
Application of Timed-Arc Colored Petri Net for Network
Update Synthesis

Mark Glavind & Niels Christensen

Department of Computer Science, Aalborg University, Denmark

{mglavi14, nchri13}@student.aau.dk

Abstract

A modern network is a complex distributed system and provides many challenges. One challenge is route
updates which happen often and need to be performed consistently. This is a complex issue where solutions are
still being developed. However, there has not been much focus on the time used for deploying a new configuration.
In order to automate provably correct and optimize network updates, we present Timed-arc colored Petri net
(TACPN) with formal semantics, a model where it is possible to model asynchronous concurrent systems such
as a network. We propose an algorithm to unfold TACPN into a Timed-arc Petri net, where the unfolded
model can then be verified by known verification engines. To create the models visually we have created a full
implementation of TACPN into the tool TAPAAL. We make an encoding of networks in TACPN, where the
networks have to hold the security policy Waypoint Enforcement (WPE). We present results from experiments
where we create real-world topologies into TACPN and optimize the worst case update time between two
configurations, while WPE still holds.

I. INTRODUCTION

A modern network is a complex distributed system often containing hundreds of switches and
routers, where each device can have different performance characteristics and behaviours. Modern
communication networks also need to be able to quickly adjust, e.g., to changes in the load, network
policies, due to the migration of virtual machines etc. How to support such changes has received much
attention in the literature: some have focused on data plane consistency [1] [2], to ensure that updates
are completed with minimum interruption, while others have focused on optimizing the installation of
updates [3]. With the introduction of Software-Defined Networks, it has been made easier to verify the
flows and updates in networks. Previous work have introduced mechanisms such as two-phase update
[4] while others have introduced efficient synthesis for updates [5]. In order solve these challenges
formal methods can be a solution.

Using formal methods to solve some of the problems in networks is not new, but is still growing in
network community [6]. But using formal methods also had challenges. As mentioned a network often
consists of hundreds of switches a routers where each device may have different packet processing time
since its based on the hardware [7].
In a network there are sent many different packets that all got different sizes. This provides a new
challenge, since the processing delay of a packet also is different based upon the size of a packet [7].

To deal with these challenges we propose to use Petri net, a mathematical modeling language,
introduced by Carl Adam Petri in 1962 [8]. Petri net is a suitable model, since it can deal with
asynchronous concurrent systems well. Through out the years Petri nets have gotten many extensions,
but in particular the Coloured Petri net [9] and Timed Petri net [10] are extensions we can use in order
to model a network with the challenges presented. With the introduction of colors, tokens and places
can now have multiple values, thereby it is possible to model all the different packet types. With the
notation of time, we are able to model the timing aspects of a network including the delays from the

1

different packets, router and switch processing time, timeouts etc. But so far there is no literature that
combines both the colors and timed Petri net that suits our needs.

Therefore in this thesis we propose Timed-arc Colored Petri Net (TACPN) an extension to Petri net,
combing the Coloured Petri nets and Timed-arc Petri nets [11]. By using TACPN we want to minimize
the updating time between two configurations in a network. An example of a update scheme that is safe
but takes a long time, is the two-phase commit [4]. Here the waiting time between the two phases is
at least the maximum delay across all the devices. By using TACPN we can minimize the update time
between configurations, by starting for each device, with the maximum delay, and then systematically
reducing the delay while still verifying that some properties, such as a dangerous packet will never
enter the network.

We have six main contributions and they are as follows: (i) The new model TACPN with formal
semantics. (ii) We propose a algorithm of how a TACPN can be unfolded into a Timed-arc Petri
net (TAPN) [12], and why TACPN and TAPN are strongly timed bisimilar. (iii) We propose a proof
of correctness by how our TACPN model can be expressed in an TAPN. (iv) We have created an
implementation of TACPN into the tool TAPAAL [13] where it is now possible to visually create
TACPNs. For this implementation, we have also created a unfolding engine. The engine takes a TACPN
as input and creates the corresponding TAPN which then can be used to verify the model, through the
usage of other verification engines. (v) We have created an encoding of the network safety property
Waypoint Enforcement (WPE) into TACPN. (vi) We have lastly conducted a case study where we use
TACPN to reduce the update time between an initial and final configuration of a network. To get the
configurations we first used Netsynth [5] a tool that creates a initial and finial configuration of a network,
from a network topology.The network topologies used in this thesis are from the Topology Zoo dataset
[14]. At the last experiment we generated our own paths in the topologies and randomly generated an
update sequence between the two configurations.

Our experiments shows that when using configurations from Netsynth we have optimized the update
time between them, up to 99 %. This is due to the fact that when NetSynth creates the configurations,
it creates them for the optimal routing throughout the network, and therefore the configurations do not
intersect i.e. does not use the same switches in the routes. Because of this, all the updates can be done
concurrently.

We have therefore manually generated routes to get configurations that intersect as much as possible.
These experiments show that when the routes do intersect, it will not always be able to reduce the
update time to the minimum, which also shows there are cases where our method is applicable.

The rest of the thesis is structured as follows. In Section II we give an informal Colored Petri net,
whereas we in Section III introduce Timed-arc Colored Petri Net, and give a informal description.
Section IV we propose algorithm of how a Timed-arc Colored Petri Net can be unfolded into a Timed-
arc Petri net. Section V is a description of how we have made an implementation of TACPN in TAPAAL
and create the unfold engine. In Section VI we introduce the input needed to model a network into a
TACPN, while also showing how we modelled it. In Section VII we show the experiments we have
conducted with TACPN. Lastly we have a conclusion and future work.

II. BACKGROUND: COLORED PETRI NET

In this section we will describe the colored Petri net (CPN) which was first introduced by K. Jensen
in 1981 [9]. The definitions presented in this section are based on those presented in [15].

Before introducing definitions of CPN we show a small network. This network will be used as a
running example throughout the thesis.

2

To introduce a small network consider Figure 1. Packets get sent from the internet to the first switch
called Enter Network. Packets always comes in a stack of four. The Enter Network switch then
forwards them to the Firewall. Based upon what type of the packet, the Firewall will either forward it
to an Internal Network, forward it to an External Network, or if it detects it as a dangerous packet,
it will drop it, and remove it from the network.

Internet Enter Network Firewall

Drop

Internal Network

External Network

4 packets
Safe packetSafe packet

Dangerous packetDangerous packet

Safe packetSafe packet

Fig. 1: Updating of a network from the solid to the dashed line that may break WPE

A. Multiset
Before we present the colored Petri net, we will first describe the preliminary definitions.

Definition 1: (Multisets)
A finite multiset is a collection over a set S of elements where a finite number of those elements occur
a finite number of times in the multiset. Let b be a multiset over the set S then b ∈ S→ N0. If s ∈ S
then b(s) is the number of occurrences of s in multiset b.

The common representation of the multiset b is by a formal sum:

∑
s∈S

b(s)′(s)

We denote the empty multiset by /0 and the set of all multisets over S by B(S).

To ease the definition of multiset subtraction, we define the function non-minus as:

non-minus(x, y) =

{
x− y if x− y≥ 0
0 otherwise

For multisets we define the following operations:

Definition 2: (Multiset operations)
S is a set, b,b1,b2 ∈ B(S), s ∈ S, and n ∈ N0

• s ∈ b iff b(s)> 0
• b1]b2 = ∑

s∈S
(b1(s)+b2(s))′(s) (summation)

• n∗b = ∑
s∈S

(n∗b(s))′(s) (scalar-multiplication)

• b1 ⊆ b2 iff ∀s ∈ S : b1(s)≤ b2(s)
• b1 = b2 iff b1 ⊆ b2∧b2 ⊆ b1
• |b|= ∑

s∈S
b(s)

• b1 \b2 = ∑
s∈S

(non-minus(b1(s),b2(s)))′(s)

3

B. The colored Petri net
To ease understanding of CPN we have modelled the small network from Figure 1 as a CPN shown

in Figure 2. First packets are entering the network from the internet, then they are sent to the first
switch. From the first switch, the packet is send to a firewall. The network is accepting two types of
packet otherwise, if the firewall detects that its a dangerous packet, it will be blocked. The firewall has
a queue of size 10. If the packet has the correct type, the switch will send it to either an internal or
external network.

InsecureInternet
[Dot] #1

S1 [PacketType]
Firewall

[PacketType]

InternalNet

[Dot]

ExternalNet

[Dot]

EnterNetwork

Drop

S1ToFirewall

Blockedpck = Danger

FirewallToInternalNet

FirewallToExternalNet

1010
1′(•)1′(•)

4′(pck)4′(pck) 1′(pck)1′(pck)

1′(pck)1′(pck)

1′(pck)1′(pck)

1′(pck)1′(pck) 1′(SSH)1′(SSH)

1′(•)1′(•)

1′(Web)1′(Web)

1′(•)1′(•)
Color types:
PacketType is {SSH,Web,Danger}

Variables:
pck is PacketType

Fig. 2: Colored Petri net example

Every token is valued with a color. Each of these colors belong to a color type e.g. in the box of
Figure 2 we have the color type PacketType that covers the colors SSH, Web, and Danger.
Each place has a color type, that indicates the possible colors of the tokens at that place, e.g. the place
Firewall has the color type Pck and can therefore only have tokens valued with SSH, Web, or Danger.
The reserved color type Dot only covers one color and is used to represent uncolored tokens.
The circles are places, the black rectangles are transitions and the arrows between the two are arcs.
The state of the net is given as a marking that assigns a number of tokens to each place, e.g. in Figure
2, the number of packets that will enter the network is represented by the number of tokens at the place
S1.

A transition can be fired, changing the marking of the net according to the expressions of its connected
arcs. If EnterNetwork is fired, its connected output arc, with the expression 4′(pck), will add four
tokens to S1. This expression has variables, as can be seen on the box on Figure 2 the variable Pck is of
color type PacketType. Therefore when firing the transition, the four tokens will get one binding with a
color from the PacketType color type. Note that the number of tokens in a place is always non-negative,
and therefore S1ToFirewall will only be enabled, if S1 has enough tokens to satisfy its input arc.

In addition to regular arcs, we also have inhibitor arcs denoted with a circle instead of the usual
arrow head e.g. the one connected to S1ToFirewall. Inhibitor arcs do not move any tokens, but will
only allow their connected transition to fire if the number of tokens at the connected place is less than
its expression, e.g. S1ToFirewall can only fire if there are less than 10 tokens at Firewall. This is to
represent that the firewall got a queue of size 10.

The addition of colors allows us to create more expressive arc expressions, e. g. the arc, connecting the
place Firewall with the transition FirewallToExternalNet, has the expression 1′(Web), which represents
that the firewall will send web to an external net. For the transition FirewallToExternalNet to be enabled,
a token in Firewall need to have the binding Web.

Finally transitions can also have color guards that restrict the bindings of the relevant variables, e.g.
the color guard, pck = Danger, seen on the transition Blocked ensures that the firewall will block only
dangerous traffic.

4

C. Colors
In a colored Petri net, every token is valued with a color. The set of all colors is defined as C. Every

color is an element of a color type. The set of all color types is defined as Σ⊆ 2C. The colors of each
color type are distinct, e.i. ∀σ1,σ2 ∈ Σ. σ1∩σ2 = /0. The color type that a color belongs to is given by
the function TypeC : C→ Σ.

Each color type is classified as one of the following:
Dots
The set containing only the dot color. It is denoted by {•}. The dot color corresponds to tokens in a
regular Petri net.
Cyclic enumerations
Is a set of elements represented as a sequence of non-repeating elements, where the sequence determines
successor and predecessor elements.
Integers
Is a subset of Integer that contains integers. Any set of consecutive integers, together with a successor
function and predecessor function. Is a cyclic enumeration only contaioning integers.
Product type
The Cartesian product of several color types.

A cyclic enumeration is a sequence, with length n, of non-repeating elements, i.e S = (e0,e1, ...,en).
The successor function and the predecessor function of a cyclic enumeration yields the successor and
predecessor of a given element in the enumeration and is defined as:

Succ(ei) =

{
e0 if i = n
e(i+1) otherwise

Pred(ei) =

{
en if i = 0
e(i−1) otherwise

Note that the enumeration is cyclic, meaning that the successor of the last element in the sequence is
the first element, i.e. Succ(en) = e0. Likewise, the predecessor of the first element in the sequence is
the last element, i.e Pred(e0) = en.

D. Variables, Types and Bindings
Before describing expressions, we must first give a notion of variables, types and bindings Variables

are used to represent colors and the set of all variables is denoted Var. Like with colors, each variable
has an associated color type. We define this with the type function, TypeVar : Var → Σ, that maps
each variable to the color type of that variable. Finally, variables can have a color bound to them. A
binding, b : Var→ C, binds each variable to a concrete color such that ∀v ∈ Var. b(v) ∈ TypeVar(v),
or in other words the bounded color is in the color type of the variable. We denote a binding b as
〈v0 = c0,v1 = c1, ...,vk = ck〉, if ∀i ∈ [0,k] b(vi) = ci. The set of all bindings is denoted B.

E. Color Expressions
The color expressions τ ∈ T is defined as:

τ ::= µ | (τ, . . .τ)
µ ::= • | c | var | µ ++ | µ−−

Where c ∈ C and var ∈Var.
1) Types: Color expressions also have a type, similar to variables that is given by the function

TypeT : T→ Σ. The type of a color expression corresponds to the color type of the constants and
variables within the expression. The TypeT1 function is defined as:

TypeT((τ1,τ2, . . . ,τn)) = TypeT(τ1)×TypeT(τ2)×·· ·×TypeT(τn)

1As a remark, we in our type system do not allow integers from two different ranges to be compared. This however is allowed in our
implementation.

5

TypeT(•) = {•}

TypeT(c) = TypeC(c)

TypeT(var) = TypeVar(var)

TypeT(µ++) = TypeT(µ) = TypeT(µ−−)

2) Semantics: In order to evaluate the color expressions with a given binding we define the function
JK : T×B→ C.

Definition 3: (Color semantics)
J(•)〈b〉K = • (neutral-color)
J(c)〈b〉K = c (constant)
J(var)〈. . . ,var = c, . . .〉K = c (variable)
J(µ++)〈b〉K = Succ(J(µ)〈b〉K) (successor)
J(µ−−)〈b〉K = Pred(J(µ)〈b〉K) (predecessor)
J((τ, . . . ,τ))〈b〉K = (J(τ)〈b〉K, . . . ,J(τ)〈b〉K) (product)

An example of a color expression could be (x,y++) which denotes a product type of the variables
x and y. Since both x and y are variables we need to get the type for both of them which we use
the function TypeVar(x) = [1,3] and TypeVar(y) = [5,7]. Then the color function color expression can be
evaluated under the binding J(x,y)〈x = 1,y = 6〉K = (1,7).

F. Guard Expressions
The set of all guard expressions is defined as Γ and has the following syntax:

γ ::= true | f alse | ¬γ | γ1∧ γ2 | γ1∨ γ2 | γ1→ γ2 | γ1↔ γ2 | γ1 xor γ2 | τ1 ./ τ2
where TypeT(τ1) = TypeT(τ2) and ./ denotes the comparison operators <,≤,>,≥,=, and 6=.

1) Semantics: All guard expressions with a binding will evaluate to a Boolean value either true or
false. To evaluate the guard expressions the function JK : Γ×B→{true, f alse}

Definition 4: (Guard semantics)
J(¬γ)〈b〉K = ¬J(γ)〈b〉K (negation)
J(γ1∨ γ2)〈b〉K = J(γ1)〈b〉K∨ J(γ2)〈b〉K (disjunction)
J(γ1∧ γ2)〈b〉K = J(γ1)〈b〉K∧ J(γ2)〈b〉K (conjunction)
J(γ1→ γ2)〈b〉K = J(γ1)〈b〉K→ J(γ2)〈b〉K (implication)
J(γ1↔ γ2)〈b〉K = J(γ1)〈b〉K↔ J(γ2)〈b〉K (biconditional)
J(γ1 xor γ2)〈b〉K = J(γ1)〈b〉K xor J(γ2)〈b〉K (exclusive-or)
J(τ1 ./ τ2)〈b〉K = J(τ1)〈b〉K ./ J(τ2)〈b〉K (comparison)

An example of a guard expression γ is (a≤ b∧b++< c). If TypeVar(a) = TypeVar(b) = TypeVar(c) =
[1,5] then this guard expression can be evaluated with a binding Jγ〈a = 1, b = 2, c = 4〉K = true.

G. Arc Expressions
The set of all arc expressions is defined as ∆ and has the following syntax:

δ ::= n′(τ) | n′(σ .all) | δ1]δ2 | δ1 \δ2 | n∗δ

where n ∈ N, τ is a color expression, σ is a color type and Type∆(δ1) = Type∆(δ2) as defined next.

6

1) Types: Arc expressions, like color expressions, can also be associated a type, given by the function
Type∆ : ∆→ Σ. The type of an arc expression corresponds to the color type of the colors within the
expression. The Type∆ function is defined as follows:

Type∆(n
′(τ)) = TypeT(τ)

Type∆(n
′(σ .all)) = σ

Type∆(δ1]δ2) if Type∆(δ1) = Type∆(δ2)

Type∆(δ1 \δ2) if Type∆(δ1) = Type∆(δ2)

Type∆(n∗δ) = Type∆(δ)

2) Semantics: In order to evaluate the arc expressions we define the function: JK : ∆×B→ CMS

Definition 5: (Arc semantics)
J(n′(τ))〈b〉K = n′(J(τ)〈b〉K) (number-of)
J(n′(σ .all))〈b〉= ∑c∈σ J(n′(c))〈b〉K (all)
J(δ1]δ2)〈b〉K = J(δ1)〈b〉K] J(δ2)〈b〉K (addition)
J(δ1 \δ2)〈b〉K = J(δ1)〈b〉K\ J(δ2)〈b〉K (subtraction)
J(n∗δ)〈b〉K = n∗ J(δ)〈b〉K (scalar)

As an example, an arc expression δ is defined as 2′(x)+1′(2). The type of the variable is given as
TypeVar(x) = [1,3], then it can be evaluated under a binding where Jδ 〈x = 3〉K = 2′(3)+1′(2).

III. TIMED-ARC COLORED PETRI NETS

In this section we define timed-arc colored Petri nets (TACPN). The TACPN presented in this paper
has also been inspired by the timed-arc Petri net (TAPN) in [16] and the colored Petri net (CPN) in
[15]. With the notion of colors, we are able to model different packet types of a network into a Petri net,
but we do not have a notion of time. In a network, routers may use different time to process a packet,
calculate next-hop, some packet types can have a longer delay, or some links may be slower than others
etc. In order to be able to model this, we need to combine both colors and time, and therefore define
TACPN.

Before introducing the TACPN, we will first define time intervals.

Definition 6: (Time intervals)
We define the set of well-formed closed time intervals as:

I def
= {[a,b] | a ∈ N0, b ∈ N∞

0 , a≤ b}

and its subset I inv used in assigning the age invariant defined as:

I inv def
= {[0,b] | b ∈ N∞

0 }

7

InsecureInternet

∗ ≤∞

[Dot] #1

S1

[PacketType]
∗ ≤25

Firewall

[PacketType]

∗ ≤22

InternalNet

[Dot]

ExternalNet

[Dot]

EnterNetwork S1ToFirewall

Drop Blocked
pck = Danger

FirewallToInternalNet

FirewallToExternalNet

1010

1′(•)1′(•)
4′(pck)4′(pck) 1′(pck)1′(pck) 1′(pck)1′(pck)

1′(pck)1′(pck)1′(pck)1′(pck)

1′(SSH)1′(SSH)

1′(•)1′(•)

1′(Web)1′(Web)

1′(•)1′(•)

∗→ [4,6]

∗→ [25,25]

Web→ [18,22]

SSH→ [12,22]

Color types:
PacketType is {SSH,Web,Danger}

Variables:
pck is PacketType

Fig. 3: Small network example modeled as a timed-arc colored Petri net

A. TACPN example
We will now give an informal description of TACPNs. In Section II-B, we presented Figure 2, a

small network modeled as a CPN. This model failed to capture some aspects of a network, such as a
packet could stay at a switch infinite, or when a packet reached S1 both the Drop and S1ToFirewall
transitions are enabled, so packets may never reach the firewall. These problems are all resolved when
we change it into a TACPN by adding timing to the model, as seen in Figure 3.

In a TACPN, all tokens also have an age which allows us to control how long tokens spend at places.
Instead of just firing transitions, we can also delay, incrementing the age of all tokens in the net by
some duration.

To ensure that we do not just delay forever, places can have a time invariant that limits the ages of
the tokens at the place, e.g. S1 has the invariant ∗ ≤25 enforcing that packet will not be at the S1 more
than 25 time unites.

Arcs now also have a time guard that restricts the ages of the tokens it can remove, e.g. the input
arc connected to Drop has a guard that ensures that only tokens of at least and at most age 25 gets
removed. Together with the invariant on S1, this makes a common pattern where a transition is fired if
and only if a token reaches a certain age. In this case the packet will time out and therefore leave the
network after waiting exactly 25 time units.

Usually, all new tokens added will have an age of 0, but the age of the tokens can be preserved
with transport arcs, denoted with diamonds instead of the usual arrowheads, e.g. firing the transition
S1ToFirewall will not change the time of how long a packet has been in the network. Note that transport
arcs always come in pairs, one for input and one for output.

Finally we have urgent transitions, denoted with a small circle on the transition. These are urgent
in the sense that we can not delay when they are enabled, i.e. Blocked is urgent, and therefore if the
binding of the packet is Danger the firewall will block it immediately. Note that urgent transitions can
not have any connected arcs with restrictive time guards.

B. TACPN Definition
We will now formally define TACPNs.

Definition 7: (Timed-Arc Colored Petri Net)
A Timed-Arc Colored Petri Net (TACPN)
is a 15-tuple TACPN = (P,T,Turg, IA,OA, INA,TA,Σ,C,CG,W,WI,WT ,T G, I) where

8

1) P is a finite set of places,
2) T is a finite set of transitions such that P∩T = /0,
3) Turg ⊆ T is a finite set of urgent transitions,
4) IA⊆ P×T is a finite set of input arcs,
5) OA⊆ T ×P is a finite set of output arcs,
6) INA⊆ P×T is a finite set of inhibitor arcs,
7) TA⊆ P×T×P is a finite set of transport arcs such that (p, t, p′)∈ TA⇒ (p, t) /∈ IA∧(t, p′) /∈OA,
∀(p, t, p′),(p, t, p′′) ∈ TA. p′ = p′′ and ∀(p′, t, p),(p′′, t, p) ∈ TA. p′ = p′′,

8) Σ is a finite set of color sets,
9) C : P→ Σ is a color function,

10) CG : T → Γ is a color guard.
11) W : IA∪OA→ ∆ is a finite set of arc expressions such that

Type∆(W ((p, t))) = Type∆(W ((t, p))) =C(p),
12) WI : INA→ N is a function assigning inhibitor weights to inhibitor arcs
13) WT : TA→ N×T×T is a function assigning transport weights to transport arcs that specifies a

numeric weight, an input color and an output color in that order, such that
WT ((p, t, p′)) = (n,τ,τ ′)⇒ (TypeT(τ) =C(p)∧TypeT(τ

′) =C(p′)),
14) T G : IA∪TA→ (C→I) is a timed guard such that
∀t ∈ Turg, ∀c ∈C. T G(p, t)(c) = T G(p, t, p′)(c) = [0,∞],

15) I : P→ (C→I inv) is a function assigning age invariants to each color of a place.

In point 14) we use the notation (C→I) to express that each color of a color type got its own time
guard, and in 15) we use (C→I inv) to express that each color got its own invariant. Since we are able
to express time guards and invariants for all colors, we use * as a graphical notation to express that
if a color does not have a specified time guard or interval, it will have the one expressed with *. An
example of this notation can be see on Figure 3, where S1 got the invariant ∗ ≤ 25, denoting that SSH,
Web, and Danger all got the invariant ≤ 25.

Before we present the formal semantics for the model we introduce some notation.
Let N = (P,T,Turg, IA,OA, INA,TA,Σ,C,CG,W,WI,WT ,T G, I) be a TACPN. We define

•y def
= {z ∈ P∪T | (z,y) ∈ IA∪OA∨ (z,y,) ∈ TA∨ (,z,y) ∈ TA}

as the preset of a transition or place y. The postset of y is defined as:

y• def
= {z ∈ P∪T | (y,z) ∈ IA∪OA∨ (y,z,) ∈ TA∨ (,y,z) ∈ TA}

We will also define the set of bindings that satisfy the color guard of a given transition t as

B(t)def
= {b ∈ B |CG(t)〈b〉}

C. Markings
Markings decorate a Petri-net with tokens. Let N be a TACPN. A marking M on N is a function

M : P→B(R≥0×C), such that ∀p. if (d,c) ∈M(p) then d ∈ I(p)(c). We write (p, x, c) to denote a
token at a place p, with age x ∈ R≥0 and color c ∈ C. The set of all markings in a net N is denoted
M(N). We define the size of a marking as |M| = ∑p∈P |M(p)|. A marked TACPN (N,M0) is then
defined as a TACPN together with an initial marking M0 where ∀(p, x, c) ∈M0. x = 0.

To ease further definitions, we define how to strip either time or colors from our markings. We define
two functions denoted with subscript, one function nc, that strips colors from a marking M, defined as:

9

Mnc(p)(x) = ∑
c ∈C(p)

M(p)(x, c)

and a second function nt, that strips time from a marking M, defined as:

Mnt(p)(c) = ∑
x ∈ R≥0

M(p)(x, c)

D. Enableness & Semantics
With markings defined, we can now define enableness and transition firing. We will first define

enableness and transition firing for colored timed-arc Petri nets.

Definition 8: (Enableness)
A transition t ∈ T is enabled under binding b ∈ B(t) in a marking M by the markings In and Out,
denoted by M ` t, if the following conditions are satisfied:

In is a sub-marking of M i.e.
∀p ∈ P. In(p)⊆M(p) (a)

In only has tokens in the preset of t, while Out only has tokens in the postset of t i.e.

∀p /∈ •t. In(p) = /0 (b)

∀p /∈ t•. Out(p) = /0 (c)

For all input arcs expect the inhibitor arcs, the colors of the tokens from In satisfy the arc expression
evaluated under binding b.

∀(p, t) ∈ IA. Innt(p) =W (p, t)〈b〉 (d)

Similarly, the output tokens of an output arc have colors corresponding to the expression of that arc
evaluated under binding b.

∀(t, p) ∈ OA. Outnt(p) =W (t, p)〈b〉 (e)

The input tokens of a transport arc must have the same color as the input color of the transport weight
evaluated under b, while the color of the output tokens must match the output color. Additionally, the
number of input tokens must match the number of output tokens which also matches the numeric weight
of the transport weight. This is captured by the following rule:

WT ((p, t, p′)) = (n, τ, τ
′)⇒ (Innt(p) = n(τ)〈b〉∧Outnt(p′) = n(τ ′)〈b〉) (f)

For all input arcs and transition arcs, for each color of all tokens in In have to satisfy the time guard
for each color of the arc i.e.

∀(p, x, c) ∈ In. (p, t) ∈ IA⇒ x ∈ T G((p, t)(c)) (g)

∀(p, x, c) ∈ In. ∀p′ ∈ t•. (p, t, p′) ∈ TA⇒ x ∈ T G((p, t, p′)(c)) (h)

All colors of all output tokens must satisfy the color invariants of the output place i.e.

∀(p, x, c) ∈ Out. x ∈ I(p)(c) (i)

For all output arcs, the age of the output token is 0 i.e.

∀(p, x, c) ∈ Out. (t, p) ∈ OA⇒ x = 0 (j)

For all transport arcs, the ages of the input tokens matches the ages of the output tokens i.e.

∀(p, t, p′) ∈ TA. Innc(p) = Outnc(p′) (k)

10

For all inhibitor arcs from place p to transition t, the number of tokens in p have to be less than the
inhibitor weight of the arc i.e.

∀p ∈ •t. (p, t) ∈ INA⇒ |M(p)|<WI(p, t) (l)

S1

[PacketType] #1

Firewall
[Dot]

S1ToFirewall

1′(pck)1′(pck) 1′(pck)1′(pck)

∗→ [4,6]

Color types:
PacketType is {SSH,Web,Danger}

Variables:
pck is PacketType

Fig. 4: Enabledness example of Figure 3

To give an example of a marked TACPN we have isolated the part where the S1 sends packets to
Firewall of Figure 3 as shown on Figure 4, where we have the marking

M = {(S1,5,Web)}

here transition is enabled under the binding b = 〈pck =Web〉 by the markings

In = {(S1,5,Web)}

Out = {(Firewall,5,Web)}

Definition 9: Timed Transition System
The semantics of a marked TACPN (N,M0) is defined as a timed transition system
JNKsem = (M(N),M0,→), where→ : M(N)×T ∪R≥0×M(N) is the least transition relation generated
by the following two rules:

Transition firing
If a transition t ∈ T under binding b ∈ B(t) is enabled in a marking M1 by the multisets of tokens In
and Out, it may fire, changing the marking M1 to M2, where M2 is defined as:

M2 = (M1 \ In)]Out

This gives rise to the transition relation (M1, t,M2) ∈→, denoted by M1
t−→M2

Time delay
A marking M can be delayed by a time duration d ∈ R0 if the following two conditions hold:
• The delayed tokens all satisfy the invariants of their respective places, i.e.
∀(p,x,c) ∈M. x+d ∈ I(p)(c)

• The duration is 0, if any urgent transitions are enabled, i.e.
∀t ∈ Turg. M ` t⇒ d = 0

Delaying a marking M1 by a duration d results in a new marking M2 defined as:

M2(p) = {(p,x+d,c) | (p,x,c) ∈M1(p)}

This gives rise to the transition relation (M1,d,M2) ∈→, denoted by M1
d−→M2.

11

InsecureInternet
[Dot] #1

S1

[PacketType] ≤25

Firewall

[PacketType]

≤22

EnterNetwork S1ToFirewall

Drop

1′(•)1′(•)
4′(pck)4′(pck)

1′(pck)x[25,25]1′(pck)x[25,25]

1′(pck)x[4,6]1′(pck)x[4,6] 1′(pck)1′(pck)

Color types:
PacketType is {SSH,Web,Danger}

Variables:
pck is PacketType

Fig. 5: Transition firing example of Figure 3

To provide an example of transition firing, we have isolated the start of the network form Figure 3.
This is shown on Figure 5.

A fragment of timed transition system of the net in Figure 5 is presented in Figure 6. EnterNetwork
is abbreviated EN and InsecureInternet is II.

{(II,0,Dot)}
{(S1,0,SSH)}
{(S1,0,SSH)}
{(S1,0,SSH)}
{(S1,0,SSH)}
{(II,0,Dot)}

{(S1,6,SSH)}
{(S1,6,SSH)}
{(S1,6,SSH)}
{(S1,6,SSH)}
{(II,6,Dot)}

{(Firewall,6,SSH)}
{(S1,6,SSH)}
{(S1,6,SSH)}
{(S1,6,SSH)}
{(II,6,Dot)}

S1ToFirewall〈pck = SSH〉

delay(6)
EN〈pck = SSH〉

{(S1,0,Web)}
{(S1,0,Web)}
{(S1,0,Web)}
{(S1,0,Web)}
{(II,0,Dot)}

{(S1,25,Web)}
{(S1,25,Web)}
{(S1,25,Web)}
{(S1,25,Web)}
{(II,25,Dot)}

{(S1,25,Web)}
{(S1,25,Web)}
{(S1,25,Web)}
{(II,25,Dot)}

Drop〈pck = Web〉delay(25)

EN〈pck = Web〉

Fig. 6: Semantics of the timed-arc colored Petri net on Figure 5. EnterNetwork is abbreviated EN and
InsecureInternet is II

Transition EnterNetwork can be fired with three bindings, either 〈pck = SSH〉, 〈pck = Web〉, or
〈pck = Danger〉 creating the markings {(S1,0,SSH)}, {(S1,0,Web)}, and {(S1,0,Danger)}. In this
example we will only use two bindings, one with the binding SSH and the second with binding Web.

Neither of the transitions Drop or SiToFirewall are enabled yet, because of the time guards on the
arcs. Because of the construction of the net, EnterNetwork can keep firing, creating more and more
tokens in S1, but this is not interesting in order to explain for the semantics.

The invariant of S1 allows us to delay up to 25 time units, but the enabledness of any transition
connected to S1 will not change before 4 time unites. To show different scenarios, we delay with 6 time
units where SSH is the binding, and 25 where Web is the binding.

When performing the delay of 6 time units transition S1ToFirewall becomes enabled, and can be
fired changing the marking for one token to {(Firewall,6,SSH)} while the marking of the dot will
change to {(II,6,Dot)} by the delay. Since the transition is connected with transport arcs, the time of
the tokens does not change.

In the other scenario we delay with 25 time units, enabling the transition Drop that when fired removes
one token from the net, changing the marking to containing three tokens with binding {(S1,25,Web)}
and one with binding {(II,25,Dot)}.

With the formal semantics defined, we with TACPN are able to model networks, where we with the
notation of colors are able to represent the different packets, and with the notation of time, are able to
model the calculation time for each router, packet delays for each packet type, the speed of each link
in the network for each packet type etc.

12

IV. UNFOLDING OF A TIMED-ARC COLORED PETRI NET

In section III, we defined the TACPN, a formalism that extends TAPNs with colors. However, in
order to utilize existing techniques for TAPNs, we provide a algorithm to unfold a given TACPN into
a TAPN, while preserving the behavior of the model. In this section we will describe this unfolding
following with a theorem of strongly timed bisumulation, and lastly a proof of this theorem.

A. Timed-Arc Petri Net
A TAPN is a TACPN without colors. More specificly it is a TACPN where the color sets only has

the dots color type, defined as follows:

Definition 10: (Timed-Arc Petri Net)
Let N = (P,T,Turg, IA,OA, INA,TA,Σ,C,CG,W,WI,WT ,T G, I) be a TACPN.
The TACPN N is a TAPN iff Σ = {{•}}.

Because a TAPN has no colors, the components of the tuple related to color can be simplified or
removed as follows:
• Color sets, Σ, can be removed, since it is already defined.
• The color function, C, can be removed, since it always yields the same color type.
• Color guards, CG, become trivial and can be removed, because only one binding can ever occur.
• Arc expressions, W , can only yield a number of tokens of the same color, and can therefore be

simplified to just give that number.
• Transport weights, WT , no longer needs an input color and an output color and can be reduced to

just the numeric weight.
• Since arc expressions, and transport weights now have the same target set, they can be combined

to a single weight function, W , assigning numeric weights arcs.
A TAPN is therefore uniquely defined by the 11-tuple: TAPN =(P,T,Turg, IA,OA, INA,TA,W,WI,T G, I).

B. Unfolding Timed-Arc Colored Petri Net to Timed-Arc Petri Net
In order to unfold a TACPN into TAPN that perserves the behavior of the original net, we must be

able to express the features of colors, without actually having them. This subsection will explain how
this is achieved.

1) Places and tokens: In a TACPN, all places have an associated color type. Additionally each token
in the marking of those places has a color. In order to distinguish between tokens of different colors in
the unfolded net, we need to make separate places for each possible color, such that tokens of different
colors are in different places. We also add an extra place for each original place that keeps track of
the sum of tokens across all colors. This sum place initially gets one token for each token at the place
in the original net. The number of tokens in the sum place will then invariantly be the sum of tokens
across the colors, i.e.

|M((p,sum))|= ∑
c∈C(p)

|M((p,c))|

As for time, the new places inherits the invariant corresponding to the color invariant of the color they
represent, except the sum which has an [0,∞) invariant. If an invariant is not specified, the new place
will get the default invariant represented by the ∗. The age of the tokens in sum is initially 0.

13

2) Transitions: In a TACPN, firing a transition can have different outcomes depending on the given
binding. In the unfolded net, we separate these possible outcomes into individual transitions, one for
each possible binding that satisfy the color guard in the original net.

x = y

〈x→ R,y→ R〉

〈x→ G,y→ G〉

〈x→ B,y→ B〉

unfold

3) Input arcs and output arcs: In a TACPN, arcs are decorated with arc expressions that when
evaluated yields a multiset of colors. In the unfolded net, we decompose the resulting multiset into
its individual colors and spread these as weights across multiple arcs, one for each color present in
the multiset. Additionally, we add an arc to the sum place with a summed weight of the other arcs.
This ensures that the tokens in the sum gets updated accordingly whenever a transition is fired. As for
time, all arcs, except the one connecting sum, inherit the time guard for the given color, with similar
reasoning as with invariants.

p

B≤ 8
∗ ≤ 10

(5,G)

(2,B) (7,B)

p′

∗ ≤10

(tt,6)

t

(p,R)

≤10

(p,G)

≤10

5

(p,B)

2 7

≤8

(p,sum)

≤∞

0
0 0

(p′, tt)

≤10

6

(p′, ff)

≤10

(p′,sum)

≤∞

0

(t,b)

(2′(x)+3′(G))(2′(x)+3′(G))

4′(ff)4′(ff)

2× [5,9]2× [5,9] 3× [4,7]3× [4,7] 5× [0,∞]5× [0,∞]

44
44

unfold

R→ [5,9]
∗→ [4,7]

where b = 〈x→ R〉

Fig. 7: Example of unfolding of a timed-arc colored Petri net

4) Transport arcs and inhibitor arcs: In a TACPN, transport arcs transfer tokens between places,
possibly changing their color along the way. This translates well in the unfolded net, as we simply add
a transport arc between the specified colors. Akin to the regular arcs, we also add regular arcs to the
sum, that ensures it stays updated. In a TACPN, an inhibitor arc could count the number of tokens
across colors, since they were all in the same place. However, in the unfolded net, we chose to spread
the tokens across multiple places. This is why we need the sum place, as connecting the inhibitor arc
to this place allows it to use the sum across the colors and function as in the original net.

p

B≤ 8
∗ ≤ 10

(5,G)

(2,B) (7,B)

p′

∗ ≤10

(tt,6)

t

(p,R)

≤10

(p,G)

≤10

5

(p,B)

2 7

≤8

(p,sum)

≤∞

0
0 0

(p′, tt)

≤10

6

(p′, ff)

≤10

(p′,sum)

≤∞

0

(t,b)

3′(G)3′(G) 55

3′(tt)3′(tt)

3× [2,6]3× [2,6] 3× [0,∞]3× [0,∞]

55

33 33

unfold

G→ [2,6]
∗→ [6,10]

Fig. 8: Timed-arc colored Petri net unfolding example with transport and inhibitor arc

14

Given the above reasoning, we will now formally present the unfolding.

Definition 11: Unfolded TAPN of a TACPN
Let N = (P,T,Turg, IA,OA, INA,TA,Σ,C,CG,W,WI,WT ,T G, I) be a TACPN. The unfolded TAPN of

a given TACPN N, is a 11-tuple, N′ = (P′,T ′,T ′urg, IA′,OA′, INA′,TA′,W ′,W ′I ,T G′I′) where
1) P′ = {(p,c) | p ∈ P∧ c ∈C(p)}∪{(p,sum) | p ∈ P}
2) T ′ = {(t,b) | t ∈ T ∧b ∈ B(t)}
3) T ′urg =

{
(t,b) | t ∈ Turg∧ (t,b) ∈ T ′

}
4) W ′((p,c),(t,b)) =W ((p, t))〈b〉(c)

5) W ′((p,sum),(t,b)) =

{
|W ((p, t))〈b〉| if (p, t) ∈ IA
n where WT ((p, t, p′)) = (n,τ,τ ′) if (p, t, p′) ∈ TA

6) W ′((t,b),(p,c)) =W ((t, p))〈b〉(c)

7) W ′((t,b),(p,sum)) =

{
|W ((t, p))〈b〉| if (t, p) ∈ OA
n where WT ((p′, t, p)) = (n,τ,τ ′) if (p′, t, p) ∈ TA

8) W ′((p,c),(t,b),(p′,c′)) = n where WT ((p, t, p′)) = (n,τ,τ ′)

9) W ′I ((p,sum),(t,b)) =WI((p, t))〈b〉(c)
10) IA′ = {((p,c),(t,b)) | (p, t) ∈ IA∧ (p,c) ∈ P′∧ (t,b) ∈ T ′∧W ′(((p,c),(t,b)))> 0}∪
{((p,sum),(t,b)) | (p, t, p′) ∈ TA∧ (t,b) ∈ T ′}

11) OA′ = {((t,b),(p,c)) | (t, p) ∈ OA∧ (p,c) ∈ P′∧ (t,b) ∈ T ′∧W ′(((t,b),(p,c)))> 0}∪
{((t,b),(p,sum)) | (p′, t, p) ∈ TA∧ (t,b) ∈ T ′}

12) INA′ = {((p,sum),(t,b)) | (p, t) ∈ INA∧ (t,b) ∈ T ′}
13) TA′ = {((p,c),(t,b),(p′,c′)) | (p, t, p′) ∈ TA∧ (t,b) ∈ T ′∧WT ((p, t, p′))〈b〉= (n,c,c′)}
14) T G′((p,c),(t,b)) = T G((p, t)(c))

15) T G′((p,sum),(t,b)) = [0,∞]

16) T G′((p,c),(t,b),(p′,c′)) = T G((p, t, p′)(c))

17) I′((p,c)) = I(p)(c)

18) I′((p,sum)) = [0,∞]

To ease understanding of Definition 11 we use Figure 7 and 8 to explain. P′ on Figure 7 contaions
the four places (p,R), (p,G) (p,B), and (p,sum) where T ′ is the new transition. The weight of the arcs
is transferred, so since the binding of x on Figure 7 is R we have weight 2 on on the arc from (p,R)
to transition (t, b), whereas the arc from (p, sum) will get the sum of all the weights.

Input and output arcs are only created if we have a binding so on Figure 7 we do not have a binding
of B, and therefore we do not create a input arc form (p, B) to the transition, or an output arc to (p, tt).

Time guards and invariant are transferred from the colors to the places represented the colors, in the
unfolded net, expect for the sum place which always gets a [0,∞] time guard and ≤ ∞ invariant.

We will now define the marking unfolding between the folded TACPN and the unfolded TAPN.

Definition 12: Marking unfolding

15

Let M be a marking in a TACPN N and let N′ be the corresponding unfolded TAPN. The corresponding
unfolded marking is given by the function unfold :M(N)→M(N′) defined as:

unfold(M)((p,c))(x) =

|M(p)| if c = sum∧ x = 0
0 if c = sum∧ x 6= 0
M(p)((x,c)) otherwise

The initial marking M0 of the unfolded net is defined as unfold(M0) since we for each place (p, c)
in the unfolded net creates a token for each token with color c in place p in the folded net. In place
(p, sum) we as mentioned creates a token for each token at the place in the original net.

C. Unfolding equivalence
Before we show the equivalence between the folded TACPN and the unfolded TAPN, we first define

an equivalence between unfolded TAPNs. As a consequence of our unfolding, the ages of the tokens
in the sum places can never be exposed to a time guard or an invariant, rendering these ages obsolete.
Therefore, if two markings only differ in the age of the tokens in the sum places, then these markings
are bisimilar. We will now define strong timed bisimulation which is based upon definition from [17].

Definition 13: Strong timed bisimulation
A binary relation R over the set of markings of a Petri net is a strong timed bisimulation iff whenever
M1 RM2 where a is a action and d is a time delay:

• M1
a−→M′1 then ∃M2

a−→M′2 such that M′1 RM′2;
• M2

a−→M′2 then ∃M1
a−→M′1 such that M′1 RM′2;

• M1
d−→M′1 then ∃M2

d−→M′2 such that M′1 RM′2;
• M2

d−→M′2 then ∃M1
d−→M′1 such that M′1 RM′2;

Two markings M and M′ are strongly timed bisimilar written M ∼ M′ iff there is a strong timed
bisimulation that relates them.

As a consequence of our unfolding, the ages of tokens in of the sum place will grow, but never be
exposed to a time guard or invariant. We therefore present Lemma 1 that if two markings only differ
in the ages of tokens in place sum then they are up to strong timed bisimular.

Lemma 1: Let M and M′ be two markings in the unfolded net.
If M(p, c) = M′(p, c) for all p, and c where c 6= sum and |M(p, sum)|= |M′(p, sum)| then M ∼M′.

Theorem 1: Let M be a marking in a TACPN N. The corresponding unfolded marking unfold(M) is
strongly timed bisimilar with M, i.e. unfold(M)∼M.

D. Equivalence proof
To prove that M and unfold(M) are strongly timed bisimilar, we need to prove the following four

statements:
1) M1

t−→M2 under binding b implies unfold(M1)
(t,b)−−→ unfold(M2).

2) unfold(M1)
(t,b)−−→M′ implies M1

t−→M2 under binding b where M′ = unfold(M2).
3) M1

d−→M2 implies unfold(M1)
d−→M′ such that M′ ∼ unfold(M2).

4) unfold(M1)
d−→M′ implies M1

d−→M2 where M′ ∼ unfold(M2).

16

For statement 3) and 4) both M′ and unfold(M2) are makring in the unfolded net, and they are up to
bisimilar by Lemma 1 if they only differ in the age of tokens in place sum. The remainder of this proof
will work through each of these statements.

1) M1
t−→M2 under binding b implies unfold(M1)

(t, b)−−−→ unfold(M2): By the definition of transition
firing, we have that M1 enables t under binding b by the markings In and Out that satisfy Definition 8.
We will show that unfold(M1) enables (t, b) by the markings In′ and Out′ which is defined as:

In′ def
= unfold(In)

Out′ def
= unfold(Out)

From the definition of enabledness we have twelve conditions, (a) through (l), and for each condition
we will show that if In and Out satisfy the condition, then In′ and Out′ must also satisfy the condition
in the unfolded net N′.

Condition a) By definition In′(p, c)(x) = unfold(In)(p, c)(x). We want to show that In′ is a sub-
marking of unfold(M1). Assume that for all p ∈ P. In(p)⊆M1(p) . We want to show that for any
(p, c) ∈ P′.In′((p, c),(x))≤ unfold(M1)((p, c)(x)) for all x. To show this we have three cases.

• Let c = sum∧ x = 0
unfold(In)(p, c)(x) = by Definition 12 case 1

|In(p)| ≤ by In(p)⊆M1(p)

|M1(p)|= by Definition 12 case 1

unfold(M1)((p, c))(x)

• Let c = sum∧ x 6= 0
unfold(In)(p, c)(x) = by Definition 12 case 2

0 = by Definition 12 case 2

unfold(M1)((p, c))(x)

• Otherwise c 6= sum
unfold(In)(p, c)(x) = by Definition 12 case 3

In(p)(x, c)≤ by In(p)⊆M1(p)

M1(p)(x, c) = by Definition 12 case 3

unfold(M1)((p, c))(x)

Condition b) We want to show that In′ only got tokens of the preset of t. Assume that for all
p /∈ •t. In(p) = /0. We want to show that for any (p, c) /∈ •(t, b). In′((p, c))(x) = 0 for all x.
To show this we have three cases.

17

• Let c = sum∧ x = 0
unfold(In)(p, c)(x) = by Definition 12 case 1

|In(p)|= by Definition 11 case 10 & 4 and p /∈ •t. In(p) = /0

0

• Let c = sum∧ x 6= 0
unfold(In)(p, c)(x) = by Definition 12 case 2

0

• Otherwise c 6= sum
unfold(In)(p, c)(x) = by Definition 12 case 3

In(p)(x, c) = by Definition 11 case 10 & 4 and by p /∈ •t. In(p) = /0

0

Condition c) By definition Out ′(p, c)(x) = unfold(Out)(p, c)(x). We want to show that Out ′ only got
tokens of the postset of t. Assume that for all p /∈ t•. Out(p) = /0. We want to show that for any
(p, c) /∈ (t, b)•. Out ′((p, c))(x) = 0 for all x. To show this we have three cases.

• Let c = sum∧ x = 0
unfold(Out)(p, c)(x) = by Definition 12 case 1

|Out(p)|= by Definition 11 case 11 & 6 and p /∈ t•. Out(p) = /0

0

• Let c = sum∧ x 6= 0
unfold(Out)(p, c)(x) = by Definition 12 case 2

0

• Otherwise c 6= sum
unfold(Out)(p, c)(x) = by Definition 12 case 3

Out(p)(x, c) = by Definition 11 case 11 & 6 and p /∈ t•. Out(p) = /0

0

Condition d) For all input arcs all tokens in In′ have to satisfy the arc expression evaluated under the
binding. By definition In′nt(p, c)(x) = unfold(Innt)(p, c)(x). Assume that ∀(p, t) ∈ IA. Innt(p) =
W (p, t)〈b〉. We want to show that ∀((p, c),(t, b)) ∈ IA′. In′nt((p, c)) = W ′((p, c),(t, b)) for all
c ∈C. To show this we have two cases.

• Let c = sum∧ x = 0
(unfold(In))nt(p, c) = by definition of function nt

18

∑

x ∈ R≥0
unfold(In)(p, c)(x) = by Definition 12 case 2

unfold(In(p, c))(0) = by Definition 12 case 1

|In(p)|= by ∀(p, t) ∈ IA. Innt(p) =W (p, t)〈b〉

|W (p, t)〈b〉|= by Definition 11 case 5

W ′((p, c),(t, b))

• Otherwise c 6= sum
(unfold(In))nt(p, c) = by definition of function nt

∑

x ∈ R≥0
unfold(In)(p, c)(x) = by Definition 12 case 3

∑

x ∈ R≥0
In(p)(x, c) = by definition of function nt

Innt(p)(c) = by ∀(p, t) ∈ IA. Innt(p) =W (p, t)〈b〉

W ((p, t))〈b〉(c) = by Definition 11 case 4

W ′((p, c),(t, b))

Condition e) For all output arcs all tokens in Out ′ have to satisfy the arc expression evaluated un-
der the binding. By definition Out ′nt(p, c)(x) = unfold(Outnt)(p, c)(x). Assume that ∀(t, p) ∈
OA.Outnt(p)=W (t, p)〈b〉. We want to show that ∀((t, b),(p, c))∈OA′.Out ′nt((p, c))=W ′((t, b),(p, c))
for all c ∈C. To show this we have two cases.

• Let c = sum∧ x = 0
(unfold(Out))nt(p, c) = by definition of function nt

∑

x ∈ R≥0
unfold(Out)(p, c)(x) = by Definition 12 case 2

unfold(Out(p, c))(0) = by Definition 12 case 1

|Out(p)|= by ∀(t, p) ∈ OA. Outnt(p) =W (t, p)〈b〉

|W ((p, t))〈b〉|= by Definition 11 case 7

W ′((t, b),(p, c))

• Otherwise c 6= sum
(unfold(Out))nt(p, c) = by definition of function nt

∑

x ∈ R≥0
unfold(Out)(p, c)(x) = by Definition 12 case 3

∑

x ∈ R≥0
Out(p)(x, c) = by definition of function nt

19

Outnt(p)(c) = by ∀(p, t) ∈ IA. Outnt(p) =W (p, t)〈b〉

W ((t, p))〈b〉(c) = by Definition 11 case 6

W ′((t, b),(p, c))

Condition f) The number of tokens in In′ have to match the number of tokens in Out ′ and have the
same numeric weight of the transport weight. Assume that WT ((p, t, p′)) = (n, τ, τ ′)⇒ (Innt(p) =
n(τ)〈b〉∧Outnt(p′) = n(τ ′)〈b〉). We want to show W ′((p, c), (t, b), (p′, c′)) = n⇒ (In′nt((p, c)) =
n∧Out ′nt((p′, c′)) = n) for all c ∈C. To show this we have two cases.

• Let c = sum∧ x = 0.
Let W ′((p, c),(t, b),(p′, c′))= n. By Definition 11 case 8 we know that WT ((p, t, p′)= (n, τ, τ ′)
which by our assumption we know that Innt(p) = n(τ)〈b〉 and Outnt(p′) = n(τ ′)〈b〉.
Now we show that In′nt(p, c) = n.

In′nt(p, c) = by definition of unfold

(unfold(In))nt(p, c) = by definition of function nt

∑

x ∈ R≥0
unfold(In)(p, c)(x) = by Definition 12 case 2

unfold(In(p, c))(0) = by Definition 12 case 1

|In(p)|= by Innt(p) = n(τ)〈b〉

n

Now we show that Out ′nt(p′, c′) = n.

Out ′nt(p′, c′) = by definition of unfold

(unfold(Out))nt(p′, c′) = by definition of function nt

∑

x ∈ R≥0
unfold(Out)(p′, c′)(x) = by Definition 12 case 2

unfold(Out(p′, c′))(0) = by Definition 12 case 1

|Out(p′)|= by Outnt(p′) = n(τ ′)〈b〉

n

• Otherwise let c 6= sum

Now we show that In′nt(p, c) = n.

In′nt(p, c) = by definition of unfold

(unfold(In))nt(p, c) = by definition of function nt

20

∑

x ∈ R≥0
unfold(In)(p, c)(x) = by Definition 12 case 3

∑

x ∈ R≥0
In(p)(c) = by definition of function nt

Innt(p)(c) = by Innt(p) = n(τ)〈b〉

n

Now we show that Out ′nt(p′, c′) = n.

Out ′nt(p′, c′) = by definition of unfold

(unfold(Out))nt(p′, c′) = by definition of function nt

∑

x ∈ R≥0
unfold(Out)(p′, c′)(x) = by Definition 12 case 3

∑

x ∈ R≥0
Out(p′)(c′) = by definition of function nt

Outnt(p′)(c′) = by Outnt(p′) = n(τ ′)〈b〉

n

Condition g) For all input arcs all tokens in In′ have to satisfy the time guard on the arc.
Assume that ∀(p, x, c) ∈ In. (p, t) ∈ IA⇒ x ∈ T G((p, t)(c)). We want to show ∀((p, c), x) ∈
In′. ((p, c), (t, b)) ∈ IA′⇒ x ∈ T G′((p, c),(t, b)) for all x. To show this we have two cases.

• Let c = sum
By Definition 11 case 15 T G′((p, c),(t, b)) = [0,∞) therefore x ∈ T G′((p, c),(t, b)) for any
x ∈ R≥0.

• Otherwise let c 6= sum
Assume x ∈ T G((p, t)(c)).

By Definition 11 case 14 T G′((p, c),(t, b)) = T G((p, t)(c)) therefore x ∈ T G′((p, c),(t, b))
for any x ∈ R≥0.

Since the conditions h-k describes the age of the tokens, time guards, or invariants of places we
have only shown Condition g), since the age of tokens, the time guards, or the invariants will be
overtaken from TACPN.

Condition l) For all inhibitor arcs from place p to transition t, the number of tokens in place (p, sum)
has to be less than the weight of the inhibitor arc.
Assume ∀p ∈ •t. (p, t) ∈ INA⇒ |M(p)|<WI(p, t).
We want to show ∀(p, c)∈ •(t, b). ((p, sum), (t, b))∈ INA′⇒|unfold(M(p, sum))|<W ′I ((p, sum),(t, b)).

Let ((p, sum),(t, b)) ∈ INA′. By Definition 11 case 11 there is (p, t) ∈ INA.

21

By assumption then |M(p)|<WI(p, t).

By Definition 11 case 9 then W ′I ((p, sum),(t, b)) =WI((p, t))〈b〉(c).

By Definition 12 case 1 then |unfold(M(p, sum))|= |M(p)|

By assumption then |M(p)|<WI(p, t)

therefore |unfold(M(p, sum))|<W ′I ((p, sum),(t, b)).

Now we have shown that transition (t, b) is enabled in unfold(M1) by the markings In′ and Out′, but
we still need to show that firing transition (t, b) yields unfold(M2). To do this, we notice that the
function unfold preserves the multiset operations e.g. unfold(M1]M2) = unfold(M1)]unfold(M2) and
unfold(M1 \M2) = unfold(M1)\unfold(M2).

From the definition of transition firing we have that M2 = (M1 \ In)]Out. Since unfold preserves the
multiset operations from Definition 12 we get that unfold(M2) = (unfold(M1) \ In′)]Out′. Therefore
firing a transition (t,b) in N′ will change the marking from unfold(M1) to unfold(M2) where:

unfold(M2) = (unfold(M1)\ In′)]Out′ (1)

Therefore we have shown that firing transition (t, b) yields unfold(M2) by the markings In′ and Out′.

2) unfold(M1)
(t,b)−−→M′ implies M1

t−→M2 under binding b where M′ = unfold(M2): By the definition
of transition firing, we have that unfold(M1) enables (t, b) by the markings In′ and Out′ that satisfy
Definition 8. We will show that M1 enables t by the markings In and Out. We will do this is in the
same way as the previous statement.

Condition a) Assume that for all (p, c) ∈ P′. In′((p, c),(x))≤ unfold(M1(p, c)(x)). We want to show
that for any p ∈ P. In(p)⊆M1(p) for all (x, c).
Let (x, c) ∈ In(p). We want to show (x, c) ∈M1(p) for all (x, c).

Let (x, c) ∈ In(p) then 0 < In(p)(x, c)

0 < In(p)(x, c) = by Definition 12 case 3

unfold(In)(p, c)(x)≤ by In′((p, c),(x))≤ unfold(M1(p, c)(x))

unfold(M1)(p, c)(x) = by Definition 12 case 3

M1(p)(x, c) then (x, c) ∈M1(p)

Condition b-l) Can be done in same manner as Condition a) and is therefore not shown.

3) M1
d−→M2 implies unfold(M1)

d−→M′ such that M′ ∼ unfold(M2): From the definition of time delay
we have that M1 can be delayed by a time duration d ∈ R≥0 if the following two conditions hold:
• The delayed tokens all satisfy the invariants of their respective places, i.e.
∀(p,x,c) ∈M1. x+d ∈ I(p)(c)

• The duration is 0, if any urgent transitions are enabled, i.e.
∀t ∈ Turg. M1 ` t⇒ d = 0

22

Since the unfolding creates tokens with preserved ages at places with preserved invariants, the first
condition is also preserved except for sum. From the Definition 11 case 18 we know that the invariant
for place sum is [0, ∞].

When proving the first statement, it is shown that unfold(M1) only enables a transition if M1 does.
Therefore unfold(M1) could not enable any urgent transition while M1 does not. If however M1 does
enable an urgent transition, then duration must be 0. Thus, the second condition is also preserved. Now
we have shown that if M1 can delay by d, then unfold(M1) can delay by d, but we still need to show
that this yields unfold(M2). This can be achieved by showing that the unfolding preserves delaying, i.e.
delaying before unfolding yields the same result as delaying after unfolding. By Lemma 1 we know
that the markings unfold(M1),unfoldM2 in the same unfolded net are strong timed bisimilar, thus proves
that M1

d−→M2 implies unfold(M1)
d−→M′ such that M′ ∼ unfold(M2).

4) unfold(M1)
d−→ M′ implies M1

d−→ M2 where M′ ∼ unfold(M2): This can be proven in a similar
fashion to the previous statement.

�

V. IMPLEMENTATION

In this section we discuss the implementation which is based upon the theory presented previously.
The implementation is a further development of the tool TAPAAL [13] in order to support TACPN.
TAPAAL makes it possible to create Petri nets in a user-friendly way. A official beta release will be
available at http://www.tapaal.net/download/ while the development branch with the exam version of
TACPN can be found at https://code.launchpad.net/ cpn-gui/tapaal/TACPN. Figure 9 shows the four
primary models supported by TAPAAL. When creating a new net you have to choose the model type,
but it is still interchangeable as with the unfolding which converts a TACPN into a TAPN/PN. TACPN
are the new additions made to TAPAAL and in this section we will highlight some of the implementation.

Fig. 9: Architecture of supported Petri Nets in TAPAAL

A. New features in TAPAAL
Since TAPAAL has never support the TACPN model before a lot of new feature have been developed.

Work on this started on our last semester where most of the CPN only features were implemented. This
semester those features have been extended to support time with some additional new ones. An overview

23

of the implementation in TAPAAL can be seen at list V-A followed by a detailed examination of the
most important items.

• Import and export of TACPN in TAPN format
• Export TACPN or CPN models in TikZ format
• GUI for creating color type and variables
• GUI for editing places with colors and time
• GUI for editing transitions with colors, time and guard expressions
• GUI for editing arcs with colors, time and arc expressions
• GUI for editing color expressions
• Extending transport and inhibitor arcs with colors
• Extending shared places and the components with TACPN features
• Typechecking analysis

Fig. 10: When creating a new net the user is asked to choose whether it should be TACPN or TAPN

Figure 10 shows the first window the user meet, whenever they want to create a new net. Only if the
Timed Arc Colored Petri Net option is chosen, will they have access to the features of TACPN. This
has primarily two functions. The first is to reduce information clutter from the user. If they only want
to create a TAPN, it would be confusing having to look at the GUI elements for TACPN. The second
reason is that the information for which net type is being used, helps throughout the system with how
to process the model/data. If the user later regrets their choice, they can always change, e.g. going from
TACPN to TAPN by unfolding the net.

Fig. 11: Example of a small net with a type error shown in the type checking analysis panel

Figure 11 shows the typechecking analysis panel next to a small net with a type error. In this case we
have a place with the color type pckType with an input arc taking a dot. In TACPN this is not allowed
as the color types have to match. This mistake is caught by the Type Checking analysis as can be seen

24

in the text list. This is important as the tool almost never stops the user from creating something that
is not verifiable. This is because the user could be in the process of editing his net, e.g. in this case
changing the color type of either the arc expression or the place. At the same time the user should be
able to save and load his progress even though the net is not correct. However, this can confuse the
user as to what they are allowed to do and introduces the problem of them trying to verify a model that
is semantically wrong. In order to combat this, a type checking tool has been implemented. The user
can choose to run the type checking manually, but it will still be done automatically before it tries to
verify a query.

Fig. 12: Panel for editing colored places

Figure 12 shows the panel for editing colored places. Everything from below the first panel Place are
new additions only found in TACPN. the first panel Color Type chooses the color type of the place. As
default this is the dot color type. In this case we are using a custom cyclic enumeration color type called
pckType with three colors SSH, VoIP and VPN. In the next panel Time invariant for colors specific time
invariants for each color in the chosen color type can be set.There will always be a color invariant for *
in the list as default. If a color has not been chosen and added with the combobox on the left, they will
use the default time invariant *. When either double clicking on a color invariant in the list or using
the edit button, a panel for editing the selected invariant will open.
A similar system applies to the last panel Tokens. Here the users can choose the color from the combobox
and add it to the list of active tokens in the given place. The user can add as many as they want of
all the colors in the color type. In the Color Type elements sub panel there is room for more than one
combobox. This is because if the user had chosen a product type, they would have to choose a color
for each color type and the panel would then create a combobox for each color type.

Figure 13 shows the panel for editing colored arcs. The top part works in the same way as it did
with invariants in the edit place panel. However, instead of invariants we use intervals for all arcs. If
the user had opened an output arc this panel would not be shown, as output arcs does not have any
time. The bottom part of the panel shows the Arc Expressions panel. In this panel the user can create

25

Fig. 13: Panel for editing input and output arcs

an arc expression by using the buttons representing the different elements an arc expression can consist
of. In this case we have a number expression with the value 1, specifying that we want 1 of the color
expression inside the parentheses. In this case the color expression is a variable expression created with
the color expression panel, which can be seen in Figure 15. The variable expression has the variable
pck, which has the color type pckType presented earlier.
The textfield showing the arc expressions can be interacted with, such that the user can select specific
elements in the expression. If the user were to press the surround parts of pck they would select the
number expression. In this case they would be able to change the value or replace it with a new
expression such as the all expression. If they were to select the pck part only the Edit Color Expr
button would be available, as a color expression has been selected. This makes it easy for the user to
edit their expressions, and helps them understand which actions are legal depending on their selection.

Fig. 14: Panel for editing transitions

Figure 14 shows the panel for editing a colored transition. The new addition is the Guard Expression
panel which works in the same way as panel for editing arc expressions. However, here it is guard
expressions as they are used for transitions. In the example we are using a greater than guard expression,

26

which in this case means the color binding of the variable pck must be greater than SSH. This means
pck can either have the value VPN or VoIP as they are both after SSH in the enumeration order SSH,
VPN, VoIP. In the expression field the whole expression is orange, as the greater than expression has
been selected, showing it can either be replaced with another comparison expression or chained with
one of the logic options.

Fig. 15: Panel for editing a transport arc

Figure 15 shows the panel editing transport arcs. This is mostly the same as the panel presented for
input arcs. The big difference is, instead of having the arc expression panel at the bottom, transport arc
shows the color expression panel. This is because a transport arc can only have one source and one
destination. We can therefore only use number expressions, and this is represented with the weight value
above the Color Expression panel. This weight is the same for both the input and output expression,
which ensures we follow the rules for transport arcs. Both the input and output expression can also be
edited in the same panel for transport arcs. This is accessible with the tabs input and output.

B. Unfolding and Verification of TACPN
In TAPAAL all verification is done by separate engines. Each support one or multiple versions of Petri

nets, and each fill their own niche depending on how you want the verification to be done. In our case
we have to unfold from TACPN before verification is possible with either verifydtapn or verifytapn as
neither supports colors. Verifydtapn is a verification engine that uses discrete time and support EF, AG,
EG and AF queries. It also supports weighted arcs and closed intervals. The branch with unfoldTACPN
can be found at https://code.launchpad.net/ verifypn-cpn/verifypn/unfoldTACPN. Meanwhile verifytapn
uses continous time and support open intervals. The process in order to verify a TACPN model can
be seen at Figure 16. The first step is exporting the model and queries to the engine unfoldTACPN,
which is a modification of the engine verifypn [18]. Verifypn can unfold and verify CPN models. The
unfolding has been extended, such that is supports timed features, transport arcs and inhibitor arcs. The

27

unfolded model and query is then exported and TAPAAL now calls either verifydTAPN or verifyTAPN
in order to get a verification result back.

Fig. 16: Flow diagram displaying the verification process from TACPN to TAPN

To give an example of how unfolding works in TAPAAL we have modelled Figure 3 as can be seen
in Figure 17.

At Figure 18 the same model is shown after it has been unfolded. Since PacketType got three colors
we, in places as S1 that got PacketType as its colors type, we create four places. Given that the order
of the colors are in the original color type is {SSH, Web, Danger} S1Sub0 representing SSH. For each
of the places we also generate a Sum which connects to every transition, in order to update the sum
whenever a transition is fired. Since we have an inhibitor arc from Firewall to S1ToFirewall we create
inhibitor arcs from FirewallSum to all transitions generated from S1ToFirewall.
The example here shows that the unfolding adheres to all the rules we have setup.

C. Testing
Before we can use the model we have created, we have to make sure that the results we get from

our unfolding and verifications are correct. The unfolding is verified by manually checking the result
of different nets. Here the focus has been on testing the unfolding of colored time constraints, inhibitor
and transport arcs. This is because these features were not present in original engine verifypn which
has been modified into unfoldTACPN. The nets used to test unfolding and verification can be found at
https://drive.google.com/drive/folders/1qGwmfqrrLM 3eWntMMvBZiJWdkL9s1u?usp=sharing.
Ensuring verification is done in a similar matter. A large amount of nets used for verifying verification
results for verifydtapn and verifytapn has been supplied. A sample of these nets have been recreated as
TACPN’s. The nets were then unfolded and verified with the same engines, where all gave the expected
result.

28

Fig. 17: Figure 3 drawn in TAPAAL

Fig. 18: Figure 17 unfolded

VI. TRANSLATION OF NETWORK CONFIGURATIONS AND UPDATES INTO TACPN
In this section we present small introduction to networking, and in particular Software-Defined

Networks (SDN), and some of the current problems in networks. We also present the safety prop-
erty Waypoint Enforcement (WPE) [19] which we aim to verify while updating to a new network
configuration.

A. Introduction to Updating Networks and Waypoint Enforcement
A modern network is a complicated structure so a simple task as sending a single packet throughout the

network, can require that hundreds of servers to respond. Errors such as unexpected protocol interactions,
or updating of configurations are a possibility since the packets sent over the network are being modified
by all the different devices, and it is therefore difficult to reason about its behaviour. It can therefore
be challenging to ensure correctness and guarantee that security policies are always kept under updates.
There are numerous examples of network engineers deploying a new configuration to their network,
which had severe implications. The whole country of Japan lost their internet connection for several
hours in 2017, because Google made a bad update to a routing table [20]. This shows how vulnerable
the internet is in its current state when updates are performed, which is not an uncommon occurrence.

To combat many of these issues a new approach called SDN is being developed.With the introduction
of the SDN paradigm it is now possible through a centralized and programmable controller, to install,

29

update, and verify the network [21]. By introducing SDN, there is now a more dynamic network
management, but this have also introduced some new problems. A problem is that the connection
between the controller and the data layer is a distributed system, and therefore the sequence of when
updates is applied is not guaranteed. When an update is occurring, the centralized controller has to
instruct each switch to add, remove or change some forwarding rules. This becomes an issue if you
want to update the network without taking it down, because we have to be sure that any packets in the
network is not lost and that they will arrive at the desired destination.

There are several algorithms which solve this problem by creating a safe update sequence. In a safe
update sequence, it will either update one or multiple switches at the same time in stages, ensuring
the packet always arrives at the destination. An example of such an algorithm is WayUp, which also
supports WPE [19]. This can be important, if your packet has to visit a specific switch, e.g a firewall,
before reaching its destination. In order to illustrate an update consider Figure 19 which is from [19].
Here the old policy π1 is the solid line while the new policy π2 is the dashed line. The switch s2 is a
waypoint that all packets in the network have to traverse through. In this case three of the routers have
to be updated, and WayUp solves this by making two sequences (s3, s2),(s1). In this case WayUp tells
us that s3 and s2 can be updated in parallel.

s1 s2 s3 s4

Fig. 19: Updating of a network from the solid to the dashed line that may break WPE

However, the second update can only begin when an acknowledgement has been received from all
switches in the previous step. This can take a long time, and is therefore a big bottleneck, when it comes
to deploying the whole update sequence. If update steps could be started before the acknowledgement
is received, without breaking any policies for the packets in the network, the update could be optimized.
In the following sections we will present a possible solution to optimizing these update sequences with
Timed-arc Colored Petri Nets.

B. Latency for different packet sizes
In order to test the update sequences we have to account that processing times for different packets

may be different, e.g., depending on the packet size. The reason behind this, is that a switch can
have varying latency when processing packets with different sizes. To see the different latency’s for
the different packet sizes we are using Figure 3 from [7]. In order to have the most variation we are
considering latency data from the hardware switch Pica8 P3297 [22]. For each packet size we have a
variation of 0.5 µs upper and lower bound on the latency, since the latency’s from Figure 3 in [7] are
an average of their measured data. Different packet sizes are presented in Table I

Packet type Size [Byte] Latency [µs±0.5] Interval
VoIP [23] 218 2.2 [1, 3]
SSH [24] 312 2.1 [1, 3]
VPN [25] 1300 3.2 [2, 4]

TABLE I: Different network packet types and their size in bytes. Latency is deciphered from [7] Figure 3(a)

30

C. Router time calculation
The hardware that is used in network also has an impact on the time, since the switch scheduler, how

fast it calculates the next-hop are different for different switches. Pereini et. al. created a scheduler for
SDN in [3]. In their Figure 5, they show the cumulative distribution function of flow installation for
1000 flows on a FatTree topology with 20 switches. In Table II we decipher the completion time of
different scheduling algorithms, when installing a batch of new flows into the FatTree topology.

Algorithm Minimum [ms] Maximum [ms] Interval[µs]
Optimal 0 2.5 [0, 250000]

Batch-ready 0.2 2.5 [20000, 250000]
No scheduler 0.5 2.5 [50000, 250000]

TABLE II: Time for scheduler algorithms to install a batch of new flow into FatTree topology. Timing is
deciphered from [3] Figure 5

The interval for the router update, is in µs to have the same time unit as packet type. Since it is
the most interesting case that the router cannot start the update in time 0, we choose the interval from
algorithm No scheduler.

D. Generating configurations and update sequence
In order to get network topologies, initial and final configurations of the network as well as update

sequence between the configuration we use the tool Netsynth [5]. Netsynth takes a network topology,
creates one or more source and destination pairs in the given topology, and creates a initial and final
configuration. Netsynth takes a variety of parameters, where one of them is waypoints. This is done by
specifying an arbitrary amount waypoints that the flow of the network have to traverse, which Netsynth
will insure that both the initial and final configuration will traverse. The network topologies that are
used in this thesis are from the Zoo Topology [14]. Netsynth provides two outputs. One output is a SDN
program which is represented as an update sequence of commands to the controller, with a switch ID
and rule index or with a # to represent a wait. An example of the update sequence a can be see on
Figure 20.

Fig. 20: An update sequence outputted by Netsynth. Negative rule index represents an atomic update of all rules
on a specific switch. # represents a wait between updates

The second output from Netsynth is a ltl file containing all switches from the topology, each port
on the switch, the initial and finial configuration on each switch, the links between the ports of the
switches, and a Linear Temporal Logic (LTL) which describes the traces in the model. An example of
a switch with its ports and initial and final configuration can be seen on Figure 21. The first set of
rules are for the initial configuration. What ports that should be updated, are based on the source and
destination switch. How each port is updated is depending if it is the initial or final configuration. An
example is line 3 of Figure 21. Here port 5 is getting a link to port 18 in the initial configuration, while
on line 9 it is getting a link to port 17 in the final.

To start start experiments we need to calculate a maximum time for an update sequence we know
is safe. In order to do this we use Equation 1. This equation represents the worst case scenario for

31

Fig. 21: Switch 18 outputted by Netsynth with all its different ports, the update of the ports with different links,
based on the initial or final configuration, and the source and destination switch

updating a single switch. We will therefore use this equation to assume the time it should take, before
the next step in an update sequence can be executed.

Maximum time = Sumpath× slowest packet hop+ slowest switch update (1)

Where Sumpath is the sum of the routers that will get updated in initial + final configuration,
slowest packet hop, is the packet type with the longest processing and transmit time, and slowest switch update
is the switch with the longest update time.

E. Modeling networks into TACPN
In order to make a network into a TACPN model, we use the data from Table I and II, the initial and

final configuration from Figure 21 and the update sequence from Figure 20. The input is then processed
by our translation algorithm that creates six different types of components and a query for verification.
A conceptual overview is displayed on Figure 22.

Fig. 22: Input to and output from the translation algorithm

To provide an understanding of how we create the components, we show a overview of the translation
algorithm below.

Translation algorithm:
1) Create time constraints based upon packet input
2) For each packet type, create color in color type: PckType

32

3) Create start and end component with start and end switch
4) For all switches in initial or final configuration, create switch component

a) If node is waypoint in either initial or final configuration, create as waypoint component
5) For each switch & waypoint in update sequence create update component, and create update

sequence component
a) The order in update sequence is created from switch update sequence input

6) Create maximumTime based upon Equation 1 and populate update sequence component
7) Create XML query for verification

By using the translation algorithm we can translate an arbitrary large network into the seven different
TACPN components. By using colors, we are able to model each packet type, as its own color. As
mentioned in Subsection VI-A there are many time aspects though out the network. By using intervals
on arcs, we are modelling the different latency’s presented in Table I. By using invariant of places, we
are modelling that a packet will eventually get processed by the switch. As mentioned in Table II the
router update time is different based upon what hardware and scheduler that is used. When starting
the experiments, we use Equation 1 to calculate a safe update time, and uses this update time, for all
updates.

To display the different components we generate when making a network in TACPN, we have
modelled Figure 19 as a TACPN in TAPAAL.

StartNetwork

[dot] #1

SStart

[pckType]

T0
1’(pck)

1′(dot)
∗→ [0,∞)

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

Color types:
PacketType is {SSH,Web,Danger}

Variables:
pck is PacketType

Invariants:
vpnMax = 3
sshMax = 1
voipMax = 3

Fig. 23: Component displaying the start of the network

Figure 23 is an initial component which is the start of network. First a packet is send to the network
represented as a token in place StartNetwork. The transition is then fired and creating a token of type
pck in the shared place Sstart. Sstart is a Shared Place meaning that this place, is the same place as a
S on Figure 25 or 27 but it is a place on each component. On Figure 23, in the box to the left are the
color type, variable, and time information displayed. The color type and variable is the same in all the
components, and are therefore only presented once.

StartUpdateS

[dot]

SFinalEnf

[dot]

SInitialEnf

[dot]#1T1

1’(dot)

1′(dot)
∗→ [Min,Max]

1′(dot)
∗→ [0,∞)

∗ ≤Max

Intervals & Invariants:
Min = 50,000
Max = 250,000

Fig. 24: Component displaying the update sequence of a switch S

33

Figure 24 is a component representing the updating sequence of a switch or waypoint. The update
for a specific switch/waypoint is initialised by the invariant on place StartUpdateS and the interval
on the input arc to T1. When T1 is fired, it removes the token from SInitialEnf and creates a token in
SFinalEnf such that packets now will use the final configuration.

S
[pckType]

Sinitial

[pckType]

SInitialEnf

[dot]#1

SFinalEnf

[dot]

Sfinal

[pckType]

T0

T1

1’(dot)1’(dot)

1’(pck)

1’(dot) 1’(dot)

1’(pck)

1′(pck)
VPN→ [vpnMin,vpnMax]

SSH→ [sshMin,sshMax]

VoIP→ [voipMin,voipMax]

1′(pck)
VPN→ [vpnMin,vpnMax]

SSH→ [sshMin,sshMax]

VoIP→ [voipMin,voipMax]

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

Invariants & Invariants:
vpnMin = 2
sshMin = 4
voipMin = 1
vpnMax = 3
sshMax = 1
voipMax = 3

Fig. 25: Component displaying a switch S

Figure 25 is a component of a single switch. A packet of will be send to the switch by the shared
place S and can either use the initial or the final configuration. At Figure 25 the initial configuration is
active, since there is a token in the shared place SInitialEnf, transition T0 is enabled and can be fired,
creating a token in Sinitial.

StartUpdateSequence

[dot]

∗ ≤ ∞

#1

Step1

[dot]
∗ ≤C1

Step2

[dot]
∗ ≤C2

Stepn

[dot]
∗ ≤Cn

StartUpdateS2

[dot]
∗ ≤ Max

StartUpdateS1

[dot]
∗ ≤ Max

StartUpdateSn

[dot]
∗ ≤ Max

EndUpdate

[dot]

∗ ≤ ∞T0 T1 Tn

1’(dot) 1’(dot) 1’(dot)

1’(dot)

1’(dot)

1’(dot) 1’(dot)

1′(dot)
∗→ [C1,C1]

1′(dot)
∗→ [C2,C2]

1′(dot)
∗→ [Cn,Cn]

•••

•••
Invariants & Invariants:
Max = 250000
C1 = 1000016
C2 = 1000016
Cn = 1000016

Fig. 26: Component displaying the update sequence for all switches S1, S2 , · · · , Sn. The size of n is equal to how
many switches and waypoints that will get updated

Figure 26 is a update sequence of the network. The update can start at any time, hence the ≤ ∞

invariant on place StartUpdateSequence and no time guard on the arc. The length of the update
sequence is generated from how many switches and waypoints that will be updated. On Figure 26
the length is three. The order of the update is created from the update switch sequence input to the
translation algorithm. C1 and C2 are both 1000016 since we know this a safe time for the update
sequence, since they are calculated from Equation 1. This is the constants we will try to reduce, since
they represent the time it takes to update a switch, and when we can start a new update without breaking
network policies such as WPE.

Figure 27 is showing a waypoint component. By running the example we found a loop with the shared
place WaypointVisited which is used in verification, to make sure that we traverse the waypoint. In order

34

to bypass this loop we created an extra transition T4, and made an inhibitor arc from WaypointVisited
to T0. First time a waypoint is visited, only T0 is enabled but it can only be fired once. When T0 have
been fired it creates a token in WaypointVisited, enforcing that only T4 is enabled and therefore we
know that the waypoint have been visited.

S
[pckType] WaypointVisited [dot]

S′

[pckType]

Sinitial

[pckType]

SInitialEnf

[dot]#1

SFinalEnf

[dot]

Sfinal

[pckType]

T0

T4

T1

T2

1’(dot)1

1’(dot) 1’(dot)
1’(pck)

1’(dot) 1’(dot)

1’(pck)

1’(dot)1’(dot)

1′(pck)
∗→ [0,∞)

1′(pck)
∗→ [0,∞) 1′(pck)

1′(pck)

1′(pck)
VPN→ [vpnMin,vpnMax]

SSH→ [sshMin,sshMax]

VoIP→ [voipMin,voipMax]

1′(pck)
VPN→ [vpnMin,vpnMax]

SSH→ [sshMin,sshMax]

VoIP→ [voipMin,voipMax]

∗ ≤ 0
VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

Invariants & Invariants:
vpnMin = 2
sshMin = 4
voipMin = 1
vpnMax = 3
sshMax = 1
voipMax = 3

Fig. 27: Component displaying a waypoint S

S

[pckType]

S

[pckType]

T0
1’(pck)

1′(pck)
∗→ [0,∞)

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

VPN ≤ vpnMax

SSH ≤ sshMax

VoIP≤ voipMax

Invariants:
vpnMax = 3
sshMax = 1
voipMax = 3

Fig. 28: Component displaying a switch S with no updates

A switch can have the same switch as the next-hop in both the initial and final configuration and
therefore not have any updates between the configurations. This component is shown on Figure 28.

As mentioned we use both place WaypointVisited and EndNetwork for validation, by using a CTL
query such as:

AG(EndNetwork = 0 ∨ WaypointVisited≥ 1)

specifying that for all paths all reachable marking must satisfy that either EndNetwork is 0 or
WaypointVisited is greater or equal 1.

Figure 29 is a component for the end of the network. On this component we use the EndNetwork
place in the verification, to make sure that a packet has left the network.

To give a full view of all the components in the same net, Figure 30 is the composed TACPN of
Figure 19.

35

SwitchEnd

[pckType]

EndNetwork

[dot]

T0
1’(dot)

1′(pck)
∗→ [0,∞)

∗ ≤ 0

Fig. 29: Component displaying the end of the network

Fig. 30: Composed version of Figure 19

VII. CASE STUDY: UPDATING CONFIGURATIONS IN NETWORK

In this section we will experiment if by using TACPN to model networks, we can optimize the
updating between two configurations on switches. We will begin with testing on our running example
where Netsynth has generated the solution. Next we will do the same with topologies taken from the
Topology Zoo. All experiments have been done on a 64-bit Ubuntu 18.04 machine with 16 GB RAM,
Intel Core i7-7700HQ CPU @ 2.80GHz x 8.

A. Minimizing all update sequence constants
As it was presented in the Equation 1 we know how to calculate the worst case update time for

each of the switches. However, this is a theoretical max, and the real number may be much lower. In
order to find the minimum of this constant for each update we use the bisection algorithm presented in
Algorithm 1. The input is all constants used in the update sequence model set to the maximum from
Equation 1, and the output is the same constants minimized, but where verification of the model still
produces true based on the query presented in Subsection VI-E. For each constant the first thing we
do is set it to 0 and try to verify with the new constant in the model. If verify() still returns true, then
we know that the previous and current switch can start their update in parallel without affecting any
packets. However, if it returns false we will have to find the minimum value for the constant that still
produces true. This is done in the while loop from line 8-15. Here we use the lastTrue and lastFalse
values, in the first case original value of c and 0, to get us near the minimum value as seen on line 9.
Based on the result received from a new call to verify() we will either update the value of lastTrue or
lastFalse. We continue this until we find the bisection.

36

Algorithm 1 Find bisection for all possible C constants
Input: C1...Cn
Output: MinimumvalueforC1...Cn
1: for (c in C) do
2: lastFalse← 0
3: lastTrue← value(c)
4: setValue(c)← 0
5: if verify(AG(EndNetwork = 0 ∨ WaypointVisited) then
6: continue
7: else
8: while (lastTrue− lastFalse 6= 1) do
9: setValue(c)← ((lastTrue− lastFalse)/2)+ lastFalse

10: if verify(AG(EndNetwork = 0 ∨ WaypointVisited) then
11: lastTrue← value(c)
12: else
13: lastFalse← value(c)
14: end if
15: end while
16: end if
17: end for
18: return C1...Cn

B. Running example optimization results
Before we begin running the optimization on real topologies from the Topology Zoo [14] with

NetSynth, we will use our optimization method on our running example, which illustrates some of the
issues we have designed our solution for, such as when the paths intersect.

Route length] Unfold [s] Verify[s] Total bisection[s] Cycles Default time [s] Optimized time [s] Decrease [%]
6 0.66 0.044 5.86 22 2.25 0.45 77.50%

TABLE III: Results when using running example

In Table III Route length is the sum of switches in the initial and final path. Unfold and Verify
are both timing information on how long it takes to unfold the model and verify it. Total bisection
is the total time Algorithm 1 used to reduce all constants, where Cycles is the amount of iterations
needed for all constants. Default time is the default update time based on the worst case calculations,
Optimized time is the optimized update time after using Algorithm 1, and Decrease is the percentage
improvement.
There are multiple interesting points to draw from this. First of all we can see that the total bisection
time for a route length of 6 only takes 5.86 s. This can indicate that in most cases it will be trivial to
process the update optimization. A second thing is the decrease in update time, which is significant with
77.50%. This is a promising result, given it is the same for real network topologies. Another thing to
note is that (Unfold+Verify)∗Cycles 6= Total bisection. The reason for this is the Unfold and Verify
time displayed is peak time used in any of the 22 cycles and the time it takes can change.

C. Optimizing Netsynth update sequences
Using our optimization method on the running example showed promising results. However, it is an

artificial constructed topology, configurations and update sequence. In order to show how the method
handles real topologies we will be applying the tool Netsynth to create both initial and final configuration
and an update sequence to solve the transition [5]. Netsynth will use topolgogies from the Topology
Zoo. We will use the route length to order the complexity of the model. The results from the tests are
presented in Table IV.

As it can be seen we have a high reduced update time, with better percentage reduction than the
running example, since it is almost always reduced to 0.25s. The reason all of these cases end at the
same Optimized time is because algorithm 1 is reducing all the constants in the update sequence to

37

Name Route length Unfold [s] Verify[s] Total bisection[s] Cycles Default time [s] Optimized time [s] Decrease [%]
TLex 4 0.25 0.02 0.73 3 1.75 0.25 85.71%

HiberIreland 5 0.81 0.05 2.11 4 3.25 0.25 92.31%
Harnet 6 0.20 0.07 1.15 5 4.25 0.25 94.12%

UniC 7 0.30 0.16 1.90 6 6.50 0.25 96.15%
Oxford 8 0.36 0.37 3.13 7 7.75 0.25 96.77%

Xeex 10 0.30 2.14 7.07 9 12.25 0.25 97.96%
Sunet 11 0.32 5.32 13.78 10 15.95 0.25 98.43%

SwitchL3 12 1.17 13.07 31.40 11 17.75 0.25 98.59%
Psinet 14 0.50 78.46 156.04 13 24.25 0.25 98.97%
Uunet 15 0.40 194.45 379.23 14 29.50 0.25 99.15%

Renater2010 16 1.53 462.94 895.40 15 31.75 0.25 99.21%
Columbus 20 1.49 188.12 TIMEDOUT 13 49.75 16.7 66.43%
Missouri 25 2.20 329.87 TIMEDOUT 13 80.75 38.75 52.01%
Syringa 35 2.69 213.45 TIMEDOUT 12 157.00 104.75 33.28%

VtlWavenet2011 35 2.23 357.99 TIMEDOUT 13 157.01 100 36.31%

TABLE IV: Using Algorithm 1 to calculate constants to reduce update time between initial and final configuration
from Netsynth. The verifier will timeout after 10 minutes

0. This means all updates can start concurrently and the worst case for update time will be the same
as the worst case interval for updating a switch. This is not in it self a problem, as it shows that
Netsynth always inherently produces safe configurations and update sequences for them. None of the
configurations produced by Netsynth ever have nodes intersecting, as we do with the running example.
For Netsynth this makes sense, as if it can be avoided to have crossing routes that is always preferred.
It is only when the routes intersect that unexpected things can happen to the packet. However, for our
case we want the intersecting routes as our solution is good at optimizing them.
When we look at the peak Verify time we can see it increases a lot with the Route length. This is a
product of all the routers being able to update concurrently. For updating the network this is good to
know, but it makes it more complex for the verifytapn tool to verify the query, as it has to explore all
possibilities and they increase by n! with n being the number of switches to update. This results in the
bigger nets not completing, as they exceed 10 minute timeout. If we did not have the timeout we would
not even get a partial result, as it would never finish. This way we are still able to get some reduction
as it can be seen in Table IV. We can also see Unfold is increasing with Route length but not enough
for it to be a bottle neck on the Total bisection time.

Since we know calculation time increase because of having to verify multiple switches updating
concurrently, there could be an improvement in changing the order the update sequence constants are
minimized in. The order the constants are reduced in does not matter, as we have to try and reduce
them all before the algorithm is done. We can exploit this by creating gaps in the sequence, such that
verifytapn does not have to verify the update of all switches at once, until the last constant has been
set to 0, removing the gap.
We achieve this by finding the minimum of every second constant in a loop until the time out has been
reached, or the algorithm is done. The results from running with our new constant scheduler, but still on
the same topologies, initial and finial configurations, and update sequence as in Table IV is presented
in Table V.

In the tests with the optimized scheduler the time out is set to 3 minutes instead of 10, however even
with less time there is a significant improvement for the nets that time out. Missouri has gone from a
51.87% Decrease to 90.99%. At the same time we see that the Verify has fallen dramatically for the
time out nets. It is still high for nets such as Uunet since they are still finishing, meaning the optimized
scheduler is not helping on the last iteration. However, with the optimized scheduler able to optimize
the update more and faster. This difference can also be seen in Figure 31 which shows the optimized
scheduler increases the size of update sequences we are able to optimize and how much they can be
optimized.
We reduce the calculation time for total bisection with almost half when the route length is at 18, but

38

Name Route length Unfold [s] Verify[s] Total bisection[s] Cycles Default time [s] Optimized time [s] Decrease [%]
TLex 4 0.14 0.02 0.42 3 1.75 0.25 85.71%

HiberIreland 5 0.22 0.04 0.87 4 3.25 0.25 92.31%
Harnet 6 0.30 0.07 1.45 5 4.25 0.25 94.12%

UniC 7 0.22 0.16 1.53 6 6.50 0.25 96.15%
Oxford 8 0.22 0.38 2.12 7 7.75 0.25 96.77%

Xeex 10 0.27 2.18 6.03 9 12.25 0.25 97.96%
Sunet 11 0.31 5.34 10.16 10 15.95 0.25 98.43%

SwitchL3 12 0.32 13.09 18.80 11 17.75 0.25 98.59%
Psinet 14 0.37 78.84 89.28 13 24.25 0.25 98.97%
Uunet 15 0.40 194.59 206.84 14 29.50 0.25 99.15%

Renater2010 16 0.39 460.05 474.70 15 31.75 0.25 99.21%
Columbus 20 2.22 6.42 (TIMEDOUT) 198.40 17 49.75 5.75 88.44%
Missouri 25 1.70 9.50 (TIMEDOUT) 210.41 22 80.75 7.25 91.02%
Syringa 35 2.50 27.88 (TIMEDOUT) 201.23 29 157.00 24 84.71%

VtlWavenet2011 35 2.11 23.17 (TIMEDOUT) 181.92 29 157.01 24 84.71%

TABLE V: Using optimized calculation for constants to reduce update time between initial and final configuration
from Netsynth

both curves are factorial graphs. However it should be able to implement an algorithm that calculates
constants in batches, then skips one and then calculate another batch. By deciphering from Figure 31
the batch sizes can be up to 14, with both the sequential and optimized constant calculation. With this
implementation, it should be possible not to find the optimal, but to over-approximate a result for even
the longest paths in the largest networks.

6 8 10 12 14 16 18

200

400

600

800

Route length

Bisection [s]

Sequential
Optimized

Fig. 31: Displaying the route length and the time to calculate the total bisection

D. Optimization on updates with intersections
As discussed in Subsection VII-C and VII-B testing the optimization algorithm on more configurations

where the two routes intersect, would be interesting as in these cases it will not always be possible to set
all update constants to 0. However, it has not been possible to create such configurations automatically
with the tool Netsynth. In order to still try and test more of these cases, we instead chose interesting
topologies and created our own routes manually. However, this presents a new problem, as we do not
have a safe update sequence for the two configurations we create.

To handle this we create update sequences randomly, by shuffling the update sequence. If the model
cannot verify, it shows its a bad update sequence, and we can continue to the next one. This has the
added benefit of showing that our model can verify whether a update sequence is safe, showing it could
likely be used to verifying the result of update sequences produced by algorithms dedicated to this.
On Table VI the manually created routes and the optimization of their update time can be seen. In

39

the first four nets we used the topologies from the Topology Zoo, while the last two are completely
artificially constructed. The first is a small net with many intersections and possibility for loops. The
second is an extension of the running example also used in Subsection VII-B. Here we have taken the
original model, copied it and added to the model again. This means the packet has to travel through a
net with the same pattern twice. The reason for this is that if the original model had the requirements
to create a gap, then the extended model could have two gaps. However, this is not the case. As Table
VI shows all Optimized time are either 0.45s or 0.25s. This shows a pattern where if a constant is not
reduced to 0 it always reduces to 0.2s as the last 0.25s is the update time for the last switch based on
worst case for switch update interval. The reason for this is that the time constraints for all our models
are static. In all the tests we have performed we use the same packet types and the same type of switch.
If these time constraints were to change, e.g. if the net had different kinds of switches, the bisection
value would also change.

An interesting point is, the bisection algorithm could be improved if a previous model with the same
time constraints has already been calculated, or if a second gap is found. In this case the algorithm
could jump straight to the last known bisection value and see if it still is true. This would reduce the
amount of cycles necessary a lot.

Unfortunately we were unable to find a problem with two gaps. If this is because such a model does
not exist or because we have not found it yet, is an open question. However, the fact that the constants
are not always reduced to 0 when routes intersect, shows that our method can be applied to some update
sequences and get usable optimizations from it.

Name Route length Unfold [s] Verify[s] Total bisection[s] Cycles Default time [s] Optimized time [s] Decrease [%]
Harnet 10 0.27 0.07 0.96 3 5.25 0.25 95.24%

Bics 16 0.31 0.17 8.62 23 4.75 0.45 90.53%
Globalcenter 12 0.29 0.32 11.39 25 8.25 0.45 94.54%

Ans 25 0.38 0.45 15.37 25 9.25 0.45 95.14%
PossibleLoop 8 0.21 0.04 4.48 22 2.75 0.45 83.63%

WPEExtended 14 0.61 0.81 19.99 26 10.25 0.45 95.61%

TABLE VI: Creating our own paths with random update sequences and default scheduler.

VIII. CONCLUSION & FUTURE WORK

In this thesis we present an algorithm to reduce the worst case update time in a network from one
configuration to another. We show that for almost any route lengths in our experiments we can optimize
the worst case update time by at least 80 %. When configurations do not have any intersections this
optimization is trivial, as packet will only ever follow one of the routes. In intersecting routes a more
interesting application is seen, as the routes can now intertwine and performing updates at the wrong
time can break security policies of the network. Our algorithm minimizes this update without breaking
any policies.
To accomplish this minimization we have presented a new mathematical modeling language called
Timed-arc Colored Petri net with formal semantics. We present an unfolding algorithm and a proof of
correctness. We have implemented TACPN in the tool TAPAAL, and an unfolding implementation.

A. Future work
There are several things which could be interesting to continue working with regarding this project.

One thing is to optimize the current algorithm even more than with the optimized scheduler. Introducing
intelligent behavior as discussed in Subsection VII-D could reduce the amount of cycles. Further
improvements could be found by removing the step of building the model and unfolding it in each
cycle. If the unfoldTACPN engine hold onto the constants and keep them in the model it outputs, we

40

would only have to do this step once, as we could now change the constants in the TAPN model instead
of the TACPN model.
We would also like to create a more optimal algorithm to find initial and final configurations that will
intersect, instead of creating them manually. Automatically generating a large amount of configurations
with intersections, would make it easier to explore the possibility of having more than one gap.
In the future it would also be interesting to change the update sequence component, such that as soon
as an update is completed, the next step will be fired. For now we are only exploring the reducing
of maximal delay, while with this change, it will be possible to explore the minimal delay between
updates. To this point, changing the hardware processing time and packet delay may also provide other
results.

IX. BIBLIOGRAPHIC REMARKS

In this thesis Definitions 1-11 and 13 are from [26] with a modification to point 14 and 15 in Definition
7 and an explanation to the changes. Section II and III except Subsection II-B and III-A, and Figure 4,
5, and 6 with explanation, are also from [26].

In Section IV the introduction, Subsection IV-A and IV-B except Figure 7 and 8 which is extended
with the color specific syntax, and introduction to Subsection IV-C are from [26].

In Section V the introduction and Figure 14 is slightly modified, and Figure 9 are from [26].

ACKNOWLEDGMENT
We would like to thanks Stefan Schmid for providing supervision, and helping us with contacting

people throughout the making of this thesis.
We send a thanks to Nate Foster and Jedidiah McClurg for providing us with the implementation of
Netsynth.
We also would like to thank Peter Gjøl Jensen for helping to us with our implementation and code
review of TACPN in both TAPAAL and the unfolder in C++.
We send a thanks to Kenneth Yrke Jørgensen for providing help with parts of the Java implementation.
A thanks to Andreas Blenk for providing articles and information about how switches have different
latency based on the size of the packets.
We would like to thank Thomas Frandsen, who was a part of the thesis in the start, and has worked on
many of the first definitions.
Lastly we would like to send a special thanks to Jiri Srba for guidance and supervision in the creation
of this thesis.

REFERENCES

[1] Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental consistent updates. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 49–54. ACM, 2013.

[2] Ratul Mahajan and Roger Wattenhofer. On consistent updates in software defined networks. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, page 20. ACM, 2013.

[3] Peter Pereı́ni, Maciej Kuzniar, Marco Canini, and Dejan Kostić. Espres: transparent sdn update scheduling. In Proceedings of the
third workshop on Hot topics in software defined networking, pages 73–78. ACM, 2014.

[4] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for network update. ACM SIGCOMM
Computer Communication Review, 42(4):323–334, 2012.

[5] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and Nate Foster. Efficient synthesis of network updates. In Acm Sigplan Notices,
volume 50, pages 196–207. ACM, 2015.

[6] Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang, and Q. Wang. A survey on network verification and testing with formal
methods: Approaches and challenges. IEEE Communications Surveys Tutorials, pages 1–1, 2018.

[7] Simon Bauer, Daniel Raumer, Paul Emmerich, and Georg Carle. Behind the scenes: what device benchmarks can tell us. In
Proceedings of the Applied Networking Research Workshop, pages 58–65. ACM, 2018.

[8] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universitt Hamburg, 1962.
[9] Kurt Jensen. Coloured petri nets and the invariant-method. Theoretical computer science, 14(3):317–336, 1981.

[10] Chander Ramchandani. Analysis of asynchronous concurrent systems by timed petri nets. PhD thesis, Massachusetts Institute of
Technology, 1973.

41

[11] Tommaso Bolognesi. From timed petri nets to timed lotos. In Proc. IFIP WG6. 1, 10th Int. Workshop on Protocol Specification,
Testing and Verification, pages 377–406, 1990.

[12] Lasse Jacobsen, Morten Jacobsen, Mikael H Møller, and Jiřı́ Srba. Verification of timed-arc petri nets. In International Conference
on Current Trends in Theory and Practice of Computer Science, pages 46–72. Springer, 2011.

[13] Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen, Mikael H Møller, and Jiřı́ Srba. Tapaal 2.0: Integrated
development environment for timed-arc petri nets. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 492–497. Springer, 2012.

[14] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew Roughan. The internet topology zoo. IEEE Journal
on Selected Areas in Communications, 29(9):1765–1775, 2011.

[15] Andreas H Klostergaard. Efficient unfolding and approximation of colored petri nets with inhibitor arcs, 2018.
[16] F.M. Boenneland, P.G. Jensen, K.G. Larsen, M. Muniz, and J. Srba. Start pruning when time gets urgent: Partial order reduction

for timed systems. In Proceedings of the 30th International Conference on Computer Aided Verification (CAV’18), volume 10981
of LNCS, pages 527–546. Springer-Verlag, 2018.

[17] L. Aceto, A. Ingolfsdottir, K.G. Larsen, and J. Srba. Reactive Systems: Modelling, Specification and Verification. Cambridge
University Press, 2007.

[18] Frederik Bønneland, Jakob Dyhr, Peter G Jensen, Mads Johannsen, and Jiřı́ Srba. Simplification of ctl formulae for efficient model
checking of petri nets. In International Conference on Applications and Theory of Petri Nets and Concurrency, pages 143–163.
Springer, 2018.

[19] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. Good network updates for bad packets: Waypoint enforcement
beyond destination-based routing policies. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks, page 15. ACM,
2014.

[20] Google accidentally broke japan’s internet, 2017. - Web article. https://www.popularmechanics.com/technology/news/a27971/google-
accidentally-broke-japans-internet/ (2017).

[21] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker. Ethane: Taking control of the
enterprise, 2007.

[22] Pica8 p3297, 2014. - Data sheet. https://www.pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf (2014).
[23] Dev io, 2018. https://dev.to/onmyway133/how-to-calculate-packet-size-in-voip–54ac.
[24] Trisul network analytics, 2017. https://www.trisul.org/blog/analysing-ssh/post.html.
[25] Rishi Sinha, Christos Papadopoulos, and John Heidemann. Internet packet size distributions: Some observations. Technical

Report ISI-TR-2007-643, USC/Information Sciences Institute, May 2007. Orignally released October 2005 as web page
http://netweb.usc.edu/%7ersinha/pkt-sizes/.

[26] Thomas Frandsen Mark Glavind, Niels Christensen. Applying timed-arc colored petri net for network update synthesis. 9. semester
article, 01 2019.

42

