

Navigating in a Simulated Environment
with Curriculum-based Reinforcement

Learning

 Master’s Thesis

Jevgenij Martinkevič

Aalborg University Copenhagen

A. C. Meyers Vænge 15

2450 Copenhagen SV

Medialogy
Aalborg University
http://www.aau.dk

Title: Abstract:

Navigating in a Simulated Environment with
Curriculum-based Reinforcement Learning

Theme:

Master’s Thesis

Project Period:

Spring 2018

Participant(s):

Jevgenij Martinkevič

Supervisor(s):

Hendrik Purwins

Copies:

1

Page Numbers:

46

Date of Completion:

August 31, 2018

It has been recently demonstrated how
Reinforcement Learning method can been
used to solve a range of different locomotion,
navigation and robotics tasks as well as reach
exceptional performance in a number of
games of a varying complexity. However, it
has also been proven to be an extremely
complicated and time consuming task to
convert the goal of the problem into a reward
signal. In this thesis, a Curriculum-based
Reinforcement Learning approach is
investigated and applied to solve a navigation
task using only sparse reward signal. The
training process is performed in a simulated
learning environment built within Unity
Engine, while the agents are trained with
Proximal Policy Optimization method
implemented with Unity Machine Learning
Agents Toolkit. The results show that the
target task could not be solved by the typical
reinforcement learning agent using only
sparse reward signal within the given time.
However, the agent trained with an
environment-centered curriculum, where the
task is deconstructed and introduced to the
agent in lessons of increasing difficulty,
managed to solve the target task and reach
success rate of 99%. Furthermore, a
combined application of curriculum learning
and reward shaping is investigated. It is
observed, that this can negatively affect the
training process if the two approaches are
overlapping by encouraging the same type of
behavior.

Content

I. Introduction 1
1.1 Motivation 1
1.2 Purpose 2
1.3 Scope 2

II. Background 4
2.1 Reinforcement Learning 4
2.2 Reinforcement Learning challenges 6

2.2.1 Reward signals 6
2.2.2 Reward shaping 7

2.3 Curriculum learning: 9
2.3.1 Definition 9
2.3.2 Related work and forms of curriculum 1 0

III. Method 1 3
3.1 Problem description 1 3
3.2 Unity Engine and ML-Agents toolkit 1 4

3.2.1 Description 1 4
3.2.2 Proximal Policy Optimization 1 5
3.2.3 Basis of a learning environment 1 5
3.2.4 Training process 16
3.2.5 Curriculum learning 17

3.3 Learning environment 18
3.3.1 Environment setup 18
3.3.2 Observation space 19
3.3.3 Action space 2 0
3.3.4 Reward signals 2 1

3.4 Environment-centered curriculum 2 2
3.4.1 Curriculum description 2 2
3.4.2 Obstacle generation 2 2
3.4.3 Curriculum lesson setup 2 3

IV. Experiments and results 26
4.1 Initial experiments 26

4.1.1 Conditions 26
4.1.2 Academy episode length 26
4.1.3 Car sensor count 27
4.1.4 Decision Frequency 28
4.1.5 Multi-Agent setup 29
4.1.6 Hyperparameter tuning 30

iii

4.1.7 Curriculum changes 3 1
4.2 Main experiment 3 2

4.2.1 Conditions 3 2
4.2.2 Sparse reward 3 3
4.2.3 Distance-based reward 3 5
4.2.4 Step reward 36
4.2.5 Agent comparison 38

V. Discussion and conclusion 39

VI. Future work 41

Bibliography 42

Appendices 47
A - Curriculum_final script 47
B - CarAgent_final script 48

B.1 - Observation space 48
B.2 - Action space 49
B.3 - Reward signal 5 0

C - ObstacleGridGenerator script 5 1
D - Initial implementations 5 2
E - Curriculum iterations 5 3

E.1 - Target behind the wall 5 3
E.2 - 7 lesson curriculum 5 4

F - Car sensor setup 56

iv

I. Introduction

1.1 Motivation

In the past few years, reinforcement learning has not only been successfully applied but also
reached remarkable performance in different Atari 2600 games and the game of Go (Mnih et al.,
2013, 2015; Silver et al., 2016) . It was used to learn locomotion as well as solve different
robotics tasks (Heess et al., 2017; Lillicrap et al., 2015; W. Yu, Turk, & Liu, 2018) . Moreover,
some applications were extended even further, by transferring the learned knowledge from
simulations to the real-world environment. Sadeghi & Levine (2016) showed how an
autonomous quadrotor robot, or a multirotor helicopter, can be trained from just simulated
visual data using reinforcement learning approach. The task was based on collision avoidance
and the learned control policy, which encapsulates the knowledge acquired from simulated
training, was successfully deployed to a real-world robot. A similar approach was used to train a
real-world robotic hand to solve a task, which involves changing the orientation of the object
held (OpenAI, 2018) . Recently, reinforcement learning has been used to train an agent to drive a
car in a real-world environment (Kendall et al., 2018) . Nevertheless, the initial training sessions
were conducted in the simulated environment. After numerous experiments were conducted,
part of the acquired knowledge was used during the implementation of a similar setup on a
real-world car.

All of these examples are united by the fact that the training process, or at least part of it, was
conducted in simulated environments. This approach has been widely adopted as it provides a
number of benefits. Firstly, the training process can go through millions of episodes allowing
proper environment exploration (Amodei et al., 2016) . Secondly, the implementations can be
tested in a safe environment (Sutton & Barto, 2018) . Environment simulations are especially
heavily used in the development of autonomous cars. NVIDIA has developed a photorealistic
simulation platform specifically designed for testing autonomous cars, while Waymo, an
independent company developing its own self-driving car technology, has managed to drive
autonomously for over 2.7 billion miles just in simulation (NVIDIA, 2018; Waymo, 2018) .

Even though simulated learning environments can be used for extensive testing and training,
some reinforcement learning specific issues can still persist. One of the most crucial parts of
reinforcement learning is defining the goal (Sutton & Barto, 2018) . The goal of the task in
question is interpreted through rewards, which are used to either encourage certain behavior or,
in fact, to penalize it. Therefore, in most of the mentioned cases, a custom, goal specific, reward
function is used to calculate such reward. In the case of the object manipulation with robotic
hand, the current and the target object rotation angles define the received reward. Additionally,

1

https://www.zotero.org/google-docs/?2TOXVQ
https://www.zotero.org/google-docs/?2TOXVQ
https://www.zotero.org/google-docs/?exyPu1
https://www.zotero.org/google-docs/?QCG3kw
https://www.zotero.org/google-docs/?QFUlJC
https://www.zotero.org/google-docs/?ElQpTV
https://www.zotero.org/google-docs/?jZEv1F
https://www.zotero.org/google-docs/?8JHnGl
https://www.zotero.org/google-docs/?xREtKH
https://www.zotero.org/google-docs/?WVGmaD

the robot receives a reward of -20 as a penalty when it drops the object, while a reward of +5 is
acquired for solving the task. On the other hand, in the autonomous quadrotor robot example,
the received reward is calculated based on: radius of the quadrotor, distance to the nearest
obstacle and defined distance threshold. The received reward is lower when the robot is flying
closer to the obstacles. In both cases, the reward function is encouraging certain problem
specific behavior. The issue of choosing appropriate rewards may occur when the solution to the
reinforcement learning problem is not clearly defined. Nevertheless, a number of approaches
have been proposed, which can address this issue.

1.2 Purpose

In this thesis, the application of the curriculum-based reinforcement learning approach is
presented. One specific reinforcement learning challenge will be introduced and discussed in
detail, and the researched solutions will be described briefly with examples. One of these
solutions, the curriculum learning approach, and its variations will be presented. With this
approach in mind, the goal of this thesis is to study whether a reinforcement learning agent can
learn to navigate in an environment filled with obstacles using only sparse reward signals.
Additional reward signals and their impact on the training process and the curriculum will be
investigated. Both, training and evaluation of the learned policies, will be conducted in a
simulated learning environment.

1.3 Scope

The learning environment will be created using Unity Engine with the aim to construct training
scenarios in the context of navigation and collision avoidance in a simulated environment,
which otherwise would be time consuming to reproduce in real world. The agents will be trained
using a Proximal Policy Optimization method implemented with Unity Machine Learning
Agents Toolkit (Juliani et al., 2018) . The method will be presented briefly, however, it will not be
discussed in detail or evaluated as that falls outside of scope of this thesis.

The target task will involve navigating a car on a flat track filled with obstacles. An aspect of
randomization will be added to the training in the form of obstacle positioning. To test the
application of the curriculum learning approach, the target task will be used as the final lesson
of the curriculum. Additional lessons, which can be viewed as simplified versions of the target
task, will be constructed and presented to the agent during training as a form of curriculum.
Moreover, additional reward signals and their combinations will be tested.

The training will be conducted using a single machine with a mobile variant of the 4-core Intel
Core i7 6700HQ processor due to the fact that the reinforcement learning algorithm
implementation, that is part of Unity Machine Learning Agents Toolkit, is not optimized for

I. Introduction 2

https://www.zotero.org/google-docs/?y0Mfdm

graphics processing units (Intel, 2018; Juliani et al., 2018) . Due to the limitation of the available
processing power, the car control scheme will be limited to two specific actions: acceleration
and steering. These actions will be represented using a discrete action space, rather than a
continuous one. The agent will be trained using a continuous observation space, however,
vision-based data will not be used.

I. Introduction 3

https://www.zotero.org/google-docs/?VpwWQv

II. Background

In this chapter, the concept of Reinforcement Learning method and one of its main challenges
are introduced. Furthermore, few researched solutions are presented, followed by detailed
introduction to Curriculum Learning approach. Finally, multiple Curriculum Learning variations
and related work with this approach applied are studied.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning, where a certain agent learns to
solve a specific problem by interacting with the surrounding environment (Sutton & Barto,
2018) . Through this interaction the agent collects observations, which are used to determine
the subsequent interaction, or more specifically, an action. The collected observations define
current state of the learning environment, which the agent can change using a defined set of
actions. The agent in this case is a certain entity that, for example, can be an autonomous car.
The available actions can be acceleration, steering, braking, etc., while the state observation
can contain information about the car’s location as well as the destination.

Figure 2.1 : The agent-environment interaction in a Markov decision process
(Sutton & Barto, 2018) .

Sutton & Barto (2018) state that generally reinforcement learning problems are formalized as
Markov decision processes (MDPs) that can mathematically define a model of sequential
decision making. The idea behind the MDP framework is that a goal-oriented problem, based on
the process of learning from interaction, can be minimized to three specific signals that have to
be passed from the learning environment to the agent and vice versa. These signals, as
presented on Figure 2.1, are:

● The agent’s actions.
● The representation of the states, based on which the appropriate actions are chosen.
● The reward signal.

4

https://www.zotero.org/google-docs/?UR3x4O
https://www.zotero.org/google-docs/?UR3x4O
https://www.zotero.org/google-docs/?ynrQ8X
https://www.zotero.org/google-docs/?V5qTbR

A distinctive part of reinforcement learning is a reward signal, which is the only feedback the
agent receives from the learning environment, and it is used to interpret the goal of the RL
problem. This signal can be both, negative and positive, and the agent receives it during each
step of the learning environment. As the agent’s goal is to receive the highest possible
cumulative reward, it has to learn to avoid receiving low and, especially, negative reward
signals. At the very beginning of the training process, the agent has no information on what
actions it has to take, thus, has no notion of how to receive a reward. Therefore, the agent has
to take random actions at first to learn in what state what action results with a reward. This
approach is called trial-and-error search. Moreover, in some cases, actions might have a more
long lasting impact on the environment, thus, affecting the subsequent states and potential
future rewards. This effect is known as a delayed reward . All these characteristics differentiate
reinforcement learning from other types of machine learning approaches.

At the beginning of the training process, as shown on Figure 2.1, the observation data, which
represents the initial state of the learning environment, is collected and sent to the agent.
Afterwards, the agent chooses an appropriate action based on its knowledge and the received
state information. That action is sent back to the learning environment, where a certain entity,
controlled by the agent, executes it. Finally, the learning environment collects observation data
of the new state and sends it to the agent along with the reward that is calculated based on the
previous state-action pair. The agent evaluates the received reward and updates its knowledge.
In the next step, the agent choses a new action based on the new state observation and sends it
back to the learning environment. This process continues until the point when a terminal state
is reached. At that point a single episode is considered to be over.

Sutton & Barto (2018) explain that the reinforcement learning system, apart from the agent and
the learning environment, can also contain the following components:

● A policy - determines the agent’s behavior. The policy can be as simple as a lookup table,
where states are mapped to specific actions.

● A value function - defines the value of the current state, which is based on the expected
reward that the agent can accumulate not only from the current state, but also from the
future states. Sutton & Barto (2018) explain that “ Whereas rewards determine the
immediate, intrinsic desirability of environmental states, values indicate the long-term
desirability of states after taking into account the states that are likely to follow, and the
rewards available in those states. ” (p. 6). Furthermore, the state values are only
estimations, as they are not provided by the learning environment, like reward signals.

● A model - defines the behavior of the learning environment. The models are used for
planning, which can determine the subsequent states and their rewards based on the
current state-action pair.

II. Background 5

https://www.zotero.org/google-docs/?pflArv
https://www.zotero.org/google-docs/?hqCxVV

As presented on the Figure 2.2, the RL
agents can fall into different categories
depending on which of the components
are used.

● Value-based - only contains a
value function.

● Policy-based - only contains a
policy.

● Actor-Critic - contains both, a
policy and a value function.

● Model-free - contains a policy
and/or a value function.

● Model-based - contains a policy
and/or a value function as well as
a model.

2.2 Reinforcement Learning challenges

2.2.1 Reward signals

Examples, previously mentioned in Section 1.1, show that reinforcement learning can be
adopted to solve a variety of problems. However, successful application of RL highly depends on
the problem itself as well as how one approaches to solve it. Typically, a reinforcement learning
agent adjusts its behavior based on the reward signals it receives from the learning
environment. This reward is the only learning signal it collects and adjusting it has proven to be
a challenge of its own (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017) . Solving a
complex problem means that the reward function has to undergo a tuning process that would
reflect the desired agent behavior. Otherwise, if the agent only receives sparse rewards, even a
simple problem can become a complicated one (Sutton & Barto, 2018) .

Effectiveness of the RL as well as overall results heavily depend on reward signals, which
directly affect agents’ behavior evolution during training. Therefore, Sutton & Barto (2018) also
emphasize the fact that the design of the reward signal is crucial part of reinforcement learning.
Moreover, they also state that it is rather easy to run into two different challenges during this
process. First of all, it can be a complicated task to convert the goal of the problem into a reward
signal. Especially, if the problem requires the agent to complete multiple tasks or to do specific
sequence of actions for it to be considered as solved. Afterwards, it is likely for an agent to come
across a strategy that can yield a positive reward based on the designed reward function, which

II. Background 6

https://www.zotero.org/google-docs/?2sG6dG
https://www.zotero.org/google-docs/?UwMFsi

can be viewed as unwanted or even harmful to the environment, other agents or itself. Amodei
et al. (2016) describe this behavior as negative side effects , which can occur when the agent is
trained based on only one specific reward signal. The given example is of a household assistant
robot, which task is to move a box from one point in the environment to another. If the agent
receives rewards only based on the transportation task, then avoiding collision with other
objects is not something it has to take into consideration. In this case, the learning
environment has a sparse reward signal, which means that the agent will get a positive reward
only when a specific state is reached, for example, when the box is delivered to a specific
location. Moreover, Amodei et al. (2016) describe another type of unwanted behavior called
reward hacking . Similarly to the previous example, a cleaning robot, that receives reward signal
when it collects trash, could potentially learn how to exploit the environment to generate more
trash for collection. On the other hand, if the reward is received when the environment is clean,
the robot could learn to avoid areas where trash is most likely to be found.

Training an agent with sparse reward signals can be a truly challenging task. Depending on the
learning environment, the chances of finding a particular state that yields a positive reward for
an agent can be close to zero. For example, the learning environment might have several
starting states, such scenario also adds randomness into the training process. Even if an agent
manages to receive a positive reward at some point during the training, such occurrence can be
too rare, or sparse, which means it might not have a significant enough impact on the training
process. Sutton & Barto (2018) explain that in practice it is common to do a trial-and-error
search for an appropriate reward signal that would result in an expected agent behavior. It is a
job for a designer to figure out and make a decision on what signals work and which do not. This
can be a tedious task, especially if the training process takes a lot of time. Therefore, specifically
in such cases, more complex reward signals have to be introduced to the learning environment
to facilitate the training process.

2.2.2 Reward shaping

A commonly used and a rather powerful technique for solving sparse reward problems is called
reward shaping (Gullapalli & Barto, 1992; Sutton & Barto, 2018; Y. Ng, Harada, & Russell, 1999) .
The main idea behind reward shaping is to guide the agent towards states with high reward
signal or the main goal of the reinforcement learning problem. It involves implementation of
additional reward signals to the learning environment, which the agent receives for completing
sub-goals. These rewards can be both negative and/or positive and have varying magnitude
depending on the agent’s progress. Gullapalli & Barto (1992) presented shaping approach where
a batch of reward functions were used to solve a key-pressing task with RL. Each reward
function corresponds to a specific behavior approximation. The agent would receive reward
signal of 1 whenever it reaches a state where certain behavior approximation is considered to be

II. Background 7

https://www.zotero.org/google-docs/?wksyOD
https://www.zotero.org/google-docs/?wksyOD
https://www.zotero.org/google-docs/?Oc7n9c
https://www.zotero.org/google-docs/?6Gul3O
https://www.zotero.org/google-docs/?sdGEhR
https://www.zotero.org/google-docs/?6VYa3C

fulfilled. Moreover, the agent has to execute the first approximated behavior in order to receive
subsequent reward signals. That is, to receive all positive rewards all sub-goals have to be
executed in a strict sequence. The results showed that without reward shaping, the agent could
not successfully complete the task even after 500.000 training sessions. On the other hand, with
the mentioned approach, the agent managed to successfully complete the task even when the
training setup had 10.000 different starting positions. Popov et al. (2017) demonstrated similar
approach with a robotics problem where a brick had to be picked-up and placed on top of
another brick. The main goal was deconstructed into sub-goals, which were used to form
multiple reward functions. The results showed that the agent could not reach goal state with
sparse reward signal. On the other hand, with reward shaping, the agent learned to successfully
complete one of the sub-goals. A follow-up approach presented by Popov et al. (2017) to further
facilitate the training process will be discussed in the Section 2.3.2.

Nevertheless, reward shaping can also result in unwanted behavior or negatively affect the
training process if not designed with great care (Sutton & Barto, 2018; Y. Ng et al., 1999) .
Randløv & Alstrøm (1998) observed and explained a perfect example of such scenario occurring
in reinforcement learning problem where an agent had to learn to drive a bicycle in a
simulation. In their very first training the agent received a positive reward signal for driving in
the direction of the goal. This resulted in an undesirable behavior - the agent learned to
maximize that additional reward signal by driving in circles around the starting position.
Another simple example can be found in a project by Yu, Palefsky-Smith, & Bedi (2016) , where
an agent had to learn to navigate a vehicle in a game using deep reinforcement learning
algorithm. Two different reward functions were tested, which were designed to punish collision
and inactivity while encouraging acceleration. Even though both functions were designed with
same behavior in mind, the results clearly showed that one of them had a negative impact on
training process as the agent showed no promises of learning an optimal policy.

Designing an effective reward function for any reinforcement learning problem can easily
become a challenging task, especially when the solution for that problem is not obvious. From
RL perspective, video games are generally considered as complex challenges due to the fact that
they represent a continuous problems, which can have high observation and/or action space.
However, in most cases there is no need to define complicated reward functions that have to
encapsulate the rules of the game. The reason for that is simple - it is common for a game to
have a score scheme that can be considered as a sufficient reward signal for the agent. In the
DeepMinds’ approach with Atari 2600 games, the agent receives positive (+1) or negative (-1)
reward signal based on the changes in the game score, while receiving 0 reward when no
changes occur (Mnih et al., 2013, 2015) . Unfortunately, that is not the case with real world
problems. For these to be solved with reinforcement learning, highly complex reward functions
have to be designed, which can potentially consume tremendous amount of resources.

II. Background 8

https://www.zotero.org/google-docs/?2WTx4P
https://www.zotero.org/google-docs/?A10HO0
https://www.zotero.org/google-docs/?Q9dqNl
https://www.zotero.org/google-docs/?3Bcsj9
https://www.zotero.org/google-docs/?Ied5lc

A number of approaches that showed great potential have been suggested as well as researched
to address the challenge of designing a robust reward function. Some of them are:

1. Inverse Reinforcement Learning (IRL), which main purpose is to infer the reward
function of a given MDP specifically from human demonstration (Ng & Russell, 2000) .
Kretzschmar, Spies, Sprunk, & Burgard (2016) showed application of their IRL method
on a robot that learned to mimic navigation behavior of human pedestrians.
Furthermore, Fu, Luo, & Levine (2017) proposed IRL algorithm that derives from
adversarial reward learning formulation, which can learn both reward and value
functions even from highly dynamic environments.

2. Imitation Learning (IL), similarly to IRL, is used to learn directly from an expert agent,
such as human, with supervised learning (Sutton & Barto, 2018) . Sermanet, Xu, &
Levine (2016) showed how the reward function learned from a few demonstrations can
be transferred to a real world RL agent to perform the same task. Zhu et al. (2018)
demonstrated how an agent learned to solve a task based on motor activities that
depend on visual coordination. Most importantly, they showed that with a combination
of RL and IL a greater performance can be achieved compared to scenarios where only
reinforcement or imitation learning was applied.

3. Application of Temporal Logic (TL) as specification language, which is used to assign
tasks to reinforcement learning agents. One example of such is Temporal Logic Policy
Search method that can find a policy based on provided TL definition (Li, Ma, & Belta,
2017) . Another example is Truncated Linear Temporal Logic (TLTL) method that
replaces reward function with real-valued TL formula (Li, Vasile, & Belta, 2016) .

4. Curriculum Learning (CL), that is used to provide an optimal challenge for the RL agent
by gradually increasing the difficulty of the problem until the goal in question is
satisfied. This approach will be discussed in the following Section of this thesis.

2.3 Curriculum learning:

2.3.1 Definition

Curriculum learning, as defined by Bengio, Louradour, Collobert, & Weston (2009) , is a training
approach where the agent has to learn sub-goals, or simplified tasks, of increasing difficulty
before the main goal is presented. In the scope of autonomous car problem, the original agent’s
goal can be as complex as driving a car in an area with high traffic density, while starting goal
can be as simple as driving in a straight line. This means that the agent’s chances of receiving a
positive reward signal are relatively high starting from the very beginning of the training. More
importantly, the agent is learning from sparse reward signals. However, even though this

II. Background 9

https://www.zotero.org/google-docs/?2hJDim
https://www.zotero.org/google-docs/?iecOQp
https://www.zotero.org/google-docs/?FBXOQs
https://www.zotero.org/google-docs/?sMX42J
https://www.zotero.org/google-docs/?FsiYhY
https://www.zotero.org/google-docs/?FsiYhY
https://www.zotero.org/google-docs/?DnZE8X
https://www.zotero.org/google-docs/?tWFKgG
https://www.zotero.org/google-docs/?tWFKgG
https://www.zotero.org/google-docs/?RXqTDP
https://www.zotero.org/google-docs/?DgLVQF

approach eliminates the need of designing a complex reward function, the need shifts onto the
construction of an appropriate curriculum that will be guiding the agent’s training process.

This approach can be viewed as an extension of the transfer learning method, which is based on
training an agent on one task to improve its learning performance on the second task (Bengio et
al., 2009; Taylor & Stone, 2009) . Transfer learning is based on a possibility of utilizing agent’s
knowledge, which is acquired from training on source tasks, to facilitate the training process on
the target task. This, of course, means that the source tasks have to be similar to the target task
to some degree. In the case of curriculum learning, the source tasks can be observed as
gradually simplified target tasks that are presented to the agent in an order of increasing
difficulty. The accumulated knowledge, in a perfect scenario, can reduce the time needed to
solve the original target task and result in a less error-prone behavior.

2.3.2 Related work and forms of curriculum

Bengio et al. (2009) demonstrated how curriculum learning approach can be applied to a simple
classification problem solved with supervised learning. The task itself was to classify a
geometrical shape into 3 different classes based on a 32 by 32 pixel gray-scale image as an
input. Their experiment involved dividing original dataset into 2: one with basic shapes and the
other one with similar shapes that had high variation in position, size and orientation as well as
coloring. The curriculum incorporated 2 stages: training started on first set with basic shapes
and then, half way through the training, switched over to the second training set. The overall
results showed that the model, which was trained without curriculum, had higher test error
compared to the model that was trained with 2-stage curriculum. Bengio et al. (2009) made a
conclusion that “ curriculum learning adds the notion of guiding the optimization process, either to
converge faster, or more importantly, to guide the learner towards better local minima. ” (p. 8).

In respect to reinforcement learning, a significant number of CL applications have been
demonstrated as well. Juliani (2017b) presented a simple navigation task where an agent has to
jump over a wall using a block-shaped object and reach a certain location or a goal. The agent
receives positive reward signal only when it reaches the goal. The challenging part is the fact
that the block-shaped object has to be pushed against the wall, otherwise, the agent cannot
jump over it. The curriculum, as shown on Figure 2.3, was designed in the following way:

● The goal would always stay the same - a certain position, which is picked randomly, has
to be reached by the agent.

● The initial task does not contain the wall, therefore, the agent can reach the goal
without facing any obstacles.

II. Background 10

https://www.zotero.org/google-docs/?2hkATV
https://www.zotero.org/google-docs/?2hkATV
https://www.zotero.org/google-docs/?ANwxSt
https://www.zotero.org/google-docs/?SSeM35
https://www.zotero.org/google-docs/?ZSmCWz

● Each subsequent task will contain the wall, whose height will be gradually increased
with every subsequent lesson. It is important to note here that until the wall reaches a
certain height, the task can be completed without the block-shaped object.

● The target task is the original problem, where the agent has to jump over the wall using
the block-shaped object.

Figure 2.3 : Example of a curriculum training scenario used for solving a navigation task, with
increasing difficulty presented from left to right (Juliani, 2017b) .

The results show that without the curriculum, the agent could not learn an optimal policy even
after 3 million training steps, thus, it could not solve the problem. The agent’s mean
accumulated reward has been gradually increasing throughout the training, however, this
means that significantly more training time is needed to potentially solve the task. On the other
hand, the agent that was training with the described curriculum managed to solve all the initial
tasks as well as the target task within the given time.

Relatively similar, however, more complicated environment-centered curriculum learning
approach for learning complex locomotion behavior has been presented by Heess et al. (2017).
Here, environment-centered curriculum also means that the agent is trained in a changing
learning environment. However, in this case, the environmental changes are more complex and
can be scaled to represent different levels of difficulty, which is possible due to the variation of
obstacles that can be added to the environment. Moreover, as the task itself involves
locomotion and the agent is rewarded for moving forward through a course, the path itself can
also be altered to add complexity. For example, the path can have vertical incline, contain gaps
or rough patches. Furthermore, each new episode contains a newly generated course based on
specific curriculum parameters, which describe what type of obstacles and/or path variations
must be added. Figure 2.4 shows few examples of courses generated with different types of
obstacles. Heess et al. (2017) demonstrated how training locomotion agents with
environment-centered curriculum resulted in development of such robust behavior like
jumping, ducking and obstacle avoidance without the need to design complex reward function.

II. Background 11

https://www.zotero.org/google-docs/?kLch4o
https://www.zotero.org/google-docs/?04FewS

Figure 2.4 : Examples of a different types of obstacles used to train locomotion agents (Heess et al.,
2017) .

A different perspective on solving locomotion problem with curriculum learning has been
demonstrated by Yu, Turk, & Liu (2018) . In this case, the curriculum is based on different levels
of physical assistance that facilitates the learning of locomotion skills. The assisting forces,
which are calculated based on the current level of difficulty of the curriculum, help the agent to
stay in a certain posture while, for example, moving forward. As the agent improves, the
assisting forces are gradually decreased until the point when the agent can solve locomotion
tasks completely on its own.

As mentioned in Section 2.2.2, Popov et al. (2017) demonstrated how a robotics problem of
stacking one brick on top of another one couldn’t be fully solved neither with sparse reward
signals nor with a more complex reward functions, which rewarded agent for completing
sub-goals. However, they proposed an additional method that can be used in combination with
reward shaping, which they describe as “ a form of apprenticeship learning in which we provide
teacher information by influencing the state visitation distribution. ” (Popov et al., 2017) . This can
be seen as a form of curriculum learning, where the initial state would be periodically set to the
one in which, for example, the brick is already picked up by the robotic arm. Such initialization
means that specific parts, or sub-goals, of the target task can already be considered as complete.
Therefore, the agent is placed in such a state from where it is more likely for it to receive a
positive reward signal or larger accumulated sum of rewards. The presented results show that
such curriculum approach had no significant impact on the training with sparse reward signals,
however, it had a notable impact on scenarios where it was applied in combination with reward
shaping. More importantly, the agents could now solve the full task. Furthermore, such type of
curriculum can be automated by applying reverse curriculum generation (Florensa, Held,
Wulfmeier, Zhang, & Abbeel, 2017) . This method can be used to generate simplified starting
states based on the task and the initial state. Similarly to the previous method, the agent starts
training with the initial state being relatively close to the goal state. The agent’s progress is
constantly monitored in order to adjust the next initial state if a certain performance level is
reached.

II. Background 12

https://www.zotero.org/google-docs/?zlxr1C
https://www.zotero.org/google-docs/?zlxr1C
https://www.zotero.org/google-docs/?gMwKlj
https://www.zotero.org/google-docs/?sLDTXS
https://www.zotero.org/google-docs/?FoQ2ws
https://www.zotero.org/google-docs/?iAsd8u
https://www.zotero.org/google-docs/?iAsd8u

III. Method

In this chapter, the reinforcement learning problem of learning navigation as well as the tools
used to create a learning environment and its setup are described. Afterwards, the structure of
the environment-centered curriculum approach and the design of each individual lesson are
presented.

3.1 Problem description

The problem raised in this thesis is twofold. Firstly, the agent has to learn to navigate a car
through a track area to reach a finish line, while in control of both, acceleration and steering.
Secondly, the path that the agent has to take can be curved to a certain degree, which is dictated
by the obstacles that are placed on the track area with some amount of randomization.
Therefore, the agent has to learn to rely on the input of the car’s sensors to avoid collision.
Finally, the problem has to be solved using sparse reward signal.

Figure 3.1 : Training area example, showing 3 different path variations
affected by the changing track area.

The task itself involves the car driving from the left side of the track to the very end of it on the
right. As show on Figure 3.1, the start is the initial position of the car, while the finish is a
position that the agent is required to reach for the task to be considered as complete. Neither
start nor finish positions change during the training process. However, that is not the case with
the track area. This part is re-initiated each time the terminal state of the learning environment
is reached. This means that all previously placed obstacles are discarded, while new ones are
placed on the track area. This approach ensures that there is no single dominant path that the
agent can take each time to successfully complete the task. Figure 3.1 presents 3 different path
variations as an example. However, it is worth to point out that a single generated track area can
have multiple paths that may lead the agent to the finish.

13

Figure 3.2 : The top (left) and the side (right) view of the car demonstrating sensor
layout.

As previously mentioned, the car has a certain number of sensors that can detect obstacles in
front of them. As presented on Figure 3.2, the car has 10 sensors in total. Based on the track
design, the car is required to constantly drive forward, thus, most of the sensors are position on
the frontal area of the car. Nevertheless, as the car is also capable of driving backwards, while
also steering left and right, there are 3 sensors in total that are positioned on both, left and
right, sides of the car as well as the back. Height-wise all the sensors are positioned just above
the wheel axles and at points where both front and back bumpers are at their furthest from the
center of the car.

3.2 Unity Engine and ML-Agents toolkit

3.2.1 Description

The learning environment is developed in Unity Engine. This game engine allows high
flexibility when it comes to creating different types of physics-based simulations, animations,
3D world design, etc. (Unity Technologies, 2018a) . Apart from that, one of the main reasons for
choosing Unity Engine for this project is the machine learning plugin. Unity launched their
machine learning solution called Unity Machine Learning Agents Toolkit (ML-Agents) in
September of 2017 (Juliani, 2017a) . ML-Agents is an open-source Unity Engine plugin developed
to be used not only by video game developers but also by both academic and industry
researchers. This toolkit allows to develop, train and test intelligent agents using different
machine learning methods in simulated environments created within Unity Engine.

ML-Agents toolkit consists of 3 high-level modules:

● Learning Environment
● Python Application Programming Interface (API)
● External Communicator

III. Method 14

https://www.zotero.org/google-docs/?dgyfu8
https://www.zotero.org/google-docs/?VodddP

The learning environment in this case is the simulation, which has to be designed and
constructed in Unity Engine. On the other hand, the machine learning algorithms are
implemented into the Python API, which is the part of ML-Agents toolkit that runs outside of
the simulation. During the training process, the communication between the simulation and
the Python API is handled by the External Communicator.

3.2.2 Proximal Policy Optimization

ML-Agents toolkit provides a possibility to train reinforcement learning agents using a method
called Proximal Policy Optimization (PPO) (Juliani et al., 2018) . PPO is the state of the art
model-free reinforcement learning algorithm, which have been released by OpenAI (Schulman,
Wolski, Dhariwal, Radford, & Klimov, 2017) . This method is based on approximating the policy
function that maps state observations to specific actions. The approximation is done with a
neural network, where the state is the input and the corresponding action is the output. The
neural network is used to optimize the policy in order to maximize the future reward.

Moreover, PPO has become the default RL algorithm in all future OpenAI researches due to its
overall performance and straightforward implementation. One example of PPO application has
been previously presented in Section 2.3.2, where the agent learned complex locomotion
behavior using simple reward signals and curriculum learning approach. In the same paper,
Heess et al. (2017) compare performance of their implementation of PPO algorithm against
other two baseline algorithms: Trust Region Policy Optimization (TRPO) and Asynchronous
Advantage Actor-Critic (A3C). Both, TRPO and A3C algorithms, have showed substantial
improvements in either generalization and/or performance in the past (Mnih et al., 2016;
Schulman, Levine, Moritz, Jordan, & Abbeel, 2015) . Nevertheless, PPO has surpassed them by
achieving similar level of performance within a shorter amount of time.

3.2.3 Basis of a learning environment

To create a machine learning environment in Unity Engine, it is necessary to setup these 3
components (Juliani et al., 2018) :

● Agent - a component that collects the observation data from the environment, executes
specific actions and receives reward signals based on the new state of the environment.
The Agent cannot operate on its own as it linked to a Brain, which controls the action
selection.

● Brain - specifies the size and type of the observation and action space in the learning
environment. Both can be either continuous or discrete. As previously mentioned, it is
the Brain that dictates which action the Agent has to carry out based on the learned

III. Method 15

https://www.zotero.org/google-docs/?16BhSn
https://www.zotero.org/google-docs/?uMWfYy
https://www.zotero.org/google-docs/?uMWfYy
https://www.zotero.org/google-docs/?wL8BDy
https://www.zotero.org/google-docs/?iNk2Wy
https://www.zotero.org/google-docs/?iNk2Wy
https://www.zotero.org/google-docs/?qdWdFo

policy and the current state of the environment. Essentially, the Brain component takes
observations and reward signals as an input and outputs actions.

● Academy - a final component of the learning environment that establishes a
synchronous observation state and reward signal collection as well as action selection
between each Agent/Brain pair. Furthermore, the Academy holds a set of variables that
control the learning environment. For example, the length of a single episode and the
overall speed at which the environment is running are set within the Academy.

Figure 3.3 : An example of how a learning environment structure can be configured
using ML-Agents toolkit (Juliani, 2017a) .

The 3-component system makes ML-Agents a versatile toolkit that can be adapted to a great
number of different training scenarios. As shown on Figure 3.3, both single and multi-Agent
training scenarios can run within the same learning environment at the same time. Multiple
Brains can be used to control one or more Agents of different types. A simple case where such
setup could be applied is an example environment called “ Soccer Twos” that is part of the
ML-Agents toolkit (Juliani et al., 2018) . This learning environment contains 4 Agents of 2 types:
the striker and the goalie. Because each of them have different tasks as well as action spaces
they must have separate Brains. On the other hand, the same Brain can control both striker type
Agents at the same time. Training multiple instances of same Agent simultaneously means that
the training time needed to reach certain reward levels can be reduced significantly. The Agent
learns faster due to the fact that multiple state observation vectors are fed into the Brain at the
same time rather than just one.

3.2.4 Training process

The training process performed with ML-Agents toolkit is not in any way different from a typical
reinforcement learning training, which has been presented in Section 2.1. During training, as
the very first step, the Agent collects the current state observations. Secondly, these
observations are transferred to the Python API using the External Communicator. Subsequently,

III. Method 16

https://www.zotero.org/google-docs/?mGxFJb
https://www.zotero.org/google-docs/?GHJSLE

the Python API processes the received data using Proximal Policy Optimization method,
presented in Section 3.2.2, to learn the best policy for the presented problem. Finally, the Agent
receives an action that it has to take in that specific state.

In the current version of the toolkit, which is v0.4 as of writing this thesis, the Brain object has 4
distinctive modes in which it can operate:

1. Player - the actions are selected using an input from, for instance, a keyboard. As the
name suggests, in this case a human player controls the Agent. The observation states
and reward signals have no impact at this point.

2. Heuristic - the actions are selected using a predefined behavior, which is hard-coded and
cannot be altered during evaluation process.

3. External - the actions are selected by the previously presented Python API. In this case,
the accumulated rewards and observations are fed to the Python API, which outputs an
action the Agent has to make based on the learned policy.

4. Internal - the actions are selected by the pre-trained TensorFlow model, which
represents previously learned policy. More specifically, the Brain uses this model, which
is embedded using TesorFlowSharp, to output a corresponding action given an
observation state and a reward signal.

3.2.5 Curriculum learning

As of version v0.2, the ML-Agents toolkit includes a built-in support for Curriculum learning
(Juliani, 2017b) . It is a rather simple feature that can be implemented to any machine learning
project made in Unity Engine. Before starting the training process as usual, a JSON file, which
defines the structure of the curriculum, has to be specified. The following parameters have to be
defined in the curriculum’s JSON file:

1. Measure - defines whether the lessons should change based on a certain percentage of
the overall training steps or based on accumulated reward.

2. Thresholds - the actual values that the measured parameter has to reach. For example,
that could be the accumulated reward of 0,5.

3. Minimum lesson length - this parameter determines how many times the threshold of the
measured parameter has to be reached.

4. Signal smoothing - can be set to either true or false . If enabled, the measure signal is
re-calculated by taking 75% of the newly received value and 25% of the previous one.
Only afterwards, the re-calculated value is checked against the defined threshold.

5. Reset parameters - the parameters that are defined in the Academy component, which
are accessible by any component or the Agent in the learning environment.

III. Method 17

https://www.zotero.org/google-docs/?zTPic3

3.3 Learning environment

3.3.1 Environment setup

As the task involves only a single autonomous car driving through a generated track, the scene
was set up in a rather simplistic manner:

● One Academy component to control global episode length as well as assign curriculum
lesson if such is needed.

● One Brain component to control the only Agent in the scene, which in this case is the
autonomous car.

● The Agent itself, that controls the autonomous car in the scene and collects states
observations.

Such simple setup also meant that multiple Agents of the same type could be trained within the
same scene simultaneously using a single Brain component. However, the training area as well
as the curriculum generation had to be built with multi-Agent setup in mind. This meant that
one Agent shouldn’t be able to affect the observation space of the other. Therefore, each Agent
had to be placed in a dedicated training area. Such area can be viewed as a car/track pair, where
each Agent can train on a personal track without any interruptions until the end of the training
episode.

The hierarchical structure of a single training area is:

❏ Training area - parent object that contains Curriculum_final.cs script (see Appendix A),
which rearranges the track area based on the current lesson of the curriculum.

❏ Car - object that contains CarAgent_final.cs script (see Appendix B), which is the
Agent that collects state observations, passes reward signals and controls the car
as well as the setup of necessary components. These components are:

❏ Colliders - objects that are used to register collision of the car with the
obstacles found on the track. 3 box-shaped colliders are used to define
simplified car shape.

❏ Wheel Hubs - parent object for wheel colliders, which are used as car
wheels.

❏ SkyCar - parent object that contains all visual car model parts that come
with Standard Assets pack found in Unity Engine.

❏ Sensors - simple box-shaped objects, which are used as reference points
for the actual sensor rays. Both position and rotation vectors of the
sensor object are used for a raycast.

III. Method 18

❏ Finish Line - an object that is used as a target, which the car object has to reach in
order to complete the task in question.

❏ Obstacle Areas - reference points, which define the starting points of separate
obstacle grids. Each individual grid is generated using ObstacleGridGenerator.cs
script (see Appendix C).

❏ Ground and Walls - objects that define the boundaries of the training area.

Moreover, such setup also allows to immediately reset individual training areas where the Agent
has reached the terminal state. This can facilitate the training process in the multi-Agent
scenario due to the fact that a single Agent can start a new local episode without the need to
wait for each Agent to also reach its terminal state. Thus, one Agent can complete multiple
local episodes until the global episode ends. The local episode is over when the Agent reaches
the terminal state, which can happen due to the following reasons:

1. The car collides with an obstacle.
2. The car crosses the finish line.
3. The global episode, controlled by the Academy, is over.

3.3.2 Observation space

Each state in the learning environment is represented as a continuous vector of features. The
vector is an array of numbers, which are collected by the Agent during training. Each state input
consists of the following observations:

1. Relative position - X and Z coordinates of the car that are calculated relatively to the
position of the finish line. The Y coordinate is discarded due to the fact that all the
generated tracks are flat and do not contain any types of uneven terrain. The changes in
the Y coordinate can be observed during training due to suspension that is active on
each wheel of the car. However, this observation is considered insignificant.

2. Velocity - similarly to the relative position, only X and Z directions are taken as state
input. Velocity vector measurements are taken directly from a Rigidbody physics
component that is attached to the car object.

3. Sensor data - a float array, where each number represents an output of each individual
sensor that is positioned on the car. The output number itself is a calculated distance
from the sensors origin position to the closest obstacle, which is an object that can
collide with the car. To detect such obstacles, each sensor creates a raycast, which
registers a hit point if an obstruction is observed on the ray’s path. If the sensor is not
registering any obstacles within specified range in front of it, the output number is set
to 0. The sensor data is gathered at every step of the simulation before the state
observations are collected.

III. Method 19

Figure 3.4 : Structure of a single state observation vector.

As shown on Figure 3.4, the total observation space size equals to 14. This includes: two inputs
that indicate car’s relative position, two that are based on car’s velocity and ten collision-based
sensory inputs.

3.3.3 Action space

The car’s control scheme is designed around two specific parameters: acceleration and steering.
The control interface has been set up in such way that the acceleration is handled by applying a
specific amount of torque onto the car wheels, while the steering is controlled by passing a
certain number as an angle at which the wheels should be positioned. This is made possible by
using in-built Wheel Collider component in Unity Engine (Unity Technologies, 2018b) . This
component is designed to be used specifically for simulation of realistic vehicle wheels. Each
wheel can be configured to meet certain specifications as each of them has its own mass,
suspension spring, friction and damping rates, etc. The developed interface allows to add
specific number of axles to the car. Each of these axles has to have one left and one right wheel
assigned to it. Moreover, the interface allows to specify whether a specific axle has a motor and
if the car’s steering controls the rotation of the wheels on it. The car is designed to have 2 axles
with 4 wheels in total. The car is setup to be a typical four-wheel drive - motor torque applies to
both axles, while the steering only controls the front axle.

The action space has been chosen to be of a discrete type due to the limiting capabilities of the
machine that is used to train the RL Agents, as mentioned in Section 1.3. However, it still must
contain a fair amount of possible actions for the Agent to choose from in order to develop a
robust behavior. Thus, as summarized in the Table 3.1 below, the developed action space
contains eight possible actions in total. The motor torque and the steering angle parameter
values are assigned using two separate parameters, which define the maximum possible value
the original parameters can have. Moreover, both motor torque and steering angle parameters
can have negative values. With negative torque, the car will start accelerating backwards, while
negative steering value will rotate car wheels counterclockwise, rather than clockwise. It is
worth pointing out that the car wheels will have the same direction vector as the car itself when
the steering angle value is set to 0.

III. Method 20

https://www.zotero.org/google-docs/?GAjWL6

Index Action description Value assignment Result

0 Forward torque - half speed motorTorque =
maxMotorTorque / 2

Torque = +500

1 Forward torque - full speed motorTorque =
maxMotorTorque

Torque = +1.000

2 Backward torque - half speed motorTorque =
-maxMotorTorque / 2

Torque = -500

3 Steering angle - full right steeringAngle =
maxSteeringAngle

Wheel angle = +50

4 Steering angle - half right steeringAngle =
maxSteeringAngle / 2

Wheel angle = +25

5 Steering angle - full left steeringAngle =
-maxSteeringAngle

Wheel angle = -50

6 Steering angle - half left steeringAngle =
-maxSteeringAngle / 2

Wheel angle = -25

7 Steering angle - straight steeringAngle = 0 Wheel angle = 0

Table 3.1: The list of actions that are available to the Agent during the simulation.

3.3.4 Reward signals

The developed interface allows to assign the following reward signals during training:

● Sparse reward - the Agent receives a reward of a defined value as soon as the car crosses
the finish line. The state, during which the Agent receives this reward, is considered as
the terminal state, thus, the episode concludes afterwards.

● Distance-based reward - a calculated reward, which the Agent receives after the car
covers a certain distance, while navigating towards the finish line. The value that is
assigned as the reward is the same value, which is defined by the user. However, the
same value is used to calculate a section of the distance based on the initial distance
between the car and the finish line. As an example, with a defined reward being set to
+0,1 with initial distance to the finish line set as 10 units, the Agent will receive +0,1
reward each time the section with length of 1 unit is covered. If the defined reward is set
within the range of [0 < x < 1], the maximum accumulated reward will never be higher
than +1. This is a finite reward signal, which should tackle the issue of driving in circles,
previously described in Section 2.2.2.

● Step reward - a defined value, no matter positive or negative, which the Agent receives as
a reward at every step of the simulation.

III. Method 21

Moreover, a combination of these reward signals can also be used during the same training
process. For instance, the Agent can potentially receive a reward signal of +1 for reaching the
target state, while a small negative step-based reward could be assigned for reaching other
states of the simulation.

3.4 Environment-centered curriculum

3.4.1 Curriculum description

The problem of learning collision avoidance while navigating towards a certain location have to
be tackled separately, similarly to the wall-jump example presented earlier. First of all, the
Agent has to learn to navigate in a very simplistic scenario to be able to reach the finish line.
Otherwise, with a full set of obstacles present in the training area, possibility to receive a
positive sparse reward signal can be close to impossible. Therefore, the initial lesson has to be
rather easy to solve. This means that additional obstacles, that could shape the track, have to be
left out until the Agent learns how to navigate the car. Nevertheless, the track still contains
boundaries, thus, some notion of obstacles is maintained. After a certain accumulated reward
threshold is reached, the Agent can move on to the second stage of the curriculum, which
involves additional randomly generated
obstacles. The difficulty of the second
stage depends directly on a number of
obstacles placed on the track. Therefore,
each subsequent lesson will have a
higher number of generated obstacles
than the previous one.

3.4.2 Obstacle generation

As stated previously in Section 3.3.1,
ObstacleGridGenerator.cs script (see
Appendix C) is used to generate a
random grid of obstacles based on user
specified parameters. These parameters
are: width , height , height of gap ,
minimum number of gaps and maximum
number of gaps . The height value
determines the number of obstacle
rows, while the width sets the number of

III. Method 22

actual obstacle objects in a single row. An example of an obstacle grid with both the height and
the width set to 10 is shown on Figure 3.5. The height of gap parameter defines the interval in
between rows. Moreover, the size of the generated grid also depends on the scale of the obstacle
object. In this case, the object has its height and width set to 1, while its length is set to 2. For
instance, if the length of the obstacle object is two times greater, a grid with twice longer rows
will be generated. Finally, the last two parameters, the minimum and the maximum number of
gaps , define a range, which is used to randomly set a number of gaps in each individual row. For
example, if a specific row has to have one gap, then one random obstacle object will not be
placed in that row. In the example shown on Figure 3.5, the minimum number is set to 1, while
the maximum is set to 2. Thus, each row has either one or two randomly picked obstacle objects
removed from it.

3.4.3 Curriculum lesson setup

As mentioned in the Section 3.3.1, the Academy component determines the current curriculum
lesson. The lesson number is based on a single CurriculumLesson reset parameter that is defined
by the CL feature of the ML-Agents toolkit. The built-in curriculum learning feature is used to
measure the accumulated reward with a threshold set to 0,75. This specific threshold value has
to be reached at least ten times. Afterwards, the CurriculumLesson reset parameter is
incremented. Moreover, the signal smoothing is also applied ir order to avoid lesson change if a
random surge of the accumulated reward is registered.

The environment-centered curriculum is defined in the Curriculum_final.cs script (see Appendix
A), previously mentioned in Section 3.3.1. Whenever necessary, the curriculum can be reset
based on the current lesson number provided by the Academy component. Each lesson
introduces specific changes to the training area, which determine its complexity. The lessons
are setup in the following way:

Lesson 1 : The initial lesson of the curriculum, which does not contain any additional obstacles
apart from the boundaries that isolate the training area. Furthermore, as shown on Figure 3.6,
the finish line is moved closer to the car’s initial position, which makes the track area
approximately 3 times shorter than what is intended.

Figure 3.6 : 1st (left) and 2nd (right) lessons of the designed curriculum.

III. Method 23

Lesson 2 : This lesson is designed to be a more complex version of the initial one, where, as
presented on Figure 3.6, the finish line is moved to the very end of the training area. Moreover,
the car is now randomly rotated on the Y axis at the beginning of each new episode. This adds
additional challenge due to the fact that car no longer can simply drive forward and is forced to
steer towards the finish line. The location of the finish line and the random rotation of the car
defined in this lesson will persist in the subsequent lessons of the curriculum.

Lesson 3 : The lesson that transfers the Agent to the second stage of the curriculum, which
presents randomly generated obstacles for the first time in the training process. In this lesson,
the obstacle grid is generated using the following parameters:

● Width : 10
● Height : 8
● Height of gap : 3
● Minimum number of gaps : 9
● Maximum number of gaps : 9

With such parameter setup, the generated grid will have 8 rows in total with only one obstacle
object placed in each of them. As shown on Figure 3.7, such obstacle grid can have a slight or
almost nonexistent impact on the navigation trajectory. Moreover, width , height and height of
gap parameters setup presented in this lesson will remain unchanged in the upcoming lessons.

Figure 3.7 : Two examples of the 3rd curriculum lesson.

Lesson 4 : This lesson is designed to add more complexity to the training process, compared to
the previous one, by introducing a higher number of obstacles. This is achieved by changing the
minimum and maximum number of gaps parameters, related to obstacle grid generator, to 6 and 8
respectively. Figure 3.8 presents two separate instances of the 4th curriculum lesson.

III. Method 24

Figure 3.8 : Two examples of the 4th curriculum lesson.

Lesson 5 : The final lesson of the curriculum presents the target task to the Agent. In this
lesson, the minimum and maximum number of gaps parameters are set to 3 and 4 accordingly. As
shown on Figure 3.9 below, this lesson, while taking into consideration all the changes that
were introduced with the previous lessons, can still be of either low (left) or high (right)
complexity.

Figure 3.9 : Two examples of the target task, or the 5th curriculum lesson.

III. Method 25

IV. Experiments and results

The following chapter describes the conducted experiments, their conditions as well as the
acquired results and their evaluation criteria. Firstly, the initial experiments, where extensive
testing of specific learning environment components and parameter were done, are presented.
Secondly, the main experiment, where multiple training scenarios in respect to curriculum
learning and reward shaping approaches were conducted, is introduced.

4.1 Initial experiments

4.1.1 Conditions

Over 300 separate training sessions were conducted to explore and test initial implementations
as well as different iterations of the final learning environment (see Appendix D and E). These
iterations included changes to: hyperparameters of the RL model, both observation and action
spaces, Academy and Agent setups, Car components, track area and, most importantly, the
curriculum lessons. The subsequent Sections will go through each major component iteration
process. Moreover, the most suitable parameters and setups were chosen based on these
criteria:

1. Amount of time required to finish the training process.
2. Amount of steps required to reach the final lesson of the curriculum.
3. Mean accumulated reward.

Finally, all the tests presented below were conducted on the curriculum-based training scenario
with sparse reward signals. Most training sessions were limited to half a million steps, while
others were stopped at the point when certain results were observed.

4.1.2 Academy episode length

Multi-Agent setup, while bringing the benefit of accelerated training process, also led to a
certain drawback. As mentioned in Section 3.3.1, each Agent can complete multiple local
episodes until the global simulation episode is over. When this happens, every single Agent is
reset despite their current state. Therefore, in the training scenario, where sparse reward
signals are used, the accumulated reward in the very last local episode always equals to 0 due to
the fact that the Agents are rewarded only when they successfully complete the given task.

26

Figure 4.1 : Mean cumulative reward results of two initial training sessions
demonstrating an issue of high value fluctuation, which appears at the end of each global
episode.

The Figure 4.1 shown above, represents two training sessions, where the Agents had to reach a
randomly picked location on the track area. The only major difference here was that the yellow
line represents the Agents, which were trained with few additional obstacles placed on the
track. Moreover, this was a simplified version where the action space was limited to only 3
choices. The global episode length was set to 3.000 steps, while the local episodes were limited
to just 300 steps. The situation described above can be observed as soon as the Agents reach
mean reward of 0,8 - each time the global episode ends, the accumulated mean reward displays
a slight drop. Even though it does not affect the training process in a negative way, the issue
might arise when the curriculum learning approach is introduced. The reason for that is simple
- the defined threshold of the mean cumulative reward, which has to be registered a certain
amount of times in a row in order to start a new lesson, might not be reached due to such
fluctuation. In order to tackle this problem beforehand, the global episode length had to be
prolonged, specifically to 10.000 steps, to decrease such variation of the mean accumulated
reward. Moreover, the local episode limit of 300 steps was removed, to provide Agents with
more time to solve the problem. It is also important to note that the Academy component
controls the curriculum lesson parameter, thus, without the step limit on the global episode the
lesson change would not be triggered.

4.1.3 Car sensor count

As described in Section 3.1, the car is designed to have 10 collision-based sensors in total (see
Appendix F). Due to the fact that each individual sensor adds additional input value to the
reinforcement learning model, it was important to test whether this number can be decreased,
which subsequently can potentially accelerate the training process.

IV. Experiments and results 27

Figure 4.2 : Mean cumulative reward results of the same Agent trained with 3 different
sensor setups.

The Figure 4.2 shows the results of 3 training sessions conducted in 3 separate learning
environments. The only difference between these environments were the number of sensors
that were active on the car. It is important to point out that the sensors that were deactivated
during these tests were positioned on the front of the car, meaning that the right and left side
sensors as well as the sensor on the back were always active. The results have showed that
decreasing the amount of active sensors on the front of the car negatively affected the Agents’
performance. More importantly, the mean cumulative reward has dropped significantly.
Therefore, the sensor setup was kept as originally designed.

4.1.4 Decision Frequency

In ML-Agents toolkit, by default, all Agents are set to request a decision from the Brain
component at every step of the simulation (Juliani et al., 2018) . However, this can be changed by
adjusting Decision frequency parameter. Setting this parameter to a specific number, for
instance, to 3, means that the Agent will make a request for a new decision only every 3
simulation steps. Moreover, it is important to note, that the same action will be picked by the
Agent for the same amount of steps. In this case, if the newly picked action is acceleration, the
car will accelerate for the next 3 simulation steps. Setting Decision frequency parameter above 1
can be beneficial in this particular case due to the fact that the impact of an action, which is
executed in one state, might not be visible in the following state. Most straightforward example
of such scenario can be observed in the very beginning of the training process when the car is
stationary. Even if the picked action is acceleration, the change in the car’s position might
simply be insignificant and unobservable in the next state. However, that would not be the case
if, for instance, the next state is observed after 3 full simulation steps. On the other hand,
Decision frequency also implies that the Agent’s reaction time increases proportionally.

IV. Experiments and results 28

https://www.zotero.org/google-docs/?OIdDtu

Therefore, if this parameter is set to a significantly higher number, the Agent might not be able
to react to a sudden change in the learning environment.

Figure 4.3 : Two graphs showing mean cumulative reward results of the same Agent trained with
different Decision Frequency.

The two graphs presented above on Figure 4.3, show how much impact the Decision frequency
parameter can have on the training process. With the parameter set to anything lower than 4,
the Agents need at least 400.000 steps to reach the final lesson of the curriculum, thus, longer
training sessions are required. On the other hand, with the Decision frequency set to 5, 6 and 7,
the Agents showed rather similar results in regards to the accumulated reward and step count
ratio. However, a correlation between this parameter and the time needed to complete the
training sessions was observed - higher frequency results in slightly longer training sessions.
For example, it took 2 hours and 30 minutes for the Agents with Decision frequency of 5 to
complete the training session. An additional 8 minutes were needed to complete the same
sessions with frequency set to 6. Thus, the frequency of 5 has been chosen as the default
parameter value.

4.1.5 Multi-Agent setup

As the setup of the learning environment allows to train multiple Agents at the same time,
different combinations had to be tested. As shown on Figure 4.4, the highest accumulated
rewards within the same amount of training steps are received in the learning environments
with the Agent count between 40 and 60. However, training a high number of Agents at the
same time comes with a cost - higher amount of Agents takes significantly more time to train.
Depending on the current amount, adding 10 additional Agents can prolong the training
process by approximately 30 minutes. The decision was made to use the setup with 50 Agents as

IV. Experiments and results 29

it showed overall highest mean of the accumulated reward in the second half of the training
process, or after 250.000 steps.

Figure 4.4 : Mean cumulative reward results of the training sessions, which were conducted
with different multi-Agent setups. The graph starts from 150.000 steps to show results,
which were acquired specifically on the target task, or in lesson 5.

4.1.6 Hyperparameter tuning

The hyperparameter tuning process was conducted continuously throughout the development
of the implementation. The ML-Agents toolkit documentation was used to get a proper insight
on each hyperparameter. The hyperparameters, which had the highest impact on the training
process, are the following:

● Beta - controls magnitude of the entropy regularization, which subsequently controls
the randomness of the policy.

● Batch size - defines a number of experiences that are needed for a single gradient
descent.

● Buffer size - defines a number of experiences that are needed to update the model.
Experiences include: state observations, picked actions and received rewards.

● Learning rate - defines magnitude of a single gradient descent.
● Hidden units - defines the number of units present in each fully connected neural

network layer.
● Gamma - the discount factor of the future rewards. Defines the magnitude of how

important the future rewards are.
● Epsilon - a value used as a threshold, which defines the magnitude of allowed change in

the policy.
● Time horizon - defines the amount of experiences, which has to be collected per-Agent

that is allowed to be added to the experience buffer.

IV. Experiments and results 30

The Table 4.1, presented below, summarizes the whole process as well as shows the chosen
hyperparameter values.

Beta Batch
size

Buffer
size

Learning
rate

Hidden
units

Gamma Epsilon Time
horizon

0,0005 64 1.024 0,00001 16 0,96 0,1 32

0,001 128 2.048 0,0001 64 0,99 0,15 64

0,0025 256 2.560 0,0002 96 0,995 0,2 96

0,005 512 4.096 0,0003 128 0,999 0,25 256

0,01 1.024 5.120 0,0004 160

0,02 2.048 10.240 0,0005

0,03

0,05

0,07

0,09

Table 4.1: The list of PPO hyperparameters that were tested throughout different versions of the
developed implementation. The values that were picked are marked in green.

4.1.7 Curriculum changes

The general curriculum structure has been tested on previous versions of the simulated learning
environment. Firstly, the Agent was trained to navigate towards a randomly positioned target
behind an obstacle (see Appendix E.1). The curriculum lessons were set up in a rather simplistic
manner. Lesson 1 did not include the obstacle object, while Lesson 2 introduced only a part of
it. The final lesson was the target task. Although the Agent managed to solve the task, the
learned behavior had a negative side effect - the Agent would still try to navigate around the
obstacle even if it was removed from the training area. Therefore, additional randomization in
respect to the placed obstacles in the training area had to be added in order to train a more
generalized behavior.

Secondly, the Agent was trained and tested on a more complex task: a longer distance had to be
covered and the obstacles were randomly positioned within a specific area (see Appendix E.2).
This specific design had two flaws that were discovered during the training process. First of all,
the Agent was able to learn the lessons 1-4 relatively fast, meaning that this part of the
curriculum had to be shortened as the lessons do not add significant amount of complexity.

IV. Experiments and results 31

Thus, lessons 2 and 3 were removed. Second of all, the Agent managed to solve all the lessons as
well as accumulate a rather high mean reward. However, it was observed that the Agent
developed a dominant strategy by taking a specific path on the track area, where the obstacles
were placed approximately once in every ten episodes. Therefore, the random obstacle
generation method presented with this curriculum version had to be redesigned. As described in
Section 3.4.2, the new obstacle generation method allows to set up a grid of obstacles, while
also providing more control over the randomization process.

In the first stage of the final curriculum, as mentioned previously in Section 3.4.3, lessons 1 and
2 are designed specifically with the idea of providing the Agent with an obstacle-free training
environment where it can learn to navigate without any additional obstructions. However, the
importance of having a significantly simplified initial lesson had to be tested.

Figure 4.5 : Mean cumulative reward results of two training sessions where Agents were
trained with and without curriculum. In this specific case, the target task is lesson 2. Two
rhombus-shaped icons mark step where mean reward reaches value of +0,8.

As shown on Figure 4.5, the Agent that started training from lesson 1 (with curriculum),
managed to switch to the lesson 2 and reach mean accumulated reward of over 0,8 within
40.000 steps. On the other hand, the Agent that started immediately from lesson 2 (without
curriculum), was able to reach the same reward level only around 70.000 steps. Most
importantly, with curriculum the same mean accumulated reward was reached twice as fast in
terms of time.

4.2 Main experiment

4.2.1 Conditions

The main experiment revolves around the main goal of this thesis - training the reinforcement
learning Agent, which in this case is the autonomous car, with sparse reward signal using

IV. Experiments and results 32

curriculum learning approach. Furthermore, the Agent was trained with and without CL to
evaluate its effectiveness towards facilitating the training process as well as learning an optimal
policy. In the following Sections, these Agents are referred to as CL-Agent and non-CL-Agent.
The non-CL-Agent, which was trained without curriculum learning, was presented with the
target task, or lesson 5, from the very beginning of the training process. Finally, additional tests
were conducted to study a combined application of curriculum learning and reward shaping
approaches.

The training of all Agents was conducted on the same learning environment, however, with
different reward signals. The environment was set up as described in the methodology,
including the changes that were introduced during the pre-training stage, as presented in the
previous Section. These changes are summarized below:

● Global episode length was set to 10.000 steps.
● The Agent step limit was discarded.
● The number of Agents training at the same time was set to 50.
● The Agent’s Decision frequency parameter was set to 5.
● Overall hyperparameter tuning.

Each training scenario was completed five times using the same set of predefined seeds. These
seeds are: 123, 456, 789, 97531 and 86420. A seed is used within the ML-Agents toolkit for
random number generation, thus, allowing to initialize multiple training sessions with the
same initial parameters (Juliani et al., 2018) . Therefore, the results presented below show
average values that are based on five separate training sessions.

Moreover, it was observed that the average training time fluctuated between 2h 20m and 2h
40m in all the presented scenarios, thus, it has not been taken into consideration as a valuable
criteria.

Finally, the acquired results are evaluated based on the following criteria:

● The highest mean accumulated reward value.
● The point when the mean reward value of 0,75 was reached, in terms of simulation steps

and training time.
● The robustness of the developed behavior.

The mean accumulated reward value of 0,75 has been chosen as a point when the task is
considered as solved and an optimal policy is learned. This is done in regards to the fact that the
same value is used as the threshold to trigger the curriculum lesson change.

4.2.2 Sparse reward

IV. Experiments and results 33

https://www.zotero.org/google-docs/?6lVgVJ

In the first stage of this experiment, the Agents were trained using sparse reward signal. Taking
into consideration that the Agent’s goal is to reach the finish line, the reward signal setup was
the following:

● +1 - for reaching a set of states where the car is located behind the finish line.
● 0 - for being in any other state of the learning environment.

Figure 4.6 : Mean cumulative reward results of Agents trained using sparse reward signal,
with and without curriculum. The results of the two training scenarios are based on five
separate training sessions. The lines show average values, while the bars correspond to the
lowest and highest values acquired at the end of the global episode. The dotted lines
represent lesson change. One rhombus-shaped icon mark step where mean reward value
reaches the threshold of +0,75.

The results, as presented on Figure 4.6, clearly show that the non-CL-Agent (red), which was
presented with the target task from the beginning of the training process, was not able to learn
an optimal policy. Furthermore, it showed no potential in solving the problem within the given
amount of time using sparse reward signal as it never managed to reach any state that would
yield a positive reward. On the other hand, the CL-Agent (blue), which was trained with
curriculum learning approach, not only managed to solve all the lessons of the designed
curriculum, but also solve the target task. As shown on Figure 4.6, the first 4 lessons were
solved within, approximately, 20 minutes of training, or 80.000 steps. The mean reward
threshold of 0,75 on the target task was reached in roughly 32 minutes, or 120.000 steps.
Moreover, the CL-Agent kept improving the learned policy by gradually increasing the mean
cumulative reward throughout the rest of the training process. The highest mean accumulated
reward of 0,87 was reached using curriculum learning approach.

IV. Experiments and results 34

4.2.3 Distance-based reward

In the second stage, the Agents were trained using distance-based reward signal, which was
previously described in Section 3.3.4. The reward signal setup was the following:

● +0,1 - during each state, when the distance between the car and the finish line is
decreased by an amount, which equals to 10% of the initial distance. Due to this
percentage, this reward signal can only be received ten times during one local episode.

● 0 - for being in any other state of the learning environment.

Figure 4.7 : Mean cumulative reward results of Agents trained using distance-based reward
signal, with and without curriculum. The results of the two training scenarios are based on
five separate training sessions. The lines show average values, while the bars correspond to
the lowest and highest values acquired at the end of the global episode. The dotted lines
represent lesson change. Two rhombus-shaped icons mark step where mean reward value
reaches the threshold of +0,75.

As shown on Figure 4.7, the overall results of the CL-Agent (blue) demonstrate a similar pattern
in respect to the CL-Agent, which was trained with sparse reward signal, presented in the
previous Section. The lessons 1-4 were also solved and the final lesson, or the target task, was
reached in around 20 minutes, or under 80.000 steps. As the mean cumulative reward was above
the defined threshold after the CL-Agent switched to the target task, it can be considered as
solved at the end of the subsequent global episode, or at 90.000 steps. Overall, the CL-Agent
managed to solve the target task faster using distance-based reward signal. On the other hand,
the non-CL-Agent (red) showed a rapid growth of the mean accumulated reward from the very
beginning of the training. Most importantly, it reached the mean reward threshold of 0,75 in
just 15 minutes, or 60.000 steps. Which is around ⅔ of both, time and steps, compared to the

IV. Experiments and results 35

CL-Agent. Moreover, the CL-Agent experienced a slight drop of mean cumulative reward after
80.000 steps when it switched to the target task. The value dropped from 0,87 to 0,80.
Although, CL-Agent was able to recover and kept gradually increasing the mean accumulated
reward after 100.000 steps, this drop created a significant gap between it and the non-CL-Agent.
This gap disappeared only after 330.000 steps. At the end of the training, both CL-Agent and
non-CL-Agent reached the same highest mean accumulated reward of 0,93.

4.2.4 Step reward

In the third stage, the Agents were trained again in the same two scenarios as presented above.
However, in this stage, a small negative step reward has been added as a secondary reward
signal. The goal here is to investigate how an additional reward signal can impact the training
process as well as the developed behavior. Firstly, the Agents were trained with the following
setup:

● +1 - for reaching a set of states where the car is located behind the finish line.
● -0,0001 - for being in any other state of the learning environment.

Figure 4.8 : Mean cumulative reward results of Agents trained using step and sparse reward
signals, with and without curriculum. The results of the two training scenarios are based on
five separate training sessions. The lines show average values, while the bars correspond to
the lowest and highest values acquired at the end of the global episode. The dotted lines
represent lesson change.

As presented on Figure 4.8, the results of both, the CL-Agent (blue) and the non-CL-Agent (red),
are similar to the results of the Agents trained with sparse reward signal previously discussed in
Section 4.2.2. Nevertheless, due to the additional negative reward signal, the mean accumulated
reward is significantly lower. The CL-Agent still was able to reach the reward threshold of 0,75

IV. Experiments and results 36

in all the curriculum lessons. However, this has significantly prolonged the training time needed
to switch to the subsequent lessons. Moreover, this threshold was not reached in the target task.
This is due to the fact that the Agents need at least 1.150 steps to reach the goal of the target
task. Thus, a negative cumulative reward of around -0,115 is acquired in the process.
Furthermore, the non-CL-Agent never managed to reach the finish line, thus, never received a
positive reward signal. Moreover, it learned to minimize the negative step reward by colliding
with the closest obstacle in the training area, thus, reaching the terminal state. In this scenario,
the highest mean accumulated reward of 0,74 was reached using curriculum learning approach.

Secondly, the Agents were trained with negative step and distance-based reward signals. Thus,
the following setup was used:

● +0,1 - during each state, when the distance between the car and the finish line is
decreased by an amount, which equals to 10% of the initial distance.

● -0,0001 - for being in any other state of the learning environment.

Figure 4.9 : Mean cumulative reward results of Agents trained using step and distance-based
reward signals, with and without curriculum. The results of the two training scenarios are
based on five separate training sessions. The lines show average values, while the bars
correspond to the lowest and highest values acquired at the end of the global episode. The
dotted lines represent lesson change. Two rhombus-shaped icons mark step where mean
reward value reaches the threshold of +0,75.

As expected, the results, as shown on Figure 4.9, have a considerable resemblance to the
training scenario where only distance-based reward signal was used, as described in Section
4.2.3. The main difference between the two scenarios is that, in this case, it took both Agents
significantly longer to reach the defined mean reward threshold on the target task in terms of

IV. Experiments and results 37

time and training steps. However, it is, again, the impact of the negative step reward signal.
Both, CL-Agent and non-CL-Agent, reached the same highest mean accumulated reward of 0,80.

4.2.5 Agent comparison

As all the Agents were trained under different conditions, the acquired results cannot be used to
compare their performance. Nevertheless, it is possible to evaluate them based on their ability
to solve the target task. As mentioned in Section 4.2.1, for each training scenario, the Agents
were trained five times in the separate sessions. For this comparison, the Agents were tested
using learned policies, which were selected from the sessions with the highest mean cumulative
reward acquired towards the end of the training process.

As presented in the Table 4.2, the highest overall success rate, 99% to be specific, was reached
by the Agent, which was trained using sparse reward signal with curriculum learning approach.
The success rate of 98% was reached by the Agent, which was trained under the same conditions
in addition to the negative step reward signal. Furthermore, the Agents trained using
distance-based reward signal, without and with additional negative step-based reward, reached
success rates of 97% and 94% respectively. More importantly, that the same percentage was
achieved when trained with and without curriculum learning.

Training scenario Failed episodes
(out of 1.000) Success Rate (%)

Sparse reward with Curriculum 14 99%

Sparse reward without Curriculum 1.000 0%

Distance-based reward with Curriculum 26 97%

Distance-based reward without Curriculum 32 97%

Step + Sparse reward with Curriculum 17 98%

Step + Sparse reward without Curriculum 1.000 0%

Step + Distance-based reward with Curriculum 60 94%

Step + Distance-based reward without Curriculum 61 94%

Table 4.2: Comparison of different training scenarios in respect to the success rate achieved on the
target task, based on the best Agents performance.

IV. Experiments and results 38

V. Discussion and conclusion

This chapter is a conclusive discussion of the conducted experiments and their results.
Overarching ideas and main observations are introduced as well as the goal of this thesis is
addressed and briefly assessed.

All agents, presented in this thesis, were trained using Proximal Policy Optimization method
that has shown remarkable performance in the past (Heess et al., 2017; Schulman et al., 2017) .
However, the reinforcement learning agent trained with this method could not solve the
navigation task. In fact, this agent never managed to reach a state with a positive reward signal
within the given time in five separate training sessions. Thus, due to the complexity of the task,
the chances of solving it with a sparse reward signal are close to impossible. Potentially, the
agent might reach a state with a positive reward based on random occurrences, however, these
could be too sparse and have no effect on the training process (Sutton & Barto, 2018) . On the
contrary, the curriculum-based agent has managed to solve the same task using only a sparse
reward signal. The constructed curriculum has introduced the agent to 4 lessons of increasing
difficulty before it was presented with the target task. The first two lessons were designed to
encourage navigation, while the two subsequent lessons introduce additional obstacles, thus,
stimulating collision avoidance. Without any specific reward-based encouragement, the agent
learned the following behavior: to keep a stable and consistent trajectory; to make a full U-turn;
to reverse from a position, where the path ends due to the surrounding obstructions.
Furthermore, the curriculum-based agent managed to reach a successful task completion rate of
99% in the final part of the experiment.

The combined application of reward shaping and curriculum learning has also been
investigated. In the second training scenario, where distance-based reward signal was used
instead of the sparse one, both agents managed to learn an optimal policy. In this case, the
application of the curriculum learning approach was unnecessary as the reward signal clearly
defines the goal of the target task and the expected behavior - the accumulated reward increases
by reducing the distance to the finish line. Thus, the states that yield a positive reward can be
reached relatively early in the training process. Furthermore, as one of the agents had to solve
four other tasks, or lessons, until it was presented with the target task, it took a longer time for
it to reach the defined threshold in comparison to the agent, which was trained without the
curriculum. Although, the typical reinforcement learning agent did solve the target task using
distance-based reward signal, it only managed to reach the success rate of 97%, thus, falling
behind the curriculum-based agent trained with sparse reward signal.

The additional step reward signal had no positive impact on the trained agents. As expected,
the overall results of the mean cumulative reward were lower due to the fact the step reward

39

https://www.zotero.org/google-docs/?tJZRqP
https://www.zotero.org/google-docs/?VM6wiF

was set as a negative value. Moreover, the final test have shown a 1-3% decrease in the agents’
ability to successfully complete the target task compared to the agents that were trained
without the additional step reward. When trained only with sparse and step reward signals, one
agent developed an unwanted behavior of navigating towards the closest obstacle at the
beginning of each episode. This is a result of agents inability to reach any state that yields
positive reward, thus, it learned that immediate episode termination minimizes the
accumulated negative reward. In this specific case, the additional reward signal has resulted in a
negative side effect, that was described by Amodei et al. (2016) .

As discussed in Section 4.2.3, it was concluded that curriculum learning can be used in
combination with reward shaping, however, this method might not be beneficial to the training
process if the two approaches are overlapping. The application of the curriculum learning
approach can significantly prolong the training process if the reward function clearly defines
the goal of the problem. For instance, in one of the training scenarios, the distance-based
reward was used to encourage navigation towards the finish line, while the first and the second
lessons of the curriculum were designed specifically for the same purpose. Thus, training the
agent on these two curriculum lessons could be excessive. Moreover, as described in Section
4.2.4, the additional negative step reward signal has also affected the training process by
significantly delaying the curriculum lesson change. The results revealed that this happened
due to the fact that the defined mean cumulative reward threshold was too high. Therefore, not
only the lesson structure, but also curriculum parameters have to be constantly adjusted based
on the changes done to the reward function.

To sum up, it was shown that a state of the art algorithm failed to train the agent that would be
able to solve the presented navigation task in the simulated environment without a complex,
goal defining, reward function. However, the application of the environment-centered
curriculum learning approach has shown how this task can be solved using only a sparse reward
signal. Finally, it was observed that application of curriculum learning in combination with
reward shaping can negatively affect the training process if the two approaches are overlapping
by encouraging the same type of behavior.

V. Discussion and conclusion 40

https://www.zotero.org/google-docs/?6dAKZM

VI. Future work

The navigation task, presented in this thesis, as well as the curriculum constructed specifically
to solve it could be extended in multiple directions. First of all, the complexity level of the task
is determined by the distance that have to be covered by the agent and by the amount and
placement of the obstacles. However, similarly to the approach taken by Heess et al. (2017) ,
additional types of obstacles could be introduced to make the training area more complex as
well as diverse. These could be: narrow obstacles (lamp posts, stationary pedestrians), moving
obstacles of different sizes and shapes (other vehicles, pedestrians), ramps (bridges, road
inclines) and unconventionally-shaped obstacles (parked vehicles, rock formations). Moreover,
the track area could also be randomly generated to contain uneven terrain. These examples
would also require the car to have additional multiple layers of sensors to register inclines and
declines of the track.

Secondly, depending on the problem in question, manual construction of separate curriculum
lessons could become as tedious and time consuming as designing a goal-oriented reward
function. Therefore, as described previously in Section 2.3.2, one solution is to generate the
curriculum lessons based on the agent’s performance (Florensa et al., 2017) . In respect to the
same navigation task, the agent could be placed further away from its destination with each
consecutive lesson, while the distance could be calculated based on the mean reward
accumulated within the last global episode.

Finally, several examples have been mentioned previously in the Section 1.1, where the policies
learned entirely in the simulated environments were successfully transferred to the real-world
robots without the need for further training. Thus, it would be interesting to see, whether a
policy learned by curriculum-based agent, trained in a diverse simulated environment with
sparse reward signal, could be transferred to a real-world robot to solve a complex navigation
task.

41

https://www.zotero.org/google-docs/?aZpLS9
https://www.zotero.org/google-docs/?ocBu4G

Bibliography

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete

Problems in AI Safety. ArXiv:1606.06565 [Cs] . Retrieved from

http://arxiv.org/abs/1606.06565

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A Brief Survey of

Deep Reinforcement Learning. IEEE Signal Processing Magazine , 34 (6), 26–38.

https://doi.org/10.1109/MSP.2017.2743240

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning (pp. 1–8). ACM

Press. https://doi.org/10.1145/1553374.1553380

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., & Abbeel, P. (2017). Reverse Curriculum

Generation for Reinforcement Learning. ArXiv:1707.05300 [Cs] . Retrieved from

http://arxiv.org/abs/1707.05300

Fu, J., Luo, K., & Levine, S. (2017). Learning Robust Rewards with Adversarial Inverse

Reinforcement Learning. ArXiv:1710.11248 [Cs] . Retrieved from

http://arxiv.org/abs/1710.11248

Gullapalli, V., & Barto, A. G. (1992). Shaping as a method for accelerating reinforcement

learning (pp. 554–559). IEEE. https://doi.org/10.1109/ISIC.1992.225046

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., … Silver, D. (2017). Emergence of

Locomotion Behaviours in Rich Environments. ArXiv:1707.02286 [Cs] . Retrieved from

http://arxiv.org/abs/1707.02286

Intel. (2018, August 28). Intel Product Specifications. Retrieved August 27, 2018, from

https://ark.intel.com/products/88967/Intel-Core-i7-6700HQ-Processor-6M-Cache-up-t

o-3_50-GHz

Juliani, A. (2017a, September 19). Introducing: Unity Machine Learning Agents Toolkit – Unity

42

https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo

Blog. Retrieved July 14, 2018, from

https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/

Juliani, A. (2017b, December 8). Introducing ML-Agents Toolkit v0.2: Curriculum Learning, new

environments, and more – Unity Blog. Retrieved July 14, 2018, from

https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning

-new-environments-and-more/

Juliani et al., A. (2018, July 14). Unity Machine Learning Agents Toolkit. Retrieved July 14, 2018,

from https://github.com/Unity-Technologies/ml-agents

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., … Shah, A. (2018). Learning to

Drive in a Day. ArXiv:1807.00412 [Cs, Stat] . Retrieved from

http://arxiv.org/abs/1807.00412

Kretzschmar, H., Spies, M., Sprunk, C., & Burgard, W. (2016). Socially compliant mobile robot

navigation via inverse reinforcement learning. The International Journal of Robotics

Research , 35 (11), 1289–1307. https://doi.org/10.1177/0278364915619772

Li, X., Ma, Y., & Belta, C. (2017). A Policy Search Method For Temporal Logic Specified

Reinforcement Learning Tasks. ArXiv:1709.09611 [Cs] . Retrieved from

http://arxiv.org/abs/1709.09611

Li, X., Vasile, C.-I., & Belta, C. (2016). Reinforcement Learning With Temporal Logic Rewards.

ArXiv:1612.03471 [Cs] . Retrieved from http://arxiv.org/abs/1612.03471

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D. (2015).

Continuous control with deep reinforcement learning. ArXiv:1509.02971 [Cs, Stat] .

Retrieved from http://arxiv.org/abs/1509.02971

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., … Kavukcuoglu, K.

(2016). Asynchronous Methods for Deep Reinforcement Learning. ArXiv:1602.01783 [Cs] .

Retrieved from http://arxiv.org/abs/1602.01783

Bibliography 43

https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.

(2013). Playing Atari with Deep Reinforcement Learning. ArXiv:1312.5602 [Cs] . Retrieved

from http://arxiv.org/abs/1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., … Hassabis, D.

(2015). Human-level control through deep reinforcement learning. Nature , 518 (7540),

529–533. https://doi.org/10.1038/nature14236

Ng, A. Y., & Russell, S. J. (2000). Algorithms for Inverse Reinforcement Learning. In Proceedings

of the Seventeenth International Conference on Machine Learning (pp. 663–670). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=645529.657801

NVIDIA. (2018, March 27). NVIDIA Introduces DRIVE Constellation Simulation System to

Safely Drive Autonomous Vehicles Billions of Miles in Virtual Reality. Retrieved August

27, 2018, from

http://nvidianews.nvidia.com/news/nvidia-introduces-drive-constellation-simulation-s

ystem-to-safely-drive-autonomous-vehicles-billions-of-miles-in-virtual-reality

OpenAI. (2018). Learning Dexterous In-Hand Manipulation. ArXiv:1808.00177 [Cs, Stat] .

Retrieved from http://arxiv.org/abs/1808.00177

Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-Maron, G., Vecerik, M., … Riedmiller, M.

(2017). Data-efficient Deep Reinforcement Learning for Dexterous Manipulation.

ArXiv:1704.03073 [Cs] . Retrieved from http://arxiv.org/abs/1704.03073

Randløv, J., & Alstrøm, P. (1998). Learning to Drive a Bicycle Using Reinforcement Learning and

Shaping. In Proceedings of the 15th International Conference on Machine Learning (pp.

463–471).

Sadeghi, F., & Levine, S. (2016). CAD2RL: Real Single-Image Flight without a Single Real Image.

ArXiv:1611.04201 [Cs] . Retrieved from http://arxiv.org/abs/1611.04201

Bibliography 44

https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust Region Policy

Optimization. ArXiv:1502.05477 [Cs] . Retrieved from http://arxiv.org/abs/1502.05477

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy

Optimization Algorithms. ArXiv:1707.06347 [Cs] . Retrieved from

http://arxiv.org/abs/1707.06347

Sermanet, P., Xu, K., & Levine, S. (2016). Unsupervised Perceptual Rewards for Imitation

Learning. ArXiv:1612.06699 [Cs] . Retrieved from http://arxiv.org/abs/1612.06699

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … Hassabis, D.

(2016). Mastering the game of Go with deep neural networks and tree search. Nature ,

529 (7587), 484–489. https://doi.org/10.1038/nature16961

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction (Second edition).

Cambridge, MA: The MIT Press.

Taylor, M. E., & Stone, P. (2009). Transfer Learning for Reinforcement Learning Domains: A

Survey. J. Mach. Learn. Res. , 10 , 1633–1685.

Unity Technologies. (2018a). Unity. Retrieved August 16, 2018, from https://unity3d.com/unity

Unity Technologies. (2018b, July 31). Unity - Manual: Wheel Collider. Retrieved August 16,

2018, from https://docs.unity3d.com/Manual/class-WheelCollider.html

Waymo. (2018, August 27). On the Road. Retrieved August 27, 2018, from

https://waymo.com/ontheroad/

Y. Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations:

Theory and application to reward shaping.

Yu, A., Palefsky-Smith, R., & Bedi, R. (2016). Deep Reinforcement Learning for Simulated

Autonomous Vehicle Control, 7.

Yu, W., Turk, G., & Liu, C. K. (2018). Learning Symmetric and Low-energy Locomotion.

ArXiv:1801.08093 [Cs] . https://doi.org/10.1145/3197517.3201397

Bibliography 45

https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., … Heess, N. (2018). Reinforcement and

Imitation Learning for Diverse Visuomotor Skills. ArXiv:1802.09564 [Cs] . Retrieved from

http://arxiv.org/abs/1802.09564

Bibliography 46

https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo
https://www.zotero.org/google-docs/?Rdj3wo

Appendices

A - Curriculum_final script

The curriculum lesson number is used to reposition the finish line, set specific parameters and
activate specific objects in the simulated environment. This is done using a switch statement
within GenerateCurriculum() method. ResetCurriculum() method is used to disable all the
objects that are used in curriculum lessons.

47

B - CarAgent_final script

B.1 - Observation space

The observation space is defined within CollectObservations() method. Specific features are
calculated and added to a single feature vector through AddVectorObs() method.

Appendices 48

B.2 - Action space

The Agent uses discrete action space, which is defined with a switch statement. After an action
is chosen, the moveCar() method is called, which sets the new steering angle and motor torque.

Appendices 49

B.3 - Reward signal

At each simulation step the Agent calculates state reward through CalculateReward() method.
Here, 3 Booleans define which reward signals have to be checked. These Booleans as well as the
reward values are set by the user. Moreover, the Agent’s position, relative to the finish line, is
checked in each case in order to catch the terminal state.

Appendices 50

C - ObstacleGridGenerator script

The obstacle grid is generated in rows defined by width , while the number of columns is defined
by height . In each row, a random number of obstacles is removed, based on the defined minimum
and maximum number of gaps . When the grid is initiated, each position is checked whether an
obstacle has to be placed inside.

Appendices 51

D - Initial implementations

Initially, the most simplistic environments were built to start testing different action and
observation spaces, multi-agent setups as well as the ML-Agent toolkit itself. The initial
challenge was to only train navigation. The Figures below represent four different learning
environments that were tested before the final implementation was built.

Appendices 52

E - Curriculum iterations

E.1 - Target behind the wall

The first curriculum lesson structure. The
agent’s goal is to navigate towards a
randomly positioned target behind a wall.

Lesson 1: wall is completely removed.

Lesson 2: part of the wall is introduced.

Lesson 3: full wall is introduced.

Appendices 53

E.2 - 7 lesson curriculum

The agent’s goal is to navigate towards a randomly positioned target at the end of the training
area. Lessons 1-4 do not contain additional obstacles, however, the target area is positioned
further from the agent with each consecutive lesson. Lessons 5-7 introduce additional
obstacles, which are randomly generated using Perlin noise.

Appendices 54

Appendices 55

F - Car sensor setup

The preview of the 10 sensors positioning on the car that were used in the final experiment.

Appendices 56

