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Abstract:

Background: People suffering from ma-
jor motor deficiencies such as amyotrophic
lateral sclerosis (ALS) can not benefit from
usual assistive devices since these devices
require some motor function. Therefore a
brain-computer interface could be of help
to provide an assistive device which do not
require voluntary movements, but motor
intention. This would help the ALS pa-
tients to regain as much independence as
well as improving their quality of life. In the
present study, a random forest (RF) model
was developed in order to detect and clas-
sify reaching and grasping motions for con-
trol of a robotic arm.
Methods: The RF model was developed
using data sets across three sessions which
consisted of 1)performing reaching move-
ment 2) performing grasping movement and
3) performing both reaching and grasping
movements. EEG signals were recorded
across nine channels and motor-related po-
tentials (MRCP) were extracted.
Results: The results showed it was pos-
sible to detect both reaching and grasping
movements with an average true positive
rate(TPR) of respectively 90.63% ± 18.43%
(mean ± standard deviation) and 84.72% ±
21.76% across seven subjects. The classifi-
cation accuracy for reaching and grasping
based on two subjects which participated
in session two were an average of 74.82% ±
11.44% across both subjects.
Conclusion: By using a RF model, it
was possible to detect and classify reaching
and grasping motions. The results shows
promising results of utilizing a MRCP-
based BCI for ALS patients to control a
robotic arm.
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1 | Introduction

Neuromuscular disorders affects the nervous system in such way that a person can lose their
ability to communicate and interact with their environment. Amyotrophic lateral sclerosis
(ALS), multiple sclerosis, brain or spinal cord injury and numerous other neuromuscular
diseases impair the neural pathways that control the muscles in the human body. An im-
pairment of the neural pathways can result in motor disabilities, leaving the person unable
to do voluntary movements.[1, 2]
ALS is a rare progressive neuromuscular disease where neurons are dying, and there are
currently no treatment available. Patients suffering from ALS may have to accept artificial
respiration and as the disease progresses it will eventually lead to death.[3]. In Denmark
it is estimated that around 400 patients are suffering from ALS, whereas in the U.S more
than 2 million is affected. The worldwide prevalence of ALS has not been estimated, but
the prevalence in European countries is estimated to be 2-3 people per year per 100.000
citizens.[4]. The restoration of communication and interaction with the external environ-
ment is crucial for ALS and other patients suffering from neuromuscular disorders. Due to
technological advancements, patients with severe motor disabilities are able to interact with
their surroundings using brain-computer interfaces (BCI). BCI do not require any voluntary
motor functions and can be controlled by using electroencephalography (EEG). BCI makes it
possible for patients suffering from severe motor disabilities to interact with external devices
such as writing letters using a computer or controlling a robotic arm.[1, 5] These applica-
tions among others make BCI a suitable solution for patients suffering from ALS to regain as
much independence as possible and simultaneously improve their quality of life by utilizing
a robotic arm that can perform reaching and grasping. The aim of this thesis is therefore to
develop a detection and classification model that can be used for the control of an assistive
device using reaching and grasping movements.
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2 | Problem Analysis

To understand how electrophysiological signals from the brain occur, the brain’s structure
and functionality will first be investigated together with a focus on ALS’ impact on voluntary
movements. Afterwards a description of the current recording methods to obtain the brain
signals will be presented. The current studies in the field of BCI will afterwards be presented
and at last the aim of this thesis.

2.1 Anatomy and Physiology of the Brain

The central nervous system (CNS) is a part of the nervous system and includes the brain
and the spinal cord. It is the most complex part of the human body and has the ability
to produce actions through motor commands and to form memories and thoughts through
interactions between a network of neurons in the brain. The brain can be divided into three
major parts; the cerebrum, cerebellum, and the brain stem. The cerebrum is the largest part
of the brain and controls all voluntary movements together with the cerebellum.[6]
Cerebrum can furthermore be divided into two brain hemispheres respectively right and left
hemisphere. The muscles to the left of the body are controlled by the right hemisphere and
the left hemisphere controls the muscles in the right side of the body. In each hemisphere
the cerebral cortex is categorized into four lobes; frontal lobe, parietal lobe, temporal lobe
and occipital lobe, which are illustrated in figure 2.1 and described in table 2.1.[6, 7]
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Figure 2.1: The figure illustrates the four lobes of the brain, which are the frontal, parietal, temporal and
occipital lobe. Modified from[8]

Table 2.1: An overview of the different lobes of the brain, respectively, frontal, parietal, temporal and
occipital lobe.

Frontal lobe The frontal lobe is located at the front of the brain and
is associated with motor skills and speech production. At
the back of the frontal lobe lies the motor cortex which is
involved in control and execution of voluntary movements
of skeletal muscles.[6]

Parietal lobe The parietal lobe is associated with processing sensory in-
formation. It responds to stimuli such as temperature and
pain.[6]

Temporal lobe The temporal lobe is the location of the auditory cortex
which is the center of interpreting language and sound and
perception of olfactory stimuli.[6]

Occipital lobe The visual cortex is located in the occipital lobe at the back
of the cerebrum and is associated with interpreting visual
information from the retina.[6]

2.1.1 Amytrophic Lateral Sclerosis and Its Impact on Voluntary Move-
ments

ALS is a neurodegenerative disease which is characterized by a progressive loss of upper
and lower motor neurons. Upper motor neurons are responsible for initiating voluntary
movements and are located in the primary motor cortex in the frontal lobe of the brain.
The general structure and function of a neuron is further described in appendix A. When a
voluntary movement is initiated, upper motor neurons will active the lower motor neurons
located in the spinal cord which activates the muscles. Axons of upper motor neurons
originate in the motor cortex and are connected to the spinal cord whereas axons of the
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lower motor neurons originate in the spinal cord and are connected to the skeletal muscles.[6]
An organization of these motor neurons and the motor cortex can be explained through
somatotopy. These motor neurons originating from the motor cortex are responsible for the
motor control of specific body parts and is represented in specific cortical regions, which are
illustrated in figure 2.2. The figure illustrates that the arm and the hands are among the
largest representation.

Figure 2.2: A representation of the different body parts, which the motor cortex are responsible for.[9]

When a dysfunction of generating action potentials in upper or lower motor neuron occurs,
the targeted skeletal muscles can not be activated. Patients with major motor deficiencies
will therefore lose the ability to execute voluntary movements[10]. This is the case for ALS
patients as they progressively lose their ability to execute voluntary movements. The most
common phenotype is limb-onset ALS where the main characteristics are a progressive loss of
both upper and lower motor neurons. Seventy percent of ALS cases are limb-onset, where the
disease affects the upper and lower limbs, 25% of the cases are bulbar onset, which impacts
the cranial nerves, making it difficult for the patient to swallow and speak. It is also possible
that the disease starts as limb-onset ALS and then later spreads to the cranial nerves. Typical
symptoms of ALS are weakness of the extremities, dysarthria and dysphagia.[11, 10] Five to
ten percent of ALS cases are familial, meaning that there is evidence of genetic inheritance of
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ALS. However in addition to genetics, assumptions of environmental factors such as smoking
has been associated with increasing risk of ALS.[11, 12] Furthermore excitotoxicity has been
taken into consideration as a possible cause of neurodegeneration. Excitotoxcity is a process
where neurons are damaged due to an excessive release of neurotransmitters. The primary
neurotransmitter that are released in the neuron synapses in the brain is glutamate. If the
receptors that binds glutamate are overactivated due to the excessive amount of glutamate,
it can potentially cause neurodegeneration of the motorneurons.[11]
As the disease progresses, patients suffering ALS will have difficulty in executing voluntary
movements, including reaching and grasping movements. Therefore an assistive device with
the use of BCI could be of help.

2.2 Brain-Computer Interface

A BCI is a communication system that enables the human to communicate and/or interact
with its surroundings without the use of voluntary movements, which makes it a useful tool
for people suffering from ALS.
There are two types of BCI systems which are known as synchronous and asynchronous
BCI.[5]

• Synchronous BCI (cue-paced BCI): Acts upon a cue stimulus. In this approach, brain
signals are analyzed only in a predefined time frame, allowing the subject to create ar-
tifacts such as blinking and swallowing since it would not be affected by the analysis.[5]

• Asynchronous BCI (self-paced BCI): Does not act on a cue stimulus. It continuously
analyzes the brain signals, which makes the BCI system more sensitive to artifacts e.g.
eye movements or blinking. Although it is more preferable as it allows the user to use
the system whenever it is wished.[5]

Before the 2000’s, BCI technology was not desired due to the resolution of the signal. The
complications also lied within the computational power of the BCI systems, as it require
real-time data acquisition. However, due to technological advancements, investigation of
BCI has led to an usage of BCI systems and it is being utilized by people with severe motor
disabilities, among other dysfunctions, to recover their motor functions through neuroreha-
bilitation programs.[5, 13] Most rehabilitation programs for patients with motor deficiencies
includes motor learning, where patients learn to train their motor function. This requires
some motor functions in order to work.[14] ALS patients with no motor control at all, can
not benefit from these rehabilitation programs which is why a BCI system can be used for
ALS patients for control of a robotic arm to perform reaching and grasping.

2.2.1 Signal Acquisition of Brain-computer Interfaces

Two methods are available for recording of the brain activity for BCI systems, which are
electrophysiological and hemodynamic methods. Electrophysiological signals can be obtained
due to neuron activity. When neurons exchange information through neurotransmitters, they
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are generating action potentials. These action potentials are ionic currents that flow through
the cell membrane and thereby creates a dipole between the two endpoints of a neuron.
Electrophysiological signals can be obtained through electroencephalography (EEG), electro-
corticography (ECoG), intracortical neuron activity and magnetoencephalography (MEG).
ECoG measures the neuron activity using electrodes that are surgically implanted on the
motor cortex.[5] Intracortical neuron activity measures the neuron activity by implanting
electrodes inside of the motor cortex. Three types of signals can be obtained from intra-
cortical neuron activity which are, single-unit activity (SUA) which measures activity of a
single neuron, multi-unit activity (MUA) which measures activity of multiple neurons and
local field potential (LFP) which is a composite signal based on input of the activity from
multiple neurons.[5] MEG measures the magnetic field generated by ionic currents. During
neuron activity, the neurons will need more energy than the inactive neurons. The blood
will therefore release glucose in order to provide more energy to the active neurons. These
changes in the concentration of oxyhemoglobin can be obtained through neuroimaging meth-
ods such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy
(NIRS). fMRI measures the changes in the concentration of the oxyhemoglobin to locate
active regions in the brain through electromagnetic fields. NIRS uses infrared light to pen-
etrate the skull in depths around 1-3 cm to measure the changes in oxyhemoglobin. Table
2.2 provides an overview of the above mentioned methods and their differences in temporal
resolution, spatial resolution, the methods risk and their portability.[5]

Table 2.2: The table shows the different types of electrophysiological and hemodynamic methods of recording
brain activity and their spatial resolution. Furthermore it gives an overview of whether the methods are non-
invasive or invasive as well as if the method is portable. The temporal resolution is given in seconds (s) and
the spatial resolution is given by milimeters (mm).

Method Activity response Temporal
resolution
(s)

Spatial
resolution
(mm)

Risk Portable

EEG Electrophysiological 0.05 10 Non-invasive X
ECoG Electrophysiological 0.003 1 Invasive X
Intra-
cortical
neuron
activity

Electrophysiological 0.003
0.05 (SUA)
0.1 (MUA)
0.5 (LFP)

Invasive X

MEG Magnetic 0.05 5 Non-invasive X
fMRI Metabolic 1 1 Non-invasive X
NIRS Metabolic 1 5 Non-invasive X

A portable BCI system for patients with severe motor disability is preferred as it would help
the patients to use the system freely with no restrictions in regards to location. For instance
if they were needed to control a wheelchair, the system would preferably be portable. ECoG
and intracortical neuron measuring have higher spatial resolution since they are surgically
implanted on the cerebral cortex, giving the method an advantage to measure neurons with
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maximal signal-to-noise ratio. However, it is more practical to use EEG to measure neuron
activity due to its advantages of being non-invasive, cheap, portable and a low temporal
resolution.[5, 13] EEG is the most popular recording method due to its non-invasive proce-
dure, however there is a trade-off between signal quality and the recording method. ECoG
or intracortical neuron measuring have high spatial resolution, meaning they provide infor-
mation directly related to the neurons. However, they are invasive methods. EEG signals
have low spatial resolution since they are recording across the scalp. They are poor quality
signals as they are small and can often be mistaken for noise. However, preprocessing meth-
ods can be applied to improve the signal quality and due to its non-invasive procedure and
its temporal resolution, it will therefore be used to obtain the brain activity in this study.[5]

2.2.2 Control Signals of Brain-computer Interfaces

In order to control and interact with a BCI, several phenomena can be extracted and decoded
from the EEG signal which are used for the BCI to interpret the intention of the user. The
extracted phenomena can be divided into two categories: evoked potentials and event-related
potentials (ERP). [13, 5]

Evoked Potentials

Evoked potentials are the measured brain response related to external stimuli such as visual
stimulus and auditory stimulus. The most common types of evoked potentials are steady-
state evoked potentials (SSEP)
SSEP are signals related to periodic external stimulus for instance a LED flickering while
observed by the subject or a periodic audio stimulus. Such stimulations will impact the brain
signals frequency to reach the same frequency of the flashing LED and thereby harmonize
with the frequency of the LED’s or of auditory stimulus. If the frequency of the stimulation
is >3.5 Hz it is called a ’steady-state’, whereas stimulation frequencies <3.5 Hz are called
’transient’ visual evoked potentials[13]. Steady-state visual evoked potentials (SSVEP) are a
SSEP that are generated through a repetitive visual stimuli of LED’s at a specific frequency
typically between 6-30 Hz. The visual stimuli will generate a potential that has the same
frequency of the LED, for instance if a LED is flashing at 15 Hz, the SSVEP can be detected
at 15 Hz in the frequency spectrum of the EEG signal.[5, 13]. Figure 2.3 illustrates the
SSVEP detected when a subject stares at a LED flickering at 15 Hz. The second and third
order harmonics for the 15 Hz SSVEP is also visible in the figure.
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Figure 2.3: A power spectrum of a recorded EEG signal. The SSVEP is being detected at 15 Hz together
with its second and third order harmonic frequencies, respectively 30 Hz and 45 Hz.[15]

Event-related Potentials

ERP are the measured brain response related to cerebral activity in regards to sensory
and cognitive processes. The commonly used ERPs are sensorimotor rhythms (SMR) and
movement-related cortical potentials (MRCP). SMR is made up by osciliations in the brain
activity of the alpha (8-13 Hz) and beta band (13-30 Hz). SMR are frequency bands located
over the motor cortex. Therefore the power of the signal in the respective bands changes
when they are related to voluntary motor tasks. These modulations in the power are as-
sociated with neuronal structure underlying the motor cortex and can be seen in the EEG
oscillations, known as event-related synchronization (ERS) and event-related desynchroniza-
tion (ERD).[5, 16] Both can be measured at the same time when performing a motor task,
where ERD is indicated as a suppression within the alpha band and beta band over the con-
tralateral sensorimotor cortex. Furthermore, the ERS increases within the alpha and beta
band over the ipsilateral sensorimotor cortex.[16] Although the actual movement execution
is not required to generate the responses and can be done through motor imagery, where the
variation in the signals occurs due to motor imagery of the arm or leg. Motor imagery is a
term for imagining a movement without executing it.[5, 13]
MRCPs are a slow cortical potential (SCP) and are found between 0.1-5 Hz in the frequency
range. It is present in the EEG signal as a negative shift that starts 2 seconds before the
execution or imagination of a voluntary movement. The negative shift represents increased
neuronal activity, which can be related to the neuronal activity before initiating the volun-
tary movement or motor imagery. Due to MRCP’s being directly related to movement, they
can be used as a control signal to detect movement.[17]
Figure 2.4 illustrates the representation of a MRCP. A MRCP consists of a Bereitschafts po-
tential (BP) followed by a motor potential (MP) and a motor monitoring potential (MMP).
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BP is considered to be related to motor preparation and is the first part of the MRCP which
begins 2 seconds before movement onset. The BP2 in figure 2.4 is also known as the late BP,
which is a steep negative slope that occurs approximately 400 ms before movement onset.
The negative steep of the late BP can be influenced by factors such as the complexity of the
movement. MP and MMP are respectively related to movement execution and performance.
[17, 18]

Figure 2.4: A MRCP and its components with early and late BP, MP and MMP. The black line represents
a MRCP for an executed movement, and the gray line represents a MRCP related to an imaginary movement.
Modified from [17].

Several of these control signals can be used to interpret information of voluntary movements
in patients with ALS. An understanding of the current research field is needed to clarify
which of these phenomena can be extracted for motor-related tasks such as controlling an
external device e.g. robotic arms.

2.3 State of the Art
There are no golden standards for which phenoma that are best suited, when developing a
BCI. This section will give an overview of the current studies of BCI systems that extracted
SSEP’s and ERP’s in order to control an external device for grasping and reaching, which
can be utilized by patients with severe motor disabilities.
A number of approaches for controlling BCI systems have been proposed. These studies
used different control signals in order to classify or detect voluntary movements. A study by
Müller-Putz et al. [19] presented a SSVEP-based BCI for control of an electrical prosthesis.
Four LEDs were mounted on the hand prosthesis where each LED had its own function;
turn left/right and open/close. To produce these actions, the subjects were required to have
direct eye contact on the desired LED to turn on the switch. Results showed three of the
four subjects had classification accuracies from 74% to 88% where the fourth subject had
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a classification accuracy of 44%. The study indicates that SSVEP-based systems can be
used instead of motor-related control signals for control of a robotic arm. SSVEP-based BCI
systems are very often used due to low training time, and the number of choices are high
(more than four choices). However, SSVEP-based BCI systems requires external stimuli.
This might not be optimal as subjects can get fatigued of the flickering LED stimulation.
Furthermore it is not practical to look at LEDs to control a prosthesis. Control signals related
to motor-related movements would therefore be more preferable than evoked potentials.
A study by Pfurtscheller et al. [20] investigated an ERS/ERD-driven BCI system to control
a hand orthosis for grasping in a high-level spinal cord injury patient. The study consisted
of 160 trials in which the patient was asked to imagine either left/right movement of the
hand or the legs. A classification accuracy of 65% was achieved by imagining right vs. left
arm movements to open and close the hand orthosis. However, this accuracy was improved
by using various strategies. In the last training sessions, the strategy was for the subject to
imagine movement in both legs and in the right arm. Motor imagination of both legs would
close the hand and motor imagination of right hand would open the hand orthosis. This
improved the classification accuracy to 95%. Topological measurements of the subject’s brain
showed changes in the motor cortical area, indicating neuroplasticity changes in the motor
cortex which was induced through the training sessions.[20] SMR can be used as a control
signal to detect grasping. However, SMR requires a lot of training before any physical
or functional changes can be seen[21]. Another approach to utilize a BCI through motor
imagery without weeks of training could be a MRCP-based BCI. In a study presented by
Niazi et al.[17], detection of MRCPs was investigated in both healthy and stroke subjects.
The proposed algorithm was able to detect movement execution and motor imagination.
Movement execution in healthy subjects had a true positive rate (TPR) of 82% ± 7.8% and
motor imagination for both healthy and stroke subjects had a TPR of 64% ± 5.33% and
55% ± 12.01%. The study showed promising results for detection of MRCPs without many
training sessions. A study by Xu et al.[22] also presented a MRCP-based BCI system. Nine
healthy subjects performed both motor execution and motor imagination of lower limbs.
The mean TPR for both motor execution and motor imagination combined was 79% ± 11%
indicating it was possible to detect MRCPs in healthy subjects only. A study by Bhagat
et al.[23] extracted MRCPs to control a MAHI Exo-II upper limb exoskeleton for extension
and flexion of the elbow. Four stroke patients were enrolled in the study with the purpose
of detecting motor intention of flexion and extension of the elbow. The study obtained
an overall TPR of 64.86% ± 18.35% for motor intention across all subjects. However, one
subject managed to achieve a TPR of 91% ± 10%. The study indicates MRCPs can be
extracted and utilized by a BCI for control of an upper limb exoskeleton.

2.4 Project Statement
Patients suffering from major motor deficits caused by ALS will progressively lose their abil-
ities to execute voluntary movements. BCI has opened up the opportunities to help patients
with major motor disabilities to control hand and arm exoskeletons. When working with
BCI systems related to motor control, MRCP’s are relevant as they are directly related to
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motor movement and requires no training to be generated. Decoding these control signals
can therefore potentially help ALS patients and other patient groups suffering from major
motor dysfunctions, to utilize a BCI for control of a robotic arm. This project sets out
to develop a MRCP-based BCI for patients suffering ALS in order to control reaching and
grasping of a robotic arm to help them regain as much independence in their everyday life
as possible. This leads to the aim of the project:

How can a MRCP-based BCI system be developed in order to detect and classify
reaching and grasping for rehabilitation purposes to help patients suffering from
ALS?
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3 | Methodology

In this chapter each step of the model implementation will be presented. First the pipeline
of the study, then the subsequent sections that explains the methods that were carried out
in each step of the study design. The five sections are; signal acquisition, preprocessing,
feature extraction, feature selection, classification and evaluation.

3.1 Study Design
A standard pipeline that can be applied to any classification problem, including BCI systems
is illustrated in figure 3.1. The proposed pipeline divides the model in four steps which are
preprocessing, feature extraction, feature selection, classification and evaluation.[5]

Figure 3.1: A flowchart representing a classic classification pipeline in order to achieve the classification
model.

Two main objectives for the development of the model was pursued.

1. How well can the model detect reaching and grasping?
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2. How well can the model classify reaching and grasping?

The first objective sets out to investigate how well reaching and grasping can be detected
from a resting period. The second objective sets out to investigate how well the classifier
can classify reaching and grasping.

3.2 Signal Acquisition
Data sets from seven subjects were previously recorded and provided in order to detect
reaching and grasping. The recording took place over two sessions. The sessions took place
on two different days. The first session consisted of executing only reaching movement and
the second session consisted of only grasping movement. The subjects were seated in a
chair with a table placed in front of them where the arm laid in a resting position. A
computer monitor was placed in front of the subjects and was used to give directions to
the subjects respectively, rest and focus. Figure 3.2 shows the experimental setup. During
rest, the subject was allowed to swallow and blink, whereas during focus, the subject was
instructed to withhold swallowing and blinking in order to avoid artifacts while performing
either reaching or grasping for three seconds. The movement was executed after a cue was
presented on the screen during the focus state. After performing the movement, the subjects
were resting for 5 seconds before executing the movement again. In total 60 movements were
executed where a small break of 5 minutes were held after the first 30 movements. Each
movement was instructed to be performed ballistically.
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Figure 3.2: Experimental setup for one of the trials for a subject. The subject was seated in front of a
monitor with the arm resting on the table. The monitor gave instructions to the subject, respectively rest
and focus. During resting, the subject was allowed to blink and swallow, however when the text changed to
focus, the subject was instructed to withold blinking and swallowing. During focus the subject performed
either reaching or grasping movements when given a cue on the monitor.

The experiment in which the seven subjects were participating in, was carried out over two
sessions, making the data sets unavailable to classify between reaching and grasping. The
EEG signals would have different amplitude scaling and therefore biased due to both physical
and experimental differences such as different mood or a different placement of the EEG cap.
Two subjects were therefore enrolled to participate in a third session in order to obtain data
sets that could be used to analyze how well a classifier can classify reaching and grasping.
The same experimental protocol was followed as for the seven subjects who were recorded
prior to this study, however in this session both reaching and grasping movements were
performed.
The signals for all subjects were recorded from electrodes placed over the frontal, central
and parietal lobe according to the 10-20 EEG system, which is illustrated in figure 3.3.
Electrodes were mainly placed around the motor cortex since that area is related to motor
related movements. The EEG signals were recorded across nine channels; F3, FC5, FC1,
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T7, Cz, C3, CP5, CP1 and P3.

Figure 3.3: An extended version of the international 10-20 EEG system. The green markings indicate the
nine channels used in the EEG recordings. The ground electrode was placed on the left ear, marked with ’R’
and the reference electrode was FZ. Modified from [24].

EMG signals were recorded simultaneously with the EEG signals. Two recording electrodes
of the type 720, AMBU A/S for the EMG signal were positioned on the belly of the muscle
extensor carpi ulnaris on the right arm.
All signals were recorded using a sampling frequency of 1200 Hz.

3.3 Preprocessing
Preprocessing is a preliminary step towards achieving the fundamental data set for further
processing. The preprocessing step aims to reduce the amount of noise contaminating the
EEG signal, to remove outliers and to extract epochs containing the MRCPs from the filtered
EEG signal. Figure 3.4 shows the different preprocessing steps for the data in this study.
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Figure 3.4: A flowchart showing the preliminary approach to obtain the dataset for further processing. The
steps include filtering the signal from noise, detect movement onset and at last extracting the time window
of the MRCPs.

3.3.1 Filtering

The EEG signals from all nine channels were bandpass filtered using a second order butter-
worth filter to prevent ripples in the passband and stopband. The filtering causes a phase
shift in the signal. To prevent this problem, a zero-phase filtering was performed using the
filtfilt function in MATLAB. The cut-off frequencies were 0.05 and 3 Hz which is the
frequency range of the MRCP. These signals will be used for temporal feature extraction.
Figure 3.5 shows an example of an EEG signal after applying the bandpass filter. Further-
more, to extract the features of the wavebands delta (0.01-3 Hz), theta (4-7 Hz), alpha (8-13
Hz), beta (16-31 Hz) and gamma (32-100 Hz), all nine channels were bandpass filtered ac-
cording to the frequency ranges of their respective brainwave bands. The brain wavebands
are further described in appendix B.
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Figure 3.5: Filtered EEG signal using a second order butterworth bandpass filter with cut-off frequencies
of 0.05 and 3 Hz.

In order to extract the epochs with the MRCPs, the movement onset in the EEG signals
was located. The EMG signals were first filtered and corrected for DC-offset by applying a
second order butterworth high-pass filter with a cut-off frequency of 10 Hz. Afterwards a
full-wave rectification was obtained by converting the EMG signal to an output signal with
only positive values. The absolute positive values were used in order to detect beginning of
the EMG burst which is related to movement. After the full-wave rectification, the EMG
signal was low-pass filtered using a second order butterworth filter with a cut-off frequency
of 3 Hz to obtain the envelope of each EMG burst. Figure 3.6 shows the final outcome of
the EMG signal after the preprocessing steps.
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Figure 3.6: Low-pass filtering the rectified EMG signal results in a smoother signal with no noise. The
beginning of each EMG burst can afterwards be used for the detection of the movement onset in the EEG
signal. The y-axis is normalized from 0-1.

3.3.2 Movement Detection

A threshold was manually placed with the mouse cursor in each EMG signal to detect
beginning of each EMG burst, which is illustrated in figure 3.7. This resulted in total of 60
EMG burst for each movement respectively reaching and grasping, which corresponds to the
60 movements which were executed in the sessions.
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Figure 3.7: A manual threshold is placed with the mouse cursor. The start of each EMG burst above this
threshold is detected. The red lines indicates the 30 bursts of EMG that are detected.
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3.3.3 Extracting Epochs

After detecting the EMG peaks, the movement onset in the EEG signal was located by
locating the maximum peak negativity as it was related to the motor potential component
of the MRCP. Signal epochs were extracted 1 second prior the movement onset and 1 second
after. Afterwards the epochs were extracted 1 second prior and after the maximum peak
negativity as it was related to the MP component in the MRCP, which is illustrated in figure
3.8. 60 epochs of resting signal were also extracted which were epoch signals between 4 and
2 seconds prior to movement onset. In total 60 epochs of MRCPs from each reaching and
grasping data set was obtained together with 60 resting epochs.[25]

Figure 3.8: The extracted epochs 1 second prior and after the maximum peak negativity. The green signals
are all the 60 epochs of the reaching movement extracted from channel C3. The blue line is the mean of all
the 60 epochs for this channel.

Epoch signals based on the brainwave frequency bands were also extracted in order to be
used for extracting features related to the brain rhythms for each respective band.[25] Figure
3.9 illustrates the epoch signals and the mean of the alpha frequency band for the reaching
movement.
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Figure 3.9: All the epochs 1 second prior and after the maximum peak negativity for the filtered EEG
signal related to the alpha band. The desynchronization of the neurons is illustrated by the ERD supression
centered at the MP.

During the experiment, some subjects were blinking while executing the movements, resulting
in the epochs to be contaminated with EOG and were seen as outliers. These epochs were
removed from the data set by a threshold that would remove the epoch if the peak-to-peak
value were greater than 80 µV. The threshold value was empirically chosen by examining
the epochs consisting of the blinking artifacts. Epoch signals which had values below -40 µV
were also removed from further processing.

3.4 Feature Extraction
Features were extracted based on knowledge of the properties of a MRCP. In section 2.2.2
the components of the MRCP were described. It was illustrated that the first segment of
the MRCP is a slow progressing negative slope which is the BP, followed by a steep negative
slope which is characterized as BP2. The MP is the maximum peak negativity of the MRCP.
To derive the properties of each component, the epochs were separated in six segments where
two of them consisted of 1s and the remaining four consisted of 0.5s. These segments are
expected to represent the components of the MRCP. Figure 3.10 illustrates the epoch signal
which is divided in six segments. The time interval for each segment is given in table 3.1.

21



Figure 3.10: An example of an epoch signal in which features will be extracted. The length of the epoch
signal is 2 seconds. Features will be extracted from six segments, where four segments will consist of 0.5
seconds, and two segments consisting of 1 second. In this way the whole epoch signal will be divided in order
to capture each component of the MRCP.

Table 3.1: The time intervals of each segment related to the epoch signal. These segments will be used in
the feature extraction, where features will be extracted based on the time intervals.

Segment Time interval (seconds)
1 [0 - 1]
2 [0 - 0.5]
3 [0.5 - 1]
4 [1 - 1.5]
5 [1.5 - 2]
6 [1 - 2]

The MRCP has properties that can be explained in the time-domain. Furthermore, features
can be extracted from the powerband of the respective brain wave bands, delta, theta, alpha,
beta and gamma. Therefore temporal features and features related to the powerbands will
be extracted.

3.4.1 Temporal Features

Temporal features has the purpose to extract statistical features of the MRCP. The compo-
nents of BP1 and BP2 along with the MP and MMP can be quantified by measurements such
as mean or the slope of each component. Therefore three temporal features were extracted
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from each segment: mean, variance and the linear slope of each segment.

3.4.2 Powerband Features

For the epoch signals that were low-pass filtered to each respective brainwave frequency, two
features were extracted which were the mean and the slope of each segment. In total, 60
features related to their respective frequency band were extracted for each epoch signal per
channel. Not all features represents the signal equally. It was therefore necessary to select a
subset of features that represents the data set best and to avoid the curse of dimensionality.

3.5 Normalization and Feature Selection
Feature sets for each subject were prepared for feature selection and further processing by
normalizing the feature set using the z-score which is given by equation 3.1. The z-score
measures the distance of a data point x from sample data with mean x in units of the
standard deviation S

z = (x− x)
S

(3.1)

Normalization is a recommended step in order to achieve a higher classification accuracy and
it is required for some classifiers that the feature set is normalized.

Feature selection is a method which is often used in machine learning. The technique is
used to reduce the feature dimensionality by selecting a subset features that represent the
data set the best and remove redundant features which are seen as noise in the feature
set.[5, 26] There are three methods for feature selection which are; filtering approach, wrap-
per and embedded methods. The proposed study used both the wrapper and embedded
method.
Filtering approach is a simple method for feature selection, which is done without taking
the model into consideration. A filter approach could be to remove correlated features or
remove features based on a t-test, where features which do not differ significantly will be
removed.[26]
Wrapper methods are machine learning algorithms that aims to minimize a loss function or
the classification error by selecting features iteratively e.g. sequential forward or backward
selection. Sequential forward selection (SFS) sets out to compute a classification error for
each feature and selects the vector of features that achieves the lowest classification error
with minimal risk of overfitting.[26] The optimal number of features are chosen when the
algorithm converged at the local minimum.
Embedded methods are a feature selection methods which finds the features that perform
best during the training phase of the model and is a build-in function within the chosen
model. Models that performs feature selection during training are boosting trees or random
forest tree (RF).[26]
SFS and the embedded method were used in this study, however SFS did not improve the
classification when used with the embedded method. Furthermore it was investigated if some
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of the features were providing misleading information. This was the case for features related
to the gamma band. Signals in the gamma band differed from the rest of the frequency
bands and would therefore always be chosen as the most important features during feature
selection. The features provided a poor classification and it was not expected these would be
chosen. However, after removing the gamma features, the feature selection methods would
choose features which could be explained and gave a better performance. Features related
to the gamma band were therefore excluded from further processing.

3.6 Classification and Evaluation
A channel-wise classification was conducted to detect and classify reaching and grasping
movements. It was of interest to investigate how well the classifier was able to detect reaching
and grasping from rest based on the seven subjects. Furthermore, it was of interest to
investigate how well the chosen classifier perform in order to classify reaching and grasping
based on session involving the two subjects. In the present study RF classifiers were evaluated
for the detection and classification of reaching and grasping motions.

3.6.1 Decision Trees and Random Forest

Decision trees are a hierarchical tree-like model where the main components of the model
are called nodes and leaf nodes. The model classifies each class label based on a series of
logical conditions, either true or false statements, where each question is contained in a node.
The decision tree starts from the top at the root node and then splitting the given training
data into several subnodes based on the logical condition.[27, 28] Each subnode is called an
internal node which contains a logical statement. The class is labelled when it reaches the
leaf node which has no links to other internal nodes. Figure 3.11 illustrates an example of
how a possible decision tree would be constructed for detecting reaching movement based
on the slope of the fourth segment (S4) and the mean of the first segment in the alpha band
(AM1). The nodes and subnodes are illustrated by the triangles whereas the circles are the
leaf nodes which assigns the class label. If S4 is less than 2, the decision tree would label
that sample as rest. However, if S4 is greater or equal to 2, an additional node will determine
the outcome of the sample. If AM1 is greater or equal to 3, it would indicate this sample is
associated with a movement, which would be the reaching movement in this example.
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Figure 3.11: An example of how a decision tree possibly would be constructed for detecting reaching. The
nodes and subnodes are illustrated as the triangles and are related to the features whereas the leaf nodes are
the solid dots which indicates the target labels.

Ideally, the perfect split is when the training set can be classified based on one question.
Based on this the classifier would label the training set as clean as possible. A measure of
how pure the node classifies the training data in a node is given by the Gini index. The Gini
index is a value between 0 and 1, where 0 indicates a high homogeneity of the training data,
which is preferred, and 1 represents an inhomogeneous distribution of the class labels.[29]
The Gini index is given by equation 3.2

i(N) = 1 −
∑

i

P 2 (3.2)

where i(N) is the impurity measure for node N and P is the probability of a class falling into
the node N. The Gini index is a sum of squared measure of the likelihood a class will fall
into a node. Since each node represents a feature, the Gini index can be used to illustrate
the importance of each feature.[29, 27]
However, a problem with the decision tree model is its high variance. An instability of the
hierarchical tree structure can affect the classification due to a small change in the data set.
Growing deep trees increases the complexity of the model and also adds the risk of overfitting
the data. Several methods can be applied to avoid overfitting such as pruning the leaf size
or build a less complex tree model.[30] However, another approach can be applied, which is
a RF classifier. RF is an ensemble classifier which sometimes achieves a higher performance
than simple classifiers such as, linear discriminant analysis (LDA), support vector machine
(SVM) and k-nearest neighbor[31]. However, in regards to the no free lunch theorem, there is
no universally best machine learning model. A common standard is therefore to test several
classifiers for the given classification problem.[31] In this study RF outperformed regularized
LDA and SVM classifiers. The results of the LDA and SVM classification can be seen in
appendix D and E.
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In RF, several decision trees are built and each decision tree predicts on several bootstrapped
training sets from the original training set and thereby "votes" for a class. The class with
most votes is chosen as the final prediction. For each decision tree, a subset of features are
randomly selected. The implementation of RF was based on the Classification and Regression
Trees (CART) method proposed by Breiman[32]. The decision trees were grown to maximum
size by setting the leaf size to 1[32]. Increasing the number of leaf size can potentially reduce
the classification accuracy on large data sets. It was previously mentioned that a deep
decision tree is prone to overfit, however it is not the case for a RF model, as it takes several
decision trees into consideration and therefore reduces the variance[32]. Furthermore the
number of features randomly selected in each node was set to be square root of the total
amount of features. The total amount of features were 66 for each channel. The number
of features for to create the best split was therefore nine features in each tree.[33] When
performing a RF classification it is not necessary to apply a cross-validation scheme. RF
holds out 1/3 of the data set as test set and estimates an unbiased classification error called
out-of-bag (OOB) error. In order to get an unbiased error estimation, it is suggested to grow
decision trees past the point where the OOB error converges. [32] It was investigated how
many trees which were necessary for both objective. For the classification between reaching
and grasping, the optimal number of trees was set to 800. For the detection of reaching and
grasping, the optimal number of trees was set to 300. In general there is no rule of thumb
for how many trees should be generated, but a large number of trees gives a stabilized OOB
error and feature importance.[32] The optimal number of trees were found when the OOB
error was lowest and did no longer improve.

3.7 Model Generation
The channel-wise classification was carried out by finding the channel that generalized best.
The average OOB error was calculated for each channel. The channel with the lowest average
OOB error was chosen as it was assumed it generalized well. Figure 3.12 illustrates the
process of how each channel was used to train the classifier. The remaining eight channels
were then used as unseen data to measure the performance metrics. This process was done
for both objectives, respectively detection of reaching and grasping, and the classification of
reaching and grasping.
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Figure 3.12: The process of building the optimal classifier was done through these steps. First channel 1
was used as training data to train the classifier. The channel was furthermore split into training and test
where the RF model hold 1/3 of the data out as test set. The average out-of-bag error from each channel was
used to evaluate how well the classifier generalized. This process was completed when all nine channels had
been used as training. The channel with minimum average out-of-bag error was chosen. N is the number of
epochs.

3.7.1 Evaluation Metrics

The performance of the RF classifier were evaluated on each channel which were used as
unseen test data. To evaluate the classification performance of each channel, following eval-
uation metrics were used.

Accuracy

The accuracy of the classifier determines how well the classifier correctly classifies the two
classes, for instance the reaching movement and rest. Accuracy is given by equation 3.3 [34]

Acc = TP + TN

TP + TN + FP + FN
(3.3)

where TP and TN are true positives and true negatives, where FP and FN are false positives
and false negatives. It is the ratio of correct predictions over the total amount of all cases.[34]

Error Rate

Error rate illustrates how often the classifier is wrong and it is given by equation 3.4.[34]

Error = FP + FN

TP + FP + TN + FN
(3.4)
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The error rate is also called the misclassification error and is the opposite of the accuracy.
It measaures the ratio of incorrect predictions over the total amount of all cases.[34]

Sensitivity

Sensitivity is a measure of the correctly identified TP compared to FN For instance when
it is detecting reaching, how often does it classify reaching correctly. Sensitivity is given by
equation 3.5. [34]

Sensitivity = TP

TP + FN
(3.5)

Specificity

Specificity measures the opposite of sensitivity. It measures the fraction of correctly identified
TN. Specificity is given by equation 3.6. [34]

Specificity = TN

TN + FP
(3.6)

Precision

Precision is a metric which is used to measure the amount of correctly predicted cases out
of all the positive predictions and is given by equation 3.7.[34]

Precision = TP

TP + FP
(3.7)
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4 | Results

In this chapter, the performance of the RF model will be presented along with the feature
importance for each subject. First the performance of detecting reaching and grasping within
the seven subjects will be presented along with their feature importance. Afterwards the
performance of how well the model can classify reaching and grasping will be presented
together with the feature importance of the two subjects who participated in session three.

4.1 Detection of Reaching and Grasping
The results of the RF classification for detecting reaching and grasping for the seven subjects
can be seen in table 4.1 and 4.2. The tables show the average performance metrics and their
standard deviation and indicates the performance of detecting reaching is slightly higher
than detecting grasping by achieving an average TPR of 90.63% ± 18.43% (mean ± standard
deviation) for all seven subjects. Overall, the percentage of error estimation for detecting
reaching and grasping are respectively, 8.04% ± 11.61% and 10.63% ± 12.52%.

Table 4.1: The average obtained performance metrics for detecting reaching movement for the seven subjects.
Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of reaching
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)

91.96 ± 11.61 90.63 ± 18.43 94.29 ± 8.54 95.75 ± 5.64 8.04 ± 11.61

Table 4.2: The obtained average performance metrics for detecting grasping movement for the seven subjects.
Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)

89.37 ± 12.52 84.72 ± 21.76 95.15 ± 7.94 95.37 ± 8.12 10.63 ± 12.52

Figure 4.1 and 4.2 shows the feature importance for each subject in regards to the detection
of reaching and grasping, respectively. The most important features were related to the
frequency powerbands, delta, theta, alpha and beta, which all are important wavebands
during voluntary movements. For an explanation of the features, see appendix C.
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Feature importance of seven subjects for detecting reaching

Figure 4.1: Top ten most important features for the seven subjects that were provided prior the study for
detecting reaching movement. The y-axis is the feature importance which is given by the Gini index and the
features are along the x-axis. The top ten features are mainly dominated by features from the powerbands.
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Feature importance of seven subjects for detecting grasping
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Figure 4.2: Top ten most important features for the seven subjects that were provided prior the study for
detecting grasping. The y-axis is the feature importance which is given by the Gini index and the features
are along the x-axis. For the detection of grasping, the most important features are a mix between features
from the time domain and the powerbands.
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4.1.1 Channel-wise Performance

Figure 4.3 and 4.4 shows the overall performance metrics for all seven subjects for the
detection of reaching and grasping. The channel F3 is the worst performing channel in both
detection algorithms in contrast to the other channels which achieves an overall accuracy
>85%. Overall each channel achieves an acceptable performance.

Channel-wise performance of detecting reaching movement
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Figure 4.3: The overall average performance metrics for all seven subjects for each channel when detecting
the reaching movement. The standard error of the mean is indicated by the error bars.

Channel-wise performance of detecting grasping movement
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Figure 4.4: The overall average performance metrics for all seven subjects for each channel when detecting
the grasping movement. The standard error of the mean is indicated by the error bars.
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4.2 Classification of Reaching and Grasping
Table 4.3 shows the performance metrics of the data set consisting of reaching and grasping
features for the two subjects. The average performances of the RF classification were ob-
tained by averaging the performances for both subjects across all channels. The classification
accuracy of reaching and grasping was 74.82% which indicates the classifier fails to classify
between the two movements in 25.18% of the cases.

Table 4.3: The average results for both subjects for the classification of reaching and grasping using a
Random Forest model. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. =
Precision.

Classification of reaching and grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)

74.82 ± 11.44 72.69 ± 13.13 77.13 ± 10.63 76.39 ± 11.09 25.18 ± 11.44

Feature importance of both subjects were derived and are shown in figure 4.5. The most
important feature for subject 1 was the slope of the fourth segment (S4) and the most
important feature for subject 2 was the mean of the first segment in the theta band (TM1).
The top ten features for subject 1 was a mix between temporal and frequency features,
whereas the top ten features for subject 2 consisted mainly of features from the power
bands.
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Feature importance of both subjects for the classification of reaching and grasping
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Figure 4.5: Top ten most important features for subject 1 and 2 when classifying reaching and grasping.
The most important feature for subject 1 was the slope of the fourth segment (S4) and the most important
feature for subject was the mean of the first segment in the theta band (TM1). The y-axis is the feature
importance which is given by the Gini index and the features are along the x-axis.

Additionally, the performance of classification of movement (reaching and grasping) and
rest was investigated. Table 4.4 shows the performance metrics and it illustrates that the
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model achieves an average accuracy of 94.73% when predicting movement and rest. The
performances were obtained by the average of both subjects across all channels.

Table 4.4: The average results for both subjects for the classification of movement (reaching and grasping)
and rest using a Random Forest model. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. =
Specificity, Prec. = Precision.

Classificatin of movement and rest
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
94.73 ± 3.73 96.14 ± 4.03 90.18 ± 10.46 96.78 ± 3.13 5.27 ± 3.73

Feature importance for the classification of movement and rest is illustrated in figure 4.6.
The most important feature for subject 1 is the slope of the third segment (S3) whereas the
most important feature for subject 2 was the variance in the first segment (V1). Furthermore
it is seen the most important features were associated with steep slopes around the MRCP’s
which mainly are the segments 1,3,4 and 6.
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Figure 4.6: Top ten most important features for subject 1 and 2 when classifying movement and rest. The
most important feature for subject 1 was the slope of the third segment (S3) and the most important feature
for subject was the variance of the first segment (V1). The y-axis is the feature importance which is given by
the Gini index and the features are along the x-axis.
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4.2.1 Channel-wise Performance of the Classification of Reaching and
Grasping movement

A channel-wise performance was carried out in order to investigate which channels performed
best. Figure 4.7 shows the overall average performance metrics for both subjects together
with the standard error of the mean. It is illustrated that channel FC5 achieved the highest
accuracy 90.25% ± 9.75% and channel Cz achieved the lowest accuracy 63.02% ± 2.23%.

Channel-wise performance of the classification of reaching and grasping movement
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Figure 4.7: The overall average performance metrics for both subjects for each channel when classifying
reaching and grasping movement. The standard error of the mean is indicated by the error bars.
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5 | Discussion

In this chapter the aim will be summarized along with the most prominent results obtained
from the individualized RF models. The results will thereafter be compared in regards to
other studies which investigated detection or classification of MRCPs. Afterwards, the fol-
lowing sections will discuss the limitations and future research.

This study proposes a novel approach in order to achieve an accurate RF classification
model. The chosen model is a RF, which has several advantages. First, it has a high pre-
dictive power and outperfoms the common classifiers used in BCI applications which are
LDA and SVM. RF is gradually becoming more popular in machine learning applications
due to its predictive power. Secondly, it is robust to outliers and noise. Even though out-
liers were removed, the model will be robust towards outliers in future data sets. Third,
it obtains feature importance through the embedded method. Sequential forward selection
was also implemented together with the embedded approach, however it did not improve
the performance. Fourth, it is robust to overfitting due to reducing the high variance and
low bias trade-off by depending on the outcome of several decision trees and also due to the
bootstrapping approach within the model. According to the aim, which was to develop a
MRCP-based BCI system in order to detect and classify reaching and grasping, it was pos-
sible to detect reaching and grasping. The average TPR for detecting reaching and grasping
were 90.63% ± 18.43% and 89.72% ± 21.76% and 74.82% ± 11.44% for the classification
of reaching and grasping. The results indicate that the model was able to detect reaching
and grasping from rest with an acceptable accuracy. However, when classifying the two
movements, it is more complicated. This was due to the two movements having similar
MRCP shapes. Characteristics such as the maximum peak negativity can be of help when
classifying the two movements. A complex movement such as reaching, has a tendency to
have a more deep peak negativity than a simple movement such as grasping but it was not
always the case for all channels, which explains why the RF model has an error of 25.18% ±
11.44% when classifying the two movements when all channels are taken into consideration.
The feature importance revealed the most prominent features were features related to the
segments associated with the steep slopes surrounding the MP, which was expected. The
important features were generally the segments 1,3,4 and 6 and their slopes and means in
both the time domain and in the delta, theta, alpha and beta bands. These features proves
to be useful when it comes to classify reaching and grasping, which has similar shapes in
MRCP. Small deviations in the features between these two movements can potentially be
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captured through the features associated with steep slopes around the MP. Variance were
only important for detection of movement and rest. Additionally, this study is the first to
classify reaching and grasping motions, in order to be utilized by ALS patients for control
of a robotic arm.

5.1 Comparison with Similar Research
The majority of the literature regarding MRCP-based BCI systems focuses on detection of
MRCP or classification of different hand movements such as lateral grasp, palmar grasp
and pinch. Currently no study has investigated the relationship between a reaching motion
and grasping motion. However, the detection of reaching and grasping can be compared to
other studies which investigated the detection of grasping and reaching motions. A study by
Jochumsen et al. [25] perfomed a three-class classification of palmar grasp, lateral grasp and
pinch. The study proposed a LDA classifier which achieved an overall classification accuracy
of 48% ± 5% (mean ± standard deviation) for the grasping movements. Grasping motions
have similar shapes in regards to the slopes surrounding the MP of the MRCP, which may
explain why the study achieves a low classification accuracy of 48% when classifying three
grasping movements. Furthermore, the study derived feature importance based on sequen-
tial feature selection and illustrated the most important features came from the delta power
band, which is in accordance to the results from this study. The frequency range of the
MRCP is between 0.05-3 Hz, whereas the frequency range of the delta band is between 0.01-
3 Hz. This may explain why the delta band is one of the most prominent features, because
its frequency ranges are related to the MRCPs.
Niazi et al.[17] and Xu et al.[22] investigated MRCPs in ankle dorsiflexion. Niazi et al.[17]
proposed a matched filter for detecting MRCPs related to ankle dorsiflexion and Xu et al.[22]
proposed a Locality Presevering Projection followed by a LDA classifier(LPP-LDA). The de-
tection performance for both studies were respectively 82% ± 7.8% and 84% ± 9.98% for
motor execution in healthy subjects. In this study the average TPR were 90.63% ± 18.43%
and 84.72% ± 21.76% for reaching and grasping motion respectively. The TPR are slightly
higher compared to the two studies, however the standard deviations indicates a wide spread
in the variance compared to the other studies, which indicates that the movement detection
was poor for some subjects. Furthermore, the feature importance which were derived from
this channel, may not represent the other channels that well. This could lead to some chan-
nels achieving a lower performance. The best channels to record MRCPs for hand movements
are according, to Shakeel et al.[35], channel C1 and C2 as the BP2 is steepest in these chan-
nels. In this study channel F3, FC1, FC5, Cz, C3, T7, CP1, CP5, P3 were used and it
was seen during training, that the channels which had the lowest OOB error was FC5 for
subject 1 and C7 for subject 2 when performing classification of reaching and grasping. This
may explain why these channels have a higher performance than the rest of the channels,
since the classifiers for each subjects was built upon the channel which had the lowest OOB
error. However, almost every channel achieved high performances when detecting reaching
and grasping, except from F3 which had the lowest accuracy in both cases. Caution has to
be advised when using a single channel to train the classifier as the feature importance from
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single channels may not represent all channels due to different shapes of MRCPs occuring
across the channels.
Furthermore another study by Ibanez et al.[36] proposed a logistic regression model to com-
bine a Bayes classifier (which detected ERD) and a matched filter (which detected the BP)
for detecting reaching motion in both healthy and stroke subjects. The performance of de-
tecting reaching motions had on average a TPR of 82.2% ± 10.4% for the healthy subjects.
In comparison to the results from this study, the performance of the reaching movement had
on average an accuracy of 90.63% ± 18.43% across the seven subjects.

Most studies in the field of BCI proposes simple models, such as LDA, SVM and matched
filter. This is due to the models having a fast computation time for online classification,
hence the choice of more simple models than complex ones. However, complex models can
sometimes achieve a higher accuracy but in contrast to computation time, it is slightly more
computational heavy. Simple models are also robust in terms of hyperparameters as there
are few parameters to tune in contrast to complex models. However, simple models are less
robust towards outliers if their hyperparameters are not optimized, where complex models
such as RF can handle outliers. In this study RF outperformed LDA and SVM which both
were regularized. The RF models were regularized through instructions from Breiman [32].
The number of trees were decided based on visually inspecting where the OOB error con-
verged for each channel. It was a general pattern that the OOB error converged between
80-100 trees for detection whereas the OOB converged at approximately 400 trees when
classifying reaching and grasping for each channel.

5.2 Limitations and Future Research
A limitation in this study is that the online evaluation has not been done for the proposed RF
model. The performance in offline classification has a high accuracy, however it would have
been interesting to see to what extent the model would be accurate in an online classification.
The performance of offline classification may not have the same performance as in an online
classification. A simulation of online classification could have been performed by applying
a sliding window on the subjects. Furthermore, the subjects which participated in the
study were all able-bodied. The proposed MRCP-based BCI system is intended for patients
suffering from ALS, it could therefore be ideal to have performed the same methodology on
motor imagination as motor imagery differs from motor execution in regards to MRCP. With
actual motor movement, the components of the MRCP are more apparent than in motor
imagination, which is illustrated in figure 2.4.
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6 | Conclusion

The aim of this study was to investigate the detection performance of reaching and grasping
and classification of reaching and grasping. Data sets from seven subjects were used for
detection and data sets for two subjects were used for classification. By proposing a random
forest classifier it was possible to both detect and classify reaching and grasping. The overall
average TPR of the seven subjects for the detection of reaching and grasping were 90.63%
± 18.43% and 84.72% ± 21.76%. The overall classification accuracy of the two subjects for
classification of reaching and grasping across all nine EEG channels was 74.82% ± 11.44%.
Results from the feature importance indicated features derived from the powerband of the
delta, theta, alpha and beta brain waves had a higher importance than features derived from
the time domain. However, further investigation is needed in order to determine the usage
of the model for real-time control of robotic arms for ALS patients.
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A | Neurons and Action Potentials

One of the building blocks of the brain are neurons. Neurons are electrically excitable cells,
which receive, process and transmit information in the body through electrical and chemical
signals. Neurons communicates with one another by sending electrochemical signals and
thereby forming the basis of the brain’s essential functions: to execute involuntary and
voluntary movement, along with forming thoughts and memories and interpreting the world
through visual, auditory and sensory information. The electrochemical signals are first being
triggered in a neuron’s axon. Axons are specialized to conduct electrical impulses that
travels along the axon to its end at the axon’s terminal. Axon terminals are connected with
other neurons through synapses, in this way a single action potential can trigger a series
of action potentials in multiple neurons simultaneously. There are two types of synapses; a
chemical and an electrical synapse. In a chemical synapse, the action potential will cause
the presynaptic cell to release neurotransmitters which are diffused across the synaptic cleft
and binded to a receptor at the postsynaptic cell of another neuron. The binding of a
neurostransmitter can induce a new action potential or inhibit the neuron, depending on the
receptor at the postsynaptic cell. Electrical synapses triggers electrical impulses instead of
neurotransmitters and occurs when the cell membrane of two neurons are close together.[6, 7].
If there are not any motorneurons to receive the action potential, voluntary movements may
therefore not be triggered which leads to dysfunctions in executing voluntary movements,
which is the case in ALS patients.
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B | Brain Wavebands

EEG signals comprises a set of signals, which can be analyzed through frequency ranges.
These frequency ranges have different frequency ranges across the scalp. EEG signals can be
divided into five different frequency bands respectively, delta, theta, alpha, beta and gamma
band.[5]

Delta band
The delta band frequency lies between 0.1 to 4 Hz and are slow waves which occurs in the
deep stages of sleeping. If there is a elevated activity in the delta band in the waking state,
it could be related to deficiencies in the brain.[5]

Theta band
The theta band frequency ranges from 4 to 7 Hz and elevated activity can be seen during
mental tasks, such as math calculations.[5]

Alpha band
The alpha band waves, ranges from 8 to 12 Hz, and are generated across cortical regions
including the occipital, parietal and temporal lobe. The amplitudes are decreased when the
eyes are closed and attenuated when the eyes opens again. Furthermore the ampltiude of the
waves can be elevated through mental tasks. Mental tasks, such as motor activity causes the
alpha activity to be suppressed in the frontal lobe. Another frequency band can be found
in the alpha band, which is called Mu rhythms. The differences between alpha and mu are
that mu rhythms are high correlated with motor activities, where the maximum mu activity
of the recorded over the motor cortex.[5]

Beta band
The beta band waves are located in the frequency range 12 and 30 Hz and can be found
in both central and frontol regions of the brain. These waves are correlated with motor
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activities, where an executed movement or motor intention will cause a desynchronization
in the beta band, which is seen as a suppression of the signal.[5]

Gamma band
Gamma waves are in the frequency range of 32 to 100 Hz and up. The gamma waves are
related to motor functions and perceptions. However, it is not commonly used in BCI as the
waves can be affected by artifacts from EMG and EOG.[5]
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C | Feature Description

Table C.1: Features extracted based on the epochs from the time domain.

Feature Description
M1 Mean of the first segment
M2 Mean of the second segment
M3 Mean of the third segment
M4 Mean of the fourth segment
M5 Mean of the fifth segment
M6 Mean of the sixth segment
V1 Standard deviation in the first segment
V2 Standard deviation in the second segment
V3 Standard deviation in the third segment
V4 Standard deviation in the fourth segment
V5 Standard deviation in the fifth segment
V6 Standard deviation in the sixth segment
S1 Slope of the first segment
S2 Slope of the second segment
S3 Slope of the third segment
S4 Slope of the fourth segment
S5 Slope of the fifth segment
S6 Slope of the sixth segment
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Table C.2: Features extracted from the delta power band.

Feature Description
DM1 Mean of the first segment in the delta band
DM2 Mean of the second segment in the delta band
DM3 Mean of the third segment in the delta band
DM4 Mean of the fourth segment in the delta band
DM5 Mean of the fifth segment in the delta band
DM6 Mean of the sixth segment in the delta band
DS1 Slope of the first segment in the delta band
DS2 Slope of the second segment in the delta band
DS3 Slope of the third segment in delta band
DS4 Slope of the fourth segment in the delta band
DS5 Slope of fifth segment in the delta band
DS6 Slope of the sixth segment in the delta band

Table C.3: Features extracted from the theta power band.

Feature Description
TM1 Mean of the first segment in the theta band
TM2 Mean of the second segment in the theta band
TM3 Mean of the third segment in the theta band
TM4 Mean of the fourth segment in the theta band
TM5 Mean of the fifth segment in the theta band
TM6 Mean of the sixth segment in the theta band
TS1 Slope of the first segment in the theta band
TS2 Slope of the second segment in the theta band
TS3 Slope of the third segment in theta band
TS4 Slope of the fourth segment in the theta band
TS5 Slope of fifth segment in the theta band
TS6 Slope of the sixth segment in the theta band

46



Table C.4: Features extracted from the alpha power band.

Feature Description
AM1 Mean of the first segment in the alpha band
AM2 Mean of the second segment in the alpha band
AM3 Mean of the third segment in the alpha band
AM4 Mean of the fourth segment in the alpha band
AM5 Mean of the fifth segment in the alpha band
AM6 Mean of the sixth segment in the alpha band
AS1 Slope of the first segment in the alpha band
AS2 Slope of the second segment in the alpha band
AS3 Slope of the third segment in alpha band
AS4 Slope of the fourth segment in the alpha band
AS5 Slope of fifth segment in the alpha band
AS6 Slope of the sixth segment in the alpha band

Table C.5: Features extracted from the beta power band.

Feature Description
BM1 Mean of the first segment in the beta band
BM2 Mean of the second segment in the beta band
BM3 Mean of the third segment in the beta band
BM4 Mean of the fourth segment in the beta band
BM5 Mean of the fifth segment in the beta band
BM6 Mean of the sixth segment in the beta band
BS1 Slope of the first segment in the beta band
BS2 Slope of the second segment in the beta band
BS3 Slope of the third segment in beta band
BS4 Slope of the fourth segment in the beta band
BS5 Slope of fifth segment in the beta band
BS6 Slope of the sixth segment in the beta band
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D | Linear Discriminant Analysis

LDA is a supervised classification method which is used to discriminate between two or more
classes and to classify a new observation set into these known groups. It assumes the classes
are linearly separable and defines a discrimination function which is given by equation D.1

g(x) = wtx+ w0 (D.1)

where wt is a weight applied to the feature vector x, w0 is a threshold weight and determines
the location of the hyperplane and g(x) represents the hyperplane decision surface in the
feature space. The hyperplane separates the classes depending on which side of the hyper-
plane the feature vector belongs to. Each feature is classified according to the g(x) value.
If g(x)>0, x is on the positive side of the hyperplane and g(x)<0 when x is on the negative
side.[29, 5] Furthermore the intuition of LDA is to maximize the separability of the two classes
and projects the features into a lower dimensionality to minimize within class variance.[37]
Separating two classes is useful, in this case separating reaching and grasping from resting.
LDA is commonly used when implementing a BCI due to its low computational power and
good accuracy. However, it is prone to overfit if the feature dimensionality is too high. To
prevent overfitting, regularization is necessary. LDA has two hyperparameters, γ and δ. γ
is a shrinkage parameter that is used to estimate the covariance matrix of the features. δ
is a hyperparameter that is used to remove redundant features. The higher value the more
features will be removed.[5] In order to build a robust LDA classifier, the hyperparameters
was selected by performing a gridsearch together with a 5-fold cross-validation. A sequential
forward selection was performed to find the best subset of features during training.
The results for detecting reaching and grasping can be seen in tableD.1 and D.2 respectively.
The results for the classification of reaching and grasping can be seen in table D.3

Table D.1: The obtained performance for detecting reaching movement for the seven subjects using a LDA
classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of reaching
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
86.76 ± 9.06 91.54 ± 9.14 80.42 ± 15.02 86.42 ± 9.24 13.24 ± 9.06
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Table D.2: The obtained performance for detecting grasping movement for the seven subjects using a LDA
classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
86.84 ± 8.68 89.37 ± 10.13 82.16 ± 12.08 87.24 ± 7.57 13.16 ± 8.68

Table D.3: The obtained performance for the classification of reaching and grasping for the two subjects
in session three using a LDA classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. =
Specificity, Prec. = Precision.

Classification of reaching and grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
68.83 ± 7.33 68.70 ± 9.09 68.90 ± 10.13 69.90 ± 7.64 31.17 ± 7.33
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E | Support Vector Machine

SVM is a supervised classification method which is similar to LDA. It projects the features
into a higher dimensional space and constructs a hyperplane to separate the classes, however
instead of maximizing the class separability, it maximizes the distance between the nearest
training sample and the hyperplane. In this way, SVM focuses on the points closest to the
hyperplane in order to classify these, as they are difficult to classify in contrast to training
samples further away. These difficult samples are close to the hyperplane and are called
support vectors which also are the most informative points for the classifier. They define
the maximal margin that is used to construct the optimal hyperplane.[29, 5] Figure E.1
illustrates how the optimal hyperplane is constructed using the support vectors.

Figure E.1: A 2D representation of a SVM hyperplane. The solid dots are the support vectors with their
equal maximum distance to the hyperplane. Modified from[29].

SVM classifiers are efficient and are robust in regards to the curse of dimensionality, however
regularization is necessary to prevent misclassification of each sample and overfitting.[5] C
is a hyperparameter that can be tuned through optimization. It determines how much
the classifier misclassifies the samples by penalizing the size of the margin. The optimal
hyperplane is when the largest margin is acquired. However, in reality it is not possible to
achieve the largest margin meanwhile classifying each sample correctly. The C parameter is
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a trade-off between maximising the margin and classifying enough training samples. A high
C value results in a small margin while a low C value results in a large margin.[38] A 5-fold
cross validated gridsearch was performed to obtain the C parameter to obtain the lowest
classification error. Furthermore, a sequential forward selection was performed to obtain the
features for the SVM classifier. The results for detecting reaching and grasping can be seen
in table E.1 and E.2 respectively. The results for the classification of reaching and grasping
can be seen in table E.3

Table E.1: The obtained performance for detecting reaching movement for the seven subjects using a SVM
classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of reaching
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)

86.53 ± 10.57 93.52 ± 8.63 77.91 ± 20.38 85.74 ± 11.94 13.47 ± 10.57

Table E.2: The obtained performance for detecting grasping movement for the seven subjects using a SVM
classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision.

Detection of grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
90.03 ± 7.44 92.94 ± 9.24 86.78 ± 9.38 89.68 ± 7.01 9.97 ± 7.44

Table E.3: The obtained performance for the classification of reaching and grasping for the two subjects
in session three using a SVM classifier. Abbreviations: Acc. = Accuracy, Sens. = Sensitivity, Spec. =
Specificity, Prec. = Precision.

Classification of reaching and grasping
Acc. (%) Sens. (%) Spec. (%) Prec. (%) Error (%)
70.87 ± 9.04 65.96 ± 15.24 75.52 ± 8.44 73.39 ± 8.29 29.13 ± 9.04
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