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Abstract: 

The purpose of this project is to create a general 

overview of the consequences of coastal erosion 

the United Kingdom experiences. It focuses on 

how GIS work and coastal monitoring can be 

applied to salvage archaeology and how it can 

prove beneficial for the archaeological field. The 

project explores different case studies suffering 

from coastal erosion. The case studies have 

different historical aspect, but they are all 

vulnerable archaeological sites. By using the 

software-extension, DSAS, to study End Point 

Rate of the shorelines, assessment of coastal 

movement can be made. This project will look 

into in what way GIS work can supplement 

archaeolgocial studies.  
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1. Introduction: 

 Coastal change plays a large role when discussing the environmental 

change in today’s political, social, environmental and cultural climate. Coastal change 

has a huge impact on cultural-historical fields, such as archaeological sites located 

along the coast. Fieldwork is time-consuming, which is not available when salvage 

archaeology needs to be implemented. The reason behind this is that salvage 

archaeology often correlates with a lack of time, before destruction of any sort is about 

to occur. Geographical Information System (GIS) is an immense help within the 

archaeological field. GIS can provide a range of high-quality, low-cost solution, and 

the potential for helping out the archaeological field is highly evident. Creating an 

assessment of shoreline movement could support the archaeological field when 

assessing what sites to manage, in order to either restore, protect or excavate before it 

is lost. This project will look into the erosion-rate of five different shorelines. At those 

shorelines, historical sites can be located, which will be described as the case studies. 

These case studies share the common factor of either being subjected to complete 

destruction or be almost at the point of destruction. All the case studies are kept within 

the borders of the United Kingdom. These areas include England, Northern Ireland and 

Scotland.  

1.1. Salvage Archaeology  

 Salvage archaeology – also known as rescue archaeology and 

preventative archaeology – is the collection of archaeological material that has to be 

undertaken within a brief period of time at excavation sites in imminent danger of either 

new construction projects, or environmental issues such as natural disasters, warfare, 

flooding, climate changes or coastal erosion (Archaeology wordsmith, 2019). In this 

case, the focal point is on the erosion of the shorelines.  

 Archaeological fieldwork is under normal circumstances undertaken 

with great care and patience, spanning from several months to many years. However, 

salvage archaeology differs by having a short amount of time to save and record vital 

information. Information on coastline movement could prove helpful in determining 

the time frame necessary for reclamation of a specific site.  

1.2. Shorelines 
 

 

 Merriam-Webster defines shoreline quite simply as “the line where a 

body of water and the shore meet”, which in its simplest form is justified, yet it is far 

more complicated than that (Merriam-webster, 2019). 

The coastline paradox is the idea that the length of the coast is undefinable (Mathworld, 

2019). It is the observation that a coastline does not have a well-defined length and that 

the length depends on the number of measurements put into place. The more in detail, 

the closer the coastline is observed, the longer the shoreline will be in length as can be 

seen in figure 1. 
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Figure 1. Coastline paradox (Gardiner, 20018). 

 

  The use of shoreline indicators is a feature typically used as a proxy to 

represent a “true” shoreline and has been adopted by coastal researchers as a more 

fitting description.  Due to the dynamic nature of this feature, it is likely to remain as 

such; the idea of creating a collective definition that encompasses every aspect of 

shorelines – such as the application utilised to retrieve data and the natural elements in 

direct contact with the shoreline – still has a long way to go. 

However, common shoreline indicators are utilised. The spatial relationship between 

different indicators can be observed in figure 2 and these tend to be the most commonly 

used.  Shorelines indicators can be gathered through different data sources, such as 

historical photographs, coastal maps, aerial photography, GPS shorelines and remote 

sensing (boak, 2005). 

Remote sensing will be introduced in this project in the shape of satellite images, from 

which the data will be obtained. 

 

 Detection techniques in obtaining shorelines will rely on unsupervised 

classification, supported by manual visual interpretation from the satellite images. 

Shoreline detection comes with a range of challenges, such as the stage of tides, wave 

energy, position of the groundwater exit point as well as mineralogy and sediments to 

name a few (Boak, 2005). 
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Figure 2. Most common shoreline indicators (Boak, 2005). 

 

 

1.3. Tools 

 The software used for this project came from the Environmental 

Systems Research Institute (ESRI) and included both of their ArcGIS software; 

ArcMap and ArcGIS Pro. 

Datasets were collected from USGS.gov, and the software used was ArcGIS Pro for 

processing the datasets and ArcMap for converting the data to the Digital Shoreline 

Analysis System (DSAS), which is a software extension to ArcMap. The DSAS vs. 4.4 

was released in 2017 and is designed for ArcMap vs. 10.4 and 10.5. ArcMap vs. 10.5 

is the software utilised. 

 

1.4. End Point Rate 

 End Point Rate (EPR) measures the length of movement between the 

oldest and the most recent shoreline. By dividing the distance with the time elapsed 

between two points, it calculates how far the coast has moved with a rate of change 

(figure 3). The only requirements for EPR’s to be calculated are two shorelines with 
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different timestamps. However, the disadvantage with this method is excluding 

additional information from timestamps amid the oldest and the most recent, which 

could display cyclical trends and changes (Thieler, 2017). 

 
Figure 3. An example of measuring EPR's. The End Point Rate equals the distance in 

meters divided by the time elapsed between the oldest (28.94) and the most recent 

(104.97) shoreline. The EPR is calculated to 1.09m/y (meters per year). 

 

1.5. Problem Statement: 

 Salvage archaeology suffers from having a short amount of time to 

execute an immensely large amount of work. If coastal changes could be predicted with 

high accuracy, more time could be spent on analysing the archaeological finds with 

more accuracy and how to manage the site. By observing satellite images and using 

supporting software extensions, certain assessments can be made. How this specific 

direction of GIS will benefit the archaeological field will be explored further. To 

showcase this, five case studies will be presented and examined. Shorelines were 

extracted and an assessment of how much the shorelines move per year was made. The 

case studies all include historical sites placed along the coast of different locations 

scattered around the UK, which show tendencies of a cost with a high movement rate. 

 

1.6. Research Questions: 

1. What consequences do archaeological sites suffer due to coastal changes? 

2. How will the predictive modelling prove useful for the topic of archaeological 

historical sites? 

3. How reliable is predictive modelling in terms of predicting coastal changes? 
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2. Data and case studies 

 In the following chapters, tools and methods will be presented. This 

includes a presentation of what data was acquired, how it should be processed, which 

satellite images were used and an explanation of the software-extension, DSAS, that 

has been the main tool during this project. It will also give a short presentation of the 

available data, in this case, the satellite images and from where they were extracted.  

2.1. Available data (Landsat) 

 Free satellite imagery is available online and is of such high quality that 

it can be used for research projects or scientific research. In 1972, the first Earth-

exploring satellite, with the intent purpose of documenting the landmasses of the earth, 

was launched (Landsat, 2019a). The Landsat series has run for over 40 years and has 

provided the longest temporal record of moderate resolution multispectral data of the 

earth’s surface (Landsat, 2019b). This is thanks to Landsat 1, which operated during a 

period spanning from 1972 to 1978. 

The data provided is also freely available, for anyone to retrieve, at the earth explorer 

(USGS, n.d.a) provided by the United States Geological Survey (USGS). 

USGS (figure 4) provide data, information and science covering natural hazards, water, 

energy, minerals, natural resource, ecosystems and the impacts of climate changes. 

They deploy missions in more than 400 locations across the United States. They 

develop tools and provide free data such as satellite images (USGS, n.d.a). 

 
Figure 4. Satellite images provided by USGS 

2.2. Case studies 

 When determining which areas should be studied, a few parameters 

were defined in order to determine when this method could prove useful. 

 The most important characteristic is that the archaeological site must be 

located along a coastline. It must also be situated along coastlines that are susceptible 

to coastal erosion, meaning the geography should not consist of rocky coast, be situated 

far above sea level or in other way possess any features that would interfere with the 

erosion of the coastline. The issues of sea levels and ground levels were disregarded 

during this project, as the available data, did not come with a table or a definition of 

the height or types of coastlines, and therefore it was not possible to determine with 

accuracy whether the site would lie far above sea level. Observations, whether the coast 

was particularly susceptible to coastal erosion, due to weak minerals, is not possible to 
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deduce, based on the satellites images alone. An alternative was to find records and 

descriptions of whether the sites were in particular danger of erosion or not. 

 Five different historical sites and their connected coasts have been 

chosen as case studies and will undergo a coastal analysis in terms of coastal retreat 

(erosion) and addition (accretion). They are all located within the UK (see figure 5), 

which includes cases in Northern Ireland, Scotland and Norfolk. The reason for these 

specific sites is due to the large parts of the UK coastline that suffers from damage and 

loss of land, which can be observed via satellite imagery, photo documented history 

and other observations. A short historical background of each of the sites will be 

presented. Some of the following cases are on-going, some have already suffered total 

destruction and some are not yet considered areas of high vulnerability, but could 

potentially receive that label in the near future. The benefit of knowing the erosion 

pattern along the coasts of these vulnerable sites becomes evident when authorities 

have to make certain decisions in regard to implementing actions. Historical sites ought 

to be either preserved, documented or restored. With the addition of GIS work, the most 

advantageous solution could be implemented on historical sites, in all stages of 

destruction. This project could provide additional knowledge for these historical sites, 

which can be implemented anywhere with a coast. 
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Figure 5. The case studies located in different parts of the UK 

2.2.1. Happisburgh 

 Happisburgh is a village in the English county of Norfolk, on the eastern 

part of England. The archaeological site nearby held evidence for some of the earliest 

human remains (Ashton, 2014). Happisburgh is located towards the North Sea, which 

suffers greatly from coastal collapse. 

 Happisburgh is an incredibly important historical heritage site, both 

from a European and local point of view, therefore, Happisburgh will be the main focus 

of this research project. The remaining sites were chosen based on their cultural 
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heritage, as well as their geographical location, as the eastern shorelines of the UK have 

suffered greatly from loss of land. This has been covered in detail in national news due 

to the loss of homes for a large number of people (The Guardian, 2012; The Daily Mail, 

2015). However, it is not just the homes of people that need to be considered; early 

evidence of human interaction with the sea can be observed, such as the case of 

Happisburgh (Ashton, 2014). Transportation, fishing and intercultural exchanges take 

place along the coastlines and it is, therefore, a natural assumption that cultural history 

can be discovered hiding amongst the banks (National Trust, n.d.). However, settling 

along the coast comes with a price, and due to climate change, a rich source of 

archaeological history stands to be washed away. 

 This site was chosen as it is a part of the UK that has suffered a lot of 

coastal retreat, and it is not the first time Happisburgh is in the focal view of coastal 

erosion. Historical documents indicate that 250m of land have been lost to the North 

Sea between 1600 and 1850, according to British Geology Survey (BGS) (Poulton, 

2006).  It holds valuable historical merit and is a good example of rescue archaeology 

and how it has to take place fast. The site has proved to hold great importance for the 

archaeological community, as the earliest evidence of hominin footprints outside of 

Africa had been discovered (Ashton, 2014). However, Happisburgh is located along an 

inter-tidal zone of a rapidly eroding coastline, which is not uncommon for 

archaeological sites, as the coastline provides a vast amount of food-related resources 

(Ashton, 2014). 

 In May 2013 an excavation was commenced, which lasted less than 

three weeks, due to the time restrictions. The reason behind this short excavation-period 

was due to the rapid destruction of the coast due to wave action. The footprints hold a 

large value as study indicates that these were the oldest known hominin footprints to 

have been discovered outside of Africa, and date back to 1 million and 0.78 million 

years ago (Ashton, 2014).  

 
Figure 6. The footprints found at Happisburgh (Ashton, 2014). 

 The site was discovered when an area of laminated silt was exposed due 

to wave erosion, which revealed undisturbed bedding surfaces where a series of hollow 

imprints could be seen (see figure 6). The excavation had to be executed as quickly and 

thoroughly as possible. Over time the features became less distinct and by the end of 
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May 2013, they had been completely removed by successive tidal cycles (Ashton, 

2014). 

 However, the modern day village of Happisburgh is also suffering from 

coastal erosion, with water eroding the land, and the village diminishing every year. 

Poulton (2006) notes that especially Norfolk is a high-risk area (see figure 7) with a lot 

of coastal destruction. The increase of rapid coastal collapse, the rising sea levels and 

climate change are serious issues for many of these coastal communities. Coastal 

erosion is a very complex study, in which several aspects must be considered such as 

onshore environment, offshore environment, weather and climate change, strength and 

variability of geological material and at last the influence of engineered structured, such 

as groynes and sea walls (Poulton 2006). Happisburgh is an interesting case study, 

when it comes to evaluating at which rate the coast changes. The archaeological site 

holds a great interest for this specific project. However, Happisburgh shows that not 

only does historical knowledge stand to be lost from the fast-retreating coastlines, so 

do the homes and lives of the current coastal communities. 

 
Figure 7. View of the footprint surface directed north (Ashton, 2014). 

2.2.2.  Skara Brae 

 Skara Brae is located on the Orkney Islands, north of Scotland. The 

islands are located on the West Bank, at the coordinates W°59.0487° N, 3.3417° W. 

Skara Brae holds the best-preserved Neolithic buildings (see figure 8) in Northern 

Europe (Dinley, 2000), dating back about 5000 years, estimated around 3100-3000 BC. 

This predates sites such as Stonehenge and the earliest of the Egyptian pyramids and 

Skara Brae is also part of the United Nations Educational, Scientific and Cultural 

Organization (UNESCO) world heritage site (Simpson, 2006). 
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Figure 8. Skara Brae holds some of the best preserved Neolithic buildings, as can be 

seen on this photo (Orkneyjar, 2019). 

2.2.3. Knowe of Swandro 

 Just like the previous case of Skara Brae, Knowe of Swandro is located 

on the Orkney Islands, in northern Scotland. It is a subdivision of the excavations taking 

place along the Bay of Swandro, and as it is an ongoing excavation, a final publication 

is yet to be made. All information gathered stems from field reports that are published 

after every excavation-season.  

 The Bay of Swandro is a multi-period historical site, that shows signs of 

occupation from c. 3800 BC (early to middle Neolithic) to the Norse period in 1468 

AD. The current focus of the ongoing excavation is in Knowe of Swandro, due to the 

imminent danger of total destruction the sites are undergoing. Knowe of Swandro 

consists of a large mound situated behind a boulder beach on the Bay of Swandro, with 

a Norse settlement nearby. The remains consist mainly of the ruin of a circular stone 

tower, and has been dated to be of Iron Age (The Swandro-Orkney Coastal 

Archaeological Trust, 2018). 

 The Bay of Swandro is an ongoing excavation (see figure 9) that is in 

the process of gathering funding to continue the excavation (The Swandro-Orkney 

Coastal Archaeological Trust, 2018). Knowe of Swandro is an excellent and very 

current example of the issues historical sites suffer when trying to fight both time and 

finances in order to gather as much historical knowledge as possible (The Swandro-

Orkney Coastal Archaeological Trust, 2019). 
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Figure 9. The on-going excavation of Knowe of Swandro (Visit Scotland, 2019). 

2.2.4. Strangford Lough 

 Strangford Lough is located in Northern Ireland and shows signs of 

settlement dating back to 7000BC, as evidenced by the abundance of discarded 

Mesolithic shells found. It also holds burial sites, which have been dated to around 

4000 BC (National Trust, n.d.). Strangford Lough also holds a rich tapestry of history 

and covers the early Christian period (from the mid-6th century), the Vikings (between 

the 9th and 11th centuries) and the Anglo-Normans (1177 AD) (National Trust, n.d.). 

Strangford Lough encompasses a rich abundance of historical sites such as churches, 

tombs, tower houses, wells and a number of castles (see figure 10). All these sites 

available are located along the coast (Visit Strangford Lough, n.d.), and Strangford 

Lough is a great example of how the coast and the ocean were utilised by people 

throughout history, and why so much archaeological material can be located along the 

shores. 
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Figure 10. Skretrick castle (built in the mid-15th century) is one of the many 

historical monuments along the coast of Strangford Lough (Visit Strangford Lough, 

n.d.). 

2.2.5. Kaim of Mathers 

 Kaim of Mathers is located on the eastern side of Scotland. It is the most 

modern representation of archaeological sites on this list, as the historical building 

seems to stem back from the 15th century. The castle was occupied only for a short 

time, as the exposed location and subsequent erosion resulted in only part of the castle 

remaining to this day (see figure 11). The building is deemed by SCAPE (the Scottish 

Coastal Archaeology and the Problem of Erosion) to be a site at high risk of complete 

destruction. SCAPE works with the public and volunteers to gather information and 

researches the eroding heritage sites along the coast of Scotland. 

 
Figure 11. The consequences of coastal erosion can be observed at Kaim of Mathers, 

where the remains of the tower still stand (CastlesFortsBattles, 2019).  
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3. Methodology 

3.1. Digital Shoreline Analysis System (DSAS):  

 DSAS (figure 12) is a user-friendly software extension, with an 

extensive user manual for beginners that goes through the installation procedures and 

explains which inputs are required and how to apply them. It is readily available and 

works within Esri’s ArcGIS software. It focuses on computing rates-of-change for any 

boundary-change issue, and can work within a long range of real-life-issues that could 

occur. Where it mostly focuses on coastal changes, it can also compute future changes 

of other identified features, such as land use and cover boundaries, glacier limits and 

riverbanks (USGS, n.d.b) 

 
Figure 122. The software-extension, Digital Shoreline Analysis System. 

 Where the focus has been mainly on coastal environment, it has also 

proven useful for computing boundary-change related issues, as long as the object is a 

clearly-defined feature at discrete times, such as city boundaries or glacier movement. 

The current version of DSAS is v. 4.0 (20147) and is compatible with ArcGIS 10.4 and 

10.5 only. It is supported on Windows 7 and 10 operating systems and the system needs 

to meet the following requirements: 

 Microsoft .NET Framework 4.5.2 (or higher) 

 ArcGIS Desktop 10.4 or 10.5 DSAS is not compatible with ArcGIS v.10.3 or 

lower. 

 .NET Support Feature for ArcGIS (Available on the ArcGIS installation 

media) 

 Freely available MATLAB component runtime library utility  

Requirements found in DSAS manual (Thieler, 2017). 

 

3.2. Data processing 

 The data was extracted from USGS in which satellite images from 

different time stamps were chosen (figure 13). The only parameters for the chosen 

images were as following: 

 The earliest obtainable satellite image that is deemed applicable for this project 

 Satellite mosaics that cover the same area 

 Satellite images free of noise or obstructions such as clouds and heavy shadows 

 The satellite images must have been taken with at least 2 years in between 

them. 
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After these parameters were established, the years were arbitrarily chosen and the 

month of the year had no bearing for this project as long as the previous parameters 

were upheld. 

 
Figure 133. The satellite images available and the structure of the search engine. 

 

3.3.1. Satellites:  

 

The following table shows the list of satellite images used: 

 
Table 1. Metadata for the Landsat spacecraft and timestamps covering Happisburgh.

LandsatLook Natural Color

Acquisition Date Spacecraft identifier Landsat Product Identifier Landsat Scene Identifier

13-11-2018 Landsat 8 LC08_L1TP_200023_20181113_20181127_01_T1 LC82000232018317LGN00

30-11-2016 Landsat 8 LC08_L1TP_201023_20161130_20170317_01_T2 LC82010232016335LGN01

03-11-2011 Landsat 5 LT05_L1TP_201023_20110930_20161005_01_T1 LT52010232011273KIS00

12-05-2009 Landsat 5 LT05_L1GS_201023_20090519_20161026_01_T2 LT52010232009139MOR00

19-06-2000 Landsat 7 LE07_L1TP_201023_20000619_20170211_01_T1 LE72010232000171EDC00

03-08-1990 Landsat 5 LT05_L1TP_201023_19900803_20170129_01_T1 LT52010231990215KIS0

22-09-1982 Landsat 1-5 LM04_L1TP_201023_19820922_20180414_01_T2 LM42010231982265AAA03

01-11-1972 Landsat 1-5 LM01_L1TP_216023_19721101_20180429_01_T2 LM12160231972306AAA04
 

The following years were selected:   

 1972, 1st of November1. 

 1982, 22nd of September 

 1990, 3rd of October 

 2000, 19th of June 

 2009, 9th of May 

 2011, 3rd of November 

                                                           
1 Which was the earliest timestamp available. 
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 2016, 30th of November 

 2018, 13th of November 

The projection is WGS_1984_Web_Mercator_Auxiliary_Sphere.  

 

Table 2. Metadata for the Landsat spacecraft and timestamps covering Skara Brae. 
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Table 3. Metadata for the Landsat spacecraft and timestamps covering Knowe of 

Swandro. 

 

 

Table 4. Metadata for the Landsat spacecraft and timestamps covering Strangford 

Lough. 
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Table 5. Metadata for the Landsat spacecraft and timestamps covering Kaim of 

Mathers. 

 

 Choosing which years to examine came down to the parameters 

established earlier, but also to avoid too large of a sample size to ease computation 

costs. Eight timestamps were deemed appropriate as a large timeframe is covered, 

starting from the earliest available satellite images to the newest. In 2013, the exposed 

archaeological site of Happisburgh was damaged due to erosion (Ashton, 2014), so the 

change from 2011 to 2016 was particularly interesting. Several timestamps were 

incorporated to observe if a general trend could be observed and analysed.  

 All images were visually inspected to ensure that the previous 

parameters were upheld and that the images chosen did not contain any interferences. 

Afterward, the images were exported to ArcGIS PRO where the data was further 

processed and prepared for analysis via DSAS. 
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3.3. Extracting shoreline: 

 In the following chapter, the method for extracting data will be 

presented. The shoreline extraction workflow is outlined below (figure 14). 

 
Figure 14. Flowchart showing the following process. 

 After the images had been obtained, following the parameters defined 

earlier in this project, the selected images were imported into ArcGIS Pro. The satellite 

images were processed initially in ArcGIS Pro. The extraction of the shoreline was 

executed in ArcGIS Pro, and the DSAS tool was run in ArcMap. The procedure was as 

follows. 
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Figure 15. Defining the work area. 

 First, the exact location of Happisburg needed to be defined (figure 15). 

Satellite images were imported into ArcGIS Pro, but because the saved files were 

located in southern Africa, the files had to be manually georeferenced. By manually 

georeferencing the satellite images, based on common geological attributes, a visual 

assessment of the images was implemented. This has the benefit of visually quality 

controlling the images, hence ensuring that the coastlines and landmasses lined up. A 

solid area of eastern Norfolk was defined and saved as a polygon to use for boundaries. 

Because the satellite images were manually georeferenced the size of the work area 

was kept relatively small in order to ensure good results.  

 In order to georeference as precisely as possible, a basemap in ArcGIS 

Pro was used as a reference-layer to avoid inconsistencies as the different timestamps 

will vary depending on what year they have been taken. In figure 16 the swipe tool 

could quickly give an assessment of whether or not all satellite images matched up. 

 
Figure 16. Georeferencing, ensuring high location-precision. 
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 The entire area of the satellite mosaics was necessary and to keep the 

area clearly defined a smaller section of the images were chosen. All the satellite 

images were cut to the defined area as can be seen in figure 17, and the rest of the 

extraction of data was based on that polygon. 

 
Figure 17. Close up of the work area. 

 Following up, the next step was to classify water and landcover; this was 

done by running the ISO unsupervised classification tool, and due to the areas limited 

size, it was a fast and very precise result (figure 18). There were a few issues with one 

of the satellite images, due to what seemed to be innocuous cloud cover, which did 

require cleaning up manually and ensuring quality control.  

 
Figure 18. Classifying the work area in two categories; landmass and water. 

 Once all the classified images were up to standard, the “raster to 

polygon” tool was deployed which resulted in clean polygon files (figure 19).  
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Figure 19. Raster to polygon. 

 The last action to undertake in ArcGIS Pro was utilizing the ”polygon 

to line” tool, and by then the coastal lines were now defined as simple, but informative, 

polylines ready to use in ArcMap, which are displayed in figure 20. 

 

 
Figure 20. All the shorelines colour-coordinated by colours. 

 Manual work was necessary to ensure that the data converted to DSAS 

was up to standard, and that no disturbances of any sort would be the cause of false 

results. Due to the sample size, the tools in ArcGIS Pro were processed very fast and a 

result could be obtained relatively quickly. Quality controlling and obtaining the 

images were time-consuming, but the technical aspects went smooth and without 

further delays. 
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3.4. Shoreline specifications 

 After extracting a proper shoreline, the shapefiles were exported to 

ArcMap, for further analysing. In ArcMap, a new personal geodatabase was created in 

order for the DSAS software extension to run. In the new personal geodatabase, all the 

shapefiles and data will be stored. The geodatabase will also function as a storage 

location for all program-generated transects feature classes and related statistical output 

tables (figure 21). 

 
Figure 21. An example of the personal geodatabase with the necessary files. The 

baselines, the merged coasts, the shorelines representing the different timestamps, 

and the transects and rates numbers can be observed in the bottom of the database. 

 DSAS requires that the unit is set in meters in a projected coordinate 

system and all the shorelines must be merged or appended into one single feature, 

within the personal geodatabase. 

Specific shoreline field requirements must also be added to the attribute table: 

 
Figure 22. Shoreline field requirements (Thieler, 2017). 

 In figure 22 the shoreline requirements can be observed. Some are auto-

generated, some are user-generated. The uncertainty field represents an uncertainty 

value for positional measurements. The uncertainty field should ideally account for 

both natural uncertainties, such as tides, wind, waves and so on, as well as any human 

errors when digitising. The uncertainty field represents an uncertainty value for 

positional measurements. It is a useful addition, in order to allow room for uncertainties 
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and still attain accurate results. For this project, the value for uncertainty was set to 

default, as time did not allow an in-depth calculation of how those values ought to be 

defined. Uncertainty includes tides, weather conditions, time of year and possible 

georeferenced mistakes.  

3.5. Creating a baseline 

 Once the required fields had been added and the attribute table is up to 

date, a baseline was required. The baseline should be established adjacent to either the 

earliest of timestamps or the latest of timestamps. During this project, the baseline was 

set adjacent to the earliest of the timestamps, 1972, as the focus of this project is looking 

into how much landmass has been lost over time and how much can be expected to 

disappear in the future.  

 There are three ways to define a baseline, either creating an entirely new 

feature, create a buffer around an existing shoreline or use a preexisting baseline. This 

project will create a new feature class offshore, which will function as the baseline. To 

ensure that the baseline matches the requirements of the DSAS tool, it must require the 

following: 

1. Must be a feature class within a personal geodatabase. 

2. Must be in a projected coordinate system in meter units. 

3. May consist of a single line or be a collection of segments. 

4. Each baseline segment must be placed entirely onshore or 

offshore with respect to the shorelines. 

On figure 23 an attribute table of the newly created baseline can be seen. The polylines 

each represents a shoreline from the different years. The last point of this checklist 

requires further fields to be added to the attribute table, although some of these fields 

will not prove themselves necessary, according to this project (figure 24). 

The checklist was acquired from the DSAS manual, which accompanies the software 

(Thieler, 2017). 

 
Figure 23. The merged coastlines. Each coastline has an objectID and a unique year 

number. 
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Figure 24. Baseline requirements. 

3.6. Set parameters: 

 Once the necessary input has been implemented, the geodatabase 

created and all feature classes have been added, the DSAS can now run, and transect 

locations and calculations of change statistics can be created. Next is to run the DSAS 

application and to produce results to be analysed. The following will describe the 

method of which input has to be entered, according to the DSAS manual (Thieler, 2017) 

3.7. Cast transects: 

 Cast transects is one of three major elements when setting the 

parameters. When choosing the baseline location a choice could be made between 

onshore, offshore or onshore/offshore combination. A manual baseline was made 

offshore from which the numbers would be run, and thus the choice of offshore was 

made. The desired distance between the transects and the length of them was dependent 

on the site. The transect length needed to extend from the baseline to the farthest 

shoreline, and can later be clipped to not overextend farther than that. Once the transect 

had been cast, the EPR could be calculated. 

 Once the EPR has been calculated, the statistics can then be obtained 

thanks to the cross-sections of the transects and the coastlines.  The table was joined 

with a rates-file, which contains the EPR-output.  
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4. Results: 

 In the following chapter the results for each case study will be analysed, 

examined and evaluated. The parameters, such as transect distance and transect lengths, 

applied for each case study will differ, due to both size and focal point of each area. 

However, these will be explained in their respective sub-chapters.  

 

4.1. Happisburgh: 

 The coast of Happisburgh covers a length of about 42-45km. The reason 

for the range of the length is due to the shoreline paradox, which is why only an 

estimate will be presented, and not an exact number. The length provided was chosen 

to see if results could be compared, and observe if any erosion or accretion occurred 

along the shores. As mentioned earlier, Happisburgh suffers from land loss every year. 

Therefore, as an addition to observing the shoreline change at the historical sites, it 

would also be interesting to investigate if land loss is a trend occurring along the coast 

of Norfolk or if it is Happisburgh specifically which is experiencing erosion.  

 The city of Happisburgh can be located in figure 25. As mentioned in 

previous chapters, the Neolithic site of Happisburgh has washed away in 2014, another 

indication that creating an estimate of how quickly shorelines erode can be of great 

service to the field of preservation.  

 The years of the shorelines are represented by colours, making it easy to 

distinguish each year from the next. By merely visually assessing the image, it can 

clearly be observed that the shoreline has moved from the earliest timestamp (year 

1972) till the latest (year 2018). 
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Figure 25. Shoreline movement per year. Purple represents the earliest year (1972) 

and red represents the latest (2018). 

 A baseline was created onshore and the transects were cast with a 

distance of 50m between each of them and each transect had a length of 1000m. The 

50m transect distance was chosen both to create a visual that could be easily analysed 

when zoomed out to the full extent of the measured coast but also to attain as many 

EPR-outputs as possible, to achieve a thorough analysis of shoreline changes (see 

figure 27). 
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Figure 26. A close-up of the transects with a distance of 50m between each transect. 

 Once the EPR has been calculated, the statistics can then be obtained 

thanks to the cross-sections of the transects and the coastlines.  The table was joined 

with a rates-file, which contains the EPR-output. Figure 26 shows a close-up of 

Happisburgh, displaying the transects, the ONshore baseline and the merged coasts. 

The transects cover most of the different shorelines, with an almost equal distance 

between them. Choosing a distance rate between each transect of 50m ensured that a 

satisfactory quantity of EPRs could be obtained. The transects can then be clipped to 

the extent of the latest and the most recent shoreline.   

 A visual representation can be seen in figure 27 where the green colour 

represents both static coast and accretion and the colours yellow to red, represent the 

severity of erosion. Red represents an erosion rate of -14.1 to -10 m/y, (meter per year), 

orange covers an erosion rate of -9.9 to -7 m/y, yellow covers an erosion rate of 3.9 to 

0.000001 m/y and green has an accretion rate of 0.0 to 2.7 m/y. 
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Figure 27. The coast of Happisburgh as it shows erosion or accretion. The 

erosion/accretion rate is set to meter per year. The shoreline change rates are 

spatially displayed by use of colour symbology and transect length. 

 As can be seen on figure 27 there seems to be a trend in which the 

uppermost coast, and especially the area around Happisburgh town, has a declining 

coastline, whereas further south there seems to be a trend of the landmass building up. 

This could be due to a build-up of residue from the eroding coast coming from the north 

and moving down south. Happisburgh is also exposed directly to the North Sea. The 

general trend for the specific location of Norfolk is that the currents run north to south 

(Sündermann, 2011), which could explain the buildup of land south of Happisburgh. 

This is of course very simply put, however, the study of ocean currents is outside the 

scope of this project. 

 Figure 28 shows a closeup of the location of Happisburgh. The 

highlighted polyline on this image represents the transect with the highest number of 

EPR, between 1972 and 2018. This shows that the highest EPR number that can be 

traced at Happisburgh has a number of -14.16 meter, over a time span of 46 years. 
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Figure 28. The highest erosion-rate observed at Happisburgh. 

 In 2014 the Neolithic site of Happisburgh was completely destroyed. On 

figure 29 the change between 2011 and 2016 can be observed. It was within these two 

timestamps that the Neolithic site of Happisburgh had vanished. 
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Figure 29. The figure shows a close-up of the coastlines with corresponding dates. 

The map on figure 27 does not show a prediction of future shoreline-action, but it does 

provide aid and a general idea of what future changes might come into play. By creating 

a visual of the coast with the EPR’s, the evolution of the coast is displayed. Based on 

historical data, it will provide information for future archaeological excavations, with 

salvage archaeology as the focal point.  

 For the following sites, a similar approach has been taken, in order to 

see what state of coastal erosion the case sites are in. To secure transparency, it will 

here be noted that most of the remaining sites will display unclipped transects, ensuring 

the visual assessment will give a more complete and easier assessed picture.   

 

4.2. Skara Brae 

 Skara Brae is located on the western side of the Orkney Islands. Figure 

30 shows the exact location of the historical site, inward in a small alcove of the island, 

in a position that could seem slightly more protected from the open waters compared 

to the other areas of interest. Figure 30 also shows the coastlines and how they have 

moved. Extending the work area outside of the small section of the historical site of 

Skara Brae, provided an opportunity to observe whether Skara Brae is less likely to 

suffer coastal erosion compared to the rest of the coast. The shoreline of Skara Brae is 

the only site orientated towards west. The work area of the coast has a length of ca. 

15km, but just as in previous cases, the length is just an estimate and not an exact 

measurement of coastal length. 
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Figure 30. Green coastlines corresponding with the year 1972, the red 2018. 

 

 When casting the transects, the shape of the coast must be taken into 

consideration. Not all case studies have a relatively straight shoreline as the one of 

Happisburgh. Because Skara Brae has a more complexly shaped coastline than a case 

study such as Happisburgh, a lot of editing had to take place (which will be seen in the 

upcoming case studies as well).  

 The curve of the shoreline is cause for complications when casting 

transects, due to the curve of the shoreline (see figure 31). However, moving the 

transects to ensure a cross point between transect and shoreline ensured an improved 

coverage of the shore. Once the transects were cast, it was possible to go in manually 

and redirect the different transects in angles not automatically covered. Thus, shoreline 

that had moved, but not been registered previously, could now be accounted for (see 

figure 32). 
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Figure 31. Scattered transects before editing. 

 
Figure 32. Transects after editing. 

 The transects were set offshore with a distance of 40m and the length 

set to 600m. The result can be seen in figure 33, where an EPR between -3.499999m 

and -0.000001m is the most prevalent. From the map, it appears that the general trend 

along the coast of Skara Brae is an erosion rate between -3.499999m and -0.000001m. 

There does not seem to be any difference between the majority of the coast and the 

historical site of Skara Bra, however, the trend of accretion further down south does 

appear in this case as well.  
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Figure 33. Transects along Skara Brae. The yellow category is the most prominent. 

 

4.3. Knowe of Swandro: 

 Because Knowe of Swandro is placed on a smaller island, the coast of 

the entire island was extracted. It measures about 32km. The distance between the 

transects was set to 20m and the length of each transect was 350m. 
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Figure 34. Shorelines of Knowe of Swandro. 

 
Figure 35. Knowe of Swandro transects. 

 Once the transects were cast, it could be observed that on figure 35 the 

majority of the coast show signs of a coastline that shows tendencies of accretion as 

well as an erosion rate of -4.9m and -0.5m. It can likewise be observed in the figure 

that erosion takes place in the northern areas of the island, but what is most relevant is 

to look further down south, towards Knowe of Swandro. Knowe of Swandro is an 

ongoing excavation which is in the process of being destroyed by coastal erosion (The 

Swandro-Orkney Coastal Archaeological Trust, 2018). However, it seems to show that 

accretion is a more common phenomenon in that area. 
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 An explanation could be that despite accretion happening, actual 

destruction of the site could still occur, due to coastal changes. Silt, sand and debris can 

move and create an image of accretion. Another factor could also be the quality of the 

satellite images utilized. In the following chapter, the quality of satellite images and 

the impact on the results will be discussed. 

 

4.4. Strangford Lough 

 Strangford Lough is one of the more complicated sites to extract. Most 

of the historical sites are scattered all along the coast, and not in a specific area. This 

means that no single-site focus can be implemented, as can be seen in previous cases, 

such as Kaim of Mathers and Happisburgh. Strangford Lough is, therefore, a larger 

area, which also encompasses a more complicated coastline, with a large part of the 

coast laying protected, as can be seen in figure 37. The overall length of the work area 

covers about 180 km, which did provide challenges, due to the sheer size of the files. 

Strangford Lough also contains a large amount of smaller islands (see figure 36 for 

examples) scattered along the coast. For this case, it was decided to remove all 

landmasses not directly connected to the coast of Northern Ireland.  

 
Figure 36. Examples of smaller islands scattered along the coast of Strangford Lough 

that had to be removed for simplicity. 
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Figure 37. Strangford Lough. The transects along the coast of Strangford Lough, 

which shows a higher capacity of coastal erosion, with elements of accretion. 

 Strangford Lough had areas that were too steep and/or crevices that were 

too narrow to create satisfactory results. An improved map could be achieved by 

focusing on smaller areas rather than incorporating a large study area or performing an 

analysis of smaller sections of the coast. As can be seen in figure 37, the majority of 

the coast is protected from the ocean by landmass, however, the protected shoreline, as 

well as the exposed shoreline both, show a significant level of erosion.  

The highest EPR is -14.6m, which is higher than examples at Happisburgh, yet the 

majority of the shoreline provides numbers of accretion. The results from Strangford 
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Lough can be called into question, as a number of factors were not incorporated. It 

could potentially also be interesting to see the movement of the smaller islands along 

the coast, to record their movement, if any.  

 The results of Strangford Lough were not satisfactory, and after 

revision, a different approach would have to be undertaken. The coast of Strangford 

Lough should have been divided into smaller sections in order to ensure precision and 

to make visual assessment easier to approach. With smaller sections, transects could 

have been manually observed in order to fix or remove obscure transects. Strangford 

was by far the largest dataset to work on, which compared to the other case studies, 

cannot be recommended. Smaller areas of interest are advisable, in order to achieve 

optimal results. 

 

4.5. Kaim of Mathers 

 Much like Happisburgh, Kaim of Mathers is located on a long, relatively 

even stretch of coast, with only a few curves. The location of Kaim of Mathers, much 

like Happisburgh, is exposed directly to the North Sea. The length of the study area 

covers over 78km, and the historical site can be observed in the south (see figure 38).  
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Figure 38. Kaim of Mathers. A transect of the shoreline. 
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Figure 39. A close-up of the coastal movement of the historical site on Kaim of 

Mathers. The image shows a high erosion rate of -2.999999m to -0.000001m over the 

last 43 years. 

 On figure 39 a close-up of the location of the tower has been shown. The 

different transects represent different EPR’s. The most remarkable of the EPR results 

show that up to 2.76m have been lost over a period of 43 years. 

 

4.6. Resume 

 The results are cumbersome but visually compelling. The shoreline 

changes happen regularly, and in grave cases, such as Happisburgh, the erosion is up 

to 14m over a 40 year period. 

At the initial phase of the project attempts to incorporate larger areas of land to create 

an overall map of coastal erosion or accretion was done, but in order to generate 

serviceable results, smaller sections of the shorelines were extracted and worked upon 

instead. It is not outside the scope of this project to incorporate larger sections of the 

coast, but it requires more manual assessment and time.   
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5. Discussion: 

 This chapter will go through the discussions according to the content 

list, so first, the datasets will be discussed, then the methodology. The research 

questions will then be listed and discussed as they were presented, followed by a 

discussion of challenges and limitations. Finally, a discussion of future implementation 

will take place. This project focuses on how remote sensing can support modern 

archaeology and how they can be utilized as an inexpensive tool. This project is not an 

analysis of the evolution of the coastline and how it moves, but rather how archaeology 

can use the DSAS tool and how GIS can be a support for a field that relies heavily on 

volunteers and funding.  

5.1. Datasets discussion 

 The timestamps were chosen based on their time of year, but there had 

not been any specific requirements for the timestamps to cover the same months. The 

project would very likely have benefitted if the datasets for all of the areas of interest 

were confined to the same time of year. However, because these are satellite 

observations, natural obstructions, such as cloud coverage, did interfere with many of 

the images. Low-quality pictures were also a challenge, which meant that pictures that 

were free of noise had to be favoured over images with matching dates. 

 In the case of Happisburgh, a conscious attempt to keep the time of year 

coherent was made. However, two timestamps are obtained from the summer months 

(the years 2000 and 2009), which were due to the improved quality of the images at 

this specific time of year, and their quality was favoured over datasets with matching 

dates. 

 Other projects that have looked into shorelines and archaeology have 

used other types of basemaps such as aerial photography obtained with Unmanned 

Aerial Vehicles (UAV’s), which seem to be the most commonly used methods 

(Westley, 2015) and are favoured over satellite images. These methods would with all 

likelihood ensure updated and more precise images, with higher quality and more 

pronounced details. However, using aerial photography is more time consuming as well 

as expensive for the user, and also covers a much smaller area. In order to retrieve maps 

past 1972, it will require obtaining historical maps, digitalising them and 

georeferencing using static points that appear throughout the years. 

 What this method can do, which smaller areal crafts cannot, is give an 

overall analysis which covers a bigger area, just by looking at the map one would 

quickly be able to recognize a trend and swiftly assess where shoreline retreat is the 

most pronounced. If the historical sites along the shoreline of the country are known, 

this method is much faster and cheaper and would prove a valuable resource for rescue 

archaeology.  

The amount of shorelines representing different timestamps for the different sites was 

a deliberate choice. Due to the time constraints within this project, one site was chosen 

to contain more timestamp images (Happisburgh), and the remaining sites would only 

be represented by three timestamps. This was done in order to observe a general trend, 

and perhaps strengthen any attempts to assess shoreline changes, yet it became evident 

throughout the process that only two timestamps were necessary for the EPR to be 

calculated. The shorelines amidst the latest and the most recent year could potentially 

have displayed certain trends and cyclical changes and supported erosion and accretion 

rates obtained through this method, but this was out of the scope for this project, due 
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to time constraints. It is a factor that will be mentioned in the chapter of future 

implementation (Chapter 5.6).  

5.2. Methodology discussion 

 There are fields that would benefit from undergoing a mathematical 

assessment; the uncertainty field is one of them, as it would account for natural 

uncertainties such as wave direction and tidal changes. How to convert these natural 

occurrences into numbers that would benefit this project could not be undertaken due 

to certain limitations of this project, such as in-depth knowledge and expertise in tidal 

changes and geomorphology, as well as the approach and how to define the value of 

natural uncertainties. A method to create a numeric value for each uncertainty was not 

possible for this project due to time constraints.  

5.3. Research questions 

1. What consequences do archaeological sites suffer due to coastal changes? 

The destructive impact of coastal retreat on archaeological sites is a well-recognized 

phenomenon (Westley, 2015). It is also a field with an incredibly limited number of 

studies dedicated to coastal zones containing historical sites and how such zones should 

be managed (Carrasco, 2015). What interventions should then be performed all 

depends on the historical sites. Each area must take into consideration how much time 

a specific site has before it could suffer irretrievable damage. Should the focus be on 

preserving the site or gathering data? Should it be on preserving constructions or 

documenting them?  Each historical site must assess what needs to be done; first-hand 

experience indicates that every excavation is different, and field directors take different 

approaches depending on their school of thought or simply what tools are available for 

the project.  

2. How will the predictive modelling prove useful for the topic of archaeological 

historical sites? 

Satellite images have proven a useful tool and despite not taking environmental factors 

into considerations, the strength in this method is in the timeframe it encompasses. The 

satellite images collected span almost 40 years, from the early 70’s to 2019. The retreat 

of the coast is therefore not just a fluke that occurred due to a tidal change or a wave 

from a boat but shows that the coast is experiencing exponential loss or growth, and 

should therefore be considered the general trend. Observing this trend, an assessment 

of how the shoreline will behave in the near future can be a good tool for future 

archaeological projects. Researching the behaviour of the entire shoreline would prove 

useful in order to determine what shores behave in what manner. Additionally, an 

analysis of a general tendency of coastal retreat could bring into light initially which 

sites to focus on. Where is the retreat of the shoreline most pronounced? Which sites 

need to be assessed first in order not to suffer complete destruction before a deliberate 

choice can be made? This is how the predictive modelling supported by DSAS could 

prove useful.  

3. How reliable is predictive modelling in terms of predicting coastal changes? 

There is a long list of factors of high importance when looking at the shoreline retreat. 

Mistakes can easily be made with this method and mistakes can lead to false results. 

The data processing was done manually, which in itself is not an issue, however, this 

leads to a higher risk of errors occurring. Because some of these satellite images are 

not georeferenced, this must be done manually, thus, the precision may be off. The 
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importance of having the satellite images match up as precisely as possible is 

significant and if the slightest mistake is made the numbers are off. 

 To show full transparency, it will be mentioned here that this project has 

only looked into a few parameters in terms of coastal changes. The project has taken 

into account the physical changes that are visible on satellite images, without 

accounting for elements such as tidal changes, tide averages, human interference, wave 

direction and other environmental elements. Coastal types are also a key component 

not considered in this project, but it is a factor that ought to be implemented, as sandy 

banks behave differently than rocky cliff sides. These are without a doubt very 

important features that play a big role when talking about coastal changes. However, 

these are also very large features which, due to the size, time and nature of this project, 

were not implemented. Nonetheless, these are features that are interesting to implement 

in the future, as they would refine the results, ensure the quality of the results and create 

a functioning conclusion. 

 Creating a shoreline for this project was done automatically, using 

unsupervised classification, but did require manually adjustment in order to follow the 

shoreline, as can be seen on the satellite images. There were instances where the 

coastline was difficult to determine due to the uncertainties of shoreline-definitions (see 

figure 40) or where the quality of the images made it impossible to observe an adequate 

coastline.  

 
Figure 40. A close-up of Strangford Loughs showcasing a reoccurring issue  

when trying to differentiate between land, silt, swamp, water, etc. 

5.4. Challenges 

 Challenges occurred when working with the DSAS software extension, 

which did require a downgrade form ArcGIS Desktop vs. 10.6 to ArcGIS desktop vs. 

10.5.1. The datasets were very flexible, in terms of the parameters set for which satellite 

images to choose, therefore finding acceptable land cover was uncomplicated and eased 
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the project. There was no need for further complicating the project, as long as the 

images collected were straightforward and of high quality. Locating satellites images 

for Norfolk prior to 1972 is not possible, but for this project, the timestamps collected 

sufficed. Datasets prior to 1972 would have to take form of historical maps. 

 When creating transects, issues did occur when reaching the curved 

shorelines. An example of this can be viewed in the following figure 41 from 

Strangford Lough. Due to the curve of the shoreline, and the angle from which the 

transects protrude from the baseline, several gaps can be observed throughout the 

shorelines. As can be seen in this example, the gaps between the transects can cause 

incorrect overall results as shoreline changes can be visually observed, but they are not 

included in the final result. 

 
Figure 41. An example of transects not being distributed with the same distance 

along the coasts. 

 No specific solution for the uneven spaces between transects could be 

detected, apart from the example of Skara Brae (chapter 4.2) in which each transect 

was manually edited. The possibility of adding more transect numbers was also an 

option, however, it would not be a solution in this case of figure 41. The angle of the 

shoreline interferes, disrupting the distance between the transects. When looking into 

other possibilities, the Analyzing Moving Boundaries Using R (AMBUR) package 

showed potential (Jackson, 2012). The package is for the R software environment, it is 

an open-source solution, and like DSAS, provides support for analysing and visualising 

historical shoreline change. DSAS is developed specifically for commercial GIS 

software, whereas AMBUR allows the import and export of geospatial data in 

shapefiles format to both commercial and open source solutions, and shows potential 

to be an alternative, and free, solution. The package introduces other methods of casting 

transects, such as near and filtering (see figure 42) which prevents transects from 

crossing over themselves and conforms them to curved shoreline segments. The near 

and filtering transect methods will probably not solve all issues, but they show potential 

in reducing a quantity of problematic transects (Chester, 2011). 
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Figure 42. The difference between the transect methods, and a potential solution to 

avoid transects crossing over themselves and conforms them to the curved shoreline 

(Chester, 2011). 

 Other issues when casting the transects were the false result in terms of 

erosion/accretion as can be seen in figure 43 where the transects, at Skara Brae, crossed 

the landmass and connected with a wrong shoreline. This could be due to the OFFshore 

baseline versus ONshore baseline but no further investigation or search for this solution 

has yet taken place. 

 
Figure 43. An example of transects crossing landmass, resulting in false numbers. 

 Examples of further issues that occurred, were cases of obscured EPR’s. 

On figure 44 can be seen an example of another EPR issue. This image is from 
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Strangford Lough and shows two different transects located next to one another. 

However, one holds an EPR of 69.65m, and the neighbour an EPR of -62.98. This is 

probably due to the transects not aligning with coastline 1975, and for the purpose of 

the results, and to display them as truthfully as possible, the two transects were simply, 

manually removed.  

 
Figure 44. An example of EPR numbers not adding up. 

 

5.5. Limitations 

 Methodological limitations became more evident as the project 

progressed. The further this project progressed, the more evident became the lack of 

knowledge within coastal management and geomorphological changes. The project 

would have benefitted from more data collected about tidal changes, geomorphological 

knowledge and any changes based on human interference. This could have attributed 

to the field of uncertainty and the option for creating a value for the uncertainty level 

could have been implemented. 

 Satellite images were also limited to images without any obstructions, 

such as bad weather conditions. It was therefore not possible to rely on using data 

covering the same time of year, in order to create as exact an image as possible, but 

rather a visual assessment of each satellite images was necessary which was time-

consuming. In order to retrieve images as far back as possible, aerial photography can 

be of great use in order to create a broader understanding of shoreline movement. These 

photographs need to be scanned and georeferenced in order to be of use, which requires 

control points that might not be available. For this, the focal point of this project relied 

purely on easily available satellite images. One of the issues with Landsat satellite 

images is that despite the quality achievable today, the quality of the resolution of each 

satellite, is not the same. Early Landsat models, such as Landsat 1, 2 and 3 has a 

resolution of 60m pr. pixel, Landsat 4, 5 & 7 has a resolution of 30m pr. Pixel, but 

Landsat 8 (panchromatic) can come down to 15m pr. Pixel (USGS, n.d.c). This results 

in distortion and uneven coastal extraction when the system determines whether a pixel 

is part of landmass or water.   Determining whether a pixel is part landmass or water 

also comes down defining the shoreline.  Defining the shoreline is a complex process, 

as mentioned earlier with the shoreline paradox, complicated by what a shoreline ought 

to be defined as. Sandy beaches and rocky coast, vegetation line and high waters. It 

needs to be evaluated carefully when initiating the project. Sediment movement and 

ocean current are also beneficial factors to understand.  

 The final significant aspect: human inference and natural cycles have to 

be analysed as well, but this aspect was not explored further during this project. 



46 
 

Happenings observed throughout the different timestamps could potentially explain 

certain trends and cycles, that could explain certain shoreline movements. If they could 

be explored further, they could possibly show a pattern of how certain coastlines move 

the way they do. Trends could then be applied and implemented into the overall picture 

of coastal erosion or accretion. 

 Assessing coastal shifts based on shoreline trends has proved 

cumbersome and a very complicated process with factors far exceeding the scope of a 

project such as this. Nonetheless, analysing the results and observing the trends have 

been accumulated, is still of interest as they can still give an indication of how the 

shoreline will change. The purpose of this project was not to predict an exact shoreline 

change but to determine whether assessing the shoreline movement could be of benefit 

to the study of archaeology. The potential for creating an erosion map with the focal 

point of salvage archaeology is beneficial and useful. This method proves to be a low-

cost, high-result assessment tool based on timestamps that could guide patrons to which 

cultural heritage sites are located in high-risk areas. 

 

5.6. Future Implementation: 

 To avoid loss of historical heritage urgent action needs to be taken, and 

as demonstrated earlier, this method would be a useful tool for future work. Because 

of available data and a work frame is available and approachable for the majority of 

people in the archaeological field, it would be a great tool for researching coastal 

management of historical sites. Salvage archaeology benefits from tools that are fast, 

cheap and reliable. This method could encompass all three elements, and it shows the 

potential between combining satellite imagery, GIS and archaeology. However, a great 

number of changes would be necessary. It would be important to ensure that the 

datasets match up and that the errors in aligning the coastlines per year are kept to a 

minimum. It could also prove important to ensure that elements such as tidal change 

and wave direction were to take into consideration, as well as categorizing the different 

coastal types and looking into the geomorphology of the coasts. 

 For future implementation, an in-depth analysis of the different 

shorelines would be beneficial. As previously mentioned, an understanding of the 

trends and cycles could potentially ensure a better understanding of the shoreline 

movements. Exploring what tools DSAS holds in terms of trend-analysis would be 

vital. 

 These areas cover a very small sample of the UK and only take the east 

area of the country into considerations. It would be interesting to see the degree of 

change, if any, on the western side as well. To summarize; with more time and more 

knowledge gathered a full country-covering map, showing the general trends of the 

coastlines could benefit the preservation and conservation of historical sites. To further 

aid the archaeological field, a useful tool would be to create a danger map. A map to 

visually show the shoreline movement, based on the assessment displayed earlier in 

this project.  For future implementation, such a map would be the goal. 

The approach of the method is up to standard and shows great potential. The results 

rely on the data input and the preparation of said data.  

 

  



47 
 

 

6. Conclusion 

 This project is a bridge between GIS, especially satellite imagery and 

the Digital Shoreline Analysis System, and archaeology. An example of using complex 

systems to benefit history.  

 One of the premises for this project was to create a vulnerability map 

covering the UK, which would assess the possible coastal erosion in places where 

historical sites are located. However, because of the quality of the satellite images, 

the accuracy is not as good as was hoped for at the beginning of this project. The 

earliest satellite images do not go further back than 1972, and those images suffer 

from large pixelation due to the quality that was achievable at the time. 

 This method shows valuable potential for coarse observation on a 

larger scale, and with further research and more optimized data preparation, this 

method shows great benefit for the field of archaeology. It supports a coarse 

overview of shoreline-movement, it helps to quickly assess what areas are of higher 

risk and thus what historical sites are in need of salvage archaeology. It is also 

important to note that this method is less resource-consuming than other methods, 

but during this project a large amount of time was acquired to visually assess the 

data, the shapefiles, the satellites images and every step of the process as a whole, 

to ensure high-quality results. This project was designed from the perspective of an 

archaeologist and looking into how GIS could support future work. What is valuable 

for the archaeological field are low-cost, high-quality results.  

 Overall, this is a great tool for coastal-related archaeology in regard 

to salvage archaeology and shows great potential for further collaboration between 

archaeology and GIS. 
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