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Abstract 

Geodata has become one the fundamental forces in the world today, valuable to all industries 

and government bodies. Just like any product or asset, its value or usefulness is reflective of 

its quality or validity. The field of remote sensing is continually growing, the data it provides 

is utilised in a multitude of applications across all sectors. This thesis focuses on 

Geographical spatial data, specifically water bodies. This data can be used in various land 

management operations such as disaster response, precision farming and even used to inform 

government policy decisions, to name a few. 

 This study explores the subject of data quality. Denmark is one of the leaders in open 

geographical data, its quality or accuracy is relatively unknown and subject to scrutiny. This 

thesis examines the ‘lake’ or water body dataset provided by GeoDanmark, the Danish 

framework for cooperation between municipalities and e Data Security and Enhancement 

Board (SDFE) on the establishment and maintenance of a nationwide public-sector 

geographic data. 

The method used in assessing the quality of data is the combination of remotely sensed data 

provided by ESA’s recently launched sentinel 2 satellite programme and Yandex’s newly 

developed machine learning algorithm Catboost.  

The results proved to be interesting, with a 28% of the sample data set to be wrong. This 

figure is subject to bias, due to the seasonal changes of water bodies. Catboost was shown to 

be an effective tool for assessing the quality of geo spatial datasets. In conclusion this is a 

significant result and opens the door for further examination of Denmark’s geographic open 

datasets.  
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1 Introduction 

The Quality of Data in an information age is essential, being aware of the level of quality is 

a necessary parameter in determining the overall significance of a dataset. Errors in spatial 

data can result in a number of problems depending on the utilisation of the data, from 

inaccurate land management practices to flawed disaster prevention methods.  

The field of machine learning provides boundless opportunity for the manipulation, editing 

and analysis of large data sets, a machine learning approach to assessing the quality of spatial 

data may provide a significant development within the area of spatial analysis.   

The following chapter of this report will provide the background theory and research in the 

fields of remote sensing and machine learning relevant to this thesis study, concluding with 

the projects problem statement and research questions.  

1.1 Background 

Generally described, remote sensing is a method of “collecting and analysing data to acquire 

information about an object without the instrument used to collect the data being in direct 

contact with the object” (ESA, n.d.). Remote sensors acquire data by recording the energy 

that is reflected or emitted from Earth. These sensors can be installed on multiple platforms 

from satellites to aircraft (Figure 1). 

Remote sensors can either be active or passive. Passive sensors measure external stimuli. 

They detect natural energy that is reflected or emitted from the Earth's surface. The most 

common source of radiation detected by passive sensors is reflected sunlight (NOAA, n.d.). 

In contrast, active sensors use internal stimuli for earth data collection, precipitation radars 
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are a form of active sensor systems. The precipitation radar measures the radar echo from 

rainfall to determine the precipitation rate on the Earth’s surface (NASA, n.d.). This project 

will only use passively sensed data.  

Remote sensing has a unique advantages over other forms of environmental measurement 

methods. These advantages include the estimation of parameters and surface/subsurface 

properties without direct contact with the area of measurement (i.e., non-invasiveness); the 

capability of making remote observations (figure 1), thereby preventing risks for the operator 

and reducing costs of in situ measurements; the possibility to revisit in time and carry out 

iterative workflows of data analysis for the purposes of monitoring and condition assessment 

(e.g., multi-temporal change detection) (Tapete 2018). 

The number of fields applicable to remote sensing are many, from coastal, Oceanic, Hazard 

assessments and natural resource management. The technology is constantly advancing and 

provides the basis for copious amounts of advancement and analysis.  

 

 

 

 

 

 

 

 

Figure 1 Remote sensing platforms. An instrument (i.e., sensor or scanner) is 

mounted on an aircraft or satellite that records data about the target scene or 

object, usually electromagnetic data (Khorram, 2012) 
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1.2 The Electromagnetic Spectrum 

Electromagnetic radiation (EMR) is defined as all energy that moves with the velocity of 

light in a harmonic wave pattern (i.e., all waves are equally and repetitively spaced in time). 

Visible light is just one category of EMR; other types include radio waves, infrared, and 

gamma rays. Together, all of these types comprise the electromagnetic spectrum (Figure 2). 

As illustrated by Fig. 2, the different forms of EMR vary across the spectrum in terms of both 

wavelength and frequency (Khorram et al, 2012). 

Wavelength is the distance between the positions in two wave cycles, while frequency is the 

number of wave cycles passing the same point in a given time period (1 cycle per s = 1 Hertz, 

or Hz). The mathematical relationship between wavelength and frequency is expressed by 

the following equation: C = km, where k is wavelength, m is frequency, and C is the speed 

of light (which is constant at 300,000 km per s in a vacuum). Visible light, represents only a 

small portion of the electromagnetic spectrum, it ranges in wavelength from about 3.9 × 10 -

7 m (violet) to 7.5 × 10 -7 m (red), and has corresponding frequencies that range from 7.9 ×  

1014 to 4  ×  1014 (figure 2). 

In remote sensing, an instrument (i.e., sensor or scanner) is mounted on an aircraft or satellite 

that documents information about objects or areas on the ground. Usually, the data records 

the level of electromagnetic energy that the target has. The extent of the geographic area 

captured depends on the sensor’s technical specifications and the altitude of the craft in which 

it is mounted. 

When EMR comes into contact with matter (i.e., any object or material, such as trees, water, 

or atmospheric gases), there are a number of interactions that can occur: absorption, 
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reflection, scattering, or emission of EMR by the matter, or transmission of EMR through 

the matter. Remote sensing typically is concerned with the recording and detection of 

reflected and emitted EMR. Every object or material has particular emission and/or 

reflectance property, collectively known as its spectral signature, which distinguishes it from 

other objects and materials. Remote sensors are attuned to collect these ‘‘spectral 

signatures’’. 

Spectral data can be recorded in two formats; analog (i.e., aerial photographs, popular before 

the digital era) or, more commonly, digital format (i.e., a two-dimensional matrix, or image, 

composed of pixels that store EMR values recorded by a satellite-mounted array) (Jensen 

2005).  

 

Figure 2 Electromagnetic spectrum (NASA,n.d). 
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Furthermore, sensors can be put into two categories; passive or active sensors. Passive 

sensors ; the more popular category of sensors presently in operation around the globe, record 

naturally occurring EMR that is either reflected or emitted from areas and objects of interest. 

In contrast, active sensors—such as microwave (i.e., Radio Detection and Ranging, or radar) 

systems—send artificial EMR toward the features of interest and then record how much of 

that EMR is reflected back to the system (Jensen 2005). 

1.3 Data Resolutions 

Remotely sensed data is primarily described by four types of resolutions: 

1.3.1 Temporal Resolution 

The temporal resolution stipulates the revisiting frequency of a satellite sensor for a target 

location. The following is an example of the temporal resolution categories. 

• High temporal resolution: < 24 hours - 3 days  

• Medium temporal resolution: 4 - 16 days  

• Low temporal resolution: > 16 days  

The revisit value refers to the period of time it takes a satellite to complete one complete orbit 

of the earth. The revisit period can range from 24 hours to over 16 days, consequently the 

complete temporal resolution of a remote sensing system is the equivalent to the period it 

takes the satellite to record the exact identical area at the same angle a second time. With an 

increase in overlap due to increasing latitudes and the amount of overlap in the imaging 

swaths of parallel satellite orbits, specific areas of the earth can be monitored more regularly. 

Satellites can correspondingly focus their sensors to the target area between different 
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satellites paths divided by periods from one to five days. The temporal resolution depends on 

multiple factors, including swath overlap, satellite capabilities and latitude. 

The time of day or season has a large influence on satellite images. Specific target bodies can 

vary swiftly over time, for instance, the tides effect the sea, constantly expanding and 

withdrawing, or alternatively deciduous forests may lose their leaves during winter causing 

it to be harder to accurately distinguish green vegetation.  

1.3.2 Spectral Resolution 

The sensor's spectral resolution details the amount of spectral bands (red, green, blue, NIR, 

Mid-IR, thermal, etc.) in which the sensor can record EMR. However the number of bands 

is not the only fundamental characteristic of spectral resolution. The frequency of the bands 

in the electromagnetic spectrum is important, as mentioned in section 1.2. The following are 

examples of three spectral resolution levels: High spectral resolution with 220 bands, 

Medium spectral resolution containing 3 - 15 bands and Low spectral resolution with 3 bands. 

The sensitivity of sensors to minor alterations in electromagnetic energy. The greater the 

radiometric resolution of a sensor, the more sensitive it is to detecting small variances in 

reflected or emitted energy. 

1.3.3 Spatial resolution 

The spatial resolution details the pixel dimensions of satellite images covering the earth 

surface (figure 3). In aerial photography, it is associated to the image detail and the level at 

which minor objects can be detected within the image. The spatial resolution of black and 

white (1 Band) aerial photographs ranges from 40 to 800 lines pairs per mm. The higher the 
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resolution of a sensing system, the more effectively the outline of objects on the ground can 

be observed. The spatial resolution of an image depends on:  

• The image scale factor - spatial resolution decreases as the scale factor increases. 

• The value of the optical system  

• The grain assembly of the photographic film  

• The contrast of the unique objects 

• Atmospheric scattering effects – can cause reduced contrast and resolution  

• Image motion – the relative motion between the ground and sensor can cause 

misrepresentation. 

The most inconstant factor being the atmosphere, which is difficult to forecast and varies 

commonly (Jensen 2009).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3 . Pixel size illustration (Satellite Remote Sensing Systems, n.d.) 



8 

 

1.3.4 Radiometric resolution 

Radiometric resolution is the amount of data in a pixel and measured in units of bits. A single 

bit of information signifies a binary determination of yes or no, with a numerical value of 1 

or 0 (Tempfli et al., 2009). Black and white images from digital cameras are usually in 8 bits, 

with a value range of 0-255 to denote the information. Colour images regularly have three 

channels in 8 bits, each channel has a value for red, green and blue. In unison they create the 

observed colour and the strength of each channel controls the shade, it is a technique of 

additive colour mixing. 

A radiometric resolution of 11 means the pixel has 2048 possible intensities of blue, 12-bit 

resolution represents 4,096 shades of blue, and 14 bits represents 16,384 shades of blue. 

While increasing radiometric resolution equals a larger range for the pixel, it does not 

automatically mean that it is the best choice. 

When designing a camera the equilibrium of the quality of the image against how many 

images you will be able to store, due to limited storage. The same balance is desired when 

determining the desired radiometric resolution for a satellite image, so that the image quality 

is balanced with its information capacity. 
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1.4 Earth Observation Satellite systems 

Earth observation satellites vary according to their orbit path, the payload, and from the 

perspective of the imaging instrument, the data types, spectral characteristics and the swath 

width of the sensors. All of these parameters are set at the beginning of the mission, 

depending on the application of the satellite.  

For example, in order to monitor the weather at large scales and high frequency, it is 

convenient for a satellite to be in a geostationary orbit. Enabling a continuous view of almost 

an entire hemisphere. However, as the orbit is a considerable distance above the earth 

(approximately 36,000 km) a high spatial resolution is difficult to obtain. But for applications 

such as the tracking of clouds over continents, a high spatial resolution is not required (ESA, 

n.d.).   

For tasks requiring high resolution imagery of a specific area, such as the monitoring of a 

glacier lake, or the surveying of buildings destroyed by a natural disaster, a high spatial 

resolution instrument would be required. Such a sensor would typically have a narrow swath 

and be on a satellite at Low Earth Orbit or LEO (such as the QuickBird satellite which 600km 

above the earth). In such an orbit it is not possible to continuously monitor the same area, 

because of the constant motion of the satellite relative to the Earth. Images can only be 

acquired over the satellites path.   

This analysis focuses on the study of land observation, specifically water body detection. For 

example, moderate-resolution Imaging Spectroradiometer (MODIS) images have been 

widely used to map water bodies on both global and regional scales. Carroll et al. (2009) 

developed a global raster water mask at 250-m resolution from a MODIS dataset.  Feng et al 
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(2012) used MODIS images between 2000 and 2010 to estimate the flood changes of Poyang 

Lake. Huang et al. (2012) monitored water surface changes using long-term MODIS data 

time series. For regional studies, images provided by the Thematic Mapper (TM), the 

Enhanced Thematic Mapper Plus (ETM+) and the latest Operational Land Imager (OLI) from 

the Landsat series satellites are widely used. 

Using multi-temporal Landsat TM and ETM+ images, Hui et al (2008) modelled the spatial 

and temporal change of Poyang Lake. Landsat OLI images were used by Du et al. (2014) to 

extract water body maps at subareas over the Yangtze River Basin and Huaihe River Basin 

in China. Additionally Rokni et al. (2014) extracted water features and monitored differences 

using Landsat TM, ETM+ and OLI images. When compared to MODIS, the Landsat TM, 

ETM+ and OLI images have much higher spatial resolutions (30 m) and can extract open 

water bodies with greater detail and accuracy. However, Landsat’s spatial resolution images 

are still not high enough to adequately identify smaller-sized open water bodies, such as 

narrow drains and small pools. Commercial satellite systems such as SPOT6/7, IKONOS and 

Quick-bird, enable these small-sized water bodies to be mapped. But come at a substantial 

cost. 

ESA launched a new optical high spatial resolution satellite, Sentinel 2 on 23 June 2015. 

Sentinel 2 can provide systematic global acquisitions of fine spatial resolution multispectral 

images with a high temporal resolution, meeting the requirements for the next generation of 

operational products, such as land cover maps, land cover change detection maps and 

geophysical variables (Drush et al., 2012, Pesaresi et al., 2016 & Immitzer 2016). The 

Sentinel 2 images has the potential to be of great significance for regional water bodies’ 

mapping, due to its appealing properties (i.e., the 10-m spatial resolution for four bands and 
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the 10-day revisit frequency) and freely available data. As shown in Table 1, the Sentinel-2 

multispectral image has 13 bands in total, in which four bands (blue, green, red and NIR) 

have a spatial resolution of 10 m and six bands have a spatial resolution of 20 m.  

Table 1 Spectral bands for the SENTINEL-2 sensors (S2A & S2B) (ESA 2018) 

  
S2A 

  
S2B 

 

Band 
Number 

Central 
wavelength (nm) 

Bandwidth 
(nm) 

Central 
wavelength (nm) 

Bandwidth 
(nm) 

Spatial 
resolution (m) 

1 443.9 27 442.3 45 60 

2 496.6 98 492.1 98 10 

3 560 45 559 46 10 

4 664.5 38 665 39 10 

5 703.9 19 703.8 20 20 

6 740.2 18 739.1 18 20 

7 782.5 28 779.7 28 20 

8 835.1 145 833 133 10 

8a 864.8 33 864 32 20 

9 945 26 943.2 27 60 

10 1373.5 75 1376.9 76 60 

11 1613.7 143 1610.4 141 20 

12 2202.4 242 2185.7 238 20 
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1.5 Water bodies and remote sensing  

Water body extraction has become a very important part of remote sensing science as water 

monitoring plays an important role in water resource management. Due to their basic ability 

to retain, store, clean and evenly provide water, as well as their distinctive features such as 

still-water bodies, lakes, reservoirs and wetlands constitute essential components of the 

hydrological and biogeochemical water cycles influencing significant aspects of ecology, 

economy and human welfare. Knowledge of the distribution of lakes, reservoirs and wetlands 

is therefore of great interest to many scientific disciplines (Alderman et al., 2012, Bond et 

al., 2008, Sun et al., 2012). 

Remote sensors have become a routine approach to land surface water monitoring because 

the acquired data can provide macroscopic, real-time, dynamic and cost-effective 

information, which is considerably different from conventional in situ measurements (Chen 

et al., 2004). Different methods, including single-band density cutting (Jain et al, 2005) 

unattended and monitored classification (Sivanpillai, 2010; Sheng et al., 2008) and spectral 

water indices (Ding, 2009; Feyisa et al., 2014; McFeeters, 1996 & Yuanzheng et al., 2016), 

were developed to extract water bodies from various remotely sensed images.  

Among all existing water body mapping methods, the spectral water index-based method is 

considered a reliable method, because it is convenient, efficient and has low computational 

cost (Du et al, 2016). Different water indexes have already been proposed in the past few 

decades. McFeeters (1996) proposed the Normalized Difference Water Index (NDWI), using 

the green and Near Infrared (NIR) bands of remote sensing images based on the phenomenon 

that the water body has strong absorbability and low radiation in the range from visible to 

infrared wavelengths.  
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Indices minimize the problem of misleading information, caused by topographic shadows, 

cloud shadows, built-up areas, snow and ice. This misinformation comes from the difficulty 

in distinguishing water from other surfaces with a low albedo. Although the indexes have 

been improved over the years, there is still a need for more efforts in water body extraction 

(Li, Zhang & Xu, 2014). 

In a recent study, a method that uses NDWI (McFeeters, 1996) and land surface temperature 

was developed, improving the results by more than 80% (Kaplan & Avdan, 2016). 

Highlighting the significance of temperature as a distinguishing characteristic of water 

bodies. Abdou et al., (2016) uses NDWI to visualise soil water content, pre and after flood. 

 

 

 

 

 

 

 

 

 
Figure 4 llustrate Soil Moisture and Ocean Salinity (SMOS) satellite data acquired 

before, during and after a flood-storm, t shows the soil moisture variability over the 

Guelmim region using NDWI (Abdou et al., 2016) 
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1.6 Machine learning  

Machine learning is quickly becoming one of the most critical areas of general practice, 

research and development activity within computing science. This is amplified by the scale 

of academic research devoted to the subject and the active recruitment of machine learning 

specialists by major international companies such as Microsoft, Google and Amazon (Rogers 

& Girolami 2017).  

Learning through knowledge and personal experience, which propagates from generation to 

generation, created the fundamentals of human intelligence. Also, at the centre of any 

scientific field lies the development of models (or theories) in order to explain the available 

experimental evidence at each period of time. In short, we always learn from data. Different 

data and different approaches to the data give rise to different scientific disciplines 

(Theodoridis & Sergios 2015).  

Machine learning is an inter-disciplinary collation of widely distributed sub-branches of 

fundamental sciences: it incorporates countless paradigms of mathematical logic, multiple 

approaches to computational learning theory, artificial intelligence models and algorithm 

formalization methods; it has connections to statistics and mathematical optimization. It is 

often hard to determine which fundamental scientific discipline machine learning truly 

belong to. 

Machine learning is employed in numerous industries in today’s world: image analysis, 

computer network packet routing, system security aspects, digital search, spam filtering, 

autonomous car industry, big data analysis, optical character recognition, pattern matching, 

iris and  human voice recognition  to name a few. Remote sensed data analysis is no exception 
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to the lately growing adoptions of machine learning application in big data and image 

analysis.  

1.6.1 Machine learning in remote sensing 

Remote sensing first utilized machine learning methods in the 1990s. It was initially 

introduced to remote sensing as a way to automate knowledge-based building. The study 

authored by Huang and Jensen (1997) described how a knowledge – base was constructed 

with minimal input from human experts, and then decision trees were developed to infer the 

rules from the human input for the expert system. The generated rules were used at a study 

site on the Savannah River. Huang and Jensen (1997) concluded that the machine learning 

assisted approach, provided a higher accuracy when compared to conventional methods at 

the time. Subsequently similar developments in machine learning were made and was quickly 

adopted as an important tool by the remote sensing community. It is presently being used in 

a range of different projects, from an unsupervised satellite image scene classification (Li, et 

al. 2016) to the classification of Australian native forests (Shang & Chisholm, 2014).   

1.6.2 Machine learning categories 

Machine learning can be assigned to three categories, as seen below in figure 4.  

 Supervised machine learning, 

 unsupervised machine learning and,  

 Reinforced learning.  

The difference between supervised and unsupervised learning is that when using supervised 

models, the user has created a pre-defined label with a set of characteristics. Whereas the 

unsupervised algorithm, it interprets the data set by clustering the data into different classes 
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based upon the relation it has recognized between different records. Reinforcement learning 

is moderately different, the user provided the algorithm with an environment and the 

algorithm makes decisions within that environment. It is continually improving itself with 

each decision based on the result of the previous decision.  

 

Figure 5 Machine learning and its three main categories Techleer (2017). 

1.6.3 Gradient Boosting  

Gradient boosting is a machine learning technique for regression and classification tasks. 

Commonly a task that appears in different machine learning applications is to construct a 

non-parametric model from the data .When designing the model, one strategy is to build a 

model from theory and adjust its parameters based on the observed data. Unfortunately, such 

models are not available in most real-life situations (Natekin & Knoll, 2013). The lack of a 

model can be circumvented if one applies non-parametric machine learning techniques like 
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neural networks or support vector machines to develop a model straight from the data. These 

are supervised learning algorithms (Natekin & Knoll, 2013). 

One of the most common methods to data-driven modelling is to build only a single strong 

predictive model. An alternate approach would be to construct an ensemble of models for 

some specific learning task. Hypothetically, building a set of “strong” models like neural 

networks, which can be further combined to produce a better prediction (Figure 6).  

 

Figure 6 Ensemble learning basic concept (Srivastava, T., 2016) 

In theory, the ensemble method depends on combining a sizable number of relatively weak 

models to obtain a stronger ensemble prediction. Some of the most prominent examples of 

machine learning ensemble techniques in remote sensing are random forests (Breiman, 2001) 

and neural networs (Hansen & Salamon, 1990). 
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The common ensemble techniques like random forests depend on the averaging of models 

within the ensemble. The family of boosting methods is based on a different, step by step 

strategy of ensemble structuring. The main concept of boosting is to add new models to the 

ensemble sequentially at each particular iteration, a new weak, base-learner model is trained 

with respect to the error of the whole ensemble learnt so far (Natekin & Knoll, 2013). The 

first popular boosting methods were solely algorithm-driven, which made the detailed 

analysis of their properties and performance rather difficult (Schapire, 2002). This led to a 

number of speculations as to why these algorithms either out performed every other method, 

or in reverse, were inapplicable due to severe overfitting (Sewell, 2011). 

To create a connection with the statistical framework, a gradient-descent founded 

formulation of boosting systems was derived (Freund and Schapire, 1997; Friedman et al., 

2000; Friedman, 2001). This design of boosting methods and the corresponding models were 

named gradient boosting machines. This structure also delivered the necessary justifications 

of the model hyper parameters and established the methodological foundation for subsequent 

gradient boosting model development. 

In gradient boosting machines, or GBMs, the learning process sequentially places new 

models to deliver a more truthful estimate of the response variable. The primary concept 

behind this algorithm is to structure the newly created base-learners to be maximally 

correlated with the negative gradient of the loss function, connected with the entire ensemble. 

The loss functions applied can be random, but to give a better insight, if the error function is 

the classic squared-error loss, the learning process would end in successive error-fitting. In 

overall, the decision of the loss function is determined by the user, with together a high 
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diversity of loss functions resulting so far and with the possibility of applying the users own 

task-specific loss. 

This high flexibility makes the GBMs highly customizable to many data-driven tasks. It 

introduces a level of autonomy into the model design thus making the selection of the more 

suitable loss function a matter of trial and error. However, boosting algorithms are relatively 

simple to implement (Natekin & Knoll, 2013), which permits the experimentation of different 

model designs. Furthermore the GBMs have presented extensive success in not only practical 

applications, but also in numerous machine-learning and data-mining trials (Bissacco et al., 

2007; Hutchinson et al., 2011; Pittman and Brown, 2011; Johnson and Zhang, 2012). 

1.6.4 Catboost 

Catboost is a new open-sourced machine learning algorithm from Yandex. Catboost is 

intended for “open-source gradient boosting on decision trees,” according to its GitHub 

repositories README. It delivers a means to perform classifications and rankings of data by 

using an assembly of decision-making models, or “learners,” rather than a single one. Results 

produced by the learners are weighted and classified based on the strengths and weaknesses 

of each learner. By joining many learners, Catboost can produce greater results than decision-

making systems that rely on single learners. 

Catboost comes with support for Python and R, as well as a command-line interface to drive 

the machine learning library. Numerous machine learning libraries already implement some 

degree of gradient boosting algorithms. Python’s Scikitlearn package has one version; 

XGBoost is available for several languages and data platforms; and Microsoft has the 

LightGBM library as part of its Distributed Machine Learning Toolkit project. 
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Catboost is intended to be astep up from other projects, according to Yandex, by being pre 

designed to operate in parallel with Yandex’s own services. Yandex also states that it uses 

Catboost to generate predictions for its weather services, and that Catboost has been used at 

the European Organization for Nuclear Research (CERN) to cultivate values from the particle 

experiments conducted there (Catboost, n.d.). In figure 7 a table from catbbost’s website 

compares performances on popular datasets, against other similar algorithms. Decimal values 

in this table represent Logloss values (lower is better) for Classification mode. The 

Percentages is the metric difference measured against tuned Catboost results. 

 

Figure 7 Table comparing log loss values against alternative machine learning algorithms (CatBoost, n.d.) 

 

The results in figure 7 suggest Catboost to be overall the more efficient algorithm when 

compared to its competitors.  
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1.7 Open Government Data 

The majority of the data in this thesis is opened sourced. Open Government Data (OGD), 

Public participatory geographic information systems/science (PPGIS) and Volunteered 

geographic information (VGI) have emerged as important data contributors over the past 

decade (Hansen et al, 2013). These data sources provide the place component for built and 

natural environment data, however due to the methods by which this data is generated 

challenges arise regarding data reliability and therefore usefulness. 

OGD is spatially referenced data made available for open use and can be freely used, reused 

and redistributed. Production is taxpayer funded and does not follow traditional pricing 

models where revenue is generated by selling data; therefore, benefits are realized through 

improved efficiency and cost savings to society (Hansen et al, 2013). It is the most reliable 

data source in most developed nations due to open data initiatives such as the INSPIRE 

directive and the EU Directive for the Re-use of Public Sector Information according to 

Hansen et al, (2013). 

Open data consumers manipulate and utilise data in multiple ways, ranging from data 

integration to classification, also depending on the auxiliary assets they may obtain (Ferro & 

Osella, 2013). Considering this, legal and technical openness of datasets is not sufficient, on 

its own, to create an efficient reuse ecosystem (Helbig N. et al., 2012): failures in supplying 

sufficient quality information might impair not only the reuse of the data, but also the usage 

of the institutional portals (Detlor et al., 2014). Attempts to maximize quality and reusability 

of public sector data implies representing and exposing data so that they can be easily 

accessed, queried, processed and linked with other data with no restrictions (Sharon D.J., 

2010).  
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1.8 Data Quality  

The American Standard SDTS (Spatial Data Transfer Standard, 1997) has been the earliest 

to suggest a series of guidelines that details and documents GIS data quality, stating the basic 

scheme of the data quality report into five parameters: genealogy, positional accuracy, 

thematic accuracy, logical coherence and completeness (Bianchin, 2001). Data quality is 

subject to the scale, the accuracy, and the scope of the data set, as well as the quality of the 

other data sets that have to be used. The Open Geospatial Consortium’s definition of data 

accuracy is as follows "Indications of the degree to which data satisfies stated or implied 

needs. This includes information about lineage, completeness, logical consistency and 

accuracy of the data" (OGC, n.d.). SDTS defines these five data quality elements, which are 

described in the rest of this section. 

The data lineage refers to source materials, methods of origin and transformations applied to 

a database. It Includes temporal information (date that the information refers to on the 

ground) and is intended to be precise enough to identify the sources of individual objects (i.e. 

if a database was derived from different source, lineage information is to be assigned as an 

additional attribute of objects or as a spatial overlay) (Veregin,1999). 

Positional Accuracy is the accuracy of a spatial component. Split into horizontal and vertical 

accuracy elements. Valuation methods are based on assessment with the source, comparison 

to a data set of greater accuracy, deductive approximations or internal data. Differences in 

accuracy can be described as quality layers or supplementary attributes (Veregin,1999). 

Attribute accuracy deals with the accuracy of a thematic component. Specific tests differ as 

a function of measurement scale. Attribute accuracy assessment methods are built on 

inferential estimates, sampling or map overlay. 
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The logical consistency of a dataset refers to the reliability of the relationships encoded in 

the database. This includes valid value tests for attributes, and detection of topological 

discrepancies based on graphical or precise topological assessments. 

The completeness is the relationship concerning database objects and the abstract universe 

of all such objects. In the cluster Completeness the Data completeness is handling the 

completeness of an image, operating for example the effect of a shadowing object, sun flares 

on water surfaces or masking out by an object (Batini et al, 2017). This Study will only assess 

the positional accuracy of the dataset.  

1.9 Problem statement 

Quality assessment of current GeoDanmark lake data set, quality will be solely represented 

as by the positional accuracy of the data set. The method will use multi spectral satellite data 

and machine learning classification tools. This data is open government data and delineates 

the location and boundaries of the lakes in the country of Denmark. 

Lakes have several benefits especially environmental, in an era of information, reliable 

geographical data is essential in the efficient management of our land masses. Geodanmark 

has created this lake dataset most likely by using several forms of validation data one of 

which could be the digitization of old data sources such as maps. This is not the most accurate 

approach as geographical objects such as lakes are constantly changing. An automated 

machine learning application of probabilities based on optical pixel values from sentinel 

imagery has the potential to provide a detailed quality assessment of GeoDanmarks lakes 

data set from the year of 2017. 
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This analysis could identify a number of errors in Geodanmarks lakes data set. This machine 

learning approach could be applied to any other geographic objects or features, for this study 

lakes are a more than adequate data type for this thesis, due to their unique spectral signature 

and high number within Denmark. 

1.10 Research Questions 

The project will focus on the implementation of a machine learning algorithm in assessing 

the quality of a current geographic dataset and the significance of the results. The following 

research questions are intended to adequately confront the problem stated in the previous 

section. 

1. How accurate is Geodanmark’s open government lake data set?  

2. How effective is Catboost in classifying lake features in a geographic data set?  

3. When implementing a machine learning approach to optical and geographical data, 

which features are the most influential?  

1.11 Report Structure 

This report has been structured to address a problem. Research questions have been identified 

based on the problem. 

The report has been structured in the following way: 

 Chapter 1: Introduction, theory, problem statement and research questions 

 Chapter 2: Data and materials 

 Chapter 3: Methods 

 Chapter 4: Results and findings 

 Chapter 5: Discussion and conclusion.  
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2 Data 

In this Chapter the data being analysed, utilized and prepared will be discussed in Detail. 

This thesis aims to review open government geographical data provided by the board of 

geographical data In Denmark: GeoDenmark. Optical satellite 10m imagery values from the 

sentinel 2A and 2B missions, will provide the characteristics for each lake across the sample 

area for use within the machine learning model. This Chapter will review and describe this 

data; including the data’s source, it’s structure, and purpose within this quality assessment.  

 

2.1 GeoDenmark & SDFE 

Geodanmark is the framework for cooperation between all municipalities in the country of 

Denamark and the Board of dataforsyning and Efficiency Strategy (SDFE) on the 

establishment and maintenance of a country-wide open government geographical data. 

Geodanamarks open source geographical data consists of 59 object types classified in the 

following categories: buildings, construction, traffic, engineering, nature, hydro, 

administrative, topography and sundries. Data is freely available to download on the The 

Ministry of Environment (KMS): the Map Supply (kortforsyningen) website. The data object 

type that will be used in this thesis is a subset of hydro; lakes.  
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2.2 Sample area 

The sample area will cover an area equal to that of one sentinel tile covering the mid-eastern 

region of Jutland Denmark as seen represented by the red box in figure 8. The area covers a 

total of 12,056.04km2 containing 30,777 lakes, sizes ranging from 20.30 m2 to 

16,541,268.89 m2. The areas Topography is fairly flat and low lying like the rest of Denmark, 

minimising the chance of any topographic shadows or areas of snow or Ice.  

 

Figure 8 Sample area represented in red  
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The average lake size is 5244.67m2 far below the median, equalling a very uneven size 

distribution (Figure 9). 30% of the lakes are under 500m2 and a maximum size of 

16,541,268.89 m2. This uneven distribution should be taken into account especially when 

working with limited resolution imagery such as sentinel. There are 794 lakes above 10,000 

m2, figure 9 below illustrates the distribution frequency of the lakes different sizes, with the 

794 or 2.5% of the total lakes removed, allowing for a more descriptive interpretation. 

 

Figure 9 Lake Size distribution from 20 to 10,000 m2 

 

Even with the extremely large lakes removed it is still hard to see any lakes above 7000 m2 

compared to smaller sized lakes in figure 9. The majority of lakes being in the 20.00 – 

1017.34 m2 size range. Lakes below 500m2 may be too small for sentinel to provide an 

accurate representation. The medium size lakes between 500m2 and 10,000m2 are still the 

majority at 55% (Figure 10). The smaller lakes under 500m2 size distribution (Figure 11). 
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Figure 10 Lake size distribution between 500 and 10,000m2 (Medium size lakes) 

 

Figure 11 Lake size distribution between 20 and 500m2 (smaller lakes) 



29 

 

2.3 Sentinel 

Sentinel 2 imagery has been chosen due to the images being freely available and easy to 

download from the European Space Agency website. The Sentinel 2 tiles covering Denmark 

can be seen in figure 9. Tile 32VNH was used as the boundary for our sample area seen in 

figure 12.  

 

Figure 12 Sentinel 2 tile coverage of Denmark 
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The images provided have a high temporal resolution, and provide us with a range of dates 

throughout the year when selecting the image (Table 1). Sentinel RGB image T32VNH can 

be seen below in figure 13. 

 

Figure 13 Sentinel RGB image tile T32VNH 

 

A total of 40 sentinel bands where used, from 10 different dates from late 2016 to early 2018 

(Table 2).  
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 Table 2 Sentinel dates used in the project, with their tile number and sensor type.  

 

Both raw L1C reflectance values (TOA, top-of-atmosphere) and L2A reflectance values 

(bottom of atmosphere) were evaluated, but it was noticed that the NDWI values were 

inconsistent and inaccurate when using the L2A scenes. As a result TOA reflectance values 

were only used.  

Table 3 Sentinel 2A spectral bands used in the analysis. 

 

Date Tile Sensor 

2016/12/14 32VNH S2A 

2017/01/13 32VNH S2A 

2017/03/24 32VNH S2A 

2017/04/23 32VNH S2A 

2017/05/13 32VNH S2A 

2017/08/23 32VNH S2A 

2017/10/30 32VNH S2A 

2017/12/29 32VNH S2A 

2018/01/08 32VNH S2A 

Sentinel spectral number Spatial resolution Wavelength category 

2 10m Blue 

3 10m Green 

4 10m Red 

8 10m Near - Infrared 
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The Sentinel 2A bands used in this study all have a spectral resolution of 10m x 10m. 

Resulting in a pixel size of 100m. Below in figure 14 four different lake in shape and size 

can been seen with sentinel RGB. It can be quite difficult to distinguish a lake for the naked 

eye, especially the smaller lakes like in the bottom two images in figure 14.  

 

 

 

 

 

 

 

 

Figure 14 Four different types of lakes with the Lakes.shp layer and 

sentinel RGB. 
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2.4 GoeDanmark Ortophoto  

GeoDanmark 12.5 cm orthophoto taken in the summer of 2017 will be used to verify the 

training and testing set. The same lakes seen in figure 15 can be seen in figure 15 with 12.5 

cm ortophoto’s instead of the RGB sentinel image. A clear distinction can be seen between 

the two, the ortophoto’s high resolution allows for a much clearer and visible image of the 

lakes.  

 

 

Ortophoto’s are some the highest resolution imagery available and is one of the best sources 

of validation data other that in situ data.  

Figure 15 Four examples of various lake types in the 12.5cm 

orthophoto’s 
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2.5 GeoDenmarks lake vector data 

Quality of digitized lake data created by GeoDanmark is highly questionable this can be seen 

when comparing GeoDanmarks lake data with remotely sensed imagery taken in the past 2 

years (figures 16 and 17 below). This can be seen when overlaying the Lakes.shp from 

GeoDanmark with 12.5 cm Ortophoto’s taken in the spring of 2017. In figure 16 the lake.shp 

outlined in red, represents a lake boundary where there seems to be no indication of water in 

the Ortophoto.   

 

Figure 16 Geodenmarks vector data indicates a lake (in red) where there clearly isn’t one. Photo taken from 2017 

summer 12.5cm ortophoto. 

 

In second comparison it can be seen that the lake.shp files seem to be missing data as it does 

not illustrate boundaries around clearly visible lakes as seen in figure 17, although other 

neighbouring lakes are recognised. 
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Figure 17 GeoDanmarks’s lave vector datset (in red), matching with 3 waterbodies in the ortohpoto, when there are 

actually 5. 

 

These errors are widespread throughout GeoDanmark’s data, all over Denmark. The 

GeoDenmark lake.shp file obtained from the website kortforsyningen.com can be seen in 

figure 18 below (In red), showing an abundant and evenly distributed amount of lakes.  

Figure 18 Lake Vector file overlapping with the sentinel 2 RGB 
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3 Methodology 

This thesis aims to produce a probability data set for the lakes of Denmark throughout the 

given sample area. The original datasets which will be used are detailed in the previous 

chapter and the pre-processing and implementation of the methodology is described in the 

following chapter.  

The chapter will be structured firstly detailing the pre-processing, application input, running 

the application and the output.  

3.1 Data preprocessing 

With the Vector and optical data gathered, further processing is required. A large portion of 

the assessment was spent extracting and formatting the data for use in the gradient boosting 

algorithm cat boost. 

3.1.1 Lake characteristics 

In addition to the RGB and NIR bands, a NDWI band for each date was created in python 

using the pre-mentioned formula (McFeeters, 1996):  

𝑁𝐷𝑊𝐼 =
(𝑋𝑔𝑟𝑒𝑒𝑛 − 𝑋𝑛𝑖𝑟)

(𝑋𝑔𝑟𝑒𝑒𝑛 + 𝑋𝑛𝑖𝑟 )
 

 

In addition, the QGIS field calculator provides the area m2 for each lake in the data set. Both 

The NDWI and area (m2) are added as features. Due to the pre mentioned limitations of 

sentinel, all lakes less than 500m2 were removed from the data set, leaving 21,520 lakes.   
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3.1.2 Data extraction in python  

The first step was obtaining summary statistics for each band across all 9 dates, due to the 

large amount of data being extracted the programming language python was used, which has 

several packages that read and write raster data. 

The python package rasterio was used to read write the raster data and numpy was used to 

format and create the data. Below in figure 19 is a section of the script which implements 

rasterio in extracting statistical values from the 45 different bands including the NDWI bands.  

 

Figure 19 Sentinel band statistics being read by the python package rasterio. 

 

The values where then exported as csv files allowing them to be used in excel and 

QGIS/ARC. Any no data values are to be saved as a value -42, a value which does not have 

much weight in the decision tree due to its irregularity. Below in figure 20 is a screenshot of 

the csv file, in the first column is the lakes Id followed by their statistical values.  
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Figure 20 Rasterio statistical extraction script output as a csv file. 

 

The summary statistics extracted are the mean, min, max, standard deviation and median 

value of each group of pixels within each of the lakes boundaries throughout the RGB, NIR 

and NDWI bands. The outputted CSV is then joined with GeoDanmarks lake.shp file in order 

to retrieve each of the lakes area (m2) alongside their summary statistics creating one Data 

set, comprising of 110 features for the algorithm to make its prediction.  
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3.1.3 Validation Set 

The machine learning algorithm requires three data sets, training set, testing set and full set 

(total lakes). The training and testing sets are pre validated subsets of the full data set we 

created in the previous section. In order to validate these sets, 12.5cm orthophotos were used 

to confirm the presence and absence of 500 lakes within the sample area. This was done 

manually in QGIS, creating a new column within the lake data set and assigning the values 

‘0’ or ‘1’ to each absent or present lake (figure 21 below).   

 

Figure 21 Validation process, Ortophoto and lake.shp on the left and the full data attribute table on the right. 

The data which is used to train and test the model is completely subject to the user’s 

interpretation of a lake. As a result a basic criteria was applied in determining whether a lake 

was a lake or not. In the context of this project lakes where determined to be a body of water 

within GeoDanmarks given boundary, the body of water may contain vegetation and or 

organisms which are often associated with lakes, such as algae, reeds and trees within reason. 
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Variation set distribution is also taken into account especially in terms of size as the full data 

set has a wide range of areas from 20m2 to 16km2.  

A size filter is applied due to Sentinels mid-level resolution, a single pixel equalling to 100m2 

would make all lake values under 100m2 distorted or unintelligible, so to avoid this, all lakes 

below 500m2 where removed from the dataset, reducing the amount of lakes by 30 % (9248). 

As a result the model is only effective to lakes over 500m2.  
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3.2 Catboost Input 

With the Data set created including the 500 validated lakes, it requires some formatting and 

structure editing as is required by Catboost 9.1.1.0. Together with the three data set files. A 

column descriptor file (figure 23) is required to assign the target variable and numerical 

features. The target variable or label are the binary ‘0’ ‘1’ values and the rest of columns 

containing the pixel statistics and area (m2) will be the numerical features. 

 

Figure 22 Screen shot of the Column descriptor file 
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3.3 Run Catboost 

The command line version of Catboost was used. The first step was to train the model with 

the training and testing sets, with the console open in the work folder seen in figure 1, the 

following command line was used to train the model (figure 24): 

 

Figure 23 Screenshot of Catboost fitting the model in cmd.exe 

Once the model had been created it is exported as a .bin file within the work folder. The 

model was then applied to the full data set in order to predict probability values for each lake 

in the sample area as seen in the screenshot (figure 25).  
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Figure 24 Applying the model to the total data set and creating a feature strenght file. 

3.4 Catboost output 

The resulting file ‘FullData.eval’ contains a probability value between 0 and 1 for each row, 

corresponding to the input file order as seen in figure 26 below. 

Figure 25 screenshot of output file containing probability values 
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The file is then joined to the full dataset, aligning the probability values with their respective 

ids. The Dataset is now ready for interpretation and analysis. Below is the visualization of 

the probabilities in QGIS; from a small sub sample containing 5 lakes. Probabilities have 

been split into 5 different classes and color graded (figure 27). Figure 28 is the same area but 

without the probability layer, illustrating the accuracy of the probability area.  

 

Figure 26 Probability layer overlaying 12.5cm ortophoto, with legend. 

 

 

Figure 27 Ortphoto without probability layer 



45 

 

4 Results and Findings 

In this section the results of this project will be presented and analysed. Including any 

significant patterns within the data and the accuracy of the results.  

4.1 Results  

Table 4 splits the probability results into three categories; an area of low probability below 

30 % indicating a very unlikely probability that the given lake is actually a lake, above 70% 

indicating a high likelihood of the given lake being a lake and the area in between these two 

values indicating an uncertainty. 

Table 4 Probability category ranges.  

Probability Factor Count Percentage of total % 

< 30 % 7076 33 

> 70% 10729 50 

30 - 70% 3655 17 

 

Fifty percent of the lakes are within the bracket of high probability, indicating that the other 

half of the dataset is incorrect or highly questionable. Thirty three percent of the lake data set 

has a probability value of thirty percent or under. Demonstrating a significant fault in the 

dataset. On visual analysis the accuracy of the model seem evident (figure 24).  

Lakes with an uncertain probability value like in figure 29 with a probability value of 0.5 has 

visually different characteristics of that in figure 30. There appears to be a body of water, but 

it does not meet the boundary that GeoDanmark has provided and any water that is present 

is difficult to see, as it is predominantly consists of colours which are not associated with 

water. This could be due to surface vegetation such as algae hiding the underlying lake.  
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Figure 28 Lake Feature with a size of 4000m2 and a probability value of 0.016 or 1.6 

 

Figure 29 Lake Feature with a size of 3000m2 with a probability value of 0.51 or 51 %. 
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Figure 30 Lake Feature with a size of 3300m2 with a probability value of 0.99 or 99%. 

 

Lakes which fell in the 70 – 100% probability range mostly consisted of bodies of water that 

fitted the given boundary and can be clearly identified as a lake in the ortphoto’s, like seen 

in figure 31.  

The uncertain value range is unavoidable as even with a strong training and data set the model 

will still struggle to clearly identify a lake due to the diversity of lake and not lake 

characteristics.  

On visual analysis of the uncertain lakes, the majority are not in parallel with Geodanmarks 

lake boundary shapefile still suggesting an error within the dataset. In figure 32, the count of 

each lake for each of their probabilities can be seen. The histogram is largely ‘U’ shaped 

indicating a relatively decisive model.  
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Figure 31 Histogram of the lake probability count 

 

There appears to be a relationship between size and probability as seen in Figure 33, 34 and 

35 which show an even distribution until the 95% probability region where the lakes area 

increases exponentially.  
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Figure 32 X and Y graph with the probability values between 0 and 30% and their sizes.  

 

 

Figure 33 X and Y graph with the probability values between 30 and 70% and their sizes 
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Figure 34 X and Y graph with the probability values between 70 and 100% and their sizes.  
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4.2 Accuracy assessment 

The model’s accuracy was measured using the following formula (Google Developers, 

n.d.): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

In order to gather all correct and incorrect predictions a confusion matrix was created as seen 

below in table 5. The test set of 250 was visually verified and entered into the confusion 

matrix, as a result the accuracy figure is taken from a subsample of 250 from a total of 21,528. 

Table 5 Confusion matrix of results, containing true positive, false positive, false negative and true negative.  

Predicted class  Actual Lake   

Positive Negative Total 

Positive 97 (TPs) 11 (FPs) 108 

Negative 28 (FNs) 114 (TNs) 142 

Total 125 125   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
97 + 114

97 + 114 + 11 + 28
 =  0.85 

Accuracy comes to 0.85 or 85% of the predictions out the total 250 were correct. Thirty nine 

of the lakes were falsely classified. The balance between the false negative and false positive 

is relatively balanced, with more actual lakes being classified as not.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=  

97

97 + 11
= 0.89 

The model has a precision of 0.89, according to the test set the when the model determines 

that a lake is a lake, it’s correct 89% percent of the time. Vice versa the precision of the 

model successfully predicting false lakes is as follows.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=  

114

114 + 28
= 0.8 
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5 Discussion 

This chapter discusses the results of this thesis and details the strengths and weaknesses of 

the methodology implemented in this report. The possible applications and limitations of this 

research are also provided.  

The results highlighted by this study are highly significant, revealing a large amount of errors 

within GeoDanmarks lake data set. Approximately 33% of all lakes within the sample area 

have a probability value of 0.3 or less. With an accuracy rate of 80% this still leaves 6015 

lakes or 28% of the lake dataset is incorrect. 

The reasons behind these errors could be due to a number of reasons such as seasonal changes 

in the environment, it should be noted that the ortophoto used to train and test the model, 

were taken in the summer of 2017. Shallow water bodies could be subject to drought resulting 

in water boundary change or even complete disappearance. As a result a portion of these 

errors discovered in the data set could be seasonal water bodies, present during other times 

of the year. Alternatively, human intervention may be another possible cause for incorrect 

features. 

Such large errors within GeoDanmarks Lake Dataset could suggest further errors in other 

OGD datasets. This result questions the validity of GeoDanmark and other forms of open 

government data.  

The gradient boosting library Catboost, proved to be an effective tool in identifying and 

predicting lake features using the multispectral satellite system sentinel 2 values. With an 

accuracy of 85% and relatively equally high distribution of precisions.  
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Size appears to have a correlation with lakes probability values, this is most likely due to the 

fact that larger lakes are more identifiable due to spatial resolution of Sentinel 2. The resulting 

feature strength file listed NDWI values to be one of the most influential features in 

determining the probability values. This result reinforces the value of NDWI 

(Mcfeeters,1996) in water body extraction and detection.  

This study has shown the applicability of ‘black box’ machine learning algorithms and their 

use in remote sensing and GIS. The majority of time spent in this analysis was preparing the 

data for use within Catboost. Training and applying the model did not require an in depth 

knowledge of computer science and machine learning. This is just one of the many 

capabilities of Catboost and machine learning algorithms. However, this study is an 

encouraging beginning.  

5.1 Limitations 

The initial discovery in carrying out this project was the limitations of Sentinel 2’s 10m 

resolution, thirty percent of the lakes within the sample area were under 500 m2 in size. It is 

not possible to acquire accurate pixel values for lakes under 100m2 with sentinel 2, so to 

ensure this problem from not occurring, lakes with an area of 500 m2 or less were excluded 

from the analysis.  

5.2 Application 

Catboost’s use as a data analysis tool in this study, can be replicated on any other 

geographical data set and is not limited to the classification of just water bodies. The rest of 

Geodanmarks data set could be assessed, or any other, given sufficient training and testing 

sets can be obtained.   



55 

 

With the majority of countries incorporating some form of an open data framework, tools 

like these help to sustain a level of required quality and reusability, which a range of sectors 

and industries rely upon.  

6 Conclusions 

This thesis explores the area of machine learning and its application in remote sensing and 

geographic information systems. Using one of the latest and most competitive machine 

learning algorithms in the market today. Specifically, in the area of quality assessment 

regarding geographic datasets. In exploring this broad subject three research questions were 

created; firstly the question of GeoDanmarks data quality, secondly the effectiveness of the 

machine learning tool being used to assess this data quality, and lastly which feature value 

carried the most weight in the algorithms predictions. These questions and their answers give 

us some insight into the relatively new and highly ambitious field of machine learning and 

GIS. These three research questions have been answered and their significance discussed.  

The quality of GeoDanmarks lake data set has been proven to contain a large percentage of 

errors, with a value of 28%. The effectiveness of the algorithm Catboost, in obtaining this 

error value was largely successful. With an accuracy value of 85% and precision values of 

around 80%, using a subsample of 250 validated lakes valued within a confusion matrix. The 

algorithm determined that NDWI was one of its strongest features in obtaining predictions.  

In conclusion this study has adequately answered the research questions and explored the 

benefits of ‘black box’ machine learning tools and their application within the field of remote 

sensing. As mentioned in the limitations section this analysis focused on a niche subject, 

namely the validation and classification of an OGD dataset. While the results are promising, 
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future studies involving the use of Catboost within the field of remote sensing and OGD 

validation would be beneficial.  

6.1 Future Directions 

This analysis can be added to in a number of ways depending on the desired outcome. The 

quality of the training set is one of the primary factors in determining the models efficiency, 

the model will only know what a lake is, depending on the users input or the user’s 

interoperation of what a lake is. In this case perhaps a more strict criteria should be developed 

and stated before carrying out a study of this kind. The data set contains the boundaries and 

locations of ‘SOE’ or ‘lakes’ when translated to English. This could refer to any body of 

water from small drains to massive inland bodies of water that are more than 10km2 in size. 

In future studies it may prove useful to categorize these into more homogenous groups, 

allowing for a better understanding and interpretation of the results.  

This study was limited to lakes of 500m2 due to the limited mid – level resolution of sentinel. 

Higher resolution sensors Quickbird and worldview etc. would allow for a more in-depth 

analysis of water bodies, as large portion of the bodies of water were under 500m2 in size 

(30%). Depending on the study requirements, it may be necessary to upgrade to higher 

resolution imagery. 

In addition to the abovementioned categorization of lake types, improved methods of lake 

validation would be beneficial. In this study, ortophoto’s were solely used to validate the 

500 training and testing lakes. In order to get a well distributed training set in terms of size, 

other sources of validation data (in situ) could be beneficial, as at times the smaller lakes 

were difficult to distinguish.  
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