirical expression
for the secant angle of friction as function of the hydrostatic stress level was proposed, however, no actual
failure criterion is stated in his paper. This expression is then adopted in a Mohr-Coulomb model as the
application of Bolton’s formula. See for instance [Choo, 2018] for implementation in a computational
framework, and the Bolton model is available in for instance the “Optum” software, see [Krabbenhoft
et al., 2016b]. The failure criterion reads

f = σ1 − σ3 + (σ1 + σ3) sin (ϕ(p)), σ1 ≥ σ2 ≥ σ3, (3.8)

where Bolton’s formula for the secant angle of friction is

ϕ(p) = ϕcv + 0.8ψmax(p). (3.9)

Here, ϕcv , is the constant volume, or critical state, angle of friction, which is measured when shear failure
occurs, and the volume is constant i.e. zero dilatation. This model is often referred to as a critical state
model, as it operates on ϕcv . The maximum observed angle of dilatation reads

0.8ψmax(p) = bIr,

where
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b =

{
5, Plane strain
3, Triaxial strain

,

and the relative dilatancy index, Ir, reads

Ir = Id(Q− ln (p)−R, 0 ≤ Ir ≤ 4.

Here, Id, is the relative density, Q, is a parameter related to particle crushing and, R, is a model parameter
often set equal to 1. A value of 10 for the parameter, Q, fits well to quartz and feldspar grains, see for
instance [Bolton, 1986] for the Q-parameter for some common soils. Bolton’s formula (3.9) yields the
angle of friction in degrees as a function of the hydrostatic pressure in kPa.

As the relative density enters these expressions directly, density effects may be incorporated in
numerical analysis of sands without any further parameter calibration, as proposed by [Choo, 2018]. The
yield surface is depicted in deviatoric and meridian plane in Figure 3.5. The ρt/ρc−ratio is fixed as in
Mohr-Coulomb, however, varies with the hydrostatic pressure as the angle of friction.

(a)

p

(b)

Figure 3.5: The Bolton surface depicted in (a) deviatoric plane and (b) meridian plane with different values of ϕcv .

3.3.3 The Hoek-Brown criterion

This criterion was proposed by [Hoek and Brown, 1980] and is formulated on an empirical basis. It
has been modified since it’s original form in 1980, see for instance [Hoek et al., 2002] for a more recent
version. It is a model for rock masses, and its applications are for instance underground excavations,
slope stability calculations etc. It is one of few yield surfaces with non-linear generators, which has
gained widespread use amongst practitioners. This popularity may stem from the so called GSI system,
for determination of the parameters from in-situ observations.

The yield criterion is given as

f = σ3 − σ1 − σci
(
s+mb

σ1
σci

)a
, σ1 ≤ σ2 ≤ σ3, (3.10)

where, σci, is a scaling of the intact uniaxial compressive strength of the intact rock, σc, reading

σci =
σc
(s)a

.

Here, s, mb, and a, are empirically defined parameters which are related to the in-situ conditions on the
rock material. These are calculated from

mb = miexp
(
GSI − 100

28− 14D

)
,

s = exp
(
GSI − 100

9− 3D

)
,

a =
1

2
+

1

6

(
exp

(
−GSI

15

)
− exp

(
−20

3

))
,

where, GSI , is the geological strength index, D, accounts for blast damage and stress relaxation and,
mi, is a material constant which ideally is determined from laboratory tests. The geological strength
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index and the factor, D, is determined through classifications of the visual conditions of the in-situ soil
material found in fore instance [Hoek et al., 2002]. It is, however, necessary to conduct laboratory tests
for the uniaxial compressive strength. The yield criterion is absent of σ2 and resembles Mohr-Coulomb
in the deviatoric trace, see Figure 3.6 for a sketch of the surface in deviatoric and meridian plane. The
ρt/ρc−ratio is fixed, however, varies with the hydrostatic stress.

(a)

p

(b)

Figure 3.6: The Hoek Brown yield surface depicted in (a) deviatoric plane and (b) meridian plane with different values of a.

3.4 A Schematic Overview

Several yield criteria have been proposed throughout history, were some widely used have been described
in this chapter. These are summarized along with their primary characteristics in Table 3.1.

Hydrostatic stress dependency is inherent in frictional materials. This dependency is often simplified
as linear, for instance Mohr-Coulomb or Drucker-Prager, although, more sophisticated models have
been proposed, for instance Lade, Hoek-Brown, or Bolton. The Mohr-Coulomb criterion is without
influence of the intermediate principle stress, opposed to Drucker-Prager, where all the stresses are
equally weighted. The Matsuoka-Nakai and the Lade surfaces are of elegant mathematical formulations
and are widely accepted as describing some frictional soil materials, however, quite material specific.
The modified Drucker-Prager, Reuleaux and Paul-Mohr-Coulomb surfaces are parametrically controlled
in the deviatoric trace to some degree, and may therefore be used to model a wider range of materials.

Table 3.1: Primary characteristics of several yield surfaces used in geomechanics.

Tresca f = σ1 − σ3 −m

σ1 σ2

σ3

I1

ρ Modelling purpose examples: Metals and undrained clay
Material parameters: m.
Description: Discontinuous yield surface, independent of hydrostatic
stress and σ2, with fixed deviatoric trace. Failure due to maximum
shear stress. See for instance [Ottosen and Ristinmaa, 2005].

Mohr-Coulomb f = kσ1 − σ3 − 2c
√
k

σ1 σ2

σ3

I1

ρ
Modelling purpose examples: Frictional and cohesive materials
Material parameters: ϕ and c.
Description: Discontinuous yield surface, linear dependency of
hydrostatic stress and no influence from σ2, with fixed deviatoric trace.
Failure due to maximum shear stress. Originally proposed by [Coulomb,
1773], see for instance [Ottosen and Ristinmaa, 2005] for elaboration.

Drucker-Prager f =
√
3J2 + αI1 − β

σ1 σ2

σ3

I1

ρ
Modelling purpose examples: Frictional and cohesive materials
Material parameters: α and β .
Description: Smooth continuous yield surface, linear dependency of
hydrostatic stress and equal influence from all principle stresses, with
fixed deviatoric trace. Failure is related to the change in shape.
Proposed by [Drucker and Prager, 1951].
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Unified Strength
Theory

f =

{
(bσ2 + σ3)/(k(1 + b))− σ1 + 2c/

√
k, σ2 ≤ σ1(1 + sinϕ)/2 + σ3(1− sinϕ)/2

σ3/k − (bσ2 + σ1)/(1 + b) + 2c/
√
k, σ2 > σ1(1 + sinϕ)/2 + σ3(1− sinϕ)/2

I1

ρ Modelling purpose examples: Frictional materials
Material parameters: ϕ, c, and b.
Description: Discontinuous yield surface, linear dependency of
hydrostatic stress (in the version presented here) and influence from all
principle stresses, with flexible deviatoric trace. Proposed by [Yu, 2018].

Modified Reuleaux f = ρ− αρ(θ)

I1

ρ Modelling purpose examples: Frictional and cohesive materials
Material parameters: ϕ and ρe = ρt/ρc.
Description: Surface with linear generators with a sharp apex point and
a discontinuity in the triaxial compression corner. Parametrically
controlled ρc/ρt−ratio. Proposed by [Coombs, 2010].

Modified
Drucker-Prager

f =
√

3J2/2

(
1 + 1/K − (1− 1/K)

(
(27/2J3)

1/3/
√

3J2

)3)
− I1/3 tanβ − d

I1

ρ
Modelling purpose examples: Frictional and cohesive materials
Material parameters: d, β and K.
Description: Smooth continuous yield surface, linear dependency of
hydrostatic stress and influence from all principle stresses, with
adjustable deviatoric trace. Failure is some combination of the change in
shape and maximum shear stress. See for instance [Simulia, 2014].

Lade f =
(
I31/I3 − 27

)
(I1/pa)

m − η1

Modelling purpose examples: Frictional materials
Material parameters: m and η1.
Description: Smooth continuous yield surface, nonlinear dependency of
hydrostatic stress and influence from all principle stresses, with fixed
deviatoric trace. Proposed by [Lade, 1977].

Matsuoka-Nakai f = −9I3 − κI3 + I1I2

I1

ρ
Modelling purpose examples: Frictional materials
Material parameters: κ.
Description: Smooth continuous yield surface, linear dependency of
hydrostatic stress (in the version presented here) and influence from all
principle stresses, with fixed deviatoric trace. Proposed by [Matsuoka
and Nakai, 1974].

Hoek Brown f = σ3 − σ1 − σci
(
s+mb

σ1

σci

)a
Modelling purpose examples: Developed for rock masses.
Material parameters: σci, mi, D and GSI .
Description: Criterion based on empiric. Discontinuous yield surface,
nonlinear dependency of hydrostatic stress and no influence from σ2,
with fixed deviatoric trace. A Maximum shear stress criterion. Proposed
by [Hoek and Brown, 1980].

Bolton f = |σ1 − σ3|+ (σ1 + σ3) sin (ϕcv + b(Id(Q− ln(|p|))−R))

Modelling purpose examples: Frictional soil
Material parameters: ϕcv , b, Id, Q and R.
Description: Criterion based on plain strain and triaxial tests of 17
sands. Discontinuous yield surface with nonlinear generators and no
influence from σ2, with fixed deviatoric trace. A Maximum shear stress
criterion. Proposed by [Bolton, 1986]

Paul-Mohr-Coulomb f = Aσ1 +Bσ2 + Cσ3 (simplest version)

σ1 σ2

σ3

I1

ρ
Modelling purpose examples: Frictional and cohesive materials.
Material parameters: A, B and C in this formulation.
Description: Yield surface composed of n× 6 planes with n as a
positive integer. Discontinuous yield surface, linear dependency of
hydrostatic stress and influence from all principle stresses, with
adjustable deviatoric trace. Proposed by [Paul, 1968].
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4 | The General Parametric Yield
Surface Format

In this chapter, a concept of parametric yield surfaces is introduced, as proposed by professor Lars
Damkilde [Damkilde, 2019]. A similar yield surface formulation has not been found in the existing
literature by the authors. This concept of yield surfaces is herein referred to as the General Parametric
Yield Surface Format. The scope is to formulate a multi-surface yield criterion, which can be used as
model for a wide range of materials. This is previously attempted by some of the models described
in chapter 3, for instance the Paul-Mohr-Coulomb model [Paul, 1968], Reuleaux Plasticity [Coombs,
2010] or the Unified Strength Theory [Yu, 2018], However, none of these are as versatile as the herein
proposed. The works on some of the yield surface models in this chapter has resulted in two papers,
which can be found in Appendix C and D. An overall description of these surfaces and the derivation of
the yield criteria is given in this chapter, see the aforementioned appendices for a thorough mathematical
description and finite element implementation. The third yield surface model proposed in this chapter is
with nonlinear generators, and the implementation is analogous to the implementation in Appendix D.

The concept of the proposed yield surface is to formulate a deviatoric trace, composed of circular
segments, as illustrated in Figure 4.1. A key element is to define the deviatoric trace, and the meridional
variation separately. It is advantageous to assume the conventional ordering of the principal stresses as,
σ1 ≥ σ2 ≥ σ3, and isotropic behaviour, so the six-fold symmetry of the yield surface can be exploited.
These assumptions is applied in Figure 4.1a, where the deviatoric trace is composed of one circular
segment, defined by a centre, c, and radius, r. The entire trace rendered by the six-fold symmetry is
shown in Figure 4.1b. Any number of circular segments can in principle be used to define the deviatoric
trace. The factorization of the deviatoric and hydrostatic variation results in a highly adjustable surface
formulation. With linear generators, the yield surface is composed of conical segments from an oblique
cone. Any appropriate non-linear hydrostatic stress dependency is easily adopted, by replacing the
aforementioned meridional function.

(a) (b)

Figure 4.1: Conceptual sketch of the proposed yield surface model (a) circular segment in deviatoric plane sextant, σ1 ≥ σ2 ≥ σ3,
and (b) the entire trace.

In Section 4.2 a deviatoric trace of six circular segments is defined, which corresponds with the one
illustrated in Figure 4.1. This is a discontinuous trace, which motivates the formulation of a continuous
trace as in Section 4.3. In Sections 4.4 and 4.5 yield surfaces are rendered by linear and nonlinear
generators respectively. The surface of linear generators arises from the Mohr-Coulomb surface, and
covers a wide range of convex shapes between the Mohr-Coulomb and Drucker-Prager surfaces. The
surface of nonlinear generators arises from the Bolton criterion, and can be considered an extension of the
Bolton surface, with the option of adjusting the ρt/ρc-ratio and side curvature. On top of this, it furnishes

23
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a numerically robust implementation as a smooth continuous approximation of the Bolton model.

4.1 Transformation to Reference Coordinates

As a preliminary consideration to formulating the yield surface, it is found convenient to define the
deviatoric geometry in the cartesian σ∗-coordinate system illustrated in Figure 4.2.

σ1 σ2

σ3

σ∗1

σ∗2

σ∗3

Figure 4.2: Illustration of the σ∗-coordinate system superimposed on the original principal stress axis, seen in the deviatoric plane.

The transformation from principal stresses to σ∗ coordinates is performed by three plane rotations,
as sketched in Figure 4.3. The first two rotations makes the σ∗1-axis coincide with the hydrostatic axis,
and the latter rotation of 30 degrees, makes the σ∗2-axis coincide with the deviatoric projection of the first
principal axis.

(a) (b)
(c)

Figure 4.3: Transformation from principal stress to σ∗-coordinates in three steps (a) 45 degrees rotation about σ3 (b) arccos
√

2/3
radians rotation about σ′′2 and (c) 30 degrees rotation about σ∗1 .

The three transformations sketched in Figure 4.3 reads

σ∗ = Tσ =


σ∗1
σ∗2
σ∗3

 =

1 0 0

0
√
3/2 1/2

0 −1/2
√
3/2


√

2/3 0 1/
√
3

0 1 0

−1/
√
3 0 1/

√
3

 √2/2
√
2/2 0

−
√
2/2

√
2/2 0

0 0 1


σ1
σ2
σ3


=

 1/
√
3 1/

√
3 1/

√
3

−
√

2/3 1/
√
6 1/

√
6

0 −1/
√
2 1/

√
2


σ1
σ2
σ3

 . (4.1)

The inverse of, T, equals the transpose, as exploited in the inverse transformation to principal stresses

σ = T−1σ∗ = TTσ∗ =

1/
√
3 −

√
2/3 0

1/
√
3 1/

√
6 −1/

√
2

1/
√
3 1/

√
6 1/

√
2

σ∗. (4.2)

Note the relations with the stress invariants

p =
σ∗1√
3

∧ ρ =
√

(σ∗2)
2 + (σ∗3)

2.
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4.2 Discontinuous Deviatoric Trace

A deviatoric trace composed of six circular segments is described in general terms in this section. Isotropic
material behaviour is assumed in order to utilized the six-fold symmetry of the trace, to merely operate
on one of these circular segments. Two parameters denoted α and β1, are introduced, which adjusts the
meridional eccentricity and curvature, respectively. These parameters are solely related to the deviatoric
trace, and meridional parameters are introduced in later sections to complete the surface formulation.

(a) (b)

Figure 4.4: Sketch with relevant measures in the ρc-normalized deviatoric plane for derivation of the GPYS criterion, measures of
(a) length and (b) angle.

The radius and centre of curvature are conveniently, with respect to later derivations, calculated in a
ρc-normalized deviatoric plane with

ρc = 1 ∧ ρt = α+
3− sinϕ

3 + sinϕ
(1− α) , (4.3)

where, α and ϕ, is the meridional eccentricity and internal angle of friction, respectively. In this manner,
the ρt/ρc-ratio is in coherence with the Mohr-Coulomb criterion for α = 0 and gives ρt = ρc for α = 1.
The secant length, L, and the angle, γ, of Figure 4.4, are calculated by the Pythagorean theorem and the
tangent relation as

L =

√√√√(√3
2

)2

+

(
ρt −

1

2

)2

∧ γ = arctan

ρt −
1

2√
3

2

 . (4.4)

The normalized centre in σ∗-coordinates and radius is found by straightforward geometrical relations
and reads

c∗1 =

{
r1 cos ((1− β1) γ)− ρt
r1 sin ((1− β1) γ)

}
∧ r1 =

L

2 sin (β1γ)
, (4.5)

where, β, is introduced to adjust the curvature by scaling the angle γ. It is obvious from Equation (4.5),
that β1 cannot equal zero, however, approximates a straight line as it goes towards it, say 10−4. The
deviatoric trace is visualized in Figure 4.5 for an approximated Mohr-Coulomb hexagon, perfect circle
and a Reuleaux triangle, to demonstrate the possibilities with the parametric circle in Equation (4.5).

4.3 Continuous Deviatoric Trace

Yield surfaces of discontinuous deviatoric traces can lead to poor convergence in numerical analysis,
which is the main motivation for the deviatoric trace presented in this section. The fundamental issue
is, that the gradient at the singularities of discontinuous yield surface is not uniquely defined. This
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(a) (b) (c)

Figure 4.5: The deviatoric trace derived in the present section in different settings (a) Mohr-Coulomb hexagon α = β1 = 0 (b)
perfect circle α = β1 = 1 and (c) Reuleaux triangle β1 = 1.

constitutes a general issue in defining the consistent tangent matrix of Equation (2.18), which for instance
can be addressed by formulating a continuous approximation of the original criterion. This is often
referred to as a corner rounding, and the motivation for deviatoric trace in this section is to formulate
a corner rounded version of the trace in Section 4.2. The concept is to introduce tangent circles at the
deviatoric corners as illustrated in Figure 4.6. As in the preceding section, isotropic material behaviour
is assumed in order to utilized the six-fold symmetry of the trace, to merely operate on three circular
segments. Two additional parameters, β2 and β3, are introduced to adjust the curvature of these circles.
See Figure 4.6 for a sketch of the deviatoric geometry, which defines the trace.

Figure 4.6: Geometrical relations of the present deviatoric trace.

The intention later on is to formulate a yield criterion as a multifunction expression, therefore,
the regions denoted RI, RII and RIII, bounded by the lines l1 and l2, are introduced. The intersection
between l1 and the deviatoric projection of the σ3-axis defines the second centre of curvature, c2, and the
intersection between l2 and the deviatoric projection of the σ1-axis defines the third centre of curvature,
c3, as depicted in Figure 4.6. In this manner, the trace is inherently continuous and convex. The deviatoric
measures, ρc and ρt, of Equation (4.3) is adopted, and the circular geometries defining the deviatoric
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trace is expressed as

c∗1 =

{
r1 cos ((1− β1) γ)− ρt
r1 sin ((1− β1) γ)

}
∧ r1 =

L

2 sin (β1γ)
,

c∗2 = (1− β2)
{
−1/2

−
√
3/2

}
∧ r2 = r1− ‖ c∗1 − c∗2 ‖,

c∗3 = (1− β3)
{
−ρt
0

}
∧ r3 = r1− ‖ c∗1 − c∗3 ‖ .

(4.6)

The region for a stress state is determined by the inequalities in Table 4.1, which uses the tangent vectors
at the intersection point between ln and the yield surface.

Table 4.1: Condition statements for determination of deviatoric region.

Condition Region

tT2

(
σ∗d − c

∗
1ρc
)
≤ 0 ∧ tT3

(
σ∗d − c

∗
1ρc
)
≥ 0 RI

tT2

(
σ∗d − c

∗
1ρc
)
> 0 RII

tT3

(
σ∗d − c

∗
1ρc
)
< 0 RIII

t2 =

{
−c∗22 + c∗12

c∗21 − c∗11

}
∧ t3 =

{
−c∗32 + c∗12

c∗31 − c∗11

}
.

The parameters, β1, β2, and β3, are all dimensionless parameters in the interval ]0; 1]. The capabilities
of this geometry is illustrated in Figure 4.7 for different corner roundings of a Mohr-Coulomb hexagon,
Reuleaux triangle and perfect hexagon (Tresca).

(a) (b) (c)

Figure 4.7: The deviatoric trace derived in the present section used in corner rounding, with different values of β2 and β3, of (a)
Mohr-Coulomb hexagon (b) Reuleaux triangle and (c) perfect hexagon.

4.4 Formulation with Mohr-Coulomb Generators

The yield surfaces generated by the deviatoric traces in sections 4.2 and 4.3 with linear hydrostatic stress
dependency is presented in this section. The concept is to formulate a meridional function, ρc, as function
of the hydrostatic stress, p, which is simply multiplied on the centres and radii of Equations (4.5) and (4.6),
to obtain the deviatoric geometry for any hydrostatic stress. The meridional function is adopted as the
compressive generator of the Mohr-Coulomb surface, defined by the internal angle of friction, ϕ, and
cohesion, c, which establishes immediate familiarity in the parameters. Linear generators with circular
segments in the deviatoric plane renders a surface composed of segments from oblique cones as sketched
in Figure 4.8, along with the compressive generator of the yield surface.

The expression for ρc is found by formulating the Mohr-Coulomb criterion in Haigh-Westergaard
space with θ = π/3, and reads

ρc = µ

(
p− 2c

√
k

k − 1

)
, µ =

1− k√
2/3 (k/2 + 1)

, k =
1 + sinϕ

1− sinϕ
. (4.7)
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Figure 4.8: (a) Linear compressive generator and (b) oblique cone generated by a circular deviatoric trace with linear hydrostatic
stress dependency.

The apex singularity leads to poor convergence in numerical analysis. Therefore, a smooth local rounding
of the apex is proposed in the following, by introducing a circular segment in the meridian plane as
sketched in Figure 4.9.

Figure 4.9: Geometrical relations for local rounding of apex singularity by circular segment.

The circular geometry for the rounded apex are calculated by straightforward geometrical relations as

c4 =

(
(1− β4)

2c
√
k

k − 1
− r4

){
1

0

}
∧ r4 = β4

2c
√
k

k − 1
cot (ζ4) cot

(
ζ4
2

)
, ζ4 = arctan

−1
µ
,

where β4 is a user-defined parameter in the interval ]0; 1]. It approaches a sharp apex for β4 → 0 and
renders a smooth tension cut-off for β4 = 1. The multifunction expression for the ρc-meridional function
of Figure 4.9 reads

ρc =


µ

(
p− 2c

√
k

k − 1

)
, p ≤ pT ,(

(r4)
2 − (p− c41)2

)0.5
, pT < p ≤ papex,

(4.8)

where the limits, as illustrated in Figure 4.9, are expressed as

pT = c41 + r4 cos ζ4 ∧ papex = (1− β4)
2c
√
k

k − 1
= c41 + r4.

The yield criterion is formulated as the difference between the current radius and the deviatoric
distance from the considered stress state to the centre of curvature as

fn = ||σ∗d − c∗nρc||−rnρc, σ∗d =
[
σ∗2 σ∗3

]T
, σ1 ≥ σ2 ≥ σ3, (4.9)
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where subscript, n, refers to the deviatoric region. This yield function is applicable with both the
deviatoric geometries defined by Equations (4.5) and (4.6). A yield surface with the deviatoric trace of
Equations (4.5) and the meridional function of Equation (4.7) is presented in Appendix C. A completely
continuous yield surface is obtained with the deviatoric trace of Equation (4.6) and the meridional
function of Equation (4.8) as presented in Appendix D. These appendices gives thorough description of
the yield surfaces and the numerical implementation. The discontinuous surface is implemented with
methods for multi-surface plasticity from [Clausen et al., 2007]. The continuous yield surface rests mainly
on well-known theoretical premises, except an amelioration of C2 discontinuous transitions.

4.5 Formulation with Bolton Generators

A formulation of the novel yield surface format with nonlinear generators, which in following referenced
as the GPYS-NC model, is presented in this section. The form of the generator is naturally depending
on the material under consideration, and the yield function of Equation (4.9) is easily combined with
any appropriate nonlinear function of hydrostatic stress. In Section 3, some existing models of nonlinear
generators were explored, and either one of these models could constitute the generators. The Bolton
model is selected for this purpose, as this is a widely accepted model for sands, and well known in the
geotechnical community. It is efficiently implemented in the GPYS format, as it defines the secant angle of
friction as a function of the hydrostatic stress directly. Surfaces, such as the modern Hoek-Brown [Hoek
et al., 2002] or the GSK model [Krabbenhoft et al., 2016b], which are inseparable with respect to ρc, are
conveniently approximated with the GPYS format, which is demonstrated lastly in this section. As a
further note, a simple hardening model can be established without further parameter calibration, by
operating on the void ratio, as proposed by [Choo, 2018].

The secant angle of friction of Bolton’s formula, Section 3.3.2, is modified to accommodate the GPYS
implementation in the following manner

ϕ(p) = ϕcv + bIR = ϕcv + b

(
Id

(
Q− ln

(
p− papex
−1kPa

))
−R

)
, 0 ≤ IR ≤ 4 ∧ p < papex. (4.10)

The Bolton generator goes to zero at the origin, and a cohesion parameter to include a small hydrostatic
tensile strength is included in the model presented here, for the purpose of a circular apex. If this is an
undesired property, an exact implementation as in Appendix C can be established as well, however, the
present formulation is more robust in numerical analysis. Adopting the yield criterion of Equation (3.8)
in terms of the Haigh Westergaard coordinates for θ = π/3, the expression for ρc is found as

ρc(p) = −2 (p− papex) sin (ϕ(p))
(√

3/2− 1/
√
6 sin (ϕ(p))

)−1
. (4.11)

As the angle of friction depends on the hydrostatic pressure, a slight difference from the previous models
as the ρt/ρc-ratio, becomes dependent on this as well

ρt(p) = ρc(p)

(
α+

3− sin(ϕ(p))

3 + sin(ϕ(p))
(1− α)

)
.

Once ρt and ρc are calculated for a certain level of hydrostatic stress, the remainder of the deviatoric
geometry are calculated as described in Sections 4.2 and 4.3. The hydrostatic stress is divided by negative
1kPa in Equation (4.10), as a slight modification to Bolton’s formula from [Bolton, 1986], to accommodate
dimensionality and the sign convention in this thesis. The function in Equation (4.11) is combined with
an apex rounding analogously to Section 4.4, and the multifunction for the generators reads

ρc(p) =

−2 (p− papex) sin (ϕ(p))
(√

3/2− 1/
√
6 sin (ϕ(p))

)−1
, p ≤ pt(

r24 − (p− c41)2
)0.5

, pt < p < (1− β4)papex
, (4.12)

where

papex =
2c
√
kb

kb − 1
, kb =

1 + sin(φcv + b4)

1− sin(φcv + b4)
.
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The transition pressure, pT , and the centre of the apex circle, c4, are calculated to accommodate the
relations in Figure 4.9. However, for this model these are calculated by an iterative procedure, as the
meridian is nonlinear, and done once for each material type. To obtain a continuous yield surface, the
deviatoric geometry from Equation (4.6) is adopted, and the yield function reads

fn = ||σ∗d − c∗n(p)||−rn(p), σ∗d =
[
σ∗2 σ∗3

]T
, σ1 ≥ σ2 ≥ σ3. (4.13)

Here, subscript n denotes the deviatoric region according to Table 4.1. This yield surface is implemented
in a MATLAB source code, and used in numerical applications in Section 5.2. The implementation in a
numerical framework is straight forward as the yield surface is continuous, see for instance Appendix D.
The fundamental mathematics behind the implementation is given by the return mapping procedure
and consistent tangent operator in Section 2.5 and 2.4, respectively. However, the consistent tangent is
modified according to the method described in Appendix D, to overcome the lack of C2 continuity.

In Section 5.2, this yield surface model is used as an optimised material fit, demonstrating its ver-
satile shape. The surface is exemplified in a spatial illustration in Figure 4.10, as a smooth continuous
approximation of the Bolton surface, with parameter settings as in Table 4.2.
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3

Figure 4.10: 3D visualization of a continuous approximation of the Bolton criterion with a positive apex. Parameters are set as,
ϕcv = 25 deg, c = 10kPa, α = 0.0, β1 = 0.00, β2 = β3 = β4 = 0.2, Q = 10, R = 1, b = 5, which corresponds to a plane strain
Bolton model for sands of quarts grains. Corner roundings are exaggerated for illustrative purposes

Table 4.2: Description of the surface parameters and approximation of some existing yield surfaces.

Parameters

Description Angle of Friction Cohesion ρt/ρc-ratio Curvature parameters Mineralogy
Symbol ϕcv c††† α β1 β2 β3 β ††4 Q R b
Range ]0; π/2[ > 0 [0; 1] ]0; 1] ]0; 1] ]0; 1] ]0; 1] ≥ 0 ≥ 0 ≥ 0

Special cases of existing plasticity models

Bolton as is as is 0.00 0.00† 0.01 0.01 0.01 as is as is as is
Mohr Coulomb as is as is 0.00 0.00† 0.01 0.01 0.01 0.00 0.00 0.00
Extended Tresca as is as is 1.00 0.00† 0.01 0.01 0.01 0.00 0.00 0.00
Drucker-Prager as is as is 1.00 1.00 0.01 0.01 0.01 0.00 0.00 0.00
Reuleaux as is as is as is 1.00 0.01 0.01 0.01 0.00 0.00 0.00

† An appropriately small value is 10−4.
†† Set to 1.00 for a tension cut-off
††† Units of pressure

Nonlinear criteria, which are inseparable with respect to ρc and p, are not conveniently adopted in the
GPYS format. However, the model formulated in this section is fully capable of approximating other
nonlinear models. A brief demonstration of such an approximation is presented here, where a series of
stress states on the Compressive generator of the Hoek-Brown model are calculated by

σ =

[
σ1; σ1; σ1 − σci

(
s−mb

σ1
σci

)a]T
,



4.6. Overview of the New Models 31

and the deviator norm, ρ, is then calculated. The least squared error with respect to the compressive
generator of Equation (4.12) is then minimized for the corresponding values of p. The parameters used in
the optimization is ϕcv , Q, R, and b, and the compressive generators are juxtaposed in Figure 4.11, for an
arbitrarily chosen set of Hoek-Brown parameters. The cohesion of the proposed model is set to render
the apex of Hoek-Brown, which reads

c =
sσci
mb

kb − 1

2
√
kb
,

as the apex of the Hoek-Brown model is located at sσci/mb of hydrostatic stress. One thousand equispaced
stress states on the Hoek-Brown compressive generator are calculated and the parameters of the GPYS-NC
model is calibrated to these data by the least squares method. The parameter settings of the Hoek-brown
approximation in Figure 4.11 is listed in Table 4.3. Judging from Figure 4.11 and the standard deviation

standard deviation =

√√√√√ 1000∑
i=1

(f(σi))
2

1000
= 0.057MPa,

the present formulation of the GPYS format is capable of emulating the Hoek-Brown model.

Table 4.3: The present formulation of GPYS as an approximation of the Hoek-Brown model.

Hoek-Brown
s mb a σci [MPa]

0.30 1.70 0.50 210.00

GPYS-NC
ϕcv c [MPa] α β1 β2 β3 β4 Q R b
37.26 1431.86 0.00 0.00 0.01 0.01 0.01 11.24 0.00 13.55

Figure 4.11: The present formulation of GPYS as an approximation of the Hoek-Brown model seen in the compressive meridian
with parameters from Table 4.3.

4.6 Overview of the New Models

An overview of the yield surface models described in the preceding is given in this section. Three
different models are represented: a formulation with linear generators and a discontinuous deviatoric
trace, denoted GPYS-LD, a formulation with linear generators and a rounded apex and continuous
deviatoric trace, denoted GPYS-LC, and finally, a formulation with nonlinear Bolton generators, a
rounded apex and continuous deviatoric trace, denoted GPYS-NC. The GPYS-LD model is described in
thorough detail in Appendix C and the GPYS-LC model in Appendix D. A schematic overview of the
models is given in Table 4.4, in the form of the yield criterion along with the mathematical expressions to
evaluate this, and a description of the input parameters. As a general note, the ρt/ρc-ratio changes with
the stresses in the GPYS-NC model, which means that all the mathematical expressions for the deviatoric
trace are calculated for each stress state. While this aspect of the nonlinear formulation makes it less
efficient, it is a more accurate model.
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As a general note on the yield criteria derived in this chapter, these are intended for numerical
applications. The centre and radii may be awkward in hand calculations, however, elegantly implemented
in a numerical framework.

Table 4.4: The three novel yield surfaces based on the GPYS format. All expressions assumes σ1 ≥ σ2 ≥ σ3.

GPYS-LD f(σ) = ||σ∗d − c
∗
1ρc||−r1ρc

Parameters
Angle of Friction Cohesion ρt/ρc-ratio Curvature parameter aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

ϕ c† α β1
]0; π/2[ > 0 [0; 1] ]0; 1]

Deviatoric
c∗1 =

{
r1 cos ((1− β1) γ)− ρt
r1 sin ((1− β1) γ)

}
ρt = α+ (3− sinϕ)/(3 + sinϕ) (1− α)

r1 =

√(√
3/2
)2

+ (ρt − 0.5)2/(2 sin (β1γ))

γ = arctan
(
(ρt − 0.5)/(

√
3/2)

)

Meridian ρc =
1− k√

2/3 (k/2 + 1)

(
p−

2c
√
k

k − 1

)
k = (1 + sinϕ)/(1− sinϕ)

GPYS-LC fn(σ) = ||σ∗d − c∗nρc||−rnρc

Parameters
Angle of Friction Cohesion ρt/ρc-ratio Curvature parameters aaaaaaaaaaaaaaaaaaaaaaaatttt

ϕ c† α β1 β2 β3 β4
]0; π/2[ > 0 [0; 1] ]0; 1] ]0; 1] ]0; 1] ]0; 1]

Deviatoric
(
c∗n, rn

)
=



({
r1 cos ((1− β1) γ)− ρt
r1 sin ((1− β1) γ)

}
,

√(√
3/2
)2

+ (ρt − 0.5)2/(2 sin (β1γ))

)
, σ ∈ RI Tab. 4.1(

(1− β2)
{
−1/2
−
√
3/2

}
, r1− ‖ c∗1 − c∗2 ‖

)
, σ ∈ RII Tab. 4.1(

(1− β3)
{
−ρt
0

}
, r1− ‖ c∗1 − c∗3 ‖

)
, σ ∈ RIII Tab. 4.1

ρt = α+ (3− sinϕ)/(3 + sinϕ) (1− α) γ = arctan
(
(ρt − 0.5)/(

√
3/2)

)

Meridian
ρc =


1− k√

2/3 (k/2 + 1)

(
p−

2c
√
k

k − 1

)
, p ≤ c41 + r4 cos ζ4(

(r4)
2 ,− (p− c41)2

)0.5
, c41 + r4 cos ζ4 < p ≤ (1− β4) 2c

√
k/(k − 1)

c4 =

(
(1− β4)

2c
√
k

k − 1
− r4

){
1
0

}
, r4 = β4

2c
√
k

k − 1
cot (ζ4) cot

(
ζ4

2

)
, ζ4 = arctan

−1
µ

GPYS-NC fn(σ) = ||σ∗d − c
∗
n(p)||−rn(p)

Parameters
Angle of Friction Cohesion ρt/ρc-ratio Curvature parameters Mineralogy

ϕcv c† α β1 β2 β3 β ††4 Q R b
]0; π/2[ > 0 [0; 1] ]0; 1] ]0; 1] ]0; 1] ]0; 1] ≥ 0 ≥ 0 ≥ 0

Deviatoric
(c∗n, rn) =



({
r1 cos ((1− β1) γ)− ρt
r1 sin ((1− β1) γ)

}
, ρc

√(√
3/2
)2

+ (ρt − 0.5)2/(2 sin (β1γ))

)
, σ ∈ RI Tab. 4.1(

(1− β2)
{
−1/2
−
√
3/2

}
, r1− ‖ c∗1 − c∗2 ‖

)
, σ ∈ RII Tab. 4.1(

(1− β3)
{
−ρt
0

}
, r1− ‖ c∗1 − c∗3 ‖

)
, σ ∈ RIII Tab. 4.1

ρt = ρc (α+ (3− sinϕ(p))/(3 + sinϕ(p)) (1− α)) γ = arctan
(
(ρt − 0.5ρc)/(ρc

√
3/2)

)
ϕ(p) = ϕcv + bIR = ϕcv + b (Id(Q− ln((p−papex)/−1 kPa))−R) , 0 ≤ IR ≤ 4 ∧ p < papex.

Meridian
ρc =

−2 (p− papex) sin (ϕ)
(√

3/2− 1/
√
6 sin (ϕ)

)−1
, p ≤ pt(

r24 − (p− c41)2
)0.5

, pt < p < pa

kb =
1 + sin(ϕcv + 4b)

1− sin(ϕcv + 4b)

pa = (1− β4) papex
where, r4 and c4, are calculated by an iterative procedure to ensure the geometry in Figure 4.9
and papex = 2c

√
kb/(kb − 1)

σ∗ = Tσ, with T from Equation (4.1), and σ∗d = [σ∗2 σ∗3 ]
T .
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In this chapter, the General Parametric Yield Surface Format is applied in finite element analysis of typical
geotechnical problems. Most of the studies are conducted to investigate the intermediate principle stress
influence, where an optimized material fit with the GPYS-LD model is compared to conventional Mohr-
Coulomb models. Secondly, the advanced 10-parameter surface of GPYS-NC is calibrated for a more
optimized fit than with the GPYS-LD model. This analysis are conducted to investigate whether essential
discrepancies are found and to demonstrate the use of the GPYS-NC model. The GPYS-LC model is used
in analysis of a square spread footing in Appendix D, where the computational performance is the subject
of study, and in Section 5.1.4 with a tension cut-off. Sands of different strength properties are considered
as this evidently influences the yield surface shape as mentioned in the thesis introduction, see Figure 1.2.

This chapter is accompanied by Appendix A, where the finite elements used in the analysis, and the
test data used for material calibration is found. Furthermore, the GPYS-LD model as an approximation
of the Mohr-Coulomb model is documented in Appendix A.2, based on the analysis in this chapter.
Isotropic and linearly elastic perfectly plastic material behaviour along with associated flow is assumed,
and the calculations are based on small strain theory, in all the analysis.

5.1 Influence of The Intermediate Principle Stress

In this section, strip footing, spread footing and slope stability problems are analysed, in elasto-plastic
finite element analysis. The material properties used in the analysis are obtained by calibrating the
parameters to experimental data from true triaxial tests, rendering realistic properties. The results
obtained with the GPYS-LD model are compared to a conventional Mohr-Coulomb model, to investigate
the intermediate principle stress influence and elucidate its prospects as an optimized material model.

5.1.1 Calibration of surface parameters

The parameters of the GPYS-LD model is calibrated with experimental data from true triaxial tests
performed and published by [Bønding, 1977], which are presented and described in Appendix A.1. The
GPYS-LD model is fitted by means of the least squares method to the individual batches of test data.
The Mohr-Coulomb model is taken directly with ϕ and c from the GPYS-LD model, which corresponds
well with a conventional fit to the test data in triaxial compression. The experimental results has been
normalized by a scale factor to the nearest whole multiple of 50 of hydrostatic pressure and is depicted in
Figure 5.1 along with the calibrated yield surface deviatoric trace.
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Figure 5.1: A sextant of the deviatoric trace, σ1 ≥ σ2 ≥ σ3, of the model settings along with data from true triaxial tests normalised
with respect to the nearest fifty’th value of the hydrostatic pressure by a scale factor (a) Dense (b) Medium dense and (c) Loose
sand.

A second Mohr-Coulomb model is included in the analysis as well, given by the plane strain ad-
justment of the angle of friction suggested by the Danish National Annex to Eurocode 7 [Distribute,
2015]

33
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ϕpl = (1 + 0.1Id)ϕtr,

where, Id and ϕtr, are the relative density and the internal friction angle determined from triaxial tests.
The fits are accepted based on the residual plots of Figure 5.2, where the yield function, f(σ) is plotted
over the hydrostatic pressure. It is, however, noted that the best fit of the new criteria, suggest a small
cohesion in all batches, although the test material supposedly should be cohesionless. In practical
application, the limited tensile strength of the material should be modelled with a tension cut-off, as with
the GPYS-LC model.
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Figure 5.2: Residual plot over the hydrostatic pressure of the test data (a) Dense (b) Medium dense and (c) Loose sand.

The calibrated parameters of the plasticity models are listed in Table 5.1, along with relevant material
properties. The Mohr-Coulomb setting of the GPYS-LD model, α = β = 0, is simply referred to as
Mohr-Coulomb. The full deviatoric traces of the models and the compression meridians are illustrated in
Figure 5.3 and 5.4.

Table 5.1: Yield criteria parameters based on true triaxial tests preformed by Danish Geotechnical Institute and published
in [Bønding, 1977].

Dense sand Medium dense sand Loose sand
e = 0.55 γ = 1.71 e = 0.62 γ = 1.64 e = 0.75 γ = 1.51

ϕ[deg] c[kPa] α β1 ϕ[deg] c[kPa] α β1 ϕ[deg] c[kPa] α β1

GPYS-LD 41.40 3.92 0.15 0.88 36.90 0.91 0.12 0.62 30.50 2.94 0.19 0.13
Mohr-Coulomb 41.40 3.92 0.00 0.00 36.90 0.91 0.00 0.00 30.50 2.94 0.00 0.00
Mohr-Coulomb Plane 45.05 3.92 0.00 0.00 39.40 0.91 0.00 0.00 31.40 2.94 0.00 0.00
Paul-Mohr-Coulomb 41.40 3.92 0.15 0.00 36.90 0.91 0.12 0.00 30.50 2.94 0.19 0.00

e Void ratio emin = 0.51 emax = 0.85
γ Sample density [t/m3] Grain density, γs = 2.65 [t/m3]

(a) (b) (c)

Figure 5.3: Deviatoric trace, at p = −25kPa, of the GPYS-LD and Mohr-Coulomb models (a) Dense (b) Medium dense and (c)
Loose sand.
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(a) (b) (c)

Figure 5.4: Meridian plane of the GPYS-LD and Mohr-Coulomb models, with the data points in triaxial compression from
Appendix A.1 (a) Dense (b) Medium dense and (c) Loose sand.

5.1.2 Vertical concentric loading of strip footing

A vertically loaded strip footing is analysed in this section. This is a typical plane strain problem in
geotechnical engineering, as the strip footing can be approximated of infinite extend in the out of plane
direction. The in plane results such as the ultimate limit load or the vertical displacement are then found
pr. unit length. For assessment of the numerical solution, the well known formula of the bearing capacity
is used, as suggested by [Terzaghi, 1951, ch. 7],

R′ = γ
1

2
B2Nγ + cBNc + q′BNq. (5.1)

Here, γ, B and q′, are specific gravity, footing width and effective surcharge, respectively, and Nγ , Nc
and Nq are dimensionless factors, which depends on the soil strength. Equation (5.1) is adequate in this
analysis, however, a more versatile form of was proposed by Brinck Hansen in 1970, to account for load
eccentricity and 3D footings. In this analysis, q′ = 0, as the footing is placed directly on the soil surface.
The dimensionless factors are given by the expressions

Nγ =
1

4
((Nq − 1) cosϕ)

3/2 ∨ Nc =
Nq − 1

tanϕ
∨ Nq =

1 + sinϕ

1− sinϕ
exp (π tanϕ) . (5.2)

The Nc and Nq factors yields the exact collapse load when neglecting the soil weight, γ = 0, as found
by Prandtl in 1920. This under assumption of a perfectly plastic linearly elastic material which obeys
Mohr-Coulombs yield criterion with associated plasticity. However, that is a highly theoretical situation,
and an exact analytical solution have not yet been formulated for the Nγ-problem. The Nγ factor has
been proposed in various formulations, however, the most accepted solution for Nγ was established
numerically in a finite difference framework by [Martin, 2003]. Equation (5.1) is in general found to yield
conservative values for the bearing capacity, in comparison with results from numerical analysis.

Model description

A sketch of the model with geometry, boundary conditions and soil material properties along with the
mesh grid used in the analysis is presented in Figure 5.5. No formal mesh refinement studies have been
conducted, but the mesh density is increased in the zone where the shear slip failure occurs, and severely
increased around the stress singularity at the outer corner of the foundation. The results are compared to
the bearing capacity formula (5.1) and the commercial finite element software, OptumG2, and the finite
element model presented in Figure 5.5 is found to perform quite well. The system is discretized, using
the LST elements, as described in Appendix A.3 with a three point Gauss integration scheme. The line of
symmetry is exploited to model merely one half of the system. An analysis with three of the material
models from Table 5.1 are conducted. The foundation is assumed to behave linearly elastic and the soil
material as linearly elastic perfectly plastic. The initial stresses in the soil domain varies linearly over the
depth, using the depth coordinate from Figure 5.5

σyy = −dγ ∧ σxx = σzz = K0σyy.
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Figure 5.5: Model of strip footing with physical properties of soil material and the mesh grid of the finite element model.

The at rest earth pressure coefficient, K0, is set equal to one in the analysis, and the gravitational pull is
9.81m/s2. The initial stresses is introduced at the Gauss integration points in the finite element mesh, prior
to the nonlinear analysis. The analysis is performed by incrementing a downwards forced displacement
on the topside nodes of the footing. The internal forces calculated with Equation (2.12) then yields the
nodal reactions resulting from the forced displacement. The reaction force is evaluated as the twice
the sum of the nodal forces at the topside nodes. The forced displacement is applied over 200 equal
increments in all the analysis, however, the final displacement is varied with the type of sand.

Failure mode assessment

To assess the model, the failure mode is visualized in contour plots in Figure 5.8 from six of the analysis.
The right hand side shows the results obtained with the GPYS-LD model and the left hand side, the
Mohr-Coulomb model. The contours shows the rate of maximum plastic shear strain, (ε1 − ε3)/2, at the
final load step. The GPYS-LD model reveals a smaller angle of the shear slip line with the horizontal than
the Mohr-Coulomb model, resulting in a larger plastic zone. The decrease in this angle, corresponds to
an increase in the angle of friction, which is more pronounced for the stronger sand types. It is further
noted, that the failure mode corresponds with the well-known pattern, which has been argued by for
instance [Terzaghi, 1951, ch. 7], in formulation of the bearing capacity equation (5.1). The domain is
deemed wide and deep enough to avoid interference from the far plane boundary.

Bearing capacity

The load bearing capacity from the Analysis, taken as the force reaction at failure, is presented in Table 5.2.
These are compared to the corresponding values calculated with the bearing capacity formula (5.1),
which in all cases gives a lower value. This outcome is expected as γ 6= 0, and with the displacement
based LST elements, which often gives an upper bound value on the collapse load, however, not
rigorously [Krabbenhoft et al., 2016c]. The Load displacement curves of the analysis are presented in

Table 5.2: Comparison of bearing capacity for the different material models and formula (5.1).

Dense sand Medium dense sand Loose sand
Capacity [kN/m] Ratio [-] Capacity [kN/m] Ratio [-] Capacity [kN/m] Ratio [-]

Formula (5.1) 285.52 0.80 82.69 0.81 55.81 0.81
MC 356.83 1.00 102.64 1.00 69.05 1.00
MC Plane 653.98 1.83 152.28 1.48 76.40 1.11
GPYS-LD 1256.38 3.52 199.23 1.94 106.26 1.54

Figure 5.11, along with the corresponding yield surface depicted in deviatoric plane. It is obvious, by
inspection of Figure 5.11, that the influence of the intermediate principal stress becomes increasingly
pronounced with decreasing void ratio. The load-displacement-curves exhibits a distinct kink in the
Mohr-Coulomb models as the load bearing capacity is reached, opposed to the GPYS-LD models. In
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Appendix C a similar strip footing system is analysed with different material models, including the
Paul-Mohr-Coulomb model from Table 5.1, where the ρt/ρc-ratio is found as the governing impact on the
limit load.

Mohr Coulomb GPYS-LD

(a)

Mohr Coulomb GPYS-LD

(b)

Mohr Coulomb GPYS-LD

(c)

Figure 5.8: Rate of maximum plastic shear strain at failure of the analysis with Mohr-Coulomb and the GPYS-LD model. (a) Dense
sand, (b) Medium dense sand and (c) Loose sand.
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Figure 5.11: Load displacement curves from strip footing analysis with Material model fits from Table 5.1, seen in deviatoric plane
at −25 kPa (a) Dense sand, (b) Medium dense sand and (c) Loose sand.

5.1.3 Vertical concentric loading of spread footing

In this section, vertical concentric loading of a rectangular spread footing system, is considered. This
analysis is included herein, as it is a typical 3-Dimensional geotechnical problem. Three different width
to length ratios of the footing is considered with the material models of Table 5.1, including the Paul-
Mohr-Coulomb setting. The simulations are conducted in the commercial software, Abaqus, with the
GPYS-LD model included as a user-defined subroutine. Once again, linearly elastic perfectly plastic
material behaviour and associated flow, are assumed.

Model Description

The system is discretized with standard 10-node tetrahedral elements, with quadratic displacement
interpolation and a 4 point Gauss integration scheme. A top view of the system is sketched and the
mesh grid is visualized in Figure 5.24. The system is a 10× 10× 3m3 soil domain, with a shallow spread
footing of 0.4× 0.4m2, 0.4× 0.8m2 and 0.4× 1.6m2, respectively. Two symmetry planes are exploited
to model merely one quarter of the system. The bottom surface is constrained in all directions and the
vertical sides are constrained in their respective normal directions. The load is emulated with a uniform
downwards displacement of the nodes in the footing footprint. Three of the plasticity models from
Table 5.1 are analysed for the three different gradings of sand. Namely the GPYS-LD least square fit, the
Paul-Mohr-Coulomb model where only the ρt/ρc−ratio are adjusted to the data and the Mohr-Coulomb



5.1. Influence of The Intermediate Principle Stress 39

compression fit. The Paul-Mohr-Coulomb model is included here, as the ρt/ρc−ratio may be determined
from standard cylindrical triaxial tests, and it may serve an affordable material optimisation, given that
some noteworthy increase in bearing capacity can be observed. The at rest earth pressure coefficient and
the gravitational pull are set as K0 = 1 and g = 9.81m/s2, respectively.
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Figure 5.12: Mechanical system for spread footing (a) Top view with geometry and boundary conditions, the bottom surface is
restrained in all directions as well. Width to length ratios (b) 1:1 (c) 1:2 and (d) 1:4.

Failure mode assessment

The simulation integrity are qualitatively assessed based on the failure mode, which is revealed in
contours of the rate of plastic shear strain over the domain. This contour is depicted for the square and
the rectangular 1:4 footing systems in Figure 5.13 for the GPYS-LD material model for dense sand. The
failure modes are in good agreement with expected results, as the strip footing failure mode is recognised
at the domain side. It is further noted, that the failure mode is unaffected by the far plane boundary
conditions, validating the size of the domain.

Comparison of limit load

The force displacement history from the conducted analysis are plotted in Figure 5.14, 5.15, 5.16, and
the collapse load along with the communal ratios between the models are presented in Table 5.3. Again,
the increase in limit load is more pronounced in the more dense sand types. A more moderate increase
in load bearing capacity is found, opposed to the plane strain problem from Section 5.1.2. The load
bearing ratio increases severely with the width to length ratio, which corresponds to increasing the zone
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(a) (b)

Figure 5.13: Contours of maximum plastic shear strain rate with the dense sand GPYS-LD model a) 1:1 footing and b) 1:4 footing.

of approximate plane strain conditions. The Paul-Mohr-Coulomb models does not provide nearly as
much bearing capacity as the optimised least square fit. However, these can be obtained with standard
cylindrical triaxial tests, and still bring a decent increase in bearing capacity.

Table 5.3: Simulation results and increase ratio in load bearing capacity, for the three different spread footing systems.

Dense sand Medium dense sand Loose sand
System Model Capacity [kN] Ratio [-] Capacity [kN] Ratio [-] Capacity [kN] Ratio [-]

1:1
Mohr-Coulomb 343.18 1.00 70.62 1.00 46.21 1.00
Paul-Mohr-Coulomb 376.23 1.10 73.87 1.05 48.12 1.04
GPYS-LD 479.58 1.40 84.18 1.19 48.98 1.06

1:2
Mohr-Coulomb 572.79 1.00 126.69 1.00 81.48 1.00
Paul-Mohr-Coulomb 699.53 1.22 141.36 1.12 89.67 1.10
GPYS-LD 1, 008.18 1.76 176.38 1.39 92.47 1.13

1:4
Mohr-Coulomb 993.65 1.00 231.85 1.00 147.16 1.00
Paul-Mohr-Coulomb 1, 388.35 1.40 280.72 1.21 174.06 1.18
GPYS-LD 2, 194.35 2.21 374.99 1.62 180.22 1.22
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Figure 5.14: Load displacement curves from simulations for fully rough spread footing of width to length ratio = 1:1, for (a) Dense
sand, (b) Medium dense sand, and (c) Loose sand.
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Figure 5.15: Load displacement curves from simulations for fully rough spread footing of width to length ratio = 1:2, for (a) Dense
sand, (b) Medium dense sand, and (c) Loose sand.

0 5 10 15 20 25 30

0

500

1000

1500

2000

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

100

150

200

250

300

350

400

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

100

150

(c)

Figure 5.16: Load displacement curves from simulations for fully rough spread footing of width to length ratio = 1:4, for (a) Dense
sand, (b) Medium dense sand, and (c) Loose sand.

5.1.4 Slope safety factor

In this section, the stability of a freestanding slope is considered. This is a typical stability problem
in geomechanics, which have been dealt with by analytical mathematics in simplistic conditions. The
finite element method is an attractive tool for this analysis, as more complicated conditions are easily
modelled, such as different soil layers, a surcharge or influence of the ground water table. The stability
is often evaluated by estimating the factor of safety, of which two common definitions are the gravity
multiplier and the strength reduction factor. In this study, the latter is adopted, which in general yields
more conservative safety factors [Krabbenhoft et al., 2016a]. For yield surfaces with linear generators, the
Mohr-Coulomb failure criterion is typically used to define the shear strength of the material as

S = c+ σµ = c+ σ tanϕ.

The shear strength at failure is defined as

SF =
c+ σ tanϕ

F
,
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where, F , is the safety factor. The shear strength parameters are directly reduced as

c
F
=

c

F
, ϕ

F
= arctan

(
tanϕ

F

)
.

The safety or strength reduction factor can be estimated in a finite element analysis by running a series of
independent analysis with different values of F . When equilibrium cannot be established, the current
value of the safety factor is too high and visa versa, which is sometimes referred to as the non-convergence
method. By running independent analysis, with different values of, F , an interval can progressively
be decreased. A predefined tolerance on the number of significant digits in F is used to terminate the
analysis.

Model Description

A slope within a rectangular domain of 60 × 20 meters, with an inclination of 1:2, as illustrated in
Figure 5.17, is considered. The three different types of sand and the models from Table 5.1 is considered
in the studies. As the slope stability problem is governed by “small” stresses, a model with a tension
cut-off is investigated as well. The Finite element discretization of the model consists of 1, 947 triangular
elements, as described in Appendix A.3, and 8, 016 displacement degrees of freedom. The mesh density is
increased in the area where the slip failure develops. No formal mesh refinement is performed, however,
the results are compared to an analysis in OptumG2, which is conducted with adaptive mesh refinement
and the results coincide quite well.
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Figure 5.17: Illustration of slope model (a) Geometry and material properties and (b) Mesh grid.

The in situ stresses are simply obtained by equilibrium with the body forces in a linear analysis,
such that the soil domain does not deform under the gravitational load, and the at rest earth pressure
coefficient are thereby without influence on the result in this analysis. The analysis are initiated with a
guess on the safety factor, and the corresponding reduced parameters are then calculated. If equilibrium
is obtained, the safety factor is incremented, the initial stress field is reset and the next set of reduced
material parameters are calculated. If equilibrium cannot be achieved, a smaller increment on the safety
factor is attempted. The field of body forces are uniformly incremented over eight equal increments,
and the convergence tolerance for the residual norm is set as one thousandth of the body force norm,
TOL = 10−3 ‖ fbody ‖ . Associated plasticity and linear elastic perfectly plastic material behaviour is
assumed in all the analysis.

Failure mode assessment

The shear slip failure mode is studied by visual inspection of the rate of maximum plastic shear strain.
Almost identical slip lines are observed for the different yield criteria, however, not for the different types
of sand. Therefore, the slip lines of the different types of sands are visualized in Figure 5.18. The slip lines
are drawn by locating nodal values of the plastic shear strain rate above a certain value, and a smooth
line is obtained by calculating a moving average of the coordinates of these points. The pattern is in good
agreement with the failure mode assumed in hand calculations, which shapes a logarithmic spiral. The
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slip lines are juxtaposed in a graph in Figure 5.18d, where the medium dense sand is quite different from
the others. No effect of the intermediate principal stress inclusion has been found in the failure modes,
which on the other hand are quite affected by the cohesive properties of the material.
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Figure 5.18: Contours of maximum plastic shear strain rate in slope stability analysis for (a) Dense sand (b) Medium dense sand (c)
Loose sand and (d) comparison of slip lines.

Safety factor

The best estimates of the safety factor and the corresponding reduced shear strength parameters are
shown in Table 5.4. All models in this chapter has a small value for the cohesion, which is found without
notable influence on the result, considering the models with tension cut-off. In fact both the result on
medium dense and dense sand is found unaffected by the tension cut-off, at least to the number of
significant digits in the table. This lack of difference demonstrates one downfall of the non-convergence
method, as the tension cut-off models definitively are weaker, but shows the same strength as the GPYS-lC
models may have been terminated too soon. In any case, the tension cut-off does not affect the strength
of this slope system notably.

Table 5.4: Slope safety factors and the corresponding reduced shear strength parameters from the twelve analysis.

Dense sand Medium dense sand Loose sand
F [−] ϕF [deg] cF [ kPa] F [−] ϕF [deg] cF [ kPa] F [−] ϕF [deg] cF [ kPa]

Mohr-Coulomb 2.288 21.077 1.715 1.719 23.598 0.571 1.581 20.431 1.861
Mohr-Coulomb Plane 2.525 21.640 1.554 1.850 23.941 0.530 1.613 20.734 1.825
GPYS-LC 2.594 18.773 1.513 1.887 21.692 0.520 1.680 19.322 1.752
GPYS-LC Tension cut-off 2.594 18.773 1.513 1.887 21.692 0.520 1.675 19.375 1.757

5.2 Spread Footing Analysis with the GPYS-NC model

The nonlinear continuous formulation, GPYS-NC, is in this section applied in analysis of a geomechanical
system. The model is used to obtain an even more accurate material calibration than with the Linear
discontinuous GPYS model from Section 5.1.1. A three-dimensional mechanical system is considered, as
the calibration is based on the true triaxial stress states from Appendix A.1. A square spread footing is
once again the system of choice however with a slightly lower mesh density than in Section 5.1.3, as the
present analysis are conducted in MATLAB code.

5.2.1 Calibration of surface parameters

The nonlinear continuous formulation of the proposed yield surface model, GPYS-NC, see Section 4.5, is
in this section calibrated to the Experimental data from true triaxial tests, see Appendix A.1. The surface
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parameters of the GPYS-NC and GPYS-LD models are calibrated by means of the least squares method.
The calibrated models along with the data points are visualised in the deviatoric plane in Figure 5.19. The
points a normalized with respect to the nearest whole multiple of 50 with a scale factor for illustrative
purposes. The residuals to the data points with respect to the hydrostatic stress and the Lode angle are
shown in Figure 5.21, and the standard deviations are listed in Table 5.5. The GPYS-NC model is found
to make a decent fit with the data, especially pronounced for the dense sand, where the loose sand is
more inconclusive as to which model is the best fit.
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Figure 5.19: A sextant of the deviatoric trace, σ1 ≥ σ2 ≥ σ3, of the calibrated models along with data from true triaxial tests
normalised with respect to the nearest whole multiple of 50 of the hydrostatic pressure by a scale factor (a) Dense (b) Medium
dense and (c) Loose sand.
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Figure 5.20: Scatter plot of the residual with the two different yield surfaces with respect to the hydrostatic stress (a) Dense (b)
Medium dense and (c) Loose sand.
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Figure 5.21: Scatter plot of the residual with the two different yield surfaces with respect to the Lode angle (a) Dense (b) Medium
dense and (c) Loose sand.

The surface parameters of the calibration is presented in Table 5.6, and the corresponding yield
surfaces are illustrated in the deviatoric plane and meridian in Figure 5.22 and 5.23, respectively. In
general, the compressive corner is prone to take on a larger circular shape than the tension corner, and
the trace in-between is linear. This trace is in general reported from true triaxial experiments, see for
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Table 5.5: Standard deviation from the calibration of the GPYS-LD and -NC models with data from true triaxial experiments
performed by [Bønding, 1977], see Appendix A.1.

Model Standard deviation

√√√√√ N∑
i=1

(f(σi))
2

N
[kPa]

GPYS-NC 9.71 11.58 10.57
GPYS-LD 17.93 17.14 11.77

instance [Bønding, 1977], [Praastrup, 2000] and [Wang and Lade, 2001]. The non-linearity in hydrostatic
stress is almost absent for the dense and medium dense sand, b ≈ 0, and somewhat pronounced for the
loose sand, b = 2.83.

Table 5.6: Calibrated parameters of the GPYS-NL model, with data from true triaxial experiments performed by [Bønding, 1977],
see Appendix A.1.

ϕ c[kPa] α β1 β2 β3 β4 Q R b

Dense sand 43.99 4.47 0.09 0.00 0.28 0.16 0.10 10.08 2.14 0.23
Medium dense sand 38.94 1.91 0.06 0.00 0.25 0.40 0.10 8.36 0.66 0.00
Loose sand 31.20 4.71 0.15 0.00 0.15 0.39 0.10 5.91 2.35 2.83

(a) (b) (c)

Figure 5.22: Deviatoric trace, at p = −25kPa, of the GPYS-LD and -NC model fits (a) Dense (b) Medium dense and (c) Loose sand.

5.2.2 Analysis of square spread footing

An elasto-plastic finite element analysis of a square spread footing loaded to failure is conducted in
section. The GPYS-NC model with parameters from Table 5.6 are compared with the GPYS-LD model
with parameters of Table 5.1. The analysis are conducted to see if the “advanced” material calibration
with the nonlinear model, GPYS-NC, yields a notable difference. The square spread footing system
with boundary conditions, geometry and mesh grid of Figure 5.24, is considered. It is similar to that
of Section 5.1.3, but with a less dense mesh, as the analysis is conducted by a MATLAB code opposed
to the Abaqus software. Standard 10-node tetrahedral elements with second order interpolation and a
4-point Gauss integration scheme are used in the mesh discretization. The initial stresses are calculated
with an at rest earth pressure coefficient of K0 = 1.0 and a gravitational pull of g = 9.81m/s2. A vertical
downwards force is emulated by a uniform displacement of the nodes in the footing footprint.

The Load-displacement curves from the analysis are shown in Figure 5.25. The model differences for
the dense and loose sands are small in this analysis, however, a quite notable difference is found for the
Medium dense sand. The model for this sand stands out with apex in a larger value of hydrostatic stress,
considering the meridian plots from the model calibration of Figure 5.23b. It furthermore encapsulates
the GPYS-LD fit in the whole deviatoric trace, at least near the apex as seen in Figure 5.22b. This indicates
a notable influence on the bearing capacity of the small hydrostatic stress levels near the apex.
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(a) (b) (c)

Figure 5.23: Meridian plane, from p = −25kPa to the apex, of the GPYS-LD and -NC model fits (a) Dense (b) Medium dense and
(c) Loose sand.
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Figure 5.24: Mechanical system of spread footing (a) Top view with geometry and boundary conditions and (b) Discretized model
with 5, 042 tetrahedral elements and 23, 166 d.o.f. and zoom on mesh at foundation footprint.
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Figure 5.25: Load displacement graphs from the spread footing analysis (a) Dense (b) Medium dense and (c) Loose sand.



6 | Conclusion
In the field of constitutive modelling, an extensive amount of plasticity models for granular materials
exists, where Mohr-Coulomb and Drucker-Prager are widely used in geomechanics. Here, the popularity
of the latter might stem from its robustness in numerical analysis opposed to its ability to describe
actual material behaviour. The Mohr-Coulomb model is in general a better representation of the material,
however, excludes the intermediate principle stress, which is not in coherence with experimental evidence.
The majority of the existing models to describe the actual three-dimensional stress state at failure of
frictional soil, applies solely to a narrow range of materials, although, some attempts has been made
to encompass several models in one. Most of the more advanced models, however, have yet to gain a
widespread commercial use. This might stem from a lack of familiarity in the parameters, computational
performance and implementation in commercial analysis software. Outside the world of academia, the
Mohr-Coulomb model has to some extend become the assumption of true material behaviour. It is a
well-known model with a minimal number of tests to be performed for calibration, however, there may
be a vast unused potential in the material to be obtained with more accurate models.

A novel concept of versatile yield surfaces, based on geometrical relations in principal stress space, is
explored in this thesis. The objective is not to simply add yet another model, however, to encompass
several of the existing models in one, at least their overall characteristics. The first of three proposed
yield surfaces operates on four parameters of which two are the well-known internal angle of friction and
cohesion. The two additional parameters adjusts the side curvature and the ρt/ρc-ratio, which are fixed
in the Mohr-Coulomb model. It is a multi-surface plasticity model, for which an exact implementation in
numerical analysis is performed, where the discontinuities are handled explicitly. The implicit return
mapping scheme can for this model be solved in closed form, which renders a robust stress return
algorithm, especially in the vicinity of the apex. However, the global newton scheme is in general not as
robust as desired with this model, which inspires the second proposed yield surface, as a corner rounded
version of the first, for improved robustness. A new and versatile concept of local corner rounding is
introduced, which mainly operates on simple vector calculus, opposed to trigonometric functions, as
the existing methods in the literature. The third proposed yield surface is a continuous and with with
nonlinear generators, based on Bolton’s formula, introduced to investigate further material optimisation
and to demonstrate the generality of the novel yield surface format. It is more complex than the first two
models, however, easily used as for instance a smooth continuous approximation of the Mohr-Coulomb,
Bolton, or Hoek-Brown models. The constitutive models are implemented in MATLAB and the first and
second model in Fortran source code as well, for use in the Abaqus software, to demonstrate its potential
and provide a complete tool for practical use.

The novel yield surfaces are embedded in an elasto-plastic finite element framework and applied in
standard geotechnical problems, where the model parameters are calibrated to true triaxial experiments.
Linearly elastic perfectly plastic material behaviour and associated flow are assumed for simplicity, which
are common assumptions in geotechnical analysis. The plane strain simulations reveals a vast unused
potential in comparison to the standard triaxial compression fit of Mohr-Coulomb, even with the correc-
tion of the triaxial angle of friction, proposed by the Danish code of practices. Three-dimensional spread
footing systems are analysed as well, where the increase in load bearing capacity is less pronounced.
However, increasing with the footing length to width ratio, as the zone of approximate plane strain
conditions of the system are enlarged. Regarding the performance in numerical analysis, the corner
rounded yield surface is compared to the first yield surface model in the analysis of a spread footing.
It is found less efficient in computation time, however, highly robust and with minimal discrepancy in
the limit load. The final proposed model with the Bolton generator, is calibrated with the previously
mentioned data. The standard deviation is here severely reduced in comparison with the first model,
especially for the more dense sand, however, the simulation result reveals no consistent tendencies. A
increase in limit load is though expected in a design case with incorporated statistical safety, as the lower
standard deviation yields a narrower confidence interval. Results from the simulations are not directly
transferable to a design case, however, a basis to investigate the intermediate principle stress influence
and the impact of a more optimised material calibration.

47



48 6. CONCLUSION

In selection of the constitutive model for a given geotechnical system, the accuracy, efficiency and
robustness are of importance. The main advantage of the Drucker-Prager model is its efficiency and
robustness in numerical simulations, however, its use in three-dimensional analysis is not recommended,
as it poorly describes the stress state at failure for frictional soil. With substantial material uncertainties,
as in geomechanics, a conservative and efficient constitutive model, as a triaxial compression fit of Mohr-
Coulomb, can be appealing. However, this sample of studies indicates a substantial unused potential
in the material in comparison with more optimized fits. The true deviatoric trace of the yield surface is
determined from true triaxial tests, which are rarely conducted in practice as these are time consuming
and expensive. A potential use of the new plasticity models are to determine the ρt/ρc−ratio from
standard triaxial tests in both compression and extension, for a notable increase in bearing capacity. In
relation to the performance of the yield surfaces proposed in this thesis, the corner rounded continuous
models, are recommended. While these comes with a cost in computation time, they are superior in
robustness and no parameter adjustment has been necessary to achieve simulation completion. These
encompass several exiting models, for instance Mohr-Coulomb and the Bolton model, and are robust in
numerical analysis, with a new method of local corner rounding, not found elsewhere in the existing
literature.
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A | Finite Element Analysis of Geome-
chanical Systems

This appendix is in reference to Chapter 5, and contains a description of the finite elements used in
the analysis, test data for model calibrations and a note on the GPYS-LD model approximating the
Mohr-Coulomb model.

A.1 Data from True Triaxial Experiments

The experimental data used in model calibrations in this thesis, is presented in Table A.1. The data are
from true triaxial tests performed by [Bønding, 1977], and reads the three principal stresses at failure. The
author conducted a thorough work to describe the three dimensional stress state of granular material at
fracture, and fit a yield criterion combined of the Mohr-Coulomb and the Lade criteria. In order to do so,
the author constructs and tests a new triaxial apparatus, which tests on a 0.2× 0.2× 0.2m3 cubical test
element. The test material is composed of approximately cohesionless marine sand with a mean diameter
D50 = 0.24mm and a uniformity ratio D60/D10 = 1.67. Thirty-two experiments were performed for each
of three batches, composed of identical test material but with different void ratios, e, Dense sand e = 0.55,
Medium dense sand e = 0.62 and Loose sand e = 0.75. Their tests are considered as thorough, and the
results to be an acceptable premise for material model calibration.

Table A.1: Principal stresses at failure from true triaxial experiments performed by [Bønding, 1977].

Loose Sand Medium Dense Sand Dense Sand
σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

−43.16 −130.28 −156.47 −43.16 −171.48 −201.40 −39.24 −249.27 −278.70
−43.16 −139.79 −162.36 −32.37 −144.31 −167.85 −39.24 −261.83 −294.50
−32.37 −104.38 −124.10 −21.58 −95.84 −114.97 −29.43 −210.52 −232.30
−32.37 −108.30 −128.22 −21.58 −92.12 −108.40 −29.43 −199.54 −222.20
−21.58 −69.55 −82.11 −10.79 −53.37 −62.49 −19.62 −145.68 −164.81
−21.58 −72.59 −88.09 −43.16 −196.00 −229.26 −19.62 −167.65 −173.74
−10.79 −44.15 −50.52 −32.37 −133.61 −155.68 −9.81 −62.59 −89.66
−10.79 −39.34 −47.19 −10.79 −56.31 −65.53 −9.81 −69.65 −93.59
−52.97 −137.73 −192.86 −51.01 −159.51 −246.72 −49.05 −210.42 −329.42
−52.97 −127.04 −183.05 −51.01 −160.79 −231.71 −49.05 −200.42 −329.22
−26.49 −72.40 −99.57 −25.51 −83.29 −118.11 −24.53 −118.90 −178.54
−26.49 −80.93 −101.24 −25.51 −82.80 −114.09 −24.53 −110.85 −172.95
−60.82 −121.84 −206.01 −56.90 −138.03 −251.92 −54.94 −134.20 −330.30
−30.41 −53.27 −105.16 −56.90 −135.67 −257.81 −54.94 −154.31 −343.06
−30.41 −53.76 −107.42 −28.45 −67.49 −126.45 −27.47 −91.63 −197.48
−60.82 −121.74 −201.20 −28.45 −70.73 −135.87 −27.47 −88.58 −187.37
−62.78 −99.67 −217.68 −62.78 −122.23 −300.77 −62.78 −134.30 −402.11
−62.78 −97.71 −212.68 −62.78 −119.98 −277.43 −62.78 −140.77 −408.49
−47.09 −79.85 −170.69 −47.09 −88.58 −204.34 −47.09 −101.24 −307.05
−47.09 −75.34 −166.28 −47.09 −83.88 −206.11 −47.09 −101.63 −310.49
−31.39 −51.70 −116.74 −31.39 −62.20 −154.51 −31.39 −75.54 −217.39
−31.39 −50.03 −109.28 −31.39 −61.61 −151.96 −31.39 −75.24 −211.01
−15.70 −21.97 −56.02 −15.70 −32.57 −83.97 −15.70 −36.40 −110.75
−15.70 −26.19 −59.15 −15.70 −34.04 −83.29 −15.70 −35.41 −114.29
−74.56 −93.10 −261.83 −72.59 −110.56 −331.58 −72.59 −114.88 −421.34
−74.56 −93.29 −231.81 −36.30 −58.76 −170.79 −72.59 −122.82 −429.58
−37.28 −45.32 −128.51 −36.30 −55.92 −168.83 −36.30 −62.69 −220.43
−37.28 −48.17 −130.77 −72.59 −113.21 −339.92 −36.30 −65.43 −232.01
−78.48 −78.48 −237.89 −78.48 −78.48 −309.31 −78.48 −78.48 −391.62
−78.48 −78.48 −247.80 −78.48 −78.48 −300.97 −78.48 −78.48 −376.61
−39.24 −39.24 −127.14 −39.24 −39.24 −153.82 −39.24 −39.24 −197.18
−39.24 −39.24 −129.10 −39.24 −39.24 −151.96 −39.24 −39.24 −200.52
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A.2 The GPYS-LD model as approximation of Mohr-Coulomb

Preliminarily to applying the GPYS-LD model in analysis, its use as an approximation of Mohr-Coulomb
is considered, to set a lower bound value for the curvature parameter β. The benchmark values of
Mohr-Coulomb are conducted with an exact implementation of the Mohr-Coulomb plasticity model
as given in [Clausen et al., 2005]. It is found a good approximation with, β = 0.005, as seen in the
comparison in Table A.2.

Table A.2: Comparison of limit load from finite element analysis with an Exact Mohr-Coulomb model and the GPYS-LD model
with β = 0.005 and α = 0 .

Dense Sand Medium Dense Sand Loose Sand
System Section MC GPYS-LD Ratio MC GPYS-LD Ratio MC GPYS-LD Ratio

Strip Footing 5.1.2 356.83 356.07 1.0021 102.64 102.45 1.0019 69.051 68.984 1.0010

A.3 Finite Elements

Parts of the finite element analysis performed in this thesis are conducted in a MATLAB program written
by the authors. The element types used are described in this section.

A.3.1 Linear Strain Triangle

A linear strain triangle (LST), which is a plane element with six nodes, each with two d.o.f, is considered.
The displacements are interpolated quadratically, which gives linear interpolation of strains, hence the
name of the element. Literature on this element can be found in for instance [Cook et al., 2002, sec 7.2-7.3].
The element is depicted in area coordinates in Figure A.1.

P

A3

A1A2

1 2

3

56

4

ξ1 = 0ξ2 = 0

ξ3 = 0

ξ1 =
A1

A

ξ2 =
A2

A

ξ3 =
A3

A

ξ1 + ξ2 + ξ3 = 1

A1 +A2 +A3 = A

Figure A.1: Illustration of the LST element and the principle of area coordinates.

The shape function for each node is easily obtained as products of functions which gives zero in the
other nodes, scaled to equal one in the node under consideration. The shape functions in area coordinates
reads

N1 = ξ1(2ξ1 − 1) N2 = ξ2(2ξ2 − 1) N3 = ξ3(2ξ3 − 1), (A.1)

N4 = 4ξ1ξ2 N5 = 4ξ2ξ3 N6 = 4ξ3ξ1.

If the midside coordinates are positioned in the middle of the element edges and the edges are straight,
the point P in Figure A.1 can be interpolated via the coordinates of the corner nodes (1, 2 and 3) as

1

x

y

 =

 1 1 1

x1 x2 x3
y1 y2 y3


ξ1
ξ2
ξ3

 .



The inverse relation gives the area coordinates as functions of x and y as
ξ1
ξ2
ξ3

 =
1

2A

x2y3 − x3y2 y23 x32
x3y1 − x1y3 y31 x13
x1y2 − x2y1 y12 x21


1

x

y

 , A =
1

2
(x21y31−x31y21),

xij = xi − xj
yij = yi − yj

, (A.2)

whereA denotes the element area. In the plain strain calculations, all three normal stresses are considered,
and the strain interpolation matrix is given as


εxx
εyy
εzz
γxy

 =



∂N1

∂x
0

∂N2

∂x
0 . . .

∂N6

∂x
0

0
∂N1

∂y
0

∂N2

∂x
. . . 0

∂N6

∂x
0 0 0 0 . . . 0 0

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x
. . .

∂N6

∂y

∂N6

∂x





u1
v1
u2
...
v6


,

which naturally ensures the out of plane strain to be equal to zero. The shape function derivatives with
respect to the global coordinates is simply calculated with Equations (A.1) and (A.2). Fore instance the
first entry of the strain interpolation matrix is calculated as

∂N1

∂x
=
∂N1

∂ξ1

∂ξ1
∂x

= (4ξ1 − 1)
y23
2A

,

and the rest in the same manner. With the strain interpolation matrix, the usual integral for the stiffness
matrix is performed via Gauss quadrature

K =

∫
Ω

BTD B d Ω ≈
n∑
i=1

BTD B wi t A,

where n, wi and t is the order of the Gauss integration, the weight of integration point i, and the element
thickness, respectively. The constitutive matrix is reduced to accomodate plane strain conditions, and for
isotropic elasticity it reads

D =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0
1

2
(1− 2ν)

 .
The locations and weights of the Gauss integration points is listed for different orders in Table A.3.

Table A.3: Gauss integration points and weights for some orders of integration in a triangular element, see fore instance [Cook
et al., 2002, tab. 7.4-1].

Integration order ξ1 ξ2 ξ3 wi

2 2/3, 1/6, 1/6 1/6, 2/3, 1/6 1/6, 1/6, 2/3 1/3, 1/3, 1/3

A.3.2 Linear Strain Tetrahedron

A linear strain tetrahedral element is used for the three-dimensional analysis in this thesis, which is a
straight forward extension of the LST element. The element has 10-nodes, 4 corner nodes and 6 mid-side
nodes, and quadratic field interpolation functions. The element is sketched in isoparametric coordinates
in Figure A.2. The isoparametric coordinates may be directly converted to volume coordinates, which are
the three-dimensional parallel to the area coordinates.

The element shape functions reads

N1 = (1− r − s− t)(1− 2r − 2s− 2t) N6 = 4rs

N2 = r(2r − 1) N7 = 4s(1− r − s− t)
N3 = s(2s− 1) N8 = 4t(1− r − s− t)
N4 = t(2t− 1) N9 = 4tr

N5 = 4r(1− r − s− t) N10 = 4st



Node coordinates
1 (0, 0, 0) 6 (0, 0.5, 0.5)

2 (1, 0, 0) 7 (0, 0.5, 0)

3 (0, 1, 0) 8 (0, 0, 0.8)

4 (0, 0, 1) 9 (0.5, 0, 0.5)

5 (0.5, 0, 0) 10 (0, 0.5, 0.5)

Figure A.2: 10-node tetrahedron in isoparametric space.

A second order Gauss integration scheme is adopted, with weights and quadrature stations as in
Table A.4

Table A.4: Gauss integration points and weights for second order integration in a tetrahedral element, see fore instance [Cook et al.,
2002, tab. 7.4-2].

Integration order ri si ti wi

2 (a, b, b, b) (b, b, b, a) (b, b, a, b) 1/4

a = (5+3
√
5)/20

b = (5−
√
5)/20



B | Implementation in Abaqus software
This appendix contains the procedure for implementation of a constitutive model in the commercial finite
element program ABAQUS by Simulia Dassault Systems. Preliminary requirements:

• Abaqus on a research licence

• A Fortran compiler - Preferably “Intel Fortran”

• A code editor - “Notepad++” or “Visual studio”

The following introduction is conducted on Abaqus 2017 and a Intel Fortran 2013 compiler on Windows10
64bit platform. Code editing is performed in Microsoft Visual Studio 2010 and Notepad++, but any editor
would do.

B.1 Writing UMAT in Fortran Fixed form

A user-defined subroutine for material behaviour is in Abaqus called, UMAT, for more information on
this subject, see the Abaqus help manual section, Abaqus User Subroutines Reference Guide 1.1.41 UMAT.
This section contains elaboration and recommendations by the authors. See Listing B.1 for a code snippet
of an Abaqus UMAT file without any user-defined lines of code.

UMAT code for Abaqus is performed in Classical Fortran (Fixed form), where each line of code
consists of 72 columns, of which the first 6 is reserved for special operands, any sign in column 6 will
continue the previous line. A “C” in first column will comment out the hole line, whereas an “!” will
do in-line comments. It is encouraged to do some pre-study on the subject of Classical Fortran see for
instance [Kupferschmid, 2009].

Fortran operates in general with subroutines and functions, of which the latter assigns a value to
it self, and can be used in an expression, in the same fashion as intrinsic functions. Subroutines are in
general longer, and can assign values to multiple variables and is executed via the CALL statement. Be
aware, that variables passing through a subroutine are updated.

Fortran bares some resemblance to Matlab, but with some key differences. Fortran is not case-sensitive
and it is needed to allocate variable type and size at the beginning of any subroutine, as it is recommended
to use the IMPLICIT NONE option, although this disables guarantee for transferability of the UMAT. In
general, variables with initial letter I to N is regarded as integers. In MATLAB, the default assignment
of a value to a variable is in floating points double precision, where it is Fortran code is specified for
every value assigment. Inconsistency of precision affects the final result, and it is compiler and editor
dependent whether any warning will appear. Double precision real values are assigned as x.0D0 or x_8,
where D0 is equivalent to 100 as it would for single precision be x.0E0.

Listing B.1: Abaqus standard UMAT code, Abaqus 2017.

1 SUBROUTINE UMAT( STRESS , STATEV,DDSDDE, SSE , SPD , SCD,
2 1 RPL ,DDSDDT,DRPLDE,DRPLDT,
3 2 STRAN,DSTRAN, TIME , DTIME,TEMP,DTEMP, PREDEF,DPRED,CMNAME,
4 3 NDI ,NSHR,NTENS,NSTATV, PROPS,NPROPS,COORDS,DROT,PNEWDT,
5 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT, LAYER, KSPT , JSTEP , KINC)
6 IMPLICIT NONE
7 REAL∗8 STRESS , STATEV,DDSDDE, SSE , SPD , SCD,
8 1 RPL ,DDSDDT,DRPLDE,DRPLDT,
9 2 STRAN,DSTRAN, TIME , DTIME,TEMP,DTEMP, PREDEF,DPRED,

10 3 PROPS,COORDS,DROT,PNEWDT,
11 4 CELENT,DFGRD0,DFGRD1
12 CHARACTER∗80 CMNAME
13 INTEGER∗8 NSTATV,NTENS,NPROPS, NDI ,NSHR,NOEL,NPT, KSPT , JSTEP ,
14 1 KINC,LAYER
15 DIMENSION STRESS (NTENS) ,STATEV(NSTATV) ,
16 1 DDSDDE(NTENS,NTENS) ,DDSDDT(NTENS) ,DRPLDE(NTENS) ,
17 2 STRAN(NTENS) ,DSTRAN(NTENS) , TIME ( 2 ) , PREDEF ( 1 ) ,DPRED( 1 ) ,
18 3 PROPS(NPROPS) ,COORDS( 3 ) ,DROT( 3 , 3 ) ,DFGRD0( 3 , 3 ) ,DFGRD1( 3 , 3 ) ,
19 4 JSTEP ( 4 )
20
21 C User d e f i n e d c o d e s t r i n g
22
23 RETURN
24 END SUBROUTINE UMAT
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Full elaboration on the input variables is found in the Abaqus users guide. The variables of interest for
the GPYS yield surface are given in Table B.1.

Table B.1: Main variables of focus

Input variables
NPROPS Number of material properties
NTENS Dimension of stress vector
NSTATV Number of state variables
PROPS Real array containing material properties
DSTRAN Real array containing strain increment in load step

Updated variables
STRESS Stress state in global coordinate system
STATEV State variables passes information from previous load step and is stored in the results

Output variables
DDSDDE Consistent tangent in global coordinate system of size (NTENS×NTENS)

It is noted, that Abaqus arranges stress as [σxx; σyy; σzz; σxy; σxz; σyz]
T which obviously affects

construction of the stress tensor, as well as the transformation matrix to original stress space. After the
obligated variables any variables used in the current subroutine is defined. As exemplified in the YIELD
subroutine in Listing B.2.

Listing B.2: Subroutine example for yield function.

1 SUBROUTINE YIELD ( F , SIG , PROPS,NPROPS)
2 IMPLICIT NONE
3 INTEGER∗8 ,INTENT( IN ) : : NPROPS
4 REAL∗8 ,INTENT( IN ) : : SIG ( 3 ) , PROPS(NPROPS)
5 REAL∗8 ,INTENT(OUT ) : : F
6 REAL∗8 RHOC, PAPEX, SIGDEV ( 3 ) ,C( 2 ) , R , T ( 3 , 3 )
7
8 C User d e f i n e d c o d e s t r i n g ,
9 C f o r c a l c u l a t i n g RHOC, Radius and C ent r e o f c u r v a t u r e

10
11 SIGDEV ( 1 : 3 ) = MATMUL( T , SIG )
12 IF ( SIGDEV( 1 )/DSQRT( 3 . 0 D0) >PAPEX )THEN
13 F = NORM2( SIG−PAPEX )
14 ELSE
15 F = NORM2( SIGDEV(2:3)−C( 1 : 2 )∗RHOC )−R∗RHOC
16 ENDIF
17
18 RETURN
19 END SUBROUTINE YIELD

The intention statement for the input variables are not mandatory, but helps the compiler as well as
code clarification for later use. Code should in general be written as thread-safe, for enabling parallel
computing. Thread-safety is ensured via simple rules, as avoid writing to global variables and use of
common blocks. Additionally pure subroutines and explicit interfaces can be utilized. Further, must the
Fortran compiler be set up for single thread compiling, as illustrated in Listing B.5, as Fortran by default
will optimize the code to use all accessible kernels. A declared Pure subroutine is unable to interfere
with any global accessible variables or use print and write statements. Such a routine is exemplified in
Listing B.3, along with different ways of constructing identity matrices.

Listing B.3: Pure subroutine example for double precision Identity matrix, size (n,n).

1 PURE SUBROUTINE DEYEM(EYE , n )
2 IMPLICIT NONE
3 INTEGER, INTENT( IN ) : : n
4 REAL∗8 ,INTENT(OUT ) : : EYE( n , n )
5 INTEGER i
6
7 EYE ( 1 : n , 1 : n ) = 0 . 0D0
8 FORALL( i =1:n ) EYE( i , i ) = 1 . 0D0
9 C or as f o l o w s

10 EYE ( 1 : n , 1 : n ) = 0 . 0D0
11 DO i =1 ,n
12 EYE( i , i ) = 1 . 0D0
13 ENDDO
14 C or as but not recommended
15 EYE ( 1 : n , 1 : n ) = 0 . 0D0



16 EYE ( 1 , 1 ) = 1 . 0D0
17 EYE ( 2 , 2 ) = 1 . 0D0
18 ! . . .
19 EYE( n , n ) = 1 . 0D0
20
21 RETURN
22 END SUBROUTINE DEYEM

Transferability is in general of high priority, use of locally stored toolboxes and packages should
therefore be avoided. Code snippets of necessary commands are highly available on-line and found
in much literature see fore instance [Press et al., 1992]. Fortran intrinsic functions are though highly
recommended, as they are thread safe and accurate.

When generating multiple subroutines and thousand lines of code, a subdivision in to multiple files
can be beneficial. The INCLUDE statement followed by the name of the file containing other subroutines,
shall be placed outside any other subroutine as in Listing B.4.

Listing B.4: Example of subroutine with interface for a pure subroutine placed in another file named
“UtilityRoutines.for”.

1 SUBROUTINE Name(VAL1, VAL2)
2 IMPLICIT NONE
3 REAL∗8 ,INTENT( IN ) : : VAL1
4 REAL∗8 ,INTENT(OUT ) : : VAL2
5 REAL∗8 EYE3 ( 3 , 3 )
6
7 INTERFACE
8 PURE SUBROUTINE DEYEM(EYE , n )
9 INTEGER, INTENT( IN ) : : n

10 REAL∗8 ,INTENT(OUT ) : : EYE( n , n )
11 END SUBROUTINE DEYEM
12 END INTERFACE
13
14 CALL DEYEM( EYE3 , 3 )
15
16 RETURN
17 END SUBROUTINE Name
18
19 INCLUDE ’ U t i l i t y R o u t i n e s . f o r ’

B.2 Linking Abaqus and Fortran compiler

First of all, all programs are installed in correspondence with any given guidelines, probably in the
following order “Intel Fortran”, “Microsoft Visual Studio” and lastly “Abaqus”. Visual Studio is optional,
however, used for code editing and pre-compiling generated code. In the following we will create an
environment file for Abaqus and consider two methods of linking Abaqus and the Fortran compiler, or in
fact pre-launch the compiler.

An environment file called “abaqus_v6.env” is created, to alternate the Abaqus licence and the Fortran
compiler directives, and placed in the Windows Temp folder, case-sensitive. The environment file is
created in the text editor, and saved with the .env extension. The first line of the environment file of
Listing B.5 will chance to a research licence, provided that Abaqus is installed as academic and a research
licence is available. The later content alternates the standard Fortran compiler directives to accommodate
parallel computing.

Listing B.5: Content of “abaqus v6.env” file, case-sensitive Intel Fortran 2013 and Abaqus 2017.

academic=RESEARCH

compi le_for t ran =[ ’ i f o r t ’ ,
’/c ’ , ’/DABQ_WIN86_64 ’ , ’/extend−source ’ , ’/fpp ’ ,
’/ i f a c e : c r e f ’ , ’/ r e c u r s i v e ’ , ’/Qauto−s c a l a r ’ ,
’/QxSSE3 ’ , ’/QaxAVX ’ ,
’/heap−arrays : 1 ’ ,
’/thread ’ , ’/Qopenmp ’ , ’/ l i b s : s t a t i c ’ , # <−− Added f o r p a r a l l e l computing
# ’ / Od ’ , ’ / Ob0 ’ , # <−− O p t i m i z a t i o n Debugging
# ’ / Zi ’ , # <−− Debugging
’/ include :% I ’ ]



The methods of pre-launching the compiler are, either to modify the short-cut target or to create a new
short-cut as a batch file. The advantage of the latter approach is to have separate short-cuts for standard
Abaqus usage and one for usage with UMAT where Fortran compiler is launched simultaneously with
Abaqus. In both cases, locate the “ifortvars.bat” file, probably located in the following directory “
"C:\Program Files (x86)\Intel\Composer XE 2013\bin\ifortvars.bat" ”. The full path to this file (store
it in a .txt document) is needed. Subsequently we will locate the short-cut for “Abaqus CEA” and
“Abaqus Command”, and modify or copy their target to the aforementioned batch-file.

To modify the short-cut target, the previous found path is pasted, followed by “ intel64 vs2010 & ”
prior to the current target, as shown in the tree of Figure B.1. The “intel64” refers to Intel Fortran 64

bit, and “vs2010” to Visual Studio 2010, this is of course software dependent. The Fortran Compiler is
then set up to launch prior to the “Abaqus CEA” and “Abaqus Command” when using the start menu
short-cut, provided, that the entered path is correct.

Windows

Start Menu

Programs

Dassault Systemes SIMULIA Abaqus CAE 2017

Abaqus CEA

Right-click/Properties

Shortcut

Target

"Path\To\ifortvars.bat" intel64 vs2010 & %%Current\Target%%

Abaqus Command

Right-click/Properties

Shortcut

Target

"Path\To\ifortvars.bat" intel64 vs2010 & %%Current\Target%%

Figure B.1: Tree for locating Abaqus shortcut target and modification.

The other method rests on creating batch files, which will execute commands, in the same fashion as
previously described. A batch file is created in a editor such as Notepad or Notepad++, and saved with
the “.bat” extension. The batch files shall, in this case, be placed in the same folder as the “abaqus_v6.env”
file of Listing B.5 (Make a new folder in \Temp). Firstly, the “IfortAbaqusCEA.bat” file of Listing B.6,
is created, which initially deletes the abaqus.rpy file then launches the Fortran compiler followed by
“Abaqus CEA”. In the preferred editor, copy/paste the previously found path to the “ifortvars.bat” file,
followed by “ intel64 vs2010 & ” depending on your software. Locate the short-cut target for Abaqus
CEA as in Figure B.1, copy the entire target and paste it to the .bat file. The result should look something
like Listing B.6, where the ^ is used to continue the line. Double quotation, ", is mandatory when a path
contain spaces.

Listing B.6: Example of content in IfortAbaqusCEA.bat file.

1 del abaqus . rpy
2
3 "C:\ Program F i l e s ( x86 )\ I n t e l \Composer XE 2013\ bin\ i f o r t v a r s . bat " i n t e l 6 4 ^
4 vs2010 & C:\SIMULIA\CAE\2017\win_b64\resources\ i n s t a l l \cae\launcher . bat cae || pause

The second .bat file, “IfortCMD.bat”, of Listing B.7 will launch the Fortran compiler followed by the
Windows Command Prompt, and is used to run Abaqus system check and verification. The file is
constructed in the same fashion as Listing B.6, but with the target of short-cut “Abaqus Command”
instead. The third line will run the Abaqus system check, which is optional and can be typed directly in
the launched command prompt. Once again, the ^ is used to continue the line.

Listing B.7: Example of content of IfortCMD.bat file.

1 "C:\ Program F i l e s ( x86 )\ I n t e l \Composer XE 2013\ bin\ i f o r t v a r s . bat " i n t e l 6 4 ^
2 vs2010 & C:\Windows\system32\cmd . exe /k^
3 abaqus i n f o =system



When running the IfortCMD.bat file, Windows command window will launch a system check, where it is
checked, that the correct Fortran compiler is linked. The result should look something like Listing B.8.

Listing B.8: Command snippet of result from the IfortCMD.bat file.

V i r t u a l Memory : 14367 Avai lable / 18726 Tota l Mbytes
OS Version : Windows 10 Education ( Build 17134)
C++ Compiler : Unable to l o c a t e or determine the version of a C++

compiler on t h i s system . I f a C++ compiler i s i n s t a l l e d
on t h i s system , please load vcvars64 . bat f i l e before
running Abaqus

Linker Version : Microsof t (R) Incremental Linker Version 1 0 . 0 0 . 3 0 3 1 9 . 0 1
Fortran Compiler : I n t e l Fortran Compiler 1 3 . 0 <−− OK
MPI : MS−MPI 5 . 0 . 1 2 4 3 5 . 6
Browser : I n t e r n e t Explorer 1 1 . 0 . 1 7 1 3 4 . 1

Graphics D e t a i l s :

Alternative commands would be “abaqus verify -user_std”, to verify user defined subroutines are
admissible (NOTE: Just type it in the launched command window). Provided that the Fortran compiler is
correct and user defined subroutines are admissible, we are ready to set up the Abaqus CEA analyses for
use of UMAT.

B.3 Preparing Abaqus CEA for UMAT analysis

The use of UMAT in Abaqus CEA requires some initiation. The model is generated as usual, but with
alternation of the “Material model”, “Field output request” and initiation of the current job.

In the UMAT for GPYS-LD model, as described in Appendix C, 19 state variables and 9 input material
parameters are defined, as listed in Table B.2. The later affects merely the convergence rate, and not the
final result.

Table B.2: Input and output in the GPYS-UMAT.

User material

1 ν Poison’s Ratio
2 E Youngs modulus
3 c Cohesion
4 φ Internal angle of friction
5 ψ Internal angle of dilatation
6 α Meridional eccentricity
7 β Deviatoric curvature
8 χapex Apex stiffness corrector
9 χline Line stiffness corrector

Solution-dependent state variables

1-6 Accumulated elastic strain
7-12 Accumulated plastic strain
13-18 Rate of plastic strain

19 Rate of max plastic shear strain

The set-up for use of UMAT in Abaqus is outlined in the tree of Figure B.2, which is a reduced version
of the “Abaqus CEA” model tree. Obviously the material of the current model, has to be set-up for the
desired material model, which in the case of a GPYS material is stated in Table B.2. In order to store and
visualize the analysis results of the desired state variables, SDV has to be checked on under “Field Output
Request.” The analysis job is created as usual, however, the path to the “.for” file containing the UMAT
subroutine has to be defined. It is noted, that the GPYS-UMAT is thread safe and parallel computing is
possible, with compiler settings as in Listing B.5.



Models

Model

Material

Create / Edit Material

Material Behaviour

General

Density - Material density for initial stresses

Depvar - Number of solution-dependent state variables = 19

User Material

ν E c ϕ ψ α β χapex χline

Field Output Request

Create / Edit

Output Variables

State/Field/User/Time

SDV
√

- Enables state variables in results

Analysis

Jobs

Create / Edit Job

General

User subroutine file - "Path\To\GCYS-UMAT.for"

Parallelization

Use multiple processors
√

Submit Job

Figure B.2: Abaqus Model tree for UMAT analysis, bare minimum.
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convex shapes from Mohr-Coulomb to the Drucker-Prager surface. It
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formulated with linear generators for simplicity, although, a nonlinear
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model. The formulation with linear generators enables a closed form
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Summary
The Mohr-Coulomb and Drucker-Prager yield criteria are often used as plasticity
models in the analysis of frictional materials. Mohr-Coulomb is in better coherence
with the actual behaviour of soil materials than the Drucker-Prager criterion, how-
ever, true material behaviour is evidently somewhere in-between these two extrema.
This paper introduces a novel conical multi-surface plasticity model, which covers a
wide range of convex shapes from Mohr-Coulomb to the Drucker-Prager surface. It
operates on the well-known internal angle of friction and cohesion, plus two addi-
tional parameters to further adjust the shape. The surface is formulated with linear
generators for simplicity, although, a nonlinear hydrostatic stress dependency is a
straight forward extension of the model. The formulation with linear generators
enables a closed form solution to the implicit return mapping scheme, furnishing
a robust algorithm. The complete mathematical description and implementation in
elasto-plastic finite element analysis is described, and the plasticity model is imple-
mented in a commercial finite element software, to demonstrate its potential. The
proposed yield surface is calibrated to true triaxial test data and used to analyse a strip
footing in plane strain, which yields a noteworthy increase in load bearing capacity,
as compared to a conventional Mohr-Coulomb model.
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1 INTRODUCTION

In the analysis of geotechnical problems, theMohr-Coulomb and the Drucker-Prager yield criterion is often used as the plasticity
model for frictional materials. However, contradictions arises as the intermediate principal stress is neglected by the Mohr-
Coulomb criterion, opposed to the Drucker-Prager model, where all stresses are of equal importance. The truematerial behaviour
is somewhere between these two extrema, as supported by experimental researches as for instance Lade and Duncan,1 Krishna
and Surenda2 or Bønding,3 tomention a few. In general terms, theMohr-Coulomb criterion better represents the actual behaviour
of frictional soil than the Drucker-Prager criterion, as discussed by for instance Bishop in 19664 and more recently Alejano and
Bobet in 2012.5 It is therefore of interest to formulate a yield surface, which can include the intermediate principal stress to
some extent, to better represent the actual behaviour of a wide range of materials.
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This paper offers the complete mathematical description and implementation in elasto-plastic finite element analysis of a novel
yield surface, proposed by Damkilde.6 The surface is composed of conical sections, and covers a wide range of convex shapes
from Mohr-Coulomb to the Drucker-Prager surface. Similar models are to the authors knowledge not present in the literature,
although, other multi-surface models to cover a wide range of materials have been proposed, see for instance Yu 1961,7 Paul
19688 or Coombs et al. 2010.9
The proposed yield surface is formulated as a composition of geometrical shapes in principle stresses, and makes use of

advances in multi-surface plasticity made by Clausen et al.10 The concept is to define circles in the deviatoric plane, and through
manipulation of the centre and radius, several convex shapes are covered, as illustrated in Figure 1. Isotropic material behaviour
is assumed and the conventional ordering of the principal stresses, �1 ≥ �2 ≥ �3, is adopted, to exploit the six-fold symmetry of
the yield surface and merely define one circular geometry. The Mohr-Coulomb deviatoric trace is approximated by defining the
radius as a numerically large number and the Drucker-Prager with the centre at the hydrostatic axis. Considering more advanced
models, the Reuleaux plasticity model, see Coombs et al.9 occurs as a special case of this yield surface. The surface is proposed
with linear hydrostatic stress dependency for simplification, although, employment of nonlinear generators is a straight-forward
extension of the mathematical formulation. Linear hydrostatic stress dependency further enables an analytical solution to the
classical fully implicit return mapping scheme. The deviatoric trace could in general be composed of any number of circular
segments, where convexity is ensured by limits on the surface parameters derived by geometrical arguments. See Jepsen et al.11
for a formulation of this yield surface with multiple circular segments.

(a) (b) (c)

FIGURE 1 The concept of GPYS illustrated in deviatoric traces (a) intermediate setting (b) Mohr-Coulomb setting and (c)
Drucker-Prager setting.

Yield surfaces can in general be grouped as discontinuous or continuous in the deviatoric trace, of which the latter is superior
regarding global convergence rate in elasto-plastic finite element analysis. Some famous continuous yield surfaces in geomechan-
ics is for instance, Drucker-Prager, 1951,12 Matsuoka-Nakai, 1974,13 Lade, 1977,14 or the modified Drucker-Prager model,15 to
mention a few. Yield surfaces, which are not continuously differentiable, such as, Mohr-Coulomb dating back to 1773,16 Unified
Strength Theory, 1961,7 Hoek-Brown, 1980,17 or Reuleaux plasticity, 2010,9 are in general troublesome in numerical analysis,
as discontinuities leads to poor convergence rate, or no convergence at all. To remedy this shortcoming, several approaches are
available, such as corner rounding, see for instance Abbo et al. 2011,18 or by modifying the consistent tangent as proposed by
Clausen et al. 2007.19 The latter is adopted in this paper, although, a corner rounded formulation of the proposed yield surface
has been developed by the authors as well, see Jepsen et al.11
The remainder of this paper is organized as follows: the mathematical description of the General Parametric Yield Surface

(GPYS) is given in Section 2, followed by the return mapping scheme and calculation of the consistent elasto-plastic constitutive
matrix in Section 3, and its use in numerical analysis is exemplified in Section 4. Throughout this paper, linearly elastic, perfectly
plastic material behaviour and associated flow is assumed. Stresses are assumed as effective and the conventional apostrophe is
omitted in the notations. Compressive stresses are given as negative quantities.
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2 MATHEMATICAL DESCRIPTION OF THE YIELD SURFACE

The mathematical description of the proposed yield surface is presented in this section. Principal stress representation is utilized
to formulate the surface based on spatial geometry, see for instance Clausen et al.10 for an elaboration on the transformation
between the general six-dimensional and principal stress space. Under the previously mentioned assumptions, the yield surface
is defined by one circular segment in the deviatoric plane, by its centre and radius, as sketched in Figure 2a. The deviatoric
geometry is then scaled by the deviatoric measure, �c , which is defined as a function of hydrostatic stress. Here, the linear
compression generator of Mohr-Coulomb is adopted, as sketched in Figure 2b. Considering the three-dimensional shape, the
full yield surface is composed of six sections from an oblique cone, as illustrated in Figure 2c. A convex surface is ensured by
simple limits on the surface parameters through geometrical considerations.
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L∕2

x

c1
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p
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f (�) = 0
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�
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√
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k−1

(b)

�1
�3

rc

p
�apex
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FIGURE 2 Geometrical illustration of the General Parametric Yield Surface (a) deviatoric plane (b) compressive meridian and
(c) oblique cone generated by a circular deviatoric trace and linear generators.

The surface shape is governed by four parameters, the internal angle of friction and cohesion, plus two parameters denoted �
and �, which controls the meridional eccentricity and the deviatoric curvature, respectively. The internal angle of friction and
cohesion are well-known in geotechnical engineering, and the additional parameters are defined such that � = � = 0 yields
Mohr-Coulomb and � = � = 1 the Drucker-Prager surface. The �t∕�c-ratio is governed by the �-parameter, as the positioning of
intersection point, c1, of the x-axis and the projected �1-axis, see Figure 2a. The side curvature, is adjusted by the �-parameter,
as the positioning of the centre of curvature, c, on the x-axis. A description of the surface parameters are given in Table 1 along
with settings to emulate some existing yield criteria. The lower bound on the �-parameter prevents a zero-division, and a straight
deviatoric trace is approximated for a value of 10−4, as found through numerous numerical analysis. The limits on � and � in
Table 1 ensures a convex deviatoric trace, and their impact on the shape is visualized in Figure 3.

TABLE 1 Parameter description, range of validity and approximation of some existing yield surfaces.
Parameters

Description Angle of Friction Cohesion Meridional eccentricity Curvature
Symbol ' c†† � �
Range ]0; �∕2[ ≥ 0 [0; 1] ]0; 1]

Special cases of existing plasticity models
Mohr Coulomb 16 as is as is 0.00 0.00 †
Extended Tresca 4 as is as is 1.00 0.00 †
Drucker-Prager 12 as is as is 1.00 1.00
Reuleaux 9 as is as is as is 1.00
† An appropriately small value is 10−4.
†† Units of pressure
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(a) (b) (c)

FIGURE 3 GPYS Deviatoric trace with various configurations of � and � from 0 to 1 with increments of 0.25. (a) Variation of
� with fixed � = 0 (b) variation of � with fixed � = 0 and (c) variation of � and �.

The surface is formulated with the apex at the origin, and stress states are parallel shifted with the apex hydrostatic stress, in
the implementation in numerical analysis. The apex of Mohr-Coulomb is adopted as

papex =
2c
√
k

k − 1
.

A key element in the formulation of the novel yield surface is to operate with a deviatoric geometry, which is scaled with a
function of the hydrostatic stress. The typical decomposition of stresses in deviatoric and hydrostatic components is exploited,
and it is found convenient to define the deviatoric geometry in the cartesian �∗-coordinate system as illustrated in Figure 4. For
an elaboration on this transformation, see Appendix A.
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FIGURE 4 Transformation from principal stresses to the �∗ coordinates, seen in the deviatoric plane.

A sketch with relevant measures in the deviatoric plane to derive the mathematical expression for the yield surface is presented
in Figure 5.
The parameters are calculated in the �c-normalized deviatoric plane with

�c = 1 ∧ �t = � +
3 − sin'
3 + sin'

(1 − �) ,

where, �, is introduced as the meridional eccentricity. The tension meridian equalsMohr-Coulombwith � = 0 and yields �t = �c
for � = 1. The secant length, L, of Figure 5a, and the angle, 
 , of Figure 5b, are calculated by the Pythagorean theorem and the
tangent relation as
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√√√√√
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)2

+
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∧ 
 = arctan
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.
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(a) (b)

FIGURE 5 Sketch with relevant measures in the �c-normalized deviatoric plane for derivation of the GPYS criterion (a)
measures of length and (b) angular relations.

The normalized centre in �∗-coordinates and radius is found by straightforward geometrical relations and reads

c∗ =
⎧⎪⎨⎪⎩

√
3∕�

r cos ((1 − �) 
) − �t
r sin ((1 − �) 
)

⎫⎪⎬⎪⎭
∧ r = L

2 sin (�
)
,

where, �, is introduced to adjust the curvature by scaling the angle 
 . The expression for �c is adopted as the compressive
meridian of Mohr-Coulomb, which along with its first and second partial derivatives, used in the finite element implementation,
with respect to the stresses becomes

�c = �p ∧
)�c
)�i

= �
3

∧
)2�c
)�i�j

= 0,

where, �, is the slope of the Mohr-Coulomb compressive generator, see Figure 2b, given as
� = 1 − k√

2∕3 (k∕2 + 1)
, k = 1 + sin'

1 − sin'
.

The yield criterion is formulated as the difference between the radius and the deviatoric distance from the current stress state
to the centre of curvature. The yield criterion and its first and second partial derivatives with respect to the principal stresses,
used in the finite element implementation, are given as

f =∥ �∗ − c∗�c ∥ −r�c , (1)
)f
)�i

=∥ �∗ − c∗�c ∥−1 ℎi − r
)�c
)�i

, (2)
)2f
)�i)�j

=∥ �∗ − c∗�c ∥−1
)ℎi
)�j

− ∥ �∗ − c∗�c ∥−3 ℎiℎj − r
)2�c
)�i�j

, (3)
where,

ℎi =
(
�∗2 − c

∗
2�c

)(
T2i − c∗2

)�c
)�i

)
+
(
�∗3 − c

∗
3�c

)(
T3i − c∗3

)�c
)�i

)
,

)ℎi
)�j

=
(
T2j − c∗2

)�c
)�j

)(
T2i − c∗2

)�c
)�i

)
+
(
T3j − c∗3

)�c
)�j

)(
T3i − c∗3

)�c
)�i

)
−
((
�∗2 − c

∗
2�c

)
c∗2 +

(
�∗3 − c

∗
3�c

)
c∗3
) )2�c
)�i�j

.
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The expressions are kept in terms of �c and its derivatives for the sake of generality, i.e. any function of the hydrostatic stress
could be formulated for, �c , differentiated twice and used in Equations (1) to (3). The transformation matrix, T, of Figure 4 enters
the expressions as result of differentiating the �∗-coordinates with respect to the principal stresses. The normalized centre, c∗,
and radius, r, are conveniently calculated prior to an analysis, to avoid calculation at every stress point for each global iteration.
The generality of the surface is well established at this point, as the circular geometry in the deviatoric plane covers a wide
range of convex shapes, and the generators simply needs to be a function of hydrostatic stress, and could have any appropriate
non-linear variation.

3 IMPLEMENTATION IN ELASTO-PLASTIC FINITE ELEMENT ANALYSIS

The implementation in elasto-plastic finite element analysis of the proposed plasticity model is described in this section. A
general introduction is given here, and a thorough mathematical description is given in Appendices B, C and D. Appendix B
describes the determination of the stress return type, and the expressions for the return mapping algorithm is derived in
Appendix C. The consistent tangent operator for the different return types are derived in Appendix D. The implicit return
mapping scheme, see for instance de Borst et al.20 is here explained from the geometrical illustration in Figure 6.

FIGURE 6 Geometrical illustration of return mapping seen in a deviatoric plane.

A nonlinear finite element procedure is assumed, where a strain increment, Δ", results in an elastic predictor stress state, �B ,
see Figure 6, as

�B = �A + Δ�e = �A + DΔ",
where, �A, is the stress state prior to the strain increment and, D, is the isotropic elasticity matrix. If f (�B) > 0, the stress state
is inadmissible, and the fully implicit return mapping scheme is adopted to calculate the stress state as consequence of Δ". The
conventional decomposition of a strain increment into an elastic and a plastic part is assumed, and the plastic strain increment
is described via the flow rule

d" = d"e + d"p ∧ d"p = d�∇g, (4)
where superscripts, e and p, denotes a purely elastic and plastic quantity, respectively, d� is the plastic multiplier, and g is the
potential function. Associated flow g = f is assumed in this implementation of the GPYS model, however, g is maintained in
the notations for generality. An infinitesimal stress increment is found by isolating the elastic strain increment in Equation (4)
and applying the elastic stress strain relation as

d� = D d"e = D (d" − d"p) = D (d" − d�∇g) . (5)
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Integration over a finite increment is assumed with constant plastic strain direction, evaluated for the updated stress state, i.e. a
fully implicit numerical integration scheme. This yields the following relation for the updated stress state

�C = �A + DΔ" −
�+Δ�

∫
�

D∇g d� = �A + Δ�e − Δ�p ≃ �A + DΔ" − Δ�D∇g(�C ),

where subscript,C , denotes the updated stress state, andΔ�e andΔ�p are the elastic predictor and plastic corrector, respectively.
Employing the yield criterion as a constrained equation, the following system is obtained for the stress update

�C = �B − Δ�D∇g(�C ),
f (�C ) = 0,

(6)
where the prior stress state, �A, is omitted as it merely is needed to calculate the elastic predictor, �B .
For the proposed plasticity model, three return types are encountered, namely to the surface, an intersection line or the apex

point, as illustrated in Figure 7a. A systematic approach is to introduce four regions in principal stress space, as proposed by
for instance Clausen et al.10,19 for return to the surface, the compressive and tensile meridians and the apex, respectively. The
return region is determined from the derivations in Appendix B and can be illustrated by the surfaces depicted in Figure 7b.

(a)

S I-
II

S I-III

SI-IV

RII

RI

RIV
p

RIII

(b)

FIGURE 7 (a) Encountered stress return types and (b) three-dimensional illustration of border surfaces, SI-II, SI-III and SI-IV.

When an elastic predictor stress state is situated in region IV, it is simply returned to the apex. In regions, II and III, the
stress state is returned to the intersections lines via a geometrical approach presented by Clausen et al.19 the details of which
are given in Appendix C.2. A predictor stress state situated in region I is returned to the surface as the solution to the system of
Equation (6), which can be solved with a numerical procedure or in closed form as thoroughly described in Appendix C.1. The
closed form solution, inspired by the works of Coombs et al.9 and Crouch et al.21 consists of rather long expressions, however,
it is superior in robustness, especially for stress returns in the vicinity of the apex.
When a material point is subjected to plastic straining, the stress and strain increments are related by the consistent elasto-

plastic constitutive matrix, or simply referred to as the consistent tangent, as elaborated in Appendix D. The consistent tangent
relates changes in finite increments of stress and strain as

d(Δ�) = Depcd(Δ"),
where superscript, epc, denotes a consistent elasto-plastic quantity. It provides stiffness tangential to the yield surface and is
singular in direction of the plastic strain increment, as

Δ� = Depc(Δ"e + Δ"p) = DepcΔ"e + 0.
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The consistent tangent operator is determined posterior to updating the stress state, and different expressions are needed for the
respective return regions. At the surface, region I, it is determined via the well known expression as first derived by Simo and
Taylor22, see Appendix D.1. For stress return to a singularity, region II, III and IV, formulations by Clausen et al.23 are used
to calculate the consistent tangent. Here, the Koiter method24 are modified for improved convergence rate, see Appendices D.2
and D.3 for further elaboration.

4 NUMERICAL EXAMPLE

An application of the GPYS model is illustrated by its use as the well known Mohr-Coulomb plasticity model, and as a more
refined material model, fitted to data from true triaxial experiments. The system of choice is a 0.4mwide, fully rough, vertically
loaded, shallow strip footing on frictional soil, analysed in plane strain conditions. The vertical line of symmetry is exploited
to model one half of the system, and linearly elastic perfectly plastic behaviour and associated flow is assumed for the material.
The geometrical and mechanical properties of the system along with the mesh grid of the model is presented in Figure 8. A
highly refined mesh grid is in general needed near the footing corner to obtain representative results, which here is obtained
manually, without any adaptivity studies. The finite element model consists of 11, 398 six-node triangular elements and 46, 010
displacement degrees of freedom. The vertical force is simulated by a uniform downwards displacement of the nodes in the
foundation footprint, and the reaction force is calculated as twice the sum of the vertical forces in these nodes. The field of initial
stresses is calculated with an at rest earth pressure coefficient, K0 = 1. The analysis are conducted in the commercial finite
element software, Abaqus, with the proposed plasticity model implemented as a user-defined subroutine. The elements of choice
are the standard displacement based plane continuum elements, CPE6 of the Abaqus library, with second order interpolation
and a three point Gauss integration scheme.

Line of symmetry
| |6m

|
|

3m

P |B∕2 = 0.2m
Model Properties GPYSGPYSGPYSGPYSGPYSGPYSGP
E = 200 ⋅ 106 Pa Youngs modulus
� = 0.30 - Poisson’s ratio
e = 0.55 - Void ratio

ID = 0.88 - Relative density

 ′ = 1, 500 kg/m3 Effective mass density
K0 = 1.00 - At rest earth pressure coefficient
g = 9.81 m/ s2 Gravitational acceleration
Yield surface settings

GPYS ' = 41.40o c = 3, 924Pa � = 0.15 � = 0.88
GPYS linear ' = 41.40o c = 3, 924Pa � = 0.15 � = 5 ⋅ 10−3
MC ' = 41.40o c = 3, 924Pa � = 0.00 � = 5 ⋅ 10−3
MC-Tension ' = 46.98o c = 4, 769Pa � = 0.00 � = 5 ⋅ 10−3

FIGURE 8 Finite element model of strip footing with visual mesh grid and model properties.

The constitutive models are calibrated to data from true triaxial experiments on a dense sand, ID = 0.88, performed by
Bønding,3 whom measured the principal stresses at failure. No safety factors or correction for non-associated flow are imposed
on the angle of friction, which will therefore seldom occur of this magnitude in geotechnical design. The differences between
the models are severely pronounced in this example, both due to the large angle of friction and plane strain conditions.
Four analysis are conducted with different settings of the novel yield surface model, to elucidate the impact of yield surface

curvature and the �t∕�c-ratio, which is fixed in Mohr-Coulomb plasticity. One model is calibrated by means of the least squares
method to the aforementioned data, and one as a corresponding linear model with minimal side curvature, � ≈ 0, is considered.
These are compared to two Mohr-Coulomb models, which intersects the GPYS fit in the compression and tensile meridian,
respectively. The former is a conservative Mohr-Coulomb fit and the latter is unsafe in general three-dimensional problems,
however, a basis for comparison in this study. The models are visualized in the deviatoric plane in Figure 9a and the plane of the
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compression meridian in Figure 9b along with data points in a select range of hydrostatic stress and Lode angle, respectively. It
is noted, that the curvature of the GPYS model exceeds the Mohr-Coulomb tension fit in the deviatoric plane.

(a) (b)

FIGURE 9 Illustration of the four yield surface models along with some of the data points from the parameter calibration, seen
in(a) deviatoric plane at −200kPa and (b) plane of the compressive meridian.

The analysis results are visualised as force-displacement curves in Figure 10, revealing failure in all cases. The rate of
maximum plastic shear strain at failure from the four analysis is visualised in Figure 11, and the well-known failure mode is
recognized, verifying the domain width.

0 0.005 0.01 0.015 0.02 0.025 0.03

0

200

400

600

800

1000

1200

Capacity [kN/m] Ratio [-]
Mohr-Coulomb 340.2 1.00
Mohr-Coulomb tension 961.2 2.83
GPYS linear 952.4 2.80
GPYS 1, 198.9 3.52

FIGURE 10 Force-displacement curves for the simulations, with results as load bearing capacity and ratio.

A noteworthy increase in load bearing capacity is found in comparison with the Mohr-Coulomb compressive fit. This is
severely pronounced as it is a dense sand in an N
 analysis, and the limit load is exponentially related to the angle of friction,
see for instance Terzaghi.25 A factor of 3.52 is not a general factor for increasing the compression calibrated Mohr-Coulomb,
but definitely an indication of unused potential. As a further note to this, the angle of friction is often increased in plane strain
analysis, however, such an increase cannot be argued in general 3D considerations, where a material model, such as GPYS, is
necessary for material optimisation. See Jepsen et al.11 for a 3D application of the GPYS model on a sand of similar properties
as in the present analysis.
The linear compression-tension fit of GPYS yields almost the same limit load as the tension fit of Mohr-Coulomb, however,

the displacement response under load is quite different. How the Mohr-Coulomb parameters in associated plasticity are fitted
by practitioners is beyond the scope of this paper, however, a tensile fit is unsafe in general considerations. As the �t∕�c-ratio is
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rather influential on the model strength, a simple use of the GPYS model, is to calibrate with standard cylindrical triaxial tests,
in both compression and extension.

(a) (b) (c) (d)

FIGURE 11 Rate of maximum plastic shear strain at failure (a) Mohr-Coulomb criterion, compression fit. (b) Mohr-Coulomb
criterion, tension fit. (c) GPYS, linear compression-tension fit. (d) GPYS, least square fit.

5 CONCLUSION

A novel yield surface, which encompasses several classical models and describes a wide range of frictional materials, has been
introduced. It operates on the well-known shear strength parameters of Mohr-Coulomb, to establish familiarity, and two addi-
tional parameters to adjust the �t∕�c-ratio and deviatoric curvature. The complete mathematical description and implementation
in a computational elasto-plastic finite element framework is given, and the model is implemented in a commercial finite ele-
ment software to demonstrate its potential. The surface is introduced with linear generators for simplicity, although, extension
to a nonlinear hydrostatic stress dependency is straightforward. The formulation with linear generator, perfect plasticity and
associated flow enables a closed form solution to the implicit return mapping scheme, which renders a robust return algorithm.
The novel yield surface model is applied in analysis of a shallow strip footing under plain strain conditions, where a note-

worthy increase in load bearing capacity is found in comparison to a Mohr-Coulomb compressive fit. The �t∕�c-ratio is found
rather influential on the load bearing capacity, and a simple and prosperous use of the GPYS model, is to calibrate with stan-
dard cylindrical triaxial compression and extension tests. The conventional triaxial compression fit of Mohr-Coulomb is in
general conservative, rendering a more optimized material model, such as the herein presented, an attractive tool in constitutive
modelling of frictional soil.
The presented plasticity model is FORTRAN source code, for use in the Abaqus software, and in MATLAB as well, which

can be obtained from the corresponding author.

APPENDIX

A TRANSFORMATION BETWEEN REFERENCE COORDINATE SYSTEMS

The transformation between the principal stress and the �∗-coordinate systems, which are used in formulation of the proposed
yield surface, is described in this Appendix. The transformation from principal stresses to �∗-coordinates is performed by three
plane rotations, as sketched in Figure A1. The first two rotations makes the �∗1 -axis coincide with the hydrostatic axis, and the
latter rotation of 30 degrees, makes the �∗2 -axis coincide with the deviatoric projection of the first principal axis.
The three transformations sketched in Figure A1 reads

�∗ = T� =
⎧⎪⎨⎪⎩

�∗1
�∗2
�∗3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣

1 0 0
0

√
3∕2 1∕2

0 −1∕2
√
3∕2

⎤⎥⎥⎦

⎡⎢⎢⎣

√
2∕3 0 1∕√3
0 1 0

−1∕√3 0 1∕√3

⎤⎥⎥⎦

⎡⎢⎢⎣

√
2∕2

√
2∕2 0

−
√
2∕2

√
2∕2 0

0 0 1

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

�1
�2
�3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣

1∕√3 1∕√3 1∕√3
−
√
2∕3 1∕√6 1∕√6
0 −1∕√2 1∕√2

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

�1
�2
�3

⎫⎪⎬⎪⎭
. (A1)
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(a)

×

(b) (c)

FIGURE A1 Transformation from principal stress to �∗-coordinates in three steps (a) 45 degrees rotation about �3 (b)
arccos

√
2∕3 radians rotation about �′′2 and (c) 30 degrees rotation about �∗1 .

The inverse of, T, equals the transpose, as exploitted in the inverse transformation to principal stresses

� = T−1�∗ = TT�∗ =
⎡⎢⎢⎣

1∕√3 −
√
2∕3 0

1∕√3 1∕√6 −1∕√2
1∕√3 1∕√6 1∕√2

⎤
⎥⎥⎦
�∗. (A2)

B DETERMINATION OF RETURN REGION

Correct stress return is crucial to achieve satisfactory convergence rate in the global iteration scheme. In this appendix, four
regions denoted, RI, RII, RIII and RIV, which determines whether a stress state is updated to the surface, the compression and
tensile meridian or the apex, respectively, are described. For a similar approach in implementation of a multi-surface plasticity
model, see for instance Clausen et al.19 Three surfaces are used to determine the return region as visualized in three-dimensional
illustrations in Figure B2b. As a preliminary consideration, it is advantageous to formulate the potential normal, which is pro-
portional to the potential gradient, ∇g. The surface normal is expressed in terms of hydrostatic stress and the angle, � , which is
illustrated in Figure B2a. Considering the parametric construction of the potential surface in principal stresses as
�(p, �) =

[
�1 �2 �3

]T = �c(p)
(
c + r(a cos � + b sin � )) , a = 1∕√6

[
2 −1 −1

]T ∧ b = 1∕√2
[
0 −1 1

]T . (B3)
Reducing the vector cross product of the partial derivatives with respect to, p and � , the surface normal reduces to a particularly
convenient form

n(� ) =

)�(p, �)
)p

× )�(p, �)
)�

||||
||||
)�(p, �)
)p

× )�(p, �)
)�

||||
||||
= (b × c) cos � + (c × a) sin � + r(b × a)

||||(b × c) cos � + (c × a) sin � + r(b × a)||||
∝ ∇g. (B4)

It is noted from Equation (B4), that the surface normal is independent of the hydrostatic pressure.
The condition statements of the surfaces, SI-II and SI-III, is formulated as

SI-II = nTc
(
�apex − �

)
∧ SI-III = nTt

(
�apex − �

)
, �apex =

2c
√
k

k − 1
[
1 1 1

]T ,
where, nc and nt, are the border surface orthogonal vectors at the compressive and tensile meridians, respectively, as illustrated
in Figure B2b, given as

nc = (D n(�c)) × rc ∧ nt = (D n(�t)) × rt, (B5)
rc =

[
1 1 k

]T ∧ rt =
[
1 1 1

]T −
(
(1 − �) k − 1

k + 1∕2
+ � k − 1

k∕2 + 1

)[
1 −1∕2 −1∕2

]T , (B6)
�c = −(1 + �)
 ∧ �t = −(1 − �)
. (B7)

Equation (B6) is the direction vectors of the compressive and tensile meridians, and the � -angles of Equation (B7) are shown in
Figure B2a. Setting, SI-II and SI-III, equal to zero, renders the surfaces in Figure B2b.
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(a)

S I-
II

S I-III

SI-IV

RII

RI

RIV
p

RIII

(b)

FIGURE B2 Sketches for determination of return region (a) deviatoric quantities for Equation (B3) and (b) three-dimensional
illustration of border surfaces, SI-II, SI-III and SI-IV.

The potential normal from Equation (B4), originating at the apex and premultiplied by D defines the generators of the surface
SI-IV. The condition equation for this surface is established as

SI-IV = cos v1 − cos v2 =
(D n(�b))Tnp

∥ (D n(�b)) ∥ ∥ np ∥
−

vT1 np
∥ v1 ∥ ∥ np ∥

, np =
[
1 1 1

]T ,
where the vectors, v1 and np, are illustrated in Figure B3b. The angle, �b, illustrated in Figure B3a, is calculated as

�b = arccos
( aT sB
∥ a ∥ ∥ sB ∥

)
, sB = �B −

[
p p p

]T ,
where sB is the stress deviator of the predictor stress state. As the centre coincides with the hydrostatic axis at the apex, the
angle, �b, is simply the Lode angle of the predictor stress state.

�1 �2

�3

�B

Meridian plane (b)

�b

(a)

p

�

f (�) = 0

�apex

�B

v 1

np

D n(� b
)

SI-IV = 0

v1
v2

(b)

FIGURE B3 Geometrical illustration for determination of condition statements for the SI-IV-surface (a) deviatoric plane and
(b) meridian plane.

The conditions for determination of the correct return region for a stress state is listed in Table B1. The line parameters, tc
and tt, in Table B1, are calculated in Equation (C18) and explained in the corresponding section. The components of the normal
vector in Equation (B4) depends solely on the surface parameters, and can, for the purpose of optimization, be calculated prior
to an elasto-plastic analysis.
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TABLE B1 Condition statements for determination of return region for a GPYS material.
Condition Return region
SI-II < 0 ∧ SI-III > 0 ∧ SI-IV > 0 RI
SI-II ≥ 0 ∧ tc > 0 RII
SI-III ≤ 0 ∧ tt > 0 RIII
SI-IV ≤ 0 RIV
SI-II > 0 ∧ tc ≤ 0 RIV
SI-III < 0 ∧ tt ≤ 0 RIV

† tc and tt are calculated from Equation (C18)

C STRESS RETURN FOR A GPYS MATERIAL

The mathematical formulation for the stress update procedure of the proposed plasticity model is presented in this appendix.
When the return region is determined from the conditions in Table B1, the stress is updated accordingly, either to the yield
surface, compressive or tensile meridians or the apex.

C.1 Closed form stress return to the yield surface
When a predictor stress state is situated in region I by the conditions defined in Table B1, the stress state is returned to the
surface. The objective in this section is to formulate a fourth order polynomial in the energy-mapped stress space, to obtain
a closed form expression for the updated stress state. The coefficients of this polynomial are rather long expressions, and the
overall computation time may not differ notably from the classical iterative newton’s method. However, stress returns in the
vicinity of the apex tends to be troublesome with an iterative approach, whereas the closed form solution is robust.
The problem in Equation (6) can be shown to correspond to a minimization of the complementary elastic energy, as explained

in for instance Coombs et al.9
minimize (�B − �C )TC (�B − �C ),
subject to f (�C ) = 0,

where,C, is the elastic flexibilitymatrix. Bymapping to a stress space normalizedwith respect to the elastic energy, and assuming
associated flow, the problem can be solved as the closest point projection onto the yield surface. This has been exploited by for
instance Coombs et al.9 or Crouch et al.21 and can be applied to the GPYS model as well to achieve a one-step calculation of
the updated stress state. The energy mapped stresses, &, are defined as the quantities which satisfies

1
E
&T & = (�B − �C )TC (�B − �C ).

The transformation to the energy normalized stress space depends solely on Poisson’s ratio for isotropic elasticity and reads
& = T&�, (C8)

where T& is a linear map given in principal stresses as9

T& =
√
1 − 2�
3

⎡⎢⎢⎣

1 1 1
1 1 1
1 1 1

⎤⎥⎥⎦
+
√
1 + �
3

⎡⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤⎥⎥⎦
.

The returnmapping procedure in energy normalized stress space in contrast to the principal stress space is illustrated in Figure C4
for different values of Poisson’s ratio to illustrate the impact of the energy mapping of Equation (C8).
The predictor stress state is transformed to the energy-mapped stress space by Equation (C8) and the axes are subsequently

rotated by the transformation in Equation (A1)
&∗B = TT&�B .

The closest point projection to be solved hereby reads
&∗B − &

∗
C = �& ∇g

∗
&C
,

f ∗& (&C ) = 0.
(C9)



14 NIELSEN ET AL.

(a) (b)

FIGURE C4 Stress return for the same trial stress, �B , for two different values of Poisson’s ratio, seen in meridian plane in (a)
energy mapped stress space and (b) principal stress space.

To arrive at an equation that can be solved directly, the following mathematical formulation of the energy mapped yield and
potential functions are adopted

f ∗& = g
∗
& = (&

∗
2 − c

∗
&2&

∗
1 )
2 + (&∗3 − c

∗
&3&

∗
1 )
2 − (r&&∗1 )

2, (C10)
where, r& and c∗& , is the energy mapped radius and transformed centre coordinates, obtained by

r& =
√
1 + �√
1 − 2�

�√
3
r ∧ c∗& =

√
1 + �√
1 − 2�

�√
3
c∗.

The term with 1∕√3 is a map between hydrostatic pressure and the Haigh-Westergaard abscissa, �, and the prior fraction is the
energy mapping. The apex is assumed at the origin in Equation (C10), and the stress state is simply translated hydrostatically
with the mean pressure of the apex, prior to the operations in the following. Inserting the energy mapped yield surface of
Equation (C10) and its derivative with respect to the energy mapped transformed stress components, &∗, into Equation (C9)
yields the system of equations

&∗B1 − &
∗
C1 = �&

(
2&∗C1

(
(c2&2)

∗ + (c2&3)
∗
)
− 2c∗&2&

∗
C2 − 2c

∗
&3&

∗
C3 − 2r

2
&&
∗
1

)
, (C11)

&∗B2 − &
∗
C2 = �&

(
2&∗C2 − 2c

∗
&2&

∗
1

)
, (C12)

&∗B3 − &
∗
C3 = �&

(
2&∗C3 − 2c

∗
&3&

∗
1

)
, (C13)

(&∗C2 − c
∗
&2&

∗
C1)

2 + (&∗C3 − c
∗
&3&

∗
C1)

2 − (r&&∗C1)
2 = 0. (C14)

This system of four equations with four unknowns can be solved directly by tedious but otherwise straightforward manipulation
and substitution. By manipulation of the first three equations, the following expression for the components of the updated
energy-mapped stress state, &∗C , is obtained

&∗C1 =
−2�&

(
c∗&2&

∗
B2 + c

∗
&3&

∗
B3

)
− &∗B1(1 + 2�&)

4r2&�2& + 2
(
r2& −

(
(c∗&2)2 + (c

∗
&3)2

)
− 2

)
�& − 1

∧ &∗C2 =
2�&c∗&2&

∗
C1 + &

∗
B2

1 + 2�&
∧ &∗C3 =

2�&c∗&3&
∗
C1 + &

∗
B3

1 + 2�&
. (C15)

Inserting these into Equation (C14) and rearranging, reduces to a fourth order polynomial with �& as the independent variable as
A1�

4
& + A2�

3
& + A3�

2
& + A2�& + A5 = 0. (C16)

The coefficients of the polynomial reads
A1 = −B1C1 + C21

(
(&∗B2)

2 + (&∗B3)
2) ,

A2 = C1
(
−8(&∗B1)

2 − 8&∗B1
(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
+ 2C2

(
(&∗B2)

2 + (&∗B3)
2)) ,

A3 = B1C3 − (&∗B1)
2C1 − B2C1 +

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)(
2&∗B1C1 + 4C2

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
+ 4C2&∗B1

)

+
(
(&∗B2)

2 + (&∗B3)
2) (C22 − 2C1

)
,
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A4 = B2C3 − (&∗B1)
2C1 +

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)(
2&∗B1C2 − 4

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
− 4&∗B1

)
− 2C2

(
(&∗B2)

2 + (&∗B3)
2) ,

A5 = (&∗B1)
2C3 − 2&∗B1

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
+
(
(&∗B2)

2 + (&∗B3)
2) ,

where
B1 = 4

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)2
+ 4(&∗B1)

2 + 8&∗B1
(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
,

B2 = 4(&∗B1)
2 + 4&∗B1

(
&∗B2c

∗
&2 + &

∗
B3c

∗
&3

)
,

and
C1 = 4r2& ,

C2 = 2
(
r2& −

(
(c∗&2)

2 + (c∗&3)
2
)
− 2

)
,

C3 =
(
(c∗&2)

2 + (c∗&3)
2
)
− r2& .

It is noted, that the B-terms depend on the predictor stresses and the C-terms solely on the material properties. The roots of
Equation (C16) can be obtained in closed form, see for instance Malhotra.26 It is, however, found more efficiently solved by a
numerical routine, as for instance the Laguerre method, see for instance Press et al.27 The result is two complex roots, which
obviously is of no interest, and two real roots corresponding to the stress return to the yield surface and the complementary cone
defined by Equation (C10). The root corresponding to the correct stress return yields the smallest real value of &∗C1 = �& , whichis used to calculate the remaining components, &∗C2 and &∗C3, from Equation (C15). The principal stresses of the updated stress
state is simply recovered by inverse transformation as

�C = T−1& T−1&∗C ,
and the plastic multiplier is calculated from Equation (6) as

Δ� =
∥ �C − �B ∥
∥ D∇g(�C ) ∥

.

Here, ∇g is evaluated for the updated stress state.

C.2 Return to a line
When a predictor stress state is situated in region II or III of Table B1, the stress update is performed by returning to either
the compression or tensile meridian, respectively. The direction vectors for these lines can be seen in Figure B2 and are
mathematically expressed in Equation (B6). The lines of intersection are formulated as parametric vector equations as

� =

{
ttrt + �apex, �1 ≥ �2 = �3 (triaxial extension)
tcrc + �apex, �1 = �2 ≥ �3 (triaxial compression)

(C17)

where, �apex, is the apex point. Indices, t and c, denotes the tensile and compressive lines respectively, and are omitted in the
following, as the expressions adhere to both. Subscript, f and g, on the direction vectors are used to indicate yield and potential
surfaces for generality. An incrementation in plastic strain is required to be orthogonal to the line of the potential surface, which
can be stated as

(Δ"p)T rg =
(D−1Δ�p

)T rg = 0.
Inserting the plastic corrector from Equation (6), the following expression is obtained

(D−1Δ�p
)T rg =

(D−1 (�B − �c
))T rg = 0.

Substituting the expression for the updated stress, �C , with Equation (C17), the parameter, t, can be obtained in closed form as
(D−1 (�B −

(
trf + �apex

)))T rg = 0 ⇔ t =
rTg D−1 (�B − �apex

)

rTg D−1rf
. (C18)

The updated stress state is found by using the parameter, t, from Equation (C18) in the corresponding Equation in (C17).
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C.3 Return to the apex
When a trial stress state is situated in region IV according to Table B1, the updated stress state is simply the apex point,

�C = �apex =
2c
√
k

k − 1
[
1 1 1

]T .

D THE CONSISTENT ELASTO-PLASTIC CONSTITUTIVE MATRIX

The consistent tangent operator for the GPYS model is described in this appendix. The consistent tangent relates changes in
finite increments of stress and strain as

d(Δ�) = Depcd(Δ"),
where superscript, epc, denotes a consistent elasto-plastic quantity. As the normal and shear components of the isotropic elasticity
matrix, D, are decoupled, it is advantageous to consider these separately, as follows

D =

[
D̂Aa 03×3
03×3 D̃Aa

]
∧ Depc =

[
D̂epc 03×3
03×3 D̃epc

]
.

This decomposition is convenient, as it is sufficient to merely calculate the first and second order gradients of the yield and
potential surfaces, with respect to the normal stresses. The shear stress submatrix of the consistent tangent is shown by Clausen
et al.19 to be given by

D̃epc
=
⎡⎢⎢⎢⎣

�C1−�C2
�B1−�B2

0 0
0 �C1−�C3

�B1−�B3
0

0 0 �C2−�C3
�B2−�B3

⎤⎥⎥⎥⎦
D̃,

where indexes, C and B, again denotes the updated stress and the predictor stress, respectively. The ordering of the stresses
corresponds to

� =
[
�xx �yy �zz �xy �xz �yz

]
,

as adopted by the Abaqus software. The normal stress submatrix of the consistent tangent is presented in the following sections,
and varies for the different return regions.

D.1 Consistent elasto-plastic constitutive matrix on the yield surface
The consistent tangent at the continuous part of the yield surface is considered in this section. The consistency condition requires
infinitesimal stress increments to act tangential to the elastic domain, and reads

(∇f )T d� = 0.

Substituting Equation (5) into the consistency condition and isolating the plastic multiplier, d�, yields
(∇f )T (D (d" − d�∇g)) = 0 ⇔ d� = (∇f )T Dd"

(∇f )T D∇g
.

The plastic multiplier inserted in (5) yields the elasto-plastic constitutive matrix for perfectly plastic material behaviour
d� = Depd" =

(
D − D∇g (∇f )T D

(∇f )T D∇g

)
d", (D19)

as first derived by Zienkiewicz et al.28 The matrix in Equation (D19) relates infinitesimal increments in stresses and strains, and
leads to slow convergence rate, if used in numerical analysis. To obtain a relation which relates finite increments in stresses and
strains during plastic loading, the decomposition of the stress increment in a predictor and a corrector term in Equation (5) is
considered, to formulate an equation as

p = −Δ� + D̂Δ" − Δ�D̂∇g = 0.
Differentiating and rearranging yields the relation between changes in finite stress and strain increments as

d(Δ�) =
(

I + Δ�D̂∇2g
)−1

D̂ (d(Δ") − d(Δ�)∇g) = D̂cd(Δ"e).
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Insertion in Equation (D19) gives the upper part of the consistent tangent as

D̂epc
= D̂c

− D̂c
∇g (∇f )T D̂c

(∇f )T D̂c
∇g

, D̂c
=
(

I3 + Δ�D̂∇2g
)−1

D̂, (D20)

which was first argued by Simo and Taylor.22

D.2 Consistent elasto-plastic constitutive matrix on a line
The consistent elasto-plastic constitutive matrix for a stress state on a line of intersection is presented in the following. The first
and second derivatives of the surface is not uniquely defined at the singularities, which was addressed by Koiter in 1953.24 The
approach presented here was proposed by Clausen et al. in 2007,19 and is a modification of the consistent tangent obtained by
Koiter’s assumption. The method is based on geometrical considerations, which results in particularly compact expression of the
Koiter matrices. The consistent tangent on the line is calculated by a linear combination with the derivatives of the two active
surfaces, as illustrated in Figure D5.

FIGURE D5 Illustration of stress update with two active yield surfaces.

Requiring the consistent tangent to contribute stiffness in the direction of the elastic strain increment and to be singular with
respect to both active yield surfaces gives the systems of equations as

D̂ep
l D̂−1rf = rf , (D21)
D̂ep
l ∇g1 = 0, (D22)

D̂ep
l ∇g2 = 0, (D23)

where subscripts, 1 and 2, denotes the active surfaces. The direction vectors of the intersection lines rf and rg can be calculated
from Equation (B6) or through the vector cross product of the return stress point gradients as

rf = ∇f1 × ∇f2 ∧ rg = ∇g1 × ∇g2.
Exploiting these relations, a solution to the Equations in (D21) reads

D̂ep
l =

rf (rg)T

(rg)T D̂−1rf
=

(∇f1 × ∇f2)(∇g1 × ∇g2)T

(∇g1 × ∇g2)T D̂−1
(∇f1 × ∇f2)

, (D24)

which corresponds to the Koiter assumption. The derivatives of the secondary surface, indexed 2, are simply obtained with index
rotation of these quantities from the primary surface. The elasto-plastic constitutive matrix is modified to relate finite increments
in stresses and strains as in the preceding Section. As illustrated in Figure D5, the plastic corrector can be expressed as a linear
combination of contributions from the two active yield surfaces, which is utilized to formulate the following equation

p = −Δ� + D̂Δ" − Δ�1D̂∇g1 − Δ�2D̂∇g2 = 0.
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Differentiation and rearranging yields
d(Δ�) =

(
I + Δ�1D̂∇2g1 + Δ�2D̂∇2g2

)−1
D̂ (d(Δ") − d(Δ�1)∇g1 − d(Δ�2)∇g2

)

= D̂c
l (Δ") − d(Δ�1)D̂

c
l∇g1 − d(Δ�2)D̂

c
l∇g2,

Substituting into Equation (D24) yields the consistent tangent operator on the line as
D̂epc
l =

rf (rg)T

(rg)T (D̂
c
l )−1rf

, D̂c
l =

(
I3 + Δ�1D̂∇2g1 + Δ�2D̂∇2g2

)−1
D̂. (D25)

This quantity is further modified according to the Clausen method.23 A contribution in the form of a symmetrical matrix is
added to Equation (D25) as

D̂epc
l,mod =

rf (rg)T

(rg)T (D̂
c
l )−1rf

+ �
line

cpercTper
cTper(D̂

c
)−1cper

,

where, �
line
, is a user-defined parameter, and cper is an orthogonal vector to the plastic strain direction and the yield surface

intersection line, calculated as
cper = Δ"p × rg .

The �
line

parameter is system dependent, recommended in the interval [0; 1], and affects merely the global convergence rate.

D.3 Consistent elasto-plastic constitutive matrix at the apex
When a stress state is updated to the yield surface apex, the consistent elasto-plastic constitutive matrix is singular with respect
to all directions i.e. the zero-matrix. To avoid issues with singular stiffness matrices, the Koiter assumption is applied, defining
it only as singular with respect to the current direction of plastic strain incrementation,

D̂epc
p = D̂ − D̂Δ"p(Δ"p)T D̂

(Δ"p)T D̂Δ"p
. (D26)

The matrix in Equation (D26) is often found to decrease the global convergence rate, if employed directly in numerical analysis,
and is therefore modified by equal scaling of all entries, as proposed by Clausen et al.23 as

D̂epc
p,mod = �apex

(
D̂ − D̂Δ"p(Δ"p)T D̂

(Δ"p)T D̂Δ"p

)
,

where, �apex, is a user-defined parameter. The �apex parameter is system dependent, recommended in the interval [0; 1], and
affects merely the global convergence rate.
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D | A Concept of Local Rounding
Applied to a Multi-Surface
Plasticity Model with Sharp Edges

The article in this appendix is intended for peer review in “International Journal for Numerical Methods in
Engineering” June 2019 [Jepsen et al., 2019].

Summary:
Yield surfaces of discontinuous deviatoric trace are notoriously hard on

global convergence in elasto-plastic finite element analysis. The methods
to address the singularities and achieve a satisfactory convergence rate
can be considered in two different groups. Either the original surface
is implemented exactly, and the consistent tangent at the singularities
are modified based on some physical arguments, or the original criterion
is approximated with an expression for a continuous surface. This
paper is in coherence with the latter, and offers a new concept of local
rounding, which reshapes the surface at the deviatoric corners and at the
apex singularity as well. Elegant mathematical expressions is obtained
from geometrical considerations in principal stress space, opposed to the
current corner rounding methods in the literature.

The concept is applied to the General Parametric Yield Surface Format,
which is an all-encompassing constitutive model for frictional material.
This paper offers the full mathematical description and implementation
in a computational elasto-plastic framework. The baptism of fire of the
novel yield surface is the analysis of a square spread footing on frictional
soil. The new concept proves robust in numerical analysis in comparison
with an exact implementation, with marginal discrepancy in bearing
capacity.
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Summary
Yield surfaces of discontinuous deviatoric trace are notoriously hard on global
convergence in elasto-plastic finite element analysis. The methods to address the
singularities and achieve a satisfactory convergence rate can be considered in two
different groups. Either the original surface is implemented exactly, and the consis-
tent tangent at the singularities are modified based on some physical arguments, or
the original criterion is approximated with an expression for a continuous surface.
This paper is in coherence with the latter, and offers a new concept of local round-
ing, which reshapes the surface at the deviatoric corners and at the apex singularity
as well. Elegant mathematical expressions is obtained from geometrical considera-
tions in principal stress space, opposed to the current corner rounding methods in the
literature.
The concept is applied to the General Parametric Yield Surface Format, which is
an all-encompassing constitutive model for frictional material. This paper offers the
full mathematical description and implementation in a computational elasto-plastic
framework. The baptism of fire of the novel yield surface is the analysis of a square
spread footing on frictional soil. The new concept proves robust in numerical analysis
in comparison with an exact implementation, with marginal discrepancy in bearing
capacity.
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1 INTRODUCTION

Discontinuous yield surfaces often occur asmaterial models for granularmaterials, and the discontinuities, or so called “corners,”
leads to poor convergence in numerical analysis. Awidely acceptedmaterial model is theMohr-Coulomb failure criterion, where
quite some approaches to deal with the discontinuities have been proposed. Methods of exact implementation of the Mohr-
Coulomb model with a modification of the consistent tangent operator at the corners is proposed by for instance Clausen et
al.1,2,3 whom modifies the method of Koiter.4 Another approach is to approximate the mathematical formulation of the original
yield surface with a smoothing in the vicinity of the discontinuities, often referred to as a corner rounding. A simple rounding
of the corners was proposed by Owen and Hinton,5 whom preserved the original surface and used the gradient of a smooth
geometry in the vicinity of the singularities, to ensure the flow direction as uniquely defined for all stress states. This method is
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illustrated in Figure 1a, where the Drucker-Prager surface gradient is adopted near the corners of a Mohr-Coulomb surface. The
simulations with such a method, however, tends to require an excessive amount of global iterations, see for instance Clausen et
al. 2008.2 A popular corner rounded approximation of the Mohr-Coulomb model, is the multifunction yield criterion proposed
by Abbo and Sloan, 1995,6 which was later enhanced to the C2 function class by Abbo et al. 2011,7 as depicted in Figure 1b.
A similar approach was recently applied by Dai et al. 2018,8 to approximate the Hoek-Brown model. However, the method of
Clausen is generally associated with some manual parameter adjustment to obtain convergence, and corner rounding generally
involves an approximation. It is therefore of interest to eliminate surface discontinuities in a robust manner, without manual
parameter adjustment, and with minimal discrepancies of the original criteria.

(a) (b)

FIGURE 1 Sketches in the deviatoric plane of two corner rounding approaches (a) discontinuous yield surface with continuous
gradient surface near singularities5 and (b) C2 continuous approximation of the Mohr-Coulomb surface.7 The transition Lode
angle, �T = 20◦, is exaggerated for illustrative purposes.

This paper offers the mathematical formulation and implementation of a continuous convex version of the General Parametric
Yield Surface (GPYS) formulated by Damkilde9 and implemented numerically by Nielsen et al.10 This model is adopted as it
bears resemblance to the proposed corner rounding concept, and it covers a wide range of convex shapes from Mohr-Coulomb
to the Drucker-Prager model. It operates on the well-known parameters of Mohr-Coulomb, which establishes a familiarity,
plus two additional parameters to adjust the �t∕�c-ratio and deviatoric curvature. The proposed concept rests on geometrical
arguments, and all operations are therefore performed in principal stress space. As previously mentioned, discontinuous yield
surfaces are inferior regarding global convergence rate, due to the lack of C1 and C2 continuity, meaning the first and second
derivatives are not continuously differentiable. The method proposed in this paper is C1 continuous and ensured convex through
simple geometrical arguments. The lack of C2 continuity presents an issue in the consistent tangent, to which a pragmatic but
fruitful solution is proposed. The herein proposed concept rose from the works on the GPYS model,10 and similar methods are
to the authors knowledge not presented before in the literature. However, Pietruszczak briefly visited the idea of a partly circular
deviatoric trace in 1988.11
The proposed concept is to introduce circles tangent to the original surface in the vicinity of the discontinuities, as illustrated

in Figure 2a. A smooth continuous version of theMohr-Coulomb yield surface with this concept of corner rounding, is visualized
in the deviatoric plane in Figure 2b and meridian plane in Figure 2c, for different sizes of the rounding. The circle centres are
positioned along the mirroring axis for the intersecting surfaces, which, in the case of an isotropic elasticity and hardening type
model, is on the deviatoric projection of the principal stress axis. The rounding intensity is adjusted by manipulation of the
centre of curvature.
The remainder of this paper is organized as follows: the mathematical description of the yield surface is given in Section 2,

and the fully implicit return mapping scheme and calculation of the consistent elasto-plastic constitutive matrix is described
in Section 3. Finally, the proposed corner rounded yield surface is juxtaposed an exact implementation in a numerical analysis
in Section 4. Throughout the paper, linearly-elastic perfectly-plastic material behaviour and associated flow is assumed for
simplicity. Compressive stresses are given as negative quantities.
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(a) (b) (c)

FIGURE 2 The concept of corner roundings by employment of circular segments (a) conceptual sketch, (b) rounded Mohr-
Coulomb deviatoric trace, exaggerated for illustrative purposes, and (c) elimination of sharp apex point in meridian plane.

2 MATHEMATICAL FORMULATION

In this section, the proposed corner rounding concept is applied to obtain a continuous version of the General Parametric Yield
Surface Format. Firstly, the construction of the yield surface and the parameters are explained, followed by the mathematical
derivation of the yield criterion. Principal stress representation is utilized to formulate the surface via spatial geometry, see
for instance Clausen et al.1 for the transformation between the general six-dimensional and principal stress space. The yield
criterion is constructed as a multifunction expression, obtained by multiplication of a deviatoric and a meridional function. The
deviatoric trace is described by circular segments, as sketched in Figure 3a, where the lines l1 and l2 defines the limits between
function expressions. The curvature of the corner roundings are adjusted by manipulation of the centres c2 and c3, which are
positioned on the projected �3- and �1-axis, respectively. The meridional function is constructed of a linear segment and a
tangential circular segment as depicted in Figure 3b, where the function expressions are limited by the hydrostatic stresses pT
and papex. A linear generator for, p < pT , is used for simplicity, but could be replaced by any appropriate nonlinear expression if
desired. Continuity and convexity of the surface is ensured by limits on the parameters derived from geometrical considerations.

(a) (b)

FIGURE 3 The concept of local corner rounding applied to the GPYSmodel by employment of circular segments (a) deviatoric
trace and (c) elimination of sharp apex point in meridian plane.

The original GPYS model is described via four parameters, ', c, � and �1, which is the internal angle of friction, cohesion,
meridional eccentricity and side curvature, respectively. The rounding concept introduces three additional parameters �2, �3 and
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�4, which adjusts the curvature at the compression and tension corners and the apex singularity, respectively. The parameters
are described along with settings to approximate some existing yield surfaces in Table 1. It is noted, that the top rounding acts
as a smooth tension cut-off for �4 = 1. The additional parameters �2, �3 and �4, are set to, 0.01, as a general setting for everyday
use, however, could be used as an advanced constitutive model for optimized material modelling as well.

TABLE 1 Description of the surface parameters and approximation of some existing models.
Parameters

Description Angle of Friction Cohesion Meridional eccentricity Curvature parameters
Symbol ' c††† � �1 �2 �3 � ††

4Range ]0; �∕2[ > 0 [0; 1] ]0; 1] ]0; 1] ]0; 1] ]0; 1]

Special cases of existing plasticity models
Mohr Coulomb as is as is 0.00 0.00† 0.01 0.01 0.01
Extended Tresca as is as is 1.00 0.00† 0.01 0.01 0.01
Drucker-Prager as is as is 1.00 1.00 0.01 0.01 0.01
Reuleaux 12 as is as is as is 1.00 0.01 0.01 0.01
† An appropriately small value is 10−4.
†† Set to 1.00 for a tension cut-off
††† Units of pressure

Due to the mathematical formulation, the � parameters cannot equal zero, and �1 = 10−4, is found to approximate a linear
surface. The limits on �, �1, �2 and �3, of Table 1 ensures a convex deviatoric trace. The impact of � and �1 on the shape is
visualized in Figure 4, with fixed �2 = �3 = 0.20.

(a) (b) (c)

FIGURE 4Deviatoric trace with various configurations of � and �1 from 0 to 1with increments of 0.25 and fixed �2 = �3 = 0.20.
(a) Variation of �1 with fixed � = 0 (b) variation of � with fixed �1 = 0 and (c) variation of � and �1.

The remainder of this section is devoted to derivation of the yield criterion, along with its first and second derivatives for
the implementation in a numerical framework. A key element in the mathematical formulation is to operate with a deviatoric
geometry, which is scaled with a function of the hydrostatic stress. The typical decomposition of stresses in deviatoric and
hydrostatic components is exploited, and it is found convenient to define the deviatoric geometry in the cartesian �∗-coordinate
system illustrated in Figure 5. See Appendix A for an elaboration on this transformation.
A sketch for derivation of the yield criterion is given in Figure 6, where axis in the meridian plane of Figure 6b are the

hydrostatic stress and the Euclidean norm of the stress deviator, given as
p =

�1 + �2 + �3
3

=
√
3�∗1 ∧ � =

√
(�∗2 )2 + (�

∗
3 )2.
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�1 �2

�3

�∗1

�∗2
�∗3

�∗ = T� =
⎡
⎢⎢⎣

1∕√3 1∕√3 1∕√3
−
√
2∕3 1∕√6 1∕√6
0 −1∕√2 1∕√2

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

�1
�2
�3

⎫
⎪⎬⎪⎭
=
⎧
⎪⎨⎪⎩

�∗1
�∗2
�∗3

⎫
⎪⎬⎪⎭
=
⎧
⎪⎨⎪⎩

p
√
3

�∗2
�∗3

⎫
⎪⎬⎪⎭

FIGURE 5 Transformation between principal stresses and the �∗ coordinates, seen in the deviatoric plane.

The deviatoric geometry is calculated in the �c-normalized plane, with
�c = 1 ∧ �t = � +

3 − sin (')
3 + sin (')

(1 − �) ,

where the over-bar, (∙), denotes �c-normalized parameters and the �t∕�c-ratio of Mohr-Coulomb is obtained with � = 0 and
equals unity for � = 1. The deviatoric corner roundings introduces two additional regions, denoted RII and RIII, bounded by
the lines l1 and l2. The second centre of curvature c2 defines the intersection between l1 and the projected �3-axis, and the third
centre of curvature c3 defines the intersection between l2 and the projected �1-axis, as depicted in Figure 6a. The three circular
geometries defining the deviatoric trace are expressed as

c∗1 =
⎧⎪⎨⎪⎩

r1 cos
((
1 − �1

)
arctan

(
�t−1∕2√
3∕2

))
− �t

r1 sin
((
1 − �1

)
arctan

(
�t−1∕2√
3∕2

))
⎫⎪⎬⎪⎭

∧ r1 =

√(√
3
2

)2
+
(
�t −

1
2

)2

2 sin
(
�1 arctan

(
�t−1∕2√
3∕2

)) ,

c∗2 =
(
1 − �2

){ − 1
2

−
√
3
2

}
∧ r2 = r1− ∥ c∗1 − c

∗
2 ∥,

c∗3 =
(
1 − �3

){−�t
0

}
∧ r3 = r1− ∥ c∗1 − c

∗
3 ∥ .

The expressions for the first centre and radius, c∗1 and r1, is merely presented here, see Appendix B or Nielsen et al.10 for a
thorough elaboration. The parameters, �1, �2 and �3, are all dimensionless parameters in the interval ]0; 1].

(a) (b)

FIGURE 6 Geometrical relations for the novel yield surface seen in (a) �c-normalised deviatoric plane and (b) plane of the
compressive meridian.
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The hydrostatic stress dependency is defined with the compressive meridian of Mohr-Coulomb, which has the slope
� = 1 − k√

2∕3 (k∕2 + 1)
, k = 1 + sin (')

1 − sin (')
,

and a circular segment at the top given as

c4 =

((
1 − �4

) 2c√k
k − 1

− r4

){
1
0

}
∧ r4 = �4

2c
√
k

k − 1
cot

(
�4
)
cot

(
�4
2

)
, �4 = arctan

(
−1
�

)
.

Here, �4 ∈ ]0; 1] is the user-defined parameter to adjust the apex rounding, which renders a tension cut-off when set to one. The
multifunction expression for the �c-meridian of Figure 6b along with the first and second partial derivatives, used in the finite
element implementation, reads

�c =
⎧
⎪⎨⎪⎩

�
(
p − 2c

√
k

k−1

)
, p ≤ pT((

r4
)2 − (

p − c41
)2)0.5 + c42 , pT < p ≤ papex

, (1)

)�c
)�i

=
⎧⎪⎨⎪⎩

�
3

, p ≤ pT

−
((
r4
)2 − (

p − c41
)2)−0.5 p − c41

3
, pT < p ≤ papex

, (2)

)2�c
)�i)�j

=
⎧⎪⎨⎪⎩

0 , p ≤ pT
−
((
r4
)2 − (

p − c41
)2)−0.5 1

9
−
((
r4
)2 − (

p − c41
)2)−1.5 (p − c41

3

)2
, pT < p ≤ papex

, (3)

where the limits, as illustrated in Figure 6b, is expressed as

pT = c41 + r4 cos
(
�4
)

∧ papex =
(
1 − �4

) 2c√k
k − 1

= c41 + r4.

The top rounding, which is the second expression in Equation (1), yields complex values if evaluated for hydrostatic stresses
above the apex. The formulation is treated as undefined for hydrostatic stress values above the apex, and temporary stress states
above papex in the return map iterations, are replaced by an appropriate quantity below papex in hydrostatic stress. The yield
function is formulated as the difference between the radius and the deviatoric distance from the stress state to the centre of
curvature. The yield criterion along with its first and second partial derivatives with respect to the principal stresses are thereby
given as

fn = ∥ �∗d − c∗n�c ∥ −rn�c (4)
)fn
)�i

= ∥ �∗d − c∗n�c ∥
−1 ℎni − rn

)�c
)�i

, (5)
)2fn
)�i)�j

= ∥ �∗d − c∗n�c ∥
−1 )ℎni

)�j
− ∥ �∗d − c∗n�c ∥

−3 ℎniℎnj − rn
)2�c
)�i�j

, (6)
where subscript, n, denotes the deviatoric region, as illustrated in Figure 6a, and

�∗d =
[
�∗2 �

∗
3

]T ,
ℎni =

(
�∗2 − c

∗
n1�c

)(
T2i − c∗n1

)�c
)�i

)
+
(
�∗3 − c

∗
n2�c

)(
T3i − c∗n2

)�c
)�i

)
,

)ℎni
)�j

=
(
T2j − c∗n1

)�c
)�j

)(
T2i − c∗n1

)�c
)�i

)
+
(
T3j − c∗n2

)�c
)�j

)(
T3i − c∗n2

)�c
)�i

)

−
((
�∗2 − c

∗
n1�c

)
c∗n1 +

(
�∗3 − c

∗
n2�c

)
c∗n2

) )2�c
)�i)�j

.

The deviatoric region for a stress state is determined by the inequalities in Table 2, which uses the tangent vectors at the
intersection point between ln and the yield surface.
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TABLE 2 Condition statements for determination of deviatoric region.
Condition Region
tT2

(
�∗d − c

∗
1�c

) ≤ 0 ∧ tT3
(
�∗d − c

∗
1�c

) ≥ 0 RI
tT2

(
�∗d − c

∗
1�c

)
> 0 RII

tT3
(
�∗d − c

∗
1�c

)
< 0 RIII

t2 =

{
−c∗22 + c

∗
12

c∗21 − c
∗
11

}
∧ t3 =

{
−c∗32 + c

∗
12

c∗31 − c
∗
11

}
.

3 IMPLEMENTATION IN ELASTO-PLASTIC FINITE ELEMENT ANALYSIS

In this section, the implementation of the novel yield surface model in a computational elasto-plastic framework is described. A
typical incremental global Newton-Raphson scheme is assumed, where an increment in forces gives a displacement increment,
which updates the stresses in the element integration points. For a plastic stress state, the classical implicit return mapping
scheme, or backward Euler stress integration, is adopted to update the stress state. All the operations are performed in principal
stress space, both to accommodate the formulation of the yield surface, and to obtain an efficient return mapping and convenient
expressions for the consistent tangent matrix. The implementation is schematically presented as pseudo-code in Appendix D.

3.1 Stress Update by Return Mapping
A brief introduction to the implicit return mapping scheme for integration of the constitutive relation is described in this section,
see for instance de Borst et al.13 for a thorough elaboration. The general equations and the iterative solution procedure is initially
stated followed by some specifics towards the proposed yield surface. A non-linear finite element procedure is assumed, where
a strain increment, Δ", results in an elastic predictor stress state, �B , see Figure 7, as

�B = �A + Δ�e = �A + DΔ",
where �A is the stress state prior to the strain increment and D is the isotropic elasticity matrix.

FIGURE 7 Geometrical illustration of the fully implicit return mapping scheme.

It is preliminarily assumed that a strain increment can be decomposed into an elastic and a plastic component and the plastic
strain obey the flow rule as

d" = d"e + d"p ∧ d"p = d�∇g.
Here superscript e and p denotes elastic and plastic components respectively, d� and g are the plastic multiplier and potential
function, respectively. In the analysis presented in this paper, associated flow is assumed, f = g, however, g is maintained in
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the notations for the sake of generality. An infinitesimal stress increment is found by isolating the elastic strain increment and
premultiplying by the elasticity matrix, D, as

d� = D d"e = D (d" − d"p) . (7)
A finite stress increment is found by integration, as conducted with constant gradient over the stress path evaluated at the return
point, i.e. a fully implicit integration scheme

Δ� = Δ�e − Δ�p = DΔ" −
�+Δ�

∫
�

D∇g d� ≃ DΔ" − Δ�D∇g(�C ), (8)

where, Δ�e and Δ�p, are the elastic predictor and plastic corrector, respectively. Combining Equation (8) with the proposed
yield criterion of Equation (4), yields the following system of four equations with four unknowns

q =
{
�C − �B + Δ� D ∇gn(�C )

fn(�C )

}
= 0. (9)

Here subscript, n, denotes the active deviatoric region, and the yield and potential functions are calculated for the updated stress
state, �C . It is noted that the previous stress state, �A, does not enter Equation (9), as it merely is needed to calculate the elastic
predictor, �B . This system is for the sake of generality solved by Newton’s method, although, a closed form solution can be
obtained for the linear portion of the surface, see Nielsen et al.10 The solution in iteration, j + 1, is calculated by{

�C
Δ�

}

j+1
=
{
�C
Δ�

}

j
− J−1j qj ,

where, J, is the Jacobian matrix, obtained in closed form by straight forward differentiation, yielding
J =

[I + Δ�D∇2gn(�C ) D∇gn(�C )
(∇f (�C ))T 0

]
.

The iterative procedure is terminated when the Euclidean norm of q is below an appropriate tolerance ||qj||≤ TOL. The Newton
algorithm is initiated with the following initial guesses

�C,0 =
⎧⎪⎨⎪⎩

�B , pB < papex

TT
[
(papex − 0.01r4)

√
3 �∗B2 r4

√
(�∗B2)2 + (�

∗
B3)2

−1
�∗B3 r4

√
(�∗B2)2 + (�

∗
B3)2

−1
]T
, pB ≥ papex

,

as the yield criterion is undefined for hydrostatic stresses above papex, and the plastic multiplier is given as
Δ� =

∥ �B − �C ∥
∥ D∇g(�C ) ∥

.

The initial guess for predictor stress states above the apex preserves the Lode angle of �B and is just below the apex in hydrostatic
stress, and close to the surface in the deviatoric plane.

3.2 Consistent Elasto-Plastic Constitutive Matrix
In this section the calculation of the consistent elasto-plastic constitutive matrix, or simply referred to as the consistent tangent,
is briefly described. When plastic strains occur, Hooke’s law no longer applies, and an additional stress strain relation is needed,
as the material point only caries additional stresses tangential to the yield surface. As the normal and shear components of the
isotropic elasticity matrix are decoupled, it is advantageous to consider these separately, as follows

D =

[
D̂Aa 03×3
03×3 D̃Aa

]
∧ Depc =

[
D̂epc 03×3
03×3 D̃epc

]
,

where superscript, epc, denotes a consistent elasto-plastic quantity. This decomposition is convenient as the shear stress
submatrix of the consistent tangent is given as

D̃epc
=
⎡⎢⎢⎢⎣

�C1−�C2
�B1−�B2

0 0
0 �C1−�C3

�B1−�B3
0

0 0 �C2−�C3
�B2−�B3

⎤⎥⎥⎥⎦
D̃,
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as shown by Clausen et al.3 Indices, C and B, again denotes the updated and the predictor stress state, respectively, and the
ordering of the stresses corresponds to, {�xx �yy �zz �xy �xz �yz}. To calculate the normal stress submatrix, D̂epc , the elasto-plastic
constitutive matrix is used, which for perfect plasticity reads

Dep =
(

D − D∇g (∇f )T D
(∇f )T D∇g

)
, (10)

as first derived by Zienkiewicz et al.14 This matrix is singular with respect to the plastic strain component, and the stress
incrementation is given by the elastic strain component as

Depd"p = Depd�∇g = 0 ∧ d� = Dep(d"e − d"p) = Depd"e.

The elasto-plastic constitutive matrix of Equation (10) relates infinitesimal stress and strain increments and does not conform
with a finite increment procedure, resulting in slow convergence rate. To ameliorate this, a relation between changes in finite
stress and strain increments is derived by considering Equation (8) as

p = −Δ� + D̂Δ" − Δ�D̂∇g = 0.
Differentiation gives,

d(p) =
(
)p
)Δ"

)T

d(Δ") +
(
)p
)Δ�

)T

d(Δ�) +
(
)p
)Δ�

)T

d(Δ�) = D̂d(Δ") −
(

I + Δ�D̂∇2g
)
d(Δ�) − d(Δ�)D̂∇g = 0,

and rearranging yields the relation between changes in finite stress and strain increments as
d(Δ�) =

(
I + Δ�D̂∇2g

)−1
D̂ (d(Δ") − d(Δ�)∇g) = D̂cd(Δ"e).

Insertion in Equation (10) yields the normal stress submatrix of the consistent tangent as

D̂epc
= D̂c

− D̂c
∇g (∇f )T D̂c

(∇f )T D̂c
∇g

, D̂c
=
(

I + Δ�D̂∇2g
)−1

D̂. (11)

This expression was first derived by Simo and Taylor15 and is presented in most literature on the subject since.

3.3 Improvement of Consistent Tangent for C2 Discontinuities
The lack of C2 continuity of the yield surface leads to poor global convergence rate in numerical analysis. This section presents
a modification of the yield surface second derivative to increase the global convergence rate. The considered issue is the abrupt
change in curvature at the transition between regions, which is handled in the following by defining a new radius and centre of
curvature, to be used in Equations (3) and (6). A straight-forward approach is to interpolate the curvature over an arc segment,
giving the interpolated �c-normalized deviatoric radius and centre of curvature, see Figure 8a, as

rn,int = rnwn + r1(1 −wn) ∧ c∗n,int = c∗n +
(
rn − rint

) v1
∥ v1 ∥

, �C ∈ Rn.

Here, wn, is a linear interpolation of the angle, � , in devitoric region n, proposed as

wn =
⎧⎪⎨⎪⎩

�C
�n�

, �C ≤ �n�

1, else
, (12)

where, � ∈ ]0; 1], is a parameter to interpolate over a portion of the arc, and the interpolation angles are calculated as

�C = arccos

(
vT1 v2

∥ v1 ∥∥ v2 ∥

)
∧ �n = arccos

(
vT2 c∗n

∥ v2 ∥∥ c∗n ∥

)
. (13)

The deviatoric direction vectors v1 and v2 are given as
v1 = �∗Cd − �cc∗n ∧ v2 = c∗n − c

∗
1 ,

where subscript, d, indicates the 2nd and 3rd entry of the transformed stress state as described in Section 2, and �c is calculated
for the updated stress state via Equation (1). Subscript n, denotes the deviatoric region.
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Considering the apex rounding in the �c-meridian plane, the interpolation is performed analogously to the procedure for the
deviatoric plane, with a weight quantity as in Equation (12) and the interpolation angles are calculated as in Equation 13. Here,
the meridional direction vectors are given as

v1 =
{

pC
�c(pC )

}
− c4 ∧ v2 =

{
1
−�

}
,

where pC is the hydrostatic stress of the updated stress state used to calculate �c from Equation (1). The interpolated radius and
centre of curvature, in the �c-meridian plane, are hereby given as

r4,int = r4wn + rinf (1 −wn) ∧ c4,int = c4,int +
(
r4 − r4,int

) v1
∥ v1 ∥

, pC > pT ,

where, rinf , is a numerically large value in a relative sense, say r4 ⋅103, opposed to infinity for a linear generator. The interpolated
centres forms traces as illustrated in Figure 8b and 8c, which depends on the �-parameter.

(a) (b) (c)

FIGURE 8 Illustration of the proposed interpolation method to modify the second derivative of the surface (a) zoom on the
compressive corner (b) trace of interpolated centres in deviatoric plane and (c) trace of interpolated centre in meridian plane.

In the conducted analysis, � = 0.01, is found an appropriate setting. In general considerations, the higher value of � leads to
slower global convergence, however, may be more consistently monotonic and vice versa. The interpolation affects merely the
global convergence rate, and not the final result.

4 NUMERICAL ILLUSTRATION

The proposed smooth C1 continuous yield surface is in this section applied in an elasto-plastic finite element analysis. The
system under consideration is a shallow square spread footing, on frictional soil. This is a typical three-dimensional geotechnical
problem, known as challenging in numerical analysis, as severe singularities requires highly refined meshes, and high stress
gradients requires good estimates of the material consistent tangent. The analysis with the proposed yield surface are compared
with an exact implementation of the GPYS model, see Nielsen et al.10 which modifies the consistent tangent at discontinuities
as briefly described in Appendix C. Linearly elastic perfectly plastic material behaviour and associated flow, is assumed, and all
analysis in this section are performed in a MATLAB code.
A top view sketch and themesh discretization of the system is shown in Figure 9. The soil domain is of dimension 10×10×3m3

and the footing footprint measures 0.4 × 0.4m2. Two symmetry planes are exploited to model a mere quarter of the system.
The bottom surface is constrained in all directions and the vertical sides are constrained in their respective normal directions.
A concentric vertical load is simulated as a uniform downwards displacement of the nodes in the footing footprint, which
are restrained in the horizontal directions for fully rough conditions. An at rest earth pressure coefficient of K0 = 1 and the
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FIGURE 9Mechanical system of square spread footing (a)Top viewwith geometry and boundary conditions and (b)Discretized
model with 5, 042 tetrahedral elements and 23, 166 d.o.f. and zoom on mesh at footing footprint.

gravitational pull of g = 9.81m∕s2 is used to set the field of initial stresses and body forces. The system is discretized with
standard 10-node tetrahedral elements, with quadratic displacement interpolation and a 4 point Gauss integration scheme, see
for instance Cook et al.16 for an elaboration on the element type.

(a) (b) (c)

FIGURE 10 Sketch of yield surfaces for the material models (a)MCmodels with close-up on compressive corner for illustration
of corner roundings, (b) GPYS models and (c) compressive meridian for all the material models.

Twomaterial models are considered, aMohr-Coulomb setting and an optimizedmaterial calibrated to true triaxial experiments
performed by Bønding.17 These are compared to their respective rounded approximations, with three different settings of the
corner rounding parameters. The material parameters for the conducted analysis are listed in Table 3, and the deviatoric traces
and meridians are visualized in Figure 10, with a close-up on the compressive corner.
The nonlinear finite element analysis are conducted with a standard Newton scheme for each load increment. If two consecu-

tive load increments converge within three iterations, the load increment is increased with a factor of 1.5, with an upper bound
on the incrementation of 0.05. The footing is indisputably forced to failure in all the analysis as seen in the load displacement
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TABLE 3 Parameters of the six different corner rounded yield surface models, in the present analysis of a spread footing system.
Model '[deg] c[kPa] �[-] �1[-] �2[-] �3[-] �4[-]
MC 41.40 3.92 0.00 5 ⋅ 10−3 0.05∕0.025∕0.0125 0.1∕0.05∕0.025 0.145
GPYS 41.40 3.92 0.15 0.88 0.05∕0.025∕0.0125 0.1∕0.05∕0.025 0.145

curves in Figure 11a. The boundary conditions are verified by inspection of the failure mode, shown in a close-up of the contour
of maximum shear strain rate at failure in Figure 11b.

0 5 10 15 20 25 30
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(a) (b)

FIGURE 11 Visualization of analysis results (a) load displacement curves and (b) rate of maximum plastic shear strain, ("1 −
"3)∕2, at failure in close-up at footing zone from analysis with the GPYS model.

TABLE 4 Comparison of analysis performance with the different material models.
Exact implementation Corner rounded model

�apex = 0.0118 and �line = 0.1600 �2 = 0.05 and �3 = 0.10 �2 = 0.025 and �3 = 0.05 �2 = 0.0125 and �3 = 0.025

MC

Load steps 50 48 48 50
Global Iterations 242 192 206 209
Average iterations 4.84 4.00 4.29 4.18
Run time ratio 1.00 1.41 1.70 1.72
Limit load [kN] 389.07 363.57 375.90 382.53
Ratio 1.0000 0.9344 0.9661 0.9832

GPYS

Load steps 36 35 36 36
Global Iterations 108 105 111 111
Average iterations 3.00 3.00 3.08 3.08
Run time ratio 1.00 1.54 1.53 1.58
Limit load [kN] 521.64 512.73 517.83 519.67
Ratio 1.0000 0.9829 0.9927 0.9962

In evaluation of the performance of the novel plasticitymodel, limit load discrepancy, number of global iterations and run time,
as seen in Table 4, are of interest. The performance of the corner rounded model is promising regarding the global convergence
rate, especially in the Mohr-Coulomb settings, as sharp corners leads to low convergence rate. The analysis run time is, however,
in all cases lower with the exact implementation. The analysis conducted with the exact implementation have required substantial
adjustment of the convergence parameters to run the analysis to completion, as these only ensures convergence within a certain
range.18 All simulations with the corner rounded model has completed with monotonic convergence, which emphasizes the
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robustness of this method. The discrepancy on the limit load is notably affected by the corner roundings in this three-dimensional
example. This indicates the importance of severely small roundings, which can be obtained with a model, such as the herein
proposed. The effect of �4 on the limit load is not investigated in these analysis.

5 CONCLUSION

A concept for local rounding of multi-surface plasticity models has been introduced, and applied to formulate a continuous
version of the General Parametric Yield Surface model. This model is intended for analysis of granular, frictional materials,
however, the rounding concept could be applied in other fields as well. The full mathematical description and implementation
of this model in elasto-plastic finite element analysis is given. The mathematical formulation of the surface is based on simple
spatial geometry, operating on principal stresses, resulting in elegant expressions. The yield criterion is a multifunction of the
C1 class, where a pragmatic but fruitful solution is proposed for C2 continuity for the consistent tangent operator. In analysing
a square spread footing on frictional soil, the corner rounded model is compared in performance to an exact implementation
of the original criterion. The novel yield surface model has proven robust and superior to the exact implementation regarding
global convergence, with marginal discrepancy in limit load.
The return map and consistent tangent of the proposed model is written in MATLAB source code, which can be obtained

from the corresponding author, and a Fortran code for use with the Abaqus software is available as well.

APPENDIX

A TRANSFORMATION BETWEEN REFERENCE COORDINATE SYSTEMS

The transformation between the principal stress and the �∗-coordinate systems, which are used in formulation of the proposed
yield surface, is described in this Appendix. The transformation from principal stresses to �∗ coordinates is performed by three
plane rotations, as sketched in Figure A1. The first two rotations makes the �∗1 -axis coincide with the hydrostatic axis, and the
latter rotation of 30 degrees, makes the �∗2 -axis coincide with the deviatoric projection of the first principal axis.

(a) (b) (c)

FIGURE A1 Transformation from principal stress to �∗-coordinates in three steps (a) 45 degrees rotation about �3 (b)
arccos

√
2∕3 radians rotation about �′′2 and (c) 30 degrees rotation about �∗1 .

The three transformations sketched in Figure A1 reads

�∗ = T� =
⎧⎪⎨⎪⎩

�∗1
�∗2
�∗3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣

1 0 0
0

√
3∕2 1∕2

0 −1∕2
√
3∕2

⎤⎥⎥⎦

⎡⎢⎢⎣

√
2∕3 0 1∕√3
0 1 0

−1∕√3 0 1∕√3

⎤⎥⎥⎦

⎡⎢⎢⎣

√
2∕2

√
2∕2 0

−
√
2∕2

√
2∕2 0

0 0 1

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

�1
�2
�3

⎫⎪⎬⎪⎭
=
⎡⎢⎢⎣

1∕√3 1∕√3 1∕√3
−
√
6∕3

√
6∕6

√
6∕6

0 −
√
2∕2

√
2∕2

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

�1
�2
�3

⎫⎪⎬⎪⎭
. (A1)
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The inverse of, T, equals the transpose, as exploited in the inverse transformation to principal stresses

� = T−1�∗ = TT�∗ =
⎡
⎢⎢⎣

1∕√3 −
√
6∕3 0

1∕√3
√
6∕6 −

√
2∕2

1∕√3
√
6∕6

√
2∕2

⎤
⎥⎥⎦
�∗. (A2)

B DEVIATORIC GEOMETRY OF THE GENERAL PARAMETRIC YIELD SURFACE

The deviatoric geometry of the General Parametric Yield Surface is derived in this section, with relevant measurements in
Figure B2, see Nielsen et al.10 for a thorough elaboration. The geometry is calculated in a �c-normalized system, giving the
compressive and tensile meridian as

�c = 1 ∧ �t = � +
3 − sin'
3 + sin'

(1 − �),

where � ∈ [0; 1], is introduced as a scaling parameter of �c yielding the Mohr-Coulomb meridian when � = 0. The side secant
length, L, and the angle, 
 , as sketched in Figure B2, is evaluated by applying the Pythagorean theorem and the tangent relation

L =

√√√√√
(√

3
2

)2

+
(
�t −

1
2

)2
∧ 
 = arctan

⎛⎜⎜⎝
�t −

1
2√

3
2

⎞⎟⎟⎠
.

The deviatoric radius and centre of curvature is calculated using the right angle triangle in Figure B2b by straightforward
geometrical operations

r1 =
L

2 sin (�
)
∧ c∗1 =

{
r1 cos ((1 − �) 
) − �t
r1 sin ((1 − �) 
)

}
, (B3)

where the curvature parameter, � ∈ ]0; 1], is introduced as a scaling of the angle 
 , as depicted in Figure B2.

(a) (b)

FIGURE B2 Sketch with relevant measures in the �c-normalized deviatoric plane for derivation of the GPYS criterion (a)
measures of length and (b) angular relations.
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C MODIFIED CONSISTENT TANGENT IN EXACT IMPLEMENTATION OF GPYS

The consistent tangent at surface singularities, is in the implementation of the GPYS model, see Nielsen et al.10 modified
according to the method proposed by Clausen et al.18 At the apex singularity, the elasto-plastic constitutive matrix is, in theory,
singular with respect to all directions. To avoid ill-conditioning of the global stiffness matrix, the method of Koiter4 is adopted,
which is further modified according to Clausen et al.18 for optimized convergence rate, where the upper part of the consistent
tangent for an apex stress return is calculated as

D̂epc
apex =

(
D̂ − D̂Δ"p ("p)T D̂

("p)T D̂Δ"p

)
�apex, (C4)

where Δ"p is the plastic strain increment and �apex is a user defined parameter which in general is system dependent. When a
stress state is returned to a line, the constitutive matrix is singular with respect to both active surfaces, in coherence with the
Koiter assumption, which again is further adjusted as proposed by Clausen et al.18 where the upper part of the consistent tangent
for a line return is calculated as

D̂epc
l =

r rTg

rT
(

D̂c
l

)−1
rg
+ (Δ"p × r) (Δ"p × r)T

(Δ"p × r)T
(

D̂c
l

)−1
(Δ"p × r)

�line. (C5)

Here, r and rg , are the intersection curve direction vector for yield and potential surface, respectively, and �line is a user
defined parameter, which in general is system dependent. The consistent constitutive matrix on a line, is calculated as a linear
combination with respect to both active yield surfaces as

D̂c
l =

(
I + Δ�1D̂∇2g1 + Δ�2D̂∇2g2

)−1
D̂,

where subscripts, 1 and 2, referrers to the respective yield and potential surfaces.

D SCHEMATIC OF STRESS UPDATE AND CONSISTENT TANGENT

The schematics of stress update and evaluation of the consistent tangent, with the proposed yield surface model is presented as
pseudo-code in Algorithm 1.

Algorithm 1 Schematics of stress update and consistent tangent for the proposed yield surface model.
Input, �A and Δ"
Calculate elastic predictor �B = �A + DΔ"
Calculate �c(�B) by Equation (1)
Determine deviatoric region, n, for �B according to Table 2
if fn(�B) ≤ 0 then (Purely elastic increment)

�C = �B
Depc = D

else (Plastic stress state)
Calculate �C by return mapping scheme, Section 3.1
if pC > pT then

Calculate �c and its the derivatives of Equations, (1) to (3), with, c4,int and r4,int, from Section 3.3
else

Calculate �c and its the derivatives by Equations, (1) to (3)
end if
Determine deviatoric region, n, for �C according to Table 2
if n = 2 ∨ n = 3 then

Calculate surface derivatives of Equation, (5) and (6), with, c∗n,int and rn,int, from Section 3.3
else

Calculate surface derivatives of Equation, (5) and (6), with, c∗1 and r1end if
Calculate consistent tangent Depc by Equation (11)

end if
Transform �C and Depc back to global coordinate system
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