
Ripple Synth
- An Investigation into Novel Interaction Techniques for Scanned

Synthesis -

Thesis Report
Michael Anthony Castanieto

Aalborg University
School of Information and Communication Technology

Niels Jernes Vej 12
DK-9220 Aalborg

Copyright c© Aalborg University 2018

School of Information and Communication
Technology

Niels Jernes Vej 12
DK-9220 Aalborg Ø

http://sict.aau.dk

Title:
Ripple Synth: An Investigation into
Novel Interaction Techniques for Scanned
Synthesis

Theme:
Scientific Theme

Project Period:
Spring Semester 2018

Project Group:

Participant(s):
Michael Castanieto

Supervisor(s):
Stefania Serafin

Copies: 1

Page Numbers: 37

Date of Completion:
September 12, 2018

Abstract:

Ripple Synth is an application devel-
oped for the purpose of evaluating
whether a novel gestural mapping tech-
nique, based on scanned synthesis, will
add expressive value to the experience
of playing a new digital musical instru-
ment.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

http://sict.aau.dk

Contents

Preface vii

1 Introduction 1
1.1 Motivations for Scanned Synthesis Research 1
1.2 Research Goal . 2

2 Background 3
2.1 The Early History and Development of Scanned Synthesis 3
2.2 Scanned Synthesis Methods . 4

2.2.1 Mass Spring Connection Schemes 5
2.2.2 Mesh Excitation . 6
2.2.3 Orbital Scanning . 6
2.2.4 Dynamic Wavetable . 8
2.2.5 Finite Element Approximations 8
2.2.6 Physical Modelling . 9

2.3 Human Computer Interaction Applied to Digital Instrument Design . 10
2.3.1 Aims of Digital Instrument Design 11
2.3.2 Challenges in Evaluating DMIs 11

3 Related Works 13
3.1 Max Mathews’ Baton Scanned Synthesis String 13
3.2 Paris Smaragdis’ Csound Opcodes . 14
3.3 Scanned Synth Pro . 15
3.4 Scanned . 15
3.5 Multidimensional Physical Modelling with the Sensel Morph 16
3.6 Body Controlled Scanned Synthesis . 16
3.7 Tüb . 16
3.8 Wablet . 17
3.9 Mass-Spring System Simulation . 18

4 Design and Implementation 19
4.1 Technologies Used . 19

4.1.1 Sensel Morph . 19

v

vi Contents

4.1.2 Qt . 20
4.1.3 OpenGL . 20
4.1.4 OSC . 20
4.1.5 JUCE . 21
4.1.6 MacOS . 21

4.2 Design . 21
4.2.1 Gesture Extraction . 21
4.2.2 Mapping Gestures to the Mesh Interface 22
4.2.3 Two-Dimensional Mass Spring Mesh 23
4.2.4 Graphical Feedback . 23
4.2.5 Mapping Orbital Data to the Dynamic Wavetable 23

4.3 Implementation . 24
4.3.1 System Architecture . 24
4.3.2 Code Structure . 25

5 Evaluation 27
5.1 Procedure . 27

5.1.1 Analysis . 28

6 Results and Discussion 29
6.1 Qualitative Results . 29

6.1.1 Task Replication . 29
6.1.2 Instrument Exploration . 29

6.2 System Usability Test . 30
6.3 Discussion . 30

7 Conclusion and Future Work 33
7.1 Future Work . 33

Bibliography 35

Preface

Aalborg University, September 12, 2018

Michael Castanieto
<mcasta16@student.aau.dk>

vii

viii Preface

Chapter 1

Introduction

Humans will always strive to be explorers and will seek to find their own truth and
meaning in this world, and in this process will uncover unique forms of expression
that will serve to enrich their own experience and, in turn, that of others. The ev-
erlasting pursuit for new forms of expression has led musicians and artists to seek
new mechanisms that will allow them to unlock their creative potential. One such
pursuit has led some down the path of sonic exploration. The way in which peo-
ple have expressed themselves with music has always evolved with new advances in
technology. From innovations in instrument design to inventions of new ones, these
advances have opened up new possibilities for the artist. Recent advances in digital
technology have made it possible to develop new methods of digital synthesis that
have allowed people to explore more uncharted territory in the sonic landscape. One
of these more recent developments is in a technique called scanned synthesis.

1.1 Motivations for Scanned Synthesis Research
Scanned synthesis is a synthesis technique that is still quite in its infancy. With
only two decades of development, there is much left to be explored, in terms of new
possibilities for audio synthesis as well as novel ways of interaction. Much of this
development focuses on simulating the physical behavior of and interaction between
a configuration of masses and springs, known as a string in one dimension or a mesh
when configured in more than one dimension. Different audio extraction methods
can then be employed to scan the behavior of the mesh at several different points,
known as the orbital. Even though the foundation of scanned synthesis is quite
straightforward, it leaves room for much exploration. New modes of interaction, the
seemingly endless audio extraction techniques, and the exploration of new mapping
strategies between the mesh behavior and audiovisual feedback leaves the door open
for a myriad of research opportunities.

1

2 Chapter 1. Introduction

1.2 Research Goal
The aim of this research is to explore the relatively uncharted territory of scanned
synthesis and investigate whether a new gestural mapping strategy will add value to
the musical performance experience in the context of a new digital musical instrument
called Ripple Synth. The new gestural technique utilizes the gestural movements
associated with generating ripples on the surface of water, which is a gesture that
one should naturally associate with when exciting the behavior of a haptically moving
mesh membrane [Erlach et al., 2011].

Chapter 2

Background

This section will discuss much of the history and theoretical development of scanned
synthesis, including most of the prominent methods used for this technique. The
expressive gestures used in the Ripple Synth application focuses on a new mode of
interaction for exciting the two dimensional mesh structure. Important considera-
tions must be given in order to evaluate the use of this interaction in the context of
digital instrument design. This will also be discussed in detail.

Much of the groundwork and fundamental development of scanned synthesis was
accomplished with two seminal papers, Verplank et al. [2000] and [Boulanger et al.,
2000]. Further development typically relies on novel interaction methods, new meth-
ods of audio extraction, and new mapping procedures from the interface to the mesh
and to audiovisual parameters, but they are all rooted in the same techniques devel-
oped in these two papers.

2.1 The Early History and Development of Scanned Syn-
thesis

Scanned synthesis is a technique that was first introduced by Bill Verplank et al., in
their paper “Scanned Synthesis” [Verplank et al., 2000]. This paper describes a new
method of synthesizing audio by controlling a dynamic and continuously evolving
system that vibrates at haptic frequencies, which the authors describe as frequencies
that are at or below 15 hz. This system can be viewed as a dynamic wavetable that
is under the control of the user. By definition, the dynamic wavetable is constantly
being updated, whose values are determined by the method in which this vibrating
system is being scanned. These values can then be used to synthesize audio, either
by using the extracted values themselves as the raw audio data, or by mapping these
values to other parameters that manipulate or synthesize audio. The reason for
developing such a method was to give the performer a new way to explore the timbre
of a sound. The haptic vibrations with which this timbre evolves is meant to give an
impression of a sound that changes naturally over time [Verplank et al., 2000].

3

4 Chapter 2. Background

Early developments of scanned synthesis use a one dimensional closed string
model as the vibrating system [Verplank et al., 2000] [Boulanger et al., 2000]. This
model is comprised of masses and springs that are connected together in series,
forming a string that is connected together at both ends in a closed loop. The
vibrating behavior of this string is determined by using the Newtonian laws of motion
to derive equations that use a finite element approximation of the mass spring system
[Verplank et al., 2000]. Certain properties of the string can be modified, which in
turn effect the vibrating behavior of the string. These properties include the weight
of the masses, the stiffness of the springs connected to the masses, the stiffness of
the springs connected to the ground, the damping behavior of the springs connected
to the ground, the horizontal length between masses, and the position at which
force is applied to a mass by the user [Verplank et al., 2000]. The relation between
these properties can be seen in figure 2.1. Early developments in extracting audio

Figure 2.1: Relation between properties of a one dimensional mass spring model. M, mass; T,
spring stiffness between masses; C, spring to earth; D, damping to earth; L, length between masses;
x, position; f, force Verplank et al. [2000]

from this string behavior were rather straightforward. Verplank et al. updated a
wavetable using the vertical displacement values of the masses, and used interpolation
to generate enough values in the wavetable to scan them at audio rate [Verplank et al.,
2000]. The rate at which these values are being scanned determines the pitch of the
sound, much like in wavetable synthesis.

2.2 Scanned Synthesis Methods
Further development yields a two dimensional mass spring configuration, known as
a mesh. Expanding the vibrating system to this two dimensional system opens up
new modes of interaction as well as new types of behavior to the system. It also
introduces new methods of audio extraction. These methods will be described in the
sections that follow.

2.2. Scanned Synthesis Methods 5

2.2.1 Mass Spring Connection Schemes

Richard Boulanger et al. were the next to explore scanned synthesis using this two
dimensional mesh configuration [Boulanger et al., 2000]. They explored novel ways
of constructing the mesh, exciting the mesh, and generating audio from its behav-
ior. Opening up the string model to two dimensions lends itself to new mass spring
connection schemes. Since masses and springs are no longer confined to a sequen-
tial order in the two dimensional model, this allows for arbitrary connections to be
made. Two extreme cases of this connection scheme can be seen in figure 2.2, which

Figure 2.2: Connection scheme where every mass is connected to every other mass. [Boulanger
et al., 2000]

shows a system where each mass is connected to every other mass with a spring, and
figure 2.3, which shows a connection scheme that reverts back to the one dimensional

Figure 2.3: Connection scheme that reverts back to the one dimensional string model. [Boulanger
et al., 2000]

closed string model. Richard Boulanger et al.’s findings showed that the most inter-

6 Chapter 2. Background

esting and dynamic timbres resulted from non-uniform stiffness between mass spring
connections. In general, having non-uniform parameter distributions throughout the
mesh has proven to produce more interesting results sonically [Boulanger et al., 2000].

2.2.2 Mesh Excitation

One of the ways Richard Boulanger et al. experimented with exciting the mesh was
by driving it with an audio signal, where the value of the next audio sample in the
sequence will be added to the displacement of the next mass that will be scanned in
the sequence. This results in the audio input affecting resonant frequencies within the
mesh structure [Boulanger et al., 2000]. The authors suggest, but did not experiment
in other novel methods of exciting the mesh model, such as the use of stochastic
mathematical models for influencing mesh behavior, including a chaotic system, a
genetic algorithm, or cellular automata [Boulanger et al., 2000]. Verplank et al.
claims to have used chaotic equations, namely heat equations such as the Kuramoto-
Shivashinski equation for exciting their own mesh model, but does not elaborate on
the results of their findings [Verplank et al., 2000].

2.2.3 Orbital Scanning

The two dimensional mesh configuration also lends itself to novel audio scanning
methods. Not only is it possible to set up arbitrary connection schemes, it also opens
up the possibility to traverse through the mass spring connections using arbitrary
pathways to extract values for audio synthesis. Research into these audio scanning
trajectories was first done by [Boulanger et al., 2000] and was later given the name
“orbital” by [Tubb, 2011], which is a term that was originally used to described the
audio scanning behavior of wave terrain synthesis [Mitsuhashi, 1982].

As was previously mentioned, it was the work of Boulanger et al. which led to
the first experimentation of different scanning trajectories [Boulanger et al., 2000].
Some examples of these orbital scanning configurations can be seen in figure 2.4.
Boulanger et al.’s conclusion was that there was no correct way to which an orbital
should be scanned. The only exception to this was that the scanning pathway must
be between connected masses in order to insure a smooth and continuous sound,
unless the user wishes to introduce additional periodicities within the sound. The
authors have also concluded that the creation of audio scanning trajectories is a
non-intuitive procedure where the desired result depends on what the user wishes to
achieve.

Wave Terrain Synthesis also explores using many different audio scanning tra-
jectories. It is a synthesis technique which extends the wavetable lookup principle
by scanning various orbital trajectories on three-dimensional surfaces [Roads, 1996].
The main difference between Wave Terrain Synthesis and Scanned Synthesis is that
the three dimensional terrain in Wave Terrain Synthesis is static while the orbital
position that is projected on the terrain typically is not. Stuart G. James has re-
searched the sonic effects of different orbital trajectories projected on various three-

2.2. Scanned Synthesis Methods 7

Figure 2.4: Different orbital pathway configurations. [Boulanger et al., 2000]

dimensional surfaces. His conclusions reveal that more complex trajectory signals,
e.g. ones that reflect a high level of spectral complexity, tend to generate noise results.
Moreover, the aspects of the original signal tend to be lost when reshaped by the
terrain [James, 2005]. James also suggests that certain trajectories lend themselves
to generating more musical results than other trajectories, such as Rhodea curves,
spirographs, and spiral curves. Mills and De Souza, who have also investigated the
effects of different trajectories on various terrains, have come to the conclusion that
rectangular orbits allow for the best control of harmonic content over time [Mills and
de Souza, 1999].

Tubb experiments with different orbital scanning trajectories in scanned synthesis
by allowing the user to select different scanning patterns in his Wablet application.
His findings showed that the most interesting harmonic effects were produced when
the orbital shape was symmetric, overlapped on itself (meaning that at some paths of
the orbital were scanned more than once), and the start and end points of the orbital
were joined together smoothly [Tubb, 2011]. Tubb experimented with Rhodonea
curves to generate complex orbital patterns that adhered to these three criteria. The
formula for generating the Rhodonea curves is:

r = a sin(n
d
θ)

What he discovered was that although large values for n and d produced more
complex patterns which led to stronger harmonics, values higher than 16 led to sounds
that were too harsh and atonal. The more complex and abstract the patterns became,
the less it became associated with the vibrating mesh model. Tubb also opened up
the possibility for the user to create their own scan path trajectories by allowing
them to trace their own orbital patterns graphically onto the mesh. He concluded,

8 Chapter 2. Background

however, that the process ended up being too awkward and time consuming for the
user [Tubb, 2011].

2.2.4 Dynamic Wavetable

The values that are scanned and updated from the orbital scanning trajectories are
used to generate a wavetable. This wavetable functions very much in the same
way as in wavetable synthesis, where the stored values represent audio data that is
periodically scanned to produce the samples of an audio sound wave [Verplank et al.,
2000]. The main difference between wavetable synthesis and scanned synthesis is that
the wavetable is constantly being updated in order to reflect the audio data that is
extracted from the dynamically changing orbital shape. This dynamic wavetable
evolves over time, reflecting the haptic vibrations of the changing mesh structure.
The rate at which the wavetable is being updated is at haptic rates [Verplank et al.,
2000], meaning that the table is updated as soon as new values are changed and
updated within the vibrating mesh structure.

The data stored in this dynamic wavetable does not have to be limited to raw
audio data. Much like in wavetable synthesis, this data can be abstracted to allow for
the control many various algorithms or parameters. Rhoads suggests that frequency
modulation synthesis and granular synthesis are prime candidates for using dynamic
wavetables for dynamic audio control [Roads, 1996]. Boulanger et al. suggests using
such control for spectral shaping. This will allow, for example, the control of a bank
of oscillators that will act as multiple sweeping filters on the sound [Boulanger et al.,
2000].

2.2.5 Finite Element Approximations

Verplank et al. derived a finite element approximation to a one-dimensional closed
string of springs and masses by applying Newton’s equations on a generalized string
and discretizing the values. They argue that such an approximation need not be
accurate for scanned synthesis, only that it should be stable and musically interesting.
Their derivation involves a series of difference equations that describe the motion of
each mass element of the string as well as the spring forces interacting on them
[Verplank et al., 2000]:

ai = 1
Mi

[
Ki
(
xi−1 − 2xi + xi+1

)
− Cixi −Divi + fi

]
(2.1)

vi =
∫
aidt (2.2)

xi =
∫
vidt (2.3)

Where (2.1), (2.2), and (2.3) represent the acceleration, velocity, and position of the
i th element, respectively. Other parameters include fi

(
t
)
, the haptic force on the i

2.2. Scanned Synthesis Methods 9

th element; Mi, the mass of the i th element, Ki = Ti
Li
, the effective spring constant

between i and i-1 ; Ci, the spring constant to the earth for the i th element; and
Di, the damping of the i th element. Since this is a closed string, the boundary
conditions for the two ends are x0 = v0 = 0 and xN = vN = 0, where N represents
the last element of the string. Discretizing the equations yields numerical solutions
which can be used in a computer, the details of which are documented in Appendix
A of [Verplank et al., 2000].

2.2.6 Physical Modelling

Scanned synthesis may utilize techniques found in physical modelling to develop the
haptically vibrating system. Physical modelling is a method of synthesis which fo-
cuses on modelling the physical behavior of both electronic and acoustic musical
instruments. The methods used for modelling this behavior vary according to the
goal of what must be achieved, but generally these models fall under one of two
types: lumped and distributed. Lumped models approximate physical systems with
masses, springs, dampers, and nonlinear elements, while distributed models use dig-
ital waveguides to model wave propagation in distributed media [Smith, 1996]. The
model which is more suitable for membranes and plates is the distributed model.
Wave propogation of a vibrating string and vibrating membrane can be modelled by
the one-dimensional and two-dimensional wave equation, respectively.

The One-Dimensional Wave Equation

Digital waveguides can be described as a network of bidirectional delay lines which
move energy from one part of the network to another. These delay lines are connected
at scattering junctions which simulate the behavior of the distributed system [Bilbao,
2001]. The same model can be used to describe the motions of a vibrating string.
The displacement of an ideal vibrating string can be described by the following
second-order partial differential equation [Duyne and III, 1993]:

utt
(
t, x
)

= c2uxx
(
t, x
)

(2.4)

which says that the transverse acceleration utt of a point on the string is directly
proportional to the string’s curvature uxx at that point. Solving for the transverse
displacement u

(
t, x
)
of the string, where t is time and x is the displacement of the

string at a given point, will yield a solution that shows the summation of two left
and right traveling waves along the string [Bilbao, 2001][Duyne and III, 1993]:

u
(
t, x
)

= g+(x− ct
)

+ g−(x+ ct
)

(2.5)

where g+ and g− denote waves travelling to the right and left, respectively. The
waves travel at a speed of c =

(
T
ε

)0.5, where T is the constant tension of the string
and ε is the mass per unit length [Duyne and III, 1993]. From this, it is possible
to obtain the velocity, v = v+ + v−, and force, f = f+ + f−, components of the
traveling waves, which Julius O. Smith III fully derives in [Smith, 1992].

10 Chapter 2. Background

The Two-Dimensional Wave Equation

The second-order partial differential equation for describing the wave propagation of
a string can be extended to describe the wave propagation of a membrane Bilbao
[2001]Duyne and III [1993]:

utt
(
t, x, y

)
= c2[uxx(t, x, y)+ uyy

(
t, x, y

)]
(2.6)

where x and y denote the horizontal and vertical spacial coordinates along the mem-
brane.

Solving the equation for the wave displacement u
(
t, x, y

)
of the two-dimensional

membrane yields [Duyne and III, 1993]:

u
(
t, x, y

)
=
∫
gα
(
x cosα+ y sinα− ct

)
dα (2.7)

where gα is a function which represents the velocity potential of the propagating
waves, in which the direction of propagation is inclined at an angle α and is traveling
at speed c [Morse and Ingard, 1968]. This solution, however, requires an infinite
number of arbitrary plane waves to be traveling in all directions, which in turn
requires an infinite number of waveguides, one assigned to each plane wave [Duyne
and III, 1993]. One solution to this problem is by formulating a two-dimensional
waveguide mesh, which describes the behavior of the vibrating membrane in terms
of a 2-D network of biderectional delay lines and 4-port scattering junctions. The
details of formulating this mesh network will not be discussed as they are beyond
the scope of this paper, but solutions to the digital waveguide mesh can be found in
[Bilbao, 2001] and [Duyne and III, 1993].

2.3 Human Computer Interaction Applied to Digital In-
strument Design

The progression of instrument design has reached a new paradigm with the invention
of computer music. This new shift in digital technology has introduced new challenges
as to how and what to design to conjure new modes of musical expression. One of the
main challenges of digital instrument design stems from the fact that the physical
interface for generating sounds and the device from which sound is generated are
completely separate. This separation of controller and sound generator is what lies
at the core of a digital musical instrument, or DMI [McGlynn, 2014] [Wanderley and
Depalle, 2004]. The reason this poses a challenge is because the relationship between
the performer’s gestures onto the controller and the resulting musical output are
arbitrary and designed [McGlynn, 2014]. This relationship is defined by the way the
designer chooses to map parameters from the gestural controller to audio parameters.
Moreover, there is the challenge of evaluating such a design. Since mapping schemes
can be arbitrarily defined with limitless possibilities, how are we to know which
schemes are appropriate for musical expression? This section will discuss some of

2.3. Human Computer Interaction Applied to Digital Instrument Design 11

the primary aims that designers wish to achieve with the creation of a new digital
musical instrument as well as the challenges that go with evaluating such novel
designs.

2.3.1 Aims of Digital Instrument Design

Traditional acoustic instruments can offer such a wide variety of complex, nuanced,
and creative potential for a performer that the possibilities are seemingly endless.
The guitar, for example, is the perfect example of an instrument that has lead to the
exploration of new genres, styles, and modes of expression, which continues to be
explored and performed in new and inventive ways. With such creative potential at
hand, why bother with this new paradigm of digital instruments? What can digital
musical instruments possibly offer that acoustic instruments can’t?

According to Sergi Jordà Puig, the creation of a new digital musical instrument
can lead to new ways of thinking and approaching an instrument, new ways of in-
teraction, and new ways of organizing textures, which in turn will ultimately lead
to new forms of music [Puig, 2005]. In other words, DMIs can offer new forms of
creative expression, which in turn will lead to a level of musical creativity that can-
not possibly be reached with the aid of acoustic instruments alone. Another goal,
according to Marcelo Wanderley, is that DMIs should offer similar levels of subtle
control, but also extend the capabilities of the instrument [Wanderley and Depalle,
2004]. Reaching these goals are no trivial task. Since all DMIs start with the problem
of how to map the control interface to the sonic output, there remains the challenge
of how to develop a successful mapping scheme that will satisfy these goals.

2.3.2 Challenges in Evaluating DMIs

The physical interface of an acoustic instrument is inextricably linked to its sound
source in such a way that it is virtually impossible to separate one from the other.
With DMIs, however, this link is initially severed and as a consequence connections
between the them must be carefully considered before bringing them together. Many
considerations need to be made before attempting a design. There are questions of
context, learning curve, reproducibility, and efficiency, to name a few [McGlynn,
2014] [Puig, 2005]. Puig arguies that the crafting of new digital musical instruments
cannot be considered a science. However, the closest we can come to a clear evalua-
tion of a digital instrument is by assessing its mapping strategy, even though there
is no clear guideline as to how something should be mapped [Puig, 2005]. Tubb
makes the argument that having unbounded freedom has the consequence of having
an excess of mapping options, and that scanned synthesis is meant for a more inflex-
ible design: “the more intrinsic constraints apply to the control mapping, the more
specific playing techniques will be developed, and the more longevity the instrument
will possess.”

12 Chapter 2. Background

Chapter 3

Related Works

This chapter will discuss the projects that are relevant to the design and develop-
ment of the Ripple Synth application. The projects related to scanned synthesis are,
unfortunately, few and far between. Aside from the fact that scanned synthesis is a
relatively new technique, the research and development that has been done has been
very sparse throughout the two decades of its existence. The lack of published works
and projects has also been noted by Tubb during his research and development of
the Wablet scanned synthesis application [Tubb, 2011]. His spectulation is that this
is due to several factors including patent issues with the scanned synthesis algorithm
itself, the lack of general favorability with utilizing such techniques, and that, until
recently, researchers and developers have not had access to the advanced compu-
tational and interactive hardware that can allow them to fully exploit the creative
power of this technique. Despite this, there have been several notable developments
which have had a contributing influence on the Ripple Synth design, both former
and recent.

3.1 Max Mathews’ Baton Scanned Synthesis String
Max Mathews has demonstrated how to perform with the one-dimensional finite el-
ement string model he developed in [Verplank et al., 2000] by using his radio baton
invention to excite the string in various locations with different types of force inter-
actions [Mathews, 1998]. Mathews’ radio baton was developed as a MIDI controller
for use in live musical performances. It consists of a flat, rectangular-shaped box
which contains a processor that uses radio communication to track the x, y, and z
movements of two batons and are also used as triggers when striking the box [Math-
ews, 2000]. Figure 3.1 shows Mathews demonstrating his radio baton instrument.
Before each demonstration, Mathews sets up various initial conditions to control the
type of string displacement that occurs when one of the batons strikes the box and
to control certain characteristics of the string vibrations. There are three ways in
which string displacements can be initiated: sine wave displacements, pulse wave
displacements, and haptic displacements. Sine wave displacements generate more

13

14 Chapter 3. Related Works

Figure 3.1: Max Mathews demonstrating his radio baton instrument Boulanger Labs [2018]

percussive sounds. Mathews controls the percussion hit and pitch with one baton,
by striking the box at various points along the x position, and controls the center-
ing and damping forces of the string by sliding the other baton along the box’s x
and y position. Plucked sounds are controlled in the same manner, but with initial
displacements being instigated with a pulse. Haptic movements are controlled by
sliding the two batons along the surface of the box across both the x and y plane
simultaneously to instigate various haptic displacements on two points of the string.
Here the two batons represent forces which displace the string at various locations
by pushing the string up or pushing it down.

3.2 Paris Smaragdis’ Csound Opcodes

The algorithm Mathews used for controlling the finite element string model in [Ver-
plank et al., 2000] with his radio baton has also been coded in Csound by Paris
Smaragdis and has been made widely available for public use [Smaragdis, 1999b].
This software allows for the user to experiment with different characteristics of the
string model and to interact with this model in real time. The parameters that can
be modified include the dampness, centering force, and stiffness of the springs, as
well as the weight of the masses. The user also has control over the shape, position,
and intensity of the striking force. The author warns that experimenting with certain
characteristics of the string, namely the mass values, centering force, and damping
can lead to a highly unstable string which can potentially “blow up” the simulation
[Smaragdis, 1999a].

3.3. Scanned Synth Pro 15

3.3 Scanned Synth Pro
Humanoid Sound Systems’ Scanned Synth Pro was the first commercially available
VST which uses scanned synthesis [Humanoid Sound Systems, 2018]. This plugin
allows the user access to different scanned synthesis parameters to effect the weight of
the masses, centering force of the springs, and the quality of the striking force, as well
as the type of mass spring configuration topology. Unfortunately, the proprietary
nature of this software disallows any further investigation into the details of this
program. In addition, the software is featured along with a myriad of different filters
and effects that obscure the actual scanned synthesis sound. Since the plugin’s
graphical layout only consists of the typical knobs and sliders, the lack of visual
feedback makes it difficult to understand how the waveform is being effected and
how it’s evolving. Similar criticism has been noted by Tubb in [Tubb, 2011]. Despite
these criticisms, Scanned Synth Pro remains one of the few successful commercial
products that features scanned synthesis.

3.4 Scanned
The latest in the development of a commercial product to feature scanned synthesis is
Scanned by Qu-Bit Electronix. This product is implemented as a modular synthesizer
component and claims to be the first product to fully implement scanned synthesis in
hardware. They describe their product as an ‘organic wavetable VCO’ that uses the
‘unexplored synthesis technique known as Scanned Synthesis’ to excite a ‘vibrating
string’ which ‘generates wavetables on the fly’ [Qu-Bit Electronix, 2018]. Although
such marketing jargon may be slightly deceptive, e.g. the ‘organic’ nature of the
wavetable and the fact that this technique has been explored for two decades (perhaps
‘scarcely explored’ is the more apt terminology), it is descriptive enough to give an
idea of how this product functions. The knobs on this modular synthesizer change
the characteristics and force interactions of a one-dimensional vibrating string. These
parameters are the type that one expects to have control over, such as the centering
force, dampening, and stiffness of the springs, the weight of the masses, and the
scanning frequency. Other parameters make it possible to affect the shape, position,
and strength of the hammering force on the string. As is often found in modular
synthesizer hardware, VCO inputs and outputs make it possible to patch any of these
parameters to other modular synthesizer components. As to date, this product has
not been released to the general public and is expected to be available on the market
sometime in September 2018.

16 Chapter 3. Related Works

3.5 Multidimensional Physical Modelling with the Sensel
Morph

Tissieres et al. developed a digital percussion instrument that uses physical mod-
elling techniques to produce various percussion sounds controlled by a Sensel Morph,
a flat rectangular touch controller that uses pressure sensitivity to capture various
user touch interactions [Tissieres et al., 2018]. The relevance of this project to the
Ripple Synth project isn’t so much the physical modelling techniques involved, al-
beit they do use a two-dimensional waveguide mesh as one of the resonator systems
to their model, but in their evaluation of user interaction to their system with the
Sensel Morph. Their project is the first to publish usability testing results involv-
ing this particular controller. According to the authors, physical interactions and
haptic feedback response were important for the percussive nature of their physical
modelling system, which needed to capture and respond to various nuanced gestural
movements. The Sensel Morph allowed them to develop interactions that utilized
such nuanced activity. One thing they conclude from their evaluation is that by
abstracting the input sensor data in more complex ways and by using them for a
variety of different gestural mapping schemes, their instrument could be extended to
allow the performer even more expressive control over the system’s parameters.

3.6 Body Controlled Scanned Synthesis
Yoichi Nagashima developed an application which focuses on the expressive real time
control of scanned synthesis parameters using movements of the arms [Nagashima,
2004]. This novel interaction technique uses a MiniBioMuse-III, a sensor which tracks
eight independent channels of EMG information on the arm. One MiniBioMuse-III
is strapped to each arm, mapping 16 channels of EMG data to 16 values that af-
fect scanned synthesis parameters. The simplest mapping technique implemented
was using the 16 channels of EMG data to effect the displacement values of the
scanned waveform. However, such mapping led to results that did were not exactly
deemed meaningful and were hard to control. The author proposed to expermiment
further with other mapping techniques for future compositions, but has yet to ver-
ify his results. Despite the lack of further research in this area, it does represent
an attempt to explore the mapping of meaningful gestural movements to scanned
synthesis parameters.

3.7 Tüb
Tüb is an installation that uses methods to sonify the haptic vibrating forces of a
real object, namely that of water waves flowing in a tub [Erlach et al., 2011]. These
methods involve positioning a light and a webcam from above the tub and capturing
the shadow ripple patterns that are produced at the bottom of the tub. The ripple

3.8. Wablet 17

pattern images are scanned using GEM software and audio is processed using Pure
Data. Elliptical paths were used to scan the image frames and update the wavetable.
Tüb is the first scanned synthesis project that uses the behavioral properties of water
as the haptic vibrational medium for scanned synthesis. This opens up interesting
possibilities in two ways. Firstly, it gives an idea of the different expressive ways in
which the performer can interact with such a medium, and how the these properties
should respond to such an interaction. For instance, experimenting with different
fluid viscosities, volumes of water, and ways of exciting this system could lead to
many interesting artistic possibilities. The authors leave much of this interaction
to future work. Secondly, it shows how the behavior of a fluid like mesh will affect
its sonic properties, in terms of scanned synthesis. The authors observed that the
richness and complexity of the wave patterns produced by the myriad of ways in
which one can interact with the water was reflected in the sonic output. This in turn
lead to a more engaging and rich experience for the performer [Erlach et al., 2011].

3.8 Wablet
Wablet is an application that use’s an iPad’s multi-touch interface to allow touch
interaction with a graphically displayed two-dimensional mesh structure, which gen-
erates sounds according to scanned synthesis methods [Tubb, 2011]. It utilizes certain
touch interaction gestures for exiting the mesh membrane, such as grabbing and re-
leasing point masses, creating mass-repelling force fields around the area of touch
contact, constraining masses into a locked position, freeing masses from a locked po-
sition, inscribing orbital paths, creating sinusoidal or radial spacial harmonics in the
structure, and shaking the entire mesh using the iPad itself. The audio extraction
techniques mainly relied on the shape of the orbital pathway (discussed in 2.2.3)
and the different types of motion one can give to the mesh structure. For instance,
spinning a free floating mesh will introduce centrifugal force. This force interaction
will be scanned along the orbital pathway and used for sound generation. In general,
oscillations in various force and speed interactions reflected the final output of the
sound.

Wablet’s design, particularly it’s code structure, was an influence on the design of
the Mesh, Mass, and Spring classes of the Ripple Synth application. Particularly in
the way force interactions behave, which applies forces in an object-oriented fashion
in order to update the mesh structure, which is closer to the lumped model. Although
this is a very elegant solution in terms of code design, it is not a very efficient solution.
Tubb also implements another design according to the distributed model. Although
the Wablet code itself is proprietary and therefore its details not disclosed, it gives
a good idea of how to simulate mesh behavior in the object-oriented lumped model.

18 Chapter 3. Related Works

3.9 Mass-Spring System Simulation

This project gives an example of how to run a mass-spring simulation in Qt [Guy,
2018]. What’s more, it show’s how to render and display objects using the QtOpenGL
module in Qt.

Chapter 4

Design and Implementation

The development of the application known as Ripple Synth will be described in this
chapter in detail. This will include a description of the technologies used, a detailed
discussion of the design of the application and its code structure, and an overview of
the mapping strategies used.

4.1 Technologies Used
Ripple Synth utilizes several technologies, both in hardware and software, to form
one complete application. The following sections will give a general description of
each of these technologies as well as the purpose of its use in the application.

4.1.1 Sensel Morph

The Sensel Morph is a pressure sensitive multi-touch control interface. It has along its
surface a grid of approximately 20,000 pressure sensors with a resolution of 32,000
levels of pressure sensitivity ranging from 5 grams to 5 kilograms [Sensel, 2018b].
Sensel provides its own API, which is freely available on its GitHub repository [Sensel,
2018a], so that developers have access to the real time input pressure data. This
API does the job of parsing the raw input data and storing it as touch gesture
information, giving the developer access to various gesture parameters such as the
number of contact points, the total force applied at each point, and the location of
contact. Touch data is delivered in frames, which can deliver 125 to 1000 frames per
second, and has a latency of 2 to 8 milliseconds [Sensel, 2018b].

The Sensel API is available in three different programming languages: C, C#,
and Python. Ripple Synth is programmed in C++ and therefore integrates the Sensel
API in C by installing the appropriate runtime libraries and including the necessary
C header files, namely <sensel.h>, which provides access to the different gestural
control parameters, and <sensel_device.h>, which provides a handler for accessing
the Sensel Morph device. Once the API is installed, the input data can then be
extracted for further processing in Qt.

19

20 Chapter 4. Design and Implementation

4.1.2 Qt

Qt is a C++ Software Development Kit for developing cross-platform GUI environ-
ments and embedded UI software. It provides a framework for developing applica-
tions that need to process 3D graphics and mathematical simulations in realtime
[Qt, 2018a]. Software applications can be ported to a multitude of environments and
embedded devices with relative ease. It has been accepted over the years by many
notable software companies as a useful tool for developing UI software and graphical
animations, including audio companies such as Native Instruments1 and Ableton2.

The input data from the Sensel Morph is processed in Qt by mapping the touch
gestures to force interaction parameters which causes wave dispersion in a two-
dimensional mass spring mesh network. The physical interaction forces instigate
wave propagation throughout the membrane, which vibrate according to the proper-
ties of the mesh. The mesh behavior is defined and simulated within the Qt portion
of the Ripple Synth application and details of its implementation will be further
discussed in 4.3. Once the forces for all the masses and springs in the mesh network
are calculated, they are updated to reflect the current state of the mesh and then
displayed graphically in OpenGL.

4.1.3 OpenGL

OpenGL is a cross-platform open-source API that is used for rendering 2D and
3D graphics. Originally written in C, it contains a wide variety of other language
bindings, including C++, Java, and Fortran, making it extensible to for use in many
other environments and contexts [OpenGL, 2018]. Qt provides wrappers in their API
allowing programmers to incorporate OpenGL functionality with relative ease, the
most important being the QtOpenGl module [Qt, 2018b]. OpenGL’s purpose is to
only render graphics and does not contain any physics engine of its own, but it can
work alongside Qt so that calculations for physical simulations can be done within
Qt and rendered and displayed in OpenGL.

4.1.4 OSC

Once the current state of the mesh is updated in Qt and is rendered and displayed
in OpenGL, the displacement, velocity, and acceleration data of each mass that lies
along an orbital pathway are then transmitted using the OSC protocol.

Open Sound Control is a networking protocol that allows for realtime communi-
cation between various multimedia devices [Open Sound Control, 2018]. Even though
this functionality is meant to communicate streams of data to other devices over a
network, Ripple Synth uses it to only communicate updated mesh parameter data
in realtime to the JUCE audio application. It does this by sending the data streams

1https://www.native-instruments.com/en/career-center/berlin/product-creation-
development/software-engineer-c/

2http://blog.qt.io/blog/2015/12/15/ableton-push-qt-in-music-making/

4.2. Design 21

over the computer’s home IP address (127.0.0.1) at a specified port, sending data
from one application to another over the local network. Ripple Synth makes use of
Oscpack for sending OSC packets. Oscpack is a simple and lightweight API written
in C++ that contains just enough functionality to allow for basic OSC communica-
tion [Bencina, 2018]. JUCE contains its own built in OSC functionality for receiving
OSC packets.

4.1.5 JUCE

JUCE is a cross-platform open-source API for developing audio plugins and other
various audio applications, which can be ported for use in different software and
hardware environments [JUCE, 2018]. It’s robust functionality makes it flexible for
programming audio and other media in a variety of contexts and its use of the C++
programming paradigm makes it ideal for developing algorithms that need efficient
audio processing.

The orbital data, having been transmitted via the OSC protocol, is sent to the
JUCE application where audio processing will generate the sonic output of the pro-
gram. OSC data is parsed and sent to various wavetables, which will store the
updated parameter values. These values are then interpolated and sent to a high-
pass filter with a low frequency cutoff to remove the DC offset (since we are only
interested in fluctuations for generating audio content). The data is finally sent to
an audio buffer to be processed at audio rate.

4.1.6 MacOS

Every software component that has been described was implemented and tested on
MacOS High Sierra (version 10.13.6).

4.2 Design
Ripple Synth is comprised of several distinct parts, which come together to serve
one cohesive purpose: to provide a musical interface that simulates the interaction
and behavior of a fluid-like vibrating membrane and sonifying the result using the
methods of scanned synthesis. It does this by gathering gestural touch information
from the Sensel Morph interface, mapping these gesture parameters to interaction
parameters that excite a haptically vibrating mesh structure, and sending visual and
audio feedback data of the mesh to the performer, who will in turn respond to the
current feedback data. This feedback loop is illustrated in figure 4.1.

4.2.1 Gesture Extraction

The process begins with collecting pressure input data from the Sensel Morph. As
was previously mentioned in 4.1.1, the Sensel Morph provides an API for collecting
high level gestural content from the realtime touch interaction of the device. The

22 Chapter 4. Design and Implementation

Figure 4.1: Classical model of the feedback loop. [Puig, 2005]

gestural content extracted for use includes the total number, ID, total pressure, and
x and y coordinates of each contact point. An illustration of how the Sensel Morph
receives contact data can be seen in figure 4.2. The gesture parameters are then

Figure 4.2: A visual description of the type of frame data that can be received on the Sensel Morph
Sensel [2018b]

mapped to interact with the mesh simulation.

4.2.2 Mapping Gestures to the Mesh Interface

Gesture interaction with the mesh takes place by first mapping the x and y position
of each contact point to its corresponding mass on the two-dimensional mesh grid.
Three separate types of contact force are used to instigate a downward force on
each gesture-mass contact point, causing mass displacement to initially occur in a
downward motion: DOWN_FORCE, GLIDE_FORCE, and DOWN_AND_GLIDE_FORCE. These

4.2. Design 23

purpose of these three force parameters are to simulate the different force interactions
that one can make while causing ripples on a fluid surface. DOWN_FORCE uses the
downward pressure of a contact point to generate ripple vibrations throughout the
mesh, the greater pressure there is on a contact point, the more downward force will
be exerted on a mass. GLIDE_FORCE uses a contact point’s velocity to exert downward
pressure on the mesh. In short, the strength of the downward force on a mass at the
point of contact depends on how fast the user glides their fingers across the surface.
This is analogous to gliding one’s fingers across a fluid surface, where the strength
of the vibrations correspond to the quickness of the glide. DOWN_AND_GLIDE_FORCE
combines these two force interactions to include both downward and glide force
responses. The intensity of the mesh interaction in both downward and horizontal
motion will contribute to the overall intensity of the haptic mesh vibrations.

4.2.3 Two-Dimensional Mass Spring Mesh

The behavior of the two-dimensional mass spring mesh network is calculated using
the Newtonian laws of motion for the masses and using Hooke’s law for the spring
force interactions between the connected masses. The downward force displacement
is combined with spring force vectors, which combine both a spring and damping
constant, to calculate the acceleration force of the mass. Mesh parameter values for
mass, spring constant forces where chosen to reflect the fluid motion behavior of the
mesh and to ensure that the mesh structure does not become unstable. As a further
precaution, an invisible barrier was set up to be boxed around the mesh structure
so that mass values do not go beyond a certain point. A similar barrier has been
implemented in Tubb’s Wablet application [Tubb, 2011]. Once mass acceleration is
calculated, the velocity and position of the mass can be obtained by its first and
second integral of the mass acceleration with respect to time. Once the position of
the masses are calculated, they can be updated graphically to reflect the current
state of the mesh in OpenGL.

4.2.4 Graphical Feedback

Every time the state of the mesh is updated, the position of every mass is sent to
OpenGL to be rendered. The orbital mass positions are also updated at this point,
by keeping track of the indices of these positions and updating them in OpenGL
using a seperate function. It is within this function that orbital mass information is
collected and transmitted via OSC. This will be discussed in further detail in 4.3.1.

4.2.5 Mapping Orbital Data to the Dynamic Wavetable

The orbital pathway lies within the center of the mesh structure in a square shape
as can be seen in figure 4.3. This shape was chosen based on the conclusion found in
[Mills and de Souza, 1999], which has been discussed in 2.2.3, and keeps in the spirit
of scanned synthesis which is about synthesizing and shaping the behavior of timbres

24 Chapter 4. Design and Implementation

Figure 4.3: The yellow rectangular shape represents orbital pathway in the mesh structure

throughout time. Orbital data is updated along with the mass spring data for the
entire mesh network in the same fashion. Once this data is updated graphically
and transmitted via OSC, it is received on the JUCE end and orbital position,
velocity, and acceleration values for each orbital mass are concurrently stored in
an a position, velocity, and acceleration wavetable, respectively, so the wavetables
reflect the current state of the orbital behavior. These dynamic wavetables are then
processed in a realtime audio buffer, the details of which are discussed in 4.3.1.

4.3 Implementation
This section will describe the implementation details of the Ripple Synth application.
This will include an overview of the architecture of the system for both hardware
and software and a discussion about the structure of the code base.

4.3.1 System Architecture

The architecture of the system is structured in four distinct parts: gesture parameter
extraction on the Sensel Morph, mesh behavior and graphical display in Qt, OSC
transmission from Qt to JUCE, and audio extraction from the orbital to JUCE.

Gesture Parameter Extraction on the Sensel Morph

The Sensel Morph API is used within Qt to extract gesture parameter information
for mapping to mesh interaction parameters. Input data is first extracted in the
GLWidget class and frame data, which is all the gesture data for one particular time
frame, is sent to the Mesh class, where frame data is parsed and force interaction
parameters are applied to the masses.

4.3. Implementation 25

Mesh Behavior and Graphical Display in Qt

The mesh behavior is dictated by both the force interaction parameters and the
characteristics of the mesh itself, which include the weight of the masses and the
spring constant and damping forces. Masses and springs behave according to the
Newtonian laws of physics, which calculate forces according to F = m ∗ a. Spring
force is calculated according to Hooke’s law F = k ∗ x, where x is the position of the
mass and k is the spring constant. Damping is calculated according to D = −d ∗ ~v,
where d is the damping constant and ~v is the vector sum of the velocity of the
masses at each end ~v = ~v1 + ~v2. Once the forces are calculated, the mass positions
are updated and the new mesh state is rendered and displayed. A single call to
render the entire mesh is done, which then calls every spring and mass to render its
new position individually. A separate function is called to both render the orbital
positions and transmit the orbital behavior via OSC.

OSC Transmission from Qt to JUCE

OSC transmission is set up in Qt by including the oscpack API in the Mass class.
Orbital masses can then transmit data in OSC packets. This data is sent over the
local address 127.0.0.1 over port 9001. Packets are received over the same protocol in
JUCE in the Wavetable class. In order to receive these packets of data, Wavetable
must inherit from the OSCReceiver class, which contains listener callback functions
for receiving OSC messages. Wavetable then parses the data and sends them to
various wavetables for audio processing.

Audio Extraction from the Orbital to JUCE

Audio data is extracted from wavetableBuffer, which is a buffer that loads audio
data from one of three different wavetables: orbitalPosition, orbitalVelocity,
orbitalAcceleration. These wavetables store updated information about the state
of every orbital masses spacial coordinates, velocity, and acceleration. Once this data
is loaded in wavetableBuffer it then uses an interpolation function which produces
linearly interpolated audio data that is then stored in the realtime audio buffer.

4.3.2 Code Structure

The code base can be separated into two separate pieces of functionality. The first
runs in Qt, which processes the realtime gesture input from the Sensel Morph, maps
the gesture interaction to the mesh, handles the physics calculations of the mesh,
updates the state of the mesh and renders the graphics in OpenGL, and finally
transmits orbital parameter data to JUCE via OSC. The second runs in JUCE,
which receives the orbital parameter data, parses the orbital data and updates the
data to various wavetables, chooses one of the wavetables for processing loads it in a
wavetable buffer, interpolates the buffer for audio processing, and finally filters the
audio to remove the DC offset before being sent to the audio buffer for output.

26 Chapter 4. Design and Implementation

The code base in Qt is organized in an object-oriented fashion, and can be viewed
as having three parts. The first part holds the Mesh class, which creates a new mesh
and establishes the connections between all of the masses and springs. Masses and
springs are defined in the Mass class and the Spring class. Masses keep track of
all the forces that are being applied to them, including spring forces and interaction
forces, and also keep track of any barriers that they cannot cross and will bounce back
from. They can be locked into position in order to be suspended into space. Springs
contain all the spring properties and behavior that allow it to expand and contract
according to spring constant and damping forces. Every spring must be connected
to one mass at each end. The second part holds the GLWidget class, which sets up
all of the necessary OpenGL graphics parameters and renders the mesh simulation
in realtime. This is where the mesh is initialized and the simulation is ran. This is
also where the Sensel Morph interaction data is first extracted. The third part holds
the Window class. This class simply displays the window where the OpenGL graphics
are rendered to.

The code base in JUCE holds one class, the Wavetable class, and a Main file for
running the JUCE program. The Wavetable class inherits from the AudioAppComponent
class which give the Wavetable class the functionality to process realtime audio. This
class has three distinct purposes. First, it receives OSC packets and parses the infor-
mation. Secondly, the parsed data is updated in three separate wavetables, the first
holds orbital position coordinates, the second one holds orbital velocity values, and
the third one holds orbital acceleration values. Finally, data is sent to a wavetable
buffer, which is interpolated using linear interpolation, high pass filtered at 30 Hz,
then sent to the audio output buffer.

Chapter 5

Evaluation

This section will discuss the user testing and evaluation of the Ripple Synth applica-
tion. The evaluation is based on a study which explores how musicians will express
themselves with a new DMI, and how different mapping schemes affect the appraisal
of the DMI [Pras and Wanderley, 2013]. The evaluation will also use the System
Usability Scale in order to measure the usability of the application and its reliability
[Brooke, 1995].

5.1 Procedure
There were 10 participants, all with musical backgrounds who had an understanding
and were familiar with using a musical instrument. They averaged 7.2 years of
musical experience, with 5 being most familiar with the piano. Four were said to
have been quite familiar with digital musical instruments. One of the participants
had a familiarity with scanned synthesis and 2 had experience with using the Sensel
Morph.

The experiment consisted of 3 sessions, each session contained a different mapping
setup. Each mapping tested a different gesture parameter, which was mapped to the
same audio extraction parameter. The three gesture parameters consisted of “down
force”, “glide force”, and “down and glide force”. The audio extraction parameter
was the audio produced from the velocity movement of the orbital. The experiment
took roughly one hour to complete for each participant.

In each session, each participant was asked to watch 3 videos corresponding to
three different mesh animations, and were asked to try to reproduce the animation.
The video included the audio produced from the excited mesh animations, so the
participant knows the sounds they are expected to reproduce as well. This was
followed by a short interview. The participant was than given about 10 minutes to
experiment with the interface. This was followed by another interview.

The replication of the task corresponding to the 3 videos for each task differed
according to the session. The animations were chosen according to the uniqueness of
the gestures produced for each mapping. The mapping scheme for each session was

27

28 Chapter 5. Evaluation

chosen in random order, as to were the three tasks as to avoid any ordering bias.
For the “down force” mapping scheme, the participant was shown the following three
animations: a single ripple produced in the center, a downward gliding ripple with
increasing downward force moving at a constant velocity, and two gliding ripples
moving in opposite directions with increasing downward force moving at a constant
velocity. The last animation was chosen in order to encourage the participant to
use two hands to produce the animation. For the “glide force” mapping scheme, the
participant was shown: a gliding ripple with increasing velocity and downward force,
a gliding ripple with decreasing velocity and downward force, and two opposite gliding
ripples with increasing velocity and downward force. The “down and glide force”
scheme included: a gliding ripple with increasing velocity and decreasing downward
force, a gliding ripple with decreasing velocity and increasing downward force, and
two opposite gliding ripples with increasing velocity and decreasing downward force.
Participants were given as much time as needed to perform tasks and were given
hints as how to vary the downward force or speed of the gesture interaction in order
to match the animation and sound.

The questions during the interview portion of the session were asked in order to
gather qualitative data of the participant’s ability to experiment with the instrument
and to know their mapping preference. These questions were modelled after [Pras
and Wanderley, 2013], in which questions were carefully worded in order to avoid
provoking a certain answer. During the first session, the following question was
asked: How would you describe your progression throughout the 3 tasks? After the
participant explored the interface for 10 minutes, the two following questions were
asked: How do you feel about the music you just created? How was your experience
playing the instrument? During session two and three, the interface exploration
interview questions were changed to: This time, how do you feel about the music you
just created? How would you compare your experience playing the instrument in this
session versus the last session? Which set–up would you like to spend more time on
in the future? The last question opens up suggestions for possibly improving the
mapping strategy.

5.1.1 Analysis

Grounded theory was chosen to analyze the qualitative data, and categorize the
reemerging concepts from this verbal data. A System Usability Test was given in
order to assess the overall usability of the application.

Chapter 6

Results and Discussion

6.1 Qualitative Results

6.1.1 Task Replication

Analysis of the data revealed two main categories that were identified using Grounded
Theory: learning and mapping. Seven participants found the learning curve quite
challenging. It took several suggestions in order to guide them in the right direction
of interaction. In terms of mapping, the overall gesture movement wasn’t deemed
confusing, but the nuances between mappings were hard for them to distinguish.
In general, the different gesture mappings were hard to figure out at first. The
small amount of time spent between tasks meant that a learning curve could not be
established.

6.1.2 Instrument Exploration

Two categories were also identified for the exploration phase of the interview: sound
quality and gesture response. Eight of the participants commented on the sound
quality of the output as not being very musically pleasing. Seven made comments
about the difficulty of distinguishing between the dynamics of the sound, other than
the intensity from soft to loud. Overall, the sound quality was judged to be too harsh
for the participants. Pertaining to the gesture response, four of the ten participants
actually felt the nuanced behavior to be counter intuitive to what they expected. For
instance, pressing and holding down on the mesh should not hold the displacement
of a mass, but bounce back, much like sticking your finger in water where you poke
through the water, rather than poking and holding the displacement of water. Six
felt that they had a great deal of control at the beginning, but the vibrations became
too overwhelming to notice their own gesture response.

29

30 Chapter 6. Results and Discussion

6.2 System Usability Test
In order to evaluate the overall usability of the application as a whole, the System
Usability Test was conducted based on [Brooke, 1995]. Questions were arranged
on a 5-point scale, from 1 being strongly disagree to 5 being strongly agree. The
results were then calculated with the Usability Score. This resulted in a score of
51.8, which was way than the average score of 68. This means that improvements
to the usability of the system can must be made in order for it to even qualify as
‘usable’. The following shows the mean scores to the test:

System Usability Test Question Mean Score
I think that I would like to use this system frequently. 3.4
I found the system unnecessarily complex. 2.2
I thought the system was easy to use. 3.0
I think that I would need the support of a technical person
to be able to use this system.

2.8

I found the various functions in this system were well inte-
grated.

2.9

I thought there was too much inconsistency in this system. 3.1
I would imagine that most people would learn to use this
system very quickly.

2.8

I found the system very cumbersome to use. 3.2
I felt very confident using the system. 2.6
I needed to learn a lot of things before I could get going with
this system.

2.5

6.3 Discussion
The low System Usability Score reflects the general observations and responses that
were made during the interview. This ultimately shows that there were fundamental
flaws in the design that need to be addressed before testing an application that is
deemed usable. Much of these issues pertain to the gesture response of the system
and its overall intuitiveness.

Participants were able to distinguish differences between the mappings and did
have preferences. General comments made about the “down and glide” mapping
showed that it felt the most engaging to participants. Two participants commented
about the aggressiveness with which they were allowed to play, which excited the
mesh in very dynamic ways. Three participants, on the contrary, felt that this
aggressive nature provoked the mesh to react in uncontrollable ways, and had showed
preferences for the other mappings, namely the “glide” mapping.

Eight of the participants did not find the sonic feedback very favorable, or even
informative. The harsh nature of the sound was generally off putting. The fact
that most of the participants were not able to distinguish differences in the sounds,

6.3. Discussion 31

and found little correlation between the visual and audio feedback other than the
intensity of the vibrations, means that there are fundamental mapping flaws in the
orbital extraction design that need to be addressed.

32 Chapter 6. Results and Discussion

Chapter 7

Conclusion and Future Work

New forms of creative expression have the potential to unlock new paradigms in
how we communicate ideas. Musicians and artists will always strive to be at the
cutting edge of original thought and unique expression. One way to uncover such
potential is to devise new mechanisms from which we communicate. As was stated
by Puig, a definitive means to create unique forms art, namely music, is to create
new instruments of expression that can contribute to musical performance in original
and innovative ways [Puig, 2005].

Scanned synthesis is a relatively new technique in the world of audio synthesis.
It’s scantly tested waters, which have left much to explore in terms of developing
and testing novel forms of interaction and devising new audio synthesis techniques,
makes it a prime candidate for the development of a new digital musical interface. In
an attempt to test these waters, a novel interaction technique for scanned synthesis
was designed, implemented, and tested in order to evaluate if this gestural mapping
strategy added expressive value to the experience of playing a new digital musical
instrument. This gestural interaction behavior was inspired by interactions with
fluid-like membranes such as the ones found in [Erlach et al., 2011] and [Tubb, 2011],
and was expanded upon. Based on the qualitative data and the System Usability
Score, however, it cannot be stated that this novel gesture interaction will bring
expressive value to scanned synthesis. Fundamental design issues must be addressed
before further evaluation can take place.

7.1 Future Work
The evaluation of Ripple Synth has exposed fundamental issues that need to be
addressed before it can proceed. The low System Usability Score reflects the general
response to the application which mentions the issues with being able to be in control
of the gesture response and issues with gesture intuitiveness. In order to address these
issues, new mapping strategies must be devised. These strategies have to carefully
consider gesture intuitiveness and how it relates to the response of the mesh structure.

To address the mesh response behavior issue, the properties of the mesh behav-

33

34 Chapter 7. Conclusion and Future Work

ior should be redesigned to allow a more natural fluid-like response to the gesture
interactions. One possibility is to do away with the crude lump design model, which
works on basic Newtonian principles and Hooke’s law for masses and springs, and
to develop more sophisticated algorithms that are possibly based on fluid motion
behavior. The distributed model will suffice for such a method and will also allow
for efficient algorithms and complex haptic motion response.

The audio extraction methodology must also be addressed. First and foremost,
linear interpolation is a crude method for generating audio data from wavetables,
and it is one that will inevitably cause artifacts to be present in the sound. Better
interpolation methods could be used, such as cubic interpolation to improve this issue.
Interpolation between wavetables in time can also be a way to avoid instantaneous
jumps and clips that will cause artifacts as well. A similar issue was addressed
in [Tubb, 2011]. Finally, different extraction methods could be used. Again, [Tubb,
2011] addresses parts of this issue experimenting with different extraction techniques.

None of the participants noticed any lag or latency in the system, and actually
one participant commented on how fast the response was. However, as was previously
stated, improvements can still be made in terms of moving away from the lump model
to a more efficient distributed design.

Aside from the fixing the general design issues, one future development would be
to reduce the number of technological dependencies of the application. One goal is
to develop the application to work entirely on the JUCE end, and remove Qt from
the system. JUCE also has OpenGL functionality and is therefore able to render 3D
animations on its own. Having the program run entirely in JUCE will remove also
remove the dependency on OSC to transmit messages. This will reduce latency even
more since there is no time spent transmitting packets of data from one program to
another in order to update wavetables in realtime. The reason why the application
was not developed in JUCE entirely was because the API for rendering visual data
in OpenGL was much more formidable and difficult to use than it was in Qt, and
due to time constraints Qt was chosen.

Another goal in development would be to continue to experiment with interaction
mechanisms and audio extraction algorithms for the application. There is an endless
opportunity to explore both intuitive and exotic behavior in scanned synthesis, and
much of this future potential work is hinted at in the research that has already been
conducted on scanned synthesis [Verplank et al., 2000] [Boulanger et al., 2000] [Tubb,
2011].

Bibliography

Bencina, R. (2018). oscpack - a simple C++ OSC packet manipulation library | Ross
Bencina. http://www.rossbencina.com/code/oscpack.

Bilbao, S. D. (2001). Wave and Scattering Methods for the Numerical Integration of
Partial Differential Equations. PhD thesis, Stanford University.

Boulanger, R., Smaragdis, P., and ffitch, J. (2000). Scanned Synthesis: An Introduc-
tion and Demonstration of a New Synthesis and Signal Processing Technique. In
ICMC.

Boulanger Labs (2018). screen baton. http://boulangerlabs.com/wp-
content/uploads/2017/03/6screen_baton-400x300.jpg.

Brooke, J. (1995). Sus: A quick and dirty usability scale. 189.

Duyne, S. A. V. and III, J. O. S. (1993). Physical Modeling with the 2-D Digital
Waveguide mesh.

Erlach, B., March Evans, and Michael J. Wilson (2011). Tüb - Interactive Sonification
of Water Waves.

Guy, R. L. (2018). Mass-Spring System Simulation | Ryan Guy’s Portfolio.
http://rlguy.com/massspringsimulation/.

Humanoid Sound Systems (2018). Scanned Synth Pro - Humanoid Sound Systems
- VST Plugins, VSTi, & Audio Units Plugin Synth Music Software and Sound-
ware. http://www.humanoidsoundsystems.com/scanned-synth-pro-vst-au-synth-
plugin/.

James, S. G. (2005). Developing a Flexible and Expressive Realtime Polyphonic Wave
Terrain Synthesis Instrument Based on a Visual and Multidimensional Methodol-
ogy. Master’s thesis, Edith Cowan University.

JUCE (2018). JUCE | JUCE. https://juce.com.

Mathews, M. (1998). Max Mathews - Lecture on Scanned Synthesis - 1998.
https://vimeo.com/40910330.

35

36 Bibliography

Mathews, M. (2000). RADIO-BATON INSTRUCTION MANUAL.
http://www.csounds.com/wp-content/uploads/2013/05/BatonManual.pdf.

McGlynn, P. (2014). Interaction Design for Digital Musical Instruments. PhD thesis,
National University of Ireland, Maynooth.

Mills, A. and de Souza, R. C. (1999). Gestural sounds by means of wave terrain
synthesis. Proc. of the VI Brazilian Symp. on Computer Music, 3:9–16.

Mitsuhashi, Y. (1982). Audio Synthesis by Functions of Two Variables. Journal of
the Audio Egineering Society, 30(10):701–706.

Morse, P. M. and Ingard, K. U. (1968). Theoretical Acoustics. McGraw-Hill, New
York, NY, USA.

Nagashima, Y. (2004). Controlling Scanned Synthesis by Body Operation.

Open Sound Control (2018). Introduction to OSC | opensoundcontrol.org.
http://opensoundcontrol.org/introduction-osc.

OpenGL (2018). Opengl Overview. https://www.opengl.org/about/.

Pras, M. G. A. and Wanderley, M. (2013). Combining musical tasks and impro-
visation in evaluating novel Digital Musical Instruments . In Proc. of the 10th
International Symposium on Computer Music Multidisciplinary Research,.

Puig, S. J. (2005). Digital Lutherie: Crafting musical computers for new musics’
performance and improvisation. PhD thesis, Universitat Pompeu Fabra.

Qt (2018a). Qt | Cross-platform software development for embedded desktop.
https://www.qt.io.

Qt (2018b). Qt OpenGL C++ Classes | Qt OpenGL. http://doc.qt.io/qt-5/qtopengl-
module.html.

Qu-Bit Electronix (2018). Coming Soon - Qu-Bit Electronix.
http://www.qubitelectronix.com/soon/.

Roads, C. (1996). The Computer Music Tutorial. MIT Press, Cambridge, MA, USA.

Sensel (2018a). GitHub - sensel/sensel-api: Sensel API for communicating with
Sensel devices. https://github.com/sensel/sensel-api.

Sensel (2018b). Morph - Sensel Morph Documentation.
http://guide.sensel.com/morph/.

Smaragdis, P. (1999a). Csound Opcodes for Scanned Syntheeis.
http://www.csounds.com/scanned/scannedman.html.

Smaragdis, P. (1999b). scansyn. http://www.csounds.com/scanned/zip/scancode.zip.

Bibliography 37

Smith, J. O. (1992). Physical modeling using digital waveguides. Computer Music
Journal, 16(4):74–91.

Smith, J. O. (1996). Physical modeling synthesis update. Computer Music Journal,
20(2):44–56.

Tissieres, J. Y., Vaseileiou, A., Zabetian, S., Dahl, S., and Serafin, S. (2018). An Ex-
pressive Multidimensional Physical Modelling Percussion Instrument. Proceedings
of the 15th Sound and Music Computing Conference 2018.

Tubb, R. H. (2011). An Investigation into Scanned Synthesis and Multi-Touch.
Master’s thesis, Queen Mary University of London.

Verplank, B., Mathews, M., and Shaw, R. (2000). Scanned Synthesis. In Proceedings
of the International Computer Music Conference.

Wanderley, M. M. and Depalle, P. (2004). Gestural Control of Sound Synthesis.
Proceedings of the IEEE, 92(4):632–644.

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Motivations for Scanned Synthesis Research
	1.2 Research Goal

	2 Background
	2.1 The Early History and Development of Scanned Synthesis
	2.2 Scanned Synthesis Methods
	2.2.1 Mass Spring Connection Schemes
	2.2.2 Mesh Excitation
	2.2.3 Orbital Scanning
	2.2.4 Dynamic Wavetable
	2.2.5 Finite Element Approximations
	2.2.6 Physical Modelling

	2.3 Human Computer Interaction Applied to Digital Instrument Design
	2.3.1 Aims of Digital Instrument Design
	2.3.2 Challenges in Evaluating DMIs

	3 Related Works
	3.1 Max Mathews' Baton Scanned Synthesis String
	3.2 Paris Smaragdis' Csound Opcodes
	3.3 Scanned Synth Pro
	3.4 Scanned
	3.5 Multidimensional Physical Modelling with the Sensel Morph
	3.6 Body Controlled Scanned Synthesis
	3.7 Tüb
	3.8 Wablet
	3.9 Mass-Spring System Simulation

	4 Design and Implementation
	4.1 Technologies Used
	4.1.1 Sensel Morph
	4.1.2 Qt
	4.1.3 OpenGL
	4.1.4 OSC
	4.1.5 JUCE
	4.1.6 MacOS

	4.2 Design
	4.2.1 Gesture Extraction
	4.2.2 Mapping Gestures to the Mesh Interface
	4.2.3 Two-Dimensional Mass Spring Mesh
	4.2.4 Graphical Feedback
	4.2.5 Mapping Orbital Data to the Dynamic Wavetable

	4.3 Implementation
	4.3.1 System Architecture
	4.3.2 Code Structure

	5 Evaluation
	5.1 Procedure
	5.1.1 Analysis

	6 Results and Discussion
	6.1 Qualitative Results
	6.1.1 Task Replication
	6.1.2 Instrument Exploration

	6.2 System Usability Test
	6.3 Discussion

	7 Conclusion and Future Work
	7.1 Future Work

	Bibliography

