
Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
Optimization of behavioral parameters of
Artificial Intelligence agents created by
UtilityAI tool

Theme:
Scientific Theme

Project Period:
Fall Semester 2018

Project Group:

Participant(s):
Vladimir Caniga - 20163278

Supervisor(s):
Supervised by Assoc. Prof. Manfred
Jaeger

Copies: 1

Page Numbers: 35

Date of Completion:
February 4, 2019

Abstract:

The goal of this project is to improve
the development workflow of an Arti-
ficial Intelligence agent created using
UtilityAI tool published by Apex Game
Tools. Such agent contains multiple nu-
meric parameters that need to be care-
fully optimized by the designer of the
agent in order for the agent to behave
in the intended way. Optimization of
these parameters can be aided by def-
inition of a reward function and em-
ploying optimizers that are then able to
converge the parameters to values max-
imizing defined reward. Bayesian opti-
mization was chosen as the optimization
algorithm for this project and was eval-
uated on the Survival Shooter game and
two known constructed functions.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

http://www.aau.dk

Optimization of behavioral
parameters of Artificial

Intelligence agents created by
UtilityAI tool

- Project Report -

Vladimir Caniga - 20163278

Supervised by Assoc. Prof. Manfred Jaeger

Aalborg University
Department of Computer Science

Keywords: Unity, Apex Game Tools, UtilityAI, Artificial Intelligence, Parameter
Optimization, Bayesian optimization, Gaussian Process

2

Contents

1 Introduction 5
1.1 Survival Shooter game . 5
1.2 UtilityAI . 5

1.2.1 Building Blocks of UtilityAI . 6
1.3 Using UtilityAI in Survival Shooter . 8
1.4 Project goal . 9

2 Background 11
2.1 Hyperparameter optimization . 11

2.1.1 Gaussian processes . 12
2.1.2 Bayesian optimization . 16

3 Tools and Implementation 21
3.1 Tools used in the project . 21
3.2 Implementation . 21

4 Experiments and results 25
4.1 Verifying validity of the implementation on constructed deterministic

function . 26
4.1.1 Function with two unknown variables 26
4.1.2 Function with three unknown variables 28

5 Conclusion 33

Bibliography 35

3

Chapter 1

Introduction

1.1 Survival Shooter game

Survival Shooter is a simple isometric 3D game developed by Unity Technologies [8]
mainly for technology showcase and tutorial purposes for their game engine named
Unity. In the game, player controls a character that can move freely and perform
several actions: shoot in a certain direction, reload his rifle, throw a bomb and use a
band-aid. Moreover, he also can collect several power-ups randomly spawning across
the map that include: +1 bomb and +1 band-aid that add one unit of throwable
bomb and usable band-aid respectively to the player’s inventory.

There are also enemies spawning in predefined locations on the map with a fixed
frequency in a form of zombies that are trying to kill the player by running towards
him and hitting him. The goal of this game is to survive as long as possible. Figure
1.1 shows a screenshot from the game.

1.2 UtilityAI

Utility AI is an advanced hierarchical scoring-based artificial intelligence framework
for computer games. It can be plugged into the Unity game engine and provides
user interface for designing and debugging AIs ranging from simple to complex ones.
In contrast to common AI design approaches like behavior trees and finite state
machines, Utility AI chooses approach of making several decisions available to the
agent, at any point where decision should be made, and then scoring each potential
decision. The Utility AI then selects the highest scoring decision and has the AI
perform the action associated with this decision. This in theory allows for easier
extension of the AI as its behavior can be changed by modifying scoring functions
for different actions. This approach to designing AIs seems to be better in dealing

5

6 Chapter 1. Introduction

Figure 1.1: Survival Shooter in-game screenshot.

with unexpected and unforeseen situations which might have been undefined in other
system using if-then conditions and can also appear more human-like [7].

UtilityAI is developed by Apex Game Tools.

1.2.1 Building Blocks of UtilityAI

When a developer decides to use UtilityAI to create an in-game artificial intelligence
to either control the main character, an enemy or any other aspect of the game, he
or she creates one or more so called agents. An agent can control the whole decision
process of an in-game entity, for example the movement and actions of a soldier or
only a portion of it. Example for that could be a real time strategy game, where
one agent would be in charge of building a base and overall strategy and another one
could be controlling individual units in the battle.

There are 4 main building blocks a developer uses when designing a new UtilityAI
agent. Three of them form a hierarchy and from the topmost block consist of:
Selectors, Qualifiers and Actions. Scorers are used in several places in the hierarchy
1.2.

• Selector sits at the topmost point of the building blocks hierarchy and encloses
one or more qualifiers. There can be multiple selectors in one AI agent, however

1.2. UtilityAI 7

Figure 1.2: Screenshot from the UtilityAI editor showing one selector that contains multiple quali-
fiers and each of the qualifiers has one action associated. On the right side you can see configuration,
including two scorers, for the highlighted qualifier named “Use health”.

there always needs to be one selector marked as the entry point for the agent
present. The responsibility of each selector is to choose one qualifier from the
list of qualifiers it encloses. There are different rules on how this choice is
performed, but the two commonly used rules are selecting the highest scoring
qualifier and selecting the first qualifier from the list that scores above set
threshold. The selectors can be interpreted as states in which the agent can
find itself in. Selecting a qualifier can result in a “state transition” to another
selector.

• Qualifier represents a logical decision/intention of the agent. Each selector
might contain several qualifiers that in fact depict intentions that are applicable
to the current state. When a qualifier gets selected by a selector, it can either
invoke the Action associated with the intention represented by the qualifier or
can lead to a “state transition” to another selector. The other selector then
can be seen as a more specialized state that contains qualifiers appropriate
for that situation. In order for a selector to be able to choose from different
qualifiers, each qualifier needs to return a score for the current game state. For
calculating such score the qualifiers use scorers that are described below. As
with the selectors, there exist several types of qualifiers. Commonly used ones
include a qualifier that returns the sum of score values of all scorers associated
with it, a qualifier that only returns a score if all of it’s associated scorers score
above their respective thresholds and others.

8 Chapter 1. Introduction

• Actions are building blocks that execute code written specifically for the tar-
get game/application for each action the agent can perform. The main reason
for adding this abstraction layers as opposed to simply executing the appli-
cation specific function is that Actions can also make use of Scorers and set
certain parameters of the executed code modifying its final behavior. As an
example let’s take an Action that moves a character in the game world. The
Action object can have several Scorers associated with it that calculate the
most favorable position for the character given the current game state. Action
objects are always associated to qualifiers.

• Scorers are objects designed specifically for each game/application and contain
code that evaluates a portion of current game state and returns a score. It
is up to the designer of the agent to implement these scoring functions. The
scoring functions can be as simple as counting the enemies in the vicinity of the
player character to sampling the game world for positions where the controlled
character can move and scoring them using complex functions counting in for
instance the offensive and defensive properties of such positions.

1.3 Using UtilityAI in Survival Shooter

Apex Game Tools provides an implementation of three UtilityAI agents working
together to control the player character in the Survival Shooter game. The three
agents are the following:

• PlayerScanner agent periodically samples the game world and keeps track of
all seen enemies, power ups and locations the player can move to.

• PlayerMove agent controls the movement of the player character. It is de-
signed to continuously move the player character to the most favorable position
based on the current game state. Conditions for determining the best position
include: player distance from enemies, player distance from power-ups, effective
firing range of player’s rifle and line of sight to an enemy.

• PlayerAction agent continuously chooses and executes actions that are avail-
able to player’s character. These actions include: using a band-aid, throwing
a bomb, reloading the rifle and firing the rifle. Each of these actions has a set
of specific rules (implemented by Scorers) that score them at any point of time
in the game and so the agent is able to choose the most ideal action for any
situation. Scores are computed based on the current health of the player’s char-
acter, amount of band-aids and bombs in the inventory, rounds of ammunition
left in the rifle and presence of enemies in the effective range of the rifle.

1.4. Project goal 9

1.4 Project goal

When a developer finishes the design of an AI agent using UtilityAI for any ap-
plication, he ends up with a hierarchy of selectors, qualifiers, actions and scorers.
Assuming that all the programming work is done, there is still one important and ar-
guably time consuming task left and that to manually optimize considerable amount
of numeric variables that will inevitably be present in the finished hierarchy of Util-
ityAI building blocks. These parameters can have high impact on the decisions agents
make and thus altering their behavior. In order to achieve the desirable agent be-
havior, extensive calibration runs must be performed during which these parameters
are fine tuned until the agents make intended decisions in all situations.

The goal of this project is to explore the possibilities of automating this process and
as a proof of concept, implement a solution for the agents provided by Apex Game
Tools for Survival Shooter.

Chapter 2

Background

This chapter describes the theory behind different approaches that are commonly
used for solving similar problems and with it also some arguments on why the cho-
sen algorithm was the most suitable for this project’s task.

2.1 Hyperparameter optimization

After exploring the implementation of UtilityAI tool and the workflow of designing
new AI agents, one can identify strong similarity between the problem defined in
this project and the problem of optimizing parameters in various machine learning
models.

In the context of machine learning models, hyperparameter optimization is a problem
of finding the optimal hyperparameters for the chosen learning algorithm. These hy-
perparameters usually cover different constraints, weights or learning rates specific to
the different machine learning models. Finding and using the optimal hyperparam-
eters yields the best performing model which minimizes the predefined loss function
on given independent data.

There exist several different approaches that are commonly used to find such optimal
hyperparameter values:

• Grid search is a simple exhausting search through all the different combi-
nations in manually defined hyperparameter space of each hyperparameter of
a learning algorithm. Since most of the hyperparameters of commonly used
learning algorithms are real-valued and unbounded value spaces, manually set
bounds and discretization are usually necessary before attempting grid search.

• Random search covers a family of algorithms that are initialized by selecting

11

12 Chapter 2. Background

a random value for each of the hyperparameter within its parameter space and
then, at each step, try a new hyperparameter combination that is again ran-
domly chosen in the predefined vicinity of the previous values. The algorithm
then moves to the parameter setting that provided better results and repeats
this step until a termination condition is met.

• Gradient-based optimization as the name suggests uses gradient descent to
calculate the vector towards function minimum/maximum and move towards it.
Gradient-based algorithms however have certain conditions, such as of course
the ability to calculate the gradient.

• Bayesian optimization uses Gaussian processes to build a probabilistic model
of the function mapping from hyperparameter values to the objective evaluated
on a validation set. Bayesian optimization as well as Gaussian processes are
described below in greater detail.

Each approach has its advantages and disadvantages, but since this project assumes
the need to optimize a larger volume of real-valued unbounded parameters with min-
imal prior knowledge on the parameter space and a high cost loss function (as it
requires to run the game for each evaluation), Bayesian optimization was chosen as
the most appropriate one.

2.1.1 Gaussian processes

Let’s start by looking at an example, where we try to find a function that best fits the
observed data and let’s say that we first opted for linear regression as an algorithm
2.1.

By choosing linear regression, we are limited to finding the distribution over the 2
parameters in its equation: y = θ0 + θ1x+ ε. By examining the result one can see
that we would most likely achieve lower error rate by choosing a quadratic func-
tion, so in the regression we would be looking for distribution over 3 parameters:
y = θ0 + θ1x+ θ2x

2. Gaussian process considers all possible functions in a prede-
fined domain, effectively removing the problem of choosing the right function from
the start.

A Gaussian Process is an extension of the multivariate Gaussian distribution to an
infinite dimension stochastic process for which any finite combination of dimensions
will be a Gaussian distribution. Just as a Gaussian distribution is a distribution
over a random variable, completely specified by its mean and covariance, a Gaussian
Process is a distribution over functions, completely specified by its mean function,

2.1. Hyperparameter optimization 13

Figure 2.1: Finding a linear function to best fit the data points. Source: [1]

m and covariance function (or kernel) [2], k:

f(x) ∼ GP (m(x), k(x,x′))

Mean function is analogous to a mean value for normal distribution but for the whole
range of function values and covariance function is a function that describes relations
between points that are close together. The idea is that it is very common to see two
points that are close together in the input space to produce output values that are
also close. It is often useful to intuitively think of a Gaussian Process as analogous
to a function, but instead of returning a scalar f(x) for an arbitrary x, it returns the
mean and variance of a normal distribution over the possible values of f at x 2.2.

Various covariance functions assign different probability to the shape of the resulting
objective function. It is therefore important to choose an appropriate kernel if any
prior knowledge exists. Here is an example of very smooth functions generated by
the Squared Exponential kernel 2.3.

And here are “spiky” functions generated by the Exponential kernel 2.4.

Let’s examine the Squared Exponential kernel. The function approaches 1 when
the values are close together and 0 as they get further apart. Two points that are

14 Chapter 2. Background

Figure 2.2: An example of a Gaussian process with 3 observations. The black line is the mean
prediction of the objective function given the data and the colored area represent the mean plus and
minus the variance.

Figure 2.3: “Smooth" functions generated by the Squared Exponen-
tial kernel. Source: https://stats.stackexchange.com/questions/222238/
why-is-the-mean-function-in-gaussian-process-uninteresting/222304

close together can be expected to have a very large influence on each other, whereas
distant points have almost none. If we were to sample from the prior, we would
choose {x1:t} and sample the values of the function at these indices to produce the

https://stats.stackexchange.com/questions/222238/why-is-the-mean-function-in-gaussian-process-uninteresting/222304
https://stats.stackexchange.com/questions/222238/why-is-the-mean-function-in-gaussian-process-uninteresting/222304

2.1. Hyperparameter optimization 15

Figure 2.4: “Spiky" functions generated by the Exponential ker-
nel. Source: https://stats.stackexchange.com/questions/222238/
why-is-the-mean-function-in-gaussian-process-uninteresting/222304

pairs {x1:t, f1:t}, where f1:t = f(x1:t). The function values are drawn according to a
multivariate normal distribution N (0,K), where the kernel matrix, which describes
the correlation between all the different pairs of sampled indices, is given by:

K =

k (x1, x1) . . . k (x1, xt)

...
k (xt, x1) . . . k (xt, xt)

In a noise-free environment the diagonal values of the matrix are all 1 (each point
correlates perfectly with itself). Assuming that we already have the observations
D1:t = {x1:t, f1:t} and we will use Bayesian optimization to find the next point xt+1
which should be considered next. Let’s denote the value of the function at this arbi-
trary point as ft+1 = f(xt+1) and we get [2]:

[
f1:t

ft+1

]
∼ N

(
0,
[

K k
kT k (xt+1, xt+1)

])
where

k = [k (xt+1, x1) k (xt+1, x2) · · · k (xt+1, xt)]

The expression for the predictive distribution using Sherman-Morrison-Woodbury
formula is [2]:

https://stats.stackexchange.com/questions/222238/why-is-the-mean-function-in-gaussian-process-uninteresting/222304
https://stats.stackexchange.com/questions/222238/why-is-the-mean-function-in-gaussian-process-uninteresting/222304

16 Chapter 2. Background

P (ft+1|D1:t, xt+1) = N
(
µt (xt+1) ,σ2

t (xt+1)
)

where

µt (xt+1) = kT K−1f1:t

σ2
t (xt+1) = k (xt+1, xt+1)− kT K−1k

2.1.2 Bayesian optimization

Bayesian optimization is a strategy that can be used to find the extrema of objective
functions that are expensive to evaluate. It is applicable in situations where the
expression of the objective function is unknown, but it is possible to obtain observa-
tions of this function at sampled values. It is especially useful when it is expensive
to evaluate the observations, the derivatives of the function are not available, or the
function is non-convex (it has multiple local maxima/minima) [2] [3]. The goal of
Bayesian optimization can be defined as: max

x∈A
f(x), where x is in Rd and d is no too

large, typically d ≤ 20.

Bayesian optimization is, as the name suggests, based on Bayes’ theorem which
applied to the current problem says that the posterior probability of a model M
given evidence E is proportional to the likelihood of E given M multiplied by the
prior probability of M :

P (M |E) ∝ P (E|M)P (M)

Bayesian optimization by design requires 2 components. The first one being a source
of prior distribution for the model and the second one, an acquisition function [3]
[4]. The prior distribution provides information on the probability of extrema values
being located in the given point based on previous observations and for this project,
Gaussian process is used and is described in greater detail in the previous section.
The second component, Acquisition function, then guides the search for optimum
and at each step of the Bayesian optimization selects the next point in which to
sample and evaluate the objective function based on the prior distribution.

Listing 1 shows the pseudo algorithm for Bayesian optimization. As a first step
on line 2 we find the next index xt at which to evaluate the objective function by
optimizing the acquisition function given the previous observations in the Gaussian
process. Next we evaluate the objective function at index xt and lastly we augment
the data with the new index and its function value and update the Gaussian process

2.1. Hyperparameter optimization 17

to reflect the new observation.

1 for t = 1, 2, ... do
2 Find xt by optimizing the acquisition function over the GP:

xt = maxx a(x|D1:t−1);
3 Sample the objective function: yt = f(xt);
4 Augment the data D1:t = {D1:t−1, (xt, yt)} and update the GP;
5 end

Algorithm 1: Bayesian optimization algorithm

Acquisition functions

There are several acquisition functions that are commonly used for Bayesian opti-
mization, but all of them serve the same purpose, which is to select the next point
of the objective function to evaluate. This point is chosen by maximizing the acqui-
sition function itself [9].

Authors of paper [6] provide nice and concise overview of three commonly used ac-
quisition functions. Let’s define function f(x) as a function drawn from Gaussian
process prior and known observations of the objective function as {xn, yn}Nn=1. Ob-
servations together with prior induce posterior over functions. Acquisition function,
defined as a : χ → R+, decides what point in χ should be evaluated next via a
proxy optimization xnext = maxx a(x). Formula a(x; {xn, yn}, θ) depicts the depen-
dence of the acquisition function on previous observations and on parameters of the
Gaussian process. Predictive mean function and predictive variance function of the
Gaussian process are µ(x; {xn, yn}, θ) and σ2(x; {xn, yn}, θ) respectively. The best
current value is xbest = minxn f(xn) and the cumulative distribution function of the
standard normal as Φ(·)

• Probability of improvement is a strategy to maximize the probability of
improving over the best current value, which under Gaussian process can be
computed as:

γ(x) =
f(xbest)− µ(x; {xn, yn}, θ)

σ(x; {xn, yn}, θ)

aPI(x; {xn, yn}, θ) = Φ(γ(x))

• Expected Improvement can be maximized over current best under Gaussian
process as:

aEI(x; {xn, yn}, θ) = σ(x; {xn, yn}, θ)(γ(x)Φ(γ(x))) +N(γ(x); 0, 1)

18 Chapter 2. Background

• Upper/Lower confidence bound is a strategy that constructs acquisition
functions that minimize regret over the course of their optimization and can
be written as:

aLCB(x; {xn, yn}, θ) = µ(x; {xn, yn}, θ)− κσ(x; {xn, yn}, θ)

where κ is parameter that balances exploitation and exploration.

Exploitation-exploration trade-off

Most acquisition functions have parameters that modify their balance of exploration
and exploitation. Modifying such parameter can obviously have a big impact on the
performance of the Bayesian optimization algorithm. When the acquisition function
is tuned for exploration, it should pick points in which variance is high and when it
is tuned for exploitation, it should pick points where mean is high [2]. Figure 2.5
shows the the effect different settings of exploration/exploitation parameter can have
on acquisition functions. At the top is Gaussian Process posterior and below that
are three acquisition functions with three different exploration/exploitation settings
– Probability of Improvement, Expected Improvement and Upper Confidence Bound.

Figure 2.6 shows three instances of first three steps of Bayesian optimization on one
dimensional problem. From the top to bottom, the acquisition functions are proba-
bility of improvement, expected improvement and upper confidence bound. The red
dotted line is the objective function, solid blue line is posterior mean of the Gaussian
process and the blue area its variance. The green graph shows the acquisition func-
tion utility and the red triangle the next point that will be chosen for evaluation.
Even though the Bayesian optimization was initialized with the same points, there is
a considerable difference between exploration and exploitation characteristics of the
different acquisition functions.

2.1. Hyperparameter optimization 19

Figure 2.5: Comparison of the effect the exploration/exploitation setting has on the three acquisi-
tion functions – Probability of Improvement, Expected Improvement and Upper Confidence Bound
in regards Gaussian Process posterior at the top. Source: [2]

20 Chapter 2. Background

Figure 2.6: First three steps of Bayesian optimization on one dimensional problem. Source: [2]

Chapter 3

Tools and Implementation

3.1 Tools used in the project

BayesianOptimization python library

BayesianOptimization is a library developed by Fernando Nogueira [5] that provides
implementation of global Bayesian global optimization and is built upon Bayesian
inference and Gaussian processes that are implemented as a part of popular python
library Scikit-learn.

The implementation of the algorithm supports optimization single as well as multi-
dimensional inputs, meaning that it is suitable for tasks with only one parameter
and also tasks with multiple parameters. It also offers several different acquisition
functions: upper confidence bound, expected improvement and probability of im-
provement. For each of those functions it is possible to adjust the balance between
exploration and exploitation changing the behavior of the optimization algorithm.

3.2 Implementation

Considerable time working on this project was spent on creating the communication
interface between the game, the agents controlling the player character and a sepa-
rate program for the optimization algorithm itself.

Unfortunately, there was no API included in the Utility AI that would make the
process easier. It was necessary to modify several parts of the code base to enable
extraction of the parameters out of the agents configuration and then, using reflec-
tion, create a way of injecting new values back into them. To make the matter worse,
by mistake I received an incompatible development version of Utility AI software and
it took some time until I received the correct one.

21

22 Chapter 3. Tools and Implementation

Survival Shooter game and UtilityAI tool are both written in C# programming lan-
guage. There were also several modifications needed to be performed on the game
itself. Since it does not support disabling graphical rendering to drastically speed
up the simulation, I attempted to optimize rendering to use the least amount of
resources possible to reduce the cost of evaluation of loss function used by the al-
gorithm. In the final version, the game could run about 20 times faster than real time.

Later on it was unfortunately discovered that running the game any faster than
real-time negatively affected performance of the bot and all the tests had to be ex-
ecuted in real-time. The exact reason for this performance degradation is unknown,
but the evidence suggests that since the game simulation is tightly connected to the
frame-rate of the graphics output, any small frame-rate fluctuation or frame delay
introduces some randomness factor in the evaluation runs. The fact that results from
evaluations executed at 2x speed yielded approximately 2/3 score value compared
to results from evaluations at real-time speed even though the computer executing
these evaluations was capable of maintaining consistent frame-rate for both of these
scenarios further suggests that there are some simplifications and inconsistencies
implemented in the Unity game engine which I was not able to manipulate. De-
spite running all the evaluations in real-time, there was still considerable variation
between the results of individual game runs. This is again most likely caused by
slightly different time delays between frames and thus the AI making decisions on
slightly different game sates as in other evaluation runs. Even after all my efforts to
improve the stability of the results of evaluations, it was very common to see them
spread across the whole range of possible outcomes (from 0 seconds to 600 seconds).
As an example, here are the results of five consecutive runs of the game with the
exact same setup (the following numbers represent the amount of seconds the bot
survived): 219.02, 188.66, 240.91, 54.48, 152.20.

Throughout this thesis I ran a large number of different evaluations, I tried several
sets of parameters that were responsible for different parts of the bot decision process
in order to find parameters which would visibly change the bot’s behavior as well
as the game’s outcome. Finding such parameters proved to be a very difficult task,
mainly because of all the issues with inconsistencies that were impossible for me to
address. Another factor was the design of agents that I was working with. The
design could be described as “defensive" and was not the most suitable for common
parameter optimization techniques. I will try to explain why on a set of parameters
that were responsible for prioritizing different actions the bot could execute.

Figure 3.1 shows selector named Select Action that is responsible to choose the
next action the bot is about to perform. This selector does not select a qualifier
that achieves the highest score. Instead, it selects the first qualifier that scores above

3.2. Implementation 23

threshold that is set for each qualifier. That means there already exists some pri-
oritization of qualifiers/actions based on their order in the selector. If we examine
this structure even deeper, the score for qualifier Reload Gun only depends on one
scorer as seen in the figure 3.2. This scorer is very simple and returns a set value
when the magazine of bot’s gun is empty and zero otherwise. The value this scorer
returns is one of the parameters the Bayesian optimization tries to fine-tune. How-
ever, in this agent design, there are only two different outcomes one can achieve. If
the value is set to zero, the bot will never be able to reload his gun and when the
value is set to anything higher than zero, the bot will always reload exactly when
his magazine becomes empty. Using such a design for example does not allow the
bot to reload his gun when he still has a few rounds in the magazine, even though it
could be a good decision as there might be no enemies around him at that moment.
It also makes the shooting process “fool-proof" as when the bot is allowed to reload
his gun, the action to try to shoot the gun can never be chosen when his gun is empty.

Figure 3.1: Screenshot from the UtilityAI editor showing one selector that contains multiple quali-
fiers and each of the qualifiers has one action associated. On the right side you can see configuration,
including two scorers, for the highlighted qualifier named “Use health”.

There are many occurrences of this “defensive"" design throughout the agents’ imple-
mentation which cause individual parameters to have almost binary character and
the different values that are above the critical threshold cause very small change in
the final behavior of the bot.

Learning algorithm was implemented as a separate program in Python programming
language. The loss function for Bayesian optimization algorithm was the average

24 Chapter 3. Tools and Implementation

Figure 3.2: Screenshot from the UtilityAI editor showing properties and scorers of “Reload Gun""
qualifier.

survival time of the player character with parameters for his AI agents set accord-
ingly. The need for averaging survival time across several runs of the game comes
from the above described non-deterministic properties of the simulations. As a re-
sult, evaluation of the loss function is very costly and thus requiring the algorithm
to converge relatively quickly.

Chapter 4

Experiments and results

All of the experiments were executed using the modified version of Utility AI soft-
ware and the modified version of Survival Shooter game. Since there exist non-
deterministic elements in the game design, every performance measurement was an
average of 5 separate gameplays using the same settings for Utility AI agents. The
scoring method was simple – the longer the agent keeps the player character alive
the better.

The baseline was established as the performance of Utility AI agents manually tuned
for Survival Shooter by Apex Game Tools team. These agents turned out to have
an excellent performance in this particular game and they could survive in the game
practically indefinitely. This also applied to most of the random parameter settings
and for that reason, each game run was time limited to 10 minutes as well as some
modifications were performed on the game itself to increase its difficulty – spawning
frequency of the different enemies was increased. The maximum score an agent could
achieve is then 600 seconds.

The process of experiments with automatically optimized parameters using Bayesian
optimization was the following. At first only a small number of parameters (one
to two) of the agents were set to a random value and the optimization algorithm
was set to optimize only those values. Other parameters remained the same as on
the manually tuned agents. The number of parameters that were randomized and
optimized by the algorithm was then gradually increasing.

Multiple sets of parameters were chosen and efficiency of Bayesian optimization was
evaluated on each of them. These parameter sets controlled different aspects of the
bot. For example parameters in scorers for qualifiers “Use Health", “Reload Gun"
and “Fire Gun" can to a certain degree set the priority of equally named player ac-
tions, parameters in scorers for Action object “Set Best Attack Target" influence

25

26 Chapter 4. Experiments and results

the choice of a target to be shot at next and parameters in Action object “Move To
Best Position" are used to choose the ideal position the player should move to next.

Because of the way the AI agents are implemented for Survival Shooter, modifica-
tions to these parameters don’t seem to have a great effect on the final performance
of the bot. The difference in performance is even harder to determine as individual
evaluations are inconsistent. Examining the design of these agents, one can find pa-
rameter settings for certain parameter groups that will hamper the performance of
the bot considerably. An example is setting all parameters to value zero in scorers
for qualifiers “Use Health", “Reload Gun" and “Fire Gun", which results in the
inability of the bot to execute any action and thus he only tries to run away from
his enemies that will always catch him after a short while. Different non-zero values
for these parameters achieve better score in evaluations, however there is no con-
sistent trend in the score between these settings. In figure 4.1 you can see progress
with intermediate results of optimization algorithm on a set of parameters that affect
the choice of player action. Column “score" shows the survival time in seconds and
columns right of that show the settings for different parameters. The first iteration
shows the special case of a bad parameter setting and the score is significantly lower
for that case.

4.1 Verifying validity of the implementation on constructed
deterministic function

In order to verify functionality and viability of the proposed solution together with
the tools used in the project, simulating an environment in which hardware and third
party software variables can be controlled, I ran experiments, which differed from
previously described experiments only by changing the evaluation function from run-
ning the Survival Shooter game to evaluating a constructed deterministic function.

4.1.1 Function with two unknown variables

The first chosen evaluation function was:

−x4 + 5x2 − 10y2

Both unknown variables have limited interval [−200, 200] and the function reaches
it’s maximum in: x = ±1.5811; y = 0.

Having only two unknown variables enables us to visualize the function easily (fig-
ure 4.2 plots the evaluation function around it’s maximums) and thus monitoring

4.1. Verifying validity of the implementation on constructed deterministic function 27

Figure 4.1: Results of optimization of parameters responsible for player actions

the optimizing algorithm is more straight forward. After tweaking a parameter that
balances exploration and exploitation in the Expected Improvement acquisition func-
tion in the Bayesian optimization algorithm, it was possible to find values for the
unknown variables that were within 5% of the real function’s maximums in less than
100 iterations.

28 Chapter 4. Experiments and results

Figure 4.2: Plot of the constructed function: −x4 + 5x2 − 10y2

The settings of the Bayesian optimization algorithm were as follows: acquisition
function was chosen to be Expected Improvement with exploration/exploitation pa-
rameter xi set to 0.001 and 5 evaluations with random values for the variables were
performed in the initialization stage. Figure 4.3 shows progress of the optimization
algorithm.

4.1.2 Function with three unknown variables

To show the extensibility potential of the algorithm, the constructed function was
extended by addition of hyperbolic tangent function of a third unknown variable
making the final evaluation function:

−x4 + 5x2 − 10y2 − tanh(z)

All three unknown variables have limited interval [−200, 200] and the function reaches
it’s maximum in: x = ±1.5811; y = 0; z = −200.

Hyperbolic tangent function is plotted in figure 4.4 and with it’s shape that resem-
bles the sign function, it simulates the binary character of some parameters that were
present in the Survival Shooter AI agents. Since there is very little difference in the
function value in intervals (−∞, 0) and (0,∞) we only consider whether value of the

4.1. Verifying validity of the implementation on constructed deterministic function 29

Figure 4.3: Progress of optimization process of two unknown variables.

optimized variable falls into the correct interval from the two.

The results in figure 4.5 show that the optimization algorithm was able to find values
for parameter x and y that were within 10% of their real maximums again in about
100 iterations. The settings of the Bayesian optimization algorithm were the same
as in the evaluation function with two unknown variables: acquisition function was
chosen to be Expected Improvement with exploration/exploitation parameter xi set
to 0.001 and 5 evaluations with random values for the variables were performed in
the initialization stage.

30 Chapter 4. Experiments and results

Figure 4.4: Plot of hyperbolic tangent function tanh(z)

4.1. Verifying validity of the implementation on constructed deterministic function 31

Figure 4.5: Progress of optimization process of three unknown variables.

Chapter 5

Conclusion

The goal of this project was to explore the possibilities of using hyperparameter opti-
mization techniques, namely Bayesian optimization, in technical fields where it is not
common to see such tools implemented. For the testing environment, a simple game
was chosen together with an AI development tool that showed promising properties
for successful integration of an optimization algorithm.

As part of the project, an interface was implemented that enabled exporting of pa-
rameters of the UtilityAI agent’s configuration and also updating these parameters
when they were ran through optimization algorithm. The whole workflow is fully
working and is mostly automated.

After extensive testing, modifications to the game and AI agents themselves, it was
not possible to obtain definite results of the effectiveness of utilizing optimization
techniques in applications such as artificial intelligence development for computer
games. During this project I faced multiple hardware and third-party software prob-
lems that introduced variables which greatly influenced evaluation results and which
I was unable to resolve. Additional tests were performed in controlled conditions that
proved feasibility of the proposed approach if the application meets some conditions.
Mainly, the application must exhibit consistent behavior that is directly dependent
on the parameters to be optimized. It is also greatly beneficial if the application
supports a mode of execution where only the application/game state would be sim-
ulated and could be sped up without compromising the correctness of execution (for
computer games mainly disabling graphical output).

Future work could focus on exchanging the test environment to a different application
or to closely collaborate with the developers of Unity game engine and Utility AI
framework to mitigate problems that stand in the way of current workflow.

33

Bibliography

[1] Katherine Bailey.Gaussian Processes for Dummies. http://katbailey.github.
io/post/gaussian-processes-for-dummies/. 2016.

[2] Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning”. In: (2010).

[3] Peter I. Frazier. “A Tutorial on Bayesian Optimization”. In: (2018).
[4] Martin Krasser. Bayesian optimization. http://krasserm.github.io/2018/

03/21/bayesian-optimization/. 2018.
[5] Fernando Nogueira. Bayesian Optimization. https : / / github . com / fmfn /

BayesianOptimization. 2017.
[6] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian Opti-

mization of Machine Learning Algorithms”. In: ().
[7] Apex Game Tools team. Utility AI. http://apexgametools.com/products/

apex-utility-ai-2/. 2018.
[8] Unity Technologies team. Unity. https://unity3d.com/. 2018.
[9] James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. “Maximizing ac-

quisition functions for Bayesian optimization”. In: (2018).

35

http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://katbailey.github.io/post/gaussian-processes-for-dummies/
http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/21/bayesian-optimization/
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
http://apexgametools.com/products/apex-utility-ai-2/
http://apexgametools.com/products/apex-utility-ai-2/
https://unity3d.com/

	English title page
	Front page
	1 Introduction
	1.1 Survival Shooter game
	1.2 UtilityAI
	1.2.1 Building Blocks of UtilityAI

	1.3 Using UtilityAI in Survival Shooter
	1.4 Project goal

	2 Background
	2.1 Hyperparameter optimization
	2.1.1 Gaussian processes
	2.1.2 Bayesian optimization

	3 Tools and Implementation
	3.1 Tools used in the project
	3.2 Implementation

	4 Experiments and results
	4.1 Verifying validity of the implementation on constructed deterministic function
	4.1.1 Function with two unknown variables
	4.1.2 Function with three unknown variables

	5 Conclusion
	Bibliography

