
Message Passing Interface for
Massive Simulation of Mobile

Ad-hoc Networks

Master Thesis - 10th Semester Software Engineering
ds101f19

Cassiopeia
Department of Computer Science

Aalborg University

Copyright © Aalborg University 2019

Written in LATEXfrom a template made by Jesper Kjær Nielsen.

Software Engineering
Aalborg University

http://www.cs.aau.dk/

Title:
Message Passing Interface for Massive
Simulations of Mobile Ad-hoc Networks

Theme:
Distributed Systems

Project Period:
Spring Semester 2019

Project Group:
ds101f19

Participant(s):
Charlie Dittfeld Byrdam
Jonas Kloster Jacobsen

Supervisor(s):
Jiri Srba
Peter Gjøl Jensen

Copies: 3

Page Numbers: 56

Date of Completion:
June 7, 2019

Abstract:

A Mobile Ad-hoc Network (MANET) is a
decentralised wireless network where nodes
communicate directly with each other using
radio and require Medium Access Control
(MAC) protocols to provide energy efficient
communication. This aim of this project is to
simulate the MAC protocols and to provide
an alternative to real-life testing. The goal is
to be able to perform repeatable experiments
in a controlled topology environment. We
propose a C++ library for writing and run-
ning, simulations of MANETs, using MPI.
With this library, it is possible to write C++
implementations of communication and MAC
protocols, for MANETs, such as ALOHA or
LMAC, and perform repeatable experiments,
where our library emulate the physical radio
hardware and simulate radio communication
between the emulated hardware. We propose
a method for modelling link path loss using
building footprints between nodes, on Open-
StreetMap map tiles, modelling using real-life
field measurements. Our experiments show
that we can simulate 100 nodes in about 45
minutes, while using 128 cores, and that sim-
ulation time scales significantly with an in-
creasing number of nodes.

The content of this thesis is freely available, but publication (with reference) may only be pursued due to agreement
with the author.

Aalborg University, June, 2019

Charlie Dittfeld Byrdam
<cbyrda14@student.aau.dk>

Jonas Kloster Jacobsen
<jkja14@student.aau.dk>

Summary

A Mobile Ad-hoc Network (MANET) is a decentralised wireless network where nodes communi-
cate directly with each other using radio, and require MAC protocols to provide energy efficient
communication. The aim of this project is to simulate the MAC protocols, and to provide an
alternative to real-life testing. The goal is to be able to perform repeatable experiments in a
controlled topology environment.

Our project proposes a Message Passing Interface (MPI) C++ library for writing, and running,
simulations of the network protocol behind the mesh communication in a MANET, modelling
link path loss to simulate packet loss and collisions caused by interfering transmitters, where the
physical devices, and the communication between these, are emulated entirely using software.
With our library, it is be possible to write a C++ implementation of communication protocols,
such as Lightweight Medium Access Protocol (LMAC) [13] or Slotted ALOHA [10], using a
simple interface header file resembling a traditional hardware interface, and perform simulations
with these, where each physical device is emulated by different CPUs on the MCC compute
cluster at AAU [12].

The primary contribution of this thesis is the Coordinator that facilitate wireless communication
between the emulated physical devices. The Coordinator allow us to simulate wireless commu-
nication in virtual time, where the Coordinator is able to skip periods of inactivity, reducing
the time required to run real-time simulations.

We present arguments of correctness for the Coordinator and the hardware functions, analysing
each of the different possible cases for when the Coordinator processes an action, starting with
a concrete example, and finishing with a generalisation of each of the scenarios.

Additionally, we propose a method for modelling and computing link path loss by using build-
ing footprints between wireless radio transmitters and receivers, with map tiles from Open-
StreetMap obtained with the Mapbox Maps Service API, and show how our method compares
with another link modelling method, that uses angles between two wireless links, that share a
common transmitter or receiver, to model the correlation between them.

We have implemented the LMAC [13] protocol using our C++ library, to show how our C++
library can be used to simulate the protocol, and we present the results of our scalability ex-
periments for the Coordinator and the interface between the protocol and the Coordinator. We
do, however, face significant scalability problems, as we rely on a single centralised Coordinator.
Our experiments show that we can simulate 100 nodes in about 45 minutes, while using 128
cores, and that simulation time scales significantly with an increasing number of nodes.

Finally, we propose extensions to a network topology visualisation tool created by Peter Gjøl
Jensen, in which we are now able to visualise communication and protocol logs, that are gener-
ated by running simulations using the Coordinator and our library.

v

Preface

This thesis documents the project work of a 10th semester group of Software Engineering
Masters students at Aalborg University.
We would like to thank Jiri Srba and Peter Gjøl Jensen for their excellent supervision throughout
this multi-semester project. Additionally, we would like to thank Rasmus Liborius Bruun for
his help with link modelling, as well as supplying us with data from the Reachi project, and
Madalina-Cristina Bucur for her help with her random-walk model.

vii

Contents

1 Introduction 3
1.1 Related Work . 5

2 Radio Physics 7
2.1 Visualiser Tool . 8
2.2 Radio Hardware . 11
2.3 Link Path Loss . 12
2.4 Link Modelling . 14
2.5 Radio Simulation . 19

3 Communication 23
3.1 Abstract Hardware . 23
3.2 2-Phase Broadcast and Receive . 23
3.3 Abstract Hardware Simulation . 24
3.4 Correctness . 30

4 Experiments 41
4.1 LMAC . 41
4.2 Scalability . 44

5 Conclusion 47
5.1 Future Work . 48

6 Bibliographical Remarks 49

Bibliography 51

Glossary 53

Acronyms 55

1

Chapter 1

Introduction

A MANET is a decentralised wireless network that requires no pre-existing infrastructure, such
as routers or access points [9]. Instead, each node in the ad-hoc network are battery powered and
communicates directly with each other using a radio. Due to this, MANETs rely on wireless
networking protocols to provide energy efficient communication in the network. Because of
the ad-hoc nature of MANETs, common applications consist of enabling communication in
emergencies such as natural disasters, or for military conflicts.
The goal of this thesis is to simulate wireless network protocols for communication in a mobile
setting. Ideally, the capabilities of a wireless network protocol are tested in a real-life scenario,
using physical devices for radio communication. This poses interesting challenges such as scal-
ability, and repeatability. Scaling a real-life test requires a significant amount of effort and
investment of both money and time, and repeating the same test over and over becomes near
impossible, the larger the scale. Our goal is to be able to perform repeatable experiments in a
controlled topology environment.
Our thesis proposes a MPI C++ library for writing, and running, simulations of the network
protocol behind the mesh communication in a MANET, modelling link path loss to simulate
packet loss and collisions caused by interfering transmitters, where the physical devices, and
the communication between these, are emulated entirely using software. With our library, it is
be possible to write a C++ implementation of communication protocols, such as LMAC [13]
or Slotted ALOHA [10], using a simple interface header file resembling a traditional hardware
interface, and perform simulations with these, where each physical device is emulated by different
CPUs on the MCC compute cluster at AAU [12].
The primary contribution of this thesis is the Coordinator that facilitate wireless communica-
tion between the emulated physical devices. The Coordinator allows us to simulate wireless
communication in virtual time, where the Coordinator can skip periods of inactivity, reducing
the time required to run real-time simulations. In addition to this, we propose a method for
modelling and computing link path loss using building footprints between nodes of a link, on
OpenStreetMap map tiles obtained via the Mapbox Maps Service API [4]. Finally, we propose
extensions to a network topology visualisation tool created by Peter Gjøl Jensen, in which we
are now able to visualise communication and protocol logs, generated by running simulations
with our library.

3

4 Chapter 1. Introduction

Field Measurements
Random Walk

Generated Topologies

Link Model
Section 2.4

GPS Logs

Radio Hardware
Parameters

GPS Logs + RSSI

Communication Logs

Visualiser
Section 2.1

Protocol Log

Radio Simulator
Section 2.5.1

Coordinator
Section 3.3

Radio Middleware
Section 3.1

Executable Code

Node 1 Node 2 Node n. . .

Protocol Impl.
Section 4.1

Probability for
packet error p Pp(nr,mt,nodesi, packetsize, t)

Received
packets

Transmit
Listen
Sleep
Inform

Received
packets

2-Phase Broadcast
2-Phase Receive
Sleep
Inform

1.1. Related Work 5

1.1 Related Work

In “Modeling and Efficient Verification of Broadcasting Actors” [14] the authors present an
extension to the actor-based modelling language Rebeca [11], that enable broadcast communi-
cation between actors (nodes), to allow modelling of MANETs. The authors provide a frame-
work to model MANETs for a static topology, with no support for mobility. The same authors
further extend Rebeca to add key features of wireless ad hoc networking, such as mobility (dy-
namic topologies), local broadcasting within a transmission range, and energy consumption in
“Modeling and efficient verification of wireless ad hoc networks” [15]. The modelling language
lacks features such as lossy transmissions (packet loss) and non-deterministic behaviour, and
generally abstracts away from wireless communication, to focus on modelling and verification
of MANET protocols. Our approach is generally more un-restrictive, as we allow protocol im-
plementations in C++, whereas the paper is restricted to a fixed formalism. One of the major
advantages of using Rebeca is that the modelling language makes it possible model check and
verify MANET protocol implementations, and explore the full state space for the model of a
protocol.

The paper “Modeling and Evaluation of Wireless Sensor Network Protocols by Stochastic Timed
Automata” [16] proposes a method to analyse and evaluate Wireless Sensor Network (WSN)
protocols using Stochastic Timed Automata, along with the non-deterministic behaviour of
WSNs, such as lossy transmission and dynamic topologies. The authors utilise statistical model
checking to evaluate the performance of WSN protocols, as well as checking the correctness of
the protocols. This approach is somewhat similar to the approach in [14] and [15], but the
protocols evaluated are instead modelled using the UPPAAL model checker and does include
non-deterministic behaviour. They show in the paper that their method can model and evaluate
network topologies of up to 100 nodes by using statistical model checking in UPPAAL.

In the paper “Simulating MANETS: A Study using Satellites with AODV and AntHocNet” [7],
the authors present a network simulator for satellite networks called SatSim. The authors argue
that a satellite constellation can be thought of as an extreme example of a MANET. SatSim
includes features such as a bit error rate, determined for each packet using a representative link
budget, where packets are randomly dropped if the bit error rate exceeds a specific threshold.
This approach is similar to ours in that we also use a link budget (the link path loss model) to
compute the probability for packet errors. Our approach differs, in that we expand upon this
by also simulating collisions, caused by interfering transmitters.

Chapter 2

Radio Physics

The goal of this chapter is to be able to estimate the probability, based on the topology of a
wireless network, of how likely it is that packet loss will happen during transmission between
two nodes.

Figure 1: A wireless network topology.

Figure 1 shows a sample wireless network topology for a Mobile Ad-hoc Network (MANET). The
network consists of mobile devices (nodes), and the communication between these (links). Nodes
are “linked” with other nodes when they can communicate wirelessly. Wireless communication
relies on the transmission and reception of electromagnetic waves [1, p. 10] (radio signals),
and the strength, or quality, of a wireless link, is described by the signal loss occurring when
propagating the signal from transmitter to receiver, and is measured by the Received Signal
Strength Indication (RSSI) (a negative value, where a value close to 0 is better). In [1], the term
path loss is used to describe this signal loss and is determined in part by the physical distance
between transmitter and receiver, but also by physical objects and terrain, like buildings or
forests. A major consideration for mobile networks is that the topology is dynamic. Nodes
move around, causing links to disappear, or new links to appear, thus changing the topology
of the network. Section 2.1 introduces the Visualiser and presents the proposed extensions.
Section 2.2 introduces a series radio specific terms we use throughout the thesis. Section 2.3
presents the link path loss model from [1], and Section 2.4 introduces an alternative path loss
model based on building footprints between nodes in a links, by using OpenStreetMap map
tiles. Finally, Section 2.5 presents the method for simulating packet loss and transmission
interference.

7

8 Chapter 2. Radio Physics

2.1 Visualiser Tool
The Visualiser is a tool written in Python and JavaScript, created by Peter Gjøl Jensen. The
tool was created to aid in the visualisation of MANET topologies and works by importing a log
file with GPS coordinates and timestamps for a series of nodes. Using the tool, it is possible
to visualise the position and movement for all nodes in a network. A snippet of a GPS log
can be seen below. Each line consists of the identifier of the node, the latitude and longitude
coordinates for the node, and the timestamp for the coordinates in milliseconds. We found the
tool to be able to handle visualisations up to around 100 nodes.

#id,lat,lon,timestamp
64,14.629879,121.096137,158980000.000000
64,14.629874,121.096132,159000000.000000
64,14.629878,121.096128,159020000.000000
64,14.629890,121.096143,159040000.000000
64,14.629892,121.096142,159060000.000000
64,14.629896,121.096141,159080000.000000
64,14.629893,121.096164,159100000.000000
64,14.629947,121.096083,159120000.000000
64,14.630107,121.095976,159140000.000000
64,14.630283,121.095885,159160000.000000
64,14.630525,121.095786,159180000.000000

Figure 2: A visualised GPS log.

Figure 2 shows a screen-shot from the Visualiser, with a GPS log loaded. When a GPS log is

2.1. Visualiser Tool 9

loaded, the Visualiser can be started by pressing the “Play” button, or the “space” key. The
speed of the visualisation can be controlled with the “Speed” slider in the bottom, and the
current time of the visualisation can be controlled with the “Time” slider.

2.1.1 Extensions

We propose three extensions to the visualiser tool. The first is to visualise the link between
nodes using an annotated version of the GPS log, where each line is annotated with the RSSI
of a link between nodes in the log, as shown below. In the annotated log, each link for a given
node, to another node, is annotated, after the timestamp, with the identifier of the other node,
and the RSSI between them. Figure 3 shows an example of a very connected network where
links between nodes are visualised by a colour gradient, where a link with a yellow colour has
a better RSSI than a link with a red colour. It is possible to print the RSSI value for the links
as well.

#id,lat,lon,timestamp,id1,rssi1,id2,rssi2,id3,rssi3, ...
65,14.630107,121.096749,157820000.000000,67,-56,69,-70,71,-13, ...
65,14.630129,121.096905,157840000.000000,67,-58,69,-61,73,-65, ...
65,14.630189,121.097116,157860000.000000,67,-55,69,-54,73,-71, ...
65,14.630318,121.097294,157880000.000000,67,-65,69,-66,71,-13, ...
65,14.630330,121.097545,157900000.000000,67,-79,69,-48,73,-79, ...
65,14.630358,121.097725,157920000.000000,67,-85,69,-66,71,-28, ...
65,14.630243,121.097900,157940000.000000,69,-84,71,-35,83,-67, ...
65,14.630082,121.098037,157960000.000000,71,-45,83,-70,89,-43, ...
65,14.629960,121.098165,157980000.000000,71,-20,83,-75,89,-38, ...
65,14.629729,121.098192,158000000.000000,83,-81,89,-42,97,-80, ...

The second extension is to be able to replay the communication between nodes when simulating
a protocol. This log is generated by the Coordinator (introduced in Section 3.3), and a line is
added whenever a packet is either dropped or received during transmission. Each line states
whether the packet was received or dropped, the identifier of the transmitter and receiver, the
number of bytes sent, the RSSI for the transmission, the probability for packet error, that
decided whether the packet was dropped or not, the interfering power and the number of
interfering transmitters (if any), and finally, the start and end time of the transmission. With
this log, it is possible to visualise any transmissions by drawing a unidirectional arrow from the
transmitter to the receiver, within the time interval of the transmission.

#received,tx_id,rx_id,bytes,rssi,pep,int_power,ints,tx_start,tx_end
recv,1,2,2,-102.419,5.74662e-05,0,0,2233,2692
recv,1,5,2,-102.419,5.7577e-05,0,0,2233,2692
drop,1,6,2,-110.697,0.494838,0,0,2233,2692
drop,1,6,24,-110.697,0.999724,0,0,12692,18209
recv,1,5,24,-102.419,0.000690706,0,0,12692,18209
recv,1,2,24,-102.419,0.000689376,0,0,12692,18209
recv,1,2,2,-102.419,5.74662e-05,0,0,32002048,32002507
recv,1,5,24,-102.419,0.000690706,0,0,32012507,32018024
recv,1,2,24,-102.419,0.000689376,0,0,32012507,32018024

10 Chapter 2. Radio Physics

Figure 3: A visualised GPS log with coloured links, based on RSSI.

The third, and final, extension is to replay state changes of a protocol. When simulating a
protocol like the LMAC protocol (introduced in Section 4.1), where each node proceeds through
a number of states, we log each of the state changes, as shown below, and can replay these state
changes in the Visualiser.

#timestamp,id,state
0,10,i
0,1,i
0,9,i
800.009,1,0
800.002,2,w
5600,2,d
800.002,5,w
4800,5,d
5600.01,5,5
6400.01,2,6
6400,6,w
8800,6,d

A visualised example of the second and third extension for an execution of the LMAC protocol
can be found in Figure 20 in Section 4.1, and in Figure 4.

2.2. Radio Hardware 11

Figure 4: Communication and protocol logs visualised.

The complete source code for the Visualiser tool can be found on GitHub:
https://github.com/Joklost/manet-simulations/tree/master/tools/visualiser

2.2 Radio Hardware
In this section, we introduce a series of terms, such as RSSI, transmission power, dBm, and
path loss, that we utilise throughout the thesis.

• dBm is a logarithmic scale, measuring power of a wireless radio signal [8].

• RSSI is the perceived signal strength of a link, in dBm [8].

• path loss is the signal loss inflicted by the propagation of a radio signal from transmitter
to receiver [1, p. 10].

• Transmission power is the actual amount of power a transmitter uses to transmit packets,
in dBm. RSSI can be computed by subtracting path loss from the transmission power [1].
For the Reachi devices, the transmission power is 26 dBm [1].

• The baud rate is the rate at which information can be transferred as a wireless signal [6],
and is equivalent to bits per second. For the Reachi devices, the baud rate is 34800 Hz [1].

Equation 2.1 computes the amount of time required to transmit a packet, in microseconds,
based on the baud rate fs and the size of a packet in bytes. For a packet where |packet| = 20

https://github.com/Joklost/manet-simulations/tree/master/tools/visualiser

12 Chapter 2. Radio Physics

bytes would take transmissiontime(|packet|) = 4597 microseconds, with baud rate fs = 34800
Hz.

transmissiontime(packetsize) = 1000000
fs

· (packetsize · 8) (2.1)

2.3 Link Path Loss

In this section, we present the method for simulating link path loss from [1], as well as why the
model does not work for our needs. For our simulations, we want to simulate the performance of
nodes in a MANET. The performance is, however, heavily dependent on network conditions and
the capabilities of the technology [1, p. 10]. The author of [1] presents methods for evaluating
the performance of a wireless network and proceeds to introduce methods for simulating path
loss on a multi-link model, based on real-world performance measurements.
The author of [1] describes the path loss of a link to be the sum of two parts: A deterministic
distance-dependent part, that describes the mean signal attenuation at any given link distance,
and a stochastic shadow fading part, which is the path loss caused by terrain, buildings, veg-
etation and cars. With this path loss, it is possible to simulate the RSSI on a given link, by
subtracting the path loss from the transmission power of the simulated radio.

pld(l) = 55 log10(d(l))− 18.8 (2.2)
The distance-dependent path loss is computed using the pld(l) function shown in Equation 2.2 [1,
p. 25], where the function d(l) denotes the distance of a link in meters. Computing the shadow
fading path loss, on the other hand, is not as trivial. The shadow fading part of the path loss
is based on the correlation between angles of link pairs sharing a common nodes, and bears a
significant practical limitation in the sense that the shadow fading part depends on a Cholesky
factorisation with a computational complexity of O(N6) [1, p. 31], where N is the total number
of nodes in the network.
Through personal communication with the author of [1], we received access to logs from field
experiments for the Reachi project. These field experiments were conducted in different locations
with an early prototype of the Reachi device. The logs contain Global Positioning System (GPS)
coordinates, as well as RSSI information for detected neighbours of each node. Examining these
logs have shown discrepancies between the path loss model from [1] and the measured RSSI.
Figure 5 plots samples drawn from the pld(l) function and measurements from a log containing
field measurements from an experiment in Marikina, in the Phillippines. Since the log contained
a total of 17761 links, the measurements are summarised based on the distance of the link, and
each link was sorted into distance buckets with 20-meter intervals. The average RSSI for all
links in a bucket is plotted in Figure 5. The plot shows that the RSSI computed with the
distance-dependent path loss does not fit with the measured RSSI.
As mentioned earlier, the shadow fading path loss is based on the correlation between angles
of link pairs that share a common node. An assumption for this is that link pairs with a high
correlation, where the angle between them is low, will have close to the same shadow fading [1].
However, this does not seem to be the case. Figure 6 shows a plot where we compare the
Marikina log from earlier, with another field experiment log from Rude Skov. For both logs,
pairs of links sharing a common node were sorted, based on the angle between them, into
buckets of 5 °intervals, and we computed the average RSSI for these buckets, after removing
the distance-dependent path loss. This means that only the shadow fading part of the path
loss is included in the RSSI plotted in Figure 6. Under the assumption that highly correlated
link pairs should result in less shadow fading path loss, the traces on Figure 6 should increase
gradually as the angle increases. This is not the case.

2.3. Link Path Loss 13

Because of this, and the fact that computing the shadow fading path loss is not feasible for a
very large number of nodes, we instead propose our model for approximating the shadow fading
path loss.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

Distance in meters

R
SS

I

Marikina field measurements
Computed RSSI

Figure 5: Average RSSI pr. distance bucket.

14 Chapter 2. Radio Physics

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 1800

10

20

30

40

50

60

70

80

90

Angle buckets

Av
er
ag

e
R
SS

I
-p

l d
(l

)
Marikina
Rude Skov

Figure 6: Average RSSI per angle bucket without distance dependent path loss.

2.4 Link Modelling
In this section, we propose a method for modelling and computing link path loss using building
footprints between nodes of a link, on OpenStreetMap map tiles obtained through the Mapbox
Maps Service API [4]. The model computes the path loss based on the distance of the link
and the percentage of that distance that is in a building. Buildings and other environmental
obstructions, which is part of the shadow fading path loss from [1], should cause a higher path
loss, as it is harder for the radio signal to propagate through buildings.

The main idea is to generate a map of the area that contains nodes of a link as an image,
and when computing the path loss of that link, count the percentage of all pixels in a straight
line between the nodes in a link that are considered buildings on the map. The pseudo code
description of this can be seen in Algorithm 1.
To compute the total path loss, we first define two functions: cvpl(l) (Clear View Path Loss
(CVPL)) and bopl(l) (Building Obstructed Path Loss (BOPL)). Both functions compute the
distance-dependent path loss, similarly to the pld function from Section 2.3, but rather than
computing the total distance based path loss, we need to define a similar function for the
distance with a clear view, and a similar function to the distance where buildings obstruct the
signal. To do this, we define this as an optimisation problem, where we want to find the optimal
constants for the two functions, by minimising the difference between the computed RSSI and
the measured RSSI for a set of links L. The compRSSI (l) = txpower − (α · (ln(d(l))/ ln(δ)) + β)
function denotes the computed RSSI for a link with the chosen values for α, β, and δ.

The problem is defined as follows:

• Input: A set of links L.

2.4. Link Modelling 15

Algorithm 1: The CompBuildingPct function.
Input: (x1, y1), (x2, y2)
Output: Percentage building between points.

1 Function CompBuildingPct((x1, y1), (x2, y2))
2 pixels ← 0
3 buildings ← 0
4 while λ ∈ {0 . . . 1} do
5 (x, y)← λ · (x1, y1) + (1− λ) · (x2, y2)
6 if position (x, y) is a building then
7 buildings ← buildings + 1
8 pixels ← pixels + 1
9 return buildings

pixels

• Output: Optimal values for α, β, δ.

• Goal: Minimise the score(α, β, δ) function:
score(α, β, δ) =

∑
l∈L

(compRSSI (l)−measuredRSSI (l))2

2.4.1 Greedy Approach

To solve the optimisation problem, we have chosen a greedy approach. First, to compute the
optimal values for the cvpl(l) function, we compile a set of links L, where the computed building
percentage is below 5 %, and for the bopl(l) function, we compile a set of links L where the
computed building percentage is above 80 %. Ideally, we would like for the building percentage
to be close to 100 %, but the number of links in the Marikina log with more than 95 % of
buildings is very low. With these sets, we attempted to find the optimal values for α, β, and
δ by going through α, β ∈ {−100, . . . , 100} with increments of 0.5, and δ ∈ {2, . . . , 100} with
increments of 1. This resulted in the following values for the cvpl(l) and bopl(l) functions:

cvpl(l) = 48.5 · (ln (d(l))/ ln (77)) + 37.5 (2.3)

bopl(l) = 67 · (ln (d(l))/ ln (57)) + 11.5 (2.4)

With these two functions defined, we can compute the total path loss for a link. The function
p(l) denotes the points for the links, as required by the input to the CompBuildingPct function.

pl(l) = (cvpl(l) · (1− CompBuildingPct(p(l)))) + (bopl(l) · CompBuildingPct(p(l))) (2.5)
Finally, with the pl(l) function, we can compute the RSSI for the link l:

RSSI dBm(l) = txpower − pl(l) (2.6)

2.4.2 Evaluation

The functions cvpl(l) and bopl(l) have been plotted on Figure 7. bopl do result in greater
path loss, however, the plot also reveals that up to 100 meters, bopl(l) compute a better RSSI
compared to cvpl(l). To further examine this, each function has been plotted with their training
set. cvpl(l) on Figure 8 and bopl(l) can be seen in Figure 9.

16 Chapter 2. Radio Physics

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

−80

−60

−40

−20

Distance in meters

R
SS

I
BOPL
CVPL

Figure 7: Plot showing samples drawn from CVPL and BOPL

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
−90

−80

−70

−60

−50

−40

−30

Distance in meters

R
SS

I

score: 501.4932, links: 13481, score/link: 0.0372

Marikina field measurements
CVPL

Figure 8: Field measurements with building percentage below 5 %.

2.4. Link Modelling 17

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380
−90

−80

−70

−60

−50

−40

−30

Distance in meters

R
SS

I
score: 350.6854, links: 377, score/link: 0.9302

Marikina field measurements
BOPL

Figure 9: Field measurements with building percentage above 80 %.

With the optimal values for the cvpl(l) function, the final score was 501.4932 for 13481 links
with less than 5 % buildings. Figure 8 shows how well this function fits with the measured
values.
For the bopl(l) function, we got a final score of 350.6854 for 377 links with more than 80 %
buildings. This is a very large difference compared to the 13481 links for the cvpl(l), which
means that we might experience lower precision for the bopl(l) function.
Finally, a comparison of the computed RSSI values from Equation 2.6 with the measurements
from the Marikina log is shown in Figure 11. The plot shows that the function is slightly off on
the from about 75 meters to 300 meters, but compared to Figure 5, we do see an improvement.

(a) Field measurements visualised. (b) Computed RSSI values visualised.

Figure 10: Marikina field measurements and computed RSSI values.

Figure 10 contains YouTube links to two visualisations, where Figure 10a visualises the Marikina
field measurements, and Figure 10b visualises the computed RSSI values. Both visualisations
highlight the same subset of the links, to make it easier to follow.

The complete source code for the C++ implementation can be found on GitHub:
https://github.com/Joklost/sims2

https://youtu.be/vVqHzVThW34
https://youtu.be/tZdhf6zcs2Y
https://github.com/Joklost/sims2

18 Chapter 2. Radio Physics

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
−90

−80

−70

−60

−50

−40

−30

−20

Distance in meters

R
SS

I
score: 1410.2234, links: 17761, score/links: 0.0794

Marikina field measurements
Computed values

Figure 11: Field measurements vs. computed values.

2.5. Radio Simulation 19

2.5 Radio Simulation
To simulate loss of packets during radio communication, we introduce the packet error prob-
ability. The packet error probability is the probability for any form of error occurring during
the transmission and reception of a packet through wireless radio communication. The prob-
ability for packet error is calculated using the RSSI on a link between two nodes, the size of
the packet, as well as the Signal to Noise Ratio (SNR), including interference from nearby
transmitting nodes. The computations in this section are derived from [5], as well as personal
communication with the author of [1].

2.5.1 Probability for Packet Error

The first step for computing the probability for packet error is to compute the level of back-
ground noise affecting the wireless communication, the noise power PN,dB. This noise is cal-
culated with the thermal noise and noise figure PN,dB = thermalnoise + noisefigure. For the
Reachi devices, we assume that the thermalnoise = −119.66 dB and the noisefigure = 4.2 dB.
Next, we need to add the noise from interfering transmissions happening at the same time. This
is done by adding the sum of the RSSI from interfering transmitters to the noise power PN,dB,
giving us the noise power with interference PNI,dB on the specific link between a receiving node
nr and a transmitting node nt at a given time t. The set of currently transmitting and interfer-
ing nodes are denoted by nodesi and the function RSSI dBm(n,m, t) denotes the RSSI, in dBm,
on the link between nodes n and m at time t. We assume the RSSI on a link to be reciprocated,
which means that RSSI dBm(n,m, t) = RSSI dBm(m,n, t).

PNI,dB(nr,mt,nodesi, t) = 10 log10

10
PN,dB

10 +
∑

m∈nodesi
10

RSSIdBm(nr,m,t)
10

 (2.7)

Note that as both the noise power PN,dB and the RSSI is in dB (a logarithmic scale), we first
need to convert the values to a linear scale, before we can compute the sum of the background
noise and the interfering noise, and then finally convert the value back into a logarithmic scale.

With the noise and interference power PNI,dB, we can compute the Signal to Noise (and Inter-
ference) Ratio (SN(I)R), γdB. The SN(I)R compares the RSSI of the signal to the level of the
background noise, as well as the noise from interfering transmitters. The ratio is computed by
subtracting the noise power PNI,dB from the RSSI of a link.

γdB(nr,mt,nodesi, t) = RSSI dBm(nr,mt, t)− PNI,dB(nr,mt,nodesi, t) (2.8)

We use the SN(I)R γdB to compute the bit error probability Pb:

Pb(nr,mt,nodesi, t) = 1
2erfc

√√√√(10
γdB(nr,mt,nodesi,t)

10
2

) (2.9)

Finally, with the bit error probability Pb, we can compute the packet error probability Pp. The
packet error probability is the probability that we experience a bit error for any of the bits in
the transmitted packet. The packetsize parameter is in bytes.

Pp(nr,mt,nodesi, packetsize, t) = 1− (1− Pb(nr,mt,nodesi, t))packetsize·8 (2.10)

20 Chapter 2. Radio Physics

2.5.2 Example

If we assume that a node n2 is currently listening, and nodes n1 and n3 is transmitting at
the same time t, what is the probability for a packet error on the link between nodes n1
and n2 with interference nodesi = {n3}? For this example we assume the RSSI for the link
between n1 and n2 to be RSSI dBm(n2, n1, t) = −63.750, the RSSI between n2 and n3 to be
RSSI dBm(n2, n3, t) = −74.042, and the size of the transmitted packet to be 20 bytes (which is
the size of a header packet for the Reachi protocol). First, we compute the noise power PNI ,dB:

PNI ,db(n2, n1,nodesi, t) = 10 log10

(
10

(−119.66+4.2)
10 + 10

−74.042
10

)
= −74.041 (2.11)

We subtract the noise power PNI,dB from the RSSI to get the SN(I)R γdB:
γdB(n2, n1,nodesi, t) = −63.750− (−74.041) = 10.291 (2.12)

With which we can compute the bit error probability:

Pb(n2, n1,nodesi, t) = 1
2erfc

(√(
10

10.291
10

2

))
= 0.000537 (2.13)

Finally, we can compute the packet error probability using the bit error probability:
Pp(n2, n1,nodesi, t, 20) = 1− (1− 0.000537)20·8 = 0.082 (2.14)

This gives us an 8.2 % probability that we will experience a packet error during the transmission
from n1 to n2 with interference from n3, which is a significant difference in relation to the same
transmission with no interfering transmitters. To demonstrate the difference, Figure 12a shows
the probability for packet error with no interfering transmitters. According to the figure, an
RSSI of approximately −103.0 dBm would have a probability for packet error close to zero,
and an RSSI of approximately −110.0 dBm would have a probability for packet error very
close to 100.0 %. Recall that for the link between n1 and n2 at time t, we had an RSSI of
−63.750 dBm, which is significantly better than the −103.0 dBm we see in Figure 12a for a
close to zero probability, but with just a single interfering transmitter, the probability for packet
error increases to 8.2 %, which corresponds to what we see in Figure 12b, where an RSSI of
approximately −62.0 dBm is required for a probability for packet error close to zero, with a
single interfering transmitter.

2.5. Radio Simulation 21

−112 −110 −108 −106 −104 −1020

0.2

0.4

0.6

0.8

1

RSSI in dBm (close to 0 is better)

Pr
ob

ab
ili
ty

(c
lo
se

to
0
is

be
tt
er
)

packetsize = 20, no interference

(a) Probability for packet error on a link with no interfering transmitters.

−70 −68 −66 −64 −62 −600

0.2

0.4

0.6

0.8

1

RSSI in dBm (close to 0 is better)

Pr
ob

ab
ili
ty

(c
lo
se

to
0
is

be
tt
er
)

packetsize = 20, one interfering transmitter with RSSI = −74.042

(b) Probability for packet error on a link with a single interfering transmitter.

Figure 12: Probability for packet error with and without interfering transmitters.

Chapter 3

Communication

In this chapter, we introduce the Message Passing Interface (MPI) for emulating the radio
functionality of wireless nodes. The interface consists of three parts: An interface for nodes to
communicate, emulating radio hardware functionality, a Coordinator to coordinate the commu-
nication between nodes, and a set of low-level hardware functions for transmitting, listening,
and sleeping. The hardware interface is introduced in Section 3.1, the Coordinator is presented
in Section 3.3, and the hardware functions are presented in Section 3.3.2. Finally, Section 3.4
will present arguments of correctness for our interface and the Coordinator, where we show that
a simulated execution, using MPI, will behave the same as a real execution.

3.1 Abstract Hardware
To simulate the physical radio hardware in our simulations, we define a hardware interface
consisting of two basic hardware functions, Transmit, and Listen. The two hardware function to
emulate the functionality of radio hardware. The Transmit function takes a packet of arbitrary
data as input, and the node transmits the packet to nearby listening nodes. The duration of the
transmission is computed based on the size of the packet, using Equation 2.1 from Section 2.2.
The Listen function takes a duration as input, and the node listens for a packet, for the duration.
If a packet is received, the node stops listening and returns the packet immediately. If nothing
is received while listening, the function will return null.

3.2 2-Phase Broadcast and Receive
As mentioned previously in Section 3.1, the time required for transmitting a packet is dependent
on the size of the packet. To aid with the timing of transmitting and listening, we introduce
a two-phase system. The two-phase system consists of two functions, Broadcast (Algorithm 2)
and Receive (Algorithm 3).
The Broadcast function takes a packet of arbitrary data as input. With the packet of data, the
function constructs a header packet that includes the size of the input packet (line 4). The size
of the header packet is dependent on the design on the radio hardware. The header packet is
transmitted via a call to the Transmit function, after which the function sleeps for a pre-defined
delay. This delay allows for any listening nodes to start listening for the actual packet, after
receiving the header packet, before the actual packet is being transmitted. The pre-defined
delay is a global value, known by all nodes.
The Receive function takes a duration as input, and begins listening for the duration (line 4).
The duration input is how long a node wants to listen for a packet. A node stops listening the

23

24 Chapter 3. Communication

Algorithm 2: The Broadcast function.
1 delay ← short delay between first and second transmission
2
3 Function Broadcast(packet)
4 header ← construct header packet with |packet|
5 Transmit(header)
6 Sleep(delay)
7 Transmit(packet)

Algorithm 3: The Receive function.
Result: A packet or null

1 delay ← short delay between first and second transmission
2
3 Function Receive(duration)
4 data ← Listen(duration)
5 if data 6= header packet then
6 return null
7 packetsize ← extract size of packet from header data
8 d′ ← transmissiontime(packetsize)
9 packet ← Listen(d′ + delay · 2)

10 // The packet returned from Listen may be null
11 return packet

moment a packet has been received, or after the duration if nothing was received. The Listen
function either returns a packet of data if anything was received or null. The Receive function
checks if the received data is a header packet (line 5), and returns null if the received packet was
not a header packet. Otherwise, the size of the incoming packet is extracted from the header
packet, and the expected transmission time is calculated using Equation 2.1 from Section 2.2,
after which the functions start listening, but adds two times the delay to the listening duration,
to ensure that the entire packet can be received in the listening window. Finally, the function
returns either the received packet, if any, or null.

3.3 Abstract Hardware Simulation
To coordinate the communication between nodes using the hardware interface, we introduce the
Coordinator. The Coordinator works by gathering actions (transmit, listen, sleep, and inform)
sent from nodes using the hardware functions from Section 3.3.2. The pseudo code description
of the Coordinator can be seen in Algorithm 8.

3.3.1 Virtual Time

When simulating radio communication it is essential that we factor in time. Time is a large
part of a MAC protocol, as is the case with the Slotted ALOHA [10] and LMAC [13] protocols
that rely heavily on time slots to be accurate to a point where packets are not dropped because
a node starts listening for a synchronisation packet too early or too late. Additionally, as we
use an MPI for the emulation of the radio hardware, we need to account for the asynchronous

3.3. Abstract Hardware Simulation 25

nature of the MPI. For example, simulating with 50 nodes on a machine with 8 cores would start
51 individual processes, and the operating system would have to schedule accordingly, meaning
that not every process (node) would be able to work at all times. Furthermore, as some protocols
are designed to conserve power, as the radio hardware might be battery powered, the nodes will
spend a large amount of time sleeping, which can create time periods where nothing happens
during a simulation. To aid with this, we introduce the notion of virtual time. Virtual time
helps us with coordinating the communication between the nodes, as rather than communicating
directly with each other using the MPI, nodes communicate through the Coordinator.
For our simulations, virtual time is, essentially, the real-time a node spends during the execution
of a MAC protocol, plus the time spent on transmitting, listening or sleeping. As we emulate
the radio, transmitting or receiving packets is a matter of sending messages with the MPI, and
we do not need to power down the hardware to sleep. To track the virtual time, each node
keeps a local real-time clock, measuring the real-time spent during the simulation, and a local
time variable. Every time a node either transmits, listens, or sleeps for a duration, the time
difference measured by the real-time clock since the node last performed an action, as well as
the duration of the transmission, listen, or sleep is added to the local time. This way, any
action the node does can be completed almost instantly, and the node may continue executing
the simulation, rather than, for example, have to sleep for 10 seconds in real-time, where the
process does nothing.

3.3.2 Hardware Functions

In this section, we present the four hardware functions nodes use to communicate with the
Coordinator. Common for all four hardware functions is that they all construct an Action
object (line 1 in Algorithm 8) and send it to the Coordinator using the MPI. Note that for any
action a sent by any node, a.start ≤ a.end. The hardware functions depend on the following
local state. The local state is unique for each node.
clock ← now
localtime ← 0
id ← unique identifier
In the hardware functions, we utilise a special keyword now, which represents the real-time
hardware clocks of a node. It is assumed that all clocks run at the same speed. The clock
variable is used to measure the real-time spent by the node between calls to hardware functions.
Initially, we store the current time in the clock variable, and use the clock to compute the real-
time difference between the calling of hardware functions and add the difference to the localtime
variable (e.g., localtime ← (now − clock) + localtime).
The unique identifier (id) of a node is meant to function as the address of a node for passing
messages between nodes and the Coordinator. The identifier of the Coordinator = 0, and the
identifier of the nodes are in the range {1, 2, 3, . . . , N} for N nodes.
The Transmit (Algorithm 4) function transmits a data packet. The packet is sent to the Coordi-
nator using the MPI, and the Coordinator takes care of distributing the packet to neighbouring
nodes listening for packets. The duration of a transmission is computed based on the baud rate
(the number of bits the hardware can transmit per second [6]) as well as the size of the packet,
using Equation 2.1 found in Section 2.2.
After computing the duration, the transmit action is sent to the Coordinator, the localtime
variable is set to the end time and the clock is set to now before the function returns.

The Listen (Algorithm 5) function takes a duration as input and sends a listen action to the
Coordinator. After sending its action, the function waits for a response from the Coordinator

26 Chapter 3. Communication

Algorithm 4: The Transmit function.
1 Function Transmit(packet)
2 localtime ← (now− clock) + localtime
3 duration← transmissiontime(|packet|)
4 end ← localtime + duration
5 a← (transmit, id, localtime, end, packet)
6 send a to Coordinator
7 localtime ← end
8 clock ← now

Algorithm 5: The Listen function.
Result: A packet or null

1 Function Listen(duration)
2 localtime ← (now− clock) + localtime
3 a← (listen, id, localtime, localtime + duration,null)
4 send a to Coordinator
5 localtime ← await end from Coordinator
6 packet ← await packet from Coordinator
7 // The packet returned from Coordinator may be null
8 clock ← now
9 return packet

at line 5. The await keyword is blocking, which means that no other functions can be called
from a node while the node is listening for a packet. When the Coordinator processes a listen
action, two messages will be sent to the node. The first is the end time, which is assigned to
the localtime variable, and the second is the packet received (if any). If no packet has been
received, the end time received from the Coordinator will be the same as the end time in the
action sent to the Coordinator (localtime + duration), and the packet received will be null. If
a packet has been received, the Coordinator will send the time when the packet was received,
with the packet following right after.
At most a single packet may be received on a call to the Listen function, but depending on
the number of transmissions in the same time interval, no packet could be received, as multiple
transmissions either will provide interference for each other, creating collisions, or no transmis-
sions may have happened in the time interval.
After receiving a response from the Coordinator, the function will set the clock variable to now,
and return either the packet or null.

The Sleep (Algorithm 6) function takes a duration as input and sends a sleep action to the
Coordinator. As no response is expected of the Coordinator, the function sets the localtime and
clock variables immediately after sending the action.

The Inform function is equivalent to the Sleep function in the sense that it behaves like a call
to the Sleep function with the duration set to 0. The function is included in the case none
of the other hardware functions is applicable, e.g., in the case where the node is performing
longer computations. Regularly informing the Coordinator of a nodes localtime will allow the
Coordinator to continually process actions from other nodes.

3.3. Abstract Hardware Simulation 27

Algorithm 6: The Sleep function.
1 Function Sleep(duration)
2 localtime ← (now − clock) + localtime
3 end ← localtime + duration
4 a ← (sleep, id, localtime, end, null)
5 send a to Coordinator
6 localtime ← end
7 clock ← now

Algorithm 7: The Inform function.
1 Function Inform()
2 localtime ← (now − clock) + localtime
3 a ← (inform, id, localtime, localtime, null)
4 send a to Coordinator
5 clock ← now

3.3.3 Coordinator

The pseudo code of the Coordinator is separated into three parts, where each of the parts is
repeatedly executed in sequence until the protocol terminates. The first part takes care of
receiving actions from nodes, the second part maintains and cleans the transmits set of transmit
actions, and the third part processes, and removes, actions from the waiting queue.

The Coordinator works by continuously awaiting actions from any node (line 10). The await
keyword is blocking, and blocks until any node sends an action to the Coordinator. An action
is the 5-tuple Action = (type, source, start, end, packet). Accessing an element of an action
is done with the dot (.) operator, using named access. For example, if node 1 starts listening
at time 2 and ends listening at time 5, we have the listen action a = (listen, 1, 2, 5,null). We
can access the source of the action using the dot operator as such: a.source = 1. The type
element denotes the type of the action, and is one of either transmit, listen, sleep, or inform.
The source element is the unique identifier of the source node that submitted the action to the
Coordinator. The start and end elements are timestamps for points of time in the execution,
where start ≤ end. Finally, the packet element is the data packet sent during transmission or
null for any action where type 6= transmit.

Whenever an action is submitted to the Coordinator (line 10), the action is enqueued in the
waiting queue and added to the discovered set. The waiting queue is a priority queue of Action
objects, where the actions are ordered by their end time, with transmit actions before listen
actions, in case of a tie. The discovered set is a set used to track all actions submitted to the
Coordinator. The ordering of sleep and inform in relation to transmit or listen actions in the
waiting queue are irrelevant. If the received action is a transmit action, the action is also added
to the transmits set (line 12). Note that any action we receive from a particular node during
this part will always have a start time greater than or equal to the end time of the last action
received from that node. After receiving an action, the Coordinator continues to the second
part.

The transmits set is used to gather any transmit actions that may cause interference when
processing transmit actions in the third part of the Coordinator. To make sure that the size of

28 Chapter 3. Communication

the transmits set does not grow indefinitely, we remove transmit actions that will not interfere
with future transmit actions. To do this we check that the waiting queue contains at least one
action from each node (line 17). Next, we find the earliest start time of all actions in the waiting
queue. With this, we can remove any transmit actions where the end time is strictly less than
the earliest start time found in the waiting queue (line 19).

Finally, in the third part of the Coordinator, we process actions from the waiting queue. The
Coordinator only processes actions when the waiting queue fulfils the same condition as in the
second part, where the waiting queue has to contain at least one action from each node. While
this is the case, the Coordinator dequeues a single action (line 24) from the waiting queue. Any
sleep or inform actions are processed implicitly, as they only have to be present in the waiting
queue, to satisfy the condition of the loop. Only the transmit and listen actions need processing
by the Coordinator.

When processing a transmit action, the Coordinator first gathers all transmit actions from the
transmits set, that interfere with the transmit action being processed (line 27). A transmit
actions causes interference with another if at any point in time their time intervals intersect
(line 28). All applicable transmit actions are stored in the interferers set, to be used when
computing the probability for packet error. Next, the Coordinator iterates through all listen
actions in the waiting queue, and if the time interval of the transmit action is fully within the
time interval of the listen action, the listen action is considered relevant for the transmit action,
and we compute the probability for the packet being received by the listening node (line 33).
The probability of the packet being received is computed using the probability for packet error
function Pp (Equation 2.10 in Section 2.5). The probability for packet error function is called
using the source of the listen action l, the source of the transmit action a, the interferers set,
the size of the packet, as well as the end time of the transmit action a. Finally, we randomly
chose whether the packet should be received by using the computed probability p (line 35). If
the listening node has been chosen to receive the packet, the listen action l is removed from the
waiting queue (line 36), and the end time of the transmit action a, as well as the packet is sent
to the source of the listen node.

Processing a listen action (line 40) is trivial, as all the Coordinator does is send the end time
of the listen action and null to the source of the listen action. We do this as dequeuing a
listen action means that no transmission has been received by the listening node. When the
Coordinator responds to the source of the listen action, the node is unblocked and may continue
executing its protocol.

The complete source code for the C++ implementation can be found on GitHub:
https://github.com/Joklost/manet-simulations/tree/master/src/coordinator

https://github.com/Joklost/manet-simulations/tree/master/src/coordinator

3.3. Abstract Hardware Simulation 29

Algorithm 8: The Coordinator procedure.
1 Action = (type, source, start, end, packet)
2
3 procedure Coordinator()
4 waiting ← priority queue of Action objects, ordered by end time,
5 sleep and inform before transmit, transmit before listen
6 discovered ← empty set of Action objects
7 transmits ← empty set of Action objects
8 repeat
9 // Part 1. Handle incoming message.

10 a ← await Action from any node
11 append a to discovered
12 if a.type = transmit then
13 append a to transmits
14 enqueue a to waiting
15
16 // Part 2. Clean transmits set.
17 if each node has at least one Action in waiting then
18 starttime ← earliest start time of all actions in waiting
19 foreach t ∈ transmits where t.end < starttime do
20 remove t from transmits

21
22 // Part 3. Process waiting actions.
23 while each node has at least one Action in waiting do
24 a ← dequeue Action from waiting
25 if a.type = transmit then
26 interferers ← empty set of node identifiers
27 foreach t ∈ transmits where t 6= a do
28 if a.end ≥ t.start and a.start ≤ t.end then
29 // Transmissions intersect.
30 append t.source to interferers

31 foreach l ∈ waiting where l.type = listen do
32 if a.start ≥ l.start and a.end ≤ l.end then
33 p ← Pp(l.source, a.source, interferers, |a.packet|, a.end)
34 shouldreceive ← randomly choose based on p
35 if shouldreceive then
36 remove l from waiting
37 send a.end to l.source
38 send a.packet to l.source

39 else if a.type = listen then
40 send a.end to a.source
41 send null to a.source
42 // sleep/inform actions are handled implicitly.

43 until protocol terminates

30 Chapter 3. Communication

3.4 Correctness
In this section, we present our correctness arguments for the MPI interface and the Coordinator.
We start the section by introducing a set of three invariants for the Coordinator and show why
they hold in Section 3.4.1. Next, we go over the methodology for our proof in Section 3.4.2
and an example of a real execution. In Section 3.4.3 we show how a simulated execution of
an arbitrary protocol behaves similarly to a real execution. Finally, we summarise the proof in
Section 3.4.4.

3.4.1 Invariants

With a set of N unique node identifiers where nodes = {1, 2, 3, . . . , N}, the following invariants
hold:

1. For all n ∈ nodes, there exists at most one a ∈ waiting such that a.source = n and
a.type = listen.

• There is at most one action with the listen type from each node in the waiting queue.

2. For all a, b ∈ waiting, if a.source = b.source and a.type = listen then b.end ≤ a.start.

• If a node has a listen action in the waiting queue, no other actions may be present
after this.

3. For all a ∈ discovered, if a.type = transmit and there exists b ∈ waiting such that b.type =
transmit and a.end ≥ b.start and a.start ≤ b.end then a ∈ transmits.

• Every transmit action submitted to the Coordinator that could interfere with any
transmit action on the waiting queue must be present in the transmits set.

The first and second invariants are satisfied both by the implementation of the Listen function
(Algorithm 5 in Section 3.3.2) and by the Coordinator. The Listen function uses the blocking
await keyword on line 5 in Algorithm 5, to wait for a response from the Coordinator. The
Coordinator, in turn, sends a response to the source of the listen action only after the action
already has been removed from the waiting queue at line 24 or line 36 in Algorithm 8. Due to
the blocking nature of the await keyword, and the fact that a node is only able to continue
execution after a response has been received from the Coordinator, the invariants are satisfied,
as it is impossible for a node to send more actions to the Coordinator, while a listen action
from the same node is already on the waiting queue.
The third invariant is satisfied as long as any transmit actions that could interfere with any
transmit action in the waiting queue is present in the transmits set. With the discovered set we
can track the transmit actions that have been removed from the waiting queue, as these could
interfere with future transmit actions. A transmit action a interferes with another transmit
action b, as long as the time interval for the actions intersects at some point (a.end ≥ b.start
and a.start ≤ b.end). At line 19 in Algorithm 8 we have the condition that we only remove
transmit actions from the transmits set if the end time of any action in the set is less than
the earliest start time of all actions in waiting. Any transmit actions fulfilling this condition
is safe to remove, as they are no longer be able to intersect with any transmit actions in
the waiting queue. Additionally, if we have a transmit action both in the waiting queue and
transmits set, we will not be able to remove it from the transmits set, before the action has been
removed from the waiting queue, according to the condition at line 19. If we have an action

3.4. Correctness 31

t ∈ waiting where t ∈ transmits then the earliest start time of all actions in the waiting queue
is at least t.start, which means that we will not be able to remove t from the transmits set, as
t.end ≮ t.start, and we know from the implementation of the hardware functions that for any
action a, a.start ≤ a.end, as shown in Section 3.3.2.

3.4.2 Methodology

Suppose that at a point in time t in a real execution a listen actions end, and the listening
node receives a packet with some probability p computed, using the packet error probability
function Pp. We want to show that in a simulation, with asynchronous virtual-time execution
(as implemented in Algorithm 8), the same listening node would receive the packet, with the
same computed probability. Figure 13 is a visual representation of a real execution for an
arbitrary wireless communication protocol where five nodes communicate through wireless radio
broadcasts, without the Coordinator. Vertically, each node has a timeline of actions they
perform throughout the execution, where each of the actions is represented as a rectangle
(listen, transmit, or sleep) or a line (inform). The rectangles and the line represent the start
and end time of the actions, where the line has the same start and end time. Each action has
an identifier, e.g., t15, and an action is the 5-tuple Action (line 1 in Algorithm 8). The t15 action
is a transmit action where Node 1 broadcasts some arbitrary data starting at time 2 and ending
at time 5: t15 = (transmit, 1, 2, 5, data). The horizontal arrows going from the end of a transmit
action to a listen action represent a packet received by the listening node. If no arrow originates
from a transmit action, nothing was received of the transmission. In a real execution, a node
stops listening after the packet has been received. This is presented in the figure by the l414
action, where Node 4 receives a packet from Node 5 at time 12, and stops listening.

The following is the result of processing each of the transmit actions from Figure 13, and serve
as the timeline of the processing of the transmit actions throughout both the real execution,
and the simulation:

t43 The packet originating from Node 4 (t43) was dropped by Node 3 (l36) due to interference
from Node 1 (t15). Node 2 (l25) started listening too late to receive the packet.

t15 The packet originating from Node 1 (t15) was received by Node 2 (l25) at time 5 but dropped
by Node 3 (l36) due to interference from Node 4 (t43).

t110 The transmission from Node 1 (t110) was not received by any listening nodes, as Node 5 (l59)
stopped listening too soon, while Node 3 (l310) started listening too late.

t210 The packet originating from Node 2 (t210) was dropped by Node 3 (l310) due to interference
from Node 1.

t512 The packet originating from Node 5 (t512) was received by Node 4 (l414) at time 12 but
dropped by Node 2 (l214) due to distance.

t316 The transmission from Node 3 (t316) was not received by any listening nodes, as Node 1
(l118) started listening too late.

t417 The packet originating from Node 4 (t417) was dropped by Node 1 (l118) due to interference
from Node 2 (t218), Node 3 (t316), and Node 5 (t518).

t218 The packet originating from Node 2 (t218) was dropped by Node 1 (l118) due to interference
from Node 4 (t417), and Node 5 (t518).

32 Chapter 3. Communication

t518 The packet originating from Node 5 (t518) was dropped by Node 1 (l118) due to interference
from Node 2 (t218), and Node 4 (t417).

t320 The packet originating from Node 3 (t320) was received by Node 4 (l420).

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Received packet

Figure 13: Real execution of an arbitrary protocol with five nodes.

With the invariants outlined above, we want to prove that the packet would be received with
the same probability in a virtual-time execution, as it would in a real execution. Due to the
asynchronous nature of executing a wireless communication protocol using an MPI, it is not as
simple as presenting a single slice of the execution. Instead, to illustrate snapshots of a given
point in the execution of the Coordinator we introduce the concept of a cut: A cut consist
of two horizontal lines, and . Everything above the first () has already
been processed by the Coordinator, and everything below the second () has not yet been
submitted to the Coordinator. We use a cut to show the content of the data structures within

3.4. Correctness 33

the Coordinator, where we see the order of currently queued actions in the waiting queue, as
well as the actions in the transmits set.

3.4.3 Simulated Execution

Throughout this section we present a simulated, virtual-time, version of the real execution
from Figure 13 using the Coordinator from Algorithm 8. In a simulated execution, the nodes
communicate through the Coordinator, rather than directly with each other. Throughout the
figures in this section, it is assumed that all nodes interact with the Coordinator implicitly.
We utilise cuts to present different possible scenarios of the Coordinator: No action can be
processed, processing a transmit, processing an inform action, processing a listen action, and
finally, processing a sleep action. For each of the different scenarios, we start with a concrete
example, basing it on the accompanying figure, and ending with a generalisation of the scenario.
When processing each of the transmit actions we follow the descriptions listed in Section 3.4.2.

Cut 1: Nothing can be processed

For the first cut, we have a scenario where nothing may be processed. Recall that the condition
for Part 3 of the Coordinator procedure is that the waiting queue is only processed if all nodes
have at least one action on the queue. As of this cut, Node 3 has yet to submit an action to the
Coordinator which means that the Coordinator is unable to progress from this point until the
l36 action is submitted at some point, later in the execution. Note that due to the asynchronous
nature of our simulation, and the fact that only listen actions are blocking on the hardware side,
it is very possible to have a scenario, where a node has submitted a large number of actions, as
Node 1 has in the figure, where Node 1 is currently waiting for the l118 action to be processed,
and Node 3 has yet to submit any actions to the Coordinator. Additionally, nodes may be
doing other work internally, before submitting more actions to the Coordinator, which is why
Node 4 might not have submitted the listen action l414 as of this cut. Node 1, Node 2, and Node
5 are not able to submit more actions to the Coordinator, before the listen actions they have
submitted have been processed.

34 Chapter 3. Communication

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Processed

Submitted

The content of the waiting queue and transmits set as of this cut is:
waiting ←

〈
t43, i

5
4, t

1
5, l

2
5, s

5
6, s

4
8, l

5
9, t

1
10, i

1
12, s

1
15, l

1
18

〉
transmits ←

{
t43, t

1
5, t

1
10

}
The waiting queue is a priority queue where actions are ordered by end time, and sleep
and inform action must be before transmit actions, which must be before listen actions,
if the end time is the same.

Figure 14: Waiting for Node 3 to submit an action.

Cut 2: transmit action

The next cut is a snapshot of the Coordinator directly after Node 3 has submitted the l36 action.
With this action in the waiting queue, the Coordinator may begin to process the actions in the
waiting queue and transmits set. First, the Coordinator would check if any transmit actions
should be removed from the transmits set, but as none of the actions in the set has a start time
earlier than the start time of the earliest action in the waiting queue (l36 or t43, both with start =

3.4. Correctness 35

1) nothing can be removed. Next, the Coordinator can begin processing actions in the waiting
queue.

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Processed

Submitted

The content of the waiting queue and transmits set as of this cut is:
waiting ←

〈
t43, i

5
4, t

1
5, l

2
5, s

5
6, l

3
6, s

4
8, l

5
9, t

1
10, i

1
12, s

1
15, l

1
18

〉
transmits ←

{
t43, t

1
6, t

1
10

}
Figure 15: Processing a transmit action.

The first action in the waiting queue is the transmit action t43. Recall that when processing
a transmit action, the Coordinator iterates through the transmits set to find other transmit
actions with intersecting time intervals, and that invariant 3 ensures that any transmit action
with an intersecting time interval will be in the transmits set. In this case, only the t15 action
intersects with the t43 action, so the source of that action is included in the interferers set.
Next, the Coordinator iterates through all listen actions in the waiting queue, and only if the
time interval for the transmit action is fully within the time interval of any listen action, we

36 Chapter 3. Communication

compute the probability for packet error on a transmission between the source of the listen action
(l36.source) and the source of the transmit action (t43.source). With the probability for packet
error, Equation 2.10 in Section 2.5, p = Pp(l36.source, t43.source, {t15.source}, |t43.packet|, t43.end),
we can randomly choose whether the transmission should be received, or dropped, and either
finish processing the listen action by sending the packet to the source of the action, or move on
to the next listen action. For the t43 action, we assume the packet to be dropped by the listening
node.
When processing the t43 action we have two cases to consider for this particular scenario: In the
first case, the packet is received by Node 3 and the l36 action is removed from the waiting queue.
Should this be the case, the condition for processing actions in the waiting queue is no longer
satisfied, and the Coordinator will not be able to process any further actions until the l310 action
has been submitted to the Coordinator. In the second case, the packet is dropped and not
received by Node 3. In this case, the l36 action is still on the waiting queue, and the Coordinator
can continue processing actions as the waiting queue still contains at least one action from each
node.

This holds in general, as every listen action will be after any transmit action t on the waiting
queue, and every transmit action that could interfere with t is in the transmits set, as stated
by invariant 3. Let us assume that a node n submitted the transmit action t, and that t is at
the head of the waiting queue. When processing t, we want to compute the probability for any
node m listening in the time interval of the transmit action t to receive the packet transmitted
by n. When this is the case, the listen action is relevant to t. To do this, we need to make sure
that any listen action, that is relevant for the processing of t is on the waiting queue, and any
transmit actions that could interfere with t is in the transmits set, when processing t.
First, we know that every listen action l that could receive the transmit action t is on the
waiting queue, as the end time of any l on the waiting queue, when processing t, has to be
greater than, or equal to, the end time of t. Recall that due to the ordering of the waiting
queue, we always process any transmit action before processing a listen action. In addition to
this, when processing t, we know that for all listen actions l, where the time interval of t is fully
within the time interval for l, the source node m of l will have only the l action on the waiting
queue. We know this as any action a from node m would have an end time earlier than the
start time of l, a.end ≤ l.start, as stated by invariant 1, which means that the a action would
already have been processed before we process t. Additionally, invariant 2 states that if a node
has a listen action in the waiting queue, no other actions may be present after this. Finally,
as we know that the condition for processing actions in the waiting queue is satisfied when we
begin processing the transmit action t, any node m that does not have a listen action that is
relevant to t, is unable to submit a listen action that could become relevant to t, as any future
action submitted from m would have a start time greater than, or equal to, the end time of the
previous action submitted from m, which we know is greater than the end time of the action t
that is currently being processed.
With these two points, when processing a transmit action t, we can safely compute the probabil-
ity for any listen action l relevant to t, including the interference from any interfering transmit
actions in the transmits set.

Cut 3: inform action

The next cut is a snapshot of the Coordinator directly after the t43 action has been processed
and removed from the waiting queue. The condition for processing actions remains satisfied, as
there is still at least one action from each node in the waiting queue. At the head of the waiting

3.4. Correctness 37

queue is the inform action i54. Processing an inform action is trivial, as no processing is needed
for this action. The action is simply removed from the waiting queue, and the Coordinator may
move on to the next action if the condition is still satisfied. This holds in general for any inform
action.

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Processed

Submitted

The content of the waiting queue and transmits set as of this cut is:
waiting ←

〈
i54, t

1
5, l

2
5, s

5
6, l

3
6, s

4
8, l

5
9, t

1
10, i

1
12, s

1
15, l

1
18

〉
transmits ←

{
t43, t

1
6, t

1
10

}
Figure 16: Processing an inform action.

Cut 4: listen action

This cut shows a snapshot of the Coordinator directly after the t316 action has been submitted.
With this action on the waiting queue the condition for processing actions has been satisfied,
and the Coordinator may process the first action on the queue, the l214 action. For this cut,

38 Chapter 3. Communication

there are two interesting points to note. First, when a listen action is at the head of the waiting
queue, it means that no packet has been received during this transmission. When this is the
case, the action is removed, and null is sent to the source of the listen action. Second, the
l414 action has already been processed, and removed from the waiting queue, even though the
action could not have been processed before the t316 action had been submitted. The l414 action
was removed from the waiting queue early, as the node had received a packet when processing
the t512 action.

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Processed

Submitted

The content of the waiting queue and transmits set as of this cut is:
waiting ←

〈
l214, s

1
15, t

3
16, t

4
17, t

5
18, l

1
18, l

4
20

〉
transmits ←

{
t110, t

2
10, t

5
12, t

3
16, t

4
17, t

5
18

}
Figure 17: Processing a listen action.

This holds in general, as no transmit action can be fully within the time interval of any listen
action, if the listen action is at the head of the waiting queue. The listen action would have been

3.4. Correctness 39

removed when processing earlier transmit actions, as transmit actions are ordered before listen
actions in the waiting queue. Let us assume that a node n submitted the listen action l, and
that l is at the head of the waiting queue. When processing the l action, no actions from node
n before, or after, l is present in the waiting queue, as all previous actions have been processed.
Additionally, no transmit actions from any other node m can be present on the waiting queue,
with end time less than, or equal to, the end time of the l action, as these would already have
been processed, due to the ordering of the priority queue.

Cut 5: sleep action

The final cut is a snapshot of the Coordinator directly after the t218 action has been submitted
to the Coordinator. The t218 action was submitted by Node 2 after the l214 action had been
processed without the node receiving any data, and the transmit action enabled the Coordinator
to continue processing actions from the waiting queue. The head of the waiting queue is the
sleep action s1

15, which, similarly to an inform action, is trivial to process, as no processing is
needed for the Coordinator. Again, similarly to an inform action, this holds in general for any
sleep action.
After removing the l214 action from the waiting queue, the Coordinator was able to remove the
t110, t210, and t512 actions from the transmits set, as the new earliest start time is now the start
time of the s1

15 action.

40 Chapter 3. Communication

Node 1 Node 2 Node 3 Node 4 Node 5 t Transmit

l Listen
s Sleep

i Inform

2

6

10

14

18

t15

t110

i112

s1
15

l118

s1
20

l25

s2
7

t210

l214

t218

i220

l36

l310

i313

t316

t320

t43

s4
8

l414

t417

l420

i54

s5
6

l59

t512

t518

i520

Processed

Submitted

The content of the waiting queue and transmits set as of this cut is:
waiting ←

〈
s1

15, t
3
16, t

4
17, t

5
18, t

2
18, l

1
18, l

4
20

〉
transmits←

{
t316, t

4
17, t

2
18, t

5
18

}
Figure 18: Processing a sleep action.

3.4.4 Summary

Throughout this section, we have presented arguments of correctness for the Coordinator and
the four hardware functions, by analysing each of the five cases for the Coordinator processing
an action, starting with a concrete example, based on the accompanying figure, and finishing
each of the scenarios with a generalisation.

Chapter 4

Experiments

In this chapter, we present the LMAC protocol [13], as well as some fragments of a C++
implementation of the protocol, in Section 4.1. In Section 4.2 we present a scalability experiment
of the MPI and the Coordinator, running with the LMAC protocol.

4.1 LMAC

LMAC [13][2] is a Time Division Multiple Access (TDMA) protocol designed to be lightweight
and energy efficient, to prolong the lifetime of a network. In the protocol, time is divided into
frames, that consist of a fixed number of time slots. Each node in a network controls a single time
slot in each frame, and if a node has any data to transmit, the node waits for its time slot to come
up, which means that a node can transmit the data without causing a collision, or interference
for other nodes. Additionally, whenever a nodes time slot comes up, the node transmits a short
synchronisation packet at the beginning of the time slot. For every other time slot, the node
listens for the synchronisation packet from other nodes, to maintain synchronisation and keep
neighbourhood information up-to-date. The structure of a synchronisation can be found in
Figure 19.

The LMAC protocol consists of four phases:

Initialisation
Each node initially starts in the Initialisation phase. In this phase, the node has yet to
choose a time slot, so instead, it listens for synchronisation packets in every time slot.
When a synchronisation packet has been received and a neighbouring node has been de-
tected, the node synchronises, and the node knows the current slot number. After a
synchronisation packet has been received, the node switches to the Wait phase at the
beginning of the next frame. A single node chosen as the gateway node starts the Initial-
isation phase by picking a time slot and proceeding to the active phase.

Wait
A node in the Wait phase waits for a random amount of frames (up to a pre-defined limit)
between receiving the synchronisation packet and moving to the Discover phase.

Discover
In the Discover phase, the node collects first order neighbourhood information from neigh-
bouring active nodes, by listening for synchronisation packets throughout one frame, and
recording the occupied time slots. Once a frame worth of neighbourhood information has

41

42 Chapter 4. Experiments

been recorded, the node chooses a random, available, time slot, and proceeds to the Active
phase.

Active
Finally, a node in the Active phase can transmit a data packet in its chosen time slot,
while listening in other time slots to accept data from neighbouring nodes. The node
still uses the synchronisation packet to keep neighbourhood information up-to-date, and
attempts to detect, and report, possible collisions in the network. When a node in the
Active phase is informed of a collision in its chosen time slot, the node will give up its
time slot, and proceed to the Wait phase. A collision happens when two or more nodes
have chosen the same time slot. Nodes that are part of a collision is unable to detect the
collision, and they need to be informed by their neighbours. When a node has detected a
collision, the time slot in question is included in the synchronisation packet that will be
sent from the node in its next time slot, to inform all neighbours of the collision.

0 8 16 24 32 40 48 56 64 72 80 88 95

ID Slot Occupied Slots DtG Colli-
sion Destination ID

Data
Size)

Figure 19: The synchronisation packet structure in LMAC [13, p. 2].

In LMAC, each node keeps track of its hop-distance to the pre-defined gateway node [13] and
includes this hop-distance in the synchronisation packet as the “DtG”, or distance to gateway,
field. When an Active node has a data packet to transmit, the node looks through its neigh-
bourhood information to find a neighbouring node that is closest to the gateway, pick this node
as the destination for its message, and include the destination in the synchronisation packet.
Should multiple neighbours nodes be equally close to the gateway, a destination will randomly
be picked between them. If a destination, and a data size, is included in the synchronisation
packet, and the destination is equal the id of the node, the node will listen for a data packet, in
the time slot, after having received the synchronisation packet. Additionally, it is only possible
for a node to transmit a single data message per frame and the maximum size of a data packet
is 256 bytes.

(a) Grid topology synchronisation. (b) Grid topology routing. (c) Dynamic topology synchronisation.

Figure 20: LMAC topology synchronisation and routing.

Figure 20 contains YouTube links to three visualisations of the LMAC protocol, where Fig-
ure 20a visualises node synchronisation and network stabilisation, Figure 20b visualises the
routing from a data generation node to the gateway node, and Figure 20c visualises part of the
node synchronisation of a larger network. Nodes are coloured per their phase, with white nodes
being in the Initialisation phase, red nodes in the Wait phase, blue nodes in the Discover phase,
and green nodes in the Active phase. When the node enters the Active phase, the chosen slot
is drawn on the node.

https://youtu.be/EbsL2zhTlgc
https://youtu.be/p_hQJd0pMXk
https://www.youtube.com/watch?v=-GQ5qWEalQ8

4.1. LMAC 43

In the routing visualisation in Figure 20b, the bottom left node is chosen as the gateway node,
and the top right node generates a single data packet each frame. An arrow originates from a
node whenever a message is sent from the node, with a green arrow denoting the synchronisation
packet, and the red arrow denoting a data packet.

Code 1 shows a snippet of the LMAC implementation for the part of the code where a node in
the Active phase constructs and broadcast the synchronisation packet, and a data packet, if any
has been received, in its chosen time slot. If the node has a data packet to send, it computes
the receiver with the lowest hop-distance to the gateway, and adds it to the synchronisation
packet, along with the size of the data packet.

1 ...
2 /* Create synchronisation signal. */
3 ControlPacket ctrl{id, state.chosen_slot,
4 state.occupied_slots, state.gateway_distance,
5 state.collision_slot, receiver, data_size};
6 state.collision_slot = NO_SLOT;
7 /* Send initial synchronisation signal. */
8 hardware::sleep(3ms);
9 hardware::broadcast(mpilib::serialise(ctrl));

10 /* Send packet, if any. */
11 if (!state.data_packet.empty()) {
12 hardware::sleep(10ms);
13 hardware::broadcast(state.data_packet);
14 state.data_packet.clear();
15 }
16 ...

Code 1: Construct and send synchronisation and data packets.

Code 2 shows another snippet of the LMAC protocol implementation, where a node in either the
Initialisation, Discover, or Active phase is listening for synchronisation packets. When a node
receives the synchronisation packet, the node updates its local state, and the neighbourhood
information, with any new information, received in the synchronisation packet. If a packet as
destined for the node, and the node is in the Active phase, the node listens for the data packet,
and stores it for later transmission.
The complete source code for the C++ implementation can be found on GitHub:
https://github.com/Joklost/manet-simulations/tree/master/src/lmac

https://github.com/Joklost/manet-simulations/tree/master/src/lmac

44 Chapter 4. Experiments

1 ...
2 /* Listen for synchronisation signal. */
3 auto ctrl_data = hardware::receive(20ms);
4 if (!ctrl_data.empty()) {
5 auto ctrl = mpilib::deserialise<ControlPacket>(ctrl_data);
6 state.occupied_slots[ctrl.chosen_slot] = true;
7 if (ctrl.gateway_distance + 1 < state.gateway_distance) {
8 state.gateway_distance = ctrl.gateway_distance + 1;
9 }

10 /* Update neighbourhood information. */
11 ...
12 if (state.phase == active) {
13 if (ctrl.destination_id == id && ctrl.data_size > 0) {
14 /* Listen for packet. */
15 auto data = hardware::receive(70ms);
16 if (!data.empty()) {
17 state.data_packet = data;
18 ...
19 }
20 }
21 }
22 }
23 ...

Code 2: Receive synchronisation and data packets.

4.2 Scalability
We conducted two scalability experiments with the LMAC protocol from Section 4.1. The first
experiment is to show how simulations with the centralised Coordinator performs, with a fixed
number of nodes, when scaling the amount of CPUs available for the simulation. In the second
experiment, we attempt to scale the number of nodes, while also scaling the number of CPUs
to match the size of the network.

Cores 16 32 64
Time 41:49 min 34:52 min 19:28 min

Table 1: 5-minute random walk topology, 60 nodes.

In the first experiment, we simulate the LMAC protocol with 60 nodes in a generated random
walk topology, over a 5-minute real-time period with approximately 300 links at all times,
throughout the log. The results for this experiment can be seen in Table 1. The experiment
demonstrate that scaling the amount of CPUs will significantly improve the time required to
run the simulation, but it also show that the simulation does not scale very well with a larger
number of nodes, as even when running the simulation with 64 cores available, simulating the
experiment takes way longer than the 5-minute GPS log we simulate.

4.2. Scalability 45

Nodes 100 300 600
Links ≈450 ≈1200 ≈2400
Cores 128 320 576
Time 45:43 min 6:51:53 hrs . . .

Table 2: 5-minute random walk topology.

The second experiment further shows the scalability issues of the Coordinator. In this experi-
ment, we attempted to simulate the LMAC protocol while scaling the number of nodes in the
network, as well as the amount of CPUs available. The results for this experiment can be seen
in Table 2. A 5-minute real-time simulation with 100 nodes, and approximately 450 links, took
over 45 minutes with 128 cores, and a 300 node experiment, with approximately 1200 links, took
almost seven hours using 320 core. After this result, we decided not to continue the experiment.

The annotated random-walk GPS logs can be found on GitHub:
https://github.com/Joklost/manet-simulations/tree/master/src/coordinator/logs

https://github.com/Joklost/manet-simulations/tree/master/src/coordinator/logs

Chapter 5

Conclusion

In this thesis, we introduce a C++ library for writing and running, simulations of the MAC
protocols behind the mesh communication in a MANET using an MPI. Our library consists of X
parts: A hardware interface header file, used for writing implementations of MAC protocols, that
emulate the physical part of a device in a MANET, a Coordinator, facilitating and coordinating
the communication between the emulated devices, and finally the link model, where we can
annotate network topology GPS logs with links between nodes, based on a model for link
path loss, where we approximate the path loss for a link using building footprints between the
nodes of a link, on OpenStreetMap map tiles. With the annotated GPS logs, we can simulate
wireless radio communication, through the Coordinator, where we can simulate packet errors
and collisions caused by interfering transmissions or bad links.
In Section 2.3 and Section 2.4, we propose a link modelling method for approximating the path
loss on a link by computing the percentage amount of building between the two nodes of a link,
and show that the computed RSSI values are roughly equivalent to field measurements, that is
more reliable than computing the path loss entirely based on the distance.
Section 3.4 presents our arguments of correctness for the Coordinator and the hardware func-
tions, analysing the different possible cases for when the Coordinator processes an action, start-
ing with a concrete example, and finishing with a generalisation of each of the scenarios.
In Chapter 4, we present the LMAC protocol and show how our C++ library can be used to
simulate the protocol, and we present the results of our scalability experiments for the Coordi-
nator. We do, however, face significant scalability problems, as we rely on a single centralised
Coordinator, as shown in Section 4.2. Our experiments show that we can simulate 100 nodes
in about 45 minutes, while using 128 cores, and that simulation time scales significantly with
an increasing number of nodes.

47

48 Chapter 5. Conclusion

5.1 Future Work
Running simulations with a large number of nodes pose a significant scalability challenge, as
shown in Section 4.2. The reason behind this is very likely the fact that we use a centralised
Coordinator, to coordinate the communication between a large number of nodes, using an MPI.
When visualising with the Visualiser tool, we would ideally like to visualise a greater number
of nodes than what is currently supported, as visualising protocol and communication logs can
be a significant help when debugging MAC protocol implementations.
Finally, we would like to be able to create a better path loss model, by using more data to
approximate the link model. The current version of the model is not very accurate when it
comes to the path loss for buildings, as the logs we had access to did not have enough viable
data.

Chapter 6

Bibliographical Remarks

As this project, and this thesis, was part of a multi-semester project, we have re-used parts of
our thesis from last semester [3]. The following is a list of the sections that include parts of the
last thesis, and the changes that has been made to them in this thesis:

• Parts of the summary on page v is based on text from other sections in this thesis.

• The abstract on page iv has been adapted from the abstract on page iii in [3] to reflect
the contributions and results of this project.

• Chapter 1 (excluding the figure) has been adapted from Chapter 1 in [3] to reflect the
contributions of this project.

• Section 1.1 has been included from [3].

• The introduction of Chapter 2 is an adapted version of the introduction to Chapter 2 in
[3].

• Section 2.3 has been adapted, and shortened, from Section 2.1.2 in [3].

• Section 2.5 has been adapted with slight changes to the naming in some of the equations,
to the presented example, as well as to include time for the RSSI function, to Section 2.2
in [3]. Additionally, the graphs showing the probability for packet error has been updated
slightly.

• Section 3.3.1 includes parts of Section 3.1.1 from [3].

• Section 3.3.2 has been adapted from Section 3.1.3 in [3], to conform to new behaviour.
Additionally, two of the functions have been renamed.

• Section 3.3.3 is a heavily modified version of Section 3.2 in [3]. The name and functionality
of the Coordinator have changed greatly from the Centralised Controller of [3], but the
Coordinator still has basis in this section.

• The beginning of Chapter 5 has been adapted from Chapter 5 in [3].

49

Bibliography

[1] Rasmus Liborius Bruun. Mobile ad-hoc network performance assessment based on sim-
ulation with scenario specific propagation and multi-link modelling. Aalborg University,
2018.

[2] Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader. Modelling and verification of
the lmac protocol for wireless sensor networks. In Jim Davies and Jeremy Gibbons, edi-
tors, Integrated Formal Methods, pages 253–272, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[3] Charlie Dittfeld Byrdam Jonas Kloster Jacobsen. Message Passing Interface for Simulation
of Mobile Ad-hoc Networks. Aalborg University, 2019.

[4] mapbox. Our map data. https://docs.mapbox.com/help/how-mapbox-works/
mapbox-data/. Accessed: 6. June 2019.

[5] P. Massoud Salehi and J. Proakis. Digital Communications. McGraw-Hill Education, 2007.

[6] MathWorks. Baudrate. https://mathworks.com/help/matlab/matlab_
external/baudrate.html. Accessed: 8. January 2019.

[7] A. Merts and A. Barnard. Simulating manets: A study using satellites with aodv and
anthocnet. In 2016 Pattern Recognition Association of South Africa and Robotics and
Mechatronics International Conference (PRASA-RobMech), pages 1–5, Nov 2016.

[8] Metageek. Rssi vs dbm. https://www.metageek.com/training/resources/
understanding-rssi.html. Accessed: 8. January 2019.

[9] Morteza Mohammadi Zanjireh and Hadi Larijani. A survey on centralised and distributed
clustering routing algorithms for wsns. volume 2015, 05 2015.

[10] Lawrence G. Roberts. Aloha packet system with and without slots and capture. SIGCOMM
Comput. Commun. Rev., 5(2):28–42, April 1975.

[11] Marjan Sirjani, Ali Movaghar-Rahimabadi, Amin Shali, and Frank S. de Boer. Modeling
and verification of reactive systems using rebeca. Fundam. Inform., 63:385–410, 2004.

[12] Aalborg University. mccaau. https://sites.google.com/site/mccaau/home,
2018. Accessed: 10. January 2019.

[13] L.F.W. van Hoesel and Paul J.M. Havinga. A lightweight medium access protocol (lmac) for
wireless sensor networks: Reducing preamble transmissions and transceiver state switches.
In 1st International Workshop on Networked Sensing Systems (INSS), pages 205–208. So-
ciety of Instrument and Control Engineers (SICE), 2004.

51

https://docs.mapbox.com/help/how-mapbox-works/mapbox-data/
https://docs.mapbox.com/help/how-mapbox-works/mapbox-data/
https://mathworks.com/help/matlab/matlab_external/baudrate.html
https://mathworks.com/help/matlab/matlab_external/baudrate.html
https://www.metageek.com/training/resources/understanding-rssi.html
https://www.metageek.com/training/resources/understanding-rssi.html
https://sites.google.com/site/mccaau/home

52 Bibliography

[14] Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi. Modeling and efficient verifica-
tion of broadcasting actors. In FSEN, volume 9392 of Lecture Notes in Computer Science,
pages 69–83. Springer, 2015.

[15] Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi. Modeling and efficient verifi-
cation of wireless ad hoc networks. Formal Asp. Comput., 29(6):1051–1086, 2017.

[16] Fengling Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xin Chen, Tian ZHANG, and
Xuandong Li. Modeling and evaluation of wireless sensor network protocols by stochastic
timed automata. Electronic Notes in Theoretical Computer Science, 296:261–277, 08 2013.

Glossary

baud rate
The baud rate is the rate at which information can be transferred as a wireless signal [6],
and is equivalent to bits per second. 11, 12, 25

path loss
The signal loss inflicted by the propagation of a electromagnetic wave from transmitter
to receiver [1, p. 10]. iii, v, 3, 5, 7, 11, 12, 13, 14, 15, 47, 48

53

Acronyms

BOPL
Building Obstructed Path Loss. 14, 16, 17

CVPL
Clear View Path Loss. 14, 16

dB
decibel. 19, 55

dBm
dB relative to a milliwatt. 11, 19, 20, 21

GPS
Global Positioning System. 8, 9, 10, 12, 44, 45, 47

LMAC
Lightweight Medium Access Protocol. v, 3, 10, 41, 42, 43, 44, 45, 47

MAC
Medium Access Control. iii, v, 24, 25, 47, 48

MANET
Mobile Ad-hoc Network. iii, v, 3, 5, 7, 8, 12, 47

MPI
Message Passing Interface. iii, v, 3, 23, 24, 25, 30, 32, 41, 47, 48

RSSI
Received Signal Strength Indication. 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 47, 49

SN(I)R
Signal to Noise (and Interference) Ratio. 19, 20

SNR
Signal to Noise Ratio. 19

55

56 Acronyms

TDMA
Time Division Multiple Access. 41

WSN
Wireless Sensor Network. 5

	Front Page
	Title Page
	Summary
	Preface
	Table of contents
	1 Introduction
	1.1 Related Work

	2 Radio Physics
	2.1 Visualiser Tool
	2.2 Radio Hardware
	2.3 Link Path Loss
	2.4 Link Modelling
	2.5 Radio Simulation

	3 Communication
	3.1 Abstract Hardware
	3.2 2-Phase Broadcast and Receive
	3.3 Abstract Hardware Simulation
	3.4 Correctness

	4 Experiments
	4.1 LMAC
	4.2 Scalability

	5 Conclusion
	5.1 Future Work

	6 Bibliographical Remarks
	Bibliography
	Glossary
	Acronyms

