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Opsummering af specialet

Dette speciale er en sammenfatning af nogle af de resultater jeg har opnået gennem
mit Ph.d. forløb indtil videre. Derfor vil nogle af resultaterne være udeladt og
andre vil blive præsenteret uden bevis, men artiklerne, med beviser og yderligere
resultater, er vedhæftet som bilag. Jeg har valgt at præsentere resultaterne ud
fra et multiparty computation synspunkt, hvorfor fokus meget ligger på hvilken
indflydelse resultaterne har i denne sammenhæng. Multiparty computation er et
begreb der dækker det, at flere personer ønsker at evaluere en funktion. Hver
enkelt person har et eller flere inputs til funktionen, som de ønsker forbliver
ukendte for de andre personer. Ved hjælp af en multiparty computation protokol
er det netop muligt for personerne at opnå outputtet af funktionen uden at afsløre
deres inputs.

Indtil videre har jeg en artikel udgivet og en anden i peer review. Begge artikler
er jeg medforfatter på. Den første, som er i peer review, hedder “Improved Bounds
on the Threshold in Ramp Secret Sharing”. Denne artikel er i samarbejde med
Ignacio Cascudo og Diego Ruano. Den anden, som hedder “Actively Secure OT-
Extension from q-ary Linear Codes”, er i samarbejde med Ignacio Cascudo og
René Bødker Christensen. Jeg vil i dette speciale gennemgå nogle af de vigtigste
resultater fra disse to artikler og forklare nogle af de indflydelser resultaterne har
på multiparty computation. Derefter vil jeg også kort gennemgå mulige fremtidige
projekter, herunder nogle resultater jeg allerede har arbejdet på vedrørende matrix-
produkt koder, som er en speciel form for lineære koder.

Artiklen i peer review omhandler secret sharing, hvilket er en måde at
dele en hemmelighed blandt nogle personer, sådan at de enkelte intet ved om
hemmeligheden, men ved at forene de oplysninger de får, kan de genskabe
hemmeligheden. Hvor jeg i artiklen præsenterer flere forskellige begrænsninger
for lineær secret sharing, vil jeg i dette speciale have fokus på nogle få
resultater fra artiklen og deres indflydelse på multiparty computation. Nogle af
hovedresultaterne fra “Improved Bounds on the Threshold in Ramp Secret Sharing”
er begrænsninger for privacy og reconstructions thresholds samt threshold gap.
Begrænsningerne opnås ved at udtrykke et lineært secret sharing scheme ved
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hjælp af to lineære koder, hvilket altid er muligt. Herefter udnyttes det, at disse
thresholds kan udtrykkes ved hjælp af de relative generaliserede Hamming vægte
for koderne, hvorefter grænser for de relative generaliserede Hamming vægte
medfører grænser for thresholds’ne i lineær secret sharing.

Den anden artikel omhandler oblivious transfer, eller nærmere bestemt
oblivious transfer extension. I den simpleste form for oblivious transfer bliver der
overført én ud af to mulige beskeder fra en sender til en modtager. Modtageren
vælger hvilken af de to beskeder han ønsker, mens senderen ikke finder ud af
hvad modtageren vælger. Samtidigt lærer modtageren intet om den anden besked.
Oblivious transfer extension er en måde, hvorpå man kan simulere mange oblivious
transfers ud fra et mindre antal. Vi generaliserer en oblivious transfer extension
protokol så man kan benytte lineære koder over et hvilket som helst legeme og ikke
blot binære lineære koder. Vi giver eksempler, der illustrerer, at dette medfører, at
man kan simulere det samme antal oblivious transfers ved at benytte et mindre
antal end tidligere. Der er dog den ulempe, at man i de fleste tilfælde får en større
kommunikations kompleksitet i de resterende dele af protokollen. Afvejningen
mellem færre oblivious transfers og større kommunikations kompleksitet bliver
også illustreret i nogle eksempler.
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CHAPTER 1Introduction

This thesis presents some results related to multiparty computation I have obtained
through my Ph.d. study. It contains a summary of results from my articles [6, 8]
together with my research plans for the remaining 2 years of my Ph.d. study in
accordance to the rules for the qualification exam as part of my 4+4 Ph.d. plan
at Aalborg University. Since the first part of this thesis is a summary of the two
articles some of the proofs and results are not included. However, the two articles
are given as an appendix. A few additional results relating some of the results
to multiparty computation which were not included in the submissions are given
with some more detail.

Up until now, I have one article published, namely [6], and another in peer
review [8]. The paper in peer review, which is joint work with Ignacio Cascudo
and Diego Ruano, is about some limitations in secret sharing, a concept which
is very used in multiparty computation. The published paper is about oblivious
transfer, which is used in many protocols for two-party computation, a special
case of multiparty computation. This work is joint with Ignacio Cascudo and René
Bødker Christensen.

Multiparty computation was first introduced in the two-party setting in [28]
and afterwards generalized to any number of parties in [15]. The concept deals
with the situation where some parties each holds an input to a function. The
parties would like to learn the output of the function but are not willing to reveal
their input to the other parties. A multiparty computation protocol is a solution
to that problem. Such a protocol describes how the parties, by communicating
with each other, can obtain the output without revealing their inputs if the parties
follows the prescribed steps in the protocol.

In order to hide the inputs a multiparty computation protocol often uses some
kind of secret sharing scheme, a concept introduced independently in [27] and [2].
Informally, a secret sharing scheme is a way to distribute a secret to some parties
such that only some predetermined large subsets of parties are able to recover the
secrets while small subsets of parties obtain no information about the secret.
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Since many multiparty computation protocols depend on secret sharing
schemes, limitations in secret sharing will imply limitations in multiparty
computation as well. Such limitations for secret sharing exist already in the
literature, see for instance [3, 4, 7]. In [8], we obtain new bounds for secret
sharing and show that they improve on previously known bounds. In this thesis,
I will also describe some of the implications these improved bounds have for
multiparty computation through what is called (strongly) multiplicative secret
sharing.

An oblivious transfer, first introduced in [24], is a special case of multiparty
computation, where we only consider two parties. These are often called the
sender and the receiver. In the simplest case of an oblivious transfer the sender has
two inputs m0 and m1 and the receiver has a single bit b as input. The oblivious
transfer allows the receiver to learn mb and nothing else. Simultaneously, the
sender does not learn anything about b. This concept can of course be generalized
such that the sender has N inputs and the receiver learns K < N of these inputs
and nothing about the remaining.

Oblivious transfer is in fact a very useful tool for multiparty computation, and
is often used in the case where we only consider two parties. Actually, it was
shown in [20] that any function can be evaluated securely if one have access
to the oblivious transfer functionality. However, the use of oblivious transfer in
multiparty computation is not without challenges. Many of the well-known two-
party protocols, see for instance [28], use a lot of oblivious transfers as a building
block. But as it was shown in [18], oblivious transfer is very likely to require
a public key cryptosystem and hence may be expensive to execute. This is why
oblivious transfer extension is very interesting.

In an oblivious transfer extension we simulate a lot of oblivious transfers by a
much smaller number and by using some cheaper cryptographic tools as well. This
is the focus of [6], where we present a new oblivious transfer extension protocol.
It generalizes the protocol from [22] by using q-ary linear codes instead of binary.
In this thesis, I describe the protocol and point out some of the differences,
advantages, and disadvantages of using another alphabet for the linear codes
used in the protocol. I also present some specific examples to illustrate these
differences between our protocol and the protocol from [22].

At last, I present some potential further works, which includes a section with
results on squares of matrix-product codes. I also mention how the square of codes
plays a role in the setting of multiparty computation. These results are not yet sent
for publication.

4



CHAPTER 2Preliminaries

As mentioned in the introduction, I will have a multiparty computation perspective
through this thesis. However, I will not formally define what I mean by privacy
and correctness for a multiparty computation protocol but settle for the intuitive
explanation below. For precise definitions, and more about multiparty computation
in general, I refer the reader to [12]. By correctness we mean that the parties
should obtain the correct output of the function given the choice of inputs from
the parties. This means that, depending on the assumptions on the adversary, we
cannot ensure that the parties choose the right input. By privacy we mean that
nothing about the inputs of the parties, beyond what is implied by the output of the
function, must be revealed to the other parties. If for example two parties P1, P2

would like to compute x + y where P1 holds x and P2 holds y. Then by learning
x + y, P2 would also know P1’s input, since by subtracting y from the output it
obtains x and vice versa. However, this is not a breach of the privacy requirement
since this is unavoidable from the fact that they both should learn x+ y.

The reader is expected to be familiar with linear error-correcting codes,
including the Hamming weight and distance. For a given linear code C, I will
use the notation d(C) to denote the minimum distance. Additionally, I will use the
notation [n, k, d]q to describe a linear code over Fq with length n, dimension k, and
minimum distance at least d. Linear codes will be a fundamental building block
throughout the different parts of this thesis.

Secret Sharing

As described in the introduction, secret sharing is a way to distribute a secret
among some parties such that only predetermined large subsets of parties are able
to reconstruct the secret. In this section I define this in a formal way by using
Shannon’s entropy function. This function takes a discrete stochastic variable X
taking values in the set A and is given by

Hq(X) = −
∑
x∈A

Pr[x] logq(Pr[x]),
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Secret Sharing

where we say that the function has base q. With the Shannon’s entropy function I
define a secret sharing scheme.

2.1 Definition (Secret sharing scheme):
Let S0, S1, . . . , Sn be random variables taking values in the finite alphabets
S0,S1, . . . ,Sn and let Hq be the Shannon entropy function with base q. A secret
sharing scheme is given by the vector (S0, S1, . . . , Sn) ∈ S0 × S1 × · · · × Sn, if it
satisfies that

Hq(S0) = logq |S0| and Hq(S0|S1, S2, . . . , Sn) = 0.

We will consider S0 as the secret and Si for i ∈ {1, 2, . . . , n} as the share for the i’th
party. Therefore, we will call a realization of (S1, S2, . . . , Sn) for a share vector. The
Shannon entropy is a measure of uncertainty, and I remark that the requirement
that Hq(S0) = logq |S0| means that the uncertainty about the secret is maximal. On
the other hand, the second requirement means that given all the shares there is no
uncertainty about the secret. In other words, the collection of all the shares shall
uniquely determine the secret.

Instead of uncertainty one can also use Shannon’s entropy to define how much
information some subset of parties has. Denote by SA = (Si)i∈A the collection of
shares for the subset of parties corresponding to A. Then we define the mutual
information as

Iq(S0,SA) = Hq(S0)−Hq(S0|SA).

We measure the information in q-bits. We note that if the uncertainty about S0

given SA is low then the information is high and vice versa. Additionally, it can
be shown that the information will always be an integer between 0 and `, both
included.

The idea in multiparty computation is often that the parties use a secret sharing
scheme to secretly distribute their inputs among the other parties. Then by doing
calculations on the shares, maybe by interacting with each other, the parties will
at the end hold a share in the same secret sharing scheme for the output of the
function. If all the parties let the other know their share for the output, they
can, by the last requirement in Definition 2.1, find the output from these shares.
However, this vague explanation of a multiparty computation protocol indicates
some demands or desires for secret sharing schemes. First of all, we need to be
able to do the computations on the shares. Since we will assume that the secret
and shares lies in finite fields, this means that we will be able to carry out sums
and multiplications because every function can be written as a polynomial.

Additionally, we would like a high privacy meaning that if some parties are
corrupted, they may not by joining their shares obtain information about the
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2. Preliminaries

other parties inputs. However, we would also like a low reconstruction, if for
example some parties at some point stop participating in the protocol or is caught
in cheating. Then we would like still to be able to reconstruct the output from the
shares of the remaining parties.

The reconstruction and privacy for a secret sharing scheme is often measured
by considering the reconstruction and privacy thresholds.

2.2 Definition (Privacy and reconstruction):
Let A ⊆ {1, 2, . . . , n} and denote by SA the vector (Si)i∈A. The set A is said to be a
privacy set if

Hq(S0|SA) = Hq(S0),

and A is called a reconstruction set if

Hq(S0|SA) = 0.

The set of all privacy sets is called the adversary structure, A, and the set of all
reconstruction sets is called the access structure, Γ.

We say that the secret sharing scheme has t-privacy if

{A ⊆ {1, 2, . . . , n} : |A| ≤ t} ⊆ A.

The maximal t for which this holds is called the privacy threshold, t.
Similarly, we say that the secret sharing scheme has r-reconstruction if

{A ⊆ {1, 2, . . . , n} : |A| ≥ r} ⊆ Γ.

The minimal r for which this holds is called the reconstruction threshold, r. The
difference between these thresholds g = r − t is called the threshold gap.

One can also define partial privacy and reconstruction thresholds.

2.3 Definition (Partial Privacy and Reconstruction Thresholds):
The i’th partial privacy threshold of a secret sharing scheme, ti, is given by

ti = max{s | ∀A ⊆ {1, 2, . . . , n}, |A| = s, Iq(S0,SA) < i}.

Similarly, the i’th partial reconstruction threshold, ri, is given by

ri = min{s | ∀A ⊆ {1, 2, . . . , n}, |A| = s, Iq(S0,SA) ≥ i}.

Here one should notice that t1 = t and r` = r.
In order to compute a sum of two inputs, or a linear combination, we would

like the secret sharing scheme to be linear. This means that a linear combination
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Secret Sharing

of share vectors gives a share vector for the same linear combination of the
corresponding secrets.

We can describe a linear secret sharing scheme using linear error-correcting
codes. There are several definitions on linear secret sharing using linear codes, but
in this thesis, I will use the definition with a nested code pair. Additionally, we
restrict ourself to the case where the secret is an element in F`q and the shares are
elements in Fq.

2.4 Definition (Linear secret sharing scheme):
Let C2 ( C1 ⊆ Fnq be two linear codes with dimension k2 and k1, respectively. Let
` = k1 − k2 and let {b1,b2, . . . ,bk2 ,bk2+1, . . . ,bk1} be a basis for C1 such that the
first k2 vectors is a basis for C2. Let S0 = F`q and let S0 follow the uniform distribution
on S0. For a realization of S0, say (s1, s2, . . . , s`), choose a1, a2, . . . , ak2 uniform at
random in Fq and define

c = a1b1 + a2b2 + · · ·+ ak2bk2 + s1bk2+1 + · · ·+ s`bk1 .

Then the i’th entry of c is the realization of Si, and c is therefore a share vector.

Clearly, this is a secret sharing scheme since the uniform distribution on the secret
implies that the entropy of S0 is maximal and since we are able to recover the
secrets from c because the set of the bi’s is a basis for C1. Additionally, the scheme
is also seen to be linear in the sense described above.

Note that the elements in C1 is the set of all the share vectors, and one should
notice that C2 is the set of all the share vectors which are shares for the all zero
secret.

From the nested code pair we can determine the privacy and reconstruction
thresholds using the relatively generalized Hamming weights.

2.5 Definition (Relative generalized Hamming weights):
Given a nested code pair C2 ( C1 ⊆ Fnq the i’th relative generalized Hamming weight
is given by

Mi(C1, C2) = min{|supp(D)| : D ⊆ C1, D ∩ C2 = {0}, dim(D) = i},

where supp(D) is the set of indices in D which are not always zero.

In [14, 21] it is shown that the partial privacy and reconstruction thresholds ti and
ri can be described by the relative generalized Hamming weights.

ti = Mi(C⊥2 , C⊥1 )− 1

ri = n−M`−i+1(C1, C2) + 1.
(2.1)
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2. Preliminaries

It may be noted that the first relative generalized Hamming weight of C2 ( C1 is
simply the minimum Hamming weight of the codewords in the set C1 \ C2.

In order to compute products of secrets we would like the secret sharing scheme
to be (strongly) multiplicative. In the definition for multiplicative, I will use the
notation ∗ to denote the component-wise product of two vectors. Additionally, for
a set A I will denote by Ā the complement of A in the set {1, 2, . . . , n} and for a
vector c and a set of indices A I use the notation (c)A to denote the vector of length
|A| with the entries in c corresponding to the indices in A.

2.6 Definition (Multiplicative and strongly multiplicative):
A linear secret sharing scheme is called multiplicative if there exists a linear
reconstruction function ϕ : Fnq → F`q, such that for any two secrets s, t with
corresponding share vectors c,d, we have

ϕ(c ∗ d) = s ∗ t.

The scheme is called strongly multiplicative if there for any A ∈ A exists a linear
reconstruction function ϕA : F|Ā|q → F`q, such that

ϕA((c ∗ d)Ā) = s ∗ t.

The reason for considering strongly multiplicative is again if some of the parties
stop cooperating or is excluded from the calculations since they were caught in
cheating, then the remaining parties should still be able to obtain the output.

Oblivious Transfer

An oblivious transfer (OT) is a very useful cryptographic primitive. In general, for
an
(
N
K

)
-OT where K < N , a sender inputs m1,m2, . . . ,mN and a receiver inputs

w1, w2, . . . , wK , where wi ∈ {1, 2, . . . , N} and wi 6= wj, when i 6= j. The receiver
should learn mwi

for i = 1, 2, . . . , K, without the sender knowing which of the
inputs the receiver obtained and without the receiver learning anything about the
remaining inputs for the sender.

The
(

2
1

)
-OT functionality, where the sender has m0 and m1 as inputs and R has

a single input w ∈ {0, 1} is illustrated in Figure 2.1.
In [6] the focus is on OT-extension. An OT-extension is a way to simulate a

large number of OT’s, using a much smaller number of OT’s called base OT’s. In
[6] we present a generalization of some previously known protocols which achieve
this. Our generalization relies on using q-ary codes instead of binary codes. Since
we will be working with OT-extension protocols I introduce a notation for the
functionality of doing m

(
N
1

)
-OT’s where the sender’s input has string length κ.
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Oblivious Transfer

S R

m0

m1

(
2
1

)
-OT

w

mw

Figure 2.1. The
(

2
1

)
-OT

For this functionality I will use the notation Fκ,mN -OT. With this notation one can say
that an OT-extension is implementing the functionality Fκ,mN -OT using Fκ

′,m′

N ′-OT, where
m′ < m.

In the protocol from [6] we make use of q-ary linear codes and two functions,
a pseudorandom generator PRG and some kind of hash function H. The reason
for using the PRG is to reduce the complexity of the protocol since we only input
a seed to the OT and afterwards extract this seed using PRG to obtain something
which seems uniform in a larger space. This follows from the following definition.

2.7 Definition (Pseudorandom generator):
A pseudorandom generator is a function PRG : {0, 1}κ → Fmq such that the output of
PRG is computationally indistinguishable from the uniform distribution on Fmq .

The idea of using the hash function H is also that it outputs something
computationally indistinguishable from the uniform distribution, and the sender
can then use the outputs of this function to mask its inputs. In [6] we use some
specific hash function with certain properties but I refer the reader to the article
for the definition.
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CHAPTER 3Bounds on Thresholds and
Limitations for Multiparty
Computation

In this chapter, I will obtain bounds on the privacy and reconstruction thresholds
along with the threshold gap by applying the generalized Griesmer bound for the
first relative generalized Hamming weight. The bounds I present is from our article
[8], where bounds on partial reconstruction and privacy thresholds where obtained
by considering the i’th relative generalized Hamming weight as well. The bounds
on the partial thresholds are presented without proofs in the second section of
this chapter. I have in this thesis chosen to focus on the bounds on t, r and g

for two reasons. The first since they are the most used and well-known in the
secret sharing community and the second since this is what we need to study the
limitations for multiparty computation.

I emphasize that the first two sections in this chapter presents some of the main
results from my article [8] while the third section study some implications the
results from the first sections have for multiparty computation. These implications
are not discussed in [8].

Bounds on Thresholds

Bounds on the threshold gap have already been studied in the literature, both
for linear but also for general secret sharing. In linear secret sharing the most
well-known bound is given by g ≥ ` which I refer to as the Singleton bound. This
bound only consider the size of the secret compared to the size of the shares. Other
bounds includes both the number of parties and the share size. Such bounds were
given in [7]. Let

BCCX(1)(n, q) =
n+ 2

2q − 1

BCCX(2)(n, q, `) =
n+ 2

2q + 1
+

2q

2q + 1
(`− 1).
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Bounds on Thresholds

Then the bounds from [7] state that

g ≥ BCCX(1)(n, q) if 1 ≤ t < r ≤ n− 1

g ≥ BCCX(2)(n, q, `) if ` ≥ 2.
(3.1)

I refer to these bounds as the first and second CCX bound. Note that the first bound
do not include ` and therefore not depend on the relation between the secret and
share size, while the second CCX bound include all these parameters.

One of the main results in [8] is a bound which, as the second CCX bound,
includes all these parameters. The way we obtain this new bound is by considering
the generalized Griesmer bound on the first relative generalized Hamming weight
for the codes used in the construction.

Hence, I start by presenting the generalized Griesmer bound, a result from
[29]. I will through this chapter use the notation k1 and k2 for the dimension of
the codes C1 and C2, respectively.

3.1 Proposition:
Let C2 ( C1 ⊆ Fnq be a nested code pair and let ` = k1 − k2. For 0 ≤ i ≤ `, the i’th
relative generalized Hamming weight satisfies

n ≥ k2 +Mi(C1, C2) +
`−i∑
j=1

⌈
q − 1

qj(qi − 1)
Mi(C1, C2)

⌉
. (3.2)

This gives the following bounds, first shown in [8, Theorem 3.2].

3.2 Theorem:
Let a linear secret sharing scheme be given by a nested code pair C2 ( C1 ⊆ Fnq . Then
for every m ∈ {0, 1, . . . `− 1} we have the following bounds

t ≤ qm+1 − qm

qm+1 − 1
(k2 +m+ 1)− 1

r ≥ qm − 1

qm+1 − 1
n+

qm+1 − qm

qm+1 − 1
(k1 −m− 1) + 1

g ≥ qm − 1

qm+1 − 1
(n+ 2) +

qm+1 − qm

qm+1 − 1
(`− 2m).

Proof:
First note that all the terms in the sum from (3.2) are positive, meaning that they
are at least 1. Since we want bounds on t and r, we will because of (2.1) consider
the first relative generalized Hamming weights. Hence, for an m ∈ {0, 1, . . . `− 1}

12



3. Bounds on Thresholds and Limitations for Multiparty Computation

we can write

n ≥ k2 +M1(C1, C2) +M1(C1, C2)
m∑
j=1

1

qj
+ `− 1−m⇐⇒

M1(C1, C2) ≤ qm+1 − qm

qm+1 − 1
(n− k1 +m+ 1).

Now the results follows by combining this result with the expressions for t and r
in (2.1). Here one should notice that dim(C⊥2 ) = n − k2. The result on g simply
comes from combining the results on t and r.

We showed in [8, Theorem 3.3] that there exists an m such that the bounds in
Theorem 3.2 is at least as good as previously known bounds for the thresholds as
long ` ≥ 2. Denoting by

BGr
(m)(n, q, `) =

qm − 1

qm+1 − 1
(n+ 2) +

qm+1 − qm

qm+1 − 1
(`− 2m),

[8, Theorem 3.3] states the following.

3.3 Theorem:
Let ` ≥ 2, then

BGr
(1)(n, q, `) ≥ BCCX(1)(n, q),

and

BGr
(0)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≥ n− 2(q − 1)

BGr
(1)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≤ n− 2(q − 1).

It might also be noted that BGr
(0)(n, q, `) = ` and therefore we have that the bound

on g in Theorem 3.2 is at least as good as the Singleton bound in any cases.
Additionally, we note that there exists a bound on t, r and g for every m, and in
order to obtain the best bound one needs to choose the m carefully. However, as
we see above choosing m = 0 or m = 1, which is possible when ` = 2, is enough
to obtain bounds which is at least as good as previously known bounds.

Bounds on Partial Thresholds

As mentioned before we also present bounds on the partial privacy and
reconstruction thresholds in [8]. Because this is not the focus in this thesis I will
in this section briefly present some of the main results regarding these thresholds
and refer the reader to [8] for the proofs.
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Bounds on Partial Thresholds

The first result is actually a generalization of Theorem 3.2, but I have chosen
to state the theorem for t and r since this is my focus in this thesis. However, we
proof similar bounds for ti and ri, where we show that

ti ≤
qm+i − qm

qm+i − 1
(k2 +m+ i)− 1

r`−i+1 ≥
qm − 1

qm+i − 1
n+

qm+i − qm

qm+i − 1
(k1 −m− i) + 1,

for all m ∈ {0, 1, . . . , ` − i}. Recalling that t1 = t and r` = r we obtain Theorem
3.2.

Additionally, [8, Theorem 4.2] states that if tj ≥ j for some j then the threshold
ri satisfy

ri ≥
n

q`−i+1
+ 1,

for i ∈ {j, j + 1, . . . , `}. Here one might note the connection to [7], where it is
shown that r ≥ n

q
+ 1 under the assumption that t ≥ 1. So what we have done in

[8] is loosening the assumption (t ≥ 1 implies tj ≥ j for every j) and obtaining a
statement not only for r but for some of the partial reconstruction thresholds as
well. In [7], they use the bound r ≥ n

q
+ 1 to obtain the first CCX bound. We have

followed more or less the same approach and generalized the first CCX bound. The
generalization is shown in [8, Theorem 4.4]. Letting

ai = ti − t− i+ 1

bi = r − r`−i+1 − i+ 1,

the theorem is as follows.

3.4 Theorem:
Let C2 ( C1 define a secret sharing scheme. Fix some i ∈ {1, 2, . . . , `} and let ai and
bi be as above. If ti ≥ i, then the threshold gap g satisfies

g ≥ n− t+ 1

q
+
q − 1

q
ai.

If r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ r + 1

q
+
q − 1

q
bi.

If both ti ≥ i and r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ n+ 2

2q − 1
+

q − 1

2q − 1
(ai + bi).

One should notice that since ai and bi are nonnegative (because ti and ri are strictly
increasing with i) this bound is at least as good as the first CCX bound.
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3. Bounds on Thresholds and Limitations for Multiparty Computation

Implications for Multiparty Computation

In this section I consider some limitations Theorem 3.2 implies on multiparty
computation. I emphasize that these considerations are not a part of [8].

Having lower bounds on g gives some limitations for (strongly) multiplicative
secret sharing schemes and hence multiparty computation. Before going into the
limitations I start by considering multiplicative secret sharing with respect to the
codes. Recall, that we fix a basis for C1, such that the first k2 elements is a basis for
C2. This means that we can write C1 = C2 ⊕ L for some subspace L of dimension
`. Assume that we fix the last ` basis elements such that bk2+i = (ei,vi), where
ei is the i’th canonical basis vector for F`q and vi is some vector in Fn−`q . This can
always be obtained by doing linear combinations on the basis vectors in L or by
reordering the parties. Hence, I will in the remaining of this thesis always assume
that the basis has this form. Now I define

Ĉ1 = span({bi ∗ bj : 1 ≤ i, j ≤ k1})
Ĉ2 = span({bi ∗ bj : 1 ≤ i, j ≤ k1} \ {bi ∗ bi : 1 ≤ i ≤ `})
L̂ = span({bi ∗ bi : 1 ≤ i ≤ `}).

(3.3)

Note that the requirement on the basis before implies that dim(L̂) = `. If these
codes define a linear secret sharing scheme, the scheme based on C2 ( C1 is a
multiplicative secret sharing scheme. This follows from the following proposition,
which to my knowledge is an unpublished result.

3.5 Proposition:
Let C2 ( C1 ⊆ Fnq define a linear secret sharing scheme. The scheme is multiplicative
if and only if Ĉ1 = Ĉ2 ⊕ L̂.

Proof:
Clearly, from (3.3), we have Ĉ1 = Ĉ2 + L̂, so what might go wrong is that
Ĉ2 ∩ L̂ 6= {0}. Assume this is the case. Elements in Ĉ2 must be shares for 0.
However, the only share for 0 in L̂ is the all zero vector. This means that there
exists a c 6= 0 in the intersection which is a share vector for both a nonzero and
the all zero secret. Hence, we cannot define a reconstruction function.

On the other hand, assume that Ĉ1 = Ĉ2⊕L̂. Let c, c′,d,d′ be shares for s, s′, t, t′

respectively. By the assumption, there are unique representations for c ∗ c′ and
d ∗ d′ in the following way

c ∗ c′ = s1s
′
1(b1 ∗ b1) + s2s

′
2(b2 ∗ b2) + · · ·+ s`s

′
`(b` ∗ b`) + v

d ∗ d′ = t1t
′
1(b1 ∗ b1) + t2t

′
2(b2 ∗ b2) + · · ·+ t`t

′
`(b` ∗ b`) + w,

for some v,w ∈ Ĉ2. Now define the function ϕ : Ĉ1 → F`q given by

ϕ (a1(b1 ∗ b1) + a2(b2 ∗ b2) + · · ·+ a′`(b` ∗ b`) + u)) = (a1, a2, . . . , a`),
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where u ∈ Ĉ2. This is a well-defined map, since all elements in Ĉ1 can be uniquely
represented on the form above. Clearly, this function is a reconstruction function
if it is linear. But this holds since for some a, b ∈ Fq we have

ϕ(a(c ∗ c′) + b(d ∗ d′)) = (as1s
′
1 + bt1t

′
1, as2s

′
2 + bt2t

′
2, . . . , as`s

′
` + bt`t

′
`)

= a(s1s1, s2s
′
2, . . . s`s

′
`) + b(t1t

′
1, t2t

′
2, . . . t`t

′
`)

= aϕ (c ∗ c′) + bϕ (d ∗ d′) .

I can now deduce the limitations from the following theorem, which is more or
less a special case of [7, Theorem 5.4] but in the setting using nested codes as
definition for linear secret sharing.

3.6 Theorem:
Let C2 ( C1 be a multiplicative secret sharing scheme with privacy parameter t and
reconstruction parameter r, and let r̂ be the reconstruction parameter for the scheme
Ĉ2 ( Ĉ1 defined in (3.3). Then,

r ≤ r̂ − t.

Proof:
Take a set of parties A with cardinality r̂ − t. Let πA : Fnq → FAq be the projection
map, meaning that for a vector c ∈ Fnq , we have πA(c) = (c)A. I will show that
A is a reconstructing set by showing that kerπA ∩ C1 ⊆ C2. This is equivalent to
being a reconstructing set, since if a codeword c ∈ C1 is such that πA(c) = 0 then
the inclusion implies that it is a share vector for the all zero secret. By linearity,
we obtain that if two codewords c, c′ ∈ C1 are such that πA(c) = πA(c′), then
c− c′ ∈ C2 and hence they are share vectors for the same secret. This means that
the parties in A are able to reconstruct to a unique secret from their shares.

Let c ∈ kerπA ∩ C1 and let B ⊆ Ā be a set with cardinality t, which always
is possible since |Ā| = n − (r̂ − t) ≥ t because r̂ ≤ n. Since B is a privacy set,
there exists a share vector c′ ∈ C1 for the all one secret such that πB(c′) = 0. Now
define D = A ∪B and c̃ = c′ ∗ c. Since c′ is a share vector for the all one secret c̃
is a share vector for the same secret as c but in the scheme Ĉ2 ( Ĉ1. Notice that
|D| = |A| + |B| = r̂ − t + t = r̂ meaning that D is a reconstructing set in this
scheme. But πD(c̃) = 0 by the choice of c and c′. Hence, the secret of both c̃ and c

is the zero vector, meaning that c ∈ C2.

For a linear secret sharing scheme to be multiplicative we require that r̂ ≤ n since
we require that the parties are able to reconstruct products. Hence, from this
theorem, we obtain that r ≤ n− t in order for the scheme to be multiplicative. This
can be rewritten as g ≤ n−2t. Similarly, for a scheme to be strongly multiplicative,
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3. Bounds on Thresholds and Limitations for Multiparty Computation

we require that r̂ ≤ n− t. This follows since the complementary of every privacy
set, should be able to reconstruct products. Again this leads to r ≤ n− 2t, which
is equivalent to g ≤ n− 3t.

Now consider the Singleton bound g ≥ ` along with the two CCX bounds from
(3.1). From these, we obtain the following bounds on t if we require that the
scheme is multiplicative:

t ≤ n− `
2

t ≤ q − 1

2q − 1
n− 1

2q − 1

t ≤ q

2q + 1
(n− `) +

q − 1

2q + 1
.

Similarly, we obtain the following bounds on t, if we require that the scheme
should be strongly multiplicative:

t ≤ n− `
3

t ≤ 2

3

(
q − 1

2q − 1
n− 1

2q − 1

)
t ≤ 2

3

(
q

2q + 1
(n− `) +

q − 1

2q + 1

)
.

Now returning to the bound on g in Theorem 3.2 we obtain that

t ≤ (qm+1 − qm)(n− `+ 2m)

2(qm+1 − 1)
− qm − 1

qm+1 − 1
,

if the scheme is multiplicative. Similarly, we obtain that

t ≤ (qm+1 − qm)(n− `+ 2m)

3(qm+1 − 1)
− 2

3

(
qm − 1

qm+1 − 1

)
,

if the scheme is strongly multiplicative. To illustrate the difference between the
bounds we consider an example below.

3.7 Example:
Let q = 2, n = 100 and ` = 10. Then the Singleton bound on the threshold gap
implies that t ≤ 45 for the scheme to be multiplicative. Similarly, we obtain that
t ≤ 33 from the first CCX bound and t ≤ 36 from the second CCX bound. If we
consider the bound obtained using Theorem 3.2 and let m = 4, which gives the
tightest bound in this example, we obtain that t ≤ 24 if the scheme should be
multiplicative.

If we instead considered strongly multiplicative secret sharing schemes, we
would obtain the limitations t ≤ 30 (Singleton), t ≤ 22 (1st CCX), t ≤ 24 (2nd
CCX), and t ≤ 16 (Theorem 3.2). J
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Implications for Multiparty Computation

We see in this example that we have a stronger limitation on t using the bound
obtained from Theorem 3.2 than the other bounds. This implies that if we want a
scheme to be (strongly) multiplicative, as we would like for the schemes we use in
multiparty computation in order to be able to multiply inputs, we would require a
lower privacy for the underlying secret sharing scheme.

In general, if ` ≥ 2, it would be the case that we obtain a stronger limitation on
t from this new bound on the threshold gap instead of the other bounds since the
bound on g in Theorem 3.2 improves the other bounds in these cases as we saw in
Theorem 3.3.
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CHAPTER 4Oblivious Transfer Extension

Many multiparty computation protocols use oblivious transfers as a building block,
especially two-party computation protocols. One of the most well-known protocol
for two-party computation is based on garbled circuits, see for instance [28].
The idea of protocols using garbled circuits is that one of the parties is garbling
(some kind of encrypting) the function the two parties would like to evaluate.
Then it sends the garbled function along with its garbled inputs. The other party
will receive its garbled inputs through some oblivious transfers and afterwards
evaluate the garbled function on the garbled inputs. Afterwards, they can decrypt
the garbled output.

If each party has a lot of inputs, they will need to perform many OT’s, which
means that the complexity of the protocol will be quite large. This is an example,
where OT-extension could be very useful, since we could reduce the complexity of
the protocol by simulating a large number of OT’s by a much smaller one.

The Protocol

In [6] we present a new protocol for OT-extension, which generalizes the protocol
from [22]. We elaborate on the connection with homomorphic commitments, also
pointed out in [22], by presenting the protocol in a similar manner as in [9] with
matrix notation through the most of the protocol. In the following, we present
the generalization and prove the correctness of it. However, we would not in this
thesis prove the security of the protocol but only give a sketch of the ideas. We
refer to [6] for a complete proof of security.

Before initialising the protocol the sender and receiver should agree on a linear
[n, k, d]q code. The choice of the code influences the protocol in various ways.
First assume that we would like to implement the functionality Fκ,mN -OT. Recall
that this functionality means m

(
N
1

)
-OT’s with string length κ. Then, we require

that k = logq(N). Additionally, n would be the actually number of OT’s we are
performing and d would influence the security of the protocol. The protocol we
present will then implement the functionality Fκ,mN -OT having access to Fκ,n2-OT. We
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notice that in the protocol the receiver has vectors as inputs and not numbers in
{0, 1, . . . , N − 1}. However, the vectors are in Fkq and hence there are qk = N

possible inputs for the receiver. In this way, we simply identify the integers with a
vector in Fkq , for instance by using the q-ary representation. In the protocol we will
also use the notation ∆b to denote the diagonal matrix with the i’th entry of b on
the (i, i)’th position. The full description of the protocol can be seen in Protocol 1
on page 21.

To argue that the protocol is correct and get a feeling of that the protocol is
secure we consider

qi −wG∆b = ti + ci∆b −wG∆b, (4.1)

where ci is the i’th row of C. If the receiver has acted honestly during the protocol
ci = wiG, and hence (4.1) reduces to ti in the case where w = wi. Because the
receiver knows ti it can compute H(ti) and obtain vwi,i. Again, if the receiver has
followed the protocol we have that (4.1) for w 6= wi reduces to

ti + (wi −w)G∆b.

Since the receiver does not know b it has to guess the entries in b corresponding
to the nonzero entries in the codeword (wi −w)G before it will know the input to
H. If the minimum distance of the code is high, this is a difficult task.

Additionally, we see that the consistency check will always pass if both parties
follows the instructions. This follows from the fact that

MQ = MT0 +MC∆b = T̃ + W̃G∆b,

where the last equality follows since MC = MWG = M̃G if the receiver is honest.
The reason for adding the consistency check is to ensure that the receiver is

actually choosing codewords in the matrix C. Otherwise, he will get caught during
the check and the sender will abort with a very high probability. To see the proof
of this I refer the reader to [6]. What might go wrong if the receiver do not choose
codewords is that it might potentially learn something about b, which might lead
to breach of security. For more detail about this, see [19].

Comparison

In this section I compare Protocol 1 with the OT-extension protocol from [22]
which uses binary codes.

First of all we see that Protocol 1 has more flexibility on N , since it was required
that N was a power of two before. In this protocol, we can choose N to be any
power of a prime. This might be beneficial for some applications where a specific
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4. Oblivious Transfer Extension

Protocol 1 (OT-Extension)

This protocol implements the functionality Fκ,mN -OT having access to Fκ,n2-OT. The
security of the protocol is controlled by the security parameters κ and s.
The sender S and the receiver R have agreed on a linear code C ⊆ Fnq with
generator matrix G of dimension k = logq(N) and minimum distance d ≥
max{κ, s}. The protocol uses a pseudorandom generator PRG : {0, 1}κ → Fm+2s

q

and a hash function H : Fnq → {0, 1}κ, see [6] for a definition. R has m inputs
w1,w2, . . . ,wm ∈ Fkq , which act as selection integers. S has inputs vw,i ∈ {0, 1}κ,
indexed by i ∈ {1, 2, . . . ,m} and w ∈ Fkq .

1. Initialization phase

1. S chooses uniformly at random b ∈ {0, 1}n.
2. R generates uniformly at random two seed matrices N0, N1 ∈ {0, 1}κ×n

and defines the matrices Ti = PRG(Ni) ∈ F(m+2s)×n
q for i = 0, 1, where

PRG(Ni) is the matrix we obtain by using PRG on the columns in Ni.
3. The parties call the functionality Fκ,n2-OT, where S acts as the receiver

with input the i’th entry of b for the i’th OT. R acts as the sender
with the i’th columns of N0 and N1 as input for the i’th OT. S receives
N = N0 + (N1 − N0)∆b, and by using PRG on the columns he had
received, he can compute T = T0 + (T1 − T0)∆b.

2. Encoding phase

1. Let W ′ ∈ Fk×mq be the matrix which has wi as its columns. R generates
a uniformly random matrix W ′′ ∈ Fk×2s

q , and defines the (m + 2s) × k-
matrix W = [W ′ | W ′′]T .

2. R sets C = WG, and sends U = C + T0 − T1.
3. S computes Q = T + U∆b. This implies that Q = T0 + C∆b.

3. Consistency check

1. S samples a uniformly random matrix M ′ ∈ F2s×m
q and sends this to R.

They both define M = [M ′ | I2s].
2. R computes the 2s×n-matrix T̃ = MT0 and the 2s×k-matrix W̃ = MW

and sends these matrices to S.
3. S verifies that MQ = T̃ + W̃G∆b. If this fails, S aborts the protocol.

4. Output phase

1. Denote by qi and ti, the i’th rows of Q and T0, respectively. For i =
1, 2, . . . ,m and for all w ∈ Fkq , S computes yw,i = vw,i ⊕ H(qi −wG∆b)
and sends these to R. For i = 1, 2, . . . ,m, R can recover vwi,i =
ywi,i

⊕ H(ti).

N is wanted. We note that one always can choose a dimension such that 2k is larger
than the wanted N , so we do not obtain more possibilities in this case. However, it
might be computationally inconvenient to choose an N almost double size of what
is needed. As an example, if one would like N around 600, one needs to choose
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a binary code of dimension 10 and get an N = 1024. On the other hand one can
now choose a ternary code with dimension 6 to obtain N = 729, which is much
closer to 600.

With respect to communication complexity there is a trade-off when we
compare our protocol with the protocol from [22]. The main difference between
the two protocols is that we use an [n, k, d]q code, while they use an [n′, k′, d]2 code.
In order to be fair in our comparison we would like to do 1-out-of-N OT’s in both
protocols. Hence, we limit our analysis to the case where q = 2r and k′ = kr

for some integer r. Since we are considering codes over a larger alphabet and
with k ≤ k′ we can assume that n ≤ n′, and typically, as we see later, these two
conditions will often imply n < n′. This is also indicated by, for instance, the
Singleton bound

n ≥ k + d− 1.

We have that k = logq(N) < log2(N) = k′, if q > 2. Hence, the requirement on n

is bounded by n ≥ logq(N) + d − 1, while n′ ≥ log2(N) + d − 1. This is of course
only bounds on n and do not show that n < n′, but in the examples we show later,
we see that this is often the case. As another illustration of that n < n′ in many
cases, assume that k′ ≥ 2. A small argument will show that n′ ≥ 3d/2. However,
by choosing q = N we obtain that k = 1 implying that we can choose n = d by
using the repetition code. This is of course the extreme case and in the following
we are more focussed on intermediate codes, meaning that k > 1 as well.

With the intuition of the connection of the codes and the notation fixed I can
now turn the attention to the actually complexity comparison of the two protocols.
The output phase for the two protocols has the same communication complexity,
but while we obtain a decrease in the complexity in the initialization phase, due
to the lowered number of OT’s, we might see an increase of the complexity in the
remaining phases.

In this thesis I will not go into details about the complexity but just mention
that one often make use of OT-extension when m is very large. From this we argue
in [6] that the dominant term for the communication complexity in the encoding
phase and consistency check comes from sending U under the encoding phase.
The dominant term here has a cost of sending mn log2(q) bits. Comparing to the
protocol from [22], where sending U has a dominant term of mn′, we see that this
is an increase in communication complexity of a factor log2(q)n/n′.

I have illustrated the trade-off for some specific codes in Table 4.1. Under the
comparison column it is the value of log2(q)n/n′ I have presented under CC, in
order to illustrate the increase in communication complexity for the parts of the
protocol discussed before. Under n it is the fraction n′/n I have presented in order
to illustrate the reduction in number of base OT’s.
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Comparison

Code N n (Base OT’s) d n CC

Repeated Golay code [22] 4096 384 128
F4-code from table in [16] 4096 177 128 ÷ 2.17 × 0.92
Punct. Walsh-Had. [22] 512 256 128

Repeated simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511, 76,≥ 171]2-BCH [22] 276 511 ≥ 171

[455, 48,≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023, 443,≥ 128]2-BCH [22] 2443 1023 ≥ 128

[455, 154,≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

Table 4.1. Comparison of using binary and q-ary codes for OT-extension. In the last two
columns we consider the decrease in the number of base OT’s and increase in
the dominant term of the communication complexity in the encoding phase
when we consider a q-ary construction.

In [22] they suggests three type of codes and list example of their parameters in
a table. The three types of codes are punctured Walsh-Hadamard codes, repeated
Golay codes and BCH codes.

To compare with the repeated Golay code, I have used the table from [16] and
found a code with same distance and N over F4. It might be noticed here that
the repeated Golay code is not necessarily the most optimal code, meaning that
there might be a binary code having the same minimum distance and dimension
but lower length.

To compare with the punctured Walsh-Hadamard code I take a repeated simplex
code over F8. A simplex code has paramters [ q

k−1
q−1

, k, qk−1]q, so for q = 8 and k = 3

we obtain an [73, 3, 64]8 code. By repeating it, we double the length and minimum
distance while k remains unchanged. This is the parameters we have in Table 4.1.

For the BCH codes it was more difficult to find comparable codes. So, as we
do in [8], we take some other BCH codes and ensured that both N and d is at
least as high for the q-ary codes than the binary codes considered in [22]. Even
though this is a disadvantage for our protocol we see in the table that in one of
the examples we obtain a significantly decrease in the number of OT’s while the
communication cost for the remaining parts do not increase a lot.
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CHAPTER 5Further Work

In this chapter I describe some potential future work. As a first possible future
outcome one could consider if some of the bounds from [8] could be generalized
so they not only can be used in the linear case. This was for instance the case for
the first CCX bound and the Singleton bound.

As another possible future outcome I am at the moment working on squares
of matrix-product codes, which are relevant in the multiparty computation setting
too. I will present some of the results I have obtained on this topic so far, and
afterwards discuss some new research topics this gives rise to.

Squares of Matrix-product Codes

Consider the explanation of a multiparty computation protocol in Chapter 2 and
the definition of (strongly) multiplicative secret sharing schemes, see Definition
2.6. From this, we see that when computing products of secrets the parties will
compute the product of their shares. What the parties obtain is then a codeword
in the squared code. More generally, we define the product of two linear codes C1

and C2 to be

C1 ∗ C2 = span{c1 ∗ c2 | ci ∈ Ci, i = 1, 2},

where ∗ denotes the component-wise product of vectors. For a linear code C, we
denote by C∗2 = C ∗ C and call it the square of C.

The parameters of the square are important for multiparty computation in
several settings in addition to the explanation above. For example the MiniMac
construction from [13] (a multiparty computation protocol) requires a high
minimum distance on C∗2 in order to be secure. Additionally, it is shown that
one can construct a t-strongly multiplicative secret sharing scheme, with both
secrets and shares in Fq, from a linear code C if d(C∗2) ≥ t+ 2 and d(C⊥) ≥ t+ 2.

Products of codes have interest in other areas as well. For example it has been
used to attack cryptosystems [11] and it has been used in decoding algorithms for
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linear error-correcting codes [23]. Therefore, general results of products of codes
has also been studied in a few papers, see for instance [26].

This introduction on squares and products of codes motivates the need for
describing the parameters of these. To be more specific, we often want a linear
code, where both the code and the square have good parameters. This seems to be
difficult since squaring is often a destructive operation for the dimension. In fact,
it is shown in [10] that choosing a family of random linear codes either the codes
or the squares will be asymptotically bad.

Therefore, it seems difficult to find codes where both the square and itself is
good for large n. This is however possible, as it was shown in [25], where a family
of binary linear codes is presented such that both the code and the square are
asymptotically good. However, for applications it is also of interest to find codes of
some specific lengths which has good squares. This is what is the purpose in the
following, where we consider matrix-product codes.

Using matrix-product codes one can obtain longer codes from shorter ones. In
the following, we give a short introduction to matrix-product codes and determine
the parameters of the square of some matrix-product codes.

5.1 Definition:
Let C1, C2, . . . , Cs be linear codes over Fq and A ∈ Fs×mq be a matrix with full rank
satisfying s ≤ m. Then the matrix-product code is given by all n×m matrices in the
set

C = {[c1, c2, . . . , cs]A | ci ∈ Ci},

and we write C = [C1, C2, . . . , Cs]A.

When we talk about A in this section we always mean a matrix with the properties
above. Additionally, we denote by Ai the matrix consisting of the first i rows of
A and CAi

the linear code spanned by the rows in Ai. We will use the notation
Di = d(CAi

). In the following proposition, we summarize some known facts about
matrix-product codes. We will not proof the results but refer the reader to [1].

5.2 Proposition:
Let C1, C2, . . . , Cs be linear [n, k1, d1]q, [n, k2, d2]q, . . . , [n, ks, ds]q codes with generator
matrices G1, G2, . . . , Gs respectively. Then C = [C1, C2, . . . , Cs]A is an

[nm, k1 + k2 + · · ·+ ks,≥ min{d1D1, d2D2, . . . , dsDs}]q
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linear code and a generator matrix of C is given by

G =


a11G1 a12G1 · · · a1mG1

a21G2 a22G2 · · · a1mG2

...
... . . . ...

as1Gs as2Gs · · · asmGs

 .

It might also be noted that assuming that the codes are nested C1 ⊇ C2 ⊇ · · · ⊇ Cs,
the bound on the minimum distance is fulfilled with equality, a result that is due
to [17].

Now we consider some specific matrix-product codes. The first, also known as
the (u, u+ v)-construction, is given by setting s = m = 2 and letting

A =

[
1 1

0 1

]
. (5.1)

In this case we obtain the following result on the square.

5.3 Theorem:
Let A be as in (5.1). Given C1, C2 ⊆ Fnq , we obtain that the square of C = [C1, C2]A

is given by C∗2 = [C∗21 , (C1 + C2) ∗ C2]A, where C1 + C2 means the smallest linear code
containing both C1 and C2.

Proof:
Let G1, G2 be generator matrices for C1, C2 respectively. By Proposition 5.2 a
generator matrix for C is given by

G =

[
G1 G1

0 G2

]
.

For two matrices A and B, we use the notation A ∗B to denote the matrix which
consists of all component-wise products of rows in A by rows in B. So if A is an
l×n matrix and B is an m×n matrix, we have that A∗B is an lm×n. This means
that the rows in

G ∗G =

G1 ∗G1 G1 ∗G1

0 G1 ∗G2

0 G2 ∗G2

 =

G1 ∗G1 G1 ∗G1

0

[
G1

G2

]
∗G2


spans C∗2. By removing linearly dependent rows we see that we obtain a generator
matrix for [C∗21 , (C1 + C2) ∗ C2]A.

One should notice that if C2 ⊆ C1, the code C1 + C2 reduces to C1 and hence
C∗2 = [C∗21 , C1 ∗C2]A. We state a similar result for another matrix-product code, and
here we assume that the codes are nested in the theorem in order to express the
square.
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5. Further Work

5.4 Theorem:
Let C1 ⊇ C2 ⊇ C3 be linear codes in Fnq . Furthermore, let

A =

1 1 1

0 (p− 1) 1

0 0 1

 ,
where p 6= 2 is the characteristic of Fq. If C = [C1, C2, C3]A, then

C∗2 = [C∗21 , C1 ∗ C2, C∗22 + C1 ∗ C3]A.

Proof:
We use the same notation as in the previous proof and follow more or less the
same procedure.

G ∗G =



G1 ∗G1 G1 ∗G1 G1 ∗G1

0 (p− 1)G1 ∗G2 G1 ∗G2

0 G2 ∗G2 G2 ∗G2

0 0 G1 ∗G3

0 0 G2 ∗G3

0 0 G3 ∗G3


.

Since we assumed that the codes are nested we can by doing row operations get
rid of the last two “block rows”. Additionally, we can replace the third “block row”
by
[
0 0 G2 ∗G2

]
, and hence the result follows.

At last, we consider the case, where the matrix used in the construction is an s× q
Vandermonde matrix.

5.5 Theorem:
Let C0, C1, · · · , Cs−1 be linear codes in Fnq with generator matrices G0, G1, . . . , Gs−1

respectively. Furthermore, let

V (s) =


1 1 · · · 1

α1
1 α1

2 · · · α1
q

...
...

...
αs−1

1 αs−1
2 · · · αs−1

q

 ,
where the αi’s are distinct elements in Fq and s ≤ q is some integer. Denote by
C = [C0, C1, . . . , Cs−1]V (s). Then

C∗2 = [
∑
i+j=0

Ci ∗ Cj,
∑
i+j=1

Ci ∗ Cj, . . . ,
∑

i+j=s̃−1

Ci ∗ Cj]V (s̃)

where s̃ = min{2s− 1, q} and i+ j is considered modulus q in the sums.
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Problems from the Results on Matrix-Product Codes

Proof:
Again the strategy is the same as before. The rows in G ∗G is given by[

αi+j1 Gi ∗Gj αi+j2 Gi ∗Gj · · · αi+jq Gi ∗Gj

]
,

and the result follows.

These results show that if Ci comes from a family of codes where we can describe
the products, we might be able to determine the square of the matrix-product code,
which has length a multiple of the codes used in the construction. This could for
instance be if Ci where cyclic codes or some kind of evaluation codes.

Problems from the Results on Matrix-Product Codes

The results about squares of matrix-product codes indicate that it could be
interesting to study products of codes more in depth since, as we saw in the
previous section, we can use products of different codes to describe the square of a
matrix-product code, but also as it was mentioned in the introduction that product
of codes is used in other areas as well. Therefore, determining the products of
some different types of codes could be interesting.

The results on matrix-product codes also give rise to the question if one can, by
using some specific codes in the construction, obtain codes, where both the code
and the square are good. However, this give rise to a new question. Because what
is “good”, when we consider the square of a code with a specific length?

Not much research has been done on this topic since most research so far has
considered the asymptotic setting. There are, however, some limitation bounds
in [26] but there is still a huge gap between the constructions and bounds. One
of the papers which contain constructions for some specific lengths is [5], where
some specific cyclic codes have been studied. It could be interesting to compare
the matrix-product codes with the parameters from this article.

Therefore, other research topics could also be construction of new bounds for
squares of codes, both existence bounds, such as an Gilbert-Varshamov bound
for squares, but also improved limitations bounds could be interesting. Such
bounds could lead to a clarification of which codes are good when considering the
parameters for both the code itself and the square.
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