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Chapter 1
Introduction

In the world of robotics there are a wide range of target areas e.g. production, construction,
cleaning. In most cases the robot is working alone. It might vacuum your house or cut
your grass or be part of a production line where it receives some product that it process and
pass along. In these production lines the interaction between the robots are not important as
long as the production line is working (e.g. receiving the correct x and outputting the right
y). However, in some areas a collaboration between humans and robots would increase the
quality of the product, while also reducing the chance of stress related injuries. One of these
areas is the butchery, Danish Crown. In order for man and machine to work together the safety
of the humans have to be assured, but also the perceived safety is important. The workers
who would have to start working with these robots might not be familiar with robots at all
and could be very reluctant when they saw a robot swinging a knife that cuts pigs in half in
under a second. Even though the robot was perfectly safe and had unlimited safety measures,
the worker might still be hesitant when working with the robot. Therefor it is very important
to reduce the stress and increase the trust that people have in the collaborative robots, as it
has been shown that there is a correlation between trust in robots and the effectiveness of the
collaboration between the robot and the human.

To create such a system the robot would need the ability to assess each human and be able
to change behavior based on said assessment. These changes could be alter the speed, move
away from the human, emergency stop, pause, wait for input, etc. Using an assessment system
one could ease the human into the new shared work space and give them time to get familiar
with the robot at a pace that would fit the individual. Such a system would require the robot
to be able to sense when the human was uncomfortable. Research into human emotions has
proved that emotions can be estimated using physiological measurements such as heart rate
or galvanic skin response (Mehrabian 1996, Bütepage & Kragic 2017). Pupil dilation can help
estimate cognitive load (Xu et al. 2011), and emotional arousal (Bradley et al. 2008).

This project aims to investigate the correlation between the emotional state of a human
performing a collaborative task together with a robot and the amount of trust that the person
has in the robot. This is achieved by conducting a series of tests where a human has their phys-
iological responses measured while performing varying tasks in collaboration with a robot, at
various speeds. The project also aims to investigate the impact that a robot’s movement-speed
has on human trust in the robot.
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Chapter 2
Theory

2.1 Human Robot Interaction

The advancement in robotics in recent years has resulted in a drastic increase of humans
and robots sharing work-spaces, and as such human-robot interaction (HRI) has become an
increasingly important field to insuring that HRI and human-robot collaboration (HRC) tasks
are safe and intuitive for the human.

When a human and an autonomous robot perform a task in close proximity, the robot
needs to be aware of the human’s actions and it needs to be able to adapt to those actions.
Traditionally to avoid this issue, HRI has been limited to a master-slave principle, where the
robot is used as a tool to perform an action instead of working in parallel with humans. When
conducting collaborative work with a robot, it is important for the human to feel safe and trust
the actions of the robot. By giving the robot the ability to sense how the human is feeling, and
adapt to human social cues, it is possible to dynamically alter the robots actions to provide a
more trustworthy and pleasant experience for the human, and reduce risk of serious injury.

According to Bütepage & Kragic (2017), HRI can be separated into three categories of
interactions;

1. Instruction
Where the robot performs a sequence of actions which are governed exclusively by the
humans decision making. In this case the task follows the master-slave principle, and
that prevents any advancements in social interactions or a parallel workflow. As is
shown in Figure 2.1, the robot is used as a tool to work towards the humans goal.

2. Cooperation
Where the robot and human are working towards a shared goal by completing subtasks
separately. While the goal remains shared the subtasks are independent from each other
and do not contribute towards the partners progress in any way. As shown in Figure 2.1
the work flow is entirely separated and parallel.

3. Collaboration
Much like cooperation, in collaboration the human and the robot are working towards a
shared goal. However, the subtasks performed by either partner has an interaction with
the other partner’s subtask to some extent. In Figure 2.1 it can be seen that this is very
similar to cooperation with the difference being the workflows are interacting with each
other.

2



CHAPTER 2. THEORY

Figure 2.1: This figure illustrates the direction of interactions during an arbitrary HRI task, and shows the subtle
but significant differences between the different categories of HRI

While collaboration and cooperation are very similar, they are conceptually different. An
example that illustrates this would be a car manufacturing task. Cooperation would mean
that the robot holds the door and then screw in the bolts by itself while the human would be
doing the same to the other door on the other side of the vehicle. The collaborative version
of that would be for instance the robot holding the door in the right position as the human
screws in the bolts to keep the door in place. For this to be an efficient solution the robot
needs to be accepted socially and emotionally by it’s human partner.

2.2 Trust In Robots

It has been observed that during human-human interactions, as the humans interact they will
both send and receive emotional signals which in turn adjusts their affective state, depending
on the signals (Papousek et al. 2008). As shown by Papousek et al. (2008) this plays a very
important role in how humans feel about the interaction. If the robot were to successfully
assume a position in a social workspace, where it is trusted by it’s human partners, it should
be able to receive and respond to human social. For this to happen successfully, the robot
must be able to detect and interpret the behavior and affective state of the human partner.
For this project trust is defined as: System automation trust is defined as having confidence in and
entrusting the system automation to do the appropriate action. This definition was borrowed from
Biros et al. (2004).

According to Gaudiello et al. (2016) there are six features that define robot acceptance:
representational, physical, behavioral, functional, social, and cultural. However, functional
and social acceptances play a key-role for effective human-robot interaction and the others are
less important and will not be considered (Gaudiello et al. 2016). Functional acceptance is de-
fined as the robot’s perceived ease of use, usefulness, accuracy, and innovativeness (Gaudiello
et al. 2016). Social acceptance is defined as the robot’s social presence, perceived sociability,
and social influence (Gaudiello et al. 2016). The representational and cultural acceptance con-
tinuously vary depending on the human’s familiarity with robots in general. Humans are
likely to accept a rough physical appearance (Turkle 2011) or accept inappropriate behavior
like humans do with children (Young et al. 2009). However, humans are much less likely
to accept uselessness or deception from the robot (Kaplan 2005, Shaw-Garlock 2009, Heerink
et al. 2010).

According to Nass & Moon (2000), Nass et al. (1996, 1995) when humans engage in collabo-
rative tasks with machines, humans tend to unconsciously accept computers as social entities.
Additionally Young et al. (2009) proposed that there is a correlation between robot efficiency
and human trust in the robot. According to Yagoda & Gillan (2012) trust is a valid indica-
tor of robot function and social acceptance. Weiss et al. (2009), Heerink et al. (2010) found
that a set of social acceptance indicators, such as performance expectancy, attitude towards
technology, and anxiety. In our experiment we will attempt to estimate the subjects attitude
towards the robot using their emotional state. In order to measure the emotional state, a way
of quantifying emotions was needed.
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CHAPTER 2. THEORY

2.3 Quantifying Emotions

Starting with Darwin (1872) and later expanded on by Ekman et al. (1969), human emotion,
regardless of cultural influences, can be categorised into 6 basic emotions; fear, anger, disgust,
sadness, joy, and surprise. The strength of Ekmans model was that it was able to distinguish
the different emotions clearly. According to Posner et al. (2005) the downfall of the model is
that it is not designed to fit any emotions that are not included in it’s defined categories, and
thus have difficulty modeling some components of emotion.

Russell (1980) proposed a circumplex model where the horizontal axis represents valence
while the vertical axis represents arousal. The exact center of the model is a neutral state.
With this approach it is possible to map a humans affective state based on the those two
dimensions.

Mehrabian (1996) introduced a three state model called the Pleasure-Arousal-Dominance
(PAD) model. This model is used for measuring emotional states (e.g., anger, depression,
elation, fear, relaxation). According to Mehrabian (1996) the PAD model showed considerable
independence between the scales and the combination of the scales showed high reliability.
Furthermore, distinctions between certain clusters of affectional states (e.g., fear, anger, sad-
ness) required more than two dimensions to be clearly separated. Here are 8 labels of traits
Mehrabian (1996) found to describe the temperament space:

• Exuberant (+P+A+D) vs. Bored (-P-A-D)
• Dependent (+P+A-D) vs. Disdainful (-P-A+D)
• Relaxed (+P-A+D) vs. Anxious (-P+A-D)
• Docile (+P-A-D) vs. Hostile (-P+A+D)

Table 2.1: 8 labels of traits to describe the temperament space by Mehrabian (1996)

However, Mehrabian (1996) used questionnaires to determine the PAD values. In order to
give an indication of the affective state of a human in real-time other measurement tools had
to be used.

Kreibig (2010) mapped the response of various physiological signals and the correspond-
ing emotion. According to Kreibig (2010) the anger, anxiety, surprise and fear have an increase
in heartrate (HR) and electrodermal activity (EDA). Sadness can have both increases and re-
ductions in HR and EDA reactions. Joy have no change in EDA response but an increase
in HR. This means that a third dimension was needed to separate the positive and negative
feelings from each other, as many of them would get the same HR and EDA responses. Pupil
dilation has been proven as a reliable way of detecting emotional arousal (Henderson et al.
2018). Similarly Xu et al. (2011) found that pupil dilation could be a feasible way of detecting
cognitive load which in most cases would imply some sort of emotional arousal. Kawai et al.
(2013) and Babiker et al. (2013) found that negatively valenced stimuli trigger larger pupil
dilation than positively valenced stimuli. According to Bradley et al. (2008) the response time
of pupil dilation is around 0.2 seconds which is very fast for a physiological response. This
means that the pupil response can be used early to indicate when the subject is having an
emotional response and in conjunction with HR and EDA could give an indication which
emotion it is.
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CHAPTER 2. THEORY

2.3.1 Cardiac Response

Based on the Implicit-Affect-Primes-Affect (IAPE) model, proposed by Gendolla (2012, 2015),
it is possible to measure a effort-related cardiac pre-ejection period (PEP) response induced
by emotional stimuli, namely by subjecting the participants to flashes of images that were
designed to provoke certain positive and negative emotions. Chatelain & Gendolla (2015)
showed that it was possible to measure changes in the effort-related PEP response when sub-
jected to said stimuli. Framorando & Gendolla (2018) further showed that there is differences
in reaction to the stimuli between genders when the duration of exposure changes. Briefly
(25ms) flashed images provoked a stronger reaction with sadness-primed images as opposed
to anger, meanwhile the opposite was observed when the duration was longer (780ms). This
pattern was exclusively observed in males. Additionally Freydefont et al. (2012), Goshvarpour
et al. (2017) showed that it is possible to make similar estimation of sadness and anger using
only cardiac activity. In this report we want to investigate if HR can be used to help detect
when the robot cause an negative emotional response in humans. Goshvarpour et al. (2017)
proposed a method using exclusively cardiac-activity measurements to classify emotions that
are otherwise indistinguishable with arousal measurements. Their study aimed to classify the
emotional state into the following classes; Happiness, Peacefulness, Sadness and fear. Using
electrocardiography (ECG) to measure heart-rate variability (HRV) and finger pulse activity
for pulse-rate variability (PRV) with a lagged pointcare plot, and further quantifying these
measures using fitted ellipses as shape indices. From these plots the short term variability
(SD1), the overall variability (SD2), a ratio of the two ( SD1

SD2
), and the area of the fitted ellipse

(Area), can be calculated. SD1, SD2, SD1
SD2

and Area from both HRV & PRV plots are then fed to
a support vector machine (SVM) for classification. In the paper, Goshvarpour et al. (2017) pro-
poses two ways of feeding the variables to the SVM, either by combining the features before
feeding them to the SVM or by classifying them with separate SVMs and then passing those
classifications into a combining classifier and using the result of that classifier in conjunction
with the initial seperate classifications to recognize the emotion.

2.3.2 Electrodermal Activity

As proven by Boucsein (2012), Critchley (2002) the intensity of arousal that is experienced has
a proven correlation with the activity in the eccrine sweat glands. As the intensity of arousal
increases so does the activity in the sweat glands. While it is possible to infer the level of
arousal it is not a representation of the specific emotion as both positive and negative stimuli
cause an increase in arousal. The activity of the eccrine sweat glands have an important role in
human thermo-regulation and sensory discrimination. They also showed a strong response to
emotional stimuli as the skin become increasingly conductive, and those changes in electrical
activity can be measured. EDA is the resistance of the skin with different levels of activity in
the sweat glands. The most common solution uses a fixed voltage system, also known as an
exosomatic method, where a constant voltage (commonly 0.5V) is applied to the skin between
two electrodes and is then calculated, using Ohm’s law, as such:

C =
V
R

(2.1)

where V is the fixed voltage, R is the resistance, and C is skin conductance which is gained
by measuring the current flowing between the electrodes. Skin conductance have to ability
to react fairly quickly. According to LabScribe2 (2013) the response time of EDA is approxi-
mately 1.35 seconds from the beginning of stimuli to the reaction in EDA which is less ideal
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CHAPTER 2. THEORY

for real-time affect estimation. LabScribe2 (2013) used questions as stimuli. We expect the
EDA response to visual stimuli is quicker as there is less comprehension to be done by the
participants.

2.3.3 Non-Verbal Communication

It has been showed that non-verbal communication such as eye contact, facial-expression,
posture, body movements and inter-personal distance are ways where humans communicate
emotion both conciously and subconsiously. They provide valuable information about the
emotions or attitude that a person is feeling in a given situation. Non-verbal communication
play an important role in interpersonal interaction. For HRI this information can be very
valuable to adjust the robots behavior. In the field of social robotics, a lot of studies have been
done trying to identify and classify body-language so robots can respond appropriately or in
case of human-like robots learn how to mimic human emotions through body language (Mc-
Coll & Nejat 2012, Beck et al. 2010). The assumption is that people will use the same innate
body language when communicating with a robot as they would when communicating with
another human. The experiments conducted by Bull (2016) thoroughly investigate the im-
portance of posture in interpersonal communication, as opposed to bodily movement. These
studies are aimed at investigating postures that are held for a duration longer than 1 second.
The investigations confirmed the observations done by Mehrabian & Friar (1969) that people
tended to lean forward when expressing a positive emotion and backwards when the express-
ing a negative emotion. Additionally Mehrabian & Friar (1969) shows that people felt more
comfortable with distances greater than the mean distance when having a negative attitude
towards what was being communicated, and distances smaller than the mean distance when
they had a positive attitude towards what was being communicated. Additionally the orienta-
tion of people during conversation was less conclusive as presented in Bull (2016), Mehrabian
(1967), the orientation of people varies greatly dependant on the sender and receiver of the
interpersonal interaction.

2.4 Multimodal Approaches

In recent years, EDA has been a common physiological measurement used to infer cognitive
load (Shi et al. 2007, Nourbakhsh et al. 2012, Haapalainen et al. 2010) and stress (Panigrahy
et al. 2017, Villarejo et al. 2012), in addition many recent studies show great promise when
using EDA in conjunction with other modalities as shown by Goshvarpour et al. (2017), Haa-
palainen et al. (2010), Gombos (2006), Xu et al. (2011), Healey & Picard (2000).

Rani et al. (2004) proposed a novel affect-based framework to detect the level of anxiety
that the user is feeling via biofeedback sensors. The sensors measured HR, EDA, and facial
electromyography (EMG) (of the jaw and eyebrow), treating these signals as a multivariate
problem, they were able to create an anxiety index which would detail the level of anxiety that
the user was experiencing. Reliable correlations were found between the self-reported anxiety
level and the physiological activity showing that is possible to utilize a multiple modalities to
reliably infer a human-user’ affective state. Using such a framework the robot can then make
the appropriate modifications to its behavior.

Attempting to do emotion recognition through facial motion has been a common approach,
either by classifying the facial expression into Ekmans 6 basic emotions(Ekman et al. (1969))
or by detecting the action units (AU) of the Facial Action Coding System (FACS). However,
Stienen & de Gelder (2011) propose a method that would address a problem that is often
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CHAPTER 2. THEORY

neglected in affect recognition that rely on a computer-vision approach, namely by measuring
in real-time. Given that it was designed as a human-computer interaction (HCI) focused
solution where the user’s gaze is normally focused on the monitor, resulting in the subject
facing the machine for the majority of the process. A very common problem when tracking
finer details of the face using computer vision is that it relies on tracking the position of the
face between frames. Not only does this introduce a lot of noise for the signal processing,
it becomes hard to track points that are not visible to the camera due to the subject turning
away or getting occluded by the robots appendages. With a collaborative HRI task, the user
cannot be expected to be looking at the robot for prolonged amount of time, as they should
be looking at their part of the collaborative task as opposed to the actions of the robot.

7



Chapter 3
Proposed Solution

In our experiment we try to estimate an emotional state using HR, EDA, pupillary responses,
and posture. We are most interested in the negative emotions such as: anger, disgust, fear,
sadness. Anger, disgust, and fear all have a high arousal rating which can be measured with
EDA and HR. However, sadness is hard to detect as it has a high variance in the measured
response. Sadness is not that relevant for our test. If the robot is making the participant sad it
is unlikely to be connected to the robots actions and therefore beyond our scope. We compare
the physiological data with a self reported trust score in order to see whether or not there is
a correlation between the participants emotional state and their trust in the robot. How the
trust score is collected is described in Chapter 5. The following hypotheses will be tested:

Hyp 1 There is correlation between the trust score and the physiological measurements.
It could be interesting to see if there is a way to monitor when humans are uncom-
fortable with the actions of a robot before the human move away from the robot. This
project explores the possibility of using physiological measurements to see if they can
be correlated with situations where the human feels uncomfortable.

Hyp 2 Humans are more afraid the faster the robot moves.
To have an effective relationship between the human and machine, the human needs to
trust that the machine will not hurt them. To ensure this trust the movements of the
robot have to communicate that the human is safe. We investigate if speed has an effect
of when the human no longer feels safe in the work-space shared between man and
machine.

Hyp 3 Humans will get more comfortable with the robot over the course of the exercises
As mentioned trust is very important to the relationship between robot and human. But
it would be interesting to see how fast trust can be build between the two. Therefor we
investigate if there are any change in the trust during our experiments.

Hyp 4 Humans will have less trust to the robot when the robot is operating behind them.
The most frequent occurrence of robots are in production lines and/or industrial pro-
duction. In some environments the robots work very closely with the humans and in
these scenarios it would be best if the robot’s work space could be positioned anywhere
while the human still feels safe. Therefor we investigate if the position of the robot’s
work space would have an effect on humans’ trust.

8



Chapter 4
Implementation of Solution

To measure the physiological data, sensors were required. How these sensors were created
and how the signals were processed are detailed in this chapter.

4.1 Physiological Measurements

We measured physiological data in order to infer a emotional state. We measured HR, EDA,
and pupil dilation. We used an Arduino Uno to send data from the EDA and HR sensors to
a computer with a sampling rate of 20 Hz (see Figure 4.1).

(a) Diagram of the EDA measuring circuit. (b) Diagram of the HR measuring circuit.

Figure 4.1: Diagram of the electrical circuits measuring HR and EDA. The Arduino symbols on the diagrams
signify that it is Arduino connections.

We used an Easy Pulse v1.11 to measure HR. Easy Pulse is a plug and play photoplethysmog-
raphy (PPG) tool. Because PPG measures the volume of the blood it is possible to measure
HR from the signal, as the volume increases with each ventricular contraction. EDA was mea-
sured using custom made copper-wired sensors. We used a hardware low pass filter to filter
some of the noise from the EDA signal (see Figure 4.1a). A picture of the implemented circuits
can be seen in Figure 4.2.

According to Mehrabian (1996) some of the feelings we are looking for have a high positive
arousal change (panic, anxious, hostile). Therefore we need to look for increases in the EDA
signal in order to try to track these emotions.

1http://embedded-lab.com/blog/easy-pulse-version-1-1-sensor-overview-part-1/
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CHAPTER 4. IMPLEMENTATION OF SOLUTION

Figure 4.2: The HR and EDA sensors and their connections.

4.1.1 Signal Processing

Cardiac Response

Each heartbeat contains 2 big peaks that should be easily detected using PPG. They are known
as the greater systolic-peak and smaller diastolic-peak respectively. This allows for easy calcu-
lation of inter-beat interval (IBI), HR, and systolic-diastolic peak-to-peak time (PPT). However,
due to movement induced signal noise and artefacts, the signal is smoothed using a moving
average filter, to the point where the diastolic peak is undetectable which is fine as we do
not need the diastolic peak for HR peak detection. However, this make the detection of the
systolic peak much more robust and significantly reduced the amount of false positive (FP)
(see Figure 4.3).

10



CHAPTER 4. IMPLEMENTATION OF SOLUTION

Figure 4.3: Before and after smoothing of the cardiac response signal

The PPG measurement produces a signal that is very susceptible to movement artefacts
and thus prone to a lot of noise. Therefor the signal is smoothed using a moving average
filter with a kernel of 10 samples (see Figure 4.3). To robustly measure the HR, a method
proposed by Scholkmann et al. (2012) was used. The algorithm provided a flexible automatic
peak-detection method for noisy periodic and quasi-periodic signals.

The signal is processed with a window that consists of the 100 latest samples, which results
in the HR estimation being done over a 5 second period. Within this window the average time
per peak is calculated as HR =

tlatest−t f irst
npeaks−1 where t f irst is the time of the first detected peak in the

window, tlast is the time of the latest detected peak within the window and npeaks is the total
number of peaks detected within the window. During testing the sensors were always turned
on at least 5 seconds before the start of the test. The chosen window size of 100 samples could
be decreased to reduce the delay, however that would decrease the amount of peaks within
the window resulting in a less stable HR estimation. During pilot tests, the window size were
tested starting at 60 samples, and increasing with 10 sample increments, and 100 samples was
chosen as the best balance between delay and stability.

Pupillary response

To detect the puppilary response of the participants the position of the eyes for each partici-
pant needed to be reliably located and tracked. This is done using facial landmark function-
ality of the Dlib2 library (see Figure 4.4). The Dlib library uses and implementation of the
method described in Kazemi & Sullivan (2014), which utilizes an ensemble of regression trees
to achieve very fast facial landmarks recognition.

2https://www.dlib.net
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CHAPTER 4. IMPLEMENTATION OF SOLUTION

Figure 4.4: Example showing the 68 facial landmarks using the Dlib library

It is then possible to isolate and exclude the area around the eye and then the eyes are
cut into two new images. We are looking for circular objects with very high contrast to their
surroundings, in terms of color as perceived by an RGB camera. To increase the contrast a
histogram equalization is performed on the image of each eye, resulting in a greater distance
in terms of values from the "black" pupil, the colored iris, and the white sclera. Once the eye
is properly segmented edge detection is used to identify the areas with the biggest changes in
color, which naturally occurs at the transition between the sclera, the iris and the pupil. The
resulting mask shown in Figure 4.5b can be used to perform a Circular Hough Transform (see
Figure 4.5c). From this transform the circle with the highest accumulated score is chosen as
the correct prediction of either iris or pupil. The the position of the circle center is then used to
extract a single row of the image which crosses through the center of the pupil. The gradient
of the signal is then used to determine where the biggest contrast between neighbouring
values is located, which results in a signal with 4 big peaks representing the position of each
transition between the sclera, iris, and pupil as seen in Figure 4.5e. From those the positions
(P1, P2, P3, P4) the width of the iris can be calculated as wiris = P4 − P1 and the width of the
pupil can be calculated as wpupil = P3 − P2 resulting in a pupil ratio of PupilRatio =

wpupil
wiris

.

12



CHAPTER 4. IMPLEMENTATION OF SOLUTION

(a) (b) (c) (d)

(e)

Figure 4.5: This figure shows an illustration of the pupil-ratio calculation method, where (a) is the segmented eye,
(b) is the edge-detection mask, (c) is the Circular Hough Transform, (d) shows the line at which the pupil gradient
signal is calculated and (e) is the resulting graph.

Any signal that has an erroneous pupil ratio due to the missing peak detection or im-
possible ratio such as when the algorithm detects a pupil larger than the iris, the algorithm
will return a 0 pupil ratio. This means there will be holes in the signal and thus the general
trend-line, excluding zeroes should be considered the correct pupil-ratio.

4.1.2 Robot Programming

We used the Sawyer robot3 for our experiments. This robot can be programmed with RoS4 or
the embedded Intera system. We used the Intera system as it had a lot of functionality already
implemented, such as movement, landmark tracking, and vision tasks. This made it very fast
and easy to implement our tasks. Our tasks were made from landmark tracking, movement,
and pressure measurements. The robot can be seen in Figure 4.6.

3https://www.rethinkrobotics.com/sawyer/
4https://www.ros.org/
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CHAPTER 4. IMPLEMENTATION OF SOLUTION

Figure 4.6: The Sawyer robot.
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Chapter 5
Evaluation

This chapter documents the experiments and the methods used for our evaluation.

5.1 Setup of Evaluation

The setup of the evaluation is as shown in Figures 5.1 and 5.2. In the water task the participant
would be seated facing the robot at a distance of roughly 2 meters from the base frame of the
robot. In the LEGO task had the participant seated with their right side facing the robot, at a
distance of roughly 50cm.

Water Setup Lego Setup

Figure 5.1: Illustration of the evaluation setup.

Water Setup Lego Setup

Figure 5.2: Picture of the real-life evaluation setup.
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CHAPTER 5. EVALUATION

5.2 Evaluation Design

For evaluation we used a set of tasks and questionnaires. The tasks was solved one at a time
followed by a questionnaire to determine trust score. The tasks was designed to elicit an
emotional response by the participant, mainly stress / anxiety / general uncomfortableness.
There was 4 tasks in total.

1. Received glass of water from robot.

2. Gave glass of water to robot

3. The participant build LEGO and place the finished LEGO into the claw of the robot. The
robot took the LEGO and put the LEGO in another location close to participant. Robot
was positioned to the side of the participant operating within their field of view.

4. This task was similar to the previous task but the robot would put the finished LEGO
behind participant. The participant was told not to turn around.

We used a latin square in order to balance the test and the task was executed at 70% and
100% speed. During the different tasks we recorded HR, EDA, and pupil dilation in order
to establish the emotional state of the participant. We also recorded video of the participant
completing the tasks. Before each evaluation baseline levels of the participant’s HR and EDA
was established. According to Mehrabian (1996) participants return to baseline emotional
baselines at different speeds. Therefore, the participant was asked to complete a survey in
between each task. This served 2 purposes: we needed a trust evaluation of each tasks and as
a break to get them as close as possible to their emotional baseline before the next task.

5.3 Subjective Assessment

We measured the participant’s subjective assessment of the robot and the tasks they performed
using a 14 question questionnaire. The questionnaire were developed by Schaefer (2013) to
evaluate the participants trust level after each task (see Table 5.1). All the questions are marked
in a Likert scale from 1-7, where 1 is "Strongly Disagree" and 7 is "Strongly Agree". The
questionnaire are not randomized.

Function successfully Act consistently
Reliable Predictable
Dependable Follow directions
Meet the needs of the mission Perform exactly as instructed
Have errors (Reverse Coded) Provide appropriate information
Unresponsive (Reverse Coded) Malfunctioning (Reverse Coded)
Communicate with people Provide feedback

Table 5.1: List of trust evaluation parameters developed by Schaefer (2013).

Reverse coded means that the result needed to be inverted for evaluation purposes (e.g.
Strongly disagree -> strongly agree).
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Posture

Additionally to pupillary response the videos gathered of each participant during the tests
will also be used to estimate emotion based on upper-body posture. Based on the scoring
scheme developed by Bull (2016), a new scoring scheme was developed to fit an HRI task.
The scheme described by Bull (2016) was developed from a set of varying interpersonal talks,
where the subject would be be face-to-face with another human. However, the investigations
presented by Bull (2016) has stationary human subjects, whereas this experiment presents
an active collaborative task between a human and a robot. The assumption of this scoring
scheme is that the participant will convey the same inter-personal information with their
body language when interacting with the robot as they would when interacting with another
human. However, during the task the claw of the robot, which they are interacting with,
performs a series of movements. Therefor some of the measurements have to be adapted to
the new context while others have to be entirely excluded.

The list of considered actions are put into 3 groups; Leaning, Orientation and Position can
be seen in Table 5.2:

Leaning Orientation Position
Lean towards robot Turn towards robot Lower torso
Reduces lean towards robot Reduces turn towards robot Raise torso
Lean away from robot Turn away from robot Move chair towards robot
Reduces lean away from
robot

Reduces turn away from
robot

Move chair away from robot

Table 5.2: List of the considered actions for each category

The description for each observation is further explained in Appendix 6.7. The criteria for
a pose to be considered is that it lasts for longer than 0.5 seconds and is a still pose rather than
part of a fluid motion, this is done to exclude FP and false negative (FN) due to unexpected
movements.
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Chapter 6
Results and Analysis

This chapter contain the results and an analysis of each of the hypotheses.

6.1 Trust

First we are looking at the hypothesis "Humans will get more comfortable with the robot over the
course of the exercises". The trust scores during the water exercises went up, while the trust
score during the LEGO exercise remained similar to each other (see Tables 6.1, 6.2).

Test 1 Test 2 Test 3 Test 4
Total 102,357 105,357 110,571 111,214
Mean 5,118 5,268 5,529 5,561
Variance 0,391 0,469 0,167 0,643

Table 6.1: Water trust scores change during the tests.

Test 1 Test 2 Test 3 Test 4
Total 106,071 95,071 100,143 98,857
Mean 5,3036 4,7536 5,0071 4,9429
Variance 0,504 0,474 0,963 0,988

Table 6.2: LEGO trust scores change during the tests.

Even with a relative small number of exercises the water experiment has an increase in
trust. Why there is a difference in water and not in LEGO could be due to the fact that the
participants had a more difficult time handing the LEGO to the robot. In the water experiment
the robot was holding the claw in a sideways manor and the claw was pushed backwards
while in the LEGO experiment it was holding the claw in the same way but the participant
had to push the claw sideways. The robot would close the claw when a certain pressure was
applied. However, many participants started small and building up the pressure instead of
giving a swift motion. This would require a lot more power from the participant than doing
one swift motion. This could impact the way the trust scores are evaluated as e.g. "functions
correctly" and "act consistently" could be impacted by the way the user interacted with the
robot. The change in score would only be affected if the participants handed the robot the
LEGO using the slow-increase-in-pressure technique at different tests.

Another theory of why the LEGO building experiment had a lower test score could be
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because the task simply was more unpleasant than the water exercise. The robot moved in
close proximity to the participant, it moved behind them, they were somewhat boxed in with
the robot on one side and the facilitator on the other. Many reasons could help explain this.
However, as previously mentioned, this is a small number of exercises and a pattern could
be found if the experiment had more exercises. We could also have discovered this if we had
used the same participants for both experiments. That would mean that we could directly
compare the two experiments trust scores and having eliminated all the external factors (such
as interaction method, or difference of opinion in how to score the robot).

To evaluate our hypotheses "Humans are more afraid the faster the robot moves" and "Humans
will have less trust to the robot when the robot is operating behind them" an ANOVA test was
performed to identify the impact of the different tasks, and the different speeds of the task.
First we wanted to see if there was a significant difference between our tasks. Therefor we
compare the fast and slow tasks with one another (see Table 6.3, 6.4).

RESUME
Groups Count Sum Average Variance
WaterFast 40 201,0714 5,0268 0,4178
LegoFast 40 183,5 4,5875 0,6003
ANOVA
Source of Variation SS dof MS F P-value F crit
Between Groups 3,8594 1 3,8594 7,5817 0,0073 3,9635
Within Groups 39,7059 78 0,5090
Total 43,5653 79

Table 6.3: Comparison of the fast version of the two categories of tasks.

RESUME
Groups Count Sum Average Variance
WaterSlow 40 214 5,35 0,390
LegoSlow 40 179,429 4,486 0,680
ANOVA
Source of Variation SS dof MS F P-value F crit
Between Groups 14,940 1 14,940 27,935 1,11E-06 3,963
Within Groups 41,714 78 0,535
Total 56,654 79

Table 6.4: Comparison of the slow version of the two categories of tasks.

The ANOVA show that the trust scores for the two tasks are distinctly different both in the
fast and slow versions. There are a large drop in trust scores for the LEGO building exercise
compared to the water exercise. This is also what we initially expected with the hypothesis
"Humans will have less trust to the robot when the robot is operating behind them". This hypothesis
will be further discussed later. The observed drop in the trust scores from the water scores to
the LEGO building scores could be because the participants in general felt the LEGO building
exercise was less safe than the water exercise.

Next we investigate the hypotheses "Humans are more afraid the faster the robot moves" and
"Humans will have less trust to the robot when the robot is operating behind them". To test these
hypotheses the results from an ANOVA where we compare the tasks’s fast and slow versions
are analyzed below (see Table 6.5, 6.6).
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RESUME Water Give Water Take Total
Fa

st

Count 20 20 40
Sum 97,286 103,786 201,071
Average 4,864 5,189 5,027
Variance 0,465 0,337 0,418

Sl
ow

Count 20 20 40
Sum 108,143 105,857 214,000
Average 5,407 5,293 5,350
Variance 0,248 0,545 0,390

To
ta

l

Count 40 40
Sum 205,429 209,643
Average 5,136 5,241
Variance 0,423 0,432
ANOVA
Source of Variation SS dof MS F P-value F crit
Speed Difference 2,089 1 2,089 5,241 0,024 3,966
Task Difference 0,222 1 0,222 0,556 0,457 3,966
Interaction 0,964 1 0,964 2,4203 0,123 3,966
Within 30,297 76 0,398
Total 33,573 79

Table 6.5: Comparison of the water tasks to see if there is a difference in the speed of the robot’s movement.

RESUME LEGO In Front LEGO Behind Total

Fa
st

Count 20 20 40
Sum 91,643 91,857 183,5
Average 4,582 4,593 4,588
Variance 0,646 0,587 0,600

Sl
ow

Count 20 20 40
Sum 88,571 90,857 179,429
Average 4,429 4,543 4,486
Variance 0,706 0,683 0,680

To
ta

l

Count 40 40
Sum 180,214 182,714
Average 4,505 4,568
Variance 0,665 0,619
ANOVA
Source of Variation SS dof MS F P-value F crit
Speed Difference 0,207 1 0,207 0,316 0,575 3,966
Task Difference 0,078 1 0,0781 0,119 0,730 3,966
Interaction 0,053 1 0,053 0,081 0,775 3,966
Within 49,803 76 0,655
Total 50,143 79

Table 6.6: Comparison of the LEGO building task to see if there is a difference when the robot places objects in
front and behind the participant.
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First we take a look at the hypothesis "Humans are more afraid the faster the robot moves".
From the ANOVA we see that there was a significant difference in the water test in terms of
speed. However, there are no difference in the LEGO experiment. Therefor we cannot reject
our null hypothesis that the speed had no influence in terms of trust in the robot. However,
there is a larger variance in the fast give-task so larger data samples could reveal a clearer
pattern.

We test the hypothesis "Humans will have less trust to the robot when the robot is operating
behind them" by comparing the trust scores for the participants during the LEGO building
exercise. The null hypothesis was there are no significant difference between the tasks when
completed in front and behind the participants. The ANOVA show that we cannot reject our
null hypothesis. There was no significant differences in terms of speed or task for the LEGO
building experiment. However as many of the participants disregarded the instructions of
the experiment and followed the robot with their eyes and turned their bodies, which meant
the robot was never truly behind them, we do not feel this experiment can be considered
conclusive in this matter. Future redesign of the experiment could include two robots or a
spot or point that the participant had to look at during the test. One could also introduce a
second task which is solved while the robot is working. We will further investigate the posture
and gestures of the participants during this task in future sections.

6.1.1 Physiological Response

The hypothesis There is correlation between the trust score and the physiological measurements was
tested by comparing observations in the participants’s physiological data, their behavior dur-
ing the test, and their trust score. Figures 6.1a, 6.1b show what we classify as a EDA response
to the robot. Figures 6.2a and 6.2b show what we classify as no EDA response to the robot.

(a) (b)

Figure 6.1: Signal that are classified as having a GSR response to the robot.
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(a) (b)

Figure 6.2: Examples of signals that were classified as no GSR response.

We see a EDA response to the robot’s actions in 29 of the 39 participants at their first
interactions with the robot. In 13 participants we observed a EDA response in the last test.
The EDA signal changes approximately after a second after stimuli being applied. This is
consistent with other research projects that analyze EDA response. 1 of the 40 participants
did not have the EDA sensor attached properly which caused the EDA to be corrupted and
the participant was excluded from the EDA results.

The HR measurement equipment would sometimes would stop working correctly and
introduce artefacts into the signal making the signal useless during these periods. Examples
of these are shown on Figures 6.3a, 6.3b, and 6.3c.
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(a) (b)

(c)

Figure 6.3: Examples of when the HR signal did not work.

This meant that about half of our HR data could not be used. From the usable data we
observe that the HR most of the time would increase when the EDA would increase. As
observed in some cases the cardiac response to stimuli was an increased HR and other times
there was no significant change or a reduction in HR that was observed. Which leads us
to believe that the emotions being are measured is a result of the participant experiencing
different emotions. Further investigations would have to be conducted to establish what
emotions in particular each set of responses has a correlation with. The participants with a
increase in HR and EDA, had a 5,184 average trust score while the partcipants with no EDA
response had an average trust score of 5,194. The same can be observed in participants which
had a decrease in HR while having an increase EDA.These varied less than one standard
deviation away from the mean, participants that had no EDA response but still had an increase
in HR showed the same variation, within one standard deviation from the mean. However
due to the low sample size of these observations, this cannot be proven to be the case with
statistical significance.

6.2 Posture

In this section the results from the posture analysis are presented. The full description of each
variable measured can be found in Appendix 6.7.
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Torso posture scoring scheme

Action Category Action description

LTR Lean Towards Robot, torso is moved towards the robot.

RLTR Reduces Lean Towards Robot, the torso approaches the ver-
tical position.

LAR Lean Away from Robot, torso is moved away from the robot.

RLAR Reduces Lean Away from Robot, the torso approaches the
vertical position.

TTR Turn Towards Robot, torso is turned towards the robot.

RTTR Reduces Turn Towards Robot, the torso approaches the ver-
tical orientation from TTR.

TAR Turn Away from Robot, torso is turned away from the robot.

RTAR Reduces Turn Away from Robot, the torso approaches the
vertical orientation from TAR.

LT Lower Torso, the torso is lowered so the spine is collapsed
from a straight sitting position.

RT Raise Torso, the torso is raised so that the spine is straight
from a collapsed position.

mCTR move Chair Towards Robot, the chair is moved closer to the
robot.

mCAR move Chair Away from Robot, the chair is moved away from
the robot.

Table 6.7: This table contains a list of actions that are considered for torso movement during the experiments,
shown with an action identifier in the left column and an action description in the right column

Water Take
LTR RLTR LAR RLAR TTR RTTR TAR RTAR LT RT mCTR mCAR

Fa
st

Mean 0.058 0.1316 0.937 1.5 0.074 0.1316 0.289 0.08 0 0.15 0 0.084
Variance 0.029 0.1537 2.56 5.8758 0.05 0.3116 1.245 0.06 0 0.19 0 0.061

Frequency 0.11 0.105 0.47 0.474 0.11 0.053 0.11 0.1 0 0.1 0 0.11

Sl
ow

Mean 0.289 0.5222 0.222 0.2944 0.072 0 0.322 0.07 0 0.09 0 0.028
Variance 0.274 1.2151 0.284 0.5627 0.044 0 1.765 0.08 0 0.13 0 0.013

Frequency 0.28 0.222 0.17 0.167 0.11 0 0.06 0.1 0 0.1 0 0.06

Table 6.8: This figure shows the results from the both the fast and slow version of the water task, where the robot
had to receive the cup from the participant

As can be seen in Table 6.8 the participants spent much more time leaned towards the
robot in the slow task as opposed to the fast task where more time was spent leaning away
from the robot. However during both test great variance is observed as some participants
were very active with their body language were others kept theirs very muted. With a few
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instances of people raising their backs from their normal seated position.

Water Give
LTR RLTR LAR RLAR TTR RTTR TAR RTAR LT RT mCTR mCAR

Fa
st

Mean 0.122 0.3444 0.794 0.5111 0 0.05 0.206 0.04 0 0.04 0 0
Variance 0.124 0.8602 0.792 0.6599 0 0.0425 0.541 0.03 0 0.03 0 0

Frequency 0.11 0.167 0.61 0.444 0 0.056 0.11 0.1 0 0.1 0 0

Sl
ow

Mean 0.279 0.2263 0.163 0.0632 0 0 0.211 0.11 0 0 0.126 0.163
Variance 0.693 0.2756 0.479 0.0718 0 0 0.798 0.22 0 0 0.287 0.479

Frequency 0.11 0.158 0.05 0.053 0 0 0.05 0.1 0 0 0.05 0.05

Table 6.9: This figure shows the results from the both the fast and slow version of the water task, where the robot
had to give the cup to the participant

As seen in Table 6.9 a similar reaction in terms of body movement to what is observed
in the previous task, however at it also showed a tendency for participants to move the chair
back and forth in the slow variant. This is an very unexpected observation and contradicts
most of the other movement that the participants perform, as moving away from the robot
would be considered a display of negative attitude it would normally be expected to occur
with a much greater frequency and to a much larger degree in the faster version of the task.

Lego Front
LTR RLTR LAR RLAR TTR RTTR TAR RTAR LT RT mCTR mCAR

Fa
st

Mean 0.122 0.3444 0.794 0.5111 0 0.05 0.206 0.04 0 0.04 0 0
Variance 0.124 0.8602 0.792 0.6599 0 0.0425 0.541 0.03 0 0.03 0 0

Frequency 0.11 0.167 0.61 0.444 0 0.056 0.11 0.1 0 0.1 0 0

Sl
ow

Mean 0.025 0.055 0 0 0 0 0 0 0 0 0 0.055
Variance 0.012 0.0575 0 0 0 0 0 0 0 0 0 0.057

Frequency 0.05 0.05 0 0 0 0 0 0 0 0 0 0.05

Table 6.10: This figure shows the results from the both the fast and slow version of lego building task where the
robot would place the construction in front of the participant

As shown in Table 6.10, much more movement across the board can be observed in the
fast task as opposed to the slow task, and again the pattern of creating distance between the
robot and the participant is observed to a much greater extent in the fast variant as would be
expected.

LegoBack
LTR RLTR LAR RLAR TTR RTTR TAR RTAR LT RT mCTR mCAR

Fa
st

Mean 0 0 0.96 0.375 0.405 0.155 0.05 0.29 0.26 0.14 0.025 0.165
Variance 0 0 3.164 0.4599 0.88 0.0865 0.023 1.28 0.22 0.1 0.012 0.182

Frequency 0 0 0.55 0.4 0.3 0.25 0.1 0.1 0.3 0.2 0.05 0.15

Sl
ow

Mean 0 0 0.645 0.17 0.535 0.28 0 0.16 0.35 0.08 0 0.165
Variance 0 0 1.972 0.1341 0.925 0.2546 0 0.46 0.48 0.07 0 0.275

Frequency 0 0 0.35 0.2 0.4 0.35 0 0.1 0.3 0.1 0 0.1

Table 6.11: This figure shows the results from the both the fast and slow version of lego building task where the
robot would place the construction behind the particiapnt

As can be seen in Figure 6.11 there seem to be no indication of a positive attitude in the
form of leaning forward in neither the fast or slow variant of the task. However, there is
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a very small difference in the general behavior for this task, as certain aspects that would
be expected to be more prominent in the faster variant of the task that turn out to be more
prominent in the slow task, such as LT and TTR and inversely variables such as mCTR and
TAR are more prominent in the faster where the opposite was expected. The results from the
posture indicate the same tendency as the trust scores in terms of the perceived danger of the
different tasks, and the observed frequency, be it positive or negative, support the observations
of the trust scores.

6.2.1 Additional Observations

Trust Scores

• During the water tests, there were 3 instances of the robot failing to grasp the cup.
Observing the scores of the trust questionnaire for those tests, the participants showed
no deviation from the norm in terms of trust within the task. A lower score would have
been expected in the evaluation of Function Successfully, Meet the needs of the mission,
Have Errors, Act consistently or Malfunctioning. However no significant deviation from
the mean was observed.

• During the LEGO tests, 2 participants experienced that the robot failed to grasp the
construction. Like the water test, the trust scores that were expected to drop, showed no
significant deviation from the mean.

Participant reactions

• 2 participants voiced their discomfort with the robot holding the cup at eye level.

• 5 participants (4 male, 1 female) mentioned that the robot was "creepy" upon realizing
it had eyes on it’s display, whereas 3 participants (1 male, 2 female) thought the robot
looked "cute" and "friendly".

• 3 Participants complimented the robot when the LEGO was placed in such a manor that
it did not fall over when the robot released its grasp.

• 3 participants displayed a total of 5 instances of quickly retracting their arm when the
pneumatic gripper pressurized or depressurized.

• 4 participants commented on the robots slow movement while it was getting into po-
sition for the next task, and described the sound and movement as scary and unpre-
dictable.

• 6 out of 21 instances of visual nervousness occurs when the participant is not looking at
the robot. Only a total 7 participants looked away from the robot during the tests and
thus indicating that the participants are less nervous and are therefor less likely to get
scared when they are not observing the robots movements.

• Out of 40 instances of the robot operating outside of the participants field of view, 26
instances had the participant turn around and look behind to further observe the robots
movements.
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6.2.2 Pupillary response

All though the pupillary response looked promising in the ideal setting where the test par-
ticipant would not move their head, and predominately be looking straight ahead, the results
showed to be very different during the actual tests, where the participants were significantly
more prone to looking in a direction to such a degree that the view of the eye becomes
to skewed for stable pupil-ratio prediction. Additionally the lighting varied slightly, which
didn’t seem to be a problem with people who had iris’ of a lighter hue, making the iris-pupil
color contrast naturally significant, but it dramatically impacted the accuracy for people with
darker iris’.

Technical Test

(a)

Actual Test

(b)

Figure 6.4: Graphs of the pupil-ratio algorithm working in ideal conditions (left) and test conditions (right)

As can be seen in Figure 6.4 the signals produced during the test were too unstable due
to a combination of lighting changes, gaze direction and head orientation/movement. And
therefore the results are unusable and render this aspect of the study inconclusive. Due to
the unreliable results due to lighting and participant movements, changes to this version of
the implementation would have to be made for it to be reliable. The algorithm works in ideal
conditions and thus it would need some adjustments to facilitate test conditions closer to those
that are ideal. For this a near-infrared camera can be used as it is less affected by lighting, and
additionally the camera could be mounted on the participants head, so that the view of the
eye is always static. This would still face problems however with gaze changes and blinking
but could potentially facilitate conditions that would provide a reliable signal.
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Chapter 7
Conclusion

There was no significant correlation between the trust scores and the physiological data. How-
ever, based on the physical responses the participants had during the test it seems likely a
robot could evaluate the emotional state of a human during a collaboration task. It also seems
likely that the emotional state could be estimated using physiological data as there were phys-
iological responses after stimuli was applied and the response is clearly visible in the data.

Humans were more afraid the faster the robot moved in situations where the task had the
robot arm moving directly towards or away from the participant to a statistically significant
degree. The results regarding movement around the participant however show no statistical
significant difference in terms of speed and can therefor not be verified. Humans did not
have significantly less trust to the robot when the robot is operating behind them. However,
the posture and gestures made by the majority of the participants during the tests indicate
that they were less comfortable when the robot moved behind them. Our participants did get
more comfortable with the robot over the course of the experiments. As expected the results
confirm that the participants showed increase in trust scores as they gained more experience
with the robot.
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Appendix A
Code Snippets

Arduino

The below is the code run on the Arduino:

void setup ( )
{

pinMode (A0 , INPUT ) ; / /HR
pinMode (A2 , INPUT ) ; / / GSR
analogReference (DEFAULT ) ;
S e r i a l . begin ( 9 6 0 0 ) ;

}

f l o a t hr = 0 ;
f l o a t GSR = 0 ;
void loop ( )
{

hr = analogRead (A0 ) ;
GSR = analogRead (A2 ) ;
delay ( 5 0 ) ;
S e r i a l . p r i n t l n ( S t r i n g (GSR)+ ’ , ’+ S t r i n g ( hr ) ) ;

}
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Appendix C
Complete Trust Scores

Participant Gender Give Fast Give Slow Take Fast Take Slow
1 Female 3,786 5,714 5,714 5,714
2 Male 4,786 4,929 4,714 4,714
3 Male 4,643 4,929 4,929 3,571
4 Male 4,500 4,571 5,286 5,214
5 Male 4,286 4,929 4,929 5,786
6 Male 3,714 4,214 4,571 4,929
7 Female 5,429 5,857 5,929 5,714
8 Male 5,857 5,857 6,000 5,786
9 Female 5,357 5,714 5,286 6,000
10 Female 5,429 4,929 4,286 5,214
11 Female 5,214 6,000 4,857 5,643
12 Female 3,857 5,714 5,714 5,786
13 Male 5,214 5,643 5,571 5,786
14 Male 4,071 5,929 4,000 5,214
15 Male 4,786 5,429 4,500 4,786
16 Male 5,786 5,786 5,857 6,143
17 Female 4,571 5,500 5,500 3,357
18 Male 5,500 5,214 5,286 5,500
19 Male 5,714 5,714 5,071 5,286
20 Male 4,786 5,571 5,786 5,714
Total - 97,285 108,142 103,785 105,857
Mean - 4,864 5,407 5,189 5,292
Variance - 0,465 0,248 0,336 0,544

Table C.1: Show the trust score from the water cup experiments. Also show the mean and variance from each test.
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APPENDIX C. COMPLETE TRUST SCORES

Participant Gender In front Fast In front Slow Behind Fast Behind Slow
21 Male 4,286 3,500 3,857 4,000
22 Female 4,643 6,000 5,286 5,643
23 Male 5,571 5,929 5,214 5,357
24 Male 4,714 4,571 4,929 4,714
25 Male 5,786 4,143 3,714 3,071
26 Female 4,143 5,071 4,286 4,643
27 Male 3,286 5,857 5,714 4,786
28 Male 5,357 5,429 5,214 5,500
29 Male 5,643 4,643 5,000 5,429
30 Male 5,286 4,929 4,643 5,714
31 Male 3,429 3,429 4,143 3,357
32 Female 4,214 5,214 4,143 4,571
33 Female 4,143 4,714 3,643 3,786
34 Male 3,500 3,929 3,357 3,786
35 Female 4,286 4,500 4,643 4,857
36 Male 5,071 5,214 5,500 5,714
37 Male 4,857 4,429 4,571 3,786
38 Male 5,357 5,500 5,357 5,429
39 Male 5,786 6,000 6,071 5,857
40 Male 5,571 4,500 5,071 5,071
Total - 94,929 97,500 94,357 95,071
Mean - 4,746 4,875 4,717 4,753
Variance - 0,619 0,555 0,737 0,650

Table C.2: Show the trust score from the LEGO building experiments. Also show the mean and variance from
each test.
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Scoring Schemes
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