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Chapter 1. Introduction

1 | Introduction

This thesis is concerned with investigating, developing and applying nonlinear control
strategies to a cart pendulum and twin pendulum system. Since both these systems
have less actuators than degrees of freedom, they fall into the category of underactuated
systems. For the cart pendulum a motor controls the cart while the pendulum can only
be acted on through the system dynamics. Adding a second pendulum to get the twin
pendulum system means the system only has one actuated of the now three degrees of
freedom.

The control objective is to develop a swing-up procedure which brings the pendulums to
the upright naturally unstable equilibrium. The concept used for the swing-up controllers
is to bring the mechanical energy of each pendulum to match its potential energy in the
unstable equilibrium.
Once the pendulums are close to the upright position, a catch controller is deployed which
then stabilizes the pendulums. For the cart pendulum system a sliding mode controller is
developed and for the twin pendulum a Linear Quadratic Regulator (LQR) is designed.

Though these two systems may not directly have other physical application than demon-
stration of control technique, they are extremely useful for studying control problems
concerned with underactuated systems.
In general the study of underactuated robotics uses the natural dynamics of the mechani-
cal systems, attempting to achieve extraordinary performance in terms of speed, efficiency
or robustness [1]. An example of an underactuated system is a walking robot. From a
simplified point of view the supporting leg can be seen as an inverted pendulum once the
other leg leaves the ground. Popular walking robots such as ASIMO makes use of high-
gain feedback in an attempt to cancel out the natural dynamics of the system. This is
about 20 times less efficient than a human gait and results in stiff and unnatural walking
[1]. This approach also limits the operating range and thus versatility of the system [1].
While developing a robust, versatile and natural walking robot is certainly not a simple
problem, it is clear that exploiting natural dynamics by underactuation is a considerable
step on the way.
So understanding and applying nonlinear control strategies to an isolated case like the
cart pendulum and twin pendulum system could play an important role in the future of
controlled underactuated systems.
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Chapter 2. System and Model

2 | System and Model

A brief overview of the relevant system for Part 1 is presented in this chapter along with
a model of the system.

2.1 System
A setup is provided by the Control and Automation Department at AAU, see Figure 2.1.

Figure 2.1: The setup provided by AAU. The motor controller in use is not directly visible in this
picture as it is mounted behind the power supply.

As seen in Figure 2.1, the belt is attached to pulleys, one of which is driven by a brushed
Maxon 370356 DC motor [2]. Another of these maxon motors is mounted on the pendulum
but is disconnected and just used as a joint in this project. Both motors are fitted with
an HEDS 5540 optical quadrature encoder allowing for relative position and angle of the
cart and pendulum respectively [3].

The motor driving the belt is controlled using a Maxon ADS 50/10 motor controller
configured in current control mode. The motor controller takes a ±10 V input signal
which then determines the armature current, ia, see [4].

The primary control unit is a Teensy 3.6 microcontroller board. To program the board
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Chapter 2. System and Model

through the onboard USB connection a bootloader is used along with the Teensyduino
add-on for the Arduino IDE [5].

The encoders are decoded on a shield using Avago HCTL-2021-PLC decoders and read
through an 8 bit parallel data bus on the microcontroller board resulting in 2000 tics
pr. revolution. This ensures a resolution for the pendulum angle, θ, of 2π/2000 =
π × 10−3 rad/tic and 2πr/2000 = 2π · 0.028/2000 ≈ 0.088× 10−3 m/tic for the cart posi-
tion, x, see [6].

The supply circuit on the microcontroller board is powered by 5V which is regulated to
3.3 V resulting in a 0−3.3 V range for the 12 bit analog output [7]. This output is used to
provide the motor controller with an armature current reference, thus, the microcontroller
analog output is amplified through the shield to meet the ±10 V input requirement of the
motor controller [8].

The following relation between analog 12 bit output values, bitDAC, from the microcon-
troller and armature current in the motor was found by a previous project group [8],

bitDAC = 105.78 · ia + 1970 , (2.1)

and as a result of a force test, see [9], Equation 2.1 was corrected to,

bitDAC = 111.9 · ia + 1970 , (2.2)

which is the relation used in this project. All the system parameters used in the design
are listed in Table 2.1. It is assumed that all frictions in the system can be modeled
as a combination of Coulomb and viscous frictions. Wires hanging from the cart are
unmodeled and their weight along with that of the belt are contained in the estimation
of the cart mass.
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Chapter 2. System and Model

Parameter Notation Quantity Unit

Nominal current (max. continuous current) IN 4.58 A

Torque constant τm 93.4× 10−3 N ·m · A−1

Pendulum Rod Length l 0.3169 m

Rail Length lr 0.89 m

Pulley Radius r 0.028 m

Pendulum Mass m 0.2235 kg

Cart Mass M 6.28 kg

Cart Coulomb Friction bc,c f(x, ẋ) N

Cart Viscous Friction bc,v 0 N ·m−1 s

Pendulum Coulomb Friction bp,c 4.1× 10−3 N ·m

Pendulum Viscous Friction bp,v 0.5× 10−3 N ·m · s

Table 2.1: The motor parameters, IN and τm, are given by maxon in [2]. The rod length is measured
from the pendulum pivot point to the geometrical center of the pendulum mass. Pulley radius, rail

length, pendulum mass and rod length, are measured parameters, while cart mass is estimated same as
all frictions. The cart Coulomb friction turns out to be a function of the cart position in addition to

velocity. Details on parameter estimation are found in the implementation section at the end of Part 1.

2.2 Model
The model is based on the generalized coordinates presented in Figure 2.2.

Figure 2.2: Mechanical drawing of the system, where θ is the angle of the pendulum, x is the position
of the center of the cart along the rail, F is the applied force and g is the gravitational acceleration. It

is indicated that friction is modeled between cart and rail as well as in the pendulum joint.

The pendulum mass center is positioned at zero hight at rest s.t. all energies in the sys-
tem are positive. It is assumed that the pendulum rod is rigid and massless and that the
pendulum weights are a point mass at the geometrical center of the weights.
The motor torque is given by direct relation to the armature current by the motor con-
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Chapter 2. System and Model

stant, τm = kτ ia, such that,

F = 1
r
kτ ia . (2.3)

To avoid excessive notation u = F is considered to be the control input in the remaining
of this thesis, while keeping in mind the relation in Equation 2.3 along with the knowledge
that u must be converted to armature current in implementation.

It is well known that the potential energy, U , and the kinetic energy, T , are given by, [10]

U = mgl(1 + cos θ) (2.4)

T = 1
2(M +m)ẋ2 −mẋl cos θθ̇ + 1

2ml
2θ̇2 . (2.5)

The frictions, indicated in Figure 2.2, are, as mentioned, comprised of Coulomb and
viscous frictions with values stated in Table 2.1. The viscous frictions are modeled as
linear functions of velocities, [11, 12]

bp,vθ̇ , bc,vẋ , (2.6)

for the rotational and linear case respectively. The coulomb frictions are modeled as a
constant with its sign depending on the signs of the velocities, such that, [11, 12]

sgn(θ̇)bp,c , sgn(ẋ)bc,c . (2.7)

This, however, introduces discontinuities at zero velocities. Thus, tanh-functions are used
to obtain a continues approximation of the sign-functions,

tanh(ktanhθ̇)bp,c , bc,vẋ− tanh(ktanhẋ)bc,c , (2.8)

where ktanh = 250 to increase the steepness of the tanh-functions thereby obtaining a
closer approximation of the sign-functions. Finally, by use of the Lagrange-d’Alembert
Principle, [10]

d

dt

∂L
∂q̇
− ∂L
∂q

= Q , (2.9)

q =

θ
x

 , Q =

 −bp,vθ̇ − tanh(ktanhθ̇)bp,c
1
r
kτ ia − bc,vẋ− tanh(ktanhẋ)bc,c

 , (2.10)

and L = T − U , the dynamics of the system are found,

ml2θ̈ −ml cos θẍ−mgl sin θ = −bp,vθ̇ − tanh(ktanhθ̇)bp,c (2.11)
(M +m)ẍ+ml sin θθ̇2 −ml cos θθ̈ = u− bc,vẋ− tanh(ktanhẋ)bc,c . (2.12)
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Chapter 2. System and Model

By setting up the dynamic equations, Equation 2.12 and 2.11, in the following manner, ml2 −ml cos θ

−ml cos θ M +m


θ̈
ẍ

+

 0

ml sin θθ̇2

+

+

bp,vθ̇ + tanh(ktanhθ̇)bp,c
bc,vẋ+ tanh(ktanhẋ)bc,c

+

−mgl sin θ
0

 =

0

u

 ,

(2.13)

the general form of an m-link robot is obtained, [13, 14]

M(q)q̈ + C(q, q̇) + B(q̇) + G(q) = F , (2.14)

where,
M(q) is the inertia matrix

C(q, q̇) is the Coriolis and centrifugal effects

B(q̇) is the friction

G(q) is the force due to gravity

F is the input force vector .

Choosing [ x1 x2 x3 x4 ]T = [ θ x θ̇ ẋ ]T as states results in the following nonlinear
state space representation,

ẋ1

ẋ2

ẋ3

ẋ4


=



x3

x4

M−1(x1)(F−C(x1, x3)−B(x3, x4)−G(x1))


, (2.15)

which is convenient when simulating the system. This representation is also used in the
control designs.
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Chapter 3. Swing-Up Design

3 | Swing-Up Design

In this chapter three swing-up controllers are designed, all based on [15]. The pendulum
is started at rest, θ = π, with the angle convention specified in Figure 2.2. The idea of the
swing-up controller is to increase the mechanical energy in the system until it matches
that of the desired end state, θ = 0 and θ̇ = 0, that is, the upright position at rest. The
minimum energy in the system occurs at the starting position at rest, which is considered
to be zero as mentioned in the Model section 2.2. So the target energy is Eeq = 2mgl,
that is, the potential energy of the pendulum in the unstable equilibrium.

Consider the pendulum dynamics from Equation 2.12, where J = ml2 is the pendulum
inertia and frictions are assumed to be zero such that,

Jθ̈ −ml cos θ ac −mgl sin θ = 0 . (3.1)

This equation captures the behavior of the pendulum corresponding to some controlled
acceleration ac at the pivot point. This acceleration is viewed as the control input for
now. The force needed to achieve this acceleration is considered at the end of the design.
It is further convenient to describe the energy of the pendulum with the coordinate frame
fixed at its pivot point, see Figure 3.1.

Figure 3.1: The energy used in the swing-up controller is described using this convention, where the
coordinate frame is fixed at the pivot point of the pendulum. The zero reference is placed as before s.t.

all energies are positive.

From Figure 3.1, the conversion from excessive to generalized coordinates is given by,

xp = −l sin θ , yp = l(cos θ + 1) , ẋp = −l cos θθ̇ , ẏp = −l sin θθ̇ . (3.2)
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Chapter 3. Swing-Up Design

The mechanical energy in this coordinate frame is then,

Ep = mgyp + 1
2mẋ

2
p + 1

2mẏ
2
p (3.3)

Ep = mgl(cos θ + 1) + 1
2m(−l cos θθ̇)2 + 1

2m(−l sin θθ̇)2 (3.4)
Ep = mgl(cos θ + 1) + 1

2J(cos2 θ + sin2 θ)θ̇2 (3.5)
Ep = 1

2Jθ̇
2 +mgl(cos θ + 1) . (3.6)

The following sections explores different approaches of controlling the pendulum energy
specified in Equation 3.6 to its desired reference.

3.1 Energy Control
A function candidate is proposed,

V (θ, θ̇) = 1
2E

2
∆ , (3.7)

where E∆ is the difference in energy in relation to the unstable equilibrium,

E∆ = Ep − Eeq (3.8)
E∆ = 1

2Jθ̇
2 +mgl(cos θ + 1)− 2mgl (3.9)

E∆ = 1
2Jθ̇

2 +mgl(cos θ − 1) , (3.10)

hence,

V = 1
2(1

2Jθ̇
2 +mgl(cos θ − 1))2 (3.11)

V = 1
2(1

2Jθ̇
2)2 + 1

2(mgl(cos θ − 1))2 + 1
2Jθ̇

2mgl(cos θ − 1) (3.12)
V = 1

8J
2θ̇4 + 1

2m
2g2l2(cos2 θ + 1− 2 cos θ) + 1

2Jθ̇
2mgl(cos θ − 1) , (3.13)

further,

∂V

∂θ
= −m2g2l2 cos θ sin θ +m2g2l2 sin θ − 1

2Jθ̇
2mgl sin θ (3.14)

∂V

∂θ̇
= 1

2J
2θ̇3 + Jmgl(cos θ − 1)θ̇ , (3.15)

where both Equation 3.14 and 3.15 are continuous, C0, so V (θ, θ̇) is continuously differ-
entiable, C1, in the entire R2.

The idea is to reach the reference E∆ = 0, which happens when,

1
2Jθ̇

2 +mgl(cos θ − 1) = 0 (3.16)

θ̇ = ±
(
−2mgl(cos θ − 1)

J

)1
2

. (3.17)
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Chapter 3. Swing-Up Design

A plot of θ̇(θ) from Equation 3.17 in the phase plane, see Figure 3.2, reveals a set of
solutions joining the two unstable equilibrium points.

Figure 3.2: If the trajectories of the system are restricted to this set, the energy error is maintained at
zero and the trajectories form a heteroclinic orbit.

If the energy reference is successfully tracked, the system will be restricted to this set
rather than a single equilibrium point. Such a trajectory joining two equilibrium points
is called a heteroclinic orbit.
Recall the system from Equation 3.1,

Jθ̈ = ml cos θac +mgl sin θ , (3.18)
the derivative of V is then evaluated along trajectories of the system,

V̇ = E∆Ė∆ (3.19)
V̇ = E∆(Jθ̇θ̈ −mgl sin θθ̇) (3.20)
V̇ = E∆(θ̇(ml cos θac +mgl sin θ)−mgl sin θθ̇) (3.21)
V̇ = mlE∆ cos θθ̇ac . (3.22)

The idea is to find a control law, ac, which allows trajectories of the system to reach the
desired heteroclinic orbit. By studying LaSalle’s Theorem 3.1.1, analysis of convergence
to sets is made possible.

Theorem 3.1.1 (LaSalle’s Theorem) Consider the autonomous system, f(x) = ẋ,
where f : D → Rn is locally Lipschitz and x = 0 is an equilibrium point. Then if there
exist some function V : D→ R and

1. V (x) is C1

2. ∃ c > 0 s.t. Ωc = {x ∈ Rn | V (x) ≤ c} ⊂ D is bounded

3. V̇ (x) ≤ 0 ∀ x ∈ Ωc

then x(0) ∈ Ωc ⇒ x(t) t→∞−−−→M , where M is the largest invariant set in

E = {x ∈ Ωc | V̇ (x) = 0} [16].
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Chapter 3. Swing-Up Design

The first condition in LaSalle’s Theorem 3.1.1 is already satisfied. Notice that the function
candidate, V (x), is not required to be positive definite.
The second condition states that some bounded set, Ωc, of solutions for which V (x) is
less than or equal to some constant c must exist.
This ties into the third condition stating that the derivative of the function candidate
must be negative semi-definite along trajectories of the system for all solutions in said set.
The controlled acceleration at the pivot point, ac, is then designed to satisfy the third
condition in Theorem 3.1.1,

ac = −kE∆ cos θθ̇ , (3.23)

where the tuning parameter, k > 0, is introduced to allow scaling the control output to
fit the capabilities of the actuator. Inserting the control law yields,

V̇ = mlE∆ cos θθ̇(−kE∆ cos θθ̇) (3.24)
V̇ = −kml(E∆ cos θθ̇)2 ≤ 0 , (3.25)

satisfying the third condition of Theorem 3.1.1 not only in Ωc but in the entire state
space. This means any ∞ > c > 0 will satisfy the second condition. However, looking at
the function candidate,

V = 1
8J

2θ̇4 + 1
2m

2g2l2(cos2 θ + 1− 2 cos θ) + 1
2Jθ̇

2mgl(cos θ − 1) , (3.26)

the angle is only present in periodic functions. Hence no value of c can bound the angle. If
starting some arbitrary place in the state space, the energy reference is eventually tracked,
but the heteroclinic orbit could settle between any two saddle points. To constrain further
analysis and design to the desired region of operation, Ωc is defined as the set containing
all points within and on the set in Figure 3.2, that is,

Ωc = {x | θ̇ ≤
(
−2mgl(cos θ − 1)

J

)1
2
, 0 ≤ θ ≤ 2π} . (3.27)

All conditions of LaSalle’s Theorem 3.1.1 are satisfied, thus, if starting in Ωc, trajectories
of the system will converge to M as time goes to infinity. M is the largest invariant set
in E, which can be described as the union of sets for which Equation 3.25 is zero,

A = {x ∈ Ωc | E∆ = 0} (3.28)
B = {x ∈ Ωc | cos θ = 0} (3.29)
C = {x ∈ Ωc | θ̇ = 0} (3.30)
E = A ∪B ∪ C . (3.31)

To construct set M it is necessary to evaluate each set for invariance with respect to the
controlled system. A proof is developed to show invariance of set A. Recall the relation
between θ̇ and θ for E∆ = 0 ,

θ̇z = ±
(
−2mgl(cos θ − 1)

J

)1
2

, (3.32)
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Chapter 3. Swing-Up Design

where θ̇z is the angular velocity for which the energy error is zero. Further, consider the
controlled system in following form,

θ̈ = 1
J

(−kml cos θE∆ cos θθ̇ +mgl sin θ) . (3.33)

To prove that A is invariant with respect to Equation 3.33, the slope of θ̇z is compared to
the slope of the controlled system trajectories in the set. If the slopes are equal, then no
trajectory can leave the set A, thus proving A is invariant with respect to the controlled
system. The slope of θ̇z is,

∂θ̇z
∂θ

= ±mgl sin θ
J

(
−2mgl(cos θ − 1)

J

)−1
2

(3.34)

∂θ̇z
∂θ

= mgl sin θ
Jθ̇z

. (3.35)

The slope of the trajectories of the controlled system, Equation 3.33, in set A is then,

b = θ̈z

θ̇z
(3.36)

b = −kml cos2 θE∆(θ, θ̇z)θ̇z +mgl sin θ
Jθ̇z

(3.37)

b =
−kml cos2 θ(1

2Jθ̇
2
z +mgl(cos θ − 1))θ̇z
Jθ̇z

+ mgl sin θ
Jθ̇z

(3.38)

b = −kml cos2 θ 1
2 θ̇

2
z − 1

J
kml cos2 θmgl(cos θ − 1) + mgl sin θ

Jθ̇z
(3.39)

b = −kml cos2 θ 1
2

(
−2mgl(cos θ − 1)

J

)
− 1

l2m
km2l2g cos2 θ(cos θ − 1) + mgl sin θ

Jθ̇z
(3.40)

b = −kml cos2 θ 1
2
−2mgl(cos θ − 1)

l2m
− k cos2 θmg(cos θ − 1) + mgl sin θ

Jθ̇z
(3.41)

b = k cos2 θmg(cos θ − 1)− k cos2 θmg(cos θ − 1) + mgl sin θ
Jθ̇z

(3.42)

b = mgl sin θ
Jθ̇z

, (3.43)

where θ̈z is the angular acceleration of the controlled system in set A.
Finally, since,

∂θ̇z
∂θ

= b , (3.44)

the set A is invariant with respect to the controlled system. The set B is invariant only
for the intersection B ∩ A, any other values of the angular velocity will cause it to leave
the set since cos θ = 0 corresponds to a horizontal position of the pendulum. A similar

12 of 76



Chapter 3. Swing-Up Design

argument can be made for set C, however, in this case if θ = π, the system stays in the
set. So, the invariant part of set C excluding A is,

F = {x ∈ Ωc | θ̇ = 0 , θ = π} , (3.45)

thus the largest invariant set in E is,

M = A ∪ F . (3.46)

The sets are visualized in Figure 3.3.

Figure 3.3: The set Ωc shown along with sets in Ωc for which V̇ (x) = 0. Set A and F together form
the largest invariant set M in E. The phase portrait of the controlled system shows how its trajectories

line up with A indicating invariance of A with respect to the controlled system.

If this control law is started at zero angular velocity, θ̇ = 0, in the stable equilibrium,
the computed control is maintained at zero and the pendulum never swings up. So for
this control law to work, the pendulum must be started slightly away from the stable
equilibrium.

An extra step is needed to apply this control strategy. So far the control output is an
acceleration, ac, at the pivot point. It is possible to input the desired acceleration, ac, into
the second dynamic equation, Equation 2.12, and solve for the force needed to achieve
this acceleration,

u = (M +m)ac +ml sin x1x
2
3 −ml cosx1ẋ3 , (3.47)
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Chapter 3. Swing-Up Design

where the cart friction coefficients are set to zero again.
To calculate the force from this expression, Equation 3.47, it is also necessary to know the
angular acceleration of the pendulum, ẋ3, which can be solved for in the system dynamics,
Equation 2.15, inserting known states and control input applied in the previous step,ẋ3

ẋ4

 =

 ml2 −ml cosx1

−ml cosx1 M +m


−1 −bp,vx3 − tanh(ktanhx3)bp,c +mgl sin x1

ulast −ml sin x1x
2
3

 , (3.48)

where ulast is the force applied in the previous step.
From Equation 3.48 the approximated angular acceleration is then,

ẋ3 = (M +m)(−bp,vx3 − tanh(ktanhx3)bp,c +mgl sin x1)
l2m(M +m−m cos2 x1) + cosx1(ulast −ml sin x1x

2
3)

l(M +m−m cos2 x1) . (3.49)

Inserting Equation 3.49 into Equation 3.47 results in the control input, u, necessary to
achieve the desired acceleration, ac, at the pivot point. This method is used for all three
swing-up controllers, so to avoid excessive notation the proceeding energy control laws
are derived with ac as the control parameter.

All simulations are performed using the nonlinear state space representation in Equa-
tion 2.15 and the matlab ODE45 solver with a relative tolerance of 1× 10−7. Initializing
the angle, θ, at π − 0.1 to avoid zero control output as discussed, the energy difference
struggles to reach its reference at zero, see Figure 3.4. The pendulum friction and cart
inertia are included in the calculation of the force needed to obtain the desired accelera-
tion. This, however, is not concerned with what is needed to obtain the required energy.
So the offset seen in Figure 3.4 is caused by the control law, Equation 3.23, asking for
insufficient acceleration.

Figure 3.4: Simulation of the first energy
control method. The energy error struggles
to maintain zero value, due to pendulum
friction and cart inertia exchanging energy

with the pendulum.

Figure 3.5: This phase portrait shows the
attempt to reach the heteroclinic orbit. It

falls short due to the insufficient
acceleration asked by the control law.
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Chapter 3. Swing-Up Design

The pendulum also falls short of reaching the heteroclinic orbit, see Figure 3.5. Further,
since the energy of the pendulum is not affected by the position or velocity of the cart,
this control law, Equation 3.23, is not concerned with controlling these. This becomes a
problem in the physical setup as it has a rail length of 0.89 m, see Table 2.1. A traced
animation is used to demonstrate this problem in Figure 3.6.

Figure 3.6: The cart drifts beyond the bounds of the physical system. This might not be a problem if
the catch controller catches the pendulum in first try, but there is no guarantee of this being the case.

An other issue is the actuation which is limited in the real system by the maximum
allowed continuous current, see Table 2.1. By tuning the parameter k in the control law,
better performance can be obtained, however at the cost of excessive actuation.

Figure 3.7: The motor current has high peaks in the beginning which likely exceeds the capabilities of
the motor. The controller is tuned such that the RMS value of the current does not exceed the

maximum continuous current requirement of the motor for a sustained period of time.

For these graphs k = 1.3 to keep the motor current at acceptable levels. The motor
current is shown in Figure 3.7 where the rolling RMS of ia is used to approximate the
continuous current load on the motor. Though the continuous current is acceptable, the
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peaks in the start will be saturated in the real system, which would cause a longer rise
time for the energy.

3.2 Sign-Based Energy Control
There are other ways to satisfy Equation 3.25 than the control law suggested in Equa-
tion 3.23. To achieve maximal actuation a sign-function can be used to determine the
direction of actuation along with a gain k to adjust for the limits of the actuator as before,

ac = k sgn(−E∆ cos θθ̇) , (3.50)

where,

sgn(s(θ, θ̇)) =


1 s > 0 ∨ cos θθ̇ = 0
0 s = 0 ∧ cos θθ̇ 6= 0
−1 s < 0 ,

(3.51)

to avoid no actuation when starting at stable equilibrium. This adjustment reduces the
set,

M = {x ∈ Ωc | E∆ = 0} , (3.52)

such that convergence to M when starting in Ωc, by Theorem 3.1.1, now assures conver-
gence to the energy reference and thus to the heteroclinic orbit.
The gain is tuned to k = 2.4 in the following simulation. Looking at the energy in Fig-
ure 3.8, this strategy seems to work really well. From the phase portrait in Figure 3.9 it
is evident that a near perfect heteroclinic orbit is reached.

Figure 3.8: Using maximum actuation in
the appropriate direction drives the energy

error to zero and keeps it there.

Figure 3.9: The heteroclinic orbit is
reached very accurately.
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Chapter 3. Swing-Up Design

In Figure 3.10 however, while the angle reaches the equilibrium as closely as possible
without overshooting, this control law, as with the previous, does not account for position
of the cart.

Figure 3.10: The cart drifts as before, since the controller is only concerned with the energy of the
pendulum.

However, the bigger problem with this control law is obvious from Figure 3.11, where
excessive switching shows on the control output.

Figure 3.11: The sign-function in the control law causes excessive switching in the output, thus, the
design is not feasible for a real system implementation.

This actuation behavior is not feasible in a real system and attempted implementation
will cause chattering resulting in unwanted behavior and wear of the motor. In next
section it is attempted to solve this issue, while keeping some of the performance of this
approach.

3.3 Sat-Based Energy Control
To avoid the excessive switching of the sign-based controller a different strategy using a
saturation function is investigated,

ac = sat(−kE∆sgn(cos θθ̇)) , (3.53)
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where

sgn(s) =

 1 s ≥ 0
−1 s < 0 ,

(3.54)

and the sat-function saturates at the minimum/maximum allowed acceleration. The
known limitation is imax = 4.58 A as stated in Table 2.1, from which the maximum
control, u, can be calculated,

umax = kτ
r

, (3.55)

and finally, by disregarding the pendulum behavior and cart friction from the dynamics
in Equation 2.12,

amax = umax
M +m

. (3.56)

As this is a crude estimate 0.1 m · s−2 is subtracted from the estimated amax in following
simulations to stay within the actuation limits. The saturation function is then,

sat(s) =

 s |s| ≤ amax

sgn(s) amax |s| > amax .
(3.57)

Notice how the sgn-function in this control law, Equation 3.53, only takes cos θθ̇ as in-
put. Contrary to the sign-based controller which also included E∆ causing the need for
complicated restrictions in the definition of the sgn-function.

Choice of k decides how aggressive the controller should be. Larger values of k drives
the control into saturation faster thus actuating more like the sign-based controller in
Equation 3.50. At lower values of k the operation will not reach saturation as fast thus
behaving more like the first energy based controller in Equation 3.23. For an effective
swing up behavior k = 200 is chosen, thus approaching the behavior of the sign-based
controller, which makes sense as this is the theoretically ideal solution.
This control strategy achieves the energy reference in about three seconds, Figure 3.12, as
is the case of the sign-based strategy, Figure 3.8. Further, from Figure 3.13, the system
still reaches a near perfect heteroclinic orbit.
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Figure 3.12: The sat-based controller
shows no loss in performance when

comparing the energy error to that of the
sign-based approach.

Figure 3.13: The heteroclinic orbit is still
reached, however, with a more realistic

trajectory at the approach of the
equilibrium points.

The cart still drifts as expected, see Figure 3.14, and the equilibrium points are maintained
for shorter duration, which is expected with less control switching. Figure 3.14.

Figure 3.14: This strategy performs well. The drifting problem is solved later.

The excessive switching on the control output is successfully avoided, see Figure 3.15,
resulting in a much more realistic control signal compared to that in Figure 3.11.
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Figure 3.15: The control signal using the sat-based approach is much more realistic for
implementation as the excessive switching of the sign-based controller is successfully avoided.

The design of the energy based control law, Equation 3.53, is concluded. The problem
of controlling the cart position still remains. In the following, the performance of this
control law is subjected to the disturbance caused by added control on the cart position
and velocity.

3.4 Cart Position and Velocity Control
To solve the cart drifting problem along x a linear controller is designed and added to the
control law,

ac = ψ(x1, x3) + v(x2, x4) , (3.58)

where ψ(x1, x3) is the energy controller and v(x2, x4) is the linear controller. While these
two controllers depend on different states, they still influence and act as unmodeled dis-
turbances to one another. The position and velocity control, v(x2, x4), adds and subtracts
energy, therefore could cause the energy controller, ψ(x1, x3), to overshoot. One solution
to this potential problem could be to slightly lower the energy reference. However, swing-
up is often designed with a higher energy reference such that the catch controller has
some entry velocity at the unstable equilibrium.
With these considerations in mind, the design of v(x2, x4) is proceeded. Considering the
cart without friction and assuming any influence of the pendulum dynamics and the en-
ergy control to be unmodeled disturbances of the system. This reduces the model to the
mechanical drawing seen in Figure 3.16.
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Figure 3.16: Mechanical drawing of the reduced model used for position control.

The dynamics are then,

Mẍ = v , (3.59)

and selecting new states [ z1 z2 ]T = [ x ẋ ]T, the linear state space is,

ż1

ż2

 =

0 1

0 0


︸ ︷︷ ︸

A

z1

z2

+

 0
1
M


︸ ︷︷ ︸

B

v . (3.60)

The closed loop poles are placed in p = [ −1 − 2 ] using matlab place()-command to
obtain linear feedback gains, k1 = [ 10.5460 15.8190 ], resulting in the controller,

v = −k1z , (3.61)

where z = [ x ẋ ]T, such that,

v(x2, x4) = −k1[ x2 x4 ]T , (3.62)

in therms of the full system. This control is added to the sat-based design and simulations
are run without changing any previously designed gains.

Figure 3.17 shows the energy error reaching zero, taking one second longer under the
influence of the linear controller, compared to Figure 3.12.
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Figure 3.17: The sat-based controller
reaches the reference in about four

seconds, compared to three seconds it took
without position and velocity control.

Figure 3.18: Though the sat-based energy
controller reaches its reference one second
slower when kept around x = 0, it still
reaches the heteroclinic orbit with no

overshoot.

In the phase portrait, see Figure 3.18, it is clear that the sat-based controller still reaches
the heteroclinic orbit. Figure 3.19 shows how the linear control of the cart position and
velocity successfully keeps the system within the available operating region of the real
system.

Figure 3.19: The linear control successfully keeps the cart around zero while the energy control
approaches the unstable equilibrium.

Figure 3.20 shows the actuation required, the RMS is slightly lower than it was before
the linear controller was added.
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Figure 3.20: The control signal causes less continuous current but higher peaks compared to the same
swing-up without control on the cart position.

Figure 3.21 show the position approaching zero as the energy control settles, which is
ideal, as it means the energy controller still has room to operate without fighting the
linear feedback controller too much. Similarly, the oscillations around zero are necessary
for the energy controller to keep its reference. Further, as seen in Figure 3.22 the velocity
of the cart is also eventually controlled to zero by the added liner controller.

Figure 3.21: The saturation based
controller keeps the cart closer to
zero, suggesting less actuation from

the energy control.

Figure 3.22: Zero velocity is
obtained quite effectively after the

energy reference is reached.

These two graphs are simulated over longer time to show that the linear controller reaches
its reference.
This concludes the design of swing-up control.

23 of 76



Chapter 4. Stabilization

4 | Stabilization

In this section the idea is to stabilize the pendulum in the unstable equilibrium. Ulti-
mately this controller should be able to take over from the swing-up controller when some
minimum catch angle is reached.
A sliding mode control strategy is employed to accomplish these goals. The design is
based on [16].
Firstly, the model of the system, from Equation 2.15, is considered in following form,

ẋ1

ẋ2

ẋ3

ẋ4


=



x3

x4

M−1(x1)(−C(x1, x3)−B(x3, x4)−G(x1))


︸ ︷︷ ︸

f(x)

+



0

0

M−1(x1)F


︸ ︷︷ ︸

g(x)u

, (4.1)

where,

M−1 =

 (M+m)
l2m(M+m−m cos2 x1)

cosx1
l(M+m−m cos2 x1)

cosx1
l(M+m−m cos2 x1)

1
M+m−m cos2 x1

 , (4.2)

with states [ x1 x2 x3 x4 ]T = [ θ x θ̇ ẋ ]T and input vector F = [ 0 u ]T as before.

In Equation 4.1 the input, u, appear in two of the four state equations. To design a sliding
mode controller for the system, it is transformed into regular form,

η̇ = fa(η, ξ)
ξ̇ = fb(η, ξ) + gb(η, ξ)u , (4.3)

where the input only appears on one state equation. The transform is then given by,

T(x) =

η

ξ

 ⇒ ∂

∂t
T(x) =

η̇

ξ̇

 ⇒ ∂

∂t
T(x) =

 fa(η, ξ)

fb(η, ξ) + gb(η, ξ)u

 , (4.4)

further,

∂T
∂t

= ∂T
∂x

ẋ (4.5) fa(η, ξ)

fb(η, ξ) + gb(η, ξ)u

 = ∂T
∂x

f(x) + ∂T
∂x

g(x)u , (4.6)
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such that,

∂T
∂x

f(x) =

fa(η, ξ)

fb(η, ξ)

 ,
∂T
∂x

g(x) =

 0

gb(η, ξ)

 . (4.7)

Equation 4.7 results in the following four equations,
∂η1

∂x3
g3 + ∂η1

∂x4
g4 = 0 ,

∂η2

∂x3
g3 + ∂η2

∂x4
g4 = 0

∂η3

∂x3
g3 + ∂η3

∂x4
g4 = 0 ,

∂ξ

∂x3
g3 + ∂ξ

∂x4
g4 = gb(η, ξ) , (4.8)

where, g3

g4

u = M−1(x1)

0

u

 ⇒

g3 = cosx1
l(M+m−m cos2 x1)

g4 = 1
M+m−m cos2 x1

.
(4.9)

The following choice of coordinates to satisfy Equation 4.8 without loss of rank in T, is
based on the transform used for input-output linearization in [16].
Choosing output, h(x) = θ or h(x) = x, both results in the relative degree, ρ = 2, since
the output appears on the second derivatives,

θ̈ = ẋ3 = f3 + g3u (4.10)
ẍ = ẋ4 = f4 + g4u . (4.11)

The suggested transform is then,

T(x) =



φ1(x)
...

φn−ρ(x)

h(x)

Lfh(x)
...

Lρ−1
f h(x)



⇒



η1

η2

η3

ξ


=



φ1(x)

φ2(x)

h(x)

Lfh(x)


, (4.12)

where Lfh(x) is the Lie derivative of h(x) along f(x). This results in two possible
transforms,

h = θ ⇒ T1 =



η1

η2

η3

ξ


=



φ1

φ2

x1

x3


and h = x ⇒ T2 =



η1

η2

η3

ξ


=



φ1

φ2

x2

x4


, (4.13)
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leaving φ1 and φ2 to be determined. This is done by satisfying,
∂η1

∂x3
g3 + ∂η1

∂x4
g4 = 0 (4.14)

∂η2

∂x3
g3 + ∂η2

∂x4
g4 = 0 , (4.15)

from Equation 4.8. For T1 the choice φ1 = x2 satisfies Equation 4.14 with no loss of rank
in the transform. Conversely for T2 the choice φ1 = x1 satisfies Equation 4.14 again with
no loss of rank. This leaves φ2 which, for both transforms, is determined by finding a
solution to Equation 4.15,

∂η2

∂x3

cosx1

l(M +m−m cos2 x1) + ∂η2

∂x4

1
M +m−m cos2 x1

= 0 , (4.16)

choosing,
∂η2

∂x4
= cosx1

l
,

∂η2

∂x3
= −1 , (4.17)

such that,

η2 = cosx1

l
x4 − x3 . (4.18)

This results in the following two transform candidates,

T1 =



x2

cosx1
l
x4 − x3

x1

x3


, T2 =



x1

cosx1
l
x4 − x3

x2

x4


. (4.19)

It is desired for the transform, T, to be continuously differentiable and have a continu-
ously differentiable inverse, T−1. Such a transform is known as a diffeomorphism. Fur-
ther, T is a global diffeomorphism iff its Jacobian is nonsingular for all x ∈ Rn and
lim||x||→∞ ||T(x)|| =∞ , [16].
Thus the Jacobian of each transform is computed,

J1 = ∂T1(x)
∂x

=



0 1 0 0

− sinx1
l
x4 0 −1 cosx1

l

1 0 0 0

0 0 1 0


(4.20)

J2 = ∂T2(x)
∂x

=



1 0 0 0

− sinx1
l
x4 0 −1 cosx1

l

0 1 0 0

0 0 0 1


. (4.21)
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To check for singularity the determinant is found for the two Jacobian matrices,

det(J1) = −cosx1

l
, det(J2) = 1 . (4.22)

If cosx1 = 0 the Jacobian, J1, becomes singular. This only happens when the pendulum
is in a horizontal position, which is outside the operating range of a stabilizing controller.
However, the Jacobian, J2, is nonsingular for all x ∈ R4. Further, lim||x||→∞ ||T2(x)|| =∞
so,

T =



η1

η2

η3

ξ


=



x1

cosx1
l
x4 − x3

x2

x4


, (4.23)

is a global diffeomorphism and therefore chosen as the final system transform, with the
inverse given by,

T−1 =



x1

x2

x3

x4


=



η1

η3

cos η1
l
ξ − η2

ξ


. (4.24)

The derivative of the transform, Equation 4.23, along the trajectories of the system is,

η̇1

η̇2

η̇3

ξ̇


=



ẋ1

− sinx1
l

ẋ1x4 + cosx1
l
ẋ4 − ẋ3

ẋ2

ẋ4


(4.25)



η̇1

η̇2

η̇3

ξ̇


=



x3

− sinx1
l

x3x4 + cosx1
l
f4(x) + cosx1

l
g4(x)u− f3(x)− g3(x)u

x4

f4(x) + g4(x)u


, (4.26)
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from which the regular form is obtained by rearranging and using the inverse transform,

η̇1

η̇2

η̇3

ξ̇


=


fa(η, φ(η))

fb(η, φ(η))


+



0

0

0

gb(η, φ(η))


(4.27)



η̇1

η̇2

η̇3

ξ̇


=



cos η1
l
ξ − η2

− sin η1
l

( cos η1
l
ξ − η2)ξ + cos η1

l
f4(η, ξ)− f3(η, ξ)

ξ

f4(η, ξ)





0

0

0

g4(η, ξ)


, (4.28)

where,

f3(η, ξ) = 1
l2m(M +m−m cos2 η1)

[
(M +m)bp,v

(
η2 −

cos η1ξ

l

)
+

+ (M +m)bp,c tanh
(

ktanh

(
η2 −

cos η1ξ

l

))
+m2gl sin η1 − bc,cml tanh (ktanhξ) cos η1−

− m2l2 cos η1 sin η1

(
η2 −

ξ cos η1

l

)2
+Mglm sin η1 − bc,vmlξ cos η1

]
(4.29)

f4(η, ξ) = − 1
l(M +m−m cos2 η1)

[
bc,vlξ − bp,v cos η1

(
η2 −

cos η1ξ

l

)
+ bc,cl tanh (ktanhξ)−

− bp,c tanh
(

ktanh

(
η2 −

cos η1ξ

l

))
cos η1+

+ l2m sin η1

(
η2 −

ξ cos η1

l

)2
−mgl cos η1 sin η1

]
(4.30)

g4(η, ξ) = 1
M +m−m cos2 η1

. (4.31)

With the system on regular form, design is proceeded by choosing a sliding manifold,

s = ξ − φ(η) , (4.32)

where φ(η) is to be designed. If s is zero then ξ = φ(η), such that,

η̇ = fa(η, φ(η)) , (4.33)

is the reduced-order system with φ(η) as control input. It is then sought to design φ(η)
such that Equation 4.33 is asymptotically stable at its origin.
To that end, the reduced-order system is linearized,

A = ∂η̇

∂η

∣∣∣∣∣∣∣∣∣∣∣ η=0
ξ=0
ktanh=1

=


0 −1 0

−g
l
−bp,v

l2m
0

0 0 0

 , B = ∂η̇

∂ξ

∣∣∣∣∣∣∣∣∣∣∣ η=0
ξ=0
ktanh=1

=


1
l

bp,v+bp,cl
l3m

1

 . (4.34)
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Checking for controllability,

rank(C) = rank([ B AB A2B ]) = 3 , (4.35)

and since the controllability matrix, C, has full rank, the linearized system is controllable.
A state feedback controller is designed for the linearized reduced-order system,

φ(η) = −kη . (4.36)

The poles are placed in p = [ −4 − 6 − 7 ] using matlab place()-command to obtain
the gains, k = [ 7.2025 −1.2930 −5.4218 ]. Simulations of the controlled reduced-order
system are run for both the linearized and the nonlinear system, see Figure 4.1.

(a) The angle reaches zero with small oscil-
lations in the nonlinear simulation.

(b) Large oscillations occur in the nonlinear
simulation. This parameter does not di-
rectly have a physical interpretation.

(c) The cart position reaches zero with small
oscillations in the nonlinear simulation.

(d) The tendency to oscillations in the non-
linear simulation also appears in the con-
trol signal for the reduced-order system.

Figure 4.1: Nonlinear and linear simulation of the state feedback control designed for the linearized
reduced-order system.

The reduced-order system is stabilized under the assumption that s is zero. Thus, the
design of u is concerned with bringing s to zero.
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Theorem 4.0.1 (Lyapunov Stability Theorem) Consider the autonomous system,
f(x) = ẋ, where f : D → Rn is locally Lipschitz and x = 0 is an equilibrium point.
Then if ∃ V : D→ R and

1. V (x) is C1

2. V (x) > 0 ∀ x ∈ D\0 and V (0) = 0

3. V̇ (x) ≤ 0 in D

then x = 0 is stable. Further, if,

V̇ (x) < 0 in D\0 ,

then x = 0 is asymptotically stable [16].

A Lyapunov function candidate is proposed,

V (η, ξ) = 1
2s

2 , (4.37)

where s = ξ − kη hence,

V = 1
2(ξ − kη)2 (4.38)

V = 1
2(ξ2 + (kη)2)− ξkη (4.39)

V = 1
2(ξ2 + k2

1η
2
1 + k2

2η
2
2 + k2

3η
2
3) + k1k2η1η2 + k1k3η1η3 + k2k3η2η3−

− ξ(k1η1 + k2η2 + k3η3) . (4.40)

The partial derivatives are,
∂V

∂ξ
= ξ − kη (4.41)

∂V

∂η1
= k2

1η1 + k1k2η2 + k1k3η3 − k1ξ , (4.42)

and similar results to Equation 4.42 are obtained for the partial derivatives with respect
to η2 and η3. Since all four partial derivatives are C0 then V is C1 in the entire R4,
thus satisfying the first condition of the Lyapunov Stability Theorem 4.0.1. Further, from
Equation 4.38, it is clear that V is positive definite in the entire state space without zero
and zero in the origin, thus also satisfying the second condition.
To assess the third condition of Theorem 4.0.1, the derivative of the Lyapunov function
candidate is found along trajectories of the system,

V̇ = sṡ (4.43)
V̇ = s(ξ̇ + kη̇) (4.44)
V̇ = s(fb(η, ξ) + gb(η, ξ)u+ kfa(η, ξ)) (4.45)
V̇ = (kfa + fb)s+ gbsu (4.46)
V̇ = gbs(kfa + fb)g−1

b + gbsu (4.47)
V̇ ≤ gb|s| |kfa + fb| g−1

b + gbsu . (4.48)
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This leads to the design of u which is chosen such that the third condition of Theorem 4.0.1
is satisfied,

u = −sgn(s)β(η, ξ)g−1
b (η, ξ) where, β(η, ξ) = %(η, ξ) + β0 (4.49)

%(η, ξ) = |kfa + fb| , (4.50)

and β0 > 0 is a tuning parameter allowing V̇ to be positive definite, thereby guaranteeing
asymptotic stability of the origin by Theorem 4.0.1,

V̇ < gb|s| |kfa + fb| g−1
b − gb sgn(s)s |kfa + fb + β0| g−1

b . (4.51)

For implementation, the discontinuity introduced by the sign-function in the control law
is cause for excessive switching and chattering due to delays in the real system. To
circumvent this issue, a saturation function with a steep slope, 1/ε, is used to approximate
the sign-function,

sat (s/ε) =

 s/ε |s/ε| ≤ 1
sgn (s) |s/ε| > 1 ,

(4.52)

hence,

u = −sat(s/ε)β(η, ξ)g−1
b (η, ξ) . (4.53)

A simulation of the design is shown in Figure 4.2 and 4.3, starting from an initial angle of
0.1 rad · s−1. Both the angle and cart position are brought to zero. The small oscillations
are thought to originate from the linear part of the design, where oscillations were observed
in the simulation of the nonlinear reduced order system with linear control, see Figure 4.1.

Figure 4.2: A simulation of the
sliding mode design starting form an
initial angle of 0.1 rad · s−1 at zero

angular velocity. The angle is
maintained around zero with small

oscillation.

Figure 4.3: The cart position
successfully returns to zero with

small oscillations after the pendulum
angle is brought to zero.

To achieve this behavior from relatively wide catch angle, a large peak occurs in the
armature current, see Figure 4.4. However, with the short duration of the peak, this is
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not considered a problem. If it is desired to bring down the peak current, the sliding
mode controller could simply be activated at a narrower angle.

Figure 4.4: The control signal from the simulation in Figure 4.2 and 4.3. The peak current is rather
large, which is to be expected given the relatively wide initial angle. It is not considered to be a

problem, since the large current is only maintained for a short duration.

Finally the swing-up controller and the sliding mode controller are simulated in concert,
where the sliding mode controller is activated at a catch angle of 0.1 rad. The result is
seen in Figure 4.5 and Figure 4.6, where the swing-up controller brings the angle below
the catch angle in seven swings, after which the system is stabilized in zero by the sliding
mode controller.

Figure 4.5: Simulation of the
swing-up controller using sliding

mode to catch the pendulum when
the angle reaches below 0.1 rad.

Figure 4.6: The cart position
successfully returns to zero after the
pendulum angle is stabilized at zero.

The needed actuation signal is seen in Figure 4.7 and though some peaks occur, the RMS
stays below the rated continuous current limit of the motor.
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Figure 4.7: Control signal from the simulation in Figure 4.5 and 4.6. Again large peaks occur in the
armature current, however, only for short durations and with the RMS staying below the rated

continuous current limit.

The system was first transformed into regular form after which the reduced order system
was stabilized using linearization and linear state feedback. Some small oscillations were
observed in the nonlinear simulation of the controlled reduced order system. The sliding
mode design was proceeded from there based on Lyapunov stability criteria, and the
final control law was simulated stabilizing the system also in concert with the swing-up
controller.
This concludes the stabilization design and carries into the final two chapters of Part 1
where considerations in implementation are presented along with the final test results
from the cart pendulum system setup.
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5 | Implementation

To implement the control designs discussed here in Part 1 it is necessary to estimate
some parameters, compensate for any friction between the cart and the rail and filter the
measurements obtained from the system. Such considerations, estimations and designs
are discussed in this section.

5.1 Cart Friction and Mass Estimation
The control designs are carried out under the assumption that there is no friction between
the cart and the rail. It turns out that this friction is rather complex and also depend on
position and direction of the cart in addition to its velocity, this issue was also found by
previous project groups [8].
To accommodate the no cart friction assumption, a feed forward friction compensator is
designed. The idea is to simply counter the predicted friction at any given time directly
in the control signal.

Since the friction depends on the cart position, the estimation must be done locally for
each position on the rail. To do so, the pendulum masses are removed, the rods strapped
to the cart to limit dynamics and the cart is made to oscillate around each centimeter of
the rail. Each test is sustained for 20 s and repeated for each centimeter, resulting in a
total of 68 tests. This is the largest possible range for the test while avoiding impact at
the ends of the rail. Each test spans on average 2.68 cm creating some overlap between
tests. The reduced dynamics used for the estimation are given by,

(M +m)ẍ = u− bc,vẋ− tanh(ktanhẋ)bc,c . (5.1)

The optimization fitting tool, Senstools [17], is used to estimate the model parameters.
Since the mass is unknown it is also included for estimation. The mass is estimated to
be 6.28 kg. With more parameters more manual tuning is required in order to start close
enough for the optimization algorithm to converge. To reduce the number of parameters
as much as possible, once estimated, the mass is fixed as part of the model. The remain-
ing three parameters are viscous friction and coulomb friction for negative and positive
velocities. After some trial and error it is concluded that the viscous friction is negligible
compared to the coulomb frictions finally leaving only two parameters.
To make the estimations converge without too much manual tuning only part of each test
is fitted, see Figure 5.1. The time window is moved, and the estimation is run again. The
window is moved 34 times resulting in 34 · 68 = 2312 estimations in total. Every time
the test window is moved, the next estimate is started with the results of the previous
estimate as its initial values.
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x = 0m05 x = 0m06 x = 0m07 x = 0m08 x = 0m09

x = 0m10 x = 0m11 x = 0m12 x = 0m13 x = 0m14

x = 0m15 x = 0m16 x = 0m17 x = 0m18 x = 0m19

x = 0m20 x = 0m21 x = 0m22 x = 0m23 x = 0m24

x = 0m25 x = 0m26 x = 0m27 x = 0m28 x = 0m29

x = 0m30 x = 0m31 x = 0m32 x = 0m33 x = 0m34

x = 0m35 x = 0m36 x = 0m37 x = 0m38 x = 0m39

x = 0m40 x = 0m41 x = 0m42 x = 0m43 x = 0m44

x = 0m45 x = 0m46 x = 0m47 x = 0m48 x = 0m49

Figure 5.1: A snippet of the estimation of cart Coulomb friction. Each title shows where on the rail
the test is done. This is one iteration of 34 moving over the 20 s tests.

To include as much data as possible, the estimate is repeated across the data for each
test, resulting in 34 results for each position. The error norm is saved for all estimations,
see Figure 5.3, and a weighed average using the error norm as weights is made for each
position on the rail resulting in Figure 5.2.

Figure 5.2: Results of the estimations,
where the scattered points are all

estimates and the lines are the weighed
averages using the error norm of each

estimate as weights.

Figure 5.3: This shows the error norms
for all estimates. There is a clear tendency
to worse fits at the left end of the rail. The

reason is unknown.

The estimations are worse near the left of the rail, see Figure 5.3. The cause for this is
not known, however it is considered less important as the compensation is more critical
near the middle of the rail where the pendulum is balanced.

The result in Figure 5.2 contains some undesired discontinuities. To solve this problem
the resulting mean curves are up-sampled by linear interpolation, smoothed and finally
down-sampled to obtain the smoothed result in Figure 5.4.
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Figure 5.4: This is the final result of the estimation, which is up-sampled, smoothed and finally
down-sampled to produce the values for implementation in lookup-table.

The result is implemented as lookup tables along with a linear interpolation function to
avoid discontinuities between table entries. This determines the cart Coulomb friction
based on velocity, direction and position, which is then added to the control signal to
counter the friction therm in the dynamics.

5.2 Pendulum Friction
With the cart mass estimated and its friction handled by friction compensation, the
remaining estimate is pendulum friction. Again Senstools is used along with a reduced
model of the pendulum,

ml2θ̈ = mgl sin θ − bp,vθ̇ − tanh(ktanhθ̇)bp,c . (5.2)

This model assumes there is no cart, so for the test, the cart is fixed to the rail. The
result of the test and estimation is seen in Figure 5.5.
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Figure 5.5: The fit resulting in the estimations of the pendulum friction.

To obtain a good fit, 22.5 g is added to the measured mass and 0.66 cm is subtracted
from the measured length of the rod. This is presumed to be reasonable, since the rod
is otherwise assumed to be massless which is not the case. The error in the assumption
would move the mass center closer to the pivot point, thus reducing the effective length
of the rod and adding some mass to the weight, corresponding to the adjustments. The
pendulum Coulomb friction, bp,c, is estimated to 4.1× 10−3 N ·m and the viscous friction,
bp,v, to 0.5× 10−3 N ·m · s.

5.3 MA Filter Design
The measurements in the system are the position, x, of the cart and the angle, θ, of the
pendulum. Thus, the last two states, ẋ and θ̇, must be estimated for the implementation.
To that end, a numerical differentiation is applied to the position measurements in order
to obtain the velocities,

ẋn = xn − xn−1

Ts
, (5.3)

where Ts is the sample time and xn and xn−1 are the two latest samples. However, this
approach causes noise in the velocities. Thus, an MA (Moving Average) filter is designed
to smooth the signal,

ẋest = 1
N

N∑
i=0

ẋN , (5.4)

where ẋN is the numerical differentiation based on the two latest measurements, ẋest is
the filtered value and N is the window size of the filter. In Figure 5.6 and 5.7 the MA
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filter is applied to the result of the numerical differentiation with two different window
sizes. Since the interest here is quality of the signal, the following plots are not linked in
time, but rather showing the signals where the filter characteristics shows clearly.

Figure 5.6: The result of applying the
MA filter to the numerical differentiation
of θ with two window sizes. For N = 5 a
lot of noise is still in the signal, however,
though N = 15 removes more noise it also

introduces unwanted delay.

Figure 5.7: For ẋ the same result is
observed, but since the signal is smaller

relative to the noise, it more clearly shows
the noise issue of the small window size.

The filter is implemented using a ring-buffer to minimize computation time and different
window sizes are tested. Minimizing delay of the filter turns out to be more critical than
further noise reduction, so a window size of five is chosen. The result of the implemented
MA filter is shown in Figure 5.8 and 5.9.

Figure 5.8: The resulting
implementation of the MA filter with

N = 5 for estimation of θ̇.

Figure 5.9: The implemented MA filter
with N = 5 for estimation of ẋ.

Though the MA filter still lets a lot of noise through, the design does suppress large jumps
in the velocity with very minimal delay.
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This filter is only used in the swing-up sequence, an extended Kalman filter (EKF) imple-
mented by a previous project group, [8], is used for the catch sequence as the switching
nature of a sliding mode controller would cause oscillations with high noise levels around
zero.
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6 | Results

Here the results of the implemented control strategies developed in Part 1 are presented.
Firstly, the swing-up controller is approaching a heteroclinic orbit after seven swings,
see Figure 6.1 and 6.2, same as achieved in simulation when accounting for actuation
limitations.

Figure 6.1: The swing-up
controller approaches the

equilibrium and almost reaches the
heteroclinic orbit.

Figure 6.2: Though the cart
oscillates more than in the

simulation, it stays around zero and
within the rail limits during the

swing-up sequence.

The controller does fall slightly short of reaching the heteroclinic orbit which is also seen
in Figure 6.4. The energy reference in Figure 6.3 reaches zero near the equilibrium points,
but must be very slightly below zero when the angular velocity is zero, as otherwise the
pendulum would reach equilibrium exactly.

Figure 6.3: From the test in
Figure 6.1 and 6.2 the energy

reference is reached.

Figure 6.4: The pendulum
almost reaches a heteroclinic

orbit.

It is possible to gain closer proximity to the equilibrium point by increasing the energy
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reference. In Figure 6.5 and 6.6 the energy reference is increased by 0.08 J to reach
heteroclinic orbit.

Figure 6.5: The swing-up controller
approaches the equilibrium and

eventually reaches the heteroclinic
orbit.

Figure 6.6: The cart does not
approach zero position as much as it
did in simulation. It does however
stay within the constraints of the
physical system, which is the main
objective of the added position

control for the swing-up sequence.

In Figure 6.7 the energy reference is slightly lifted causing a near perfect heteroclinic orbit
in Figure 6.8.

Figure 6.7: From the test in
Figure 6.5 and 6.6 where the energy
reference is raised by 0.08 J to get
closer to the equilibrium point.

Figure 6.8: Near perfect
heteroclinic orbit is reached due

to the slight increase of the
energy reference.

If the model and friction compensation was ideal, no energy offset would be needed, so if
a high value was needed to approach equilibrium it might be worth to revisit this part of
the design process.
Figure 6.9 shows the armature current of the motor used to achieve the swing-up behavior
with the added energy reference. Though some peaks are present in the current signal, the
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RMS value does not exceed the continuous current specification of the motor for extended
periods of time.

Figure 6.9: The RMS of the armature current is withing respectable levels of the specified contentious
current limit of the motor.

A test of the implemented sliding mode controller is seen in Figure 6.10 and 6.11 where
the angle reaches zero.

Figure 6.10: Test of sliding mode
controller starting at zero. The
controller is subjected to two

disturbances after which it rebalances
successfully bringing the angle back

to zero.

Figure 6.11: The cart returns
approaches zero once the pendulum is

rebalanced.

In the last part, after the 35 s mark, an offset in x is observed, this could be contributed to
unmodeled friction keeping the control from exceeding the force of friction. The control
signal is shown in Figure 6.12 where it does have a constant offset after the 35 s mark,
supporting the hypothesis. However, the offset is also seen in the other stabilized regions
of the test, where the control signal goes to zero. So while the first hypothesis might in
part be true, something else is at least contributing to the problem, otherwise the control
would still show an offset where the cart position does.
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Figure 6.12: The armature current has an offset after 35 s which matches an offset in the position,
however, around 15 s the same offset is seen in position with no offset in armature current.

When testing, an other problem relating to the position of the cart was observed. In Fig-
ure 6.13 the pendulum is only pushed once in the start of the test. The cart spontaneously
diverges from zero position before correcting and re-stabilizing. When this happens, the
angular velocity should not increase much, as seen by the FIR filter, which by nature does
not introduce bias, however, the EKF shows an increase in angular velocity.

Figure 6.13: The system is perturbed about 4 s into the test, remaining disturbances are caused by a
problem presumed to arise between friction compensation and the EKF.
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If the friction compensation is too large, this could cause the cart to move away from
equilibrium, and in that event, the EKF which is based on a system model, would get
data which does not confine to the model, which might lead to a wrong estimation of the
angular velocity, which would then amplify the problem.

When finally combining the two control strategies it is advantageous for the catch con-
troller if the swing-up controller is designed to provide a bit of entry velocity at equilib-
rium. This makes for a more robust swing-up controller, in that, it always reaches the
equilibrium in the same number of swings for every test. This means that the swing-up
controller would overshoot without a catch controller. However, as the catch controller
is enabled close to equilibrium, this helps the sliding mode controller by providing entry
velocity at the maximum catch angle.
It is further noted that smaller catch angles causes less aggressive actuation of the sliding
mode controller. After entering sliding mode the catch angle is increased, such that it
stays in sliding mode unless the pendulum exceeds the maximum angle at which sliding
mode can successfully re-stabilize the system. When this angle is exceeded, the swing-up
controller is enabled and the catch angle is again reduced. As in simulation, a wrapped
version of the angle is created such that the pendulum is always at zero when in upright
position, this representation is only used by sliding mode.
Results of a test of the full implementation of the two controllers is shown in Figure 6.14
and 6.15.

Figure 6.14: Test of the final
design of swing-up with the higher
energy reference and sliding mode
controller successfully catching the
pendulum after seven swings.

Figure 6.15: The cart keeps around
zero on the rail, especially after the
pendulum angle is controlled to zero.

The swing-up controller successfully hands over to sliding mode after seven swings and the
sliding mode controller stabilizes the system in zero with some offset in the cart position.
The moving average RMS of the actuation current briefly exceeds the continuous current
rating of the motor when sliding mode catches the pendulum. As this is not happening
over a prolonged period, it is not thought to be a problem,
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Figure 6.16: Armature current of the finished control system. It only briefly exceeds the motor
specifications when the sliding mode controller takes over.

Three energy based swing-up designs were investigated, the sat-based version was cho-
sen, a cart position controller was added and finally a stabilizing sliding mode controller
was designed to catch the pendulum in equilibrium. The designs were successfully imple-
mented and tested on the system setup concluding Part 1 of this thesis.
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7 | System and Model

The cart pendulum system from Part 1 is used again. However, here in Part 2 an
additional pendulum is mounted on the cart. The modification is discussed and a model
for the changed system is developed in this chapter. The remaining of Part 2 is concerned
with estimating parameters, developing a state estimator, designing a swing-up controller
and ultimately stabilizing the two pendulums in upright position.

7.1 System Addition
In Figure 7.1 the setup from Part 1 is shown with the added pendulum. The new pen-
dulum is mounted on a new motor (not directly visible in the figure), a brushed Maxon
370356 DC motor [2], same as for the first pendulum. The motor is not in use for this
project and only acts as a joint with a HEDS 5540 optical quadrature encoder [3].

Figure 7.1: The setup form Part 1 with a new pendulum attached on the back side of the cart. The
motor controller in use is not directly visible here as it is mounted behind the supply.

The added pendulum measures 20 cm from pivot point to geometrical center of the 251 g
weight at its end. The friction parameters are estimated again using Senstools, [17], and
with the same reduced pendulum model as in Part 1.
Same as for the first pendulum, the mass is increased to obtain a good fit. In this case
the pendulum mass is increased by 13.2 g, less than for the first pendulum, which makes
sense since the added pendulum is shorter thus adding less mass to the system. For the
first pendulum the length was decreased by 0.66 cm, while for the new pendulum the
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measured length is used. Though the mass center should move towards the rod, it being
shorter and with more mass at the end than the first pendulum, it makes sense that the
mass center is moved so little for the new pendulum that the effect becomes negligible.
Figure 7.2 shows the result of the estimation.

Figure 7.2: The fit resulting in the estimations of the new second pendulum friction, where θ2 is the
new pendulum angle.

In Table 7.1 all parameters for the twin pendulum system are gathered and notation is
introduced to accommodate the added pendulum.
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Parameter Notation Quantity Unit

Nominal current (max. continuous current) IN 4.58 A

Torque constant τm 93.4× 10−3 N ·m · A−1

Pendulum 1 Rod Length l1 0.3169 m

Pendulum 2 Rod Length l2 0.2000 m

Rail Length lr 0.89 m

Pulley Radius r 0.028 m

Pendulum 1 Mass m1 0.2235 kg

Pendulum 2 Mass m2 0.2642 kg

Cart Mass M 6.28 kg

Cart Coulomb Friction bc,c f(x, ẋ) N

Cart Viscous Friction bc,v 0 N ·m−1 s

Pendulum 1 Coulomb Friction bp1,c 4.1× 10−3 N ·m

Pendulum 1 Viscous Friction bp1,v 0.5× 10−3 N ·m · s

Pendulum 2 Coulomb Friction bp2,c 5.7× 10−3 N ·m

Pendulum 2 Viscous Friction bp2,v 0.1× 10−3 N ·m · s

Table 7.1: Table of all system parameters including the estimated parameters for the added second
pendulum. Notice the updated notation where pendulum 1 is the pendulum also used in Part 1 and

pendulum 2 is the newly attached pendulum.

In practice the new pendulum and motor were added before estimations were made in
Part 1. This means parameters remain unchanged between the two versions of the setup
allowing demonstration of both with the minimal modification of adding or removing the
second pendulum mass.
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7.2 Model
To model the twin pendulum system, consider the excessive coordinate convention in
Figure 7.3 along with the generalized coordinates in the mechanical drawing, Figure 7.4.

Figure 7.3: Twin pendulum
system in excessive coordinates.

Figure 7.4: Mechanical drawing of the
system with the added pendulum in

generalized coordinates.

The energy method is applied. First the potential and kinetic energies, in therms of
excessive coordinates, is found,

U = Mgyc +m1gyp1 +m2gyp2 (7.1)
T = 1

2Mẋ2
c + 1

2Mẏ2
c + 1

2m1ẋ
2
p1 + 1

2m1ẏ
2
p1 + 1

2m2ẋ
2
p2 + 1

2m2ẏ
2
p2 . (7.2)

The excessive coordinates and derivatives thereof are then expressed in therms of the
generalized coordinates, using the conventions presented in Figure 7.3 and 7.4,xc = x

yc = l1

xp1 = x− l1 sin θ1

yp1 = l1 + l1 cos θ1

xp2 = x− l2 sin θ2

yp2 = l1 + l2 cos θ2
(7.3)

ẋc = ẋ

ẏc = 0

ẋp1 = ẋ− l1 cos θ1θ̇1

ẏp1 = −l1 sin θ1θ̇1

ẋp2 = ẋ− l2 cos θ2θ̇2

ẏp2 = −l2 sin θ2θ̇2 .
(7.4)

Inserting Equation 7.3 and 7.4 into the energy equations, Equation 7.1 and 7.2, yields,

U = Mgl1 +m1g(l1 + l1 cos θ1) +m2g(l1 + l2 cos θ2) (7.5)
T = 1

2Mẋ2 + 1
2m1(ẋ− l1 cos θ1θ̇1)2 + 1

2m1(−l1 sin θ1θ̇1)2+
+ 1

2m2(ẋ− l2 cos θ2θ̇2)2 + 1
2m2(−l2 sin θ2θ̇2)2 . (7.6)
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Proceeding to compute the Lagrangian,

L = T − U (7.7)
L = 1

2Mẋ2 + 1
2m1(ẋ2 + l21 cos2 θ1θ̇

2
1 − 2ẋl1 cos θ1θ̇1) + 1

2m1l
2
1 sin2 θ1θ̇

2
1+

+ 1
2m2(ẋ2 + l22 cos2 θ2θ̇

2
2 − 2ẋl2 cos θ2θ̇2) + 1

2m2l
2
2 sin2 θ2θ̇

2
2−

− (M +m1 +m2)gl1 −m1gl1 cos θ1 −m2gl2 cos θ2 (7.8)
L = 1

2(M +m1 +m2)ẋ2 − (m1l1 cos θ1θ̇1 +m2l2 cos θ2θ̇2)ẋ+
+ 1

2m1l
2
1(cos2 θ1 + sin2 θ1)θ̇2

1 + 1
2m2l

2
2(cos2 θ2 + sin2 θ2)θ̇2

2−
− (M +m1 +m2)gl1 −m1gl1 cos θ1 −m2gl2 cos θ2 (7.9)
L = 1

2(M +m1 +m2)ẋ2 − (m1l1 cos θ1θ̇1 +m2l2 cos θ2θ̇2)ẋ+ 1
2m1l

2
1θ̇

2
1+

+ 1
2m2l

2
2θ̇

2
2 − (M +m1 +m2)gl1 −m1gl1 cos θ1 −m2gl2 cos θ2 , (7.10)

and finally by using the Lagrange-d’Alembert Principle, [10]

d

dt

∂L
∂q̇
− ∂L
∂q

= Q , (7.11)

q =


θ1

θ2

x

 , Q =


−bp1,vθ̇1 − tanh(ktanhθ̇1)bp1,c

−bp2,vθ̇2 − tanh(ktanhθ̇2)bp2,c

u− bc,vẋ− tanh(ktanhẋ)bc,c

 . (7.12)

Note that, as in Part 1, the control output is seen as the force on the cart directly, u = F ,
to avoid excessive notation. Equation 7.11 is computed for each generalized coordinate
starting with the first pendulum angle, θ1,

d

dt

∂L
∂θ̇1
− ∂L
∂θ1

= Q1 (7.13)

m1l1 sin θ1θ̇1ẋ−m1l1 cos θ1ẍ+m1l
2
1θ̈1 −m1l1 sin θ1θ̇1ẋ−m1gl1 sin θ1 = Q1 (7.14)

−m1l1 cos θ1ẍ+m1l
2
1θ̈1 −m1gl1 sin θ1 = −bp1,vθ̇1 − tanh(ktanhθ̇1)bp1,c , (7.15)

similarly for the second pendulum angle, θ2,

−m2l2 cos θ2ẍ+m2l
2
2θ̈2 −m2gl2 sin θ2 = −bp2,vθ̇2 − tanh(ktanhθ̇2)bp2,c , (7.16)

and finally for the cart position, x,

d

dt

∂L
∂ẋ
− ∂L
∂x

= Q3 (7.17)

(M +m1 +m2)ẍ+m1l1 sin θ1θ̇
2
1 −m1l1 cos θ1θ̈1+

+m2l2 sin θ2θ̇
2
2 −m2l2 cos θ2θ̈2 = u− bc,vẋ− tanh(ktanhẋ)bc,c . (7.18)
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The final dynamic equations for the twin pendulum system are then,

−m1l1 cos θ1ẍ+m1l
2
1θ̈1 −m1gl1 sin θ1 = Q1 (7.19)

−m2l2 cos θ2ẍ+m2l
2
2θ̈2 −m2gl2 sin θ2 = Q2 (7.20)

(M +m1 +m2)ẍ+m1l1 sin θ1θ̇
2
1 −m1l1 cos θ1θ̈1 +m2l2 sin θ2θ̇

2
2 −m2l2 cos θ2θ̈2 = Q3 . (7.21)

If one of the angles are fixed in these equations, that is, θ1 or θ2 and its derivatives are set
to zero, then the system reduces to the cart pendulum system from Part 1 with added
mass from the extra pendulum. This added mass appears in the equations as an increase
in cart mass, which makes sense as the pendulum is fixed to the cart in this scenario.
As for the cart pendulum system from Part 1, by arranging the dynamic equations,

m1l
2
1 0 −m1l1 cos θ1

0 m2l
2
2 −m2l2 cos θ2

−m1l1 cos θ1 −m2l2 cos θ2 M +m1 +m2




θ̈1

θ̈2

ẍ

+


0

0

m1l1 sin θ1θ̇
2
1 +m2l2 sin θ2θ̇

2
2

+

+


−bp1,v θ̇1 − tanh(ktanhθ̇1)bp1,c

−bp2,v θ̇2 − tanh(ktanhθ̇2)bp2,c

−bc,vẋ− tanh(ktanhẋ)bc,c

+


−m1gl1 sin θ1

−m2gl2 sin θ2

0

 =


0

0

u

 ,

(7.22)

the well known general form of an m-link robot is obtained, [13, 14]

M(q)q̈ + C(q, q̇) + B(q̇) + G(q) = F , (7.23)

where,
M(q) is the inertia matrix

C(q, q̇) is the Coriolis and centrifugal effects

B(q̇) is the friction

G(q) is the force due to gravity

F is the input force vector .

Choosing states [ x1 x2 x3 x4 x5 x6 ]T = [ θ1 θ2 x θ̇1 θ̇2 ẋ ]T results in the nonlinear

52 of 76



Chapter 7. System and Model

state space representation,

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



x4

x5

x6

M−1(x1, x2)(F−C(x1, x2, x4, x5)−B(x4, x5, x6)−G(x1, x2))


, (7.24)

which is used for simulation of the twin pendulum system.
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8 | Swing-Up Design

This chapter contains a swing-up design for the twin pendulum system. As for the cart
pendulum system in Part 1 the design is based on [15]. The presented approach is similar
to the sat-based energy controller, the final design from Part 1. Detailed nonlinear analysis
is left out here since this design exploits the same principals as for the final cart pendulum
swing-up controller in Part 1.
Both pendulums are started in π at rest and the design is based on the pendulum energies
in the coordinate system fixed to the cart, thus reducing the generalized coordinates to,xp1 = −l1 sin θ1

yp1 = l1 + l1 cos θ1

xp2 = −l2 sin θ2

yp2 = l1 + l2 cos θ2

ẋp1 = −l1 cos θ1θ̇1

ẏp1 = −l1 sin θ1θ̇1

ẋp2 = −l2 cos θ2θ̇2

ẏp2 = −l2 sin θ2θ̇2 .
(8.1)

Since the energies of the two pendulums are described in a local coordinate system fixed
to the cart, there is no cross-coupling, thus the energies are independent of one another,

Ep1 = m1gyp1 + 1
2m1ẋ

2
p1 + 1

2m1ẏ
2
p1 (8.2)

Ep2 = m2gyp2 + 1
2m2ẋ

2
p2 + 1

2m2ẏ
2
p2 , (8.3)

and in generalized coordinates,

Ep1 = 1
2J1θ̇

2
1 +m1gl1(cos θ1 + 1) (8.4)

Ep2 = 1
2J2θ̇

2
2 +m2g(l2 cos θ2 + l1) , (8.5)

where the inertia J1 = m1l
2
1 and J2 = m2l

2
2 and the energy in equilibrium for each

pendulum is,

Eeq1 = 2m1gl1 , Eeq2 = m2g(l1 + l2) , (8.6)

such that,

E∆1 = Ep1 − Eeq1 = 1
2J1θ̇

2
1 +m1gl1(cos θ1 − 1) (8.7)

E∆2 = Ep2 − Eeq2 = 1
2J2θ̇

2
2 +m2gl2(cos θ2 − 1) . (8.8)

Choosing the function candidate,

V (θ1, θ2, θ̇1, θ̇2) = 1
2E

2
∆1 + 1

2E
2
∆1 , (8.9)

and with the dynamics given by,

Jθ̈ = m1l1 cos θ1ac +m1gl1 sin θ1 (8.10)
Jθ̈ = m2l2 cos θ2ac +m2gl2 sin θ2 , (8.11)
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the derivative of V is evaluated along trajectories of the system,

V̇ = E∆1Ė∆1 + E∆2Ė∆2 (8.12)
V̇ = E∆1(J1θ̇1θ̈1 −m1gl1 sin θ1θ̇1)

+ E∆2(J2θ̇2θ̈2 −m2gl2 sin θ2θ̇2) (8.13)
V̇ = E∆1(θ̇1(m1l1 cos θ1ac +m1gl1 sin θ1)−m1gl1 sin θ1θ̇1)

+ E∆2(θ̇2(m2l2 cos θ2ac +m2gl2 sin θ2)−m2gl2 sin θ2θ̇2) (8.14)
V̇ = Gac , (8.15)

where,

G = m1l1E∆1 cos θ1θ̇1 +m2l2E∆2 cos θ2θ̇2 . (8.16)

Following control law for the pivot point acceleration, ac, is chosen such that V̇ is negative
semi-definite,

ac = sat(−kG) , (8.17)

where k is a tuning parameter and,

sat(s) =

 s |s| ≤ amax

sgn(s) amax |s| > amax .
(8.18)

This control law exhibits the same properties as the first design in Part 1, thus the largest
invariant set also contains the stable equilibrium at π, which is the starting position of the
pendulums. For this design, the issue is solved by applying a large current, imax = 4.58 A,
for 0.1 s before initiating the swing-up sequence, thus starting at some initial values for
which the control signal is different from zero.
The controller for cart position from Part 1 is used unchanged in this design.
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Figure 8.1: The mechanical energy for
each pendulum approach that of their

respective equilibrium points shown here
by difference in energy.

Figure 8.2: Both pendulums of the twin
system successfully reaches their

heteroclinic orbit. Notice how the shorter
pendulum (red) reaches higher angular
velocity at its orbit than the longer

pendulum (blue), which makes sense as the
shorter pendulum has a higher frequency.

The design is implemented for simulation, see Figure 8.1 and 8.2, effectively driving the
energy differences to zero and reaching a heteroclinic orbit for both pendulums. In these
simulations the gain is chosen to k = 16 and 0.022 J is added to the energy references to
reach orbit. In Figure 8.3 and 8.4 it is seen that though the two pendulums reach their
heteroclinic orbits, they do not necessarily reach equilibrium simultaneously. However,
using a wrapped version of the angles, same as in Part 1, it is possible to catch both
pendulums while in opposing equilibrium points. Such a scenario is seen most clearly at
the end in Figure 8.3 and 8.4 about 11 swings into the simulation.

Figure 8.3: Due to different lengths of the
two pendulums the frequencies are different

thus the signals drift compared to one
another.

Figure 8.4: The two pendulums meet in
upright position but at opposing

equilibrium points.
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The control signal used to obtain the behavior in these simulations are shown in Figure 8.5.

Figure 8.5: The control signal required for the twin pendulum swing-up behavior simulated in this
chapter is within the limits of the motor.

Figure 8.6 and 8.7 shows that the position control from Part 1 also works well with the
twin pendulum swing-up design.

Figure 8.6: The position control
design used in Part 1 also shows

good results for the twin pendulum.

Figure 8.7: Both states, x and ẋ,
are successfully brought to around

zero while still allowing the swing-up
controller to maintain orbit.

This concludes the swing-up design for the twin pendulum. Following is the design of
a stabilizing controller in the end of which the swing-up controller is slightly altered to
bring the two pendulums in range of the catch controller.
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9 | Stabilization

In this chapter a Linear Quadratic Regulator (LQR) is designed to stabilize the twin
pendulum in upright position taking over from the swing-up controller. The design is
based on [18, 19] using the method described in [20].
The nonlinear state space system from Equation 7.24 is linearized,

A = ∂f(x)
∂x

∣∣∣∣∣∣∣∣∣∣∣ x=0
u=0
ktanh=1

, B = ∂f(x)
∂u

∣∣∣∣∣∣∣∣∣∣∣ x=0
u=0
ktanh=1

, (9.1)

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
g(M+m1)

Ml1

gm2
Ml1

0 − (M+m1)(bp1,c+bp1,v)
Ml21m1 − bp2,c+bp2,v

Ml1l2
0

gm1
Ml2

g(M+m2)
Ml2

0 − bp1,c+bp1,v

Ml1l2
− (M+m2)(bp2,c+bp2,v)

Ml22m2
0

gm1
M

gm2
M

0 − bp1,c+bp1,v

Ml1
− bp2,c+bp2,v

Ml2
0


(9.2)

B =
[
0 0 0 1

Ml1
1

Ml2
1
M

]T
. (9.3)

The controllability and observability matrices are computed for the linearized system,

C =
[
B AB A2B A3B A4B A5B

]
⇒ rank(C) = 6 (9.4)

O =



C

CA

CA2

CA3

CA4

CA5


⇒ rank(O) = 6 , (9.5)

and since C and O both have full rank, the system is controllable and observable. It
is interesting to note that if friction is set to zero and both pendulums are given same
length, then C looses rank, that is, the system would no longer be controllable. This is
true even if the pendulum masses are different.
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Designing the LQR amounts to minimizing the cost function,

J =
∫ ∞

0
xTQx + uTRu dt . (9.6)

where Q and R are weighing matrices for the states and input respectively. In this case
Bryson’s rule is used for tuning Q and R such that,

Qii = 1
x2
i,max

, Rii = 1
u2
i,max

, (9.7)

where xi,max are the maximum state errors and ui,max are the maximum inputs.

The gain vector, F, is given by,

F = −R−1BTP , (9.8)

where P is the state-transfer matrix and can be found by solving the Algebraic Riccatti
equation,

ATP + PA−PBR−1BTP + Q = 0 . (9.9)

In this case there is only one input u so R is scalar. The tuned Q and R are given by,

Q = diag(1, 1, 1
0.012 , 1, 1, 1) , R = 1

3.33572 , (9.10)

resulting in the state feedback gain,

F = [ −5058.01 4037.40 296.63 −892.48 553.70 256.29 ] . (9.11)

During implementation it is found that the controller struggles to drive the cart position,
x, to zero. This is the reason why x is the only punished state in Equation 9.10. The
issue is further discussed in Results chapter 11. A simulation of the control design is seen
in Figure 9.1 and 9.2.

Figure 9.1: A simulation of the
LQR design stabilizing the two
pendulums around zero with

oscillations.

Figure 9.2: The cart position
initially moves away from zero but

returns to stabilize with some
oscillations.
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The required armature current for the LQR design is shown in Figure 9.3, where the RMS
current stays within the motor’s maximum continuous current limit.

Figure 9.3: The control signal required by the LQR design is considered reasonable with only short
pulses exceeding the maximum continuous current rating of the motor.

With both the swing-up and stabilizing controller designed for the twin pendulum system,
it is, in simulation, attempted to swing up and then catch both pendulums in upright
position.
The swing-up controller bringing the pendulum energy errors to zero ensures convergence
to the heteroclinic orbit of each pendulum. However, it does not promise timing such
that both pendulums reach the equilibrium simultaneously. For this reason it is found
necessary to split the tuning gain k such that the new control law becomes,

G = k1m1l1E∆1 cos θ1θ̇1 + k2m2l2E∆2 cos θ2θ̇2 (9.12)
ac = sat(−G) . (9.13)

It is further found useful to tune the energy reference of each pendulum separately. In the
following simulations, see Figure 9.4 and 9.5, the energy reference of the first pendulum,
E∆1 , is increased by 0.030 J and for the second pendulum E∆2 is increased by 0.028 J.
The gains are tuned to k1 = 25 and k2 = 17.
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Figure 9.4: A simulation of the twin
pendulum using the energy based swing-up
controller and catching with the LQR.

Figure 9.5: The x position controller
keeps the cart away from the rail edge while

the swing-up controller approaches
equilibrium.

The control signal used to obtain the result in Figure 9.4 and 9.5 is shown in Figure 9.6.

Figure 9.6: The needed armature current for the simulated behavior of swing-up and catch.

The energy control strategy from Part 1 was successfully adapted as a swing-up con-
troller for twin pendulum system. Further the swing-up controller was tuned to bring
both pendulums into equilibrium at the same time for the LQR controller to catch both
pendulums in simulation.
To implement the control strategies, the next chapter is concerned with estimating the
three unmeasured states of the twin pendulum system.
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10 | State Estimation

There are three measurable states in the twin pendulum system, the pendulum angles,
θ1 and θ2, and the position of the cart, x. The renaming three states, the pendulum
velocities, θ̇1 and θ̇2, and the cart velocity, ẋ, must be estimated. In this chapter a
Kalman filter is designed based on [21, 22].
The pendulum angles are measured with a resolution of ∆θ = π × 10−3 rad/tic and the
cart position with a resolution of ∆x = 0.088× 10−3 m/tic. This causes the quantization
problem illustrated for θ1 in Figure 10.1. This is less of an issue for x since its measurement
resolution is two orders of magnitude higher than that of the angles.

Figure 10.1: Angle measurement of the first pendulum shows how the quantization is more significant
than any potential underlying noise.

To estimate the three unmeasured states and solve the quantization problem a Kalman
filter is designed. In the design process it is useful to have a simulation exhibiting the
same issues as the real system. To that end a simple quantization model, [23, p. 35], is
proposed,

xq = ∆
⌊
x

∆ + 1
2

⌋
, (10.1)

where xq is the quantized state, x is the un-quantized simulated state and ∆ is the mea-
surement resolution of said state. To see if the model behaves like the real measurements,
the original signal from Figure 10.1 is smoothed and then quantized using Equation 10.1.
The result is seen in Figure 10.2 where the modeled quantization of the smoothed signal
approaches the original measured signal.
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Figure 10.2: The original measured signal (blue) is smoothed (red) and the smoothed signal is then
quantized (green) using the model from Equation 10.1. This is used as a way to simulate measurements

in the Kalman filter design process.

In this manner it is possible to simulate the system obtaining true values for all six states
along with a quantized version for the Kalman filter.

The Kalman filter is designed using the following discrete linear model,

xk = Fxk−1 + Guk−1 + wk−1 , w ∼ N (0, Q) (10.2)
yk = Hxk + vk , v ∼ N (0, R) , (10.3)

where,
x is the states F is the system matrix

u is the input G is the input matrix

y is the measurements H is the output matrix

w is the process noise drawn from a normal distribution with covariance Q

v is the measurement noise drawn from a normal distribution with covariance R .

In the following the Kalman filter algorithm is presented in three steps.

Initialization
The previous predicted state vector, x̂k−1, is initialized to the current measurements, yk,

x̂k−1 = yk , (10.4)
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and the previous state error covariance Pk−1 is initialized to some initial guess P0 here
set to the identity matrix,

Pk−1 = P0 . (10.5)

When the Kalman filter is running P will converge to some steady state values which is
then used as P0 in the implementation for faster convergence.

Prediction
A prediction of the states is calculated using the discrete system model,

x̂k|k−1 = Fx̂k−1 + Guk−1 , (10.6)

where x̂k|k−1 is the predicted states at time k using previous estimate and input. Note
that k|k − 1 reads “k given k − 1”. Similarly a prediction of the state error covariance
matrix is computed,

Pk|k−1 = FPk−1FT + Q , (10.7)

using the previous state error covariance matrix, Pk−1, with state dynamics, F, and the
process noise covariance, Q.

Update
The predicted state error covariance matrix, Pk|k−1, is then used along with the output
matrix, H, and the measurement noise error covariance, R, to compute the Kalman gain,

Kk = Pk|k−1HT(HPk|k−1HT + R)−1 . (10.8)

Finally the estimated states are updated using the previous estimated states, x̂k−1, the
Kalman gain, Kk, and the difference between measured output, yk, and predicted output,

x̂k = x̂k−1 + Kk(yk −Hx̂k−1) , (10.9)

where Hx̂k−1 = ŷk−1 is the predicted output. The state error covariance matrix is also
updated,

Pk = (I−KkH)Pk|k−1 , (10.10)

where I is the identity matrix.

The measurement noise covariance is tuned such that the quantization problem is solved
without causing divergence from the trend of the data, see Figure 10.3,

R = diag(100, 100, 10) . (10.11)
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Figure 10.3: The Kalman filter successfully overcomes the quantization problem in simulation. A
similar result is obtained for θ2.

The process noise covariance matrix is tuned to get as true estimations of the derivatives
as possible while maintaining low noise levels, see simulation in Figure 10.4,

Q = diag(1, 1, 1, 100, 100, 10) , (10.12)

Figure 10.4: Simulation of LQR controller used for tuning the Kalman filter to get a good estimation
of the state derivatives. A similar result is obtained for θ̇2.
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Since the quantization problem is less significant for the position measurements com-
pared to the angle measurements, the filter obtains near perfect results in simulation, see
Figure 10.5 and 10.6.

Figure 10.5: The quantization of x is so
insignificant that it does not show on the plot.

Figure 10.6: Given the good position
measurements, the Kalman filter successfully

estimates the cart velocity.

This concludes state estimation for the twin pendulum system. With all parameters
estimated and the Kalman filter designed for state estimation any remaining comments
on implementation are addressed when presenting the results in the next chapter.
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11 | Results

The swing-up controller, LQR and the Kalman filter for the twin pendulum are im-
plemented on the system and the the results presented here. The swing-up controller
approaches equilibrium for both pendulums, see Figure 11.1. However, when tuning the
gain of one pendulum the behavior of the other pendulum is affected.

Figure 11.1: Swing-up controller attempting
to approach equilibrium for both pendulums.

Figure 11.2: The position controller keeps the
cart within the operating range.

Figure 11.3: The energy error of each
pendulum. As the first pendulum catches
up the second pendulum looses energy.

Figure 11.4: The phase portrait is not
symmetrical consistently hitting high

velocity after passing π, downward position.
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This makes it difficult to find the right balance to let both pendulums reach equilibrium
at the same time. It is only made more difficult by the position control further adding dis-
turbance to the swing-up controller. Figure 11.2 shows the position controller successfully
keeping the cart in away from the edges of the rail. In Figure 11.3 the second pendulum
first reaches for zero energy error reference, however, as the energy of the first pendulum
increases, the second pendulum looses energy. As known from simulations in the design,
with more time it should be possible to tune the gains against each other until a balance
is achieved and both pendulums approach zero energy error. In Figure 11.4 the phase
portrait is slightly skewed compared to simulation, showing peak velocity after passing π,
the reason is unknown.

A test of the implemented LQR is seen in Figure 11.5 where both pendulums are started
in zero. The controller does keep both pendulums around zero, however with a lot of
oscillations.

Figure 11.5: The LQR successfully keeps both
pendulums in upright position.

Figure 11.6: In this test the cart position is
kept close to center.

During test of the LQR design a problem of keeping the cart around zero on the rail was
encountered. In Figure 11.6 the controller does rather well compared to other tests. When
initializing the system for each test all three encoders must be reset such that zero position
is known. Originally the pendulums were reset when hanging downward and initialized
to π. It was found that initializing the pendulums in upright position caused the LQR
controller to converge to different parts of the rail, while with the other approach the cart
consistently stayed on the right side of the rail. From this it is thought that small errors
in initialized angle away from true vertical position is enough to cause an imbalance in
the feedback driving the cart to one side until the position error becomes large enough to
counter the angle error. On these grounds the result seen here are from a test with more
fortunate initialization of the pendulum angles.
The control signal cooresponding to this LQR test is seen in Figure 11.7.
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Figure 11.7: The control signal used to achieve the results in Figure 11.5 and 11.6.

In Figure 11.8 the swing-up controller is tuned to k1 = 9.5, k2 = 2.77 and the energy
reference of the first pendulum, E∆1 , is increased by 0.175 J while for the second pendulum
E∆2 is increased by 0.020 J. The result starts to look more like the simulations, however, in
this case the first pendulum overshoots before the second pendulum reaches equilibrium.
It is not known weather the LQR will be able to catch the twin pendulum even with
further tuning. However, this swing-up design shows promise, that with more tuning and
perhaps deploying a nonlinear control strategy for the stabilizing controller, eventually
catching the twin pendulum on the given setup should be possible.

Figure 11.8: The swing-up controller is tuned showing promise that catching the twin pendulum on
the real system should be possible with more tuning and possibly a nonlinear control strategy for the

stabilizing controller.

In the phase plot, see Figure 11.9, it is seen that the pendulums do not reach zero velocity
when approaching equilibrium. The control signal used to swing up the pendulums is seen
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in Figure 11.10, as in simulation a high but short pulse is given in the beginning of the
test to start the swing-up controller.

Figure 11.9: The phase plot shows how both
pendulums approach equilibrium with relatively

high velocities.

Figure 11.10: The armature current is a quite
high, but does not sustain high current.

The Kalman filter is implemented in c-code. The quantization problem is solved same
as in simulation, see Figure 11.11 and 11.12 where the measurements are smoothed. The
test of the Kalman filter is run with the LQR to keep the system around zero where the
linear estimator is meant to operate.

Figure 11.11: The quantization from
measurement resolution is overcome by use of

the Kalman filter.

Figure 11.12: The Kalman filter shows good
results for both pendulums.
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In Figure 11.13 and 11.14 the Kalman filter successfully estimates the angel derivatives.
An MA filter with a window size of 10 is used for comparison, notice how the MA filter
is delayed compared to the Kalman filter.

Figure 11.13: The angular velocity of the first
pendulum estimated by the Kalman filter.

Figure 11.14: The velocity of the second
pendulum shows similar results.

With higher resolution on the cart position the Kalman filter shows better results and no
MA filter is needed to show the trend of the derivative, see Figure 11.15 and 11.16.

Figure 11.15: Almost no quantization noise
causes no need for smoothing by the Kalman

filter.

Figure 11.16: The estimated cart velocity
leaves no noise and follows the trend of the

numerical differentiation.

A swing-up controller based on the principles from Part 1 was designed and successfully
tested in simulation. Further, an LQR was designed to stabilize the system in zero. The
stabilizing controller was in simulation capable of catching the twin pendulum after the
swing-up sequence. A Kalman filter was designed and implemented to remove quantiza-
tion noise form the measurements and estimate the three derivative states. Both control
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designs were implemented on the twin pendulum system and works separately to some
degree. Catching the twin pendulum after swing-up was attempted but not successful. It
is thought that further tuning of the swing-up controller and possibly a nonlinear control
design for the stabilizing controller could solve this issue. This concludes Part 2 of this
thesis.
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12 | Conclusion

In Part 1 of this thesis the cart pendulum system was investigated. A test setup provided
in the Control and Automation Lab by AAU was used as a platform for implementation
and test of the control strategies developed.
The objective was to swing up the pendulum from downward position, then catch and
stabilize it in upright position. To achieve this behavior on an underactuated nonlinear
system, two control strategies were implemented in the final design.
A model of the cart pendulum system was put forth and a simulation was developed to
use during the design.

In the process three energy based swing-up controllers were designed and tested in sim-
ulation. Though inefficient, the first controller was the simplest form of the idea and
therefore useful in understanding the underlying principals of the energy based control
strategies. For that reason, this is also where the nonlinear analysis of the energy based
swing-up controller was investigated. It showed that, by Lasalle’s Theorem, deploying
this control strategy, the pendulum would converge to the set connecting two equilibrium
points, thus eventually reaching heteroclinic orbit.
The second swing-up controller was a sign-based controller with the same underlying logic
as the first design, but using a sign function to give maximum control output in the desired
direction. While the controller worked in simulation, the sign-function caused excessive
switching making it undesirable for implementation.
Though the sign-based controller could not be implemented, it showed an ideal swing-up
behavior. This made the basis for the final sat-based controller in which most of the
performance of the sign-based controller was maintained while eliminating the switching
issue.
All three swing-up controllers caused the cart in simulation to drift off the physical limi-
tations of the rail. To solve this issue a simple liner state feedback controller was designed
and successfully kept the cart position around zero, the middle of the rail.

To catch the pendulum in upright position after the swing-up procedure, a sliding mode
controller was developed. This involved a system transformation, linear state feedback
stabilization of the reduced order model in the transformation and finally a sliding surface
based in the Lyapunov Stability Theorem.

In the implementation of these controllers it was necessary to estimate frictions in the
system and mass of the cart. The friction between cart and rail proved challenging to
model, and after analyzing the result of 68 tests along the rail, it was found that the
friction depends on both position and direction of the cart. To manage this friction a
lookup table was implemented with online interpolation between points to estimate and
finally compensate for the cart friction along the rail. This friction compensation showed
good results, but is not considered a perfect map or model of the cart friction.
To obtain estimates of the unmeasured states an extended Kalman filter (provided by a
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previous project group) was used for stabilization and a moving average filter was designed
and implemented for the swing-up controller.

With all parameters accounted for the sliding mode and sat-based swing-up controller
were successfully implemented and tested on the cart pendulum setup. The cart did on
occasion diverge from zero before returning and re-stabilizing. It is thought to be an
issue caused by imperfect friction compensation and possibly amplified by the extended
Kalman filter not receiving likely dynamical behavior from the system based on the given
input.

In Part 2 an additional pendulum was mounted on the test setup from Part 1, making
it a twin pendulum system. This adds the challenge by a second unactuated link in the
system.
The objective was to use the knowledge and experience gained in Part 1 to develop a
strategy for swinging up and catching both pendulums in upright position.
A model was developed and implemented for simulation of the twin pendulum system
and the new friction parameters for the second pendulum were estimated.

The design of the twin swing-up controller was based on the same principals as for the
sat-based energy controller for the cart pendulum system and showed good results in
simulation.

To stabilize and eventually catch the two pendulums and LQR was designed. The swing-
up controller and LQR were successfully simulated together.

Since an other two states were added to the system by the new pendulum a new state
estimator was needed. Thus, a Kalman filter was designed, tuned and successfully imple-
mented to smooth measurement quantization and estimate the three derivative states.

Finally the swing-up and LQR controller were implemented on the twin pendulum system.
The swing-up design shows good results, however further tuning is needed to bring the
pendulums to equilibrium simultaneously for the catch controller to take over. Though
exhibiting a lot of oscillations, the LQR successfully stabilized the two pendulums in
upright position.

Future Work: It would be interesting to see further attempts at estimating the cart fric-
tion. One could combine a position and direction dependent friction model with machine
learning. The machine learning algorithm could then adjust and learn the rail friction
given random control inputs until the model error is brought close to zero.
Further tuning of the swing-up controller combined with a sliding mode design for the
twin pendulum system is a clear next step. Developing an extended Kalman filter for the
twin pendulum system would also be interesting to see.
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