
The Automata Learning Tool

Master Thesis Project

Authors: Morten Stig Mortensen
Supervisor: Ulrik Mathias Nyman

Department of Computer Science
Aalborg University

Abstract

This report is an extension of a prior semester project. At first we conduct an
experiment in order test our hypothesis, the experiment yielded interesting
results. Then, the setup of the experiment is evaluated and reflected upon.
Based on the results, we decided to make further additions to the learning
tool. Before adding the new additions the learning tool was able to handle

DFA’s, but with the new additions it can now also handle NFA’s and PDA’s.
Then the implementations are discussed. Finally, a conclusion is drawn and

ideas for future work are presented.

sv101f19 i

Contents

1 Introduction 1

2 The Experiment 3

2.1 The Experiment Setup . 3

2.2 The Results . 5

2.3 Reflections & Discussion . 7

3 Theory 8

3.1 Non-deterministic Finite Automata 8

3.2 Pushdown Automata . 9

3.3 Context Free Grammar . 10

4 The Learning Tool 11

4.1 Extensions to the Learning Tool 11

4.1.1 The Implementation of NFA 11

4.1.2 The Implementation of PDA 12

4.2 Testing . 16

4.2.1 NFA Testing . 16

4.2.2 PDA Testing . 17

5 Discussion & Conclusion 20

sv101f19 ii

CONTENTS

5.1 Discussion . 20

5.2 Conclusion . 21

6 Appendix 22

6.1 The Experiment Results . 22

sv101f19 iii

Chapter 1

Introduction

The work documented in this report is based upon some of the results of the
prior semester. In the prior semester to this, the authors of this report wrote a
paper called Developing and Evaluating an Automata Learning Tool [1], which
did mention preparations of an experiment that had to be conducted. The
experiment has been conducted in this report and showed interesting results.
The paper from the prior semester can be found in the Aalborg University
Project Library.

The results of the experiment indicated that the participants gained more from
doing the paper and pencil exercises, rather than using the learning tool which
we have created. This of course contradicted the hypothesis that we had, which
stated is the learning tool we have created better or as good as the use of tra-
ditional paper and pencil. The results of the experiment can be seen in subsec-
tion 2.2 or in the Appendix for more details.

Even though the results of the experiment contradicted our hypothesis, we still
believed in the learning tool and the vision which we had in mind for this project.
We started to work on this learning tool because we felt, at the time we was
introduced to automata theory, that we needed something which was able to
visualize the different types of fundamental automata. By having the automata
visualized it would be easier to understand how an automaton worked, and the
learning tool would also make sure that the constructed automaton is correct
according to its semantic definition. We felt that all these things could enhance
the understanding of students who are for the first time being introduced to
automata theory. Thus, our vision for this learning tool was to deliver the
above.

With the vision for this learning tool in mind, we kept implementing new fea-
tures. Before implementing the new features, the learning tool was capable of

sv101f19 1

Introduction

autogenerating exercises which had something to do with deterministic finite
automata (DFA). The goal of this report was to implement new features that
would further improve the learning tool. This report deals with the theory and
implementation of two other fundamental automata: non-deterministic finite
automata (NFA), and pushdown automata (PDA).

sv101f19 2

Chapter 2

The Experiment

In this chapter we will present the findings of the experiment which we have con-
ducted. The purpose of this experiment was to test the hypothesis of whether
the learning tool we have created is better or as good as the use of traditional
paper and pencil. With this experiment we were also interested in collecting
feedback from the involved participants expressing whether or not, if they pre-
ferred to use the learning tool.

2.1 The Experiment Setup

This experiment has been conducted on students who were for the first time
being introduced to automata theory. All of the students who participated in
the experiment all attended the introductory course Syntax and Semantics at
Aalborg University. It should also be noted that the students who were involved
with the experiment only had their first lecture in the introductory course, at the
time of conducting this experiment. The number of students that participated
in this experiment was 11. In Table 2.1 the setup for the experiment is shown.

At first we divided the students into two groups, A and B, where the size of
group A was 6 and the size of group B was 5. Each row in Table 2.1 repre-
sents an activity with the amount of time in minutes allocated shown in the
parenthesis. At first both groups were given a test, this test was the same
throughout the whole experiment. We wanted to measure the students initial
knowledge and understanding of automata theory, and therefore we started out
with a test. After the first test we gave group A exercises that had to be solved
using traditional paper and pencil, P, and group B got exercises which had to
be solved using the learning tool, C. Then another test was conducted, such
that, we could measure if the students had improved. After the second test we

sv101f19 3

The Experiment

A B

Test(10) Test(10)

Session 1: P(15) C(15)

Test(10) Test(10)

Session 2: C(15) P(15)

Test(10) Test(10)

Table 2.1: The Experiment Setup Visualized

switched the type of medium that the students had to use. Then at last, a final
test was conducted to see if any further improvements had been made.

The test consisted of 4 different exercises. In the first exercise the students had
to perform set operations, such as, intersection, difference, union, and concate-
nation given two sets. In the second exercise the students were given a DFA and
had to answer questions, such as, what is the initial state, what is the accept
state, does this DFA accept a certain input string, and does it accept the empty
string ε. In the third and fourth exercise the students had to construct a DFA
which accepted a language that was given in the exercise.

We chose to keep the time span for each activity short. By keeping the time span
short, we made sure that the students were engaged with the given activity. This
also meant that the number of exercises that the students had to solve during
the exercise sessions was limited to a small set of exercises. In order to solve all
of the exercises during the allocated time, the student had to through all of the
exercises at a good phase.

The participants were also anonymous. We were only interested in tracking
their progress throughout the experiment and knowing whether they started
out by doing exercises by pencil and paper or if they started out by using the
learning tool. Each participant got an id which consisted of 4 characters, for
example, B302. The first character of the id was either A or B, and indicated
which medium this participant started out with. In this case since it was a B,
then that participant started out by doing exercises using the learning tool. The
second character of the id indicated what test the participant had performed. In
this case B3, told us that it was the third and final test. The last two remaining
characters of the id indicated which participant it was. In this case B302, told
us that it was participant 2 of group B.

sv101f19 4

The Experiment

2.2 The Results

In this section we present the interesting results of the experiment. The complete
tables of results can be seen in the Appendix.

Here, we were only interested in the columns of P and C, which we have visu-
alized using a histogram. These two columns indicates the improvements of the
participants. It should also be noted that the green column in the histograms
represents the average points gained.

sv101f19 5

The Experiment

−20 0 20 40 60

1

2

3

4

Point Difference

#
P
ar
ti
ci
pa

nt
s

Points difference after use of Learning Tool

−20 0 20 40 60

1

2

3

4

Point Difference

#
P
ar
ti
ci
pa

nt
s

Points difference after use of Paper and Pencil

Table 2.2: Points difference after use of Learning Tool

sv101f19 6

The Experiment

2.3 Reflections & Discussion

In this section we discuss the results gathered from the experiment and the
experiment in general.

The setup we chose for the experiment, which can be seen in Table 2.1, was
chosen due to the fact that it was robust since it interleaves the two types of
exercise sessions. The main objective of the experiment was to measure the
improvements of the participants from one test to another. By interleaving the
two types of exercise sessions, we made sure that we gathered solid results that
could tell the improvements from one test to another. From the interleaving we
were also able to tell which of the two mediums was most beneficial.

The results we gathered indicated that paper and pencil yielded a more positive
change in points, than compared to the use of the learning tool. It might be the
case that the participants which started out doing paper and pencil exercises,
did not improve as much after the use of the learning tool, as they did after
the initial exercise session with paper and pencil. It might also be case that
the learning tool is lacking a bit of functionality and perhaps a bit more user-
friendliness, in order to gather as much positive change in points, as the paper
and pencil session.

Some of the limitations we had while conducting this experiment was that, the
group size of participants was not too big. If we had more participants, the
results of the experiment would have been even stronger and the gap in points
difference might have been smaller. Also, we would have been able to introduce
a control group. With a control group we could have conducted a whole other
experiment, where the control group only were allowed to perform the tests.

With these results we can say for sure that there are improvements to be made
to the learning tool. The results also indicated that we are heading in the
right direction. The reason why we can state that we are heading in the right
direction even though the results might indicate otherwise is that, it was not
the learning tool itself that caused the difficulties. The participants did not
complain about the learning tool being too challenging to use. We can see that
it caused learning for some of the participants, this can be seen in the Table 6.1
and Table 6.2 in the Appendix. We still need to look more into the design of the
learning tool, the information contained in each exercise, and the feedback each
exercise provide. If we take a step back and look at these different aspects, then
it is our belief that the learning tool would be able to compete better against
the traditional use of paper and pencil.

sv101f19 7

Chapter 3

Theory

In this chapter we present the theory for two fundamental types of automata,
i.e. NFA and PDA. Both NFA and PDA have been implemented in the learning
tool according to their formal definitions.

It should be noted that all of the definitions in this chapter is from the book
Introduction to the Theory of Computation by Michael Sipser [2].

3.1 Non-deterministic Finite Automata
Definition 1 (NFA). A Non-deterministic Finite Automaton is a 5-tuple
(Q,Σ, δ, q0, F).

1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. δ : Q× Σε −→ P(Q) is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

For any alphabet Σ we write Σε to be Σ ∪ {ε}.

Definition 2 (Words). Given a finite alphabet, Σ, a word on Σ, w, is a
finite sequence

w = a0a1...an

where n ∈ N, and ∀i ≤ n.ai ∈ Σ. Let Σ∗ denote set of all words on Σ.

sv101f19 8

Theory

Definition 3 (Accept). Given a NFA M = (Q,Σ, δ, q0, F) and a word,
w = a0a1...an ∈ Σ∗, we say that M accepts w iff a sequence of states
s0, s1, ..., sn in S exists such that:

1. s0 = q0
2. si+1 ∈ δ(si, ai+1), for i = 0, ..., n− 1, and
3. sn ∈ F .

Condition 1 states that M start in the start state. Condition 2 states that state
si+1 is one of the allowable next states when M is in state si and reading ai+1.
Finally, condition 3 states that M accepts its input if the last state is an accept
state.

3.2 Pushdown Automata
Definition 4 (PDA). A Pushdown Automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F),
where Q,Σ,Γ and F are all finite sets, and

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. δ : Q× Σε × Γε −→ P(Q× Γε) is the transition function,
5. q0 ∈ Σ is the start state, and
6. F ⊆ Q is the set of accept states.

Definition 5 (Accept). A Pushdown Automaton M = (Q,Σ,Γ, δ, q0, F)
computes as follows. It accepts input w if w can be written as w =
w1, w2, ..., wm, where each wi ∈ Σε and sequences of states r0, r1, ..., rm ∈ Q
and string s1, s2, ..., sm ∈ Γ∗ exist that satisfy the following three condi-
tions. The string si represents the sequence of stack contents that M has
on the accepting branch of the computation.

1. r0 = q0 and s0 = ε,
2. For i = 0, ...,m − 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗, and
3. rm ∈ F .

Condition 1 states that M start out in the start state with an empty stack.
Condition 2 states that M moves according to the state, stack and next input
symbol. Condition 3 states that an accept state occurs at the input end.

sv101f19 9

Theory

3.3 Context Free Grammar
Definition 6 (CFG). A context-free-grammar is a 4-tuple (V,Σ, R, S)

1. V is a finite set called the variables,
2. Σ is a finite, disjoint from V , called the terminals,
3. R is a finite set of rules, with each rule being a variable and a string

of variables and terminals, and
4. S ∈ V is the start variable.

Definition 7 (CNF). A context-free-grammar is in Chonsky normal
form if every rule is of the form

1. A −→ BC
2. A −→ a

where a is any terminial and A,B, and C are any variables - except that
B and C may not be the start variable. In addition, we permit the rule
S −→ ε, where S is the start variable.

The following definition is from the book Languages and machines: an intro-
duction to the theory of computer science[3].

Definition 8 (GNF). A context-free-grammar G = (V,Σ, R, S)
is in Greibach normal form if each rule is of the form:

1. A −→ aA1A2 . . . An
2. A −→ a
3. S −→ λ

where a ∈ Σ, and Ai ∈ V − {S} for i = 1, 2, . . . n.

sv101f19 10

Chapter 4

The Learning Tool

In this chapter we present the features we implemented in the learning tool after
the experiment.

4.1 Extensions to the Learning Tool

Before extending the learning tool with the new features, the learning tool only
contained exercises which had something to do with DFA’s. After implementing
the new features the learning tool was able to deal with NFA’s and PDA’s.

Usually when we implemented new features, we kept in mind the learning as-
pects of things. But, during this implementation phase we switched our focus to
the actual learning tool itself. We switched focus because we wanted the learn-
ing tool to contain small sandboxes, which we like to refer to as playgrounds,
such that the user had the opportunity to experiment with different creations
of the newly implemented features. Then, in another iteration of the imple-
mentation phase the focus could switch back to the learning aspect to make the
playgrounds more intuitive and user-friendly.

4.1.1 The Implementation of NFA

When we began to work on the implementation of the NFA class we re-used the
internal representation of the DFA class, and modified it to fit with the formal
definition of NFA, which can be found in Definition 1 in Section 3.1.

We had to extend the DFA class, such that, it was capable of dealing with ep-
silon transitions. Not only did we add epsilon transitions, we also had to take

sv101f19 11

The Learning Tool

Figure 4.1: NFA - Playground

into consideration non-determinism. Non-determinism is in this case whenever
we encountered an epsilon transition, when encountered we had to "split" the
automaton. One automaton where we followed the epsilon transition and an-
other automaton where we followed the transition value from that edge. In order
to coupe with non-determinism we had to implement a model checker. We will
go into more details about the model checker in Section 3.2.

During this process we also came up with the idea of a transition table. The
transition table is a table that tells the user that, from the current state which
we are in, we can perform a certain transition, and end in another state. We
also had to create a new parser which was able to handle epsilon transitions.

In Figure 4.1 the result of the implementation can be seen.

4.1.2 The Implementation of PDA

When we began to work on the implementation of the PDA class we had to start
from scratch. There was not any prior existing code which we could re-use, like
we did with the NFA’s. This time we also had to modify the graphical library,
Springy [4], which we used to display the automata on the canvas. We had to
modify the way Springy presented the edges between states. The edges had
to be presented as they usually are on a PDA, like those that can be found in

sv101f19 12

The Learning Tool

Figure 4.2: Simple PDA

Introduction to the Theory of Computation.

When it came to the creation of the PDA parser, we simply had in mind that
we wanted to have the same or similar syntax to the one in Introduction to the
Theory of Computation. We ended up with a mix of our syntax and the syntax
from the book.

The initial PDA class was able to work with small and simple PDA’s defined
according to its formal definition, which can be found in Section 3.2.

An example of a simple PDA can be seen in Figure 4.2, this PDA recognizes
the language {0n1n|n ≥ 0}. Meaning that there has to be an equal amount of
0′s and 1′s.

After the initial implementation, we extended the PDA class to be able to
recognize and accept more interesting languages, such as
{aibjck | i, j, k ≥ 0 and i = j or i = k}. Meaning that, either it is the case that
there is an equal amount of a′s and b′s or there is an equal amount of a′s and
c′s. An example of this language can be seen in Figure 4.3.

sv101f19 13

The Learning Tool

In order to implement this extended PDA class, we first had to implement
something which was able to deal with non-determinism.

Figure 4.3: A more interesting PDA

We dealt with non-determinism in the same manner as we did with the NFA’s,
we used a model checker. Non-determinism in PDA’s occurs whenever a state
has more than one enabled outgoing transition. We wanted to explore all of the
outgoing transition to see which of the transitions ended in a potentially accept
state. We also defined an epsilon transition, that is whenever the transition had
the form: ε, ε −→ ε.

There were four cases where epsilons occurred in a transition. Case 1, the
transition a, ε −→ a. Here we simply added the input value a to the stack
without consulting the stack itself. Case 2, the transition b, ε −→ ε. Here we read
the input value and did nothing with it. Case 3, the transition b, a −→ ε. Given
that the input value was b and the top stack element was a then we proceeded
to pop that element from the stack. Case 4, the transition ε, ε −→ ε. This is a
"free" transition.

Whenever we encountered a state which had more than one enabled outgoing
transition we would "split" the automaton, and explore each of the outgoing
transitions. If it was the case that one of the outgoing transitions ended up in
an accept state, then it was reported back that there existed a valid path from
the state which we were in that lead to an accept state. The way we performed
explorations when traversing through a PDA is defined according to Definition 5
in Chapter 3.

The pseudo code for the modified implementation of breadth-first-search (BFS)

sv101f19 14

The Learning Tool

can be seen in Algorithm 1

Algorithm 1 Modified breadth-first-search
1: procedure BFS(automaton, state, word, stack)
2: maxCall← 0
3: S ← new Queue
4: S.push(id : 0, CS : state, word : word, stack : stack)
5: while S.length > 0 & maxCall < 1000 do
6: V ← S.pop
7: if V.CS is accept state & V.word empty & V.stack empty then
8: return V.CS
9: for all edge in edges do

10: if edge can be followed then
11: Update stack according to word and edge
12: S.push(edge)
13: maxCall← maxCall + 1

It should also be noted that after we created and implemented this Algorithm.
We then modified it to work with the NFA’s, the difference between those two
versions is that the stacking handling has been removed.

A trace is defined as a list of objects, and the data structure of each object can
be seen in Listing 4.1.

1 interface ObjStructure {
2 id: number
3 CS: string // CurrentState
4 word: string
5 stack: string
6 previousID: number | null
7 }

Listing 4.1: The Data Structure of each Object

Now let us assume that we are about to traverse a PDA, like the one in Fig-
ure 4.3. In order to traverse a PDA we have to use the main method. This
method is defined on the PDA class, and can be seen in Listing 4.2.

sv101f19 15

The Learning Tool

1 main = (word: string , state: string) => {
2
3 const BFSResult = this.BFS(automaton , state , word , stack)
4
5 tracePath.push(vistedPath[vistedPath.length - 1])
6
7 this.getTrace(vistedPath)
8 this.displayTrace(tracePath)
9

10 }

Listing 4.2: Main Method

The main method makes use of the modified BFS approach, which can be seen
in Algorithm 1, in order to explore the automaton. When the exploration has
been performed and an answer has been found, it then extracts the generated
trace and displays that trace to the user.

4.2 Testing

In this section we present the testing of the newly implemented features. Dur-
ing the conduction of the tests we chose to use a White-box testing approach,
the reason for that, was that we were interested in the behavior of the newly
implemented features. The only way we could grantee that the behavior of the
features was correct, was by looking underneath the hood while performing the
tests and validations.

4.2.1 NFA Testing

The primary automaton we used to test and validate the NFA class which was
the one in Figure 4.1. We chose this automaton because we could test different
properties, such as, epsilon walks and regular input strings. If we gave this
automaton the empty input string, ε, we expected that the outcome of traversing
this would yield in an accept state. Also, if we provided the automaton with
input strings, such as, 0, 1, 01, 00, 11 then we would also expect it to end in
an accept state, and this was mainly due to the epsilon walks that could be
performed no matter what state we were in. In order for the automaton to
reject an input string it would have to violate Definition 3, and the shape of
the input strings had to be in a specific manner. A rejected input string would
have to contain 00 followed by any arbitrary 0’s or 1’s, examples of such strings
could be 01001, 000 and 001. The results can be seen in Figure 4.4.

sv101f19 16

The Learning Tool

Figure 4.4: NFA Test Results

4.2.2 PDA Testing

The test and validation of the PDA class was a bit more exhaustive than of the
NFA class. This time around we had two primary automata, those can be seen
in Figure 4.2 and Figure 4.3. The automaton in Figure 4.2 was used to test
and validate our implementation of the basic push and pop functionality and to
make sure that the stack also functioned properly as well. If we provided the
automaton with the input strings, such as, 01 and, ε we then would expect that
the outcome would yield in an accept state. On the other hand, if we provided
the automaton with an input string 001. We then would expect the outcome
to yield in an error state. The results of those input strings can be seen in
Figure 4.5.

We used Figure 4.3 to test and validate the behavior of the model checker we
implemented. This automaton had two different epsilon branches that it could
explore at state b, therefore we chose this automaton as our primary for testing
and validating the model checker. If we gave this automaton the input strings
of aabbc, aabcc, and abc then the expected outcome of the three input strings
would yield in an accept state. The results of the input strings can be seen in
Figure 4.6.

While testing and validating the two automata, we also had to test and validate
other functionality within the main method (Listing 4.2). We needed to make
sure that the methods getTrace() and displayTrace() functioned as anticipated.
The getTrace() method extracted the generated trace. A generated trace could
exist of a path that went from the initial state to either an accept state or
to an error state. Then the displayTrace() method took the generated trace
and displayed that to the user on the website. In the following we present two

sv101f19 17

The Learning Tool

Figure 4.5: PDA Simple Results

Figure 4.6: PDA Model Checker Results

generated traces, one trance which lead to an error state, and another trace
which lead to an accept state.

In Listing 4.3 the generated trace for the input string aabccc is shown, this input
string was rejected by the automaton since there was not an equal number of
a′s and c′s or a′s and b′s.

sv101f19 18

The Learning Tool

1 {id: 0, CS: "a", word: "εaaεbεcccε", stack: "", previousID: null}
2 {id: 1, CS: "b", word: "aaaεbεcccε", stack: "$", previousID: 0}
3 {id: 2, CS: "b", word: "aaεbεcccε", stack: "$a", previousID: 1}
4 {id: 3, CS: "b", word: "aεbεcccε", stack: "$aa", previousID: 2}
5 {id: 4, CS: "b", word: "εbεcccε", stack: "$aa", previousID: 3}
6 {id: 5, CS: "c", word: "bεcccε", stack: "$a", previousID: 4}
7 {id: 6, CS: "d", word: "bεcccε", stack: "$aa", previousID: 4}
8 {id: 7, CS: "c", word: "", stack: "$a", previousID: 5}
9 {id: 8, CS: "d", word: "εcccε", stack: "$aa", previousID: 6}

10 {id: 9, CS: "e", word: "", stack: "$a", previousID: 7}
11 {id: 10, CS: "f", word: "cccε", stack: "$a", previousID: 8}
12 {id: 11, CS: "f", word: "ccε", stack: "$", previousID: 10}
13 {id: 12, CS: "f", word: "", stack: "$", previousID: 11}
14 {id: 13, CS: "f", word: "", stack: "$", previousID: 12}

Listing 4.3: Trace Fail - aabccc

In Listing 4.4 we have shown the generated trace for the input string abc. This
was of course a valid input string, and one which got accepted by the automaton.

1 {id: 0, CS: "a", word: "εaεbεcε", stack: "", previousID: null}
2 {id: 1, CS: "b", word: "aaεbεcε", stack: "$", previousID: 0}
3 {id: 2, CS: "b", word: "aεbεcε", stack: "$a", previousID: 1}
4 {id: 3, CS: "b", word: "εbεcε", stack: "$a", previousID: 2}
5 {id: 4, CS: "c", word: "bεcε", stack: "$", previousID: 3}
6 {id: 5, CS: "d", word: "bεcε", stack: "$a", previousID: 3}
7 {id: 6, CS: "c", word: "εcε", stack: "", previousID: 4}
8 {id: 7, CS: "d", word: "εcε", stack: "$a", previousID: 5}
9 {id: 8, CS: "e", word: "cε", stack: "", previousID: 6}

10 {id: 9, CS: "f", word: "cε", stack: "$", previousID: 7}
11 {id: 10, CS: "e", word: "ε", stack: "", previousID: 8}

Listing 4.4: Trace Success - abc

With the tests and traces presented in this subsection and with their outcome.
We can confidently state that our implementation of the PDA and model checker
functioned as expected.

sv101f19 19

Chapter 5

Discussion & Conclusion

In this chapter we discuss the results gathered throughout this report, then
we conclude and present ideas of what could further be implemented to this
learning tool.

5.1 Discussion

At the start of this report we conducted an experiment, and the result of the
experiment indicated that the traditional use of paper and pencil was better
than the use of our learning tool. This was of course not the result we wanted,
but it only motivated us to make the learning tool even better. We do believe
that after all of the work implemented throughout this report, that the learning
tool is in a much better position than before. The reflections and discussions of
the conducted experiment can be seen in Section 2.3.

After the experiment had been conducted we began to implement the new fea-
tures, i.e. NFA and PDA. We made a choice to implement those as playgrounds
only, the reason for that was we wanted the users to be able to play around and
experiment with those newly added automata and not necessarily be able to do
exercises in the first iteration of the implementation.

During the implementation process we also had to take into consideration how
we wanted to deal with non-determinism. It was quite challenging at first, since
we did not have any prior experience with implementing a model checker. The
model checker we ended up implementing was capable of performing a BFS
when it had to explore the various automata.

For future work it would be a good idea to look more into the design of the
learning tool. Make it look more sharp and clean, and take into consideration

sv101f19 20

Discussion & Conclusion

the use of a framework when creating this web-based solution. Frameworks that
might be of interest are: Express[5], and Angular[6]. Besides of migrating to
a framework, the visual aspects of the learning tool could also be improved.
It might be a good idea to make more use of the canvas, which display the
automata. Make it such that, whenever the user is testing an input string on
an automata then visualize the progress of exploration on the canvas as well.
This could potentially increase the users understanding of how the automaton
explores the given input string.

By making everything more visual, we might then reduce the complexity of
certain concepts. It might become easier to grasp difficult concepts, which
could appear alien at first, when concepts become visualized. It therefore seems
to be ideal to find the right balance of visualization and theory.

Regarding the model checker, then it could be beneficial to implement further
exploration methods, such as, depth-first-search (DFS). By having more explo-
ration methods implemented the user could visually see the difference of how
an automaton gets explored. This could potentially also increase the users un-
derstanding.

There are pros and cons of the two exploration methods, BFS and DFS. With
BFS we are guarantied to get an answer if the input string is accepted or rejected.
The same can not be said for DFS, since it might be the case that we could
encounter an epsilon loop and keep exploring that forever. There are ways to
deal with infinite epsilon loops by taking the given PDA and then convert it
into a context-free-grammar (CFG), and then convert that into a Greibach-
Normal-Form (GNF). The conversion from a CFG to a GNF can be found in
the book Languages and machines: an introduction to the theory of computer
science[3] on page 122 under Theorem 5.6.3. The form of a GNF can be seen
in Definition 8.

5.2 Conclusion

We have in this report succeeded in further developing the learning tool, we
achieved the goal which we had in mind for this report. We succeeded in imple-
menting two other fundamental automata, i.e. NFA and PDA. By implementing
those two fundamental automata, we also succeeded in implementing a model
checker which helps with the exploration of the two new automata. This im-
plementation have further increased the strength and robustness of the learning
tool.

There is still work that needs to be done that could further increase the users
experience with the learning tool and hopefully decrease the complexity of the
various concepts.

sv101f19 21

Chapter 6

Appendix

6.1 The Experiment Results

It should be noted that the two columns, P and C, indicates the difference in
points gained or lost after the use of either pencil and paper or the learning
tool. The amount of total points that could be gathered was 100.

sv101f19 22

Appendix

Exercise 1 Exercise 2 Exercise 3 Exercise 4 Total Points P C
A106 8 15 0 15 38
A206 8 15 0 15 38 0
A306 8 15 0 20 43 5

A105 8 15 0 0 23
A205 8 15 5 5 33 10
A305 8 15 0 0 33 0

A104 10 12 5 10 37
A204 10 12 5 30 57 20
A304 10 12 10 30 62 5

A103 6 12 10 0 28
A203 8 12 45 0 65 37
A303 8 12 45 30 95 30

A102 6 12 0 0 18
A202 6 15 5 5 31 13
A302 6 15 5 5 31 0

A101 10 12 0 30 52
A201 10 15 35 30 90 38
A301 10 15 40 30 95 5

Total 118 45
Avg 19.7 7.5

Table 6.1: Results of the Experiment for Group A

sv101f19 23

Appendix

Exercise 1 Exercise 2 Exercise 3 Exercise 4 Total Points P C
B105 10 15 0 20 45
B205 10 15 40 30 95 50
B305 10 15 45 30 100 5

B104 10 15 40 30 95
B204 10 15 35 30 90 -5
B304 10 15 45 30 100 10

B103 10 15 0 10 35
B203 10 15 0 15 40 5
B303 10 15 0 15 40 0

B102 8 15 0 0 23
B202 10 15 0 0 25 2
B302 10 15 0 0 25 0

B101 8 15 0 20 43
B201 10 15 0 0 25 -18
B301 10 15 25 20 70 45

Total 60 34
Avg 12 6.8

Table 6.2: Results of the Experiment for Group B

sv101f19 24

Bibliography

[1] M. S. Mortensen, “Developing and evaluating an automata learning
tool,” 2019. https://projekter.aau.dk/projekter/files/294873768/
P9_final.pdf.

[2] M. Sipser, Introduction to the Theory of Computation. Boston, MA: Course
Technology, third ed., 2013.

[3] T. A. Sudkamp and A. Cotterman, Languages and machines: an introduc-
tion to the theory of computer science, vol. 2. Addison-Wesley Reading,
Mass., 1988.

[4] D. Hotson et al., “Springy.js.” https://pegjs.org, 2013.

[5] S. TJ Holowaychuk et al., “Expressjs.” https://expressjs.com, November
16, 2010.

[6] Google, “Angular.” https://angular.io, September 14, 2016.

sv101f19 25

https://projekter.aau.dk/projekter/files/294873768/P9_final.pdf
https://projekter.aau.dk/projekter/files/294873768/P9_final.pdf
https://pegjs.org
https://expressjs.com
https://angular.io

	Introduction
	The Experiment
	The Experiment Setup
	The Results
	Reflections & Discussion

	Theory
	Non-deterministic Finite Automata
	Pushdown Automata
	Context Free Grammar

	The Learning Tool
	Extensions to the Learning Tool
	The Implementation of NFA
	The Implementation of PDA

	Testing
	NFA Testing
	PDA Testing

	Discussion & Conclusion
	Discussion
	Conclusion

	Appendix
	The Experiment Results

