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ABSTRACT 

The purpose of this study was to create a parametric running 

model in the AnyBody Modeling System (AMS) based on a large 

amount of running trials, with the possibility of adding more trials 

to further develop the model. 149 kinematic running trials were 

obtained from running customers at the company, Kaiser Sport & 

Orthopedics (KSO), and was used to drive a full-body 

musculoskeletal running model, developed in AMS. Mixed terms 

of Fourier series represented anatomical joint degrees-of-freedom 

throughout a running cycle. Fourier coefficients were stored in a 

matrix, from where principal component analysis was performed 

to interpret variation of the data and correlations between 

anthropometrics and all anatomical degrees-of-freedom. 

Eigenvectors acted as measures of the parameters’ influence on 

each principal component (PC). 90 % of the total variance were 

described by the first 39 PCs and 50 % were described by the first 

10 PCs. A parametric running model driven by Fourier coefficients 

was successfully created. Pseudo-generated models with standard 

deviation of +/-3 along each PC were compared along with the 

parameters with the largest eigenvalues to understand the 

relationship between the top ten PCs and running techniques as 

interpreted in the clinical practice of KSO. 
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Introduction 

Running is a popular and accessible type of exercise. In Europe, there has been an increase in participation of road 

running. A survey of the Dutch population (people +6 years old) by van Bottenburg et al. from 2009, revealed an 

increase from 8 % to 18 % of the total population, regarding people who participated at least once a year in running 

or jogging. The same survey also found increasing participation throughout the UK, Germany, Belgium and more. A 

questionnaire from 2009 reported that 62 % of the running events across Europe has had an increase in participants, 

whereas only 2 % had a decrease in participants (van Bottenburg et al. 2009).  

Running is performed as a competitive sport as well as a health-related exercise for recreational runners. Despite of 

the positive benefits of running (Williams & Thompson 2013) there tends to be a high incidence of running related 

injuries (RRI) (Van Middelkoop et al. 2008). A systematic review by van Gent et al. (2007) examined 172 relevant 

articles regarding lower extremity RRI in long distance runners and determined that the overall injury rate ranged from 

19.4 % to 79.3 %. Thus, a typical runner has a 19.4-70.3 % risk of sustaining an injury at any given time. Injuries primarily 

occurred in the knee (7.2 % to 50.0 %), lower leg (9.0 % to 32.2 %), the foot (5.7 % to 39.3 %) and the upper leg (3.4 % 

to 38.1 %). According to Jin (2014), the most commonly known injuries are Iliotibial band syndrome, patellofemoral 

pain syndrome, shin splints, Achilles tendonitis and plantar fasciitis.  

A study from the 18th Ljubljana Marathon in 2013, revealed that one out of every three participants in the study 

suffered from an injury every season/year (Vitez et al. 2017). Further, 53 % of the runners had a lifetime prevalence 

of a running-related injury. Continuous studies support the RRI incidence shown in the study from the Ljubljana 

Marathon (Linton & Valentin 2018; van Poppel et al. 2018; van Poppel et al. 2016) 

Numerous studies acknowledge that biomechanics plays an important role in running injuries (Napier et al. 2018; 

Almonroeder & Benson 2016; Daoud et al. 2012). Foot inclination angle, pelvic drop, knee flexion during stance, trunk 

lean, cadence and heel eversion are candidates for factors that may influence injury, according to a summary by Souza 

et al. (2016). A study by Milner et al. (2010), supports the biomechanical influence on running injuries by comparison 

of lower limb kinematics between two groups of female runners. One group had a history of tibial stress fracture and 

the other was a control group. The runners who previously had suffered from tibial stress fracture had significantly 

greater heel eversion angle and hip adduction angle.  

The link between biomechanics and running injuries is acknowledged by most researchers. However, as 

runners/humans are unique, general recommendations with respect to optimization of biomechanics do not 

necessarily apply to all (Williams, 2007). Therefore, individual analyses are important to provide the best possible 

individual feedback, and it should be borne in mind that a wide range of factors may contribute to injury risk. 

Biomechanical analysis can possibly lead to a deeper understanding of the underlying mechanisms (Williams 2007). 

Furthermore, Williams stated that biomechanics affects not only injuries but also the performance and economy of a 

runner. 

Different types of gadgets to track and analyze human movement, such as 2D video analysis, accelerometers, 

gyroscopes, virtual coaching, pulse monitors etc., are coming to the market. These gadgets deliver diverse information 

regarding human activity. However, none of the mentioned gadgets provide information regarding kinematics and 

kinetics of a full-body founded on sufficient data. Furthermore, no previous gadgets have been developed  to simulate 

a hypothetic running pattern and thereby alter the movement to analyze the influence of different running kinematics. 

Computer simulation has previously been used as a tool to simulate circumstances that are impossible to obtain in-

vivo or require invasive experiments (Gerritsen 1996 et al.; Diana 2015 et al.).  

This study was done in collaboration with the company, Kaiser Sport & Orthopedics (KSO), Denmark. The company is 

a combination of a physiotherapeutic clinic and shop that specializes in selling running shoes based on biomechanical 

analysis. Customers entering KSO are often prone to current or previous injuries. Hence, the company strategy is to 

provide the best possible information to their employees and thereby help the customers improve biomechanics and 

prevent injuries. However, this information is often based on 2D video recordings of runners from a posterior view. 

Therefore, in 2017, KSO introduced Kaiser Sports Lab. The lab contains a marker-based 3D motion capture system with 
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a full body marker protocol provided by Qualisys A/S, Sweden. Running is a complicated movement requiring a full 

body analysis, as it is hypothesized that injuries can occur due to biomechanical factors distant from the injured area. 

Thus, the purpose is to locate the cause of the injury and thereafter provide a plan for rehabilitation/optimization of 

biomechanics. However, it is not possible for the coach to simulate the effect of instructions given to analyze the effect 

of optimizing the running pattern. Moreover, the test in the Kaiser Sports Lab is comprehensive and requires much 

time for experimental testing and analyzing results. Thus, simulation of running patterns based on simple 

biomechanical measurements will allow runners to be analyzed more efficiently and with fewer means.    

It was proposed that the parametric running model has potential to become an analytic tool for physical therapists, 

coaches and more. To gain an understanding of the business model of Kaiser Sport & Orthopedics (KSO) and provide 

a perspective of how the model would fit into this business, and attempt to formulate a value proposition was made 

based on an interview with the CEO of KSO, Jan Steinicke.  

First of all, the reason for the existence of KSO is to help people move freely without sustaining pain, which is believed 

to make people happier. This is achieved by considering the human body in a three dimensional perspective. Looking 

at body anatomy, observing the kinematics of the human body and investigating the footwear that the human body 

moves within. A holistic view comprising these three dimensions is what makes the company unique. The company 

considers innovation to be important to stay ahead of competitors. Thus, having the newest technologies, providing 

the best possible equipment, coaching and training is vital to giving the best customer experience. 

The customer target group has no boundaries, as there are no limits to who would benefit from professional advice 

and pain-free life. However, company statistics reveals that people between 30-55 years of age are the majority of the 

customers.  

In retail, there has been an increase of online purchasing of equipment in recent years and the Internet also provides 

information regarding exercises and coaching. Still, there are people who seek the personal feedback and will pay for 

treatment and personal coaching. Motivation is observed to be at its greatest, when people suffer from pain and want 

to become pain free. Thus, price becomes a minor issue when professional coaching and treatment has the capability 

to recover the human body. However, there are competitors in the same field of work, that have the equal analytical 

tools. Therefore, the prediction of kinetics provides information to coaches that otherwise are unavailable. As running 

activity is growing and runners still are greatly exposed to injuries, the demand for rehabilitation and injury prevention 

increases. Subsequently, the simulation of running kinematics and kinetics based on a few parameters, is both unique 

and efficient in respect to current analytic possibilities. The existing biomechanical feedback is often based on 2D video 

recordings or in rare cases 3D motion capture systems. Thus, the product is exceptional to the customers, as it is 

impossible to gain such information and coaching evaluation anywhere else. 

For this study, the aim was to create a parametric running model in The Anybody Modeling System (AMS) that could 

provide information regarding biomechanics to individual runners, based on a continuous pipeline of input-data from 

running trials. The pipeline was set up to train the AMS model, as more and more kinematic running trials become 

available. Hence, the model will become more reliable with additional trials. For now, it is possible for individual 

runners to implement a kinematic running trial into AMS and thereby gain information regarding kinematics and 

kinetics. However, this process is time-consuming, complicated and error-prone. Therefore, this study strived to create 

a parametric running model, which would make it more accessible to extract valuable information regarding runners, 

based on a selection of parameters. To minimize the risk of manual errors and subjective bias in the data processing, 

a pipeline of data input and automated processing was set up. This allows the model to improve continuously, as 

running trials are added. 

A study by Kloster & Iversen (2017) processed and implemented data from 90 heterogeneous running trials to create 

a parametric running model. However, their trials came from many different sources and experimental protocols, and 

some contained incomplete running cycles. Furthermore, 90 trials are likely insufficient to cover all variations of 

running, for which reason they assumed symmetric running patterns, which is likely not valid in general and specifically 

not when the model should represent injury conditions. Therefore, the purpose of this study was to create a 

parametric running model in The AnyBody Modeling System based on a large amount of motion capture data with the 

possibility of adding more trials to further train a reliable model. The future application is to use the parametric running 
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model as a template to insert data from other gadgets and thereby provide kinematic and kinetic information that 

otherwise would be difficult to obtain, and to use the model as a robust analysis option for kinetic data for specific 

runners. 

Method 

Data Acquisition 

Data was obtained from customers running style analysis at KSO. Subjects were male and female adults, and the data 

were collected and transferred according to the Danish implementation of the EU General Data Protection Regulation. 

A total number of 149 trials were included in the parametric model in this study from 39 different subjects. As 

described later in this study, the model was created to allow addition of new trials as they become available to fine-

tune the model.  

Experimental method 

A motion capture system (Qualisys AB, Gothenburg, Sweden) was used to obtain data from running trials at KSO. The 

subjects ran on a treadmill that was placed in the center of the room. Nine infrared M3 cameras and a real time 

software, Qualisys Track manager (QTM) version 2.16, obtained data from the trials. The QTM attained the data with 

a frequency of 300Hz. A total of 35 retroreflective markers were placed on anatomical landmarks at the full body of 

the subjects, following a marker protocol developed by Qualisys for automated kinematic running analysis as seen in 

figure 1. Markers were attached directly onto the skin when possible, and otherwise on tight fitting clothes to minimize 

the soft tissue artefact. None-reflective tape was used to cover up potential reflexes on the subject’s shoes and clothes 

that could disturb the measurement. Prior to every test, the measurement volume was calibrated with a calibration 

tool provided by Qualisys. 

 

Figure 1 - The Qualisys marker protocol, seen from the front and back. 
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Movement protocol 

The subjects ran at velocities corresponding to different paces during their own running sessions. The subjects 

performed different numbers of trials, as some were eager to test themselves in several velocities. The velocity of the 

trials simulated the normality of each subject’s training. The capture period for each trial was ten seconds and was 

considered successful if there were no significant marker dropouts. Otherwise, the trial was repeated. Recordings 

began when the subject felt accustomed to the velocity of the treadmill and thereby reached a steady state. This 

procedure was applicable for every trial. 

The subjects wore tight-fitting shorts and minimal clothes to the upper body, meaning no shirt or a tight-fitting shirt 

to minimize fluctuations of markers. All subjects wore their own running shoes, and they all had previous experience 

with treadmill running. They ran a 1-5 minutes warm up before recordings began, with the purpose of getting 

familiarized with the environment. Instructions from the coach were to run as naturally as possible.  

Computational method 

A musculoskeletal running model was developed in The 

AnyBody Modeling System (AMS) v. 7.1.2 (AnyBody 

Technology A/S, Aalborg, Denmark). The model was based on 

a GaitFullBody model from the AnyBody Managed Model 

Repository version 1.6.3. A subject-specific model was 

created for every subject. The parameters of the subjects, 

such as segment lengths, joint rotational axis and marker 

positions, were scaled by minimizing the least squares 

difference between the GaitFullBody model and the 

corresponding marker positions from the kinematic trial, 

using the a optimization method proposed by Andersen et al. 

(2010). The local optimization-based method for parameter 

identification was applied to recover segment lengths from a 

static posture, and a scaling method proposed by Rasmussen 

was applied to estimate segment cross-sectional properties 

(Rasmussen 2005). This method enables subject-specific 

scaling of the model by establishing coherence between 

geometry and mass of segments. Furthermore, the paper 

includes an estimation of strength for the scaled models by implementing fat percentage as a factor. The percentage 

of body fat is calculated by using the Body Mass Index (BMI) of the subjects.  

The models were driven by the marker recordings from C3D files, which were extracted from the kinematic running 

trials by QTM. The C3D files were smoothed in AMS by adding a low pass zero-lag fourth-order Butterworth filter with 

a cut-off frequency at 12Hz.  

If the AMS model successfully ran the motion optimization process for the trials, .json files were the output for usage 

in Python. In Python, a script was developed to represent the data as Fourier series. Fourier series are convergent 

series of sine and cosine waves and can represent any given time signal.  

The harmonic nature of sine and cosine functions make Fourier series particularly appropriate for periodic functions, 

and running kinematics can be represented with good accuracy for most degrees-of-freedom with a few terms in the 

series. The amplitudes of the Fourier terms are the coefficients of the series, and they become the primal parameters 

of the parametric running model. A function of a period can be represented as: 

𝑓(𝑡) = 𝑎0 +  ∑ 𝑎𝑖 cos(𝑖𝜔𝑡) + ∑ 𝑏𝑖 sin(𝑖𝜔𝑡)

𝑛

𝑖

𝑛

𝑖

 

Figure 2- A musculoskeletal running model in AMS 
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Omega (𝜔) represents the angular fundamental frequency of each cycle and is denoted as: 

𝜔 =
2𝜋

𝑇
 

where T is the cycle time. 

Fourier coefficients (𝑎0, 𝑎𝑖, 𝑏𝑖), 𝑖 = 1. . 𝑛 for every trial were derived and stored in a matrix with the derived 

anthropometric parameters of the subjects, thus establishing a possible connection between anthropometry and 

running style. 

The data processing pipeline was based on a replication of the data storage structure used by KSO and developed by 

Qualisys. This allows data to flow with as little human interaction as possible from the Kaiser Sport Lab to the data 

processing facility at Aalborg University, complying with the regulations of the General Data Protection Regulation 

(GDPR) enforced by the European Community. A batch process automatically discovers all trials and processes the 

marker trajectories into anatomical joint degrees-of-freedom time series and anthropometric subject data and stores 

them in .json files for the aforementioned Fourier analysis. 

During the running tests, recordings began randomly with respect to the subjects’ running cycles, so the recorded 

signals were not necessarily synchronized in time. For analytical purposes it was important, in order to compare the 

signals, to correct the displacements in time of the signals. Using cross-correlation adjusted for this time-axis offset, 

by shifting the signal in time whilst observing the plot as it changed. To ensure obtaining the ideal plot, we analyzed 

the regression coefficient to get the best correlation between the signals, where the coefficient were greatest. 

Data analysis 

Principal Component Analysis (PCA) was used as a statistical tool to create a model able to provide information 

regarding correlation between a large range of parameters with a minimal set of variables. PCA is relevant when 

dealing with high dimensional data and represents data sets as a number of principal components (PCs). In our case 

we chose to represent 90 % of the variation and thereby reducing the total dimensionality. PCA is in this study done 

in a matrix, from which the analysis begins by transforming the data into eigenvectors and finding the PCs that 

represent the variation of data (Moeslund 2001). This type of analysis is valid in our case, as it is possible to derive 

correlations between parameters from each of the PCs. An example of how two parameters are correlated are shown 

in the figure 3.  

The plot of the Fourier coefficients are then sustained to PCA transformation by the following equation. 

𝑦 = 𝐴(𝑥 − µ) 

The transformed dataset is represented as y, A denotes a matrix of eigenvectors, x is the input data and µ is the mean 

value of the dataset. Moreover, the covariance matrix is termed as 𝐴 = [𝑒1 , 𝑒2 … 𝑒𝑛], where 𝑒𝑛are eigenvectors. An 

Figure 3 - The figure shows a plot of the correlation of Fourier coefficients 
between the right knee flexion (a0) and right hip flexion (a0). 
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example of how eigenvectors are tabled is shown in figure 3, where 𝑒1 and 𝑒2 are orthogonal and describe variance in 

different directions. Clearly, 𝑒1 has the largest variance and thereby explains more of the total variance than 𝑒2 in this 

simplified example. Thus, the majority of the variance can be explained only by the variable 𝑒1. 

The PCA process can be explained as: Firstly, primal data in the form of joint angles are parametrized as Fourier series 

from raw motion capture data. Fourier series are explained by a number of Fourier coefficients that are inserted into 

a matrix together with anthropometric data identified for each trial. Hereafter, eigenvalue analysis is used to 

determine the principal directions in the data set and transform the primal data linearly to the principal component 

space. The number of PCs is depending of the number of data points in the matrix. Parameters with the greatest 

variation will have the most influence on PCA and data close to the mean value will have very little influence, as their 

eigenvalues, representing the variance, are small. The direction in the primal data space of each principal component 

is an eigenvector. Parameters are influential on the PC if their variances are correlated with the PC and entails a great 

amount of variance in the eigenvector direction.  

The parametric running model was tested by variation of the PCs by multiples of the standard deviations and creating 

AMS models of pseudo runners. The joints and drivers for the pseudo runners were extracted from a script in Python, 

which created new Fourier coefficients to drive the pseudo running model. The running models were tested by 

offsetting principal consecutively components by three standard deviations and negative three standard deviations. 

The resulting motion patterns were evaluated visually to confirm their realism and to interpret the significance of each 

PC. Further, the pseudo runners were also evaluated based on comparison of anthropometrics and biomechanical 

parameters. To gain knowledge from experts working with running on a daily basis, two physiotherapists from KSO 

assisted in the interpretation of the results and provided feedback concerning their own approach when analyzing 

clients.  

PCA was performed on the following primal parameters: Position of pelvis in x,y,z space, Rotation of pelvis about x,y,z 

axes, Center of Mass (COM) in x,y,z space, Pelvis-thorax extension, Pelvis-thorax lateral bending, Pelvis-thorax 

rotation, Skull-thorax flexion, Skull-thorax lateral bending, Skull-thorax rotation, Right sternoclavicular protraction, 

Right sternoclavicular elevation, Right sternoclavicular axial rotation, Right scapula thorax protraction, Right scapula 

thorax elevation, Right glenohumeral flexion, Right glenohumeral external rotation, Right glenohumeral abduction, 

Right elbow flexion, Right elbow pronation, Right wrist flexion, Right wrist abduction, Right ankle plantar flexion, Right 

subtalar eversion, Right knee flexion, Right hip flexion, Right hip abduction, Right hip external rotation, Left 

sternoclavicular protraction, Left sternoclavicular elevation, Left sternoclavicular axial rotation, Left scapula thorax 

protraction, Left scapula thorax elevation, Left glenohumeral flexion, Left glenohumeral external rotation, Left 

glenohumeral abduction, Left elbow flexion, Left elbow pronation, Left wrist flexion, Left wrist abduction, Left ankle 

plantar flexion, Left subtalar eversion, Left knee flexion, Left hip flexion, Left hip abduction, Left hip external rotation. 

11 Fourier coefficients represented each anatomical degree-of-freedom. These were a0 (mean value), a1, b1, a2, b2, 

a3, b3, a4, b4, a5, b5. Furthermore, we also analyzed anthropometric characteristics:  Pelvis width, Trunk height, Thigh 

length, Shank length, Foot length, Upper arm length, Lower arm length. This resulted in a total of 590 primal 

parameters to describe each running trial. 
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Data process 

The initial data obtained from running tests, ultimately 

ending up as a drivers of a parametric running model, went 

through a series of processes (figure 4). First, data were 

collected in the KSO Lab as mocap files, with subject data 

entailing information regarding height, weight, gender, 

age and marker trajectories. Subsequently, kinematic data 

were used to drive AMS models and allow the system to 

optimize the movement pattern and anthropometrics of 

the subjects to fit the data as well as possible. Outcome 

from these were .json files, containing a numeric 

representation of the marker trajectories for every subject 

and segment dimensions. Further, the joint angle 

variations were processed in Python, creating Fourier 

series to simulate the representation of joint movements 

as functions. Hereafter, Fourier coefficients from every 

trial for all subjects were stored in a matrix and analyzed 

using Principal Component Analysis. After plotting 

coefficients into a PCA matrix, the data were impossible to 

trace back to any of the subjects. The PCA provided 

eigenvectors and values to represent the data with a 

minimal number of parameters. Then, Python was used to 

create drivers for the parametric running model with user-

defined parameters. These Fourier drivers were then 

inserted into the AMS model, which then allowed for 

testing the parametric running model in AMS. This also 

allowed for testing pseudo-generated models from PCs, to 

evaluate the influence of parameters. Finally, kinematic 

features of the given running pattern could be extracted 

from the AMS analysis results.   

Data protection 

General Data Protection Regulation (GDPR) is a recently 

introduced regulation that also influences the field of 

research. Personal data, such as CPR-numbers, name, 

date-of-birth, etc., are regulated by GDPR. This project 

only concerns movement and anthropometry of the 

subjects, but GDPR defines that, if there is a ‘’key’’ to unlock personal information from non-personal information, 

then the data are still considered personal and comprised by the legislation. After the PCA-step of technical process, 

it was not possible to track back any kind of information to the subjects and thereby identify them. Thereby data were 

fully anonymized after this step, as illustrated in figure 4. In the process, where data lacked anonymization, the C3D 

files and folders regarding subject information was stored at a local server at Aalborg University, with security 

compliant with GDPR. The C3D files were then used in the process of creating a parametric model. However, after 

analyzing the outcome of the models, all information was totally anonymized as data then did not contain personal 

information regarding the subjects, but only mean values and standard deviations of Fourier coefficients and body 

anthropometry.  

 

 

Figure 4 - The figure presents the process from mocap recordings to 
the finalized AMS parametric running model. The initial steps from 
mocap to ‘Python PCA’ are marked as GDPR sensitive data, as the 
process entail information regarding the subjects until PCA in done. 
Thereafter, the data is no longer GDPR sensitive and can be used 
without further considerations towards GDPR.  
Processes are marked in squares and data is marked in circles.  
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Results 

The transformed Fourier coefficients for all anatomical degrees-of-freedom and anthropometrics, successfully drove 

the AMS parametric running model.  

Principal components are shown in figure 5, as a plot on how each PC influenced the variance of data in the matrix. 

PC1 explained for approximately 9 % of the total variance, PC2 8 %, PC3 6.5% etc. In total 90 % of the variance was 

explained by the accumulation of the first 39 PCs. Furthermore, 50 % of the variance was explained by the first 10 PCs.  

The average AMS-modelled runner corresponding to all-zero principal components showed a realistic running pattern, 

when observed via video animation. There were no irrational movements and the kinematics characterized a typical 

runner well.  

Pseudo-generated running models were successfully driven in order to analyze how the models behaved when 

deviating from the average runner. Generating pseudo runners was done individually for the first 10 PCs, as the change 

in running parameters was studied. The pseudo models ran by offsetting principal components by three and negative 

three standard deviations, which created pseudo models with different running techniques. The pseudo-generated 

running models also displayed a realistic running pattern, as a result of the PCs representing interpolation within the 

measured running patterns.  

Eigenvalues were denoted for the first 10 PCs and provided an indication of correlations between different 

biomechanical parameters. A total of 550 primal parameters were included each PC eigenvector, but only the top five 

most influential PCs were displayed. Nevertheless, the non-displayed parameters were also included during the 

interpretation of the PCs.  

The ten first PCs and the top five most influenced parameters for each PC are listed in table 1. All parameters, except 

anthropometrics, are referred to as Fourier coefficients from values a0 and b1 to a5 and b5.  
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Eigenvectors is the primary value to assess. The vectors were interpreted as correlations between the parameters for 

each PC. When offsetting PCs to generate new running patterns, all components in the eigenvector are multiplied by 

the same number, so smaller entries in the vector change less than larger entries. Variations of principal components 

PC2, PC4 and PC6 are illustrated in the figures below and seem to lend themselves to obvious physical interpretation. 

 

 

PC1  Eigenvector 

components 

PC2* Eigenvector 

components 

Left Knee Flexion a1 0.1095 Hand Mass Thorax Mass 0.1193 

Right Knee Flexion b3 0.1091 Shank Mass Pelvis Mass 
 

Right Knee Flexion a1 0.1039 Lower Arm Mass Clavicle Mass 
 

Right Hip Flexion b3 0.1025 Talus  Mass Body Mass  
 

Right Ankle Plantar Flexion a4 0.0999 Foot Mass Upper Arm Mass 
 

  
Head Mass Lumbar Mass 

 

  Thigh Mass  

PC3 Eigenvector 

components 

PC4 Eigenvector 

components 

Left Hip Abduction a3 0.1328 Right Sternoclavicular Axial Rotation b3 0.1200 

Right Hip Abduction a3 0.13067 Right Scapula Thorax Elevation b2 0.1144 

Left Hip Flexion a3 0.1287 Right Sternoclavicular Axial Rotation b2 0.1132 

Pelvis RotX a3 0.1279 Left Sternoclavicular Axial Rotation b3 0.1120 

Right Hip Flexion b2 0.1267 Left Sternoclavicular Axial Rotation a2 0.1106     

PC5 Eigenvector 

components 

PC6 Eigenvector 

components 

Left Sternoclavicular Protraction a5 0.1131 Right Elbow Flexion b5 0.1363 

Left Scapula Thorax Protraction a5 0.1093 Left Elbow Flexion b5 0.1172 

Pelvis RotX b5 0.1047 CoMx b1 0.1171 

Left Glenohumeral Flexion b5 0.1029 Pelvis PosX b1 0.1115 

CoMx b4 0.1016 Pelvis RotY b1 0.1053     

PC7 Eigenvector 

components 

PC8 Eigenvector 

components 

Right Scapula Thorax Protraction a2 0.1409 Pelvis Thorax Rotation b3 0.1443 

Right Sternoclavicular Protraction a2 0.1210 CoMx a4 0.1246 

Right Sternoclavicular Elevation a0 0.1199 Pelvis RotZ b3 0.1172 

Right Scapula Thorax Elevation b5 0.1189 Pelvis PosX a4 0.1146 

Left Glenohumeral Abduction b2 0.1187 Right SubTalar Eversion a5 0.1142     

PC9 Eigenvector 

components 

PC10 Eigenvector 

components 

Left Elbow Pronation a3 0.1441 CoMy a5 0.1430 

Right Hip External Rotation a5 0.1225 Pelvis PosY a5 0.1332 

Left Hip External Rotation a5 0.1187 Right Hip Flexion a5 0.1286 

Right Glenohumeral Flexion a3 0.1173 Left Hip External Rotation a3 0.1268 

Left Wrist Flexion a3 0.1073 Pelvis PosX a0 0.1229 

Table 1 - Overview of the top primal contributors to the first 10 PCs. *PC2 has 13 parameters with the same eigenvector components. 
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Figure 7 – PC4. There are obvious differences between the two models, for example hip abduction, 
pelvic rotation and trunk side bend.  

Figure 6 - PC2 pseudo runners. Obviously there are anthropometric differences between the two 
AMS models. Standard deviation has been multiplied with negative three for the left AMS model, 
and multiplied with positive three for the AMS model to the right. 



 

12 
 

 

Discussion 

This study enabled the investigation of individual running biomechanics. As we covered in the introduction, all runners 

are individual and is able to move differently. Therefore, runners must be considered individually to provide the best 

possible feedback to optimize their running pattern. However, there appears not be a generalized optimal running 

pattern applying to all types of runners. Therefore, we created a parametric running model in AMS to describe the 

individual runner with a minimal set of parameters, able to provide different types of running patterns. Further, the 

model enabled the possibility to adjust the simulated running pattern to optimize kinematics and hereby provide a 

strategy for offloading injury prone areas.  

The parametric running model was based on kinematic data obtained from the company, Kaiser Sport & Orthopedics. 

A representation of the joint degrees-of-freedom and anthropometrics by Fourier coefficients, successfully drove the 

parametric running model. PCA resulted in 90 % of the total variance was explained by the first 39 PCs and 50% was 

explained by the first 10 PCs. Exploring the first 10 PCs, was done individually by offsetting the principal components 

by three and negative three standard deviations. This enabled the creation of pseudo running models representing 

the statistical variation of each PC to evaluate their physical impact. Eigenvectors acted means of translating the 

influence of the given PC to physical parameters such as running techniques and anthropometry of the model. 

PC1 explained approximately 9 % of the total variance and was associated with hip, knee and ankle kinematics, and 

the video of the pseudo models for this PC showed that it influences running velocity. This is in agreement with 

previous findings by Orendurff et al. (2018), who found change in hip, knee and ankle kinematics and kinetics, when 

participants ran by self-selected baseline velocities and hereafter increased their running velocity. PC1 results matched 

PC2 results in order to consider the group of subjects as heterogeneous, as PC2 parameters were predominantly 

anthropometric. It was known that subject height varied from 1.60 m to 1.95 m in respect to variation of PC2. It was 

known from experimental trials, that running velocities varied from 8 km/h to 20 km/h. Thus, a great variation in 

running velocity was noted from experimental trials and explained by PC1 variance. 

Results from PC4 seemed to mainly express movement in the sternoclavicular joint. Further, according to figure 7, 

when looking at the a pseudo-generated models in the frontal plane, the models deviated from the average runner by 

having noticeably more knee abduction. Moreover, the pseudo-models appear to differ in both upper body rotation 

and thorax lean. The pseudo-generated model with noteworthy knee abduction had less upper body rotation and 

were more upright in respect to trunk lean. This is in agreement with biomechanical analysis from a sagittal plane, as 

a forward trunk lean will result in an increased load at the hip and decrease the knee load and vice versa (Powers 

2010), probably because a shift forward of the center-of-mass reduces the moment arm of gravity around the knee. 

Moreover, excessive knee valgus has been linked to hip strength (Claiborne 2003; Jacobs 2007) and can lead to 

Figure 8 - PC6. The major difference is seen at the trunk lean, head and pelvis tilt of the models. 
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osteoarthritis (Felson et al. 2013). Therefore, a preventive strategy could be to strengthen the gluteus maximus and 

medius that have been linked to knee valgus (Hollman et al. 2009). 

Earlier studies have found a correlation between trunk lean and patellofemoral joint stress. A study by Teng & Powers 

(2014) revealed that increased trunk flexion leads to decrease of patellofemoral joint stress, without influencing ankle 

and hip kinematics. Knee extensor moment was significantly decreased and has the potential to reduce injury risk by 

changing trunk kinematics. In this study, PC6 described the variation of the trunk and pelvis angle/rotation in the 

created pseudo models as seen in figure 8. Furthermore, elbow flexion acted as an important parameter in PC6. The 

link is interpreted as increased elbow flexion and general increased elbow movement range will lead to an increased 

forward lean of thorax. Another factor contributing to patellofemoral injuries is excessive hip adduction (Noehren et 

al. 2013), which also can lead to iliotibial band syndrome (Noehren et al. 2007). The primary parameters in PC3 were 

hip adduction, pelvic rotation in frontal plane, but also knee flexion and hip flexion. Like PC1, the pseudo-generated 

model for PC3 also seemed to differ in running velocity, which corresponds to the change in knee and hip kinematics. 

Consequently, a strategy for rehabilitation could be to decrease running velocity resulting in reduced hip adduction. 

In the best practice used by KSO, a major parameter linked to overuse injuries concern ankle eversion. The practical 

experience from KSO is in agreement with studies regarding ankle rear foot eversion/hyper pronation that has been 

linked to different types of injuries (Ryan et al. 1990; Viitasalo & Kvist 1983). Ankle eversion was one of the main 

parameters along with hip rotation and hip adduction in PC8. Additionally, when offsetting PC8 with standard 

deviation +/-3, the pseudo-generated running model showed that one model had severe ankle eversion, knee 

abduction and heel strike. The other model ran striking on the midfoot, leading to more stability in the foot and knee. 

Thus, midfoot landing seem to have a steady impact on the pelvis in frontal plane, knee adduction and ankle eversion.  

As presented earlier, two training physiotherapist at KSO were interviewed with to recover their best practice for 

screening of running customers and interpretation the parameters of the model in view of this.  Similarities between 

observed characteristics of KSO customers and PC parameters were identified. The frequently detected clinical 

biomechanics at KSO were the following. Firstly, the pelvic movement/rotation in all three planes were connected to 

PC3, PC5 and PC6. Secondly, upper body movement in frontal and sagittal planes, but not in the transversal plane, 

where arm movement in the sagittal plane were considered a greater influence. Lateral bending of the thorax was 

observed as a parameter in PC8, and trunk lean was a noteworthy parameter in PC4 and PC6. Thirdly, horizontal 

movement of the feet in frontal plane during swing phase, which from customer experience showed connection to 

pelvic movement in frontal and sagittal plane. PC4 and PC8 both supported these observations, as pelvic rotation and 

horizontal foot movement in frontal plane were visually detected. Finally, step length, step frequency and foot contact 

time were often-considered parameters. However, none of the final clinical observations were noticed as key 

parameters in any of the first 10 PCs. 

There exists a link between running kinematics and injuries. The parametric running model created in this study has 

the ability to be applied to runners based on a few parameters and thereby provide information that could prevent 

injuries or help overcome them. However, the results require interpretation by coaches or physiotherapists to 

establish the parameters that has to be changed. The parametric running model is able to simulate a proposed 

alternative running pattern based on the runner’s need. However, the adaption to an alternative running style also 

demands guidance from professionals. Further, a study from Tartaruga et al. (2012) presented a link between running 

kinematics, such as stride length, elbow range of motion, ankle angle at foot strike etc., and running economy. Hence, 

the properties of the parametric running model also applies for runners who seek to improve their performance and 

not just for injury prevention purposes.  

The pipeline structure of data-input will allow the model to evolve and improve over time. For now, 39 subjects and 

149 trials define the parametric running model according to the running technique and anthropometrics. However, a 

greater population size will contribute to a greater variation of parameters and influence the existing running styles. 

In the study previously mentioned by Kloster & Iversen (2017), a number of the trials that were used to develop the 

parametric running model comprised less than a full period of the running cycle. Thus, to construct a full stride cycle, 

they had to assume symmetry in their model. However, this limitation was not an issue in this study, as we had a 
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minimum of five second coherent recordings for each trial. Asymmetry was noticed in the results of multiple PCs, e.g. 

PC5 and PC9. At KSO, this is a noticeable parameter when working with injury rehabilitation and optimization of 

running kinematics. This is addressed as asymmetry is associated with running compensatory patterns caused by 

previous injuries (Zifchock & Davis 2005). However, the consequences of running kinematics and kinetics have not 

been fully studied scientifically. Carpes et al. (2010) performed a review among asymmetry in running and found 

multiple articles that reporting significant kinematic and kinetic asymmetry, but there are no or few connections 

between injured runners and asymmetry. However, according to practical use at KSO, asymmetry is caused by previous 

injuries and runners often adapt a compensatory pattern, which increases loading in a non-injured areas. 

The next step in the development of the parametric running model, is to add moments, muscle activity and reaction 

forces. Therefore, it was needed to predict ground reaction forces in AMS. A method provided by Fluit et al. (2014) 

enables estimation of ground reaction forces. This method introduces muscle-like actuators with 12 contact nodes 

under each foot. For every contact node, normal forces in the vertical direction is detected and medio-lateral and 

anterior-posterior are added as static friction forces.  

It was by hypothesized by KSO physiotherapists that the parametric running model has great potential with respect to 

their field of work. However, an obstacle in the practical application was assumed to be the adaptation of a new 

running technique of the customers. This would require a serious of attention to ensure that the correct running style 

was trained. Still, the possibilities of the parametric running model are attractive, as simulating running kinematics 

with a few parameters would be less time consuming than the current possibilities. Further, the value propositions of 

KSO entailed developing knowledge regarding coaching and treatment strategies, whereas the model also can 

simulate kinematics and kinetics that is currently unavailable information to the employees at KSO.  
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Supplementary material 

Musculoskeletal modelling 

Simulation of different physical phenomena can provide insight into the workings of nature, including 

biomechanics. Computer-Aided Engineering (CAE) simulates physical processes and phenomena, and in 

biomechanics it is a tool to increase the understanding of human movements. There are, however, some 

complex elements to simulate, as the simulation has to account for soft tissue and bones. Furthermore, the 

movement of the human skeleton is controlled by muscles and activated by the central nervous system (CNS). 

As the human body consists of more muscles than total degrees of freedom, a kinetic redundancy issue arises. 

The redundancy issue can be resolved by introducing an optimality criterion regarding the distribution by the 

CNS to the muscles (Rasmussen et al. 2001). The muscle recruitment strategy is based on the body’s ability 

to survive. Therefore, simulation presumes that the muscles activate in order to reduce energy levels and 

fatigue. This is formulated as 𝐺(𝑓𝑚), provided 𝐶𝑓 = 𝑟, where C is a coefficient matrix, f a vector of internal 

forces and r a vector of external forces.  

In biomechanics, inverse dynamics can be used to estimate muscle activation and other kinetics factors based 

on kinematic data. Inverse dynamics is based on equation solving from Newton’s second law: 𝐹 = 𝑚 ∗ 𝑎, 

where mass is known by the weight of the subjects, acceleration is given by measuring markers during motion 

capture and force is to be solved. In realistic musculoskeletal models, the problem to solve is large and 

complicated and requires computer simulation. Inverse dynamics entails assumptions that limit its 

application field to skilled and non-explosive movements, but it has a computational efficiency that allows 

for models with a realistic level of detail (Damsgaard et al. 2006).  

Fourier series 

Fourier series was chosen as representation of data, as the data can be written as periodic functions and can 

be used to describe data to infinite accuracy from sine and cosine waves. Essentially, Fourier series breaks 

Figure 1 – Fourier series with different Fourier terms (Thangavelu 1996) 



 

18 
 

down any periodic function into a convergent series. The time-based pattern in Fourie series, has the purpose 

of returning/synchronizing the function according to offset and amplitude for every cycle.  

Fourier coefficients act as weights (amplitudes) on the periodic step function, which figure 1 provides a 

graphic representation of how two signals are represented as a Fourier series. The major difference between 

the two step functions are the numbers of Fourier terms. As more terms are added the sine and cosine 

functions will approximate the step function. However, in this study it was hypothesized that having Fourier 

coefficients a0, a1-5 and b1-5 was a good compensation between the Fourie series representation and 

reducing the amount of data. 

Running test setup 

Nine infrared Qualisys M3 cameras were 

setup surrounding the treadmill (see 

figure 2). All of them were positioned at 

a 2.5 meters height above ground level, 

except the two frontal cameras in front 

of the treadmill (the arrow shows the 

directions that the subject is running in), 

they were set at 50 cm height above 

ground level. All cameras were 

positioned strategically so markers could 

be detected from every possible angle. If 

the markers were not fully detected, the 

function ‘Polynomial Gapfill with 

trajectory preview’ was used to gapfill 

the markers. However, if the markers 

had several fall-outs or were missing for 

a longer period, the trial was discarded. 

Reflexes from clothing or footwear were 

covered with non-reflective tape, so it 

would not influence the capture of 

markers. Prior to every test, the area around the treadmill was calibrated with a wand provided by Qualisys.  

 

 

 

 

 

 

 

Figure 2 - Camera setup in Kaiser Sports Lab 
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Marker protocol 

35 markers were attached to the full body and the anatomical placements of the markers are described in 

the following table.  

Marker name Marker position 

R_HEAD Right side of the skull 

L_HEAD Left side of the skull 

SGL (were not used in AMS) Center frontal of the skull 

R_SAE Right acromioclavicular joint 

L_SAE Left acromioclavicular joint 

SME Sternoclavicular joint 

R_AIS Right anterior superior iliac 

L_AIS Left anterior superior iliac 

TV2 Thoracic vertebra, 2nd 

TV12 Thoracic vertebra, 12th 

SACR Sacrum, S1 

R_HLE Right humerus lateral epicondyle 

L_HLE Left humerus lateral epicondyle 

R_HME Right humerus medial epicondyle 

L_HME Left humerus medial epicondyle 

R_RSP Right hand radialis 

L_RSP Left hand radialis 

R_USP Right hand ulnaris 

L_USP Left hand ulnaris 

R_HM2 Right metacarpal 2nd 

L_HM2 Left metacarpal 2nd 

R_PAS Right thigh, 5 cm above patella 

L_PAS Left thigh, 5 cm above patella 

R_FLE Right lateral condyle of femur 

L_FLE Left lateral condyle of femur 

R_TTC Right tibial tuberosity 

L_TTC Left tibial tuberosity 

R_FAL Right lateral malleolus of tibia 

L_FAL Left lateral malleolus of tibia 

R_FCC Right calcaneal tubercle 

L_FCC Left calcaneal tubercle 

R_FM5 Right metatarsal 5th 

L_FM5 Left metatarsal 5th 

R_FM2 Right metatarsal 2nd 

L_FM2 Left metatarsal 2nd 

Table 1 - Marker names and their anatomical position 
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Results 

In this supplementary result section, the remaining top 10 PC pseudo-generated running models are 

displayed. As noted in the rapport, the average model was tested by offsetting three and negative three 

standard deviation, to illustrate the parameters influence on each PC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – PC1 

Figure 4 - PC3 
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Figure 5 - PC5 

Figure 6 - PC7 
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Figure 7 - PC8 

Figure 8 - PC9 
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