
Nidan
A Security Search Engine for The World Wide Web

Master’s Thesis - 10th Semester Software Engineering
ds103f19

Cassiopeia
Department of Computer Science

Aalborg University

Copyright © Aalborg University 2014

Written in LATEXfrom a template made by Jesper Kjær Nielsen.

Software Engineering
Aalborg University

https://www.cs.aau.dk/

Title:
Nidan: A Security Search Engine for The
World Wide Web

Theme:
Security in distributed systems

Project Period:
Spring Semester 2019

Project Group:
ds103f19

Participant(s):
Jesper Windelborg Nielsen
Mathias Jørgen Bjørnum Leding

Supervisor(s):
René Rydhof Hansen
Thomas Panum

Copies: 4

Page Numbers: 37

Date of Completion:
June 2, 2019

Abstract:

In this report, the development and usage
of Nidan and KNAS are described. Nidan
is a systematic webcrawler which collects all
loaded JavaScript, cookies, and related meta-
data and stores it in a well-strutured rela-
tional database. KNAS is a data-processing
tool that detects vulnerabilities connected to
each visted website. These include vulner-
abilities in the implemented JavaScript li-
braries, CMSs, and server software. Nidan
and KNAS has been tested on around 2 %
of the entire .dk zone file. This test showed
that KNAS detected vulnerable software on
40.47 % of the websites. 92.49 % of the
vulnerable websites have vulnerabilities from
last year or older, meaning that the vast
majority of vulnerable sites rarely update
their software. From the data collected by
Nidan, it is also possible to analyze the cook-
ies. Since Nidan makes no interaction with
the websites other than visiting, all tracking
cookies sat break the GDPR and EU’s cookie
law.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement
with the author.

Aalborg University, Januar, 2019

Jesper Windelborg Nielsen
<jwni14@student.aau.dk>

Mathias Jørgen Bjørnum Leding
<mledin14@student.aau.dk>

Contents

Preface 1

1 Introduction 3

2 Preliminaries 5
2.1 Problem statement . 5

3 Design 7
3.1 Architecture for Nidan . 7
3.2 KNAS . 8
3.3 Fingerprinting known systems and libraries . 11
3.4 Data storage strategy and architecture . 12
3.5 Design choices . 14

4 Results 17
4.1 Deep dive into the test crawl . 17
4.2 Deep dive into Nidan scan 1 . 18

5 Evaluation 21
5.1 The module tool Retire.js . 21
5.2 The post-processing tool KNAS . 21
5.3 SSL certificate findings . 22
5.4 Privacy Badger . 22
5.5 Why Nidan? . 23

6 Conclusion 25
6.1 Future Work . 25

Bibliography 29

Acronyms 31

A Database Schema 33

B Cookies for railgun.dk 35

v

Preface

This report is a documentation of the project work of group ds103f19 from Aalborg University.
We, ds103f19, would like to thank our supervisor René Rydhof Hansen and assistant supervisor
Thomas Panum for their supervision throughout the project period. This project has resulted
in two programs — Nidan and KNAS — which will both be uploaded along with the project
and can be seen on GitHub at jwindelborg/aau-security after 14-05-2019.
In this semester report, we use the Chrome DevTools Protocol (CDP) to run Chrome instances.
For the purpose of this project, the use of the proprietary Chrome or the free version Chromium
is of no importance and we refer to them interchangeably.

1

https://github.com/jwindelborg/aau-security/

Chapter 1

Introduction

The internet is one of the most central parts of most people’s lives. Nearly every Danish citizen
today is online. With the internet comes a range of possibilities but also related threats. The
amount of internet-related attacks towards individuals and organizations are on the rise[17][7].
These attacks can try to extort money from a victim, either from ransomware[13] or from
utilizing leaked data such as user credentials from a vulnerable site[10]. One of the ways these
attacks can be made possible is by exploiting vulnerabilities in a non-malicious website. For
example, ransomware can be installed on a victim’s computer if an attacker finds a severe Cross-
Site Scipting (XSS) vulnerability that lets him inject malicious JavaScript. Another common
way of exploiting users in cyberattacks is phishing which can often exploit XSS vulnerabilities
to make the phishing attack more believable.
Similarly, internet users are being tracked more than ever before. Advertisement companies,
analytic companies, and the rise of big data have made spying on users a lucrative business.
The concern about users’ privacy has lead to bills passed by the EU such as the EU directive
2002/58/EC also known as the EU Cookie Law and EU’s General Data Protection Regulation
(GDPR).
At the time of writing, the GDPR has been in effect for more than a year and the EU cookie
law for even longer. This means that no website visited should track a user before their consent
is given. It would be interesting to see whether any of the visited sites do not comply with the
law in this regard.
It would be interesting to see how the situation is for visitors of Danish websites. How many
websites are either vulnerable to an extend that puts the user at risk and how many are not
complying with the laws protecting the users’ privacy?
Another way a website can put its users at risk is by being vulnerable to server-side flaws;
for example in their TLS/SSL server. A flaw, such as The Heartbleed Bug, could expose user
credentials or even user credit card information[3].

3

Chapter 2

Preliminaries

In the previous semester project report[9], it was concluded that there is a need for a software
solution to identify security related problems on the entire Danish web. In the report, the
subject was narrowed down to focusing on detecting malicious websites and vulnerabilities in
JavaScript on websites as both of these are common and can be tested without performing any
non-consensual penetration tests on the website. From the research, it was also concluded that
CDP is one of the only tools for running a Chrome instance headless. This lead to the choice
of building Nidan around CDP. This leads into the following problem statement.

2.1 Problem statement

What are the key factors when detecting and identifying web-related security issues across all
Danish websites?

To answer this problem, the following sub-problems are presented:

• How do we crawl every Danish website for JavaScript?

• How do we reliably, and legally, identify and verify security-related problems on Danish
websites?

• How can the collected data be queryable with information about the security-related
problems and their context?

5

Chapter 3

Design

To visit every .dk top-level domain (TLD), it is needed to know which domains exist. This
information is commonly stored in what is known as a zone file. As of writing, the entire .dk
zone file contains 905399 unique domains. Visiting this many websites, while saving relevant
data, is a hard task and requires a complex program. The task about visiting each site needs
to be handled in a way where multiple sites can be visited at the same time, with a distinction
between the data collected from different sites. For a robust solution, it is also needed to make
sure identical data is not stored multiple times. A JavaScript library might be used on hundreds
or even thousands of sites. The system should be able to handle many instances writing and
reading data at the same time and the system should be able to handle any sort of crash or
error a website could produce. For this reason, a solid design is needed.

3.1 Architecture for Nidan

The main CDP manager is named Nidan. Its task is to visit every website in a table consisting
of the desired domains and gather all needed data for later analytics. This process is the slowest
but also most important process in the system. Since Nidan is meant to be used on large inputs,
it needs to be fast. To make Nidan as fast as possible, it is designed to be parallelized both on
multiple machines and with multiple running instances on each machine. To ensure multiple
running instances do not work on the same domain at the same time, each instance adds the
domains they are going to work on to a table of locked domains. This table has information
about which instance performed the locking. When a set of domains is locked, the program
instance starts a headless Chrome instance listening on a user-specified port. The next step is
to process the domain queue one domain at a time. For each domain, it clears all browser data
before navigating to the domain. It then saves all JavaScript loaded on the site, along with a
reference to the site. It also saves all browser cookies. Simultaneously, it keeps Chrome running
by a thread that stops and restarts Chrome every time it is not responding on its debugging
port. After a domain is processed, it is added to a table of visited domains. Every time an
instance is assigned domains, every domain previously locked by the instance is removed from
the table of locked domains in favor of a new batch of domains. This way, the instance does
not have to waste resources on removing every locked domain individually and it also ensures
that locked domains, which were never visited due to a crashed instance, are released back to
the pool of free domains.
Nidan is separated into several modules handling specific parts of the application’s tasks. A
main module is responsible for running the program. It starts the argument parser module and

7

8 Chapter 3. Design

decides what to turn on and run based on the user input. Since Nidan heavily relies on CDP,
the main module also works as the Chrome handler and is responsible for starting Chrome and
keep Chrome running throughout the scanning session. The argument parser module handles
user input supplied as a command line argument when running the main application. A server
module handles the server listening for information supplied by Privacy Badger. A database
module provides access to the database. The separation of the code into smaller modules allows
for parts to be easily swapped in favour of new parts. For example, changing the database
engine would only require a new database module to be built and replace the old. Similarly,
adding new modules is also trivial as keeping the code modular makes it possible to avoid side
effects interfering with the existing functionality.
To make Nidan run stable and be resistant to all kinds of errors associated with the Chrome
browser crashing or stalling or the database failing a transaction, the primary Nidan instance
is developed to fail early. When the Nidan instance is made to fail early, it prevents instances
from getting stuck on websites and it ensures that no work is performed if, for example, the
connection to the database is lost. To counter the Nidan instances terminating on errors, Nidan
is run through a runner application. The runner application starts the amount of desired Nidan
instances and ensures that each instance has its own unique Chrome debugging port and a
unique instance name. It also ensures that Nidan is always running the desired number of
instances. If an instance crashes, a new instance is immediately created.

3.2 KNAS

To process and analyze the collected data, a tool named KNAS was created. KNAS combines all
the tasks for the analytics and identification of systems, servers, and technologies, and performs
these actions in a parallel, fast, and uniform fashion. KNAS has a separate repository file which
maps identified strings that to technologies that normally use these. For example, if the string
drupal is identified in a URL, there is a very big chance that the website is built upon Drupal
as this is the name of a default Drupal folder. KNAS is also responsible for handling the parsers
and for running the collected data through other tools.
KNAS uses a few different matching techniques depending on which type of data it is working
on. One job is to analyze and tag all the JavaScript code by attempting to identify known
libraries and potential vulnerabilities associated with these. This is done using the tool Retire.js
which matches the scripts using a few different techniques as seen in Section 3.2.1.
Another job is to identify the purpose of cookies stored during the scan. These purposes could,
according to the aforementioned EU laws, be illegal, for example tracking for advertisements or
tracking in general, or legal purposes such as usability and authentication.
A cookie with a unique user ID as its value could be used both for authentication, tracking,
or advertisement. Identifying the purpose of cookies can be challenging. However, some tools
can help. One approach for determining a specific cookie is the website Cookiepedia which is a
database of cookies, associated with their names and domain. The website also attempts to tag
the cookies in regard to their purpose[16]. Another tool is Privacy Badger which is a browser
extension by Electronic Frontier Foundation (EFF) that learns while browsing how cookies
appear across domains and attempts to determine if the site and its cookies are tracking the
user. Of the two approaches, it was chosen to focus on Privacy Badger rather than Cookiepedia
since it is a breach of their terms of use and the fact that many cookies were not found on the
site. It is also a huge advantage the way Privacy Badger gets its information. By training using
the cookies present on all the input websites, there is no risk of cookies being unknown. Either

3.2. KNAS 9

they are determined to be for tracking purposes or they are not.
Some other jobs could have yielded interesting results but are not feasible to perform for ethical
or legal reasons. As an example, it would be trivial to automate the use of testssl.sh [18] and
save results associated with the TLS/SSL certificate and server setup. However, such tests can
hog resources on the server being scanned while also potentially being illegal due to it sending
malicious TLS/SSL payloads to the server. Furthermore, sending such payloads leans towards
being active penetration testing of a non-consenting website which is illegal.

3.2.1 The tool Retire.js

To identify known JavaScript libraries, a few tools exist. For example, the commercial tool
Netsparker can fingerprint more than 20 of the most popular JavaScript frameworks and provide
information regarding known vulnerabilities in these libraries[12]. Another example is the tool
Retire.js which can also detect known JavaScript libraries and associated vulnerabilities with
the added benefit of being Free and Open Source Software (FOSS), making it possible to tweak
the output and detection mechanisms to be perfectly tailored to any desired purpose.
The tool Retire.js takes a JavaScript file as input and attempts to identify it as a library[15].
This is done with several different approaches. The first attempt is to look at the filename for any
hints about the library. If this fails, it looks for specific comments that exist in specific versions
of libraries. If these are not present, the MD5 checksum of the JavaScript file is compared to
the checksum of each entry in the database of known library versions[14]. As a last resort, the
JavaScript is executed in a Chrome sandbox to observe its behavior. If the library name and
version are identified, Retire.js performs a lookup in its database to see if the library with the
specific version has any known vulnerabilities. If any vulnerabilities are detected, the library
version and its corresponding vulnerabilities are received as output[15]. In Nidan, Retire.js is
only used with two of its identification methods. It was chosen to not use the filename in the
identification process because of how easy it is to either on accident or purposefully having a
misleading filename. It is also possible that people choose to update the content of a JavaScript
file without updating the file name. It was also chosen not to include the dynamic analysis of
the JavaScript since that would require Retire.js to be run in a Chrome instance which would
significantly increase the resource load of the post-processing phase. All detected libraries and
vulnerabilities are stored in their own tables as described in Section 3.4.

3.2.2 Identification of server software

When Nidan runs, it collects HTTP headers. Some HTTP headers contain clues or references
to the software running on the server. As an example, if an HTTP request has the header
X-Aspnetmvc-Version, it is a strong indicator that the website is powered by Microsoft’s
MVC framework. Similarly, many sites include a Server header containing information such as
Apache/2.4.6 OpenSSL/1.0.2k-fips which indicates the web server is run using Apache
2.4.6 and that the TLS/SSL server is OpenSSL 1.0.2k. There is no guarantee that any of these
values are correct the server decides what to write in any sent HTTP header. For example, in
Node.js, the server could spoof its X-Powered-By by overwriting it as seen below.

response.setHeader('X-Powered-By', 'ASP.NET');

The above code example would indicate that the website is run using ASP.NET even though it
would actually be run by Node.js. However, in many instances, people tend to use the default
values sat by the server software which reports honest values. In the event of website using

10 Chapter 3. Design

modified headers, humorous values have been used such as X-Powered-By: Nerds. Such
values are stored as a HTTP header by KNAS but since Nerds is not a known X-Powered-By
value, the value is not used in the analysis of the website. This way, the data does not get
tainted by the untrue values.

3.2.3 Identification of content management system (CMS)

To identify possible CMSs used, two techniques are utilized. The first technique is to tag it
from the header. As described in Section 3.2.2, a website can include an HTTP header, such as
X-Aspnetmvc-Version, which indicates the use of Microsoft’s MVC framework. Similarly,
Express.js sets its X-Powered-By header to expressjs. The second method is to look at
folders used on the site. As an example, WordPress stores most of its content in a folder
named /wp-content/ out of the box. Therefore, KNAS searches through all the URLs of the
collected JavaScript for each particular site. If any of these URLs references a folder associated
with a specific CMS or framework, KNAS tags the website as using that CMS.

3.2.4 The tool cve-search

To link vulnerabilities to specific versions of server software, it was chosen to use the tool cve-
search[2] which performs lookups in a locally stored copy of MITRE’s CVE database. It is
used in two places. The first is to acquire the CVEs associated with a specific version of a
server software. The second is to acquire information about a specific CVE. This includes the
description of the CVE and the Common Vulnerability Scoring System (CVSS) value. While
the tool has a web API, it can not be used to acquire the desired data. Therefore, a new API
was created.

3.2.5 Analysis of cookies

For the analysis of cookies, it was chosen to modify the tool Privacy Badger.
Privacy Badger is a browser extension from EFF that identifies and blocks websites from
tracking users. It trains itself to learn which third parties are tracking by grouping websites
into three categories; green, yellow, and red. Green websites have not yet been caught trying to
track the user across different websites. Yellow websites track but completely banning them on
third party sites would result in lost functionality. Therefore, only cookies are blocked. Websites
in the red category are blocked all together[5].
By modifying the tool to, instead of blocking the domains from setting cookies, only track these
domains and cookies and store the data in the database, it is possible to categorise the crawled
cookies.
Normally with CDP, one would use a Chrome instance launched with the --headless flag.
However running Chrome headless disables support for extensions1. Furthermore, there are
also no supported way to extract data from a browser extension utilizing an API. A solution to
this limitation is to run Chrome in a nonheadless instance. Running a nonheadless instance of
Chrome on a headless server is not directly supported. However, using X virtual framebuffer,
which is a part of the X Window System, makes it possible to run a non-headless application
with a virtual framebuffer. With this workaround, it was possible to run Chrome in a headless
environment but with support for extensions.

1https://bugs.chromium.org/p/chromium/issues/detail?id=706008

https://bugs.chromium.org/p/chromium/issues/detail?id=706008

3.3. Fingerprinting known systems and libraries 11

Since extensions are not officially supported in a headless environment or as a part of CDP,
it is not possible to directly communicate with extensions from outside. Therefore, to gather
the data from Privacy Badger, a custom fork was built where webrequest.js, and heuris-
ticblocking.js have been modified to send an HTTP request to a server running on local-
host with information regarding the action that Privacy Badger would apply. The server is then
run from within the core Go program, thereby providing contextual information towards which
site is being visited. Since Privacy Badger is trained by the user itself rather than getting its
data from a central repository, a training run is performed on all the domains before the real
scan. A snippet illustrating the sending of Privacy Badger data is seen in the following code:

utils.xhrRequest("http://127.0.0.1:9000/TrackingCookie/" + origin,
function(err, response) {↪→

if (err) { console.error('Problem calling listener'); }
});

The above code is executed in heuristicblocking.js in Privacy Badger if the function
hasCookieTracking() returns true. To not interfere with the data collected, Privacy
Badger is also modified to not alter any HTTP content during the scan. This means nothing is
actually blocked. It also means that the Do Not Track (DNT) request is not sent to the server.
This goes against EFF’s normal intention of blocking trackers not honoring the DNT request.
The reasoning behind choosing not to send DNT requests is that we want to know exactly how
websites react when all the user does is connecting to their site. Also, because of EU’s cookie
law, tracking of EU citizens without their consent is not legal regardless of whether they send
DNT requests or not. Therefore, by not sending DNT requests, more websites breaking the law
can be identified. It is also worth noting that the vast majority of users on the internet do not
send these requests which gives a more realistic image of the websites[6].
At the moment, the above code sends the affected domain as an input parameter on port 9000.
Then, the listener is a server which has the context and knows the domain being visited when
the action occurs. Since it only sends the affected domain, it can not run multiple instances at
the same time.

3.3 Fingerprinting known systems and libraries

Websites are often built upon existing systems such as WordPress, Joomla, Microsoft MVC5,
and other prebuilt solutions. These systems are often complex and contain numerous bugs
across different versions.
Similarly, sites are often built using ready-made libraries for web development such as Ex-
pressJS, Django, and similar.
To identify CMSs, a few strategies can be utilized. Some CMSs include their name in the
X-Powered-By header. Others have folders only associated with a specific CMS. For example,
having a folder named wp-context heavily indicates the use of the WordPress framework. By
utilizing the collected data, such as HTTP headers and URLs for JavaScript libraries, many
CMSs can be correctly identified.
When a site is identified to be a known system, such as WordPress, it is possible to fingerprint
installed extensions, themes, and WordPress version and see if these are associated with any
vulnerabilities.

12 Chapter 3. Design

3.3.1 WPScan

If a website has been identified as likely to be a WordPress site, further information can be
gathered by using the tool WPScan. The WPScan tool can be used for free for any non
commercial purposes and the source code is publicly accessible. WordPress is the most widely
used CMS on the web and has a huge amount of plugins. The codebase for WordPress is
large which, combined with the huge amount of plugins, means that WordPress has a high
amount of vulnerabilities in outdated versions and in plugins and themes. WPScan uses different
techniques to find the WordPress version along with installed plugins, themes and other related
information. Included in WPScan is a database containing known vulnerabilities which is
then reported. WPScan can run with three different detection modes: Mixed, passive and
aggressive. The mixed and aggressive modes engage with the WordPress site to gather more
information. Some options detect registered user accounts and can even attempt to brute-force
login credentials. To avoid ethical and legal risks, KNAS uses WPScan in passive mode which
opens the site and identifies versions, plugins, and themes using only passive data parsing.

3.4 Data storage strategy and architecture

The collected data is stored in a MySQL database, visualised in Appendix A, consisting of
tables with the different important information from each visited website. These tables are
linked with associative tables to create a many-to-many relationship between them.

3.4.1 Table for domains

The table domains stores all the domains to be crawled during the Nidan scan. The table
consists of the domain of the website, a unique ID, and the time of when the domain was
inserted into the table. The unique ID is used across all tables referring to a specific domain.

3.4.2 Table for crawl history

The table cdp_visit_history is used to keep track of which domains have already been
visited by a specific worker at a specific time with a specific scan label. Scan labels are used to
circumvent the need for separate databases for each scan. When a scan is initiated, it is given
a scan label such that all the different workers working on the same scan are grouped together.
This allows different scans performed at different times to be stored in the same database while
still being distinguishable from each other, even though any one scan might be performed over
a long period of time.

3.4.3 Table for JavaScript files

The table javascripts contains all the JavaScript collected from each domain. It has a
unique hash such that the same JavaScript sample is not collected more than once. To link
JavaScript files to where they were discovered, the table domain_has_javascripts links
the JavaScript checksums to all domains where the JavaScript has been discovered. It also
contains information about whether it was inline embedded on the page, or if it was fetched
from a separate URL.

3.4. Data storage strategy and architecture 13

3.4.4 Table for libraries

All detected libraries used on the different websites are stored in libraries. Each row consists
of the name of the library, the version number, a unique ID which is a checksum of the two,
and a created_at column that indicates when the library was added to the database. The
reason for using an ID is to prevent the same versions of the same libraries to be stored more
than once. The table libraries links to javascripts with the table javascript_is_-
library which consists of the JavaScript checksum, the library ID and the time of which the
relationship was discovered.

3.4.5 Table for vulnerabilities

In Nidan, there are three different categories of vulnerabilities. The first type of vulnerabilities
is client-side vulnerabilities in the form of JavaScript. These vulnerabilities are often in a front-
end framework such as jQuery or Twitter Bootstrap. The second type of vulnerabilities is the
ones found in server software such as Apache or OpenSSL. The last type of vulnerabilities are
the ones detected in the CMS used by the website. The most common CMSs are WordPress,
Joomla, and Drupal[11].
The need for the distinction between the three kinds of vulnerabilities lies in the nature of
where they exist, how severe they can be, and how they can be verified. Vulnerabilities in
the front-end are often more a threat to the end-user than to the site owner itself. Similarly,
vulnerabilities in the front-end can often be tested and verified without legal risk. On the
contrary, vulnerabilities in server software can lead to Denial of Service (DoS), compromise
of the entire application or system, and are in general hard to verify without legal problems.
Vulnerabilities in the framework is a mixture between the two since they can be either client-side
or server-side. These can lead to compromise of the entire framework and, in extreme cases,
the entire server. In other instances, the vulnerability is only limited to an XSS vulnerability.
Another reason why it is required to store the vulnerabilities in separate tables is the fact that
they each have their own way of measuring severity. The front-end vulnerabilities are added
with Retire.js which scores the vulnerabilities from 0-4. The server software vulnerabilities are
added with the tool cve-search which searches through Mitre’s CVE database and uses the
official CVE severity scale of 0.0-10.0. Lastly, the CMS vulnerabilities are added via WPScan
which does not add a severity score. While it would be trivial to simply look up the CVE for the
vulnerabilities not in the server software vulnerability table and grab the CVSS value, around
half of all vulnerabilities do not have a CVE which would require them to acquire CVSS values
by other means. Technically, it would be possible to convert Retire.js’s five step scoring system
to CVE’s 101 step scoring system. However, that would cause severe inaccuracies. Furthermore,
even this would not be possible with the CMS vulnerabilities, as the ones without CVEs give
no indication of their severity.
All detected vulnerabilities in each visited website are stored in javascript_vulnerabili-
ties, cms_vulnerabilities, or server_vulnerabilities. Each vulnerability has an
entry for the vulnerability itself, its severity, unless it is a CMS vulnerability, and an ID. The ID
is either its CVE name or a checksum of the two other entries if it does not have a CVE name.
This is to avoid duplicate vulnerabilities in the database. To link vulnerabilities to JavaScript,
libraries, or domains, three junction tables exist providing a many-to-many relationship between
vulnerabilities and vulnerable entities.

14 Chapter 3. Design

3.4.6 Table for cookies

All the collected cookies that are automatically set when visiting each site are stored in the
table cookies. The table consists of the domain ID of the site it was detected on, its name,
its value, the domain of the creator of the cookie, its expiration time as a Unix timestamp,
and flags that determine whether the cookie is secure and whether it is HTTP only. These two
flags can be used to determine the security of the cookies. The is_secure flag means that
the cookie can only be sent over an HTTPS connection. Since HTTPS requests, unlike HTTP
requests, are not sent in plaintext, it removes the possibility for an attacker to eavesdrop on a
connection between a user and the server, hijacking the user’s cookie, and stealing their identity
this way. However, another way of stealing cookies is to exploit a XSS vulnerability to steal the
authentication cookie. This is where the flag http_only is useful as it removes the possibility
of using JavaScript to acquire the authentication cookie.

3.4.7 Table for Privacy Badger data

For every website visited by Nidan, a modified Privacy Badger is run. It logs every action that
Privacy Badger would have performed. These actions can be to block cookies from a third party
or to block all resources from a third party. These actions is denoted by Privacy Badger using
a label of green, yellow and red, where green is no action, and therefore not stored, yellow is
blocking cookies but not all content, and red is when all content from a third party is blocked.
The table consists of the visited domain, the action, the creator of the cookie, and information
about time and scan label.

3.4.8 Table for HTTP headers

During the scan, HTTP headers are collected, which can contain information about things
like HTTP Strict Transport Security (HSTS) and server software. HTTP headers give a
good suggestion on what is installed and what is used to run the site. However, the headers
can not always be trusted in the data samples. Headers, such as X-Powered-By: Crazy
Poulz On Caffeine, Monster And Pizza, have been received during the scans. On the
other hand, some HTTP headers come with some interesting warnings such as PHP/5.5.37-
1+deprecated+dontuse+deb.sury.org~precise+1, indicating that an old, deprecated,
and vulnerable version of PHP is installed.

3.5 Design choices

When designing the software and the database, it is important to make the correct design
choices. In this section, the different possibilities are explored and choices are made based on
this exploration.

3.5.1 System architecture

It was chosen to split the system up in two main programs: Nidan and KNAS. The reason
behind this is that data collection and analytics are very different areas, each with different best
suited tools and languages. For example, the language Go is currently the de facto solution for
running CDP which is used to crawl the websites. Python, on the other hand, is the number
one language for data science in terms of popularity[8]. Furthermore, there exists countless

3.5. Design choices 15

FOSS tools that can be modified to the desired purposes. Having separate programs allows for
both being used independently of each other. It is also worth noting that Nidan is designed
to be executed in many instances at the same time, while this is not, in its current state, fully
possible with KNAS.

3.5.2 Data storage technique/engine

There is a wide variety of ways the collected data can be stored. A way to store the data could
be as objects in a document-based database such as MongoDB. document-based databases is
good at handling semi-structured data. A more traditional option is to use a relational database
such as MySQL or MariaDB. Relational databases is good at handling relationships between
data with concepts such as foreign keys. Relational databases is fast at storing data with a
clear defined data-structure and makes it accessible based on structured queries. The data
collected is well structured; a cookie always has the same fields with properties and a domain
always has a set of JavaScripts loaded. At the same time, the data has some very important
relationships. For instance, multiple sites can have the exact same JavaScript in common and
multiple JavaScripts can share specific vulnerabilities. Such relationships provide important
information. For this reason, it was chosen to use a relational database.

3.5.3 Historical changes

When visiting the same page multiple times, it is likely that some things change between each
visit. For example, different advertisements can be loaded each time. Therefore, it is necessary
to consider how to handle updated data; is it preferable to simply replace the old data with
the data from a new scan or to keep a snapshot of web sites as they were at a certain time?
Keeping each scan as a snapshot that provides historical data can provide information as to how
frequently web sites update their JavaScript libraries. It can also be used to show time-based
statistics, for example, whether web security improves or diminishes. On the other hand, storing
data as a snapshot requires more storage and a more complex database structure. Similarly, it
might leave data in a more fragmented and inconsistent state. This is because the scripts may
be changed and improved over time, or the amount of domains being processed might change,
altering which and how much data is collected. For example, the first scans did not include
Privacy Badger like the later scan do. It is also possible that the different scans were performed
with different scan options. For example, there are options to not save any data and Privacy
Badger can be turn off. This can potentially hinder historical comparisons. It was chosen to
keep historical snapshots by using a combination between timestamps and scan labels. Each
scan requires a label which groups all data from that specific scan together. The timestamps
can be used to compare two scans in terms of historical changes.

3.5.4 Choice of checksum

While storing JavaScript for every domain, there was discovered a need for a unique ID which
can be generated on the fly. Many JavaScript files have their own URLs which can be used as a
unique identifier. However, embedded JavaScript does not provide such a unique and simple ID.
Similarly, the exact same JavaScript file can be used on multiple different sites with different
URLs. Therefore, it was decided to use a checksum of the JavaScript for each unique script
while saving the relationship between the script and the site using it together with the URL
from which the site loads the particular script.

16 Chapter 3. Design

It was chosen to use SHA-256 which is a heavy but cryptographically secure hashing algorithm.
The reason for this is that any collision between two different JavaScript scripts would invalidate
some of the data since the database would be completely unable to tell these scripts apart and
only save one of these scripts. Therefore, avoiding any collisions between checksums is preferred.
The difference in performance between a heavy and a light hashing algorithm is not going to
make any substantial execution time since, in this context, the biggest bottleneck is waiting for
websites to respond to requests or to perform all required database actions.

Chapter 4

Results

As a part of testing Nidan, a sample of around 2 % of the entire .dk zone file was crawled and
analysed. In this chapter, some of the extremes are explored such as sites with most cookies or
highest number of vulnerabilities. The goal is to provide insight into what Nidan has to offer.

4.1 Deep dive into the test crawl

After the crawl and analysis on the sample size of 18129 Danish TLDs, it was chosen to verify
the accuracy of the analysis. The scanning and analysis was performed on the 27th of March
2019.
When verifying the results, there are three focal points. The first is evaluating whether the
detection of the vulnerability is a true or false positive. The second is whether the vulnerability
is exploitable. The last is whether there are any false negatives in the automatic scan. This is
done through a manual audit of the sites.

4.1.1 Railgun.dk

Railgun.dk sets the highest amount of cookies of all websites in the test query. Querying
Railgun.dk results in 306 cookies being set in ten seconds without any user input. The cookies
are put into four categories; tracking, advertisement, self-set, and Cloudflare protection. The
tracking category is every cookie that is used to log some sort of data from the user and use this
data for analytics, whether that is for targeted advertisements or otherwise. The advertisement
category covers cookies placed for the purpose of showing advertisements. Self-set refers to
cookies created by the website itself. Lastly, Cloudflare protection cookies are used to determine
whether the user is a real person or a bot. This is to, among others, protect the website against
DDoS attacks. Among the tracking cookies are several alarming cookies described as “This
cookie collects unidentifiable data; this data is sent to an unknown receiver. The identity of
this receiver is kept classified by Perfect Privacy LLC”. The categorization of all the cookies
can be found in Appendix B. From an analysis of all 306 cookies, it shows that cookies are
set from 102 different companies. Of these companies, 74 were identified as tracking the user.
Most of these track the behaviour and preferences of the user depending on which articles and
advertisements they click on. Others were used to track the user across different websites and
track their location and IP address.

17

18 Chapter 4. Results

Library Vulnerability Exploitable
AngularJS v. 1.4.4 usemap can avoid sanitizing no, functionality not used

CSP bypass via add-on in Firefox no, only affects Firefox extensions
DoS in $sanitize if malicious HTML no, only if a bad actor can supply HTML input
XSS in $sanitize in Safari/Firefox no, functionality not used.

Bootstrap v. 3.3.7 CVE-2019-8331 no, functionality not used.
CVE-2018-14041 no, functionality not used.
CVE-2018-14040 no, functionality not used.
CVE-2018-14042 no, functionality not used.

4.1.2 etiskraad.dk

Etiskraad.dk is on a shared second place in terms of highest amount of unique vulnerabilities.
Etiskraad.dk uses an outdated version of AngularJS, Twitter Bootstrap, and jQuery which
presents a number of vulnerabilities.
The vulnerabilities detected, based on identified libraries, are, however, not necessarily ex-
ploitable since the exploitability depends on whether the specific library functionality is in use.
The following table shows the identified vulnerabilities and an estimate of whether they are
exploitable or not.
As seen in the table, the particular detected vulnerabilities are not be exploitable in etiskraad.dk.
The reason behind this is that KNAS does not only detect vulnerabilities in used functionality
but in the implemented libraries as a whole. It is still important to look at since the developers
of the site could choose to use the vulnerable functionality in the future. Furthermore, the fact
that a vulnerable library is used is an indicator of the site not regularly being kept up-to-date
which significantly increases the risk of other vulnerabilities being present.
The automatic process of discovering potential vulnerabilities is not guaranteed to discover
every potential vulnerability. For this reason, to determine if any obvious easily discoverable
vulnerabilities are left out, a light manual audit of the website is performed.
In the manual audit, it was discovered that the site uses a CMS called ‘Sitecore.NET 8.0 (rev.
150427)’. This version of Sitecore has, among others, the following vulnerabilities.

• In remote provider configuration, Web API can be called without authentication.

• JavaScript or HTML may be imported via csv, representing a security risk. Csv files
should only contain text contact fields (25209).

• SC2017-001-170504

• Vulnerabilities in Sitecore’s use of PowerShell

• Vulnerabilities enabling code and command injections

Since these vulnerabilities are all server-side vulnerabilities, it is not possible to verify whether
they are present on etiskraad.dk because that would require an active scan.

4.2 Deep dive into Nidan scan 1

After leaving the testing phase of Nidan, a new mass scan was performed on the 26th of April
2019. The same 18129 were scanned and analysed with the improved version of Nidan that
included additional post-processing tools. From the results of the new scan, it was evident that

4.2. Deep dive into Nidan scan 1 19

the same most vulnerable sites from the first scan were still the most vulnerable sites in the
new scan.

4.2.1 Highest amount of set cookies

In the time period between the test scan and this scan, Railgun.dk has implemented a cookie
consent dialog box and now only sets three cookies without the user’s consent. Furthermore,
if the user declines the box, no ads load on the site. However, a new type of websites now
dominates the list of most set cookies. The first nine websites, in addition to a lot of websites
further down the upper end of the list, are all blogs from Bloggers Delight. Bloggers Delight is
a WordPress-based hosting platform for blogging that offers a WYSIWYG blog creator. The
website with the highest amount of cookies is the blog lifebymette.dk with 231 cookies set within
10 seconds of visiting the site without any user input nor consent. The vast majority of the
cookie values are unique IDs which are clear indications of tracking across sites. Most of the
cookies are from the same companies as the ones found in the analysis of Railgun.dk, meaning
that several different advertisement companies set cookies to track which advertisements the
user clicks on to remember their preferences across websites. Most of the remaining cookies are
set by the companies from the advertisements themselves.

4.2.2 The state of the Danish web

From the collected data, queries have been performed to determine the state of the Danish web.
Some of the results of these queries are shown in the table below.

Name Value
Total amount of domains 18129
Active domains 14085 (77.69 %)
Sites with vulnerabilities 5700 (40.47 %)
Sites with identifiable CVEs 5527
Sites with old vulnerabilities 5112 (92.49 %)
Amount of vulnerabilities with CVEs 16540
Amount of old vulnerabilities 10340 (62.52 %)
Sites without SSL 11567 (63.80 %)

From the queries, it shows that 63.80 % of all the websites do not have any form of TLS/SSL.
It is also evident that 40.47 % of the active websites had some kind of vulnerability, whether
that is the usage of outdated server-side frameworks or outdated client-side libraries. Another
interesting discovery is that 82.38 % of the vulnerable websites have vulnerabilities from last
year or older which indicates that the majority of the vulnerable websites have not updated
their used libraries and frameworks this year. In addition to this, 62.52 % of the detected
vulnerabilities are also from last year or older1.

1These calculation only includes vulnerabilities with an identifiable CVE, since the age of a vulnerability is
determined from the CVE name.

Chapter 5

Evaluation

Now that the results of Nidan and KNAS have been discussed, the different aspects of the tools
themselves need to be evaluated.

5.1 The module tool Retire.js

From using Retire.js, it shows that, while a lot of vulnerabilities are correctly identified, Retire.js
still has some flaws. First of all, the possibility of a detected vulnerability being a false positive
is very high. For example, a lot of websites include the library jQuery. This library contains
thousands of functionalities. If just one of these has a vulnerability, the library with the version
number is flagged as vulnerable which means that the website is flagged as vulnerable even
though the chance of the site using that specific functionality is small. As previously argued,
the results from Retire.js still provide a strong indication of how up-to-date the website is and
how likely it is that other vulnerabilities are present.
Another problem with Retire.js is the fact that its database of vulnerabilities is rather smaller
compared to all known web vulnerabilities since vulnerabilities are manually added by contrib-
utors. This could potentially lead to some false negatives if the correct vulnerabilities are not
added to the database yet. However, Retire.js has an active community so the risk is fairly low.
Furthermore, the fact that the list is small compared to all know web vulnerabilities is due to
the fact that it only contains vulnerabilities relevant to JavaScript.

5.2 The post-processing tool KNAS

When data is gathered, KNAS has been used to run different modules. As described in Sec-
tion 5.1, it ran a Retire.js job on all the collected JavaScript discovering 58 unique vulnerabilities
across 215 unique vulnerable libraries affecting 5700 domains from the sample of 18129 Danish
domains. KNAS similarly performs a scan on the HTTP headers finding information such as
X-Powered-By and Server. It then uses a heuristic technique to identify known CMSs such
as WordPress and Drupal. When well-known CMSs are identified, these systems can be pas-
sively scanned for further clues about versions and vulnerabilities. KNAS currently supports
doing this for WordPress leading to the identification of 585 unique WordPress vulnerabilities
affecting 1084 sites with a total of 7892 detected WordPress vulnerabilities.

21

22 Chapter 5. Evaluation

5.3 SSL certificate findings

To audit the state of TLS/SSL, it is interesting to look at the Server field in an HTTP
header. This field can bring information about the installed SSL software. As an example, a
search revealed that three sites report the usage of the software OpenSSL with the version 1.0.1f
which is vulnerable to the Heartbleed Bug.
The header is acquired through Go’s net/http library. All detected server software is saved
for each website in the table server_software, together with a hash for the software con-
figuration. Then, the tool cve-search is used to perform lookups in Mitre’s CVE database for
each detected server software which returns all known vulnerabilities for the server software at
a specific version. These are stored in the table server_vulnerabilities.
From the results in Section 4.2.2, it was revealed that 63.80 % of the websites do not use any
form of TLS/SSL certificates. This is a worrying discovery since it can be catastrophic if the
websites handle any sensitive data such as usernames and passwords. This is due to the fact that
the communication between the user and the server is not encrypted, allowing for third parties
to intercept the data. It can also be a problem without website handling any sensitive data
since it allows third parties to inject code into the communication between user and website if
a successful Man-in-the-middle (MITM) attack is performed.

5.4 Privacy Badger

Since the tool Privacy Badger is not built for academic research, but to block and learn as the
user browses, it presents some important challenges that need to be addressed. In academic
research, reproducibility is important. However, since Privacy Badger uses machine learning
and learns as it sees more websites, it is inconsistent in nature. Since it updates its data by
detecting sites not honoring the DNT request at all times, sites, at different stages in the scan
or on different machines, might yield different results. A way around this is to pre-train Privacy
Badger in a scan where every site is visited once, but no real scan data is saved. After the pre-
train scan is finished, the data can be exported and used as the default state before every page
visit preventing training from occurring during the real scan. A similar issue is how the web
is constantly changing; two different visits to the same site might result in completely different
results. A site might dynamically decide which advertisement platform to load based on market
prices or collected user data. Furthermore, some advertisements themselves set cookies, meaning
the same advertisement platforms can also give different results.
Another challenge associated with using Privacy Badger is how the tool is built to block ei-
ther cookies or entire requests. This would naturally alter the collected results and remove
information otherwise saved. To solve this challenge, a fork of Privacy Badger replacing all
request-altering actions with a logging feature was necessary and missing any offending func-
tionality could taint the results, not only for the Privacy Badger part of the data, but for all
the data gathered in a scan session.
In the Nidan fork of Privacy Badger, webrequest.js and heuristicblocking.js have
been altered, removing all actions interfering with the scan. At the same time, these actions
are sent to a HTTP listener describing the action and complementary information and stores
the data in the database. This solution, combined with pre-training, heavily improves the
non-reproducible nature of Privacy Badger.

5.5. Why Nidan? 23

5.5 Why Nidan?

There already exists some tools allowing for the search of or analysis of some of the things
searchable by Nidan. Shodan makes it possible to search for the Internet of Things (IoT)
based on banner grabbing, and also attaches some related information such as vulnerabilities.
Cookiepedia makes it possible to search for websites and see which cookies are stored from
visiting that side, and to compare this result with other sites and see an attempted categorization
of the cookies. However, many of the detected cookies are not found in Cookiepedia. Similarly,
Libscore allows users to search for the usage of some JavaScript libraries and their popularity
based on Alexa’s top 1 million[1]. However, its only use is to scan Alexa’s top 1 million sites
rather than any desired set of domains like Nidan and KNAS can. Furthermore, it is only used
to rank libraries after popularity.
Nidan collects and indexes all JavaScript files found from a list of domains and stores a lot
of different information about these files such as all known present vulnerabilities. Nidan also
stores all cookies and detects their purpose, whether that is for tracking the user across websites
or simply storing the user’s preferred language settings. All this data is stored in a way that
allows for easy analytics in the form of SQL queries. Shodan offers some of the same services,
such as scanning and providing which known vulnerabilities are present in a queryable fashion.
However, Shodan only gains its information from the banner of the IP and does not consider
other things like JavaScript vulnerabilities or cookies since Shodan focuses on IoT rather than
websites.
A unique feature of Nidan is also the possibility of searching all websites based on very specific
JavaScript features. For example, to the best of our knowledge, no other tools make it possible
to search and find every site which includes a piece of JavaScript or cookie having specific
keywords. For example, if the website includes a JavaScript file with the word “adblock”, it
indicates that the websites most likely uses an anti-adblock feature. If a JavaScript file includes
the string “miner.start();”, it means that the site most likely has a crytominer. This specific
string is found on, among others, CoinHive-using sites such as The Pirate Bay. A positive effect
of this is that the discovery of new JavaScript exploits or functionality being used in the wild
is immediately queryable. Nidan hereby makes it possible to find the usage of cryptomining
libraries not tagged as a library in Libscore.

Chapter 6

Conclusion

To crawl every .dk TLD, the tool Nidan was created which is built upon CDP. While Nidan was
not tested on the entire .dk zone file, it is still proven that this is possible within a reasonable
time frame since Nidan is easily scalable. With 40 instances running at the same time, which
is what was used during the Nidan scan 1, roughly 15000 domains are visited an hour. This
means that the entire zone file would be finished in 2.5 days. With even more instances, this
crawl duration can be reduced even further.
To identify the security-related problems on every crawled website, the post-processing tool
KNAS was created. KNAS was created to identify vulnerabilities in the data from Nidan. The
module that identifies vulnerabilities in the implemented JavaScript files, Retire.js, accurately
identifies whether the particular site uses vulnerable libraries. This does not necessarily mean
that the site is vulnerable as this does not guarantee that the site uses the vulnerable function-
ality from the library. This, however, is still dangerous as the vulnerable functionality could be
used in the future. It also means that the website is not regularly updated, giving it a higher
risk of having other vulnerabilities now and in the future.
By storing all the data in a relational database in clear defined structure, it is easy to perform
queries for analytical purposes. This enables answering questions related to the state of the
Danish websites. Such questions could answer how compliant with GDPR Danish websites is
as a whole and similar interesting inquiries.
The research demonstrates that finding security related issues at a large scale is possible.
Fortunately, the research also suggests that many easily identified vulnerabilities are harder to
exploit than to find. The use of large JavaScript frameworks and common CMSs make one
security flaw in a single system affect thousands of instances across the web if the websites are
not regularly updated. From the results, it is clear that the vast majority of the vulnerable
sites have not updated their implemented JavaScript in the current year. It was estimated that
92.49 % of all vulnerable websites has vulnerabilities from 2018 or older. This means that the
vast majority of vulnerable sites are heavily outdated. To add to this, it was estimated that
62.52 % of all detected vulnerabilities are from 2018 or older.

6.1 Future Work

While the Nidan/KNAS system is successful at gathering security related data and analyze
these, there is still room for some improvement. These improvements include more data, better
accuracy, and faster data collection and analytics.

25

26 Chapter 6. Conclusion

6.1.1 KNAS

The tool KNAS is responsible the data processing happening in the Nidan/KNAS system. For
that reason, KNAS needs to be as fast as possible. KNAS has been constructed to run in
parallel. However, it currently only runs the different jobs in parallel; the jobs themselves are
not parallelized. The way KNAS is built makes it simple to enable threading on the jobs.
However, a more high-level thread handler needs to be constructed.
For future work, it would be beneficial to make every job capable of running threads, thereby
speeding KNAS up massively for larger amounts of domains. For a small number of domains,
such as 18129, it generally takes little enough time to perform every job that the benefits of
more threading are not that important. If Nidan was to index all .dk TLDs, it would have a
much greater effect.

6.1.2 Privacy Badger

To receive data from Privacy Badger, the tool is forked and communicates through GET requests
to a web API on localhost. A limitation of this is that the Privacy Badger extension is a static
fork which means it will always send the data to one specific predefined port. It has not currently
been possible to get context about which site is visited through Privacy Badger. Instead, Nidan
listens on a local port and connects the data from Privacy Badger together with the site it is
currently visiting. This limits the number of Nidan instances that could be run on the same
machine if Privacy Badger data is to be collected because more than one instance of Privacy
Badger on the same machine would cause Nidan to combine the data from both instances into
one domain.
To solve this, a future version of Privacy Badger should either be able to tell which site it
is currently visiting, and therefore only need one server for each machine running Nidan, or
Privacy Badger should be built for each Chrome instance running, allowing each instance to
communicate with different ports.
A necessary improvement of the Privacy Badger module is to have the data being reproducible
by having a static set of training data which remains the same on every page visited. This
ensures the same treatment of third party trackers. This functionality, however, is currently
not implemented.

6.1.3 Retire.js

One of the jobs enabled by KNAS is to run every collected script through Retire.js. It currently
only matches JavaScript through the content of the JavaScript file using a checksum or a search
for library names and versions. However, Retire.js is built to also check for clues in the filename
and to, if run in Chrome, try the script in a sandbox. These features are not utilized in KNAS
leading to a potential limitation in the amount of identified libraries.
For a future version of KNAS, Retire.js should be better utilized. Retire.js should also use the
filename in its identification process but in some way tell how certain it is in the identification.
For example, if only the filename has been used to identify, the identification should be marked as
"not certain". The filenames are already stored in Nidan’s database allowing for such analytics.
The other unused identification method, having the JavaScript file executed and observed in
a Chrome instance, is, on the other hand, a more difficult process. There are, as described in
Section 3.2.5, no official supported ways for Chrome to be run headless with extensions. Since
Retire.js is also FOSS, the same technique that we already used for Privacy Badger could be

6.1. Future Work 27

applied here. A limitation of this approach is the increasing cost of running a Chrome instance
to perform KNAS jobs with comparably minimal gain.

6.1.4 Nidan

Nidan has the longest and most important job. It is able to run in parallel both on multiple
machines working together and further as multiple parallel instances on the same machine.
Unfortunately, Chrome has a tendency to sometimes hang and never respond again until it has
been killed and allowed to restart. This provides great gaps of time where Nidan is just in a wait
state, never continuing without user interaction, which leads to serious delays in the scan. This
difficulty is attempted mitigated by looking for signs of Chrome’s responsiveness and killing the
Chrome thread if it is not responding. Another problem with Nidan is that it seems to not
always close database connections in an orderly fashion, leading to the process sometimes being
locked out due to too many continuous connections. This would have to be fixed in a future
version.

6.1.5 Test sample

In the future, it is necessary acquire the entire .dk zone file and perform the scans on this as
this would give a more precise depiction of the state of all Danish websites. While the sample
was a random subset of the entire zone file, there is no way of knowing whether the sample is
an accurate representation of the entrie zone file.

6.1.6 Detection of malware

Like the detection of vulnerabilities, the implementation of a modified version of an existing tool
can be used to identify implemented malicious JavaScript on each website. For this purpose,
the most used tool is the closed-souce, proprietary tool Zozzle from Microsoft. However, lesser
known free tools exist. These are unfortunately old and outdated and would require heavy
modifications to be useful. A promising tool, JaSt[4], is an unfinished and a bit outdated
JavaScript malware detector which, with heavy modifications, would fit nicely into KNAS’s
modular design.

Bibliography

[1] Alexa. file: alexa top 1 million. https://s3.amazonaws.com/alexa-static/top-
1m.csv.zip, 2019. Accessed: 2019-05-28.

[2] Alexandre Dulaunoy. cve-search. https://cve-search.github.io/cve-search/,
2018. Accessed: 2019-06-02.

[3] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias
Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman.
The matter of heartbleed. In Proceedings of the 2014 Conference on Internet Measurement
Conference, IMC ’14, pages 475–488, New York, NY, USA, 2014. ACM.

[4] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. JaSt: Fully Syntactic
Detection of Malicious (Obfuscated) JavaScript. In Proceedings of the International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2018.

[5] Electronic Frontier Foundation. Privacy badger. https://www.eff.org/
privacybadger/faq, 2018. Accessed: 2019-04-10.

[6] Alex Fowler. Mozilla’s new do not track dashboard: Firefox users continue to seek out and
enable dnt. https://blog.mozilla.org/netpolicy/2013/05/03/mozillas-
new-do-not-track-dashboard-firefox-users-continue-to-seek-out-
and-enable-dnt/, 2013. Accessed: 2019-06-02.

[7] H.L.M. Gambrell and C.S. Horbus. Cybersecurity alert cyberattacks on the rise - no. 1
challenge facing businesses today. https://www.lexology.com/library/detail.
aspx?g=c6cd77e0-f2bb-45c7-b177-384f53b164, 2019. Accessed: 2019-05-28.

[8] Bob Hayes. Programming languages most used and recommended by data
scientists. https://businessoverbroadway.com/2019/01/13/programming-
languages-most-used-and-recommended-by-data-scientists/, 2019. Ac-
cessed: 2019-06-02.

[9] Mathias Leding and Jesper Windelborg. Web application security. https:
//projekter.aau.dk/projekter/da/studentthesis/web-application-
security(b6fbf35e-c3a9-4408-b64d-76c9c13081b3).html, 2019. Requires
login. Accessed: 2019-04-10.

[10] Kif Leswing. Email scam uses old passwords and fake threats about your porn habits to col-
lect bitcoin. https://www.businessinsider.com/new-email-scam-uses-old-
password-fake-porn-threats-webcam-video-bitcoin-2018-7, 2018. Ac-
cessed: 2019-04-10.

29

https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://cve-search.github.io/cve-search/
https://www.eff.org/privacybadger/faq
https://www.eff.org/privacybadger/faq
https://blog.mozilla.org/netpolicy/2013/05/03/mozillas-new-do-not-track-dashboard-firefox-users-continue-to-seek-out-and-enable-dnt/
https://blog.mozilla.org/netpolicy/2013/05/03/mozillas-new-do-not-track-dashboard-firefox-users-continue-to-seek-out-and-enable-dnt/
https://blog.mozilla.org/netpolicy/2013/05/03/mozillas-new-do-not-track-dashboard-firefox-users-continue-to-seek-out-and-enable-dnt/
https://www.lexology.com/library/detail.aspx?g=c6cd77e0-f2bb-45c7-b177-384f53b164
https://www.lexology.com/library/detail.aspx?g=c6cd77e0-f2bb-45c7-b177-384f53b164
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://businessoverbroadway.com/2019/01/13/programming-languages-most-used-and-recommended-by-data-scientists/
https://projekter.aau.dk/projekter/da/studentthesis/web-application-security(b6fbf35e-c3a9-4408-b64d-76c9c13081b3).html
https://projekter.aau.dk/projekter/da/studentthesis/web-application-security(b6fbf35e-c3a9-4408-b64d-76c9c13081b3).html
https://projekter.aau.dk/projekter/da/studentthesis/web-application-security(b6fbf35e-c3a9-4408-b64d-76c9c13081b3).html
https://www.businessinsider.com/new-email-scam-uses-old-password-fake-porn-threats-webcam-video
https://www.businessinsider.com/new-email-scam-uses-old-password-fake-porn-threats-webcam-video
-bitcoin-2018-7

30 Bibliography

[11] BuiltWith® Pty Ltd. Cms usage distribution in denmark. https://trends.
builtwith.com/cms/country/Denmark, 2019. Accessed: 2019-04-18.

[12] Netsparker Ltd. Fingerprinting libraries. https://www.netsparker.com/support/
fingerprinting-libraries/, 2019. Accessed: 2019-04-18.

[13] Alfred Ng. Worldwide ransomware hack hits hospitals, phone companies.
https://www.cnet.com/news/england-hospitals-hit-by-ransomware-
attack-in-widespread-hack/, 2017. Accessed: 2019-04-10.

[14] Erlend Oftedal. retire.js/blogpost.md at master · retirejs/retire.js. https://github.
com/RetireJS/retire.js/blob/master/docs/blogpost.md#detection,
2015. Accessed: 2019-04-10.

[15] Erlend Oftedal. Retire.js. https://retirejs.github.io/retire.js/, 2019. Ac-
cessed: 2019-04-10.

[16] Cookiepedia OneTrust. Cookiepedia. https://cookiepedia.co.uk/, 2019. Accessed:
2019-04-18.

[17] Rob Sobers. 60 must-know cybersecurity statistics for 2019. https://www.varonis.
com/blog/cybersecurity-statistics, 2019. Accessed: 2019-05-28.

[18] Dirk Wetter. Testing tls/ssl encryption. https://testssl.sh/, 2019. Accessed: 2019-
04-18.

https://trends.builtwith.com/cms/country/Denmark
https://trends.builtwith.com/cms/country/Denmark
https://www.netsparker.com/support/fingerprinting-libraries/
https://www.netsparker.com/support/fingerprinting-libraries/
https://www.cnet.com/news/england-hospitals-hit-by-ransomware-attack-in-widespread-hack/
https://www.cnet.com/news/england-hospitals-hit-by-ransomware-attack-in-widespread-hack/
https://github.com/RetireJS/retire.js/blob/master/docs/blogpost.md#detection
https://github.com/RetireJS/retire.js/blob/master/docs/blogpost.md#detection
https://retirejs.github.io/retire.js/
https://cookiepedia.co.uk/
https://www.varonis.com/blog/cybersecurity-statistics
https://www.varonis.com/blog/cybersecurity-statistics
https://testssl.sh/

Acronyms

API
Application Programming Interface. 10, 26

CDP
Chrome DevTools Protocol. vii, 5, 7, 10, 14, 25

CMS
content management system. iii, 10, 11, 13, 18, 21, 25

CVE
Common Vulnerabilities and Exposures. 10, 13, 19, 22

CVSS
Common Vulnerability Scoring System. 10, 13

DDoS
Distributed Denial of Service. 17

DNT
Do Not Track. 11, 22

DoS
Denial of Service. 13

EFF
Electronic Frontier Foundation. 8, 10, 11

EU
European Union. iii, 3, 8, 11

FOSS
Free and Open Source Software. 9, 14, 26

GDPR
General Data Protection Regulation. iii, 3, 25

31

32 Acronyms

HSTS
HTTP Strict Transport Security. 14

HTTP
Hypertext Transfer Protocol. 9, 10, 11, 13, 14, 21, 22

HTTPS
Hypertext Transfer Protocol Secure. 13

IoT
Internet of Things. 22, 23

IP
Internet Protocol. 17, 23

KNAS
KNAS’s Not A Script!. iii, v, vii, 8, 9, 10, 11, 14, 18, 21, 22, 25, 26, 27

MITM
Man-in-the-middle. 22

PHP
PHP: Hypertext Preprocessor. 14

SHA
Secure Hash Algorithm. 15

SQL
Structured Query Language. 23

SSL
Secure Sockets Layer. 3, 9, 19, 21, 22

TLD
top-level domain. 7, 17, 25, 26

TLS
Transport Layer Security. 3, 9, 19, 21, 22

URL
Uniform Resource Locator. 8, 10, 11, 12, 15

WYSIWYG
What You See Is What You Get. 19

XSS
Cross-Site Scipting. 3, 13

Appendix A

Database Schema

33

34 Appendix A. Database Schema

Appendix B

Cookies for railgun.dk

Name Type
2 facebook tracking
8 id5-sync tracking
2 agkn.com tracking
2 amazon-adsystem ads
4 adtlgc ads
13 railgun selfset
1 alphonso.tv tracking
1 admixer ads
1 tribalfusion ads
2 advertising ads
1 spotxchange ads
1 acuityplatform tracking
2 justpremium ads
2 playground ads
1 omnitagjs ads
1 blismedia tracking
1 yahoo tracking
2 bidr.io tracking
2 bluekai(oracle) tracking
1 rgtrk.eu tracking
3 adhigh.net ads
3 mfadsrvr tracking
3 rtb.4finance ads
3 bidswitch tracking
1 adx.adform.net ads
2 de17a.com ads
1 deepintent tracking
1 zorosrv tracking
3 ctnsnet tracking
3 yieldoptimizer.com tracking
6 casalemedia.com tracking
1 colpirio tracking
2 onaudience tracking

35

36 Appendix B. Cookies for railgun.dk

13 smartadserver ads
1 ipredictive tracking
2 quantserve tracking
1 apxlv tracking
34 pubmatic ads
3 doubleclick(google) ads
25 powerlinks tracking
2 sxp.smartclip tracking
2 rlcdn tracking
2 turn.com tracking
3 gwallet tracking
2 rfihub tracking
3 rundsp tracking
2 stackadapt ads
1 snapchat tracking
8 stickyadstv tracking
1 semasio tracking
1 skimresources tracking
2 contextweb tracking
1 sharethrough tracking
2 tidaltv tracking
3 tapad tracking
2 adsrvr tracking
1 m6r.eu tracking
1 collector.cint.com tracking
1 3lift tracking
4 truoptik tracking
1 tracead tracking
1 teads tracking
2 254a tracking
4 360yield tracking
2 bidswitch tracking
2 creative-serving tracking
2 programattik tracking
2 pool.admedo tracking
2 r.scoota.co tracking
3 services.experianmarketingservices tracking
2 tag.clrstm tracking
1 taboola tracking
1 erne.co tracking
1 mrpdata.net tracking
1 exelator tracking
1 adform.net tracking
2 adotmob tracking
2 scorecardresearch tracking
1 simpli.fi tracking
2 videohub.tv ads
1 targeting.unrulymedia tracking

37

7 flyrejser.dk ads
1 adfarm1.adition tracking
1 adscale.de ads
2 mathtag tracking
1 ads.avocet tracking
1 ybrid.ai ads
1 csync.loopme.me tracking
1 gumgum tracking
1 w55c ads
1 zemanta tracking
4 crwdcntrl tracking
3 speedline.dk ads
1 lijit tracking
1 nrich.ai tracking
1 1rx.io tracking
1 addtoany Cloudflare protection
1 adnami.io tracking
1 adsymptotic.io Cloudflare protection
1 glotgrx Cloudflare protection
1 yabidos Cloudflare protection
1 match.adsby.bidtheatre tracking

	Forside
	English title page
	Table of contents
	Preface
	1 Introduction
	2 Preliminaries
	2.1 Problem statement

	3 Design
	3.1 Architecture for Nidan
	3.2 KNAS
	3.3 Fingerprinting known systems and libraries
	3.4 Data storage strategy and architecture
	3.5 Design choices

	4 Results
	4.1 Deep dive into the test crawl
	4.2 Deep dive into Nidan scan 1

	5 Evaluation
	5.1 The module tool Retire.js
	5.2 The post-processing tool knas
	5.3 SSL certificate findings
	5.4 Privacy Badger
	5.5 Why Nidan?

	6 Conclusion
	6.1 Future Work

	Bibliography
	Acronyms
	A Database Schema
	B Cookies for railgun.dk

