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Summary of Master Thesis

Our Master Thesis belongs to the specialization branch Machine Intelligence. It focuses on the research
area of Recommender Systems which is the concept of recommending a user u interesting objects/items i
from a list of unseen items. More specifically we focus on Collaborative Filtering which bases its
recommendations on the previous interactions between users and items e.g. a matrix of |users| x |items]|
encapsulating feedback such as “thumbs up”/”thumbs down” or numerical ratings/stars.

Matrix factorization is a popular algorithm for making recommendations as part of collaborative filtering.
The concept behind is that a rating matrix is sparse as every user has not rated every item. The sparse
matrix can be decomposed into two submatrices known as latent factor matrices which when multiplied
together attempts to reconstruct the values in the original sparse matrix. A side effect of this
reconstruction is that the previously unknown values are now filled out based on the latent factors. The
filled out values serve as predictions for a user’s interactions and are used as the basis of
recommendations.

Our Master thesis is an extension from our own work during the 9™ semester which showed that the
recommendation performance of Matrix factorization can be improved through the introduction of
additional data. More specifically we extended the concept of CoFactorization introduced in 2016 where
Matrix Factorization is augmented by the use of co-occurrence matrices, containing Shifted Positive
Pointwise Mutual Information (SPPMI) values.

The original paper on CoFactorization from 2016 was extended in 2018 and we based our 9" semester work
on the remaining possible extensions outlined in their future work section. Unfortunately the last
extension proved to decrease performance — a finding that we posit is the result of a “cap” being reached.
The latent factor matrices are not able to represent both the original matrix and all the additional SPPMI
extensions without suffering in general performance. This discovery fueled the pivot of focus for our 10"
semester.

As a direct result of the above finding we have focused our 10" semester on another avenue of increasing
performance: the concept of ensembling. Ensembling is based on combining multiple individual
recommender systems to aggregate their recommendations and thus improve recommendation
performance. Ensembling was proven as a valid strategy for recommendation by the Netflix Prize in 2009,
where the winner was an ensemble of 108 constituent methods. The simplest type of ensemble takes the
“confidence” values e.g. the values in a dense matrix output by matrix factorization, of each constituent
recommender system and averages them across all constituent recommenders.

It has since been attempted to make this combination of recommender systems more intelligent than pure
averaging — a simple extension is the introduction of weights for each item-user combination for each
recommender. Assigning a unique and fitting weight to every user-item combination in each single
recommender that is being ensembled is an enormous task — for that reason we attempt to assign a fitted
weight to each individual user on each recommender instead. In order to make our proposed method more
general we constrain our use of additional data to be the meta data that can be extracted solely from the
rating matrix — primarily rating counts and co-occurrences. That means no use of timestamps or
demographic data.
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Due to our positive experiences with SPPMI matrices for encapsulating co-occurrences last semester we
have implemented two simple recommender systems based on K Nearest Neighbours, which use SPPMI as
the similarity value instead. The recommender based on user-user co-occurrence performs well, while the
recommender based on item-item co-occurrence performs poorly. For that reason we use the user-based
recommender, the KNN recommender and a matrix factorization recommender as the three constituent
recommenders we will try to ensemble.

Our initial proposed method to assign unique weights to each user is based on a neural network. The
network takes a user’s meta data as input and maps it into a set of weights — one weight for each
constituent recommender. This process is a lot faster to train than a unique weight for each user-item
combination in each constituent recommender.

Unfortunately the neural network approach did not yield any useful results. We spent a long time
attempting to tune the network using alternative architectures and loss functions both pointwise and
listwise. Eventually we discarded the idea of using a neural network and settled on the best performing
architecture and loss function to report in our paper.

As an alternative to the neural network approach we propose a clustering approach. The concept behind is
that we use the meta data of each user as a basis for clustering. We then assign a fitted set of weights to
each cluster and use this weight for every user in the cluster.

Where the network could fit the weights by mapping the meta data, we utilize a grid search for the fitting
of each cluster’s weights. We search over every possible combination of weights that fulfill the
requirements that all weights sum up to 1 and the step size is 0.05. This approach is fully parallelizable and
for that reason we employ threading as part of our weight fitting.

The clustering approach performs better than the baseline predictors it combines, but fails to beat the
naive combination on all but one dataset. For this one dataset it would seem that the naive combination is
impeded by one of the constituent recommenders performing extraordinarily poor.

Despite not finding any approaches with groundbreaking performance we have spent our semester
researching current trends in recommender systems and experimented a lot with implementations of our
ideas.
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ABSTRACT

In this paper we extend upon ensembling of recommender systems
by customizing the weights used in linear stacking. We propose
the use of meta data readily available in rating matrices as the base
of customization. We introduce two novel approaches, one based
on neural networks, and one based on clustering of users, to map
meta data into a set of weights. We furthermore introduce two KNN
based predictors to use when ensembling. We extensively test our
proposed approaches against multiple baselines and beat singular
recommenders with our ensembles but fail to beat the baseline
ensemble.
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1 INTRODUCTION

Recommender Systems (RSs) are used to model users of a system,
in order to recommend items that are of interest to a given user [12,
p- 1]. Collaborative Filtering (CF) is a method which generates rec-
ommendations based solely on patterns of interaction, e.g. usage or
rating, between users and items, without the need for any external
data [12, p. 77]. This interaction between users and items can be
captured in a |U| X || matrix R. As a user rarely interacts with all
available items in a system, matrix R is sparse.

In this paper we propose novel approaches to improve upon
RSs. Recent research has shown that individual recommenders
such as the well known Matrix Factorization (MF) approach can
be improved by the inclusion of additional data for use during
factorization[10, 14]. Our earlier work has shown that the addition
of further data does not necessarily guarantee improved recommen-
dations [6]. For that reason we use the concept of ensembling, that
is combining the output of multiple recommenders, rather than the
improvement of a single recommender.

The Netflix prize showed that ensembling of multiple methods
can yield greater performance in recommendation than singular
methods [7]. The Netflix prize used a method that assigns a cus-
tom ensemble to each user-item pair. While this leads to better
performance it comes at the price of a computational overhead. We
propose using additional data (meta data) to perform ensembling
on a per user basis instead of user-item pairs to reduce the com-
putation. We introduce and test a neural network that can learn
a mapping between meta data describing an individual user, and
a set of weights for use when performing a linear combination of
constituent recommenders. This is closely related to the concept of
meta learning [15].

We also suggest a simpler alternative by using clustering algorithms
to segregate the users of a recommender system based on their meta
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Table 1: Notation used in this paper.

Notation | Description

Rating matrix of size |U| X | 7|

Set of all users. Individual users are denoted as u
Set of all items. Individual items are denoted as i
Set of all recommenders

An ordered list of items served as recommendations
Number of items to consider from the front of J
Latent user factors. Rows are indicated with «y,
Latent item factors. Rows are indicated with f;
Regularization parameter
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data. Each user cluster can then have a customized ensemble as-
signed to it.

Finally, as part of our ensembling experiments we introduce two
new baseline recommenders: User Positive Co-occurrence (UPC)
and Item Positive Co-occurence (IPC) which are both based on KNN,
but using Shifted Positive Pointwise Mutual Information (SPPMI)
as their similarity score.

To summarize: in this paper we make the following contribu-
tions:

e We present Neural Network Meta Stacking (NNMS), a neural
network model that maps user meta data to differentiate
ensemble weights on a per user basis.

e We present a model, Meta Clustered Stacking (MCS), that
uses clustering to segregate users into clusters based on user
meta data in order to differentiate ensemble weights on a
per cluster basis.

e We introduce two new KNN based models: User Positive Co-
occurrence (UPC) and Item Positive Co-occurrence (IPC).

e We perform an experimental evaluation to show the effec-
tiveness of our proposed methods.

Section 2 will summarize the notation and terminology used in this
paper. Section 3 will describe both the baseline methods we ensem-
ble, and our approaches for ensembling. Section 4 will detail our
experimental evaluation of our proposed ensembling approaches.
Section 5 will conclude upon our findings while Section 6 will
propose extensions to our work.

2 PRELIMINARIES

The notation used in this paper is summarized in Table 1. The ter-
minology used is presented in the following text.

User. The entity that has interacted with items in the rating matrix.
A user is represented as a single integer number.

Item. The entity that is being recommended and rated by users.
An item is represented as a single integer number.

Rating Matrix. The |U| X |7 | matrix R containing the interactions



between users and items.

Confidence. The value assigned to a user-item combination by a
recommmender. The user-item combinations with highest confi-
dence values are used as recommendations.

Meta Data. The side information available. Some datasets contain
additional data describing users or items in the rating matrix e.g.
demographic data, or item descriptions. In this paper we constrain
meta data to be data that can be extracted solely from the rating
matrix. Examples of such data are a user’s total number of rated
items, the average popularity of a user’s rated items, or a user’s
average co-occurrence value with other users.

3 RECOMMENDATION MODELS

First we present the concept of SPPMI matrices, then we give a
description of the three base recommenders used throughout this
paper: K-Nearest Neighbours, User-Positive Co-occurrence, and Ma-
trix Factorization. Lastly we present the different types of ensemble
methods used in this paper: Linear Stacking, List Position Stacking,
Neural Network Meta Stacking, and Meta Clustered Stacking.

3.1 SPPMI Matrices

Co-occurrence is a concept that is often used in CF. Co-occurrence
can be measured using simple counts as was done by Kamehkhosh
et al. [5] for their association rules mining. Alternatively Liang
et al. [10] extended upon the work of Levy and Goldberg [9] and
used Shifted Positive Pointwise Mutual Information (SPPMI) for
measuring co-occurrence. SPPMI is calculated from ordinary Point-
wise Mutual Information (PMI) which is defined in Equation 1 [9].
PMI calculates the co-occurrence between item i and item j using
probabilities P for the items appearing together in a user’s ratings
and individually.

muLS &
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To turn PMI values into SPPMI values, the PMI values are shifted by
log(k) and all negative values are removed as seen in Equation 2 [9].
In this paper we use k = 1 which is similar to the work of Tran
et al. [14].

PMI(i, j) =

SPPMI(i, j) = Max(PMI(i, j) — log(k), 0) (2)

Liang et al. [10] stored the SPPMI co-occurrence between items
in a matrix and used this matrix to regularize a weighted matrix
factorization based RS. Tran et al. [14] extended upon this idea
and used multiple SPPMI matrices for co-occurrence between both
items and users — discerning between positive co-occurrence and
negative co-occurrence.

An important aspect of SPPMI matrices is that they can be obtained
from the rating matrix R by counting occurrences to estimate prob-
abilities, and as such are available for use in any CF dataset.

3.2 Base Predictors

The base predictors are singular recommenders, which in this paper
will be used both as a baseline and as a constituent of our ensembles.

3.2.1  K-Nearest Neighbours. (KNN) is a simple predictor based on
similarity between either users or items, that has been used for
more than a decade [11]. For this paper we focus on item-based
KNN. When using item-based KNN, a user u is modelled as a list
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of liked items. For each liked item i in this list, the k items most
similar to i are found along with their respective similarity values.
The similarity values are summed in case the same item is found
multiple times. The summed similarity values found for items of
user u are normalized for future ensembling purposes using the
formula in Equation 3. x is the similarity value of a single item
while upqx is the highest similarity value found between ’s items.
The normalization does not change the ordering of items with a
score above 1, but makes ensembling of multiple predictors straight-
forward. Recommendations can be made based on the items with
the highest similarity values to the user.

Normalize ) {o.o ifx < 1.0
ormalize(x, Umax) = Loga(x) )
Logz(umax) lfx > 1.0

©)

Similarity is frequently measured using the cosine similarity metric.

3.2.2  User Positive Co-occurrence. (UPC) is similar to KNN, but
uses SPPMI values as the similarity measure and measures sim-
ilarities between users rather than items. The recommendations
for user u are built by finding all users similar to u according to
the SPPMI matrix. Each item liked by a related user is assigned
the related user’s SPPMI value as its similarity score. Once again,
the similarity values are summed in case the item has been found
multiple times, and the normalization approach of Equation 3 is
used. Recommendations are made by finding the items with the
highest similarity sums.

3.2.3 Item Positive Co-occurrence. (IPC) is another predictor based
on KNN and SPPMI values as similarity measure. It measures the
similarities between items on a per user basis. For an item i liked by
a user u all items have their similarity score increased by the SPPMI
between i and the item. Items that are assigned multiple similarity
scores have their scores summed. IPC reuses the normalization
approach seen in Equation 3 and recommendations are made by
selecting the items with the highest similarity scores.

3.2.4 Matrix Factorization. (MF) is a popular predictor based on
the concept of latent factor models which won popularity during
the Netflix prize [8]. The premise is that the rating matrix R is
sparse, but can be factorized into two latent factor matrices « and
B, which when multiplied back together results in a dense rating
matrix with approximations of the previously unknown ratings.
The unknown rating ry, ; which user u gives item i is approximated
as seen in Equation 4.

Fui = al i )

The factorization into latent factor matrices & and f is usually
achieved by minimizing the regularized squared error shown in
Equation 5.

LMF:% Z
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The minimization is performed using either stochastic gradient
descent or alternating least squares [8]. In this paper we use the

implementation of Tran et al. [14].



3.3 Ensembling Methods

Ensembling methods take multiple baseline predictors and aggre-
gate them to obtain a singular result.

3.3.1 Linear Stacking. (LS) as described by Breiman [1] is the base-
line of our ensemble methods. It is given by Equation 6.

P
LS(u) = " (wp - gp(w)) ©)

p=1
LS(u) is the final prediction function, wp is a weight assigned to
recommender p, and gp, is the prediction function for recommender
p. w can either contain |#| optimized weights, or can be set to 1 to
weight each recommender equally. We refer to the latter as Simple

Linear Stacking (SLS) and use this as a baseline for ensembling.

3.3.2  List Position Stacking. (LPS) is a novel approach of this paper.
Instead of taking a confidence vector for all items like LS, it uses
the user’s top-M items from each recommender. This M can be
adjusted as a hyper parameter, but for this paper we use M = 100.
Then these results are aggregated as shown in Equation 7.

J
LPS(u) = Z Z( Wp W) (7)

i=1p=1

We still use the weighting of each recommender as done in LS, but
instead of using the confidence for each item, we instead derive
this from the position (Pos) of item i in J given p. Here log is used
to make the decline in confidence smoother when increasing the
position of i.

LPS ensures that all models used in the ensemble have comparable
confidence values.

3.3.3 Neural Network Meta Stacking. (NNMS) is a novel approach
introduced in this paper. For both LS and LPS the weights are static
for all users. NNMS still use the concept of these two ensemble
methods, but instead of static weights we attempt to have a neural
network assign a custom set of weights to each user depending on
their meta features.

Figure 1 shows the structure of this model. On the figure we see
the first layer of the model, labeled as "Meta Data". This is an input
layer taking a meta vector for a given user. This is then fed through
a number of hidden layers before outputting a set of weights, equal
to the number of recommenders in the ensemble. These weights are
then used with either LS or LPS on the output of the recommenders
to give the final prediction for a given user.

3.3.4 Meta Clustered Stacking. (MCS) is another novel approach
introduced in this paper. This method takes a similar approach to
NNMS in that it tries to optimize the weights for stacking. Figure 2
shows the structure of this model. The first part of the model is
finding K number of clusters (buckets) for the users based on their
meta data. For this paper we will use K-means clustering to divide
the users into clusters with the number of clusters K given as a
hyperparameter. Then we find the optimal weights for each cluster
during training. To do this we perform a grid search and use the
set of weights with the best results in NDCG@20 on the validation
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Figure 1: Neural Network Meta Stacking structure

dataset. Once these weights are found predictions are done by
taking a user’s meta vector, finding the cluster for the given user,
and using stacking with the cluster’s set of custom weights.

4 EXPERIMENTAL EVALUATION

We experimentally evaluate the proposed ensembling methods as
well as the described baselines. We base our choices of evaluation
metrics and dataset preprocessing procedure on the previous work
of Liang et al. [10] and Tran et al. [14], in order to compare our
evaluation with the results they obtained.

4.1 Datasets

To test our proposed models and baselines we use three datasets
for recommendation research:

e MovieLens-10M (ml10m) [3]: A timestamped dataset of rat-
ing interactions between users and movies.

e MovieLens-20M (ml20m): A larger version of ml10m.

e Goodbooks-10k (gb10k) [16]: A dataset of rating interactions
between users and books. Does not contain timestamps.

We follow the same procedure for preprocessing as Liang et al. [10]
and Tran et al. [14]. This procedure can be summarized as binariz-
ing the data, only keeping ratings > 4. An iterative process removes
user or items with < 5 rating interactions in the kept data. Finally,
the ratings are split into three subsets: train, validation, and test.
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Table 2: Statistics after preprocessing for each dataset used.

mll0m | ml20m | gb10k
# users 58057 | 111146 53366
# items 7223 9888 9999
# ratings 4.1M 8.2M 4.1M
% sparsity | 99.03 % | 99.25% | 99.23 %

The splitting is performed following a 70/10/20 split, guarantee-
ing at least 1 rating for a given user or item in each subset. When
timestamps are available, the test subset consists of the most re-
cent ratings. Table 2 summarizes the statistics of each dataset after
preprocessing.

4.1.1 Meta data. For all 3 datasets we extract a meta vector for
each user based on the training set. We extract 3 features for each
user:

o Number of liked items
e Average SPPMI values for user similarity
o Average SPPMI values between liked items

4.2 Metrics

All metrics used for evaluation in this paper are calculated given
an ordered list of recommendations, 7, and a value M. Only the
first M items in J are considered as part of evaluation.

The first metric used for evaluation is Recall which is defined in
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Equation 8 [10].

M
> Liked(u, i)
i=1

Min(M, Number of liked items of u)

The Liked function used in the numerator returns 1 when user u has
liked item i in the test dataset and 0 otherwise. The denominator
evaluates to the minimum between M and the number of items u
has liked in the test set. The result is a metric indicating how many
items in the top of J are relevant recommendations for u.

The second metric is Normalised Discounted Cumulative Gain
(NDCG) which is the normalised version of DCG. DCG is defined
in Equation 9 [10].

Recall@M(u, ) =

®)

M Gain(u, i)
DCG@M@. J) = ) +- ©)
i=1

g(Pos(i) + 1)
The Gain function used in the calculation of DCG measures how
much user u gains from being recommended item i. This allows
for different scores of items in the test set. In this paper we use the
Liked function in place of Gain. The Gain in the numerator is being
discounted by the expression in the denominator which reduces
the gain as the item moves further away from the top of 7.

The normalised version of DCG is obtained by dividing with a per-
fect ordering. When Liked is used as the Gain function, a perfect
ordering has all items liked by user u in the test set at the front of
J. The resulting NDCG metric indicates how useful the recommen-
dations in J are, while penalizing useful recommendations placed
further down in the list.

The third evaluation metric is Mean Average Precision (MAP).
Equation 10 defines AP which is calculated for an individual user.

M
>, Precision@i(u, J)

i=1

Min(M, Number of liked items of u)
The Precision function used can also be formulated as Hit Rate —
how many items were liked in the list. An important aspect of
Equation 10 is that the Precision function takes a suffix indicating
how many items of J to consider. This means that the Precision is
calculated for a list of length 1, 2, ..., M and averaged. The mean of
all users’ APs can be calculated and this is the MAP metric. MAP is
similar to NDCG as it also penalizes the ordering of items in 7.

In keeping with the work of Liang et al. [10] and Tran et al. [14]
we will use {5, 20, 10} as the values of M for each metric respectively.
Similar to MAP being the mean across all users, we will report the
mean across all users for Recall and NDCG too.

AP@M(u, J) =

(10)

4.3 Experimental Approach

The experimental approach can be separated into two phases. Train-
ing of baseline models and training of ensemble methods. The
training phases are conducted separately across datasets. When
hyperparameters are part of a model we mention how we obtain
their values.

4.3.1 KNN. The training of KNN is performed solely using the
training set. The k neighbours to consider can be seen as a hyper-
parameter, but as we have sufficient memory, and want the best
performance of KNN, we set k to consider all neighbours.



4.3.2 UPC. This has the same hyperparameters as KNN, and uses
the same configuration.

4.3.3 IPC. This has the same hyperparameters as KNN and UPC,
and uses the same configuration. Preliminary testing shows that the
performance of IPC is not competitive with other baseline predictors
and for that reason we do not use it as part of our ensembles.

4.3.4 WMF. The training of WMF requires the use of both the
training set and the validation set. The ratings in the training set
are being used when optimizing the factorization. After each op-
timization step the NDCG@10 is calculated on the validation set.
The optimization continues until NDCG@10 does not improve.
The number of latent factors to use k is a hyperparameter. The
regularization weight A is a hyperparameter too. For ml20m and
ml10m we use the same parameters used by Tran et al. [14], and
for gh10k we find them using a grid search, searching between
k = {30, 40, 50, 60, 70, 80, 90,100} and A = {0.01,0.1, 1, 10}.

4.3.5 NNMS. We use the baseline predictors KNN, UPC, and WMF
to map the meta data for a given user into a set of three weights.
The neural network architecture used to produce our results is built
using Keras and consists of 3 hidden dense layers with 128, 64 and
32 units respectively. All three hidden dense layers use rectified
linear unit as their activation function. The layer producing the
final three weights is a dense layer using softmax as activation to
ensure the weights sum up to 1. The three weights are eventually
used for stacking using LS.

The training of the network uses the validation set and a pointwise
loss function defined by He et al. [4].

We choose to omit LPS as the complexity of the method makes
it non-differentiable within the Keras framework. Additionally a
pointwise loss function is not possible for LPS, as a full list of
predictions is necessary to make any prediction.

As the results were unimpressive we experimented with alternative
architectures and different loss functions including the listwise
loss function from ListNet defined by Cao et al. [2]. With different
architectures and loss functions tested, all with poor results, we
ended our tests of the method and chose the above architecture.
However we do not believe that this is the optimal structure.

4.3.6 MCS. We use the same three baseline predictors as NNMS.
The amount of buckets to use is determined through a grid search
over {1, 5, 10, 20, 40, 50, 60, 80, 100}. Each bucket of users finds
its optimal set of weights by using the set of weights with the
highest performance on the validation set for NDCG@20. Weights
are considered between 0 and 1 with all weights in a set always
summing up to 1. Weights are changed in increments of 0.05 which
gives a total of 231 weight combinations to consider when three
baseline predictors are used.

4.3.7 Regularized Matrix Embedding. (RME) is a recommender
based on WMF regularized by the SPPMI values for positive user
co-occurrence, and positive/negative item co-occurrence [14]. We
include RME as an additional baseline to showcase the performance
of a complex singular recommender. For ml10m and mI20m we will
use the settings Tran et al. [14] present in their paper, while we will
do a grid search for gb10k, using the same grid search parameters
as for WMF.
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4.3.8 Extended RME. (ERME) is our extension upon RME to in-
clude negative item co-occurrence [6]. We will again use the same
settings found for ml10m and ml20m while doing a grid search for
gb10k reusing the grid search parameters of WMF.

4.4 Research Questions

When all recommenders are trained we will evaluate them using
the metrics defined in Section 4.2. The results will then be used to
answer the following research questions:

(1) How does the baselines and the ensemble methods perform
on our chosen datasets?

(2) Does UPC improve performance when included in ensem-
bles?

(3) Can the concept of customized weights improve upon simple
linear stacking?

(4) Is linear stacking or list position better for ensembling?

(5) What impact does the amount of buckets have when using
MCS?

(6) Is per user basis (NNMS) or per cluster basis (MCS) better
for customizing weights?

4.5 Results

We now present the results of our experimentation and use the
obtained results to answer our research questions.

4.5.1 RQI: Baseline and Ensemble performance. The results ob-
tained through the experiments described in Section 4 can be seen
in Tables 4, 5 and 6 for the ml10m, ml20m, and gh10k datasets re-
spectively. In the case of MCS we only highlight the results of the
best performing bucket counts and indicate the count value as a
suffix using @ e.g. MCS@5 for MCS with 5 buckets.

Looking at the ml10m and ml20m datasets it can be seen that the
three baselines used for ensembling are similar in performance,
with KNN having the highest score across all metrics. It can also
be seen that a more complex single recommender such as RME and
ERME can improve performance further. When ensembling is uti-
lized the best performing model in both datasets is SLS, beating the
singular recommenders (although barely losing to RME by 0.0002
on NDCG@20 in the ml10m dataset).

Looking at the goodbooks dataset we see that the three constituent
recommenders of our ensemble are differing by a larger margin
in performance. KNN is still the best of the three recommenders.
Due to the larger margin in performance we see that SLS performs
worse than KNN, but introducing customized weights shows that
ensembles are still able to improve performance. However the best
performing model on this dataset is the more complex singular
model RME.

Overall we see that ensembles achieve better performance than its
constituent recommenders across all three datasets. For ml10m and
ml20m we are able to outperform all singular methods with a SLS
approach, but for goodbooks10k RME is the best performing model.
We believe that this is due to the weak performance of WMF and
UPC on this dataset.

4.5.2 RQ2: UPC ensemble performance. We introduced UPC to in-
clude diverse singular recommenders in our ensembles. In order



to verify that the inclusion of UPC is beneficial we have tried en-
sembling with SLS and MCS@1 (LS) all pairwise combinations of
KNN, UPC, and WMF. We present the results of this ensembling on
ml10m and ml20m in Table 3. We choose to omit goodbooks10k as
the performance of UPC is very weak on this dataset and therefore
using UPC in the ensemble will not prove useful. The results show
that for both datasets and for both ensembling methods the inclu-
sion of UPC is useful, as the performance is best when all three
models are included.

4.5.3  RQ3: Customized weight performance. The customization of
weights had a different impact across the three datasets. Looking
at ml10m in Table 4 the customized weights model that performed
best was MCS@5 (LS), which matched the simple linear stacking
on Recall@5, but performed worse on NDCG and MAP indicating a
worse ordering of items. A similar pattern can be seen for ml20m in
Table 5 where the models with customized weights perform worse
across all metrics.

For goodbooks10k, seen in Table 6, we have a more unique set
of results as the simple linear stacking performs worse than one
of its constituent predictors, KNN. The best performing model on
this dataset is MCS@1 (LS) and MCS@5 (LS) beating both SLS and
KNN by a significant amount. This highlights that when the gap
in performance between models used in an ensemble increases,
weighting the constituent models differently becomes important, as
the gb10k results show that there is still performance to be gained
when combining the strong KNN model with weaker models.

4.54 RQ4: Linear Stacking and List Position Stacking comparison.
Looking at all three tables LPS is outperformed by LS. This is ex-
pected as LPS was conceived as a method to use when an individual
recommender is unable to output a meaningful confidence value,
but as all three baseline predictors used for ensembling output
meaningful confidences LS is expected to have the best perfor-
mance.

It is worth noting that even though LPS performs worse than LS, it
still outperforms all constituent recommenders on the ml10m and
ml20m datasets.

These results suggest that LS is the better choice compared to LPS
on these datasets, with the chosen constituent recommenders.

4.5.5 RQ5: MCS bucket count impact. In order to evaluate the im-
pact of the choice of buckets for MCS, we have plotted its perfor-
mance as a function of bucket count in Figure 3. It can be seen
from the graphs that the choice of buckets have a negligible impact
on the performance of the MCS model. The most distinguishable
impact of bucket counts can be seen on the ml10m dataset where 5
buckets beat 1 bucket by 0.0047 on Recall@5. While no value varies
by more than 0.0015 on the ml20m dataset, and no value varies
by more than 0.0009 on gb10k. Generally no pattern can be seen
between bucket count and performance.

4.5.6  RQ6: MCS and NNMS comparison. Answering this question
is not possible as NNMS does not give a representative image of
a weight optimization on a per user basis. From the two sets of
results obtained it would appear that MCS is the best approach.
This is however not an interesting finding as RQ3 showed that SLS
has better performance than MCS.
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Table 3: Pairwise combinations of recommenders in ensembles on the m110m (left) and ml20m (right) dataset

Model Predictors Recall@5 | NDCG@20 | MAP@10 Model Predictors Recall@5 | NDCG@20 | MAP@10
SLS KNN+UPC | 0.1479 0.1364 0.0817 SLS KNN+UPC 0.1476 0.1360 0.0832
SLS KNN+WMF | 0.1468 0.1386 0.0789 SLS KNN+WMF | 0.1521 0.1420 0.0838
SLS UPC+WMF | 0.1487 0.1402 0.0798 SLS UPC+WMF | 0.1542 0.1431 0.0841
SLS All three 0.1587 0.1468 0.0867 SLS All three 0.1587 0.1483 0.0894
Model Predictors Recall@5 | NDCG@20 | MAP@10 Model Predictors Recall@5 | NDCG@20 | MAP@10
MCS@1(LS) | KNN+UPC | 0.1451 0.1332 0.0787 MCS@1(LS) | KNN+UPC 0.1438 0.1340 0.0806
MCS@1(LS) | KNN+WMF | 0.1528 0.1417 0.0821 MCS@1(LS) | KNN+WMF | 0.1551 0.1446 0.0856
MCS@1(LS) | UPC+WMF | 0.1532 0.1424 0.0817 MCS@1(LS) | UPC+WMF | 0.1554 0.1448 0.0853
MCS@1(LS) | All three 0.1540 0.1439 0.0839 MCS@1(LS) | All three 0.1564 0.1468 0.0876
Table 4: Results for the ml10m dataset. Table 6: Results for the gb10k dataset.
Model Recall@5 | NDCG@20 | MAP@10 Model Recall@5 | NDCG@20 | MAP@10
WMF 0.1292 0.1244 0.0655 WMF 0.2170 0.2089 0.1027
UPC 0.1322 0.1232 0.0723 UPC 0.1532 0.1450 0.0671
IPC 0.0265 0.0272 0.0101 IPC 0.0978 0.0928 0.0419
KNN 0.1419 0.1321 0.0780 KNN 0.2766 0.2394 0.1422
RME 0.1534 0.1470 0.0843 RME 0.2958 0.2680 0.1524
ERME 0.1497 0.1420 0.0811 ERME 0.2654 0.2426 0.1324
SLS 0.1587 0.1468 0.0867 SLS 0.2712 0.2430 0.1361
NNMS 0.1417 0.1318 0.0773 NNMS 0.1606 0.1514 0.0707
MCS@5(LS) 0.1587 0.1456 0.0856 MCS@1(LS) 0.2912 0.2551 0.1499
MCS@80(LPS) | 0.1512 0.1402 0.0799 MCS@5(LS) 0.2911 0.2552 0.1499
MCS@40(LpS) | 0.2819 0.2501 0.1429
Table 5: Results for the ml20m dataset.
ml20m the inclusion of UPC in ensembles yielded better perfor-
Model Recall@5 | NDCG@20 | MAP@10 mance.
WMF 0.1372 0.1292 0.0723 As part of our experimental evaluation we show that simple en-
UPC 0.1343 0.1228 0.0728 sembles can outperform complex single predictors such as RME.
IPC 0.0248 0.0259 0.0095 This indicates that the idea of customizing weights is promising,
KNN 0.1410 0.1318 0.0793 but unfortunately our attempts are unable to show any meaningful
RME 0.1556 0.1465 0.0868 improvement using NNMS or MCS.
ERME 0.1523 0.1431 0.0848 With the current information we can not argue whether NNMS or
SIS 0.1587 0.1483 0.0894 MCS can be used to further improve recommendations over simple
NNMS 01423 01321 0.0790 linear stacking, but we posit that it merits future work.
MCS@1(LS) 0.1564 0.1468 0.0876
MCS@20(LPS) | 0.1519 0.1420 0.0829 6 FUTURE WORK

5 CONCLUSION

We introduce NNMS and MCS, novel approaches to adjust weights
of ensembling methods, based on meta data about users. The NNMS
approach utilizes neural networks to map meta data about a user
to a set of personalized weights for ensembling. MCS utilizes a
clustering algorithm to assign users to clusters, which can then
be assigned a customized set of weights. We also introduce UPC
and IPC, derivatives of KNN using SPPMI values as their similarity
score, for the purpose of ensembling diverse baseline predictors.
Our final ensembles did not use IPC as its performance was not
competitive. However our results showed that for both ml10m and

The first area we suggest for future work in this paper is further
research on the neural networks approach. The current network
structure does not present any meaningful results, we do however
still find that the overall idea is sound. The problem is how to cast
the problem of weighting the constituent recommenders into a
solvable problem for a neural network. We suggest using a listwise
loss function and have the neural network learn a stacking function
unique for each user, instead of using LS with a set of weights given
by the network as we have presented.

The MCS implementation introduced in this paper uses grid
search after clustering to find the optimal weights. This will be
an issue moving forward especially when used with bigger sets
of recommenders, as the set of possible weights grows exponen-
tially. To be able to scale MCS and make it more broadly applicable,



a method for learning these weights e.g. optimization of a loss
function, would be necessary. We suggest optimizing this using a
pairwise approach similar to the work of He et al. [4], as this is
easier to differentiate. However for the final evaluation we suggest
the metrics presented in this paper.

As a last improvement we suggest the inclusion of further meta
data. We constrained our meta data to be the data solely available
from the rating matrix, and if future research wishes to keep this
constraint, Sill et al. [13] present an interesting list of meta data for
both users and items. Alternatively, some datasets have external
meta data available e.g. movie tags in the ml10m dataset. It is a
reasonable assumption that more relevant data will lead to increased
performance for both NNMS and MCS.
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