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Dansk Referat
Dette speciale omhandler pigmentering hos 458 forskellige brasilianere. Hos disse brasil-
ianere var målt deres pigmentering samt hvilke mutationer de har fået på forskellige
pladser i deres DNA. Denne mutation kaldes for en Single Nucleotide Polymorphism(SNP),
hvis mutationen ses i mere end 1% af en befolkning. I DNA findes base par, som er hydro-
gen bundne nucleobaser, som har koderne A,C,G,T, som beskriver de forskellige stoffer.
De findes som kombinationer af 2 i dette speciale, hvor hver SNP i dette projekt kun
anvender to af de fire nucleobaser. Der findes i dette speciale 23 forskellige pladser, hvor
denne mutation er tænkt at være med til at bestemme pigmenteringen hos folk.

Hver person har fået målt deres pigmentering 3 gange på 3 forskellige steder. Hvordan,
disse målinger fordeler sig, kan ses i Kapitel 1.

For at kunne undersøge denne sammenhæng mellem SNP’er og pigmentering er der
blevet brugt Generalized Multivariate ANalysis Of VAriance(GMANOVA), som håndterer
sammenhænge mellem personer, samt sammenhængene mellem de forskellige steder. Denne
model er valgt på baggrund af, at der flere målinger for hver person, som skal tages højde
for, samtidig med at der også er flere målinger for hvert sted. Dette kan GMANOVA
modellen håndtere.

Der er lagt stor vægt på teorien bag GMANOVA modellen, da denne er teoretisk tung
og mange resultater ligger bag estimatoren af parameter matricen. Først beskrives den
almindelige GMANOVA, hvorefter den udvidede GMANOVA introduceres. Denne gør
det muligt at skulle have mere end blot gruppering efter individ og placering af målingen.
Begge disse metoder bliver beskrevet i detaljer og flere fordelingsresultater bliver udledt.

I analysen bliver der lagt vægt på, hvad resultaterne betyder for det enkelte SNP samt
hvordan man ser de forskellige base par i forhold til hinanden i forhold til pigmenteringen.
Det ender med at være modellen, hvor man ikke har lavet nogle forudsætninger omkring
data, som er den bedste, idet den har den mindste fejl i modelleringen af data. Der
bliver også lavet en udskilning af forskellige SNP’er, hvor de SNP’er, som er signifikante i
forhold til at skulle modellere pigmenteringen, kan ses i tabel 4.2 for to forskellige p-værdi
niveauer.
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Preface

The thesis is addressed to other math students or students who already have a basic knowl-
edge of statistics, model construction and probability theory. The project will reference
to sources by [number ] where the number corresponds to the number in bibliography.
Equations are referenced by (chapter.number). Chapters, sections, definitions etc. are
referred by the chapter and the number, e.g. Definition 1.1.

This thesis is written by one student of the mathematics education at Aalborg Univer-
sity. The theme is multivariate linear models. The data is regarding pigmentation of 458
Brazilians measured at three different spots. A big thanks should be given to supervisor
Poul Svante Eriksen for his great contribution in the completion of this thesis.

Aalborg University, May 27, 2019

Lasse Lykke Nielsen
<lasnie13@student.aau.dk>

vii





Introduction

Introduction
Genetic variation is the basis of human diversity and plays an important role in human
diseases. Methods to screen and map genetic variability have, for more than two decades,
been based on restriction fragment length polymorphism and microsatellite markers. More
recent efforts have focused on the most common type of human genetic variation, single-
nucleotide polymorphisms (SNPs). A position is referred to as a SNP when it exists in
at least two variants with a frequency of more than 1% for the least common alternative.
SNPs are distributed across the human genome by an approximate average of 1% SNP
per 1000 base pairs. Base pairs are two nucleotides1 which are bound to each other
by hydrogen bonds. These base pairs are the basis of the DNA base helix. As for
microsatellite markers, SNPs can be used in linkage studies for identifying disease genes, in
clinical genetic testing and in forensics. The properties that make SNP analysis preferable
compared to microsatellites are that SNPs are more prevalent than microsatellites and that
many SNPs are located within the genes, directly affecting the gene product (protein). As
the number of identified SNPs increases, there will be an increasing demand for efficient
methods to type and assess the biological impact of this kind of genetic variation. This
thesis will focus on the biological impact of these genetic variations.[1]

In this thesis the Generalised Multivariate ANalysis Of VAriance(GMANOVA) will be
introduced and used to analyse 23 different SNPs of their ability to predict pigmentation
alone. These 23 SNPs are thought to have an influence on the pigmentation. The subjects
are from Brazil, because Brazilians are thought to be migrated from different parts of the
world hence the genetic variation is great. This makes it more viable to analyse as there
is some variations in the skin tones, which makes the model more robust.

This thesis builds upon projects made at the 8th and 9th semester of the same author
at Aalborg University. In these the analysis was made with machine learning algorithms
and a mixed model approach to the data. Some conclusions were drawn in these projects,
which will be used to compare the conclusions of this analysis with.

This thesis introduces the data in Chapter 1 where it has been described in full detail
what the data contains. Then the theory is introduced in Chapter 2 where the standard
and the extended GMANOVA is introduced together with conditions of when they are
unique. Furthermore their distributions are also introduced in order to obtain a Wald test
for the standard GMANOVA. This has been implemented into R in Chapter 3 together

1Adenine(A), Cytosine(C), Guanine(G), Thymine(T)
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2 Preface

with a likelihood ratio test. Then an analysis is made with the GMANOVA in Chapter
4 where different approaches has been taken, and then a discussion and a conclusion is
made in Chapter 5.

Notation List
A Matrix

a Vector

A Random variable

r(A) Rank of matrix A

A−1 Inverse of the matrix A

A− Generalized inverse of the matrix A

Ao Matrix that satisfies AoTA = 0, r(Ao) = m− r(A) if A : m× n

C(A) Column space of A

R(A) Range space R(A) = {x : x = Ay,y ∈ V} where V is a vector space

vecA A = (a1, . . . , aq) ∈ Rp×q then vecA =


a1
...

aq

 ∈ Rqp.

(A1 : . . . : An) A matrix A can be partitioned into submatrices and written as A = (A1 : . . . : An)

E(A) Expected value of the matrix A

D(A) Dispersion of the matrix A

Np(µ,Σ) Multivariate normal distribution

Np,n(µ,Σ,Ψ) Matrix normal distribution which is equivalent to Np,n(µ,Σ⊗Ψ)

Wp(Σ, n) The central Wishart distribution

Wp(Σ, n,∆) The non-central Wishart distribution



Chapter 1

Data

In this Chapter the data will be introduced and described. In the data there are 458
Brazilians where their pigmentation has been measured 3 times at three different locations;
buttock, arm and forehead. This results in 9 measurements for each person.

1.1 Data Description
There are 458 different subjects of which there are some subjects that contain missing
values. There are 30 measurements where missing values are present. These are taken
out, which leaves 428 measurements that are ready for analysis. But we also need to check
that all measurements have 3 measurements at all places, which not all have. Therefore
only 376 subjects are to be used. We could have imputed this, but since there are only 82
subjects that are taken out, which is 18% of the total amount of observations, we do not
impute. Hence we will only be describing those measurements where all measurements
are complete.

The first thing to talk about is the pigmentation. This is measured at three different
sites at three different times. There is some variation where the values can be seen in
Table 1.1.

Median Mean Max Min
Arm 8.95 9.38 20.3 3.7

Buttock 8 8.63 21.8 2.5
Forehead 9.4 9.84 21.2 4.1

Table 1.1: Pigmentation information

As it can be seen forehead has the highest amount of mean pigmentation, then arm
and then buttock. Everything looks as to be expected, except the maximum value of
buttock, which is the highest. This is surprising, but as there are no evidence that it is a
faulty observation, it can not be ruled as such.

The data also contains 23 SNPs which are thought to be influential on the pigmentation
of a person. These SNPs have, in this data set, 3 combinations each. It should be noted

3



4 Chapter 1. Data

that C refers to the combination CC of the nucleotide bases and the same goes for A,G
and T.

rs1015362 rs10777129 rs10831496 rs11238349 rs12203592 rs12350739 rs12668421
1 C :141 C :236 C : 68 A : 18 C :318 A : 80 A :217
2 CT:176 CT:122 CT:178 G :196 CT: 57 G :129 AT:145
3 T : 59 T : 18 T :130 GA:162 T : 1 GA:167 T : 14

rs12896399 rs12913832 rs13289 rs13933350 rs1408799 rs1426654 rs16891982
1 A : 18 A :204 C : 96 C :249 A : 76 A :250 C : 10
2 C :215 G : 39 G : 96 CT:119 G :115 G : 29 G :295
3 CA:143 GA:133 GC:184 T : 8 GA:185 GA: 97 GC: 71

rs1800407 rs2031526 rs2424984 rs2470102 rs26722 rs4424881 rs4911414
1 C :326 C :241 C : 18 A :238 A : 2 C :197 G :202
2 CT: 48 CT:117 CT:115 G : 30 G :299 CT:148 GT:153
3 T : 2 T : 18 T :243 GA:108 GA: 75 T : 31 T : 21

rs6119471 rs6742078
1 C :103 G :158
2 G : 90 GT:181
3 GC:183 T : 37

Table 1.2: All combinations of the 23 SNP

As can be seen some combinations are more represented than others for different SNPs,
which is due to it being collected from the same country. Brazil is thought of as a country
where many people migrated to, which explains the diversity in the SNPs.

Now that the data has been described, the theory will be introduced in Chapter 2
before it is being analysed in Chapter 4.



Chapter 2

Growth Curve Model

This chapter is based on [2].
The growth curve model proposed by Potthoff & Roy is the starting point for the

theory. The growth curve model is a linear model, but the maximum likelihood estimator
of its mean parameters is a non-linear expression which causes great difficulties when doing
inference. Since the estimators are non-linear stochastic expressions, their distributions
have to be approximated. This demands knowledge about moments which often can be
given as an exact expression or at least approximated very accurately. This is based on
moments of the matrix normal distribution and the Wishart distribution.

2.1 Introduction
Suppose we have an observation vector yi ∈ Rp which has a linear model

yi = µµµi + Σ1/2ei (2.1)

where µµµi ∈ Rp and Σ ∈ Rp×p are unknown parameters, Σ1/2 is a symmetric square
root of the positive definite matrix Σ and ei ∼ Np(0, I). It is assumed that µµµi = Xβββi
where X is a p × q known matrix and βββi is an unknown q × 1 vector. Note that the X
matrix is the within-individuals and corresponds to the same structure for all yi, which
will be extended in Section 2.3 to use different structure for different individuals. The
observations yi may contain repeated measurements on some individuals. In this project
data contains repeated measurements on all individuals. This raises the situation where a
between-individuals interaction is natural. Let Y ∈ Rp×n be a matrix where each column
corresponds to one individual. Then instead of writing βββ1, . . . ,βββn we can write this as
two matrices i.e.

{βββ1, . . . ,βββn} = BC (2.2)

where C ∈ Rk×n is a known between-individuals design matrix and B ∈ Rq×k is an
unknown parameter matrix. This leads to the growth curve model definition.

5



6 Chapter 2. Growth Curve Model

Definition 2.1. Let Y : p × n,X : p × q, q ≤ p,B : q × k,C : k × n, r(C) + p ≤ n and
let Σ : p× p be a positive definite matrix. Then

Y = XBC + Σ1/2E (2.3)

defines the growth curve model, where E ∼ Np,n(0, Ip, In), X,C are known matrices and
B,Σ are unknown parameter matrices.

Note that the columns of Y are independent normally distributed p-vectors with unknown
dispersion matrix Σ and expectation given by E[Y] = XBC. Note that if X = I it re-
duces to an ordinary Multivariate ANalysis Of VAriance(MANOVA) model. Hence the
model in (2.3) is a Generalised MANOVA or a GMANOVA. Much literature refers to the
GMANOVA as growth curve statistics model, and these two terms will be used inter-
changeably. We can estimate the unknown parameter estimates by maximum likelihood
which is given in the next section.

2.2 Maximum likelihood Estimators
We are only interested in the mean structure and hence we suppose that we have no
information regarding the structure of Σ. Therefore an arbitrary Σ is considered but it
is assumed that Σ is positive definite. The following lemma presents a useful inequality
that will be used later.

Lemma 2.2. Let Σ and S be positive definite matrices of size p× p. Then

|Σ|−
1
2n exp

(
−1

2tr(Σ
−1S)

)
≤ | 1

n
S|−

1
2n exp

(
−1

2np
)

(2.4)

where equality holds if and only if Σ = 1
n
S.

Proof. We have from Theorem A.1 that there exists matrices H and D such that

Σ = HD−1HT , S = HHT (2.5)

where H is non-singular and D = (d1, d2, . . . , dp) is diagonal. Thus

|Σ|−
1
2n exp

(
−1

2tr(Σ
−1S)

)
= |HD−1HT |−

1
2n exp

(
−1

2tr(D)
)

= |HHT |−
1
2n

p∏
i=1

d
n
2
i exp

(
−1

2di
)

≤ |HHT |−
1
2nn

np
2 exp

(
−1

2np
)

= | 1
n

S|−
1
2n exp

(
−1

2np
)
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where equality holds if and only if di = n which means that nΣ = S. The inequality
holds since it is the maximum value of the product on the right side of the inequality that
is represented on the right side of the inequality.

Now we start deriving the maximum likelihood estimates of the growth curve by direct
use of the likelihood. The density of the matrix normal distribution, Np,n(µµµ,Σ,Ψ) is given
as

fY(Y) = (2π)− 1
2pn|Σ|−n/2|Ψ|−p/2 exp

(
−1

2tr(Σ
−1(Y − µµµ)Ψ−1(Y − µµµ)T )

)
(2.6)

From this density we derive the likelihood function as

L(B,Σ) = (2π)− 1
2pn|Σ|−

1
2n exp

(
−1

2tr(Σ
−1(Y −XBC)(Y −XBC)T )

)
. (2.7)

by the fact that Ψ = I and µµµ = E[Y] = XBC. Then using Lemma 2.2 we get that

|Σ|−
1
2n exp

(
−1

2tr(Σ
−1(Y −XBC)(Y −XBC)T )

)
(2.8)

≤| 1
n

(Y −XBC)(Y −XBC)T |− 1
2n exp

(
−1

2np
)

(2.9)

where equality is obtained if and only if nΣ = (Y−XBC)(Y−XBC)T . Note that Σ has
been estimated as a function of the mean and now the mean is estimated. Normally one
estimate the mean and thereafter search for an estimate of the covariance matrix. This
is achieved if a lower bound of |(Y−XBC)(Y−XBC)T |, which is independent of B, is
found and obtained for at least one specific choice of B.

In order to find a lower bound two steps are used. First we split the product (Y −
XBC)(Y −XBC)T into two parts

(Y −XBC)(Y −XBC)T = S + VVT (2.10)

where
S = Y(I−CT (CCT )−C)YT (2.11)

and
V = YCT (CCT )−C−XBC. (2.12)

Note that S is Wishart distributed written as Wp( 1
n
Σ, n − r(C)) since Y is normally

distributed, and the first element of S is YYT which is the definition of a Wishart dis-
tribution, seen in Definition A.11. Furthermore note that S is not dependent on B. A
rewrite of S + VVT is given as

|S + VVT | = |S||I + S−1VVT | = |S||I + VTS−1V| (2.13)

where S−1 exist with probability 1 since Σ is positive definite, and it also holds that n ≥ p

then S is positive definite and hence has an inverse. The last equality is true since for
A : m× n,B : n×m it holds that |Im + AB| = |In + BA|.
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The second idea is based on Corollary A.2 where we can isolate S−1 to obtain

S−1 = S−1X(XTS−1X)−XTS−1 + Xo(XoTSXo)−XoT . (2.14)

Then we can use this estimate in the rewrite and obtain

|(Y −XBC)(Y −XBC)T | = |S||I + VTS−1V|
= |S||I + VTS−1X(XTS−1X)−XTS−1V + VTXo(XoTSXo)−XoTV|
≥ |S||I + VTXo(XoTSXo)−XoTV| (2.15)

which is independent of B since XoTV = XoTYCT (CCT )−C. The inequality holds since
VTS−1X(XTS−1X)−XTS−1V ≥ 0. Equality in (2.15) holds if and only if

VTS−1X(XTS−1X)−XTS−1V = 0 (2.16)

which is equivalent to
VTS−1X(XTS−1X)− = 0 (2.17)

Since V = YCT (CCT )−1C − XBC is the only estimate dependent on B it is a linear
equation in B. Using this fact and Theorem A.3 it follows that a general solution is given
by

B̂ = (XTS−1X)−XTS−1YCT (CCT )− + (XT )oZ1 + XTZ2CoT (2.18)

where Z1,Z2 are arbitrary matrices. If it holds that X,C are of full rank, i.e. r(X) =
q, r(C) = k, a unique solution exists

B̂ = (XTS−1X)−1XTS−1YCT (CCT )−. (2.19)

Furthermore the maximum likelihood estimator of Σ is given by

nΣ̂ = (Y −XBC)(Y −XBC)T = S + V̂V̂T (2.20)

where V is given in (2.12) with B replaced by the estimate. Then it follows that

XB̂C = X(XTS−1X)−1XTS−1YCT (CCT )−1C (2.21)

is always unique if X and C have full rank and hence Σ̂ is also uniquely estimated.

2.3 Extended Growth Curve Model
In this section an extension of the model in Definition 2.1 is given. This extension al-
lows for more individual mean structures and can also handle if the estimates of B̂i, i =
1, 2, . . . ,m are correlated. As a motivation for the extension of the GMANOVA, we will
start off by an example provided by [3].
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Example 2.3. This article [3] presents a balanced two way analysis, which is a model
with two random effects in the model. Since it is a two way ANOVA model, we have
two factors to model the mean structure

E[Y] =


α1
...
αp

1n + 1p(β1, . . . , βn) (2.22)

where ααα,βββ are each a mean for a grouping defined by data. This defines the two way
ANOVA without an error term. If we set X1 = 1p,B1 = βββT ,B2 = ααα and C2 = 1Tn
then we have that

E[Y] = X1B1 + B2C2. (2.23)

Furthermore it is assumed that the columns are independent with a multivariate nor-
mal distribution with covariance matrix Σ. This model is assumed to be replicated r
times so one could write C̃1 = (In, . . . , In) and C̃2 = (C2, . . . ,C2) since the C’s are
the only known matrices that change between individuals. So the model becomes

Y = X1B1C̃1 + B2C̃2 + Σ1/2E (2.24)

Since there are two factors that needs to be estimated, we can not use the same
approach as for GMANOVA. Therefore we need to develop a new approach to this
problem.

The example motivates the use of an extended GMANOVA, which will now be introduced.

Definition 2.4 (Extended growth curve model). Let Y : p × n,Xi : p × qi, qi ≤ p,Bi :
qi×ki,Ci : ki×n, r(C1)+p ≤ n, i = 1, 2, . . . ,m where C(CT

i ) ⊆ C(CT
i−1), i = 2, 3, . . . ,m

and Σ : p× p is a positive definite matrix. Then

Y =
m∑
i=1

XiBiCi + Σ1/2E (2.25)

defines the extended growth curve model, where E ∼ Np,n(0, Ip, In), Xi,Ci are known
matrices and Bi,Σ are unknown parameter matrices.

Note that when m = 1 it reduces to the growth curve model in Definition 2.1. The
extended growth curve model introduces a more general mean structure, since the variance
component Σ1/2E is unchanged.

Writing the likelihood function

L({Bi},Σ) = (2π)− 1
2np|Σ|−

1
2n exp

−1
2tr(Σ

−1(Y −
m∑
i=1

XiBiCi)(Y −
m∑
i=1

XiBiCi)T )


≤ (2π)− 1
2np| 1

n
(Y −

m∑
i=1

XiBiCi)(Y −
m∑
i=1

XiBiCi)T |−
1
2n exp

(
−1

2np
)
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where equality holds if and only if

nΣ = (Y −
m∑
i=1

XiBiCi)(Y −
m∑
i=1

XiBiCi)T (2.26)

Since it is only {Bi} that is missing, we can minimize the determinant

(Y −
m∑
i=1

XiBiCi)(Y −
m∑
i=1

XiBiCi)T (2.27)

with respect to {Bi}. Since it holds that C(CT
i+1) ⊆ C(CT

i ) we can present the determi-
nant as

|S1 + V1VT
1 | (2.28)

where
S1 = Y(I−CT

1 (C1CT
1 )−C1)YT (2.29)

and
V1 = YCT

1 (C1CT
1 )−C1 −

m∑
i=1

XiBiCi. (2.30)

Note that S1 is identical to (2.11) given the constraint and that V1 and (2.12) have the
same structure. Hence the same approach may be applied. To ease notation the following
is introduced

PX,S = X(XTS−1X)−XTS−1 (2.31)

which is a projector and can be rewritten as

PX,S = I−PT
Xo,S−1 = I− SXo(XoTSXo)−XoT (2.32)

Modifying (2.28) yields

|S1 + V1VT
1 | = |S1||I + S−1

1 V1VT
1 |

= |S1||I + VT
1 S−1

1 V1|
= |S1||I + VT

1 PT
X1,S1S

−1
1 PX1,S1V1 + VT

1 PT
Xo

1,S
−1
1

S−1
1 PT

Xo
1,S

−1
1

V1|

≥ |S1||I + VT
1 PT

Xo
1,S

−1
1

S−1
1 PT

Xo
1,S

−1
1

V1|

= |S1||I + WT
1 PT

Xo
1,S

−1
1

S−1
1 PT

Xo
1,S

−1
1

W1| (2.33)

where
W1 = YCT

1 (C1CT
1 )−C1 −

m∑
i=2

XiBiCi. (2.34)

So the difference between W1 and V1 is that the sum in W1 does not include the
first summand. The reason for exchanging V1 with W1 is that the X1 is zero, since
PT

Xo
1,S

−1
1

is the projection containing Xo
1 and hence when multiplied is zero. This elimi-

nates the first summand, which makes V1 = W1. The inequality in (2.33) holds since
|VT

1 PT
X1,S1S

−1
1 PX1,S1V1| ≥ 0. There is equality if and only if PX1,S1V1 = 0 which is

equivalent to
XT

1 S−1
1 V1 = 0. (2.35)
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By Theorem A.3 gives the estimate of B̂1 as

B̂1 = (XT
1 S−1

1 X1)−XT
1 S−1

1 (Y−
m∑
i=2

XiB̂iCi)CT
1 (C1CT

1 )−+(XT
1 )oZ11 +XT

1 Z12CoT
1 . (2.36)

and noting that P1 = I. We can also estimate Σ̂ by inserting the estimate of B̂1 into
(2.26).

Using the same approach as in (2.13), we can rewrite (2.33) as

|S1 + T1W1WT
1 TT

1 | (2.37)

where T1 = I−PA1,S1 . This procedure of finding the determinant can be iteratively done
by noting that

Vi = Ti−1YCT
i (CiCT

i )−Ci −Ti−1

m∑
i

XiBiCi

Wi = YCT
i (CiCT

i )−Ci −
m∑

j=i+1
XjBjCj

Ti = I−PTi−1Xi,Si

Pi+1 =
i∏

j=1
Ti

where the Pi+1 is the projection for the next iteration, i.e. PT
(PiAi)o,S−1

i

. Thus we need to
find the solution to

XT
i PT

i S−1
i Vi = 0. (2.38)

Then we can find the maximum likelihood estimator of {Bi} and Σ when
Y ∼ Np,n (∑m

i=1 XiBiCi,Σ, In).

Theorem 2.5. Let

PCT
j−1

= CT
j−1(Cj−1CT

j−1)−Cj−1, j = 1, . . . ,m+ 1

Kj = PjYPCT
j−1

(I−PCT
j
)PCT

j−1
YTPT

j , j = 1, . . . ,m

Si =
i∑

j=1
Kj i = 1, 2, . . . ,m

Ti = I−PiXi(XT
i PT

i S−1
i PiXi)−XT

i PT
i S−1

i i = 1, 2, . . . ,m

Pr =
r−1∏
j=0

Tj r = 1, 2, . . . ,m+ 1

where T0 = I and C0 = I. Assuming that S1 is positive definite then the maximum
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likelihood estimators are given by

B̂r = (XT
r PT

r S−1
r PrXr)−XT

r PT
r S−1

r

Y −
m∑

i=r+1
XiB̂iCi

CT
r (CrCT

r )−

+ (XT
r PT

r )oZr1 + XT
r PT

r Zr2CoT
r , r = 1, 2 . . . ,m

nΣ̂ = (Y −
m∑
i=1

XiB̂iCi)(Y −
m∑
i=1

XiB̂iCi)T

= Sm + Pm+1YCT
m(CmCT

m)−CmYPT
m+1

where Zrj are arbitrary matrices. Here ∑m
i=m+1 XiB̂iCi = 0.

Due to the uniqueness of the projector, the estimate of Pr
∑m
i=r XiB̂iCi is always

unique. This is also seen in the next theorem.

Theorem 2.6. For the estimators B̂i given in Theorem 2.5 it holds that

Pr

m∑
i=r

XiB̂iCi =
m∑
i=r

(I−Ti)YCT
i (CiCT

i )−Ci. (2.39)

A consequence of this theorem is the following

Corollary 2.7. In the extended model, the maximum likelihood estimator of Σ is always
unique.

Even though the estimate of B̂ is unique, given the projector, there are still some
requirements that need to be fulfilled in order for it to be unique. These are given in the
next section. But before we move on we finish the model given in Example 2.3.

Example 2.8. Using the theory as described in the former section, the estimates for
B̂1, B̂2 become

B̂1 = (XT
1 S−1

1 X1)−XT
1 S−1

1

(
Y −X2B̂2C̃2

)
C̃T

1 (C̃1C̃T
1 )−

B̂2 = (XT
2 PT

2 S−1
2 P2X2)−XT

2 PT
2 S−1

2 YC̃T
2 (C̃2C̃T

2 )−

where

PCT
0

= CT
0 (C0CT

0 )−1C0 = I

P1 = T0 = I
PCT

1
= C̃T

1 (C̃1C̃T
1 )−C̃1

S1 = Y(I− C̃T
1 (C̃1C̃T

1 )−C̃1)YT

P2 = X1(XT
1 S−1

1 X1)−XT
1 S−1

1

S2 =
2∑
j=1

PjYPCT
j−1

(I−PCT
j
)PCT

j−1
YTPT

j
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Here B̂2 and S2 relies on the structure of C̃2 which is defined by data and hence is
impossible to go further with in a non-data example. But since we know that C̃1 is
the identity matrix replicated r times, we get that Y(I− C̃T

1 (C̃1C̃T
1 )−C̃1)YT becomes

Y(I− C̃T
1 (C̃1C̃T

1 )−C̃1)YT = Y(I− C̃T
1

1
r
IC̃1)YT

= Y(I− 1
r
Mr)YT

= Y
r − 1
r

MrYT

= r − 1
r

∑
i

Yi·YT
i·

where Mr is a r× r block matrix of I matrices. So Y(I− C̃T
1 (C̃1C̃T

1 )−C̃1)YT becomes
the sum of squares. So we get that

B̂1 = (XT
1 S−1

1 X1)−XT
1 S−1

1

(
Y −X2B̂2C̃2

)
C̃T

1 (C̃1C̃T
1 )−

= (XT
1 S−1

1 X1)−XT
1 S−1

1

(
Y −X2B̂2C̃2

) r

n− r

and

S1 = (r − 1
r

∑
i

Yi·YT
i· )

for this specific example.

2.4 Uniqueness Of The Maximum Likelihood Esti-
mates

In this section the uniqueness of the maximum likelihood estimates of B̂ is discussed. In
the source it is given for m = 3 but in this section the generalized concept will be derived.
This is theoretically heavy and readers who does not care about details can jump to
Theorem 2.9. First we derive for the GMANOVA and then for the extended GMANOVA.

For the model in Definition 2.1 the maximum likelihood estimate was given as

B̂ = (XTS−1X)−XTS−1YCT (CCT )− + (XT )oZ1 + XTZ2CoT . (2.40)

Since Z1,Z2 are arbitrary matrices, B̂ becomes unique if and only if (XT )o = 0 and
CoT = 0. Furthermore since the rank of these are given as r((XT )o) = q − r((XT )) and
r(CoT ) = k − r(C) respectively, it must hold that, for B̂ to be unique, r(XT ) = q and
r(C) = k which means that X,C must span the whole of their respective spaces. This is
sufficient requirements for B̂ to be unique for the GMANOVA model.

Now we treat the extended model. In Theorem 2.5 it was found that the estimate for
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B̂r was given as

B̂r = (XT
r PT

r S−1
r PrXr)−XT

r PT
r S−1

r

Y −
m∑

i=r+1
XiB̂iCi

CT
r (CrCT

r )−

+ (XT
r PT

r )oZr1 + XT
r PT

r Zr2CoT
r , r = 1, 2 . . . ,m

From the GMANOVA it can be seen that

r(XT
r PT

r ) = r(Xr) = qr

r(Cr) = kr

must be required, since this eliminates the Zr1 and Zr2 as the arbitrary matrices. But we
also need some restrictions on the column space, as the projector is also involved. Since
we know that Pr = ∏r−1

i=1 Ti is a function of the observations through Sr−1, it must be a
projector on a certain space which is independent of the observations, as Sr−1 acts as an
estimator of the inner product matrix and has nothing to do with the space where Xr is
projected on. Thus the rank conditions should be independent of the observations.

However for B̂r to be unique it must hold that

(XT
r S−1

r Xr)−(XT
r S−1

r (
m∑

i=r+1
XiB̂iCi)CT

r (CrCT
r )−) (2.41)

is unique. But since every B̂i contains arbitrary Z matrices, these must be eliminated for
all i > r. A necessary condition for this is

C(XT
s PT

r S−1
r Xr(XT

r S−1
r Xr)−) ⊆ C(XT

s

s∏
i=r+1

TT
i ) (2.42)

where P = I−Xr+1(XT
r+1TrS−1

r+1TrXr+1)−XT
r+1TT

r S−1
r+1Tr and s = r+1, r+2, . . . ,m−r.

Using the definition of Tr equation (2.42) can be written as

C(XT
s (I−TT

s−1)) ⊆ C(XT
s

s∏
i=r+1

TT
i ) (2.43)

which, by Proposition A.4 is equivalent to

C(XT
s ) ⊆ C(XT

s

s∏
i=r+1

TT
i ) (2.44)

which by Theorem A.6 holds if and only if

C(Xr) ∩ C(X1 : X2 : . . . : Xr−1) = {0}, r > 1 (2.45)

so this must be a sufficient condition for eliminating the Z matrices. But we still need to
have the projector included separately. For this note first that

m∏
i=1

TT
i = PT

m−1∏
i=1

TT
i (2.46)
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and since

C(XT
s PT

r S−1
r Xr(XT

r S−1
r Xr)−) = C(XT

s PT
r S−1

r Xr(XT
r S−1

r Xr)−XT
r ) (2.47)

we have that (2.42) is identical to

C(XT
s PT (I−TT

s−1)) ⊆ C(XT
s PT

s∏
i=r+1

TT
i ). (2.48)

By Proposition A.4 we have that

C(XT
s PT ) = C(XT

s

s∏
i=r

Ti) (2.49)

But since P is a projector it is also idempotent and it holds that PT spans the orthogonal
complement to Xr+1. Hence we can define projectors

PXo
s

= I−Xs(XT
s Xs)−XT

s

P(Xr:Xs)o = PXo
s
−PXo

s
Xr(XT

r PXo
s
Xr)−XT

r PXo
s
.

Since C(PT ) = C(PXo
s
) and C(∏m

i=1 TT
i ) = C(P(Xr:Xs)o) then by Proposition A.4, we

have that (2.49) is equivalent to

C(XT
s PXo

s
) = C(XT

s P(Xr:Xs)o). (2.50)

Since C(I −Xr(XT
r PXo

s
Xr)−XT

r PXo
s
) = C(PXo

s
Xr)⊥, Theorem A.6 and the definition of

P(Xr:Xs)o we have that (2.49) is equivalent to

C(PXo
s
Xs) ∪ C(PXo

s
Xr) = {0} (2.51)

and by using properties for a projector and Theorem A.5 it follows that

C(Xs,r)⊥ ∩ {C(Xs,r) +C(Xs+r)} ∩ {C(Xs,r) +C(Xr)} = {0}, r > 1, s = 1, 2, . . . ,m− r
(2.52)

All of the conditions given here such that B̂ is unique is collected and given in the following
theorem.

Theorem 2.9. Let

Xs,r = (X1 : X2 : . . . : Xr−1 : Xr+1 : . . .Xr+s+1), s = 2, 3, . . . ,m− r, r > 1
Xs,r = (X1 : X2 : . . . : Xs), s = 2, 3, . . . ,m− r, r = 1
Xs,r = (X1 : X2 : . . . : Xr−1), s = 1, r > 1
Xs,r = 0 s = 1, r = 1.
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Then B̂ given in Theorem 2.5 is unique if and only if

r(Xr) = mr

r(Cr) = kr

C(Xr) ∩ C(X1 : X2 : . . . : Xr−1) = {0}, r > 1
C(Xs,r)⊥ ∩ {C(Xs,r) + C(Xs+r)} ∩ {C(Xs,r) + C(Xr)} = {0}, r > 1, s = 1, 2, . . . ,m− r

Since we now have the unique estimates, we need to find the moment estimates in
order to be able to estimate the distributions of the estimators.

2.5 Moments Of Estimates
In this section first order moments of estimates of the maximum likelihood estimates are
found. These results play a vital role in approximating the distributions of the estimators.

2.5.1 Moments Of The GMANOVA

For the GMANOVA the estimate of B̂ was found to be

B̂ = (XTS−1X)−XTS−1YCT (CCT )− (2.53)

where it was assumed that r(X) = q and r(C) = k for B̂ to be unique. We know that
this estimate is non-linear in Y since S contains Y and the inverse of S is used in the
estimate for B̂. The estimate B̂ consists of two parts (XTS−1X)−XTS−1, which is a non-
linear random expression in Y, and YCT (CCT )− which is linear in Y. Due to the first
part of B̂ is not available in simple form, one resorts to comparing B̂ with a more simple
distribution. For this simple distribution one could choose

B̂G = (XTG−1X)−XTG−1YCT (CCT )− (2.54)

where G is assumed to be a non-random positive definite matrix. One obvious choice for
G in this setting is G = I. According to Theorem A.7 the distribution of B̂G is matrix
normal and hence it would be valuable to compare moments of B̂ with B̂G. Furthermore
it is tempting to condition on S since the distribution of S does not involve the parameter
B. Hence it is of interest how an omission of the variation in S affects the moments in
B̂.

Theorem 2.10. Let

B̂ = (XTS−1X)−XTS−1YCT (CCT )−

XB̂C = X(XTS−1X)−XTS−1YCT (CCT )−C

Then the following statements hold

1. E[B̂] = B
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2. if n− k − p+ q − 1 > 0 then

D[B̂] = n− k − 1
n− k − p+ q − 1(XTΣ−1X)− ⊗ (CCT )− (2.55)

3. E[XB̂C] = XBC

4. if n− r(C)− p+ r(X)− 1 > 0 then

D[XB̂C] = n− r(C)− 1
n− r(C)− p+ r(X)− 1X(XTΣ−1X)−XT ⊗CT (CCT )−C (2.56)

Note from 2 to 4 that in 2 it is assumed that the matrices X,C are of full rank, q, k
respectively.

Proof. We first prove 3. Since by Theorem A.8, X(XTS−1X)−XTS−1 and YCT (CCT )−C
are independent we can split E[XB̂C] into

E[XB̂C] = E[X(XTS−1X)−XTS−1]E[YCT (CCT )−C] (2.57)

But since E[Y] = XBC implies E[YCT (CCT )−C] = XBC we get that

E[XB̂C] = E[X(XTS−1X)−XTS−1]XBC
= E[X(XTS−1X)−XTS−1X]BC
= XBC

where the last equality comes from (XTS−1X)−XTS−1X = I. In the same manner 1 can
be proven.

To prove the dispersion we consider

D[XB̂C] = E[vec(X(B̂−B)C)vecT (X(B̂−B)C)] (2.58)

and note that

X(B̂−B)C = X(XTS−1X)−XTS−1(Y −XBC)CT (CCT )−C. (2.59)

It will be utilised that

X(XTS−1X)−XTS−1 = X(XTS−1X)−XTS−1 (2.60)

where X is any matrix of full rank such that r(X) = r(X) which follows from the unique-
ness property of projectors given in Proposition A.9. What this means is that X is X
where all linear dependent rows and corresponding columns are removed, and hence will
have the same rank.

Put
Q = (Y −XBC)CT (CCT )−C (2.61)

which is independent of S by Theorem A.8 and the dispersion of Q equals

D[Q] = Σ⊗CT (CCT )−C.
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From (2.58) and (2.60) it follows that

D[XB̂C] = E[(I⊗X(XTS−1X)−XTS−1)E[vec(Q)vecT (Q)](I⊗ S−1X(XTS−1X)−XT )]
= E[(I⊗X(XTS−1X)−XTS−1)D[Q](I⊗ S−1X(XTS−1X)−XT )]
= E[X(XTS−1X)−XTS−1ΣS−1X(XTS−1X)−XT ]⊗CT (CCT )−C (2.62)

For the rest of this proof we will utilise the canonical representation of XTΣ−1/2 where
Σ−1/2 is a symmetric square root of Σ−1. Proposition A.10 implies that there exists a
non-singular matrix H and an orthogonal matrix Γ such that

XTΣ−1/2 = H(Ir(X) : 0)Γ = HΓ1 (2.63)

where ΓT = (ΓT
1 : ΓT

2 ), (p× r(X) : p× (p− r(X)). Let

V = Σ−1/2SΣ−1/2 (2.64)

where we have from Theorem A.12 that V ∼ Wp(I, n−r(C)) since S is Wishart distributed
and furthermore the matrices V,V−1 is partitioned into

V =
V11 V12

V21 V22

, r(X)× r(X) r(X)× (p− r(X))
(p− r(X))× r(X) (p− r(X))× (p− r(X)) (2.65)

V−1 =
V11 V12

V21 V22

, r(X)× r(X) r(X)× (p− r(X))
(p− r(X))× r(X) (p− r(X))× (p− r(X)) (2.66)

Using these facts it follows that

E[X(XTS−1X)−XTS−1ΣS−1X(XTS−1X)−XT ] (2.67)
= E[Σ1/2ΓT

1 (V11)−1(V11 : V12)(V11 : V12)T (V11)−1Γ1Σ1/2]
= E[Σ1/2ΓT

1 (I : (V11)−1V12)(I : (V11)−1V12)TΓ1Σ1/2]
= E[Σ1/2ΓT

1 (I + (V11)−1V12V21(V11)−1)Γ1Σ1/2]
= E[Σ1/2ΓT

1 Γ1Σ1/2 + Σ1/2ΓT
1 V12(V22)−1(V22)−1V21Γ1Σ1/2] (2.68)

by using Proposition A.13 to get (V11)−1V12 = −V12V−1
22 . The first equality is gotten

since

E[X(XTS−1X)−XTS−1ΣS−1X(XTS−1X)−XT ] = n− 1
n− p+ r(X)− 1X(XTX)−XT

(2.69)
if n − p + r(X) − 1 > 0, which is already assumed in the Theorem. Now we focus on
the V12(V22)−1(V22)−1V21 part. Since V ∼ Wp(I, n − r(C)) there exists, according to
Definition A.11, a matrix U ∼ Np,n−r(C)(0, I, I) such that V = UUT . If we partition
U = (UT

1 : UT
2 )T so that V21 = U2UT

1 and V11 = U1UT
1 then we get that

E[V12(V22)−1(V22)−1V21] = E[U1UT
2 (U2UT

2 )−1(U2UT
2 )−1U2UT

1 ]. (2.70)
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By Theorem A.14 and the independence between U1,U2 we get

E[V12(V22)−1(V22)−1V21] = E[tr
(
UT

2 (U2UT
2 )−1(U2UT

2 )−1U2
)
]I

= E[tr(U2UT
2 )−1]I

Since U2UT
2 ∼ Wp−r(X)(I, n− r(C)) it follows from Theorem A.15 that

E[V12(V22)−1(V22)−1V21] = n− r(C)− 1
n− r(C)− p+ r(X)− 1I (2.71)

Finally we note that Γ1ΓT
1 = I and H is non-singular, and we get that

Σ1/2ΓT
1 Γ1Σ1/2 = X(XTΣ−1X)−XT . (2.72)

We prove 4 by combining (2.62), (2.67), (2.71) and (2.72) to get the desired statement. 2
follows immediately from 4 by multiplying (XTΣ−1X)− ⊗ (CCT )− by X,C respectively
and also assuming full rank of X,C.

Now we actually have all elements necessary for approximating the distribution of B̂
and hence we only need to approximate the distribution of Σ̂. This estimator is given as

nΣ̂ = S + (YCT (CCT )−C−XB̂C)(YCT (CCT )−C−XB̂C)T (2.73)

where

S = Y(I−CT (CCT )−C)YT

XB̂C = X(XTS−1X)−XTS−1YCT (CCT )−C.

Then we get the following Theorem, which will be given without proof. This project refer
to [2] for a proof of this.

Theorem 2.11. Let Σ̂ be given as in (2.73).

1. If n− r(C)− p+ r(X)− 1 > 0 then

E[Σ̂] = Σ− r(C) 1
n

n− r(C)− 2(p− r(X))− 1
n− r(C)− p− r(X)− 1 X(XTΣ−1X)−XT (2.74)

2. If n− r(C)− p+ r(X)− 3 > 0 then

D[Σ̂] =d1(I + Kp,p)
(
(X(XTΣ−1X)−XT )⊗ (X(XTΣ−1X)−XT )

)
+ d2(I + Kp,p)

(
(X(XTΣ−1X)−XT )⊗ (Σ−X(XTΣ−1X)−XT )

)
+ d2(I + Kp,p)

(
(Σ−X(XTΣ−1X)−XT )⊗ (X(XTΣ−1X)−XT )

)
+ 1
n

(I + Kp,p)
(
(Σ−X(XTΣ−1X)−XT )⊗ (Σ−X(XTΣ−1X)−XT )

)
+ d3vec(X(XTΣ−1X)−XT )vecT (X(XTΣ−1X)−XT )
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where

d1 = n− r(C)
n2 +2r(C) p− r(X)

n2(n− r(C)− p+ r(X)− 1)+r(C)2c1 + c2 + c3

n2 +r(C)2 c3

n2

(2.75)
and

d2 = n− p+ r(X)− 1
n(n− r(C)− p+ r(X)− 1)

d3 = 2r(C)(n− r(C)− 1)(n− p+ r(X)− 1)(p− r(X))
n2(n− r(C)− p+ r(X))(n− r(C)− p+ r(X)− 1)2(n− r(C− p+ r(X)− 3)

where further

c1 = p− r(X)
n− r(C)− p+ r(X)− 1

c2 = 2(p− r(X))(n− r(C)− p+ r(X)− 1) + (2 + (n− r(C)− p+ r(X))
(n− r(C)− p+ r(X))(n− r(C)− p+ r(X)− 1)2(n− r(C)− p+ r(X)− 3)

· (n− r(C)− p+ r(X)− 3)(p− r(X))2

(n− r(C)− p+ r(X))(n− r(C)− p+ r(X)− 1)2(n− r(C)− p+ r(X)− 3)

c3 = p− r(X)
(n− r(C)− p+ r(X))(n− r(C)− p+ r(X)− 3)

+ p− r(X)2

(n− r(C)− p+ r(X))(n− r(C)− p+ r(X)− 1)(n− r(C)− p+ r(X)− 3)

As can be seen in the theorem, Σ̂ is a biased estimator of Σ. Normally one can
overcome this by multiplying with a constant. Such a constant exists and is given by

1
n− r(C)S. (2.76)

This is an unbiased estimate since using the definition of S in (2.73) and the fact that Y
can be written as Y = XB̂C + u where u ∼ N(0, σ2) is the error, we get

Ŝ = Y(I−CT (CCT )−C)YT

= Y(CT B̂TXT + uT −CT B̂TXT −CT (CCT )−Cu)
= (XB̂C + u)(uT −CT (CCT )−Cu)
= (uuT + XB̂CuT − uCT (CCT )−CuT −XB̂CuT )
= (uuT − uCT (CCT )−CuT )

Then it can be seen that the expected value is 0 since E[u] = 0. Then multiplying this
on the estimate of Σ̂ will give an unbiased estimate.

Now we have derived the mean and dispersion for the standard GMANOVA model,
so now we will try to extract them for the extended model.
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2.5.2 Moments Of The Extended GMANOVA
The derivation of the moments are quite complicated, as it was already very complicated
for the simple GMANOVA model. Therefore we will not be deriving the distributions
to its full extent, but give pointers towards how to derive this. It is basically the same
procedure as for the simple GMANOVA model.

First we are going to see that {B̂} is an unbiased estimator under the uniqueness
assumptions and hence ∑m

i=1 XiB̂iCi is also unbiased. In Theorem 2.5 the estimators
B̂r, r = 1, 2, . . . ,m were presented and since C(CT

j ) ⊆ C(CT
k ) for j ≥ k it follows that

PT
r S−1

r is independent of YCT
r . Hence

E[B̂r] = E

(XT
r PT

r S−1
r PrXr)−XT

r PT
r S−1

r

E[Y]−
m∑

i=r+1
XiB̂iCi


CT

r (CrCT
r )−

= Br − E

(XT
r PT

r S−1
r PrXr)−XT

r PT
r S−1

r ×

 m∑
i=r+1

XiB̂iCi −
m∑

i=r+1
XiBiCi


CT

r (CrCT
r )−

= Br − E
[
(XT

r PT
r S−1

r PrXr)−XT
r PT

r S−1
r ×(I−Tr+1)E[YCT

r+1(Cr+1CT
r+1)−Cr+1] + Tr+1

m∑
i=r+2

XiB̂iCi −
m∑

i=r+1
XiBiCi


CT

r (CrCT
r )−

= Br − E
[
(XT

r PT
r S−1

r PrXr)−XT
r PT

r S−1
r Tr+1× m∑

i=r+2
XiB̂iCi −

m∑
i=r+2

XiBiCi


CT

r (CrCT
r )−

= Br − E
[
(XT

r PT
r S−1

r PrXr)−XT
r PT

r S−1
r Tr+1×(

(I−Tr+2)E[YCT
r+2(Cr+2CT

r+2)−Cr+2]

+
m∑

i=r+2
XiB̂iCi −Tr+2

m∑
i=r+2

XiB̂iCi −
m∑

i=r+2
XiBiCi


CT

r (CrCT
r )−

= Br − E
[
(XT

r PT
r S−1

r PrXr)−XT
r PT

r S−1
r Tr+1Tr+2× m∑

i=r+3
XiB̂iCi −

m∑
i=r+3

XiBiCi


CT

r (CrCT
r )−

= . . . = Br

which gives the following theorem.

Theorem 2.12. The estimator B̂r in Theorem 2.5 is an unbiased estimator under the
uniqueness assumptions.

The dispersion matrix is a bit more complicated to derive. The idea is to look at the
linear combinations

GT
r−1XrB̂rCr (2.77)
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that we can do since

(XT
r Gr−1GT

r−1Xr)−XT
r Gr−1GT

r−1XrB̂rCrCT
r (CrCT

r )− = B̂r (2.78)

where Gr+1 = Gr(GT
r Xr+1)o. Since B̂r is an unbiased estimator we consider

Gr−1Xr(B̂r −Br)Cr. (2.79)

Then one can transform this expression and decompose the dispersion in the following

D[Gr−1Xr(B̂r −Br)Cr] = D[GT
r−1Rr−1(Y − E[Y])(PCT

r
−PCT

r+1
)]

+D[Gr−1Rr−1(I−Rr)(Y − E[Y])PCT
r+1

]

+D[Gr−1Rr−1(I−Rr)(I−Rr+1)(Y − E[Y])(PCT
r+2
−PCT

r+3
)]

+D[Gr−1Rr−1(I−Rr)(I−Rr+1)(I−Rr+2)(Y − E[Y])(PCT
r+3
−PCT

r+4
)]

...

where Rr−1 = Xr(XT
r Gr−1(GT

r−1WrGr−1)−GT
r−1XT

r )−XT
r Gr−1(GT

r−1WrGr−1)−GT
r−1. Then

one can treat each expression differently and derive the dispersion matrix expression.
Now we have given ideas for the distribution of B̂ and hence we need to derive the

distribution of Σ̂. This is stated in the following Theorem.

Theorem 2.13. Let Ki, i = 1, 2, . . . ,m be defined as in Theorem 2.5 and let

cr−1 = n− r(Cr)−mr−1 − 1
n− r(Cr−1)−mr−1 − 1

mr = p− r(X1 : . . . : Xr) + r(X1 : . . . : Xr−1).

Let C0 = 0 and put

gi,j = cici+1 × · · · × cj−1mj

n− r(Cj)−mj − 1 i < j

gj,j = mj

n− r(Cj)−mj − 1

which are supposed to be finite and positive. Then for Σ̂ given in Theorem 2.5 it holds
that

E[nΣ̂] =
m∑
j=1

(r(Cj−1)− r(Cj))×
j−1∑
i=1

gi,j−1Ki + ΣGj−1(GT
j−1ΣGj−1)−1GT

j−1Σ


+ r(Cm)

 m∑
i=1

gi,mKi + ΣGr−1(GT
r−1ΣGr−1)−1GT

r−1Σ


where ∑0

i=1 gi,j−1Ki = 0.
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Proof. From Theorem 2.5 it follows that the expectation of PjYFjFT
j YTPT

j , j = 1, 2, . . . ,m
and Pm+1YPCT

m
YTPT

m+1 are needed where Fj = PCT
j−1

(I−PCT
j
). Since YFjFT

j YT and
YPCT

m
YT are independent of Pj and Pm+1 respectively and

E[YFjFT
j YT ] = (r(Cj−1)− r(Cj))Σ

E[YPCT
m

YT ] = r(Cm)Σ

since

E[PrΣPT
r ] =

r−1∑
i=1

gi,r−1Ki + ΣGr−1(GT
r−1ΣGr−1)−1GT

r−1Σ, r = 1, 2, . . . ,m+ 1. (2.80)

Like for the GMANOVA this is not an unbiased estimate. An unbiased estimate of Σ̂
is given as

Σ̂ = ˜̂Σ + 1
n

m∑
j=1

(r(Cj−1)− r(Cj))
j−1∑
i=1

ki,jXi(XT
i PT

i Σ̂−1PiXi)−XT
i

+ 1
n
r(Cm)

m∑
i=1

ki,m+1Xi(XT
i PT

i Σ̂−1PiXi)−XT
i

where 0 < ki,j <∞ is given as

ki,j = n(gi+1,j−1 − gi,j−1)/(n− r(Ci)−mi) (2.81)

and where ∑0
i=1 ki,jXi(XT

i PT
i Σ̂−1PiXi)−XT

i = 0. The ˜̂Σ is the estimate from Theorem
2.5.

So now we have the necessary building blocks for approximating the distributions of
the estimators. These will be investigated in the next section.

2.6 Approximations Of The Distributions of Estima-
tors

In this section we are going to derive the distributions of several estimators of the
GMANOVA. We will not be deriving the distributions of the extended GMANOVA as
this is complicated. We refer to [2] for a derivation of this. Let fX(X0) denote the den-
sity of X evaluated in the point X0 and let f (k)

X (X0) denote the k’th derivative of fX(X)
evaluated at X0.

2.6.1 Approximation Of Distribution Of Estimators For GMANOVA
We remember that the estimates for the GMANOVA is given as

B̂ = (XTS−1X)−XTS−1YCT (CCT )−

S = Y(I−CT (CCT )−C)YT

nΣ̂ = (Y −XB̂C)(Y −XB̂C)T = S + V̂V̂T

V = YCT (CCT )−C−XB̂C
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under the uniqueness conditions. The approach that we are going to be taking is approx-
imating the distribution by asymptotic considerations.

The first thing to note is that

1
n− k

S P−→ Σ as n→∞ (2.82)

since all bias in Theorem 2.11 will go to zero. Hence we can approximate B̂ by

B̂N = (XTΣ−1X)−XTΣ−1YCT (CCT )− (2.83)

Since (2.83) is a linear equation in Y, the distribution of B̂ will be approximated by
a normal distribution B̂N ∼ Nq,k(B, (XTΣX)−, (CCT )−). By using that B̂N is matrix
normal distributed and the fact that D[X] = Σ⊗Ψ when X ∼ Nq,k(µ,Σ,Ψ) we get that
D[B̂N ] = (XTΣX)− ⊗ (CCT )−. Comparing B̂ and B̂N we get from Theorem 2.10 that

E[B̂] = E[B̂N ] = B

D[B̂]−D[B̂N ] = (n− k − 1)− (n− k − p+ q − 1)
n− k − p+ q − 1 (XTΣ−1X)− ⊗ (CCT )−

= p− q
n− k − p+ q − 1(XTΣ−1X)− ⊗ (CCT )−

where the last difference is positive definite. Hence D[B̂N ] underestimate D[B̂], which
was expected as the random matrix S is replaced by the non-random matrix Σ. Now we
are going to use the normal distribution with a correction term. Observe that

B̂ = (XTS−1X)−XTS−1YCT (CCT )−

= (XTΣ−1X)−XTΣ−1YCT (CCT )−

+ (XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)YCT (CCT )−

Theorem A.8 bullet 2 yields that

(XTΣ−1X)−XTΣ−1YCT (CCT )− (2.84)

and
(I−X(XTΣ−1X)−XTΣ−1)YCT (CCT )− (2.85)

are independently distributed since Ψ = In. Moreover the same Theorem bullet 4 also
gives that S and YCT (CCT )− are independent. Define

U = (XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)YCT (CCT )− (2.86)

which is independent of B̂N since (2.84) and (2.85) were independently distributed which
are the core components of B̂N and U respectively. Furthermore they also project on
orthogonal subspaces. Then we get that B̂ = B̂N + U and E[U] = 0. This can be seen



2.6. Approximations Of The Distributions of Estimators 25

as E[Y] = XB̂C then

E[U] = E[(XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)YCT (CCT )−]
= (XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)XB̂CCT (CCT )−

= (XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)XB̂
= (XTS−1X)−XTS−1(XB̂−XB̂)
= (B̂− B̂)
= 0

Hence it makes sense to approximate B̂ by B̂N .

Theorem 2.14. Let B̂, B̂N ,U be defined as above, then an Edgeworth-type expansion
of the density of B̂ equals

fB̂(B0) = fBE
(B0) + · · · (2.87)

where

fBE
(B0) =

(
1 + 1

2s(tr(X
TΣ−1X(B0 −B)CCT (B0 −B))− kq)

)
fB̂N

(B0)

s = p− q
n− k − p+ q − 1

Proof. The form of the approximation

fBE
(B0) = fB̂N

(B0) + (−1)2 1
2!E[(vecTU)⊗2]vecf (2)

B̂N
(B0)− · · · (2.88)

follows from Theorem A.16 according to [2]. As noted before

B̂ = B̂N + U (2.89)

which is identical to B̂−B = B̂N −B + U and because of the independence between

B̂N = (XTΣ−1X)−XTΣ−1YCT (CCT )− (2.90)

and
U = (XTS−1X)−XTS−1(I−X(XTΣ−1X)−XTΣ−1)YCT (CCT )− (2.91)

as it was shown above the theorem, it follows that

E[(vecU)⊗2] = vec(D[B̂]−D[B̂N ]) (2.92)

since vec(E[vecUvecTU]) = E[(vecU)⊗2]. We have from Theorem 2.10 how D[B̂] was
obtained and below (2.83) how D[B̂N ] was obtained. The last term is the differentiated
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density according to B̂N written as f (2)
B̂N

(B0) which is equal to

d(2)fB̂N
(B0)

dB(2)
0

= −
d(fB̂N

(B0)Σ−1(B0 − µµµ))
dB0

= −d(B0 − µµµ)T
dB0

Σ−1fB̂N
(B0)−

dfB̂N
(B0)

dB0
(B0 − µµµ)TΣ−1

= −Σ−1fB̂N
(B0) + Σ−1(B0 − µµµ)(B0 − µµµ)TΣ−1fB̂N

(B0)
= fB̂N

(B0)(Σ−1(B0 − µµµ)(B0 − µµµ)TΣ−1 −Σ−1)
= fB̂N

(B0)(Σ−1(B0 −B)(B0 −B)TΣ−1 −Σ−1)

since E[B̂N ] = B. Then we get that

fBE
(B0) = fB̂N

(B0) + (−1)2 1
2!E[(vecTU)⊗2]vecf (2)

B̂N
(B0)

= fB̂N
(B0) + 1

2vec
T

(
p− q

n− k − p+ q − 1(XTΣX)− ⊗ (CCT )−
)

· vec
(
fB̂N

(B0)(Σ−1(B0 − µµµ)(B0 − µµµ)TΣ−1 −Σ−1)
)

= fB̂N
(B0)

(
1 + 1

2s
(
vecT ((XTΣX)− ⊗ (CCT )−)

·vec(Σ−1(B0 − µµµ)(B0 − µµµ)TΣ−1 −Σ−1)
))

=
(

1 + 1
2s(tr(X

TΣ−1X(B0 −B)CCT (B0 −B))− kq)
)
fB̂N

(B0)

since the vec operator only cares about the dimensions and hence the trace. The kq comes
from the dimensions of (XTΣX)− ⊗ (CCT )− ·Σ−1.

We have now proved that we can approximate B̂ by B̂N , and hence use this distribution
as the true distribution. So now we approximated a distribution which we can make a
Wald test to see if any of the coefficients are significant.

2.7 Wald Test
This section will derive the Wald-test for the GMANOVA. The Wald-test is a test for if a
predictor could be more or less influential. For this, we can use the Mahalanobis distance.
First we will derive that the squared Mahalanobis distance is chi squared distributed for
a Gaussian distribution. This is based on [4]. The Mahalanobis distance is defined as

d(x,y) =
√

(x− y)TΣ−1(x− y) (2.93)

then replacing x by X and y by the mean of the distribution µµµ we get

D = d(X,µµµ) = (X− µµµ)TΣ−1(X− µµµ) (2.94)
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where Σ is a p×p covariance matrix. To obtain a different representation of Σ a eigenvalue
decomposition is performed

Σ = UΛUT

=
p∑

k=1
λ−1
k ukuTk .

Then using this, we get

D = (X− µµµ)TΣ−1(X− µµµ)

= (X− µµµ)T (
p∑

k=1
λ−1
k ukuTk )(X− µµµ)

=
p∑

k=1
λ−1
k (X− µµµ)TukuTk (X− µµµ)

=
p∑

k=1
(λ−1/2

k (X− µµµ)TukuTk (X− µµµ))2

=
p∑

k=1
Y2
k

where Yk is a new random variable based on an affine linear transformation of X. If we
set aTk = λ

−1/2
k uk and Z = (X − µµµ) we get that Yk = aTk Z. Note that Yk ∼ N(0, σ2

k)
where σ2

k is equal to

σ2
k = aTk Σak

= λ−1
k uTkΣuk

= λ−1
k uTk (

p∑
j=1

λ−1
j ujuTj )uk

=
p∑
j=1

λ−1
k λjuTkujuTj uk

where ui are eigenvectors, the dotted products will be 0 for j 6= k. When j = k we get
that σ2

k = 1 and hence Yk ∼ N(0, 1). By the same arguments as above we get that

σ2
jk = aTj Σak =

0 j 6= k

1 j = k
(2.95)

which makes the Yk independent of Yj. Hence we get that

D =
p∑

k=1
Y2
k (2.96)

which is a χ2 distribution with p degrees of freedom.
So now we know that the squared Mahalanobis distance is χ2 distributed so we need

to plug in what values that we have for the test. So setting the X in (2.94) to be the i’th
column in B̂ and we have derived the Σ in (2.55) as the dispersion of B̂. The µµµ can be
replaced by what we are testing for; it could be if the i’th column of B̂ has no significant
effect i.e. if it is zero. It could also be if it should have a bigger impact, hence giving it a
greater value than estimated.





Chapter 3

Implementation Of The GMANOVA

This chapter will be focusing on implementing the GMANOVA into R. It will be using
the theory described in the former chapter. We remember that the estimates were given
as

B̂ = (XTS−1X)−XTS−1YCT (CCT )−

S = Y(I−CT (CCT )−C)YT

nΣ̂ = (Y −XB̂C)(Y −XB̂C)T = S + V̂V̂T

V = YCT (CCT )−C−XB̂C

We will both implement the GMANOVA and a likelihood ratio test.

3.1 Implementation
This section will be focusing on implementing the GMANOVA into R. Note that we do
assume full rank for X and C hence the estimate of B̂ is unique. The first thing to do
is making a design matrix, which is done by the command model.matrix for a given
formula. Then we need the C matrix which is a between-individuals matrix. So for an
example of C let us divide the n measurements into three groups where the number of
observations in these groups are n1, n2, n3. Then the C matrix could look like this for this
example

C =


1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

 (3.1)

where the first 1’s are replicated n1 times, and the second row has n2 1’s and so on, for
C of size 3 × (n1 + n2 + n3) because there are 3 groups. If there is only one intercept,
the C matrix reduces to a 1Tn vector, which was the same as in our example. So each row
represents a site in our data. That means that the C matrix is a model.matrix with
the sites, and the X matrix is a model.matrix with our SNPs.

Next thing is the estimation of S since this is used in the estimation of B̂. So this is
written as

S = Y(I−CT (CCT )−1C)YT/n (3.2)

29
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It has also been divided by n which is done for the Σ̂ to be easier to estimate later on.
Then we can estimate B̂ as

B̂ = (XTS−1X)−1XTS−1YCT (CCT )−1 (3.3)

which again is the exact same as in (2.19). Then we can estimate the data by

XB̂C. (3.4)

The code looks like this

gmanova <− function ( f1 , f2 , y , x1 , x2 ){
x1$y <− 1
C <− model .matrix ( f1 , data=x1 )
x2$y <− 1
X <− model .matrix ( f2 , data=x2 )
tC <− t . default (C)
D1 <− tC%∗%ginv (C%∗%tC)
n <− dim( y ) [ 2 ]
Sinv <− solve ( y%∗%(diag (1 , n)−D1%∗%C)%∗%t . default ( y )/n)
tX <− t . default (X)
B <− ginv ( tX%∗%Sinv%∗%X)%∗%tX%∗%Sinv%∗%y%∗%D1
colnames (B) <− rownames(C) ; rownames(B) <− colnames (X)
pred <− X%∗%B%∗%C

}

Then we need to estimate the Σ matrix, but that is just the error term, so it can
be estimated from data by the variance of the residuals. But this is unbiased as we saw
in Chapter 2, so we have two different estimates; one that is unbiased and one that is
biased. The unbiased estimate is given in Section 2.5.1, (2.76). So the code looks like the
following

r e s <− y −pred
i f ( unbiased . e s t imate == T){

sigma <− (1/ (n−qr (C)$rank ) )∗y%∗%(diag (1 , n)−D1%∗%C)%∗%t . default ( y )
} else {

sigma <− ( y − pred )%∗%t . default (y−pred )/n
}

which estimates the Σ̂. Then combining these two, we get the full GMANOVA function

gmanova <− function ( f1 , f2 , y , x1 , x2 , unbiased . e s t imate = T){
x1$y <− 1
C <− model .matrix ( f1 , data=x1 )
x2$y <− 1
X <− model .matrix ( f2 , data=x2 )
tC <− t . default (C)
D1 <− tC%∗%ginv (C%∗%tC)
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n <− dim( y ) [ 2 ]
Sinv <− solve ( y%∗%(diag (1 , n)−D1%∗%C)%∗%t . default ( y )/n)
tX <− t . default (X)
B <− ginv ( tX%∗%Sinv%∗%X)%∗%tX%∗%Sinv%∗%y%∗%D1
colnames (B) <− rownames(C) ; rownames(B) <− colnames (X)
pred <− X%∗%B%∗%C
r e s <− y −pred
i f ( unbiased . e s t imate == T){

sigma <− (1/ (n−qr (C)$rank ) )∗y%∗%(diag (1 , n)−D1%∗%C)%∗%t . default ( y )
} else {

sigma <− ( y − pred )%∗%t . default (y−pred )/n
}
l i s t (beta=B, sigma=sigma , r e s=res , y=y ,model=l i s t ( f 1=f1 , f 2=f2 ) )

}

We can also check that the nested models m0 ⊂ m1 are not significantly different by
a likelihood ratio test. This is straight forward and implemented as follows

t e s t . gma <− function (m0,m1){
df <− prod (dim(m1$beta))−prod (dim(m0$beta ) )
n <− dim(m1$y ) [ 1 ]
stat <− n∗( determinant (m0$sigma )$modulus [ 1 ]
−determinant (m1$sigma )$modulus [ 1 ] )
pval <− 1−pchisq ( stat , df )
l i s t ( t e s t . stat=stat , df=df , pval=pval )

}

The reason for the p-value to be calculated as that, is because the stat part is approx-
imately χ2 distributed. This is due to the following theorem from [5].

Theorem 3.1 (Wilks Theorem). If a population with a variate x is distributed according
to the probability function f(x, θ1, θ2, . . . , θh), such that optimum estimates θi of the θ,
exist which are distributed in large samples according to |cij |

1
2

(2π)h/2 exp
(
−1

2
∑h
i,j=1 cijzizj

)
,

where zi = (θ̂i − θi)
√
n, cij = −E[∂2 log f

∂θi∂θj
] then when the hypothesis H is true that

θi = θ0i, i = m+ 1,m+ 2, · · · , h where θ̂0 = (θ01, . . . , θ0m,
ˆ̂
θm+1, . . . ,

ˆ̂
θn), the distribution

of −2 log λ, where λ is given by l(x;θ0)
l(x;θ) is, except for terms of order 1/

√
n , distributed

like χ2 with h−m degrees of freedom.

This is a asymptotic result which states that the Likelihood Ratio test is asymptotically
χ2 distributed with dim(m1)− dim(m0) degrees of freedom for nested models m0 ⊂ m1.
Then since this handles the less extreme measurements, one could do as in the code to
get the α% most extreme cases, where α is the significance level.

The reason for the quotient l(x;θ0)
l(x;θ) to be written in the code as n · (det(Σ)− det(Σ0))
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is due to the fact that the likelihood is given as

L(B,Σ) = |Σ|n/2 exp
(
−1

2tr((Y −XBC)TΣ−1(Y −XBC))
)

(3.5)

and when replacing B by the estimate B̂ the likelihood becomes

L(B̂,Σ) = |Σ|n/2 exp
(
−1

2tr(Σ
−1nΣ)

)
(3.6)

so when replacing Σ by its estimate Σ̂ we get

L(B̂, Σ̂) = |Σ|n/2 exp
(
−np2

)
. (3.7)

Then one can see that the quotient is

Q = L(x; θ0)
L(x; θ) = |Σ̂0|−n/2

|Σ̂|−n/2
. (3.8)

So the likelihood ratio test becomes

− 2 logQ = n(log(Σ̂0)− Σ̂) (3.9)

which is approximately χ2 distributed with the number of predictors in B minus the
number of predictors in B0 degrees of freedom.

Before proceeding we need to check that the code actually works and do as it is
supposed to. This is done in the next section for a simple example.

3.2 Example
In this section we will be giving a simple example of 2 sites with 1 repetition and 1 SNP.
There will be three subjects with 3 different combinations of phenotypes. We will in this
example choose the SNP rs1015362. So we have that the X becomes

X =


1 0 0
1 1 0
1 0 1

 (3.10)

and that the C becomes

C =
1 1

0 1

 . (3.11)

The matrix B̂ is the one that we need to estimate, so this can be written as

B̂ =


b11 b12

b21 b22

b31 b32

 . (3.12)
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If we take the product BC we see that

BC =


b11 b11 + b12

b21 b21 + b22

b31 b31 + b32

 (3.13)

which is the site effect on each estimate. So b11 is the estimate for the standard level site,
which is arm, and then b11 + b12 is the estimate of buttocks. So b12 is the effect of going
from arm to buttock. Then taking the X on this product, gives the estimates for each
person, which is the 3 people in this example.

The y vector in this given example for three different people chosen at random is given
by

y =


7.20 6.50
8.70 6.90
7.40 5.30

 (3.14)

which is a observation at both places for each person. After doing the formula in Chapter
3.1 we get that the B̂ matrix looks like

(Intercept) sitebuttock
(Intercept) 7.40 -2.10

rs1015362CT 1.30 0.30
rs1015362T -0.20 1.40

which is read as the pigmentation is lower on the buttock than the arm for the stan-
dard level, since the standard level intercept on buttock is 7.40−2.10 = 5.30. Furthermore
you are getting darker on both sites when you have the CT combination than the CC
combination which is the standard level. Then on the arm you are getting lower pigmen-
tation if you have the TT combination compared to standard level. Both places it raises
the pigmentation on the buttocks compared to the standard level.

This estimate of B̂ is the same that we get for our example, which makes the function
valid and ready to use for our data.





Chapter 4

Analysis

This chapter will be using the GMANOVA command described in Chapter 3 to analyse
the dataset described in Section 1.1. First we will be doing some elementary analysis and
work our way from there. It should be noted that in section 3.2 it was described how the
X,B and C matrices looked like, so this will not be given at any point.

4.1 Preliminary Analysis
In this section we will be doing the initial analysis. The first thought is just doing the
analysis with no assumptions. This section will go into detail about every aspect of the
analysis, whereas the next sections will not be going into detail, unless an exciting finding
is done. So doing the analysis without assumptions results in the following table. That
is all SNPs are used and all sites are used without any restrictions.
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(Intercept) sitebuttock siteface
(Intercept) 12.88 1.89 2.72
rs1015362CT 0.75 -0.17 -0.31
rs1015362T -0.02 0.23 -0.16
rs10777129CT 0.13 0.14 0.30
rs10777129T 0.08 0.79 0.49
rs10831496CT -0.16 -0.35 -0.38
rs10831496T -0.32 -0.09 -0.24
rs11238349G -0.66 -0.74 -0.84
rs11238349GA -0.57 -0.67 -0.47
rs12203592CT -0.40 -0.37 -0.06
rs12203592T 0.39 -0.25 0.61
rs12350739G 0.34 0.32 0.09
rs12350739GA 0.45 0.30 0.07
rs12668421AT -0.36 -0.42 -0.28
rs12668421T -1.09 -0.50 -0.64
rs12896399C 0.34 -0.09 0.04
rs12896399CA 0.70 -0.18 -0.08
rs12913832G -0.55 -0.44 -0.20
rs12913832GA -0.66 -0.22 -0.02
rs13289G 0.22 0.09 0.11
rs13289GC -0.16 0.22 0.16
rs13933350CT -0.23 0.05 0.32
rs13933350T -0.05 0.22 -0.35
rs1408799G -0.43 -0.54 -0.40
rs1408799GA 0.07 -0.48 -0.20
rs1426654G 2.59 -0.86 -1.09
rs1426654GA -0.11 -0.00 -0.20

(Intercept) sitebuttock siteface
rs16891982G 0.83 0.64 -0.18
rs16891982GC 1.01 1.09 -0.13
rs1800407CT -1.10 -0.50 -0.19
rs1800407T -2.28 1.25 0.77
rs2031526CT -0.18 0.10 0.12
rs2031526T -0.28 0.38 -0.15
rs2424984CT -1.41 -0.44 0.16
rs2424984T -1.45 -0.02 0.05
rs2470102G -1.71 1.22 1.08
rs2470102GA 0.88 -0.08 0.25
rs26722G -3.13 -1.95 -1.12
rs26722GA -3.00 -1.64 -1.00
rs4424881CT 0.24 0.18 0.24
rs4424881T 0.71 0.48 0.34
rs4911414GT -0.48 -0.10 0.21
rs4911414T 1.01 -0.68 -0.45
rs6119471G 0.41 -0.08 -0.23
rs6119471GC 0.44 -0.26 -0.27
rs6742078GT 0.07 0.12 -0.01
rs6742078T -0.22 0.50 0.04

Table 4.1: Estimates for the model with no assumptions made

In Table 4.1 it can be seen that there are 3 different columns, besides the naming
column. The first is an intercept which is the value of the standard level which is arm
in this case. So if a person has genotype rs1015362CT, the persons pigmentation is
increased by 0.75, whereas if the person has rs1015362T it is decreased by 0.02 for arm
pigmentation. The basic arm pigmentation is 12.88, which is a person that has only the
standard level alleles. Since there are only 2 or 3 different genotypes, the standard level is
the first letter that comes. So for rs1015362 it is rs1015362C that is the standard level.

The next two columns are the effects of genotypes on the remaining sites(buttock,face),
which reveals what impact the given genotype has on the site pigmentation compared to
standard level. As an example it gives darker pigmentation on the buttocks if a person has
rs1015362T while it gives a lighter pigmentation on the face. The arm pigmentation has
the lowest amount of pigmentation compared with the others, which is quite surprising
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comparing with Table 1.1 where buttock has the lowest. So one would expect going from
arm to buttock to have a negative effect i.e. a negative number. One more thing to note
is that the standard levels is expected to be around the mean, but as can be seen it is
higher than the mean.

Now we know how to interpret the estimates and what they represent. Now we need
to check that these estimates actually makes sense, which is done by making sure that
the error is normally distributed since this is assumed in Definition 2.1. This is done by
examining a QQ-plot, which shows the distribution against a normal distribution. Hence,
if it is normally distributed, it will lie on a straight line plotted against the generated
normal distribution. But since there are 9 measurements for each subject, we need to
check each measurement separately in order to find if one measurement is not normally
distributed. The QQ-plot can be seen on Figure 4.1 for the residuals, which is the pre-
dictions subtracted from the data.
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Figure 4.1: QQ-plot for the model with no assumptions

As can be seen non of the measurements seem to violate the assumption regarding
normal distribution of the error term. They do however seem to be right skewed, which
will be taken care of in Section 4.3. But for now, we will be going forward with this.

Now we know that all assumptions are met, so we need to have a measure of how well
the estimated pigmentation matches up against the actual measurements. This is done
by a visual representation, where the estimates are plotted against the actuals. This is
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seen on Figure 4.2.
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Figure 4.2: Fitted values versus the actual observations

As can be seen on Figure 4.2 there is a great variance, which means that the model
does not incorporate the variance properly in the data, but that is also expected as this
is just a naive model of data. But as can be seen when zooming in on the big black
lump of observations is that the model seems to fit quite well, as there are quite a lot
of measurements that lie just around the line. So this means that we can continue with
this model in good faith. The mean square error is 6.812 which we want to lower in the
remaining of this chapter. We will try to do this in various ways throughout, but this
section serves as an introduction to understanding the results, hence the results will not
be explained in depth for the rest of this chapter. One new approach to data, is to see
what happens when we eliminate the effect of which site the measurement is taken at.
This is done in the next section.

4.2 No Site Effect
This section will try to make a model where there is no site effect i.e. C = I. This
will make the estimates be all the same, and hence each subject gets one value for all 9
measurements. This could be thought to violate the normality assumption, but doing the
same as in Section 4.1, we see that it does not violate the normal distribution assumption.
Hence we can see whether the estimates are better than for the model with no assumptions
given in Section 4.1. This is seen on Figure 4.3.
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Figure 4.3: Fitted values versus the actual observations with no site effect

Comparing Figure 4.3 and Figure 4.2 it can be seen that Figure 4.2 seems to fit the
data much better than Figure 4.3. This is also supported by the mean square error of
7.504 which is bigger than the model with no assumptions. So the site does have an effect
on the prediction of pigmentation.

We can also test this hypothesis using our likelihood ratio test. By doing this the p-
value is 8.3 ·10−14 which must mean that we can reject the hypothesis of no site effect. So
the site can not be disregarded. So another approach is to log transform the measurements,
as we saw in the no assumptions model that it had some difficulties when calculating the
more "extreme" measurements.

4.3 Transformed Data
In this section we will try to transform the data such that we may find some better
estimates. We are doing this since on Figure 4.1 we saw that the data could benefit
from a transformation. Since this data seems to be right-skewed, we might apply a log
transformation on the data. The problem was the QQ-plots in Figure 4.1, where we saw
a right skewedness, that we want to eliminate. This is seen on Figure 4.4.
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Figure 4.4: Fitted values versus the actual observations with no site effect

The transformed data follow a normal distribution for the errors, and it improved a
lot compared to Figure 4.1. So it does make sense to try and analyse our data using this
transformation in order to get better estimates.

After investigating it gives a worse estimate of the pigmentation, with a mean square
error of 1.064 after transforming back1, which is higher than the model without any
assumptions so this is not the way to go.

Another transformation one might perform is a square root transformation, which is
also common for right-skewed data. Such a transformation also yields normality as seen
on Figure 4.5.

1The mean of the lognormal distribution is exp(µ+ σ2/2)
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Figure 4.5: Fitted values versus the actual observations with no site effect

These quantiles also look great and normal distributed, so we can use this to model the
pigmentation. This yields a mean square error of 0.170 where we have not transformed it
back, so it is not comparable.

Now we have tried altering both the effect of the sites where it is measured and
transforming the data. So now we are missing one obvious thing; altering the SNPs in a
thoughtful way.

4.4 Altering SNPs
In this section we will be trying to alter the layout of the SNPs by trying to eliminate
some of them as some might just bring noise to the model and not helping in estimating
the pigmentation. So we will try to cut some SNPs using the likelihood ratio test that
we implemented in Chapter 3. We will be doing this by cutting those values that have a
p-value above 0.05 which is the significance level that is chosen. But just to try different
things, we will also be trying with a significance level of 0.01. This gives the following
SNPs to be used given in Table 4.2.

0.05 0.01
rs12913832 rs2470102
rs1408799
rs1800407
rs2470102

Table 4.2: Significant SNPs
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This means that these 4 and 1 SNPs respectively predicts the pigmentation. So let us
see how well it performs compared to the model with no assumptions.
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Figure 4.6: Fitted values versus the actual observations with no site effect

These model have a mean square error of 8.122 for the p-value of 0.01 and a mean
square error of 7.619 for the p-value of 0.05. So this means that none of the reduced models
fit better than the model with no assumptions. This was also expected as comparing
Figure 4.6 and Figure 4.2 we see that Figure 4.2 lie more closely around the line.

So four different approaches to data has not resulted in a better estimation than the
model with no assumptions. So this thesis will not investigate this any further.





Chapter 5

Discussion and Conclusions

This thesis has analysed the pigmentation of 376 different Brazilians using the GMANOVA
approach. This approach was chosen as it could handle both the difference in SNPs be-
tween subjects and the difference between the sites. The GMANOVA could also handle
the repeated measurements within the subjects very nicely. Furthermore not one obser-
vation was deemed to exemplify that it did not meet the assumptions of the model, which
makes it valid.

The analysis in this thesis could have been more thorough, but due to time constraints
it was not possible to go more in-depth in the analysis. But still it was found that there
were 4 SNPs that were used in predicting pigmentation for a significance level of 0.05.
This can be seen in Table 4.2. Many different approaches were taken to data including
transforming the data and checking significance of all SNPs and of the sites. One thing
that could be an extension is doing the same as in our example for our data, which
would make make the SNP effect clear as well as the site specific effect. It could also be
eliminating the difference between the sites if done for them selves, that is the mean of
buttock is lower than for forehead. The only problem with this place specific analysis is
that we are interested in modelling a person’s general pigmentation, and this is not done
for a place specific analysis.

All in all the GMANOVA performs well with low errors and fits the data great. It has
also gotten some low variation when comparing the actual values with the fitted values.
It performed especially well for the data where we had not done anything, so it is easy to
use the model for this data.

This thesis concludes that the GMANOVA uses 4 SNPs for a significance level of 0.05;
rs12913832, rs1408799, rs1800407, rs2470102. These four SNPs is the most important but
comparing with the former reports, none of these has been deemed important. So this is
a quite surprising result.

This thesis concludes that the GMANOVA model with no assumptions is the best
suited for this data, as it fits the data the best and has the lowest error.
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Appendix A

Useful Results

All these results come from [2] and no proofs will be given. These are given in the source.

Theorem A.1. Let A > 0 and B symmetric. Then, there exist a non-singular matrix
T and diagonal matrix Λ = (λ1, . . . , λm)d such that

A = TTT B = TΛTT (A.1)

where λi, i = 1, 2, . . . ,m are eigenvalues of A−1B.

This theorem also holds if B is a positive semi definite matrix.

Corollary A.2. For S > 0 and an arbitrary matrix B of proper size it holds that

S−1 −Bo(BoTSBo)−1BoT = S−1B(BTS−1B)−1BTS−1 (A.2)

Theorem A.3. A representation of the general solution of the consistent equation in
X : AXB = C is given by any of the following formulas

X = X0 + (AT )oZ1BT + ATZ2BoT + (AT )oZ3BoT

X = X0 + (AT )oZ1 + ATZ2BoT

X = X0 + Z1BoT + (AT )oZ2BT

where X0 is a particular solution and Zi, i = 1, 2, 3 are properly sized, arbitrary matrices.

Proposition A.4. For column vector spaces the following relations hold

• C(A) ⊆ C(B) if and only if A = BQ for some matrix Q

• If C(A + BE) ⊆ C(B), for some proper sized matrix E then C(A) ⊆ C(B). If
C(A) ⊆ C(B) then C(A + BE) ⊆ C(B)

49
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•

C(ATB1) ⊆ C(ATB2) if C(B1) ⊆ C(B2)
C(ATB1) = C(ATB2) if C(B1) = C(B2)

• C(ATB) = C(AT ) if C(A) ⊆ C(B)

• C(A) ∩ C(B) = C((Ao : Bo)o)

• For any A−1 it holds that CA−1A = C if and only if C(CT ) ⊆ C(AT )

• C(AT ) = C(ATB) if and only if r(ATB) = r(AT )

• Let A ∈ Rp×q,S > 0, r(H) = p. Then C(AT ) = C(ATH) = C(ATSA)

• Let A ∈ Rp×q,S > 0 then

C(ATSA)−1ATSA = C if and only if C(CT ) ⊆ C(AT )
A(ATSA)−1ATSB = B if and only if C(B) ⊆ C(B)

CAB(CAB)−1C = C ifr(CAB) = r(C)

• CA−1B is invariant under choice of g-inverse if and only if C(CT ) ⊆ C(AT ) and
C(B) ⊆ C(A)

• Let S > 0 then C1(ATSA)−1C2 is invariant under any choice of (ATSA)−1 if and
only if C(CT

1 ) ⊆ C(AT ) and C(C2) ⊆ C(AT )

• If C(CT ) ⊆ C(AT ) and S > 0 then

C(C) = C(C(ATSA)−1) = C(C(ATSA)−1ATS) (A.3)

• C(AB) ⊆ C(ABo) if and only if C(A) ⊆ C(ABo)

Theorem A.5. Let P be an arbitrary projector and A a linear transformation such that
PA is defined. Then

R(PA) = R(P ) ∩ (N (P ) +R(A)) (A.4)

Theorem A.6. For any transformations A,B assume that ATBo is well defined. Then
the following statements are equivalent

• R(AT ) ⊆ R(ATBo)

• R(AT ) = R(ATBo)
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• R(A) ∩R(B) = {0}

Theorem A.7. Let X ∼ Np,n(µµµ,Σ,Ψ) then for any A : q × p and B : m× n then

AXBT ∼ Nq,m(AµµµBT ,AΣAT ,BΨBT ) (A.5)

Theorem A.8. Let X ∼ Np,n(µµµ,Σ,Ψ),Y ∼ Np,n(0,Σ,Ψ) and A,B,C,D,K,L are
non-random matrices of proper sizes. Then

• AXK is independent of CXL for all constant matrices K,L if and only if AΣCT =
0.

• KXBT is independent of LXDT for all constant matrices K,L if BΨDT = 0

• YAYT is independent of YBYT if and only if

ΨAΨBTΨ = 0, ΨATΨBΨ = 0
ΨAΨBΨ = 0, ΨATΨBTΨ = 0

• YAYT is independent of YB if and only if

BTΨATΨ = 0
BTΨAΨ = 0

Proposition A.9. Let P be a projector on V1 along V2. Then

• P is a linear transformation

• PP = P , i.e. P is idempotent

• I − P is projector on V2 along V1 where I is the identity mapping

• The range space R(P ) is identical to V1 the null space N (P ) equals R(I − P )

• If P is idempotent then P is a projector

• P is unique

Proposition A.10. Let A ∈ Rm×n of rank r. Then there exists a triangular matrix
T ∈ Rm×m and an orthogonal matrix H ∈ Rn×n such that

A = T

Ir 0
0 0

H (A.6)
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and
A = KL (A.7)

where K ∈ Rm×r,L ∈ Rr×n and K consists of the first r columns of T and L consists of
the first r rows of H.

Definition A.11. The matrix W : p× p is said to be Wishart distributed if and only if
W = XXT for some matrix X ∼ Np,n(µµµ,Σ, I),Σ ≥ 0. If µµµ = 0 we have a central Wishart
distribution which is denoted as W ∼ Wp(Σ, n), and if µµµ 6= 0 we have a non-central
Wishart distribution which will be denoted Wp(Σ, n,∆) where ∆ = µµµµµµT .

Theorem A.12. Let W ∼ Wp(Σ, n,∆) and A ∈ Rq×p. Then

AWAT ∼ Wq(AΣAT , n,A∆AT ) (A.8)

Proposition A.13. Let

A =
A11 A12

A21 A22

 , A−1 =
A11 A12

A21 A22

 (A.9)

so the dimensions of A11,A12,A21,A22 corresponds to those of A11,A12,A21,A22. Then

• (A11)−1A12 = −A12A−1
22

Theorem A.14. Let X ∼ Np,n(µµµ,Σ,Ψ). Then

• E[XAXT ] = tr(ΨA)Σ + µµµAµµµT

Theorem A.15. Let W ∼ Wp(Σ, n) then

• E[W−1] = 1
n−p−1Σ−1, n− p− 1 > 0

• E[tr(W−1)W] = 1
n−p−1(nΣtr(Σ−1)− 2I), n− p− 1 > 0

Theorem A.16. Let y and x be random p-vector and r-vector, p ≤ r and let P : p× r
be a matrix of rank r(P) = p and A : r × r positive definite. Then

fy(y0) = |A| 12 |PA−1P|
1
2

(2π) 1
2 (r−p)fx(x0) +

m∑
k=1

(−1)k 1
k!vec

Thk(0vecf (k)
x (x0) + r∗m


(A.10)
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and
r∗m = (2π)−r

∫
Rr
rm(t) exp(−itTx0)φx(t)dt. (A.11)

where

hk(0) = i−klk(P0,0)

lk(0,0) = (2π) 1
2 (r−p)φy(0)

φx(0)

rm(t) = 1
(m+ 1)!tl

m+1(P(Θ ◦ t),Θ ◦ t)t⊗m

where Θ ◦ t is the Hadamard product of Θ, t and Θ is a r-vector with elements between
0 and 1.

Definition A.17. Let Σ = ττT and Ψ = γγT where τ : p × r and γ : n × s. A matrix
X ∼ Np,n(µµµ,Σ,Ψ) if it has the same distribution as

µµµ+ τUγT (A.12)

where µµµ : p × n is non-random and U : r × s consists of s I.I.D Nr(0, I) vectors ui, i =
1, 2, . . . , s.

Theorem A.18. Let W,Y and V be p × p random symmetric matrices with W ∼
Wp(Σ, n) and V = W− nΣ. Then for the density fY(X) the following expansion holds

fY(X) = fV(X)
(
1 + E[V(2)(Y)]TL∗1(X,Σ)

+1
2vec

T (D[V2(Y)]−D[V2(V)] + E[V2(Y)]E[V2(Y)]T )vecL∗2(X,Σ)

+1
6(vecT (c3[V2(Y)]− c3[V2(V)])T

+3vecT (D[V2(Y)]−D[V2(Y)])⊗ E[V2(Y)]T + E[V2(Y)]T⊗3)
×vecL∗3(X,Σ) + · · ·

)
where

V 2(W) = (w11, w12, w22, . . . , w2n)
L∗k(X,Σ) = Lk(X + nΣ,Σ)

where Lk is defined on page 270 in [2] for k = 0, 1, 2, 3.
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Corollary A.19. Let V ∼ Wp(I, n) and apply the partition

V =
V11 V12

V21 V22

 , r(X)× r(X) r(X)× (p− r(X))
(p− r(X))× r(X) (p− r(X))× (p− r(X)) (A.13)

then
V12V−1/2

22 ∼ Nr,p−r(0, I, I) (A.14)

is independent of V22.
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