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ABSTRACT
Running is a popular activity, but also an activity associated with a high incidence
of injuries. In order to properly understand the aetiology of running, methods that
can estimate the load of specific bodily structures, such as ligaments and muscles, in
large, outdoor studies are needed. A novel simulation method based on a parametric
statistical model of running and optimization of a few easily obtainable kinematic
and anthropometric measures, is proposed. A candidate optimization objective was
found using one set of data and the validity of the candidate objective in terms of
sagital plane kinematics and kinetics was assessed in another set of data. In both data
sets, there were poor agreement between the measured and the simulated kinematic
and kinetic parameters. The most likely explanation for the lack of agreement was
an insufficient setup of the optimization procedure, such as not using a full kinematic
model in the optimization.
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1. Introduction

Running is an immensely popular form of physical activity (Bueno et al. 2018) and
participating in running is associated with health-related benefits (Lee et al. 2014;
Hespanhol Junior et al. 2015). However, many runners sustain injuries (Videbæk et al.
2015), which is a primary reason for discontinuation of running (Koplan et al. 1995;
Fokkema et al. 2019). Therefore, it is important to understand why running injuries oc-
cur and how they can be prevented. Risk factors of running injuries have been the focus
of many studies (Hulme et al. 2017). However, in order to get a deeper understanding of
why such injuries occur, running injury studies should be complemented with measure-
ments or estimations of structure-specific loads, e.g. joint contact, ligament and muscle
forces (Bertelsen et al. 2017). Measurements of structure-specific loads require highly
invasive measurements techniques, such as implanting strain gauges in the ligaments
and tendons (Ravary et al. 2004), but they can be estimated using musculoskeletal
models (Marra et al. 2015). One approach is to use so-called inverse dynamics with
muscle recruitment, which requires measurements of running kinematics and external
loads. Both kinematics and external loads are typically measured in a lab equipped
with a 3D motion capture system and force plates. However, when the kinematics of a
runner are known, the external loads can be computed from the Newton-Euler equa-
tions of motion. Previous studies have shown that this approach to finding the external



loads gives accurate estimations (Fluit et al. 2014; Skals et al. 2017). Therefore, only
the kinematics of the runner are needed in order to obtain estimations of structure-
specific loads. Nonetheless, for activities that are typically performed outdoors and in
varying terrains, such as running, the requirement of being inside a lab poses a serious
limitation. As such, methods that can measure or estimate running kinematics outside
the lab are needed.

Running kinematics can be difficult to measure without the use of a lab. Recent
development in wearable technology such as the Xsens MVN systems has enabled re-
searchers to measure kinematics in settings outside the lab, such as during marathon
running (Reenalda et al. 2016). However, such devices typically have a limited record-
ing time (10 minutes in the case of Xsens MVN Link), and thus requires that another
recording device is nearby. In the study by Reenalda et al. (2016) this limitation was
solved by placing the external recording devices on bicycles, which followed the runners
throughout the marathon. This solution appear infeasible for running injury studies,
which typically require many participants followed over a long period of time in order
to reduce the risk of bias (Nielsen et al. 2019). Therefore, kinematics should prefer-
ably be obtained in such a way that participants can manage the recording without
the help of others. Such a method, might be offered by modern GPS-watches, which
typically estimate several kinematic parameters, when used in conjuction with a chest
belt. Kinematic parameters, that can be estimated this way include vertical oscilla-
tion of centre of mass, ground contact time and running velocity. Studies have shown
that the estimation of these parameters is accurate (Adams et al. 2016; Watari et al.
2016). While the parameters available with the use of a GPS-watch are not enough to
estimate the full-body kinematics, when used in isolation, kinematic parameters are
often interrelated. For instance, Brughelli et al. (2011) found that as running velocity
increases, vertical oscillation and ground contact time decreases. Further information
relating to the runner, can be easily obtained by simple methods such as measuring
weight, height and segment lengths. Thus, it can be speculated that if the relationships
between the different kinematic and anthropometric parameters can be uncovered, it
might be possible to estimate the entire full-body kinematics using only measurements
from a GPS-watch.

Statistical modeling offers a way to express relationships between the different kine-
matic and anthropometric variables of interest. By measuring kinematics of a large
sample of runners, a parametric statistical model of the measured variations of run-
ning can be constructed, which allows the variation in running patterns to be described
by only a few parameters. Parametric models of running have been investigated in pre-
vious studies (Phinyomark et al. 2015; Clermont et al. 2017) and most recently in
a master’s thesis (Kloster and Iversen 2017). In the parametric model developed by
Kloster and Iversen (2017), only 12 parameters were needed to describe more than 90%
of the variation in the measured running patterns. However, the parametric model de-
veloped by Kloster and Iversen (2017) can not only describe the variation in running
patterns. If instead of using the parameters as outputs of the statistical model, the
values of the model parameters are assumed and used as input to the statistical model,
the model can be used to generate new running patterns that maintain the relation-
ships described by the parametric model. If a set of parameter values can be found
such that the generated running pattern have the same characteristics as a measured
running pattern, i.e. the same vertical oscillation, running velocity and ground con-
tact time, it can be speculated that the generated and the measured running patterns
might not just share characteristics, but also match in terms of the overall kinematics.
However, obtaining the right set of parameters can be a difficult task given the (the-
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oretically) infinite number of possible parameter values. One way to solve this is to
use optimization. Using optimization, the parameter values are chosen in a systematic
way such that the difference between the generated and the measured characteristics
- vertical oscillation, running velocity and ground contact time - is minimized with as
few guesses as possible.

Therefore, the purpose of this paper is to investigate whether sagital plane kine-
matics and kinetics of measured running can be accurately estimated by optimizing
the parameters of a statistical model of running, using only measurements of vertical
oscillation, running velocity, ground contact time and anthropometrics.

2. Materials and methods

Optimization is at the core of the approach taken in this study. In general, a typical
aim of optimization is to minimize an objective function by systematically changing
the input to the objective function. More specifically, in this study the aim was to
minimize an objective function representing the difference between a measured and a
simulated running pattern. The input to the objective function was the parameters
of a statistical model based on principal components analysis (PCA) and the target
characteristics of a measured running pattern. Thus, during each objective function
evaluation, a simulated running pattern was generated by performing inverse PCA
using the input parameters and characteristics of the simulated running pattern were
compared to the target characteristics. Several sets of characteristics were used, but
three kinematic parameter were present in all sets: vertical oscillation of centre of
mass, running velocity and ground contact time. Other characteristics used in some
versions of the objective functions were average vertical position of the centre of mass
and length of the lower limb segments. Additionally, in some versions of the objective
function, constraints were imposed, meaning that the simulated running patterns had
to have certain traits, namely that the foot had to be in contact with the ground and
that the kinematics could not result in simulated leg lengths that were longer than the
measured leg length. All objective function used will be thoroughly described later.

In order to reduce bias resulting from using multiple different objective functions,
running patterns were first generated using all the different objective functions and
target characteristics of one set of data, and then the objective function which had the
best performance, was used to generate running patterns matching another set of data.
In the following, the statistical model, the two additional data set and the optimization
procedure is thoroughly described.

2.1. Statistical model

A statistical model of running developed as part of a recent master’s thesis was kindly
provided to us. The method used to obtain the model is thoroughly described elsewhere
(Kloster and Iversen 2017), but will be shortly summarized here.

The statistical model was based on 69 3-D motion capture and force plate recordings
of running. The 69 recordings were reconstructed in the AnyBody Modeling System
(AMS; AnyBody Technology A/S, Aalborg Denmark) using the MoCap Model Runner-
model from the AnyBody Managed Model Repository (AMMR) version 1.6.3. This step
included a) optimizing marker placement and segment dimensions, b) standardising
the running direction, c) fixating the anteroposterior position of the pelvis in the lab
coordinate system (i.e. simulating treadmill running) and in some cases, d) imputing
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joint angle time series for a half stride cycle as some recordings only had recorded data
for a half stride cycle. The model had the joint positions of the wrist and neck fixed in
a constant position leaving 30 degrees of freedom.

For each degree of freedom in the model, an FS approximation was derived in the
sine-cosine form:

θi = A0 +

I∑
i=1

(Ai cos(iωt) +Bi sin(iωt)) (1)

where I is the number of FS terms, Ai and Bi are the FS coefficients and ω is the
frequency expressed in rad s−1.

The number of FS terms were chosen individually for each degree of freedom based
on the correlation between the measured time series driving a degree of freedom and
its FS. Next, FSs were phase shifted to ensure that the right heel strike happened at
t = 0. In order to ensure that the feet would reach the ground, an FS driving the
vertical position of the heel was included in the model. Similarly, an FS driving the
anteroposterior position of the toes was included. The position of the model in relation
to the ground coordinate system, was expressed by FSs for the x-, y- and z-position of
the centre of mass for the entire model. The pelvis orientation was determined using
FSs for each segment rotation and the remaining degrees of freedom were driven by
joint angle FSs (for detailed information, see Kloster and Iversen (2017)). Finally, FSs
were bilaterally averaged to enforce a symmetric running pattern and the left side FSs
were constructed by phase shifting the right side FSs by half a period.

Measurements of trunk, upper and lower arm, shank, thigh and foot length as well
as pelvis width, ω and all FS coefficients, were used as input for a PCA. This step
was taken in order to discern the relationship between the different input variables
and thus provide a basis for describing the most important variation in the measured
running patterns with a limited number of parameters. The accepted level of explained
variance was set at 95% which was achieved by using 16 principal components.

2.2. Motion capture models

Besides the data set used as input to the PCA, two sets of data were used. Set 1
(the training set) was used to tune the optimization procedure and select the best
optimization setup. Set 2 (the validation set) was used the estimate the validity of the
model. This approach was chosen as a mean to limit bias resulting from the initial
process of tuning the optimization procedure.

Training set

The training set consisted of trials from two experienced runners (Runner 1: 28 years,
79.0 kg, 1.78 m; Runner 2: 39 years, 76.8 kg, 1.88 m). All trials were performed on
an instrumented treadmill (M-Gait; Motekforce Link Amsterdam, The Netherlands)
and kinematics was recorded by an active marker motion capture system (CX1; CO-
DAmotion, Charnwood Dynamics, UK). Before warming up, subjects were weighed
and measured. Following warm up, consisting of running at a self-selected pace on the
treadmill, a static calibration trial was recorded. Then, runners performed trials at
speeds of 10, 12, 14, 16 and 18 km/h with each trial lasting 60 seconds. There were
no breaks between trials, but runners were given a 30-second accustomisation period
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before recording at each speed, implying that participants ran at each speed for a total
of 90 seconds.

Marker positions and force plate recordings were imported into AMS and low-pass
filtered using a fourth-order, zero-phase Butterworth filter with a cutoff frequency of
15 Hz. The AnyMoCap model from AMMR version 7.1 (similar to the Linearly scaled
model of Lund et al. (2015)) without muscles was scaled using to each participant
using the static calibration trial. The scaling was achieved by optimizing segment
lengths and marker locations of markers not placed on anatomical landmarks based
on a least-squares criterion (Andersen et al. 2010). Marker positions of the first two
seconds of each running trials were then used to drive the scaled model by minimizing
the least-squares difference between model and experimental markers (Andersen et al.
2009) and inverse dynamics analysis was performed.

Validation set

The validation set consisted of data collected as part of another research project (Skals
et al. 2017). Ten healthy participants (eight males and two females, age 25.7±1.5 years,
height 180.8±7.4 cm, weight 76.9±10.4 kg) took part in the study. Following warm
up, participants performed several practice trials in order to familiarize themselves
with the trial procedure and to establish a point from which they would start their
runs. Four other types of movements were included in the original study (backwards
running, a side-cut maneuver, vertical jump and acceleration from a standing position),
but for brevity only the information relevant to the running trials are included here.
Furthermore, all running trials were completed before the other types of movements.

Participants were instructed to run at a comfortable, self-selected pace and hit the
force plate with the right foot without targetting. Following the practice trials, 35
reflective markers were placed on the participants, allowing trunk, lower and upper
limb kinematics to be reconstructed. Marker trajectories were recorded using eight
infrared high-speed cameras (Oqus 300 series) sampling at 250 Hz. Ground reaction
forces and moments were recorded at 2000 Hz using a force plate (Advanced Mechanical
Technology, Inc., Watertown, MA, US) embedded in the lab floor.

Three running trials were recorded per participant, giving a total of 30 validation tri-
als. Each recording was cropped to only contain the stance phase and the surrounding
few frames. Marker positions and ground reaction forces and moments were imported
into AMS and marker positions were low-pass filtered using a fourth-order, zero-phase
Butterworth filter with a cutoff frequency of 15 Hz. The marker positions from a walk-
ing trial were used to scale and optimize model marker positions of the GaitFullBody
template from AMMR version 1.6.3 according to the procedure described by Andersen
et al. (2010) Finally, kinematics and net joint moments were obtained by performing
inverse dynamics analysis.

2.3. Optimization procedure

The input to the optimization objective was the parameters of the statistical model,
i.e. the eigen values of the PCA. Five candidate optimization objectives were evalu-
ated on the training set in order to find the best optimization procedure. The minimal
objective included only the three main parameters of the optimization, which were ver-
tical oscillation of centre of mass (zVO), running velocity (v) and ground contact time
(tGCT). The comz setup was similar to the minimal objective, but also optimized the
mean vertical position of the centre of mass (z̄CoM) to match the z̄CoM of subjects with
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Parameters Training set Validation set Objective

zVO Difference between
maximum and
minimum height of
centre of mass

As in training set As in training set

v Minimum AP velocity of
foot

Mean AP velocity of
centre of mass

As in training set

tGCT Duration of foot contact
measured with force
plate

As in training set Time from when heel
drops below 4 cm until
heel rises above 18 cm
from the ground

z̄CoM Mean vertical centre of
mass for subjects with
similar segment lengths
in the staticial model

As in training set Mean vertical centre of
mass

lthigh Measured in static trial Optimized from walking
trial

Reconstructed from
inverse PCA

lshank Similarly to lthigh As in training set As in training set
lfoot Similarly to lthigh As in training set As in training set
wpelvis Similarly to lthigh As in training set As in training set

Table 1.: Computation of optimization parameters in the training and validation sets
as well as in the objective. AP = anteroposterior.

similar segment lengths. This was achieved by constructing a linear model with z̄CoM
as the dependent variable and segment lengths as independent variable using the input
data to the statistical model. Given the measured segment lengths, the target z̄CoM
was then computed from the linear model. The anthropometry objective included
the three main parameters as well as segment lengths of thigh, shank and foot (lthigh,
lshank and lfoot respectively) and pelvis width (wpelvis) in the optimization. The single
objective was similar to the minimal objective, but only the first principal compo-
nent was retained from the PCA. Finally, the matched objective was similar to the
anthropometry setup, but instead of modifying the eigen values, the optimization
found the best running pattern from amongst the 69 recordings used as input for the
PCA.

The target values (indicated by subscript target) for the optimization parameters were
computed from the training and validation sets. Similarly, optimization parameters
were computed during each call to the objective function (optim) by reconstructing the
FSs using inverse PCA. The computation of all parameters is described in table 1.
Given that only kinematic values were available during the optimization, tGCT,optim
could not be directly computed. Instead tGCT,optim was estimated as the time between
heel strike, defined as the instant the vertical position of the heel dropped below 4
cm, and toe off, defined as the instant the heel rose above 18 cm again. The threshold
values used for the detection of ground contact were estimated from the training set
and will be further discussed in later sections.

In order to obtain kinematics, that could be solved by AMS, two constraints were
imposed on the optimization in all setups except matched. Firstly, the minimum ver-
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tical position of the heel, zheel,min, was constrained to be equal to 0.01 m, forcing the
foot to make contact to the ground. Secondly, the distance between centre of mass
and the foot, dCoM→foot was constrained such that the optimization was less likely to
produce kinematics that would require leg lengths larger than those of the simulation
model. As the actual positions of any single point on the foot were unavailable during
the optimization, dCoM→foot was computed by assuming that the anteroposterior (AP)
position of the toes and the vertical position of the heel represented the sagital plane
coordinates of single point. The validity of this assumption will be discussed later.
Subsequently, dCoM→foot was computed as the Euclidean distance between the centre
of mass and the assumed position of the foot. The maximum allowable distance be-
tween centre of mass and foot, dCoM→foot,max, was estimated by constructing a linear
model from the data set used as input for the PCA, with dCoM→foot as the dependent
variable and thigh, shank and foot length as independent variables. Using this linear
model, dCoM→foot,max was estimated using the segment lengths of the participants in
the training and validation sets.

By describing the parameters used in a given setup by xi where xi for i = 1 . . . n
corresponds to each parameter and n is the number of parameters, the optimization
objective is expressed by the following equation:

min
n∑
i

(
1

2
(xi,target − xi,optim

)2

(2)

s.t. zheel,min = 0.01 m (3)
dCoM→foot ≤ dCoM→foot,max (4)

The optimization was solved using adaptive particle swarm optimization (Zhi-Hui
Zhan et al. 2009). The particle swarm consisted of 10,000 particles and a total of one
million calls to the objective function was allowed for the training set optimization. Five
million objective function calls were allowed for the validation set. The optimization was
bounded to the mean ± two standard deviations interval of the principal components
obtained in the PCA (for implementation, see Appendix 8).

After the optimization, the reconstructed FSs from the optimization solution were
imported into AMS and used to drive a simulation model. The simulation model was
setup similarly to the statistical model. Muscles were modeled with a constant strength
that did not depend on muscle state (e.g. contraction velocity and fiber length). Muscles
were recruited using a cubic recruitment criterion with no upper bound on muscle
activity. All FS drivers were implemented as “soft” kinematic constraints and kinematics
were solved using the over-determinate solver of AMS (Andersen et al. 2009). Ground
reaction forces and moments were predicted using the method developed by Fluit et
al. (2014) with the height limit for contact detection set at 0.04 m and the relative
velocity limit between foot and force plate set to 2 m/s. Finally, inverse dynamics was
performed.

2.4. Statistical analysis

Hip flexion, knee flexion and ankle plantarflexion angles and net joint moments as
well as ground contact times were extracted from both the simulation model and the
corresponding training or validation set model. In the training set, the median and
range of objective values were found in order to assess the success of the optimization
procedure and the agreement between the simulated and measured parameters was
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computed as the root mean square error (RMSE) of the time-normalized stance phases.
The best candidate objective was chosen based on the objective values and the median
RMSEs in the training set and used for optimizing the validation set. In the validation
set, the validity of the generated running patterns was assessed using the median and
range of RMSEs. Additionally, the median and range of differences in maximum and
minimum values were computed in the validation set. For both data sets, the shape
of the simulated and measured parameters were compared by computing Pearson’s
correlation coefficient (r). The absolute values of r were categorized as weak, moderate,
strong, and excellent for r ≤ 0.35, 0.35 < r ≤ 0.67, 0.67 < r ≤ 0.90, and 0.90 < r,
respectively as per the guidelines of Taylor (1990).

3. Results

3.1. Training set

Only the comz and single objectives resulted in solvable kinematics for all 10 trials,
when imported into AMS for inverse dynamics analysis. minimal produced solvable
kinematics in 9 of 10 trials, matched produced kinematics that could be solved by
AMS in 6 of 10 trials and only in 2 out of 10 trials could the kinematics produced
with anthropometry be solved. Medians and ranges of RMSEs, objective values
and differences in stance time between simulation and measurement are summarized
in table 2. Curves of simulations and measurements are shown in appendix 1–5.

In general, correlations were similar across objectives, with moderate to strong cor-
relations for hip flexion moment (median r for the five objectives ranging from 0.56
to 0.72), weak to moderate correlations for knee flexion moment (median r ranging
from 0.13 to 0.53) and weak to moderate correlation for ankle plantarflexion moment
(median r ranging from 0.07 to 0.57). Strong to excellent correlations were found for
hip flexion angle (median r ranging from 0.89 to 0.98), knee flexion angle showed weak
to strong correlations (median r ranging from 0.07 to 0.82) and moderate to strong
correlations were found for ankle plantarflexion angle (median r ranging from 0.48 to
0.79). Medians and ranges of the correlations are shown in appendix 6.

Given the small objective values and comparable performance in terms of RMSEs,
minimal was chosen as the best candidate objective.

3.2. Validation set

Solvable kinematics was generated in 26 of 30 trials. The median difference in stance
time between simulation and measurement was 0.03 s (range [-0.10; 0.11]). Median
and range of RMSEs, differences in maximum values, differences in minimum values
and correlation coefficients are summarized in table 3, but overall, simulation and
measurement showed poor agreement. A representative example of net joint moments
and joint angles, is shown in figure 1 (comparisons for all trials are shown in Appendix
7).

4. Discussion

The purpose of this article was to investigate whether running kinematics and kinetics
could be accurately predicted from a few parameters, obtainable in large-scale, outdoor
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Measure minimal comz anthropometry single matched

Objective value 3.7e−9
[7.9e−10; 9.7e−7]

3.4e−7
[9.8e−10; 7.6e−6]

5.6e−4
[2.7e−4; 1.1e−3]

0.27 [0.17; 0.89] 6.3e−3
[2.6e−3; 1.6e−2]

Difference in
stance time (s)

-0.01 [-0.08; 0.06] 0.00 [-0.10; 0.04] 0.06 [0.02; 0.09] 0.00 [-0.01; 0.07] -0.03 [-0.07; 0.05]

Hip flexion
moment
(Nmkg−1)

1.4 [1.0; 1.6] 1.4 [0.9; 2.3] 1.9 [1.3; 2.6] 1.4 [1.1; 1.9] 1.4 [0.9; 1.9]

Knee flexion
moment
(Nmkg−1)

0.9 [0.8; 2.4] 1.5 [0.7; 2.0] 1.1 [1.0; 1.1] 1.4 [0.9; 1.6] 1.5 [0.6; 1.8]

Ankle
plantarflexion
moment
(Nmkg−1)

0.9 [0.7; 1.3] 1.0 [0.5; 1.3] 0.8 [0.5; 1.0] 0.9 [0.5; 1.4] 1.1 [0.7; 1.5]

Hip flexion
angle (◦)

15.3 [3.8; 33.3] 22.4 [8.8; 30.3] 15.2 [3.2; 27.2] 8.4 [5.9; 15.0] 20.3 [15.0; 29.9]

Knee flexion
angle (◦)

33.7 [15.7; 50.8] 42.3 [36.9; 46.5] 19.4 [15.2; 23.6] 26.6 [16.7; 32.8] 39.9 [14.3; 46.5]

Ankle
plantarflexion
angle (◦)

15.4 [7.6; 28.1] 16.6 [7.3; 24.8] 21.6 [19.8; 23.4] 14.7 [13.0; 18.7] 20.9 [18.0; 23.7]

Table 2.: Median and range of RMSEs for the five candidate objectives.

Figure 1.: A representative example of measured (blue dashed) and simulated (red
solid) net joint moments and joint angles.
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Measure RMSE Difference in mini-
mum

Difference in maxi-
mum

Correlation coeffi-
cient (r)

Hip flexion moment
(Nmkg−1)

1.7 [0.4; 2.8] -0.7 [-2.7; 1.2] 1.3 [-1.3; 3.9] 0.70 [-0.10; 0.95]

Knee flexion
moment
(Nmkg−1)

1.2 [0.5; 2.7] -0.2 [-3.2; 1.5] 0.0 [-0.7; 0.7] 0.56 [-0.11; 0.97]

Ankle plantarflexion
moment
(Nmkg−1)

1.0 [0.5; 1.5] 0.0 [-0.3; 0.2] -0.7 [-1.6; 0.0] 0.62 [-0.56; 0.92]

Hip flexion angle (◦) 11.4 [1.7; 30.2] 7.1 [-22.6; 39.8] 9.2 [-14.0; 35.3 0.94 [0.85; 1.00]
Knee flexion angle
(◦)

31.0 [11.3; 54.2] 39.9 [15.1; 63.8] 22.7 [3.6; 46.2] 0.57 [-0.87; 0.96]

Ankle plantarflexion
angle (◦)

13.0 [2.9; 24.5] -4.3 [-22.3; 9.2] -2.1 [-30.0; 26.0] 0.65 [-0.58; 0.97]

Table 3.: Summary of median and ranges of RMSEs, differences in minimum and
maximum values and correlation coefficients between simulation and measurement.

field studies of running injuries. Five different objectives were tested in the training
set, with minimal and comz resulting in small objective values, indicating succesful
optimization. Furthermore, minimal resulted in lower median RMSEs than comz for
five of six kinematic and kinetic parameter and thus minimal was chosen as the best
candidate objective. Optimizing using minimal in the validation set, results showed
poor agreement between the simulation and the measurements as indicated by high
RMSEs. Moderate to excellent median correlations were found between simulation and
measurement in the validation set, however the ranges of the correlations were large.
For instance, the correlations for the knee flexion angle ranged from -0.87 to 0.96.

While the proposed method did not work, to our knowledge, this study was the first
to propose a method with the potential of being able to estimate kinematics and kinetics
of the entire body. Other methods that do not require a 3D motion capture setup have
been proposed to estimate some of the kinematic and kinetic parameters relevant to
running. For instance, Wille et al. (2014) tried to estimate knee extensor moment and
ground reaction forces as well as other kinetic parameters using sagital plane kinematics
only. Their method had moderate succes with R2 of the developed models ranging from
0.04 to 0.58. Another approach was taken by Wouda et al. (2018) who estimated ground
reaction forces and knee joint angles using machine learning and inertial measurements
units placed and the pelvis and both lower legs. Excellent agreement between the
machine learning method and motion capture and force plate recordings was found,
with the RMSE of the knee flexion angle ranging from 1.74 to 4.38◦ and RMSE of the
vertical ground reaction force ranging from 0.12 to 0.33 body weights. Nonetheless,
both of these approaches are limited in the sense that is only possible to estimate
the kinematic and kinetic parameters explicitly included as outcomes. On the other
hand, the method we proposed could have the potential to estimate the load of any
structure given that the method is based on a full body musculoskeletal model which,
combined with the advanced computational methods employed by AMS, can yield
valid estimations of structure-specific loads (Fregly et al. 2012). Therefore it is worth
considering why the proposed method showed bad performance and how improvements
can be made.

There can be several explanations as to why the proposed method failed to produce
valid results. One explanation could be that is simply not possible to generate a running
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pattern matching the targetted, from the statistical model. For example, if the input
data to the PCA consisted of rearfoot running, it would be less likely that forefoot
running could be accurately reproduced by the proposed method. While, we didn’t
have information regarding the footstrike patterns of the input data, we noted that
the proposed method most often generated rearfoot running, suggesting that the input
data did indeed consist mostly of rearfoot running. However, the validation data also
consisted of rearfoot running and thus the lack of validity must likely be explained by
other factors. On the other hand the training set consisted of both rearfoot and forefoot
running, which could potentially have introduced some bias in the selection of the best
objective. Nonetheless, it seems unlikely that this would be the case. Furthermore, the
targetted vertical oscillation, running velocity and estimated ground contact time of
the training and validation sets, where all within the range of the same parameters for
the data used to construct the PCA. Therefore, it appears unlikely that the running
patterns of the validation trials were so vastly different from the data used to create
the statistical model, that the statistical model could not express the kinematics of the
validation set.

Another explanation could be that the optimization procedure needs to be setup
in a different way. While we partly explored this explanation by testing five different
objectives, many other objectives could have been tried. The range of optimization
parameters was severly limited by the fact that only some kinematic parameters were
available during the optimization. This restriction was due to that fact that reaching
convergence required many calls to the objective. Thus, it was not possible to use AMS
to find kinetic values during each objective call as each AMS analysis would take sev-
eral minutes to complete, increasing the total optimization time to infeasible lengths.
However, it appears likely that including kinetic parameters in the optimization would
produce better results. For instance, studies have found that humans tend to select gait
parameters that minimize the metabolic cost (Alexander 1989; Gutmann and Bertram
2017; Bertram and Ruina 2001). Therefore, including a kinetic optimization parame-
ter such as mechanical work performed, could potentially improve the optimization.
Furthermore, only a limited amount of kinematic information was available during the
optimization, namely the FSs used to control the kinematics. It is likely that a full
kinematic model could aid the optimization as information, such as the exact position
of a single point on the foot, would become available. However, in order to obtain
such measures, a kinematic model of the entire body had to be constructed as the
position of the model was partly determined by the position of the centre of mass.
Implementing a full body kinematic model efficiently enough to be used during each
objective function evaluation was well outside the scope of this project and perform-
ing the kinematic analysis in AMS would require several seconds of computation time
for each objective function evaluation, which would make the optimization approach
extremely time-consuming. Nonetheless, a full kinematics model might be a requisite
for the proposed method to work and therefore future studies should investigate this
possibility.

Another source of error might be the inequality constraint on the distance between
centre of mass and the foot, which was necessary in order to achieve kinematics that
would not require larger-than-measured segment lengths and thus could be solved
by AMS. However, the imposed upper limit on the inequality constraint may have
forced the optimization to produce suboptimal running patterns. The upper limit was
computed from a linear model constructed from the input data. Thus, the distance
between the foot and the centre of mass could never be above the recorded mean for
the given segment lengths. Combined with the fact that the minimum vertical position
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of the heel was constrained, the inequality constraint could have caused the centre of
mass to have been placed lower than it should have been. Such a limitation could likely
show up as increased hip and/or knee flexion. Since the differences in both minimum
and maximum hip and knee flexion angles were positive and thus indicating that the
simulated flexion angles were larger than the measured flexion angles, it does indeed
appear to be the case that the centre of mass was placed too low in the simulated
running patterns. It seems likely that this limitation could be avoid if a full kinematic
model had been used. Had a full kinematic model been used, the actual position of
each segment would have been known and thus each segment length could have been
constrained individually to the measured segment length.

Another potential issue with the optimization setup was the definition of ground
contact time in the optimization objective. Since it wasn’t possible to use AMS during
the optimization, only kinematic variables were available as a mean to detect ground
contact time. Other studies have developed methods to identify heel strike and toe off
from kinematic data, but these methods rely on knowing both AP and vertical position
for both the heel and the toes (Leitch et al. 2011; De Witt 2010; Zeni et al. 2008;
Osis et al. 2014). Information regarding the AP position of the toes and the vertical
position of the heel requires a full kinematic model, which was not available during the
optimization, as discussed above. Therefore, we estimated the ground contact time by
only considering the vertical position of the heel. The threshold values for heel strike
and toe off were set at 0.04 and 0.18 m, respectively. These values were estimated
from the training set, but it seems likely that the threshold values should be based on
an individual assessment at least accounting for different lengths of the feet. Indeed,
in the validation set heel strikes happened with vertical position of the heel ranging
from 0.02 to 0.04 m and toe off happened with the heel positioned 0.08 to 0.19 m
above the ground. However, as the training set consisted of only two participants and
no information regarding ground contact was present in the input data to the PCA,
no correction for individual variation was attempted. While there was good coherence
between the ground contact time estimated during the optimization and the targetted
ground contact time, when the simulation was performed in AMS the actual simulated
ground contact time deviated significantly from the targetted ground contact time. The
disagreement could likely be explained by the fact that the simulated ground contact
also required that the velocity of the foot relative to the ground was below a threshold
of 2 m/s. Thus, even though the foot was spatially in contact with the floor, if the foot
was moving too fast, AMS would not recognize the foot contact. The velocity threshold
is needed for AMS to correctly identify toe off as a failure to correctly identify toe off
often leads to dynamically insolvable systems. While we did not rigorously test higher
velocity thresholds, the few tests we completed indicated that higher threshold values
led to the dynamics becoming insolvable by AMS. It should also be noted that the used
threshold of 2 m/s was already 2.5 times larger than the default threshold of 0.8 m/s
(Fluit et al. 2014). We also tried other methods for estimating ground contact time,
such as constraining the foot velocity during the ground contact time estimated by the
vertical heel position and by detecting heel strike and toe off based on both position
and velocity of heel and toe, but the estimation based only vertical position of the heel
appeared to give the best results. For instance, constraining the foot velocity, estimated
by the AP velocity of the toes and the vertical velocity of the heel, to 2 m/s during
ground contact still resulted in a median difference in ground contact time ranging
-0.09 to 0.03 s, while RMSEs increased by an average of 10.3% in the training set.
Furthermore, selecting a subset of the validation data, where the difference in ground
contact time between simulation and measurement were close to zero (six trials with a
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Measure RMSE Difference in mini-
mum

Difference in maxi-
mum

Correlation coeffi-
cient (r)

Hip flexion moment
(Nmkg−1)

2.2 [0.9; 2.8] -0.6 [-1.5; 0.6] 2.9 [1.2; 3.9] 0.83 [0.68; 0.93]

Knee flexion
moment
(Nmkg−1)

1.5 [1.3; 2.7] -1.0 [-3.2; -0.2] -0.1 [-0.3; 0.0] -0.02 [-0.11; 0.85]

Ankle plantarflexion
moment
(Nmkg−1)

0.5 [0.5; 1.0] 0.1 [0.0; 0.2] -0.4 [-1.5; 0.0] 0.85 [0.46; 0.92]

Hip flexion angle (◦) 13.1 [3.7; 28.2] 9.5 [-16.5; 20.0] 0.1 [-5.4; 28.9] 0.94 [0.89; 0.99]
Knee flexion angle
(◦)

26.6 [17.6; 44.5] 38.3 [20.5; 52.5] 16.7 [3.6; 35.9] 0.57 [0.05; 0.84]

Ankle plantarflexion
angle (◦)

7.5 [6.5; 15.9] -1.7 [-8.0; 9.2] -9.8 [-13.0; 10.7] 0.90 [-0.21; 0.94]

Table 4.: Summary of median and ranges of RMSEs, differences in minimum and
maximum values and correlation coefficients between simulation and measurement in
a subset of the validation set data consisting of the six trials, that had a difference in
ground contact time larger than -0.02 s and less than 0.02 s.

difference larger than -0.02 s and smaller than 0.02 s), did not improve the agreement
between simulation and measurement (see Table 4). This is an indication that the
definition of ground contact time in the objective function, is likely not the sole reason
for the incoherence between simulations and measurements. Nonetheless, the lack of
coherence between the estimated and simulated ground contact time is a significant
problem with the employed method.

In addition to not giving valid estimations, the proposed method comes with a few
limitations. As noted previously, the statistical model appeared to mostly produce
rearfoot running. Therefore, even if a working optimization setup can be found, it
is likely that the proposed method would have difficulties with accurately simulating
forefoot running. The only way to work around this limitation is to include forefoot
runners in the statistical model. Another limitation is the fact the simulated running
pattern are always symmetric, while studies have shown that the asymmetry can be
quite pronounced (Furlong and Egginton 2018; Zifchock et al. 2006). However, if the
asymmetry can be measured, e.g. by measuring the ground contact time or similar
kinematic variables for each step, it should be straightforward to modify the proposed
method to account for asymmetry.

In conclusion, the proposed method of simulating full body kinematics on the basis
of optimization of a few kinematic and anthropometric measures, did not produce
valid estimations of sagital plane, lower limb kinematics and kinetics. Explanations for
the discrepancies between simulations and measurement were most likely a result of
errors in the optimization setup. Particularly, the fact that a full kinematic model was
not available during the optimization, could be an important reason for the missing
coherence.
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Appendix 1: minimal-simulations vs measurements
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Appendix 2: comz-simulations vs measurements
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Appendix 3: anthropometry-simulations vs measurements

Figure 4.: Comparison of simulation results obtained with the anthropometry ob-
jective (red solid) and measurements (blue dashed). Each column contains one trial
and each row contains one parameter.
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Appendix 4: single-simulations vs measurements
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Appendix 5: matched-simulations vs measurements

Figure 6.: Comparison of simulation results obtained with the matched objective (red
solid) and measurements (blue dashed). Each column contains one trial and each row
contains one parameter.
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Appendix 6: Correlation coefficients for training set

Measure minimal comz anthropometry single matched

Hip flexion
moment

0.64 [0.07; 0.76] 0.56 [-0.53; 0.81] 0.67 [0.58; 0.76] 0.65 [0.21; 0.86] 0.72 [0.57; 0.79]

Knee flexion
moment

0.53 [-0.41; 0.93] 0.40 [-0.10; 0.69] 0.25 [0.25; 0.25] 0.13 [-0.08; 0.63] 0.30 [-0.20; 0.96]

Ankle
plantarflexion
moment

0.25 [-0.55; 0.68] 0.07 [-0.48; 0.88] 0.48 [0.09; 0.86] 0.25 [-0.24; 0.95] 0.57 [-0.19; 0.64]

Hip flexion
angle

0.98 [0.93; 0.99] 0.97 [0.88; 0.99] 0.89 [0.80; 0.98] 0.97 [0.93; 0.99] 0.98 [0.93; 0.99]

Knee flexion
angle

0.82 [-0.11; 1.00] 0.75 [-0.77; 0.93] 0.07 [-0.70; 0.85] 0.81 [0.57; 0.98] 0.43 [0.31; 0.98]

Ankle
plantarflexion
angle

0.56 [0.33; 0.96] 0.71 [-0.56; 0.99] 0.61 [0.49; 0.73] 0.79 [0.20; 0.93] 0.48 [-0.01; 0.84]

Table 5.: Median and range of correlation coefficients (r) for the five candidate objec-
tives.

Appendix 7: Simulation vs measurements in validation set

Attached image file compares of simulation results (red solid) and measurements (blue dashed) for the
validation set. Each column contains one trial and each row contains one parameter.

Appendix 8: Setup of optimization in Julia

The optimization procedure was setup and implemented in the Julia programming language
(https://julialang.org/). The following Julia packages were used: MultivariateStats.jl (for performing PCA),

Optim.jl (for the implementation of particle swarm optimization), CSV.jl (for reading CSV-files),
DataFrames.jl (for utilities for handling data), GLM.jl (for constructing linear models). The code necessary

for settting up the optimization can be found as an attached zip-file.
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