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Chapter 1 
Guitar Interaction 
 

1.1 Introduction 
With over seventy years of technological innovation, the electric guitar with its 

accompanying amplifiers and sound processing units, also known as ‘effects’, represents the 
sole example of an electroacoustic instrument where the link between instrumental gestures 
and audio can be experienced across multiple musical contexts (O.Lähdeoja, 2010). Moving 
from acoustic to electric guitar had a massive influence in western popular music culture; 
challenging the concepts of what is noise or musical sound (S.Waksman, 1999). Though 
innovation of the guitar continues through interaction with digital technologies, developments 
are typically grounded in the instrument’s ‘cultural identity’, referring to the ways the guitar 
is used to challenge and influence music culture (G.Carfoot, 2006). This is prominent in the 
lack of dynamic interaction with the augmented features of the instrument, characterised by a 
monolithic use of timbres, selected by on/off effectors which remain musically static 
(O.Lähdeoja, 2010). 

 

1.2 Guitar Effects and Interaction 
“Guitar distortion is a particularly powerful expressive device, evoking abrasiveness 

and emotional instability; it can even act as a kind of timbral leitmotif for ideas expressed in 
the lyrics.”- Thompson (2015) 
 

Being able to augment the timbre of the guitar is a tool with currently untapped 
potential due to the fact current effects are designed based on the system of the electric guitar 
and its connected switches. The aim of this thesis is to investigate the possibility of using 
motion and force applied by muscles as source of control for guitar effects. Designing around 
the user and their strumming interaction with the guitar. 
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Chapter 2 

From thought to motion 
 
This chapter covers how to record and extract data from the motor interaction of the 

guitarist’s strumming hand during performance. Starting with a brief introduction to how 
motion commands are conducted through the body. The basics of recording those commands 
as electrical signals from the muscles and nerves. The decoding of those electrical signals is 
investigated with a comparison of decomposition methods. Lastly, the author proposes a 
method for extracting the data for multiple muscles via recording their shared nerves for the 
purpose of tracking the guitarist’s interaction of the strumming hand. 

2.1 Signal Chain 

(Fig 1. Nervous System Control. Image from: (E.Criswell, 2010). Cram's introduction to 
surface electromyography.) 

 
Voluntary motions begin as a series of electric sparks in the brain. These sparks are 

known as ‘action potentials’ or ‘spikes’ (Gerstner,2014). They are conducted through the 
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body via cells called ‘neurons’. The spikes then reach the desired muscle, which is the 
combination of a bundles of strand like fibers controlled by motor neurons called ‘motor 
units’. Those motor units may then cause movement by varying their tension or length, 
depending on the incoming spikes (Cram, 2011). 

2.2 Neurons 

 
(Fig 2. (a) Neuron (b) Dendrites (c) 120ms ISI input results (d) 20ms ISI input results. Image 
from Branch specific... (Wen-Liang Zhou et al. 2014).) 
 

Above, in figure 2 part (a), is a photo of a neuron. At point 0 in (a) is the ‘soma’. The 
soma generates spikes when stimulated, above a voltage-threshold, either by combining the 
output of prior neurons carrying spikes or artificially using an electrode (Gerstner, 2014). 
Spikes are then conducted via the longest part of the neuron, the ‘axon’. At the end of the 
neuron are branches known as ‘dendrites’, shown more clearly in figure 2 part (b). Dendrites, 
much like the soma, act like capacitors so conduct a spike only once a voltage-threshold is 
reached. Spikes may then arc from a dendrite to the soma of the next closest neuron 
(Gerstner, 2014). 
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2.3 Nerves 

 
(Fig 3. Nerve Cross Section, Wikipedia) 
 

Aligned consecutively, neurons form nerves. Figure 3, above, is a cross section 
diagram of a nerve. In this example, it shows the axon is covered in a ‘myelin-sheath’. This is 
an electric insulator that helps conduct spikes along the axon faster and reduces signal loss 
and interference (Purves, 2001). Worth noting from this diagram is that several neurons are 
bundled together in close proximity. 
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2.4 Action Potentials (Spikes) 

 
(Figure 4, Action potential schematic, Wikipedia.) 
 

After being fired from somas and passed through dendrites, action potentials or spikes 
have a unique shape per neuron (Gerstner, 2014). For the purpose of extraction from 
recordings, the ideal action potential or spike (shown above in figure 4) can be described 
thus:  
A neuron may generate a spike or fails to fire, dependant on the strength or rate of the 
incoming stimulus. Weak or low rate stimuli appear as failed initiations. When fired, the 
spike is characterised by a period of depolarisation, rising 110mV from the neuron’s resting 
voltage potential of -70mV, and repolarisation, dropping to -90mV,  lasting 1 to 2 ms. 
Followed by a refractory period where the neuron cannot fire again until it returns to its 
resting state at -70mV. 
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2.5 Recording Action Potentials 

 
(Fig 5. Recording area. Image from: (E.Criswell, 2010). Cram's introduction to surface 
electromyography.) 
 

The title ‘electromyoneurography’ (MB.Spiegel, 1978) refers to the combination of 
simultaneously recording spikes at motor units (electromyography, EMG) and neurons in the 
nerve or brain (electroneurography, ENG).  

EMG surface recordings are typically done using paired surface electrodes, placed on 
the skin over muscle (as shown in figure 5, above). The motor units that combine to form the 
muscle may vary their tension and length when activated. However, much like rubber bands, 
motor units may snap if under too much strain. Therefore, the greater the strain the muscle is 
under, the more motor units are activated or ‘recruited’ at a firing rate between 8 and 50Hz, 
rotating the load between motor units (E.Criwell, 2010). On recordings, the increase in motor 
unit firing activity is shown as an increase in RMS-voltage (the average voltage over time 
within a set window). 

ENG recordings are not typically done using surface electrodes over nerves due to the 
myelination of the nerve neurons. Myelin insulates the electric signal resulting in low 
signal-to-noise ratio (‘SNR’ henceforth) in recordings. Therefore, ENG recordings are 
normally performed using needle electrodes injected in close proximity to the target neurons. 
This is also known as an ‘in-vivo’ recording. For in-vivo recordings, raw data is typically has 
a high SNR. Thus require little noise reduction processing other than averaging over several 
trials and spikes are detected using a simple threshold detector (Choi, 2006. Gerstner, 2014.). 
 

2.6 Encoding motion with spike-trains 
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When a neuron fires a sequence of spikes at semi-regular intervals, due to a stimulus 
or motion command, the collective sequence is called a ‘spike-train’. Stimulus, in the case of 
guitar strumming refers to the specific motion to be performed and the intensity which the 
muscles used must contract. The more intense or effective the stimulus, the higher the rate of 
spikes. Consistent rate codes in spike trains and the spike-stimuli phase relationship may 
afford stimulus recognition and reconstruction.  

Describing surface recordings of spike-trains as highly irregular and if sonified would 
resemble noise; Gerstner (2014) states that determining whether said noise is highly 
efficiently encoded information or meaningless flicker is one of the most burning problems in 
neuroscience. Therefore, Gerstner (2014) uses either simulated models of idealistic 
spike-trains or in-vitro recordings (isolated neurons in glass recorded by inserting a 
multi-electrode needle into the tissue in close proximity to the cells) which utilise artificial 
stimulation, so the stimuli can be controlled and the neurons react in a reliable way. These 
allow him to better demonstrate techniques for reducing the complexity of neuron models or 
extracting information about how the neurons react to the designed input stimuli. However, 
Gerstner (2014) does highlight a method, called ‘Peri-Stimulus-Time Histogram’ (PSTH 
henceforth), that can extract near consistent spike-trains of multiple neurons from surface 
recordings. 

The rate coding later used to determine the onset, offset and intensity of a muscle 
contraction can be estimated using the PSTH, shown below in figure 6, where spikes are 
illustrated by solid vertical lines. Conducted by recording the activity of a neuron to a 
repeated stimuli over several trials or ‘runs’. The probability of a spike firing (p) per time 
window (Δt) is calculated by averaging over the several recordings aligned in synchronicity 
with the stimuli. For guitar strumming, this would be from when the motion of strumming 
begins until the motion is stopped or changes direction; causing a different new motion and 
different set of muscles to initiate. Randomly firing spikes and areas of noise are removed by 
applying a threshold gate to the output of the PSTH. Then the most probable rate code of the 
spike train may be extracted by finding the peaks of the threshold filtered PSTH. Combining 
the rate coding and the phase relation of spikes to each stimuli (‘phase coding’) for each 
motion can be used to identify which muscle the neuron is innervating and how much force 
that muscle will apply (Gerstner, 2014).  
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(figure 6, Peri-Stimulus-Time Histogram PSTH (W.Gerstner, 2014)) 
 

2.7 Approaches for EMG/ENG Decomposition 
 
Surface recordings of nerves by definition are composed from the firing activity of 

multiple neurons. So when PSTH is applied to raw data, the overlapping spike trains of the 
multiple neurons create a continuous level of probability of spike firing. Meaning the rate 
codes that identify each muscle motion and intensity are lost in the noise of the surrounding 
neurons. The surrounding neurons may also be carrying spike trains for other motions and 
muscles but more often it is the sensory feedback from the motion itself. Therefore, to isolate 
spike trains that determine motor interaction, first the spikes have to be sorted per their 
generative neuron. 

 
(Fig 7 . Raw signal Input, MUAP Detection and Classification. Sedghamiz 2015) 

 
Sedghamiz (2015) separates the processes of EMG/ENG demoposition into two 

stages; 1: detection and 2: classification. Franke (2015) similarly describes it but as three 
stages of ‘spike sorting’; 1: detection of spikes, 2: estimation of the number of neurons and 
their templates and, lastly, 3: assigning individual spikes to their neuron. These three steps 
must be iterated to solve the three major problems that exist within detection and 
classification of spikes; alignment, threshold detection level and superposition resolution. 
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Spike alignment refers to the process where the timing of a detected spike is 
determined. With high SNR signals, spikes may be aligned according to global extrema, 
positive or negative peaks or by their threshold crossing points. However, in low SNR 
signals, noise and superimposed spikes may cause the the spike shape to be deformed. 
Misalignment can lead to classification errors. Choi (2006) demonstrates this in figure 8 
(below). The two detected spikes shown in (a), S and S’, were identical until deformed by 
noise. Aligning by global extrema, shown in (b), causes misalignment and classifies the 
spikes wrongly to different neurons.  

 
(Fig 8. Alignment methods. Image from Choi 2006) 

 
To achieve correct alignment, Sedghamiz follows Choi’s two step method shown in 

(c) and (d), above. Where the global maximum of the mTeo output (curved dotted lines) is 
used to align the spikes initially, (c). Then the nearest extremum of the original signal to 
global maximum of the mTeo output become the reference points for alignment, (d). 

MTeo is the method used by Sedghamiz (2015) and Choi (2006) which works well 
with low SNR signals. MTeo stands for ‘Multi-resolution Teager energy operator’, which is 
a time-frequency analysis method that can be tuned to be more sensitive to frequency 
bandwidths determined by the spikes. The instantaneous frequency characteristic of spikes 
makes this an effective method for detection and tool for alignment. MTeo works by 
calculating the instantaneous energy of the signal within a smoothing hamming window. 
Since MTeo is more sensitive to lower frequencies, a high pass filter is normally used. 
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(Fig 9. Bayes Optimal Template Matching with Subtractive interference cancellation, Franke 
2015) 
 

Franke (2015) proposes a method called ‘Bayes Optimal Template Matching’ (BOTM 
henceforth). This method assumes that the expected spike shapes are known and that the 
noise has a gaussian distribution. Unfortunately this means the method can only be applied in 
simulated conditions. This method is however highly effective and efficient at aligning 
spikes, especially in the case of two superimposed spikes. 

Above in figure 9 is a diagram of the BOTM method. Firstly, using templates of 
expected spike shapes, finite-impulse response (FIR) filters are created per neuron. These 
filters are adjusted so that the SNR is maximised for the spike shape with the gaussian noise 
for comparison. This is process is called ‘Matched Filtering’ (Van Trees, 2002). The matched 
filters are convolved with the raw input data. BOTM is then computed with the matched filter 
outputs, giving the discriminant functions per filter that best separates clusters per neuron 
which share the same covariance matrix. Similar to linear discriminant analysis (LDA) 
(Fisher, 1936). Then the second major problem with spike detection and classification may be 
addressed.  

Threshold detection level in simple data refers to the threshold which below is noise 
and above is a spike belonging to a particular neuron. Although, this can also refer to the 
threshold level that determines which neuron a spike belongs to. High SNR signals may 
utilise simple methods such as amplitude thresholding for spike detection; where the 
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threshold level may adapt automatically based on the estimated noise level for example. Low 
SNR signals require more robust methods. Nenadic (2005) lists the most common detection 
methods for low SNR signals as; power or energy detection (Harris, 2000; Bankman, 1993), 
matched filtering (as described above), principal components (Bankman, 1993), Haar 
transformation (Yang, 1988) and the discrete-wavelet-packet transformation (Oweiss, 2002).  

Franke (2015) applies an amplitude threshold detection level to all BOTM outputs, as 
shown in figure 9 above. Using the maximum between threshold crossings to mark the 
temporal instances of detected spikes. 

 
(Fig 10. (a) Band-pass filtered and normalised EMG signal. (b),(c) and (d) Outputs of k-Teo 
at k=2,3 and 5. Where ‘k’ is the lag parameter in MTeo. (e) MTeo output from maximum 
energy detector, Image from Sedghamiz (2015)) 

Sedghamiz (2015) uses a statistical thresholding similar to Nenadic (2005). Where for 
each resolution of k (shown above in figure 10) two states are calculated, first when there is 
only noise and the second state where there is a spike and noise. While Franke (2015) also 
uses bayesian hypothesis to sort spikes and determine their optimal discriminant functions, 
Sedghamiz (2015) differs by comparing the mean and standard deviation of the separated 
segments of spikes and noise at different scales; combining the outcomes from all scales to 
calculate the optimal threshold detection level. The scales are however set by the user 
manually and must be iteratively adjusted in order to optimise the sensitivity of the MTeo 
method to noise and spikes. 

Superposition resolution is the problem that occurs when two or more spikes are 
superimposed on the same recording and are near simultaneous. Two methods are shown in 
figure Franke, 2015above; Option 1: Simulate the expected superimposed spike template 
from existing ones or Option 2: Subtractive interference cancellation (SIC). The latter is used 
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by both Franke (2015) and Sedghamiz (2015). However, subtracting any signal from a noisy 
recording reduces the remaining signal below the detection threshold in most cases. As for 
simulating the superimposed spikes template with varying overlap, this can be very accurate 
for determining the timing of two superimposed spikes using the BOTM method. However, 
the fewer spike templates; the more error prone this technique is and can become 
computationally slow over long recordings (Franke, 2015). 

 
2.8 Chapter Summary  

The rate coded spike trains that determine which muscles are used and how intensely 
the muscles contract may be recorded using surface electrodes. The SNR for surface 
recordings of nerve neurons will be very low due to the myelination of the nerves. Therefore, 
averaging over several trials or an alternative method to PSTH must be applied create reliable 
spike train rate codes. It requires robust processing methods to separate the spike trains per 
their generative neuron in low SNR signals. MTeo will work best in this case but requires 
iterative manual adjusts to detection sensitivity. To test the validity of surface recordings of 
nerve neurons for muscle tracking, the motions performed should be initially simplified such 
that only one muscle is activated at any given time. The motion performed should be done in 
opposition to measurable forces such as weights to find if different forces applied by the 
same muscle can be identified. The same motion may be performed several times to enable 
averaging out noise spikes.  
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Chapter 3 

Test and Processing of Data 
 

3.1 Muscles, nerves, motion and electrode placement 

 
(fig 11. Electrode Placement for Muscle Group 1. Image from:Criswell, E. (2010). Cram's 
introduction to surface electromyography.) 
Muscles: Flexor Carpi Radialis and Palmaris Longus 
Motions: Wrist Flexion + Radial Deviation 
Nerve: Median Nerve 

 

(fig 12. Electrode Placement for Muscle Group 2. Image from: Criswell, E. (2010). Cram's 
introduction to surface electromyography.) 
Muscles: Extensor Carpi Radialis (Longus and Brevis) 
Motion: Wrist Extension + Radial Deviation 
Nerve: Radial Nerve 

18 



 

 
(fig 13. Nerves of the hand. Image from: 
http://img.webmd.com/dtmcms/live/webmd/consumer_assets/site_images/media/medical/hw/
h9991449_001.jpg)  
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(fig 14. Hand-wrist motions. Image from: 
http://www.revolutionarytennis.com/Resourcess/wristandhandterm.jpeg) 

 

 

 
(Fig 15. Electrode placements for Nerve and muscles. Image by author 2018.) 
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3.2 Test Method 
The motions radial deviation and wrist flexion (as shown in figure 14) were selected 

because the radial nerve (shown in figure 13) innervates both the flexor carpi radialis (‘FCR’) 
used for wrist flexion (muscle shown in figure 11) and extensor carpi radialis (‘ECR’) used 
for radial deviation (muscle shown in figure 12). Before applying the eight stick-on 
EMG/ENG electrodes shown in figure 15, the skin was rubbed clean with alcohol to reduce 
skin resistance which helps improve signal to noise ratio. Figures 11 and 12 were used as a 
starting point to find the correct placement of the electrodes. Then by performing the 
contractions and pushing against the muscle; the ‘belly’ or meatiest area of muscle was 
selected for the EMG sensors to get the strongest possible signal. The ENG (nerve) sensors 
were placed above the elbow in an array across the back of the arm where the radial nerve is 
most likely to pass through with the least amount of muscle which may interfere with the 
signal. 

Separately motions ‘Radial Deviation’ and ‘Wrist Flexion’ were performed five times 
at increments of resistance by applied physical weights (small dumbbells attached with velcro 
straps to the hand) from no weight to 1kg and 2kg. Giving a total of thirty contractions with 
five total per six labels (Labelled per motion and mass. ‘Radial Deviation 0kg’=1, ‘Radial 
Deviation 1Kg’=2, ’Radial Deviation 2kg’=3, ‘Wrist Flexion 0kg’=4,‘Wrist Flexion 
1kg’=5,‘Wrist Flexion 2kg’=6.). The median duration of contractions was 2.5 seconds with a 
standard deviation of 0.6 seconds.  

The arm was rested flat on the table to ensure auxiliary muscle activity would be 
minimised. Then recordings of 30 seconds were made per label. The contractions were held 
for their duration then a rest period equal to the length of contraction separated each 
contraction from the other. Each time the motion performed was changed or a new weight 
was to be attached, the recording would be stopped and a new one made. The time between 
recordings was kept to a minimum to reduce factors such as electrode to skin connection 
which may cause signal to noise ratio to degrade or fluctuate over time as the stick on 
electrodes lose grip.  

The sensor used were the Delsys Trigno EMG surface electrode system (16). These 
sensors have motion tracking sensors such as 3 axis accelerometers as well as EMG 
electrodes with a sampling frequency of 1111.111Hz. Just high enough to be used for spike 
recordings. The system synchronises motion data from the sensor placed on the back of the 
hand with the recorded EMG and ENG data. The sensor placed on the back of the hand was 
used solely for motion tracking and synced with the other electrode sensors. 

3.3 Processing of recorded data 
(The code and data used for this project is available through the following github repository: 
https://github.com/twilmo14atgmaildotcom/ThomasMichaelWilmot_SMC10) 

The raw data ENG and EMG data was passed through a highpass filter set to 300Hz. 
Then upsampled from 1111.11Hz to 2222.22Hz and smoothed with a lowpass filter set to 
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1000Hz. A notch filter at 50Hz was not required due to the electrodes using rechargeable 
batteries. 

 Labelled time windows were created from a combination of the motion tracking 
(3-axis accelerometer) and muscle activity (EMG) data. These are shown in Appendix B. The 
RMS voltage of the full wave rectified EMG data for the muscle being used gives the onsets 
and offsets of muscle activity. Similarly, a smoothing window is applied to the 3-axis 
accelerometer sensor giving hand position. The time windows mark when there is muscle 
activity and motion (contraction state, 1) and where there is no muscle activity or motion 
(resting state, 0). 

To separate training and test data, these 30 contraction time windows were applied to 
the Nerve ENG data. Each contraction window was labelled per  motion and mass attached to 
the hand. The indexing of test and training was done using k-fold cross-validation. Meaning 
for example, contraction 1of5 from label ‘(1)Radial Deviation 0kg’ is used as test data; while 
contractions 2,3,4 and 5 are used as training. Then the next iteration, contraction 2of5 is test 
data and 1,3,4 and 5 are training data etc. This is to ensure that the results are true for all 
input data. 
 An adapted version of the Sedghamiz MTeo and statistical thresholding method 
described above in chapter 2 was applied to the filtered ENG data in Matlab to extract the 
spike firing times per neuron in the nerve. The weights ‘spike threshold detection level’ and 
‘similarity to spike template’ used in the mTeo tool were adjusted to maximise the number of 
spike instances identified during the contraction states (true positives) and minimise spike 
instances identified in resting state (false positives). These weights initially required several 
manual adjustments and iterations before any reliable spike detection occurred. The weights 
were later adjusted automatically with a restricted range of known stable values in a loop 
comparing the precision (true positives/false positives+true positives) of spike detection 
against the expected correlation results per label(described in more detail below). The MTEO 
tool tended to be sensitive to high amplitude superimposed spikes or would wrongly identify 
noise as spikes.  

Therefore, inspired by the BOTM method, I adjusted the statistical thresholding of the 
Sedghamiz method with aforementioned states; A. ‘segment with noise’ or B. ‘segment with 
noise and spike’. Such that for case B, the statistical thresholding would identify the 
likelihood that the spikes were either independant or superimposed by amplitude threshold 
and then find the closest matching independant spike template generated by the MTeo 
method to the superimposed spikes using cross correlation. If there was a close match then 
the separated spikes and their timings would be added to their correct neuron. This resulted in 
accurate segments that matched the motion data and RMS-voltage of the EMG electrodes. So 
when there was a contraction and movement the segment would have several spikes and in 
areas where the arm was rested there were few to no spikes. From there the separated spikes 
per neuron could be investigated. This detected spikes per neuron and the contraction time 
windows can be seen in appendix C. 

Across all data labels, the distributions of spike timings (the frequency of spike 
instances) were nearly identical. This was due to the inherent low SNR and sensory spike 
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feedback (noise spike instances caused as a result of the contraction but not part of the motor 
command signal). A higher average rate could indicate increased muscle activity however; 
the same as with EMG. The method I used to try overcome this problem was to measure the 
interspike intervals between one spike and the next five spikes (shown in figure 16 below), 
creating ISI distributions per neuron. The range of interspike intervals was limited from the 
minimum time required before a neuron may fire again (refractory period 2-3ms) to the 
maximum set by the slowest motor unit recruitment rate of 8Hz (125ms). Distributions were 
then weighted according to the total spike instances per distribution to reduce the impact of 
low activity neurons later in analysis.  

 
(figure 16. “The autocorrelation of a spike train describes the chance to find two spikes at a 
distance s, independent of the number of spikes that occur in between.”-Gerstner 2014. Image 
from Gerstner,2014.) 

Also known as the autocorrelation of a spike train. This method sums the ISI 
distributions with itself. Based on the theory that a neuron when presented with the same 
stimulus will react in the same way. Therefore over long data with a repeated and stable 
stimulus, this method may be used. However, in the case of my data, I used this method 
simply to reduce the impact of random spike timings (noise).  

 
(figure 17. Neural network and Hebbians Theory. Image from Gerstner 2014.) 

The second part of my trial method is based on Hebbian’s theory (W.Gerstner, 2014). 
Which can be simplified into the phrase ”Neurons that fire together, wire together”. This 
theory is used to describe the connections between neurons when firing and the impact that 
one neuron has on another. The higher the average firing rate of a neuron the more effect it 
has on the surrounding neurons. Therefore the neurons with similar ISI distributions and high 
average firing rates are more likely to be connected to and cause the muscle contractions. For 
the training data, I applied this by superimposing all ISI distributions based their correlation 
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with the neuron with the most spikes. Similarly subtractive interference cancellation was used 
to subtract portions of ISI distributions that were the same across different labels which 
suggests common noise. The resulting ISI distributions for training and test data can be seen 
in appendix D.  

Finally to test if the ISI distributions were related to the labels; so the ISI’s could be 
used to classify nerve ENG data from contractions  per motion performed and force applied; I 
performed cross correlation with the test data and training data using cross validation. The 
results are shown in Appendix E. Cross correlation was used because the duration and force 
applied in each contraction varied within recordings  (shown in Appendix B, where a higher 
RMS value represents a higher force); I believed that force applied would result in a lateral 
shift of the ISI distribution and it would retain the same shape. To optimise the mTeo tool 
output (as previously mentioned above), check the correct ISI distribution range, effect of 
individual neurons  and to extract the highest correlation results I applied a very simplified 
version of gradient descent. Where the weights ‘detection threshold’, ‘template similarity 
threshold’, ‘minimum ISI value’, ‘maximum ISI value’,  ‘ISI distribution addition weight’ 
and ‘ISI distribution subtraction weight’ were all adjusted iteratively in limited ranges and 
small steps until the best correlation results were produced. Unfortunately, the true positive 
rate was only 32.7% and false positive rate 29.3%; resulting in precision of 52.8%. 
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Chapter 4 

Discussion and Future Work 
 
 

There is potential in the far future with ENG nerve surface recording based on the theory 
above. However, in its current state the motions would need to be restricted, repeatable and 
choreographed strumming motions whilst playing guitar to manipulate audio effects 
post-performance. The results of my test are most likely due to small size of data to average 
over and reduce the impact of noise on results. Although variations in contractions force and 
duration may also have a large impact.  

Alternatively, De Luca (2014) proposes a method which adapts to the changing shape 
of spikes over time. Nerve ENG as a method of tracking guitar playing in future I believe it 
can better reveal the intentions of the musician as it can add the dimension of force applied 
and variations in tension during play. The ultimate iteration would have a prototype that 
could automatically record and recognise common moves over time. But the signal to noise 
ratio and spatial resolution of wearable surface electrodes must be improved too significantly 
in order to use simpler, faster processing. 
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Appendix A: Input ENG Nerve Data after Upsampling and Bandpass. 
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Appendix B: RMS Muscle Activity coloured per mass (Top), 3-axis Accelerometer 
(Middle) and Contraction Time Windows with sorted spikes per neuron (Bottom). 
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Appendix C: Detected Spikes with Templates coloured per Neuron over time with 
contraction windows (solid black line).
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Appendix D: Interspike Interval Distributions per Label (Training data in blue, 
Randomly selected test data in red).
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Appendix E: ISI Distribution Cross Correlation Results using cross-validation. 
Each figure represents the correlation results for the five contractions from the label marked 
on the title of the figure (Median=red line, Quantiles=Blue box, Outliers=Red cross and 
Minimum and Maximum=black lines)

34 



 

35 



 

36 



 

 

37 


