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The folded solar panels will experience
random vibration, which may cause fa-
tigue problem, during the launch of a
rocket. Thus, this project focuses on pro-
viding a basic understanding of random
vibration and analytical solutions of sev-
eral plate models in different condition.
Random vibration analysis consists of two
major parts, namely the analysis of vibra-
tion and random variable. The theories re-
garding vibration and random variable are
reviewed and severed as the basis of an-
alytical analysis. The important method
such as modal analysis and frequency do-
main analysis are also introduced. Finally,
the plate model subjected to random ex-
citation are presented with four different
studies, namely study of mode, location,
damping and material and discussed.
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Chapter 1 Introduction

Satellite is a man-made machine which is launched into space and orbits around a body
such as the Earth. It comes in various shapes and size and serves different purposes, for
instance communication and navigation. For a satellite which is less than 10 kg, it is com-
monly referred as nano-satellite. During launching of a rocket, solar panels are folded into
several layers and attached to the nano-satellite. Thereafter, the solar panels will unfold
when they reach the correct orbit. A nano-satellite is shown in figure 1.1.

Figure 1.1: Nano-satellite with deployable solar panels [3]

The folded solar panels will experience random vibration, which may cause fatigue
problem, during launching. Therefore, it is necessary to understand the characteristic of
a solar panel subjected to random vibration in order to have a better design. This project
focuses on providing a basic understanding of random vibration and analytical solutions
of several relevant models. However, due to the limit of time, the scope of project is limited
to linear analysis with stationary excitation. The problem formulation and approach can
be found in section 1.1.

The random vibration analysis consists in two major parts, namely the analysis of vi-
bration and random variable. The content of this project is structured in the same way.
Firstly, the theory of vibration is reviewed in chapter 2, including single degree of freedom
model, multiple degree of freedom model and plate vibration. The associate topic modal
analysis plays an important role in the following analysis. Secondly, the theory of proba-
bility regarding random variable analysis is introduced in chapter 3. In random vibration,
the excitation can not be modeled as a single time function and needs to be expressed
by random variable. Thus, the idea of probability and corresponding time and frequency
domain analysis method are introduced. Finally, the analytical analysis of several models
based on the theories stated above is presented and discussed in chapter 4.

1



2 Chapter 1. Introduction

1.1 Problem Formulation and Approach

The sketch of deployable solar panel is shown in figure 1.2. The support pins are not
bounded with the panel, which indicates that they may lose contact due to vibration during
rocket launching process. If the contact is lost, it may cause damage on the solar panels
through possible impacts. Therefore, a pretension force is applied at the center of panel
to prevent this issue. However, it is difficult to determine if the pretension force is strong
enough to hold the panels since the system response originated from random vibration still
needs to be analyzed.

Base excitation

Solar panel

Support pin 
(Unbounded)

Pretension force

Figure 1.2: Sketch of deployable solar panel

The analysis is limited to linear analysis, therefore superposition principle is applicable.
The approach for solving this problem is to divide the system into two subsystems as
shown in figure 1.3. The first subsystem is subjected to the pretension force at center
only, which leads to a certain level of displacement and force. The second subsystem is
subjected to the random excitation only, which results in acceleration response and hence
displacement and force. Thus, the level of force caused by random excitation is essential. If
the resultant force caused by random excitation is larger than pretension force, the support
pins might loss contact and the system needs to be adjusted.

Solar panel
Pretension force

Boundary condition
(a)

(b)

Solar panelRandom excitation

Boundary condition

Figure 1.3: Sketch of (a) subsystem with pretension force (b) subsystem with random vibration

An overview on the approach used is illustrated in figure 1.4.
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Random excitation

Plate model

System response 
(Resultant force)

(b) Random subsystem(a) Pretension subsystem

Pretension force

Compare (a) pretension force 
and (b) resultant force 

(a) is larger. The system stays 
in contact 

(b) is larger. The system may 
loss contact

Power spectral density 
(PSD) is given by NASA. 

Random vibration analysis

Excitation/Input PSD

Frequency response 
function of system

Response/Output PSD

Frequency response function 
is the link between excitation 
and response PSD, which can 
be found through modal 
analysis of the system.

Response PSD can be 
converted to root-mean-
square acceleration, velocity 
and displacement for further 
analysis, such as finding the 
resultant force.

Figure 1.4: Illustration of approach

For the pretension subsystem, the pretension force is given by GOMSpace as 40 New-
tons. This value is used as a reference in the following analysis. Since the project is focus
on the chracteristic of random vibration system, only the second subsystem response is
studied in the following sections.

For the random subsystem, there are several elements need to be considered in order
to conduct a random vibration analysis, such as the random excitation and plate model
including boundary condition, material and damping. A brief explanation is shown in
the list below. By making use of modal analysis, the system characteristic can be found
and frequency response function can be formulated. Frequency response function is the
link between random excitation PSD and response PSD. Once response PSD is found, the
root-mean-square acceleration, velocity and displacement can also be known, and hence
the resultant force. The detail regarding modal analysis can be found in chapter 2 and see
chapter 3 for frequency response function and the relation with excitation and response
PSD.

1. Excitation : Two random base excitation are considered in this project, namely ’white
noise’ and ’designed random excitation’. The white noise is used for a basic under-
standing of the system response and the designed random excitation is recommended
by the company GOMSpace and NASA for nano-satellite. A more detailed study can
be found in section 1.1.1.

2. Model : The plate model is chosen for its better representation of a solar panel.

3. Boundary condition : The real boundary condition of solar panel is difficult to de-
scribe in a mathematical model. Through a brief inquiry with GOMSpace, the bound-
ary condition of plate model is assumed to be simply supported along four edges.

4. Material : Due to confidentiality, the material used for analytical analysis is not the
actual property of solar panels but aluminum.

5. Damping : According to GOMSpace, a damping ratio of 0.05 is commonly used for
their projects. The real damping of the system is, however, difficult to determine. A
damping ratio of 0.05 is considered as an initial start in this project. Additionally, a
study of damping is also conducted in chapter 4.



4 Chapter 1. Introduction

1.1.1 Random Excitation Study

There are two random excitation or input used in this project, both of them are studied
in this section. The first one is known as white noise excitation, which has all compo-
nents across a certain range of frequency contributed equally. That is, the auto-spectral
density function can be expressed as a constant. Equation 1.1 shows the acceleration white
noise used in the following sections. It should be noted that the unit is g2/Hz, which is
commonly used for acceleration random excitation.

SXX (w) = S0 = 0.1 for f = 20 to 2000 (Hz) (1.1)

The second one is referred as designed random excitation in the following sections. For
an object less than 22.7 kg such as nano-satellite, the exciation acceleration spectral density
(ASD) is given by [7] and shown in figure 1.5. The equations in this section are mainly
based on [7] and [4].

VIBROACOUSTICS VIBROACOUSTICS 

Check the GSFC Technical Standards Program website at http://standards.gsfc.nasa.gov or contact the Executive Secretary for 
the GSFC Technical Standards Program to verify that this is the correct version prior to use. 
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 Table 2.4-3 
Generalized Random Vibration Test Levels 

Components (ELV)  
22.7-kg (50-lb) or less 

 
Frequency ASD Level (g2/Hz) 

(Hz) Qualification Acceptance 
20 

20-50 
50-800 

800-2000 
2000 

0.026 
+6 dB/oct 

0.16 
-6 dB/oct 

0.026 

0.013 
+6 dB/oct 

0.08 
-6 dB/oct 

0.013 
Overall 14.1 Grms 10.0 Grms 

The acceleration spectral density level may be reduced for components 
weighing more than 22.7-kg (50 lb) according to:  
 
 Weight in kg Weight in lb  
dB reduction = 10 log(W/22.7) 10 log(W/50)  
ASD(50-800 Hz) = 0.16•(22.7/W) 0.16•(50/W) for protoflight 
ASD(50-800 Hz) = 0.08•(22.7/W) 0.08•(50/W) for acceptance 
 
Where W = component weight. 
 
The slopes shall be maintained at + and - 6dB/oct for components weighing 
up to 59-kg (130-lb).  Above that weight, the slopes shall be adjusted to 
maintain an ASD level of 0.01 g2/Hz at 20 and 2000 Hz. 
 
For components weighing over 182-kg (400-lb), the test specification will be 
maintained at the level for 182-kg (400 pounds). 
 

 
  

Figure 1.5: Generalized Random Vibration Test Levels Components (ELV) [7]
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where decibel dB is a dimensionless value commonly used to express the ratio of two
values. If ASDh and ASDl represents the ASD value at higher and lower frequency, respec-
tively, then the dB here can be defined as

dB = 10 log
✓

ASDh
ASDl

◆
(1.2)

According to the figure, the excitation can be categorized as three parts. The first part
has positive slope, the second one is constant and the third one has negative slope. In order
to take this ASD as input in analytical analysis, it is necessary to formulate the equations
to describe its behavior. The constant part is not a problem, however the ones with slope
given in dB/oct need to be reformulated.

Firstly, the number of octaves is found by

Number of octaves : #Oct =
log
⇣

fh
fl

⌘

log (2)
(1.3)

where fh and fl represent the higher and lower frequency, respectively. Secondly, the
level of dB is found by

dB = Slope · #Oct = 10 log
✓

ASDh
ASDl

◆
(1.4)

Thus, if s is used to denote the slope, the ASD magnitude of desired frequency can be
found by

ASDh
ASDl

= 10

2

4( s
10 )

0

@
log
✓

fh
fl

◆

log(2)

1

A

3

5

=

✓
fh
fl

◆ s
10 log(2)

(1.5)

Finally, based on figure 1.5 and equation 1.5, the Magnitude o f ASD (g2/Hz) of de-
signed random excitation can be expressed as

Magnitude o f ASD =

8
>>>>>><

>>>>>>:

(0.026) ·
⇣

f
20

⌘ 6
10 log(2) for f = 20 to 50 (Hz)

0.16 for f = 50 to 800 (Hz)

(0.16) ·
⇣

f
800

⌘ �6
10 log(2) for f = 800 to 2000 (Hz)

(1.6)





Chapter 2 Vibration Theory

This chapter presents basic theory of vibration and provides the necessary theoretical
background for the following chapters regarding random vibration and analytical analysis.
The content, including theory and equation, is mainly based on [9], [10] and [2].

Firstly, the simplest vibration model, namely spring-mass system or single degree of
freedom system, is introduced. Both undamped and damped model in free vibration are
described. Thereafter, the multiple degree of freedom model along with one of the most
commonly used method in finding system response, modal analysis, are introduced. Fi-
nally, the vibration of plate with various boundary conditions is presented. The beam
vibration theory can also be found in appendix A.

2.1 Single Degree of Freedom System

An illustration of the simplest vibration system made by spring-mass system, also referred
as single degree of freedom(SDOF) system, is shown in figure 2.1. The vibration system is
said to experience free vibration if it oscillates due to the initial disturbance only and no
external force acting on it. That is, if an initial displacement x is applied on the mass m
then release it afterwards, the mass will undergo free vibration.

m

k

m

x

Figure 2.1: Single degree of freedom system

In order to find the equation of motion of the system, Newton’s second law of motion
is utilized. That is, the rate of change of momentum of a mass is equal to the force acting
on it. Therefore, if a constant mass m is moved a distance ~x (t) by a force ~F (t) in the same
direction, Newton’s second law of motion gives

~F (t) = m · d2~x (t)
dt2 = m · ~̈x (t) (2.1)

Figure 2.2 shows the free body diagram of the system. It can be seen that the force
acting on the mass are �k · x (t) and m · ẍ (t), which are caused by the spring elongation
and mass acceleration, respectively. It should be noted that the negative sign indicates the
direction of spring force is the opposite of the mass motion.

7



8 Chapter 2. Vibration Theory

m
k · x

m · ẍ

Figure 2.2: Free body diagram of single degree of freedom system

Therefore, the equation of motion for free vibration of undamped single degree of
freedom system is given as

F (t) = �k · x (t) = m · ẍ (t) (2.2)

or

m · ẍ (t) + k · x (t) = 0 (2.3)

The response of the system can be obtained by assuming

x (t) = C · est (2.4)

where C and s are constants. By substituting equation 2.4 into 2.3, it yields

C
�
ms2 + k

�
= 0 (2.5)

Since C can not be zero, otherwise it would give a trivial solution, the rest part of the
equation must be zero. Thus,

�
ms2 + k

�
= 0

! s = ±
✓

� k
m

◆ 1
2

! s = ± iwn

(2.6)

where i =
p

�1 and wn, known as natural frequency, is

wn =

✓
k
m

◆ 1
2

(2.7)

Substitute the result of equation 2.6 into 2.4 gives

x (t) = C1 · es1t + C2 · es2t

= C1 · eiwnt + C2 · e�iwnt (2.8)

Equation 2.8 can be rewritten by making use of Euler’s formula, which states for any
real number x,
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e±ix = cos (x) ± sin (x) (2.9)

Hence,

x (t) = A1 cos (wnt) + A2 sin (wnt) (2.10)

where A1 and A2 are new constants to be determined by initial condition of the system.
If the initial conditions are given as

x (0) = x0

ẋ (0) = ẋ0
(2.11)

A1 and A2 can be solved and equation 2.10 becomes

x (t) = x0 cos (wnt) +
ẋ0

wn
sin (wnt) (2.12)

However, if a model consists only spring-mass system, it would oscillate forever. Thus,
it is necessary to consider energy dissipation term when modeling a real world system. The
most common energy dissipation term is known as viscous damping force. An illustration
of single degree of freedom system with damper is shown in figure 2.3.

m

k

m

x

c

Figure 2.3: Single degree of freedom system with damper

The viscous damping force is proportional to velocity and acting on the opposite direc-
tion of velocity. It can be expressed as F (t) = c · ẋ, where c is damping constant. The free
body diagram is shown in figure 2.4.

m

k · x

m · ẍ

c · ẋ

Figure 2.4: Free body diagram of single degree of freedom system with damper
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By making use of Newton’s second law, the equation of motion can be obtained as

m · ẍ (t) + c · ẋ (t) + k · x (t) = 0 (2.13)

By following the similar procedure, the response of damped SDOF system can be found
as

x (t) = C1 · e

✓
� c

2m +
q

( c
2m )

2� k
m

◆
t
+ C2 · e

✓
� c

2m �
q

( c
2m )

2� k
m

◆
t

(2.14)

Based on the expression of equation 2.14, the critical damping cc and damping ratio x
are defined as

⇣ cc

2m

⌘2
� k

m
= 0

! cc = 2
p

km = 2mwn

x =
c
cc

=
c

2mwn

(2.15)

Equation 2.14 can be solved by considering three different cases, namely underdamped
system (x < 1), critically damped system (x = 1) and overdamped system (x > 1), with
initial conditions. During the derivation of solution, sometimes damped natural frequency
wd = wn ·

p
1 � x2 is used instead of natural frequency wn. A response comparison of three

different cases are shown in figure 2.5.
2.6 FREE VIBRATION WITH VISCOUS DAMPING 163

The application of the initial conditions and for this case

gives

(2.79)

and the solution becomes

(2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.e., nonperiodic).

Since as the motion will eventually diminish to zero, as indicated in

Fig. 2.24.

Case 3. Overdamped system ( or or ). As 

Eq. (2.68) shows that the roots and are real and distinct and are given by

with In this case, the solution, Eq. (2.69), can be expressed as

(2.81)

For the initial conditions and the constants and can

be obtained:

C1  =
x0vn(z + 2z2

- 1) + x 
#

0

2vn2z2
- 1

C2C1x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

x(t) = C1e
(- z+2z2

-1)vnt
+ C2e(- z-2z2

-1)vnt

s2 V s1.

s2 = (-  z - 2z2
- 1)vn 6 0

s1 = (-  z + 2z2
- 1)vn 6 0

s2s1

2z2
- 1 7 0,c/2m 7 2k/mc 7 ccz 7 1

t: q ,e-vnt
: 0

x(t) = [x0 + (x 
#

0 + vnx0)t]e- 
vnt

 C2 = x 
#

0 + vnx0

 C1 = x0

x 
#
(t = 0) = x 

#

0x(t = 0) = x0

x(t)

tO

x0

tan 1 
x0

Overdamped (z  1)
Underdamped (z  1)

Undamped (z  0)

Critically
damped (z  1) (vd is smaller

than vn)

vd

vn

2p

2p

FIGURE 2.24 Comparison of motions with different types of damping.
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Figure 2.5: Response comparison of three different type of damping ratio [9]
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2.2 Multiple Degree of Freedom System

For a multiple degree of freedom vibration system, the equation of motion would be a set
of coupled ordinary differential equations. The solution can be very complicated when
considering a high number of degree of freedom. Therefore, a method known as modal
analysis is often used to solve this type of problem.

In modal analysis, the response is expressed as a linear combination of the normal
modes of the system. It results in a set of uncoupled ordinary differential equations. Thus,
it is equivalent as solving a number of single degree of freedom system. The procedure of
modal analysis is demonstrated in this section.

2.2.1 Eigenvalue Problem

Consider the equation of motion of a multiple degree of freedom undamped vibration
system.

[m] · ~̈x + [k] ·~x = 0 (2.16)

where ~x and ~̈x are the vector of displacement and acceleration, respectively. Matrix [m]
and [k] consists the corresponding mass and spring constant. The solution can be found by
assuming

xi (t) = Xi · T (t) , i = 1, 2, ..., n (2.17)

where Xi is a constant and T (t) is a function of time. The vector ~X, which known as
mode shape, is the combination of Xi. Substituting equation 2.17 into 2.16, it becomes

[m] ~XT̈ (t) + [k] ~XT (t) = 0 (2.18)

Equation 2.18 can be rearranged and rewritten in scalar form of n separated equations.

� T̈ (t)
T (t)

=

 
n
Â

j=1
kijXj

!

 
n
Â

j=1
mijXj

! , i = 1, 2, ..., n (2.19)

Since the left hand side of equation 2.19 only depends on time t and the right hand
side only depends on the index i, both sides must be equal to a constant. The constant is
assumed to be w2. Thus the left hand side of the equation becomes

T̈ (t) + w2T (t) = 0 (2.20)

and the solution can be found as

T (t) = C1 cos (wt + f) (2.21)
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where C1 and f are constants and represent the amplitude and phase angle, respec-
tively. While the right hand side of equation 2.19 becomes

n

Â
j=1

�
kij � w2mij

�
Xj = 0, i = 1, 2, ..., n (2.22)

or

�
[k] � w2 [m]

�
~X = 0 (2.23)

Equation 2.23 is known as eigenvalue problem. w is the natural frequency and w2 is
the eigenvalue. In order to find the non-trivial solution, the determinant D of coefficient
matrix must be zero. Thus,

D = | [k] � w2 [m] | = 0 (2.24)

To solve equation 2.24, it is in fact finding the roots of a polynomial equation, which
gives n values of eigenvalue w2

i and natural frequencies wi. That is, w1, w2, ..., and wn.

Once the eigenvalues are found, the corresponding mode shapes ~X(i) can also be deter-
mined. It should be noted that the mode shapes are arbitrary chosen, therefore it actually
represents the shape instead of the real displacement. An illustration of mode shapes of
three degree of freedom system is shown in figure 2.6. Different mode corresponds differ-
ent eigenvalue.

590 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

The first two rows of Eq. (E.21) can be written as

(E.22)

Equations (E.22) give

(E.23)

Hence the third mode shape can be written as

(E.24)

where the value of is arbitrary. The values of and are usually taken as 1, and the

mode shapes are shown in Fig. 6.13.

X1
(3)X1

(1), X1
(2),X1

(3)

X
!
(3)

= X1
(3)c 1.0

-1.2468

0.5544

s

X2
(3)

= -1.2468X1
(3) and X3

(3)
= 0.5544X1

(3)

 -1.6922X2
(3)

- 2.0X3
(3)

= X1
(3)

 -X2
(3)

- X3
(3)

= 0.6922X1
(3)

First mode

Second mode

X
1
(3)

X
3
(3)

X
1
(2)

X
3
(2)
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Figure 2.6: Mode shapes of three degree of freedom system. [9]
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2.2.2 Orthogonality and Expansion Theorem

One of the most important property of mode shape is orthogonality. For two vectors ~X(i)

and ~X(j), they are said to be orthogonal if ~X(i) · ~X(j) = 0. Consider equation 2.23 and
rewritten with two different natural frequencies wi and wj as

w2
i [m] ~X(i) = [k] ~X(i)

w2
j [m] ~X(j) = [k] ~X(j) (2.25)

By considering the symmetry of [m] and [k] and premultiplying the first part of equation
2.25 with ~X(j)T

and the second part with ~X(i)T
, the equation becomes

w2
i
~X(j)T

[m] ~X(i) = ~X(j)T
[k] ~X(i) ⌘ ~X(i)T

[k] ~X(j)

w2
j
~X(i)T

[m] ~X(j) ⌘ w2
j
~X(j)T

[m] ~X(i) = ~X(i)T
[k] ~X(j)

(2.26)

By subtracting the second part of equation 2.26 from the first part, it becomes
⇣

w2
i � w2

j

⌘
~X(j)T

[m] ~X(i) = 0 (2.27)

In the general situations, w2
i is not equal to w2

j , therefore

~X(j)T
[m] ~X(i) = 0, i 6= j (2.28)

By substituting equation 2.28 into 2.26, it can be found that

~X(j)T
[k] ~X(i) = 0, i 6= j (2.29)

The two equations 2.28 and 2.29 indicate that the mode shapes ~X(i) and ~X(j) are orthog-
onal with respect to both mass matrix [m] and stiffness matrix [k]. When i = j, they yield
to so called generalized mass and stiffness equations of the ith mode. That is

Mii = ~X(i)T
[m] ~X(i), i = 1, 2, ..., n

Kii = ~X(i)T
[k] ~X(i), i = 1, 2, ..., n

(2.30)

or in matrix form

[- M &] =

2

6664

M11 0 . . . 0
0 M22 . . . 0
...

... . . . ...
0 0 . . . Mnn

3

7775
= [X]T [M] [X]

[- K &] =

2

6664

K11 0 . . . 0
0 K22 . . . 0
...

... . . . ...
0 0 . . . Knn

3

7775
= [X]T [K] [X]

(2.31)
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[X] is the modal matrix, which is given by

[X] =
h
~X(1) ~X(2) ... ~X(n)

i
(2.32)

If the mode shapes ~X(i) is normalized with respect to mass [m] such that

~X(i)T
[m] ~X(i) = 1, i = 1, 2, ..., n (2.33)

Then [- M &] would be equal to identity matrix [I] and [- K &] would reduce to⇥
- w2

i &
⇤
.

The expansion theorem shows that any vector in the n-dimensional space can be ex-
pressed by a linear combination of the n linearly independent vector. Since the eigenvec-
tors has the property of orthogonality and linear independence, they are also applicable
for expansion theorem. Thus, for an arbitrary vector ~x in n-dimensional space, it can be
expressed as

~x =
n

Â
i=1

ci~X(i) (2.34)

where ci are constants. By premultiplying the equation with ~X(i)T
[m] and considering

~X(i) is normalized, the constant ci can be found as

ci = ~X(i)T
[m]~x, i = 1, 2, ..., n (2.35)

Equation 2.35 is known as expansion theorem.

2.2.3 Modal Analysis

Consider the equation of motion of a multiple degree of freedom undamped vibration
system with external force as shown in equation 2.36. When external force is applied, the
system undergoes forced vibration. The solution can be obtained by making use of modal
analysis as follows

[m] · ~̈x + [k] ·~x = ~F (2.36)

Firstly, the eigenvalue problem as shown in equation 2.23 needs to be solved. There-
after, the natural frequencies w1, w2, ..., wn and corresponding mode shapes ~X(1), ~X(2), ...,
~X(n) can be obtained. By expansion theorem as shown in equation 2.35, the solution of
equation 2.36 can be expressed as a linear combination of mode shapes as

~x (t) = q1 (t) ~X(1) + q2 (t) ~X(2) + ... + qn (t) ~X(n) (2.37)

or

~x (t) = ~q (t) [X] (2.38)
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where qi (t) are time-dependent generalized coordinates. By substituting equation 2.38
into equation 2.36, it becomes

[m] [X] ~̈q + [k] [X]~q = ~F (2.39)

Premultiplying equation 2.39 by [X]T and considering the normalized normal modes as
shown in equation 2.33, it yields

[X]T [m] [X] ~̈q + [X]T [k] [X]~q = [X]T ~F

! [I] ~̈q +
⇥
- w2 &

⇤
~q = [X]T ~F

! [I] ~̈q +
⇥
- w2 &

⇤
~q = ~Q (t)

(2.40)

where ~Q (t) is the generalized force. Equation 2.40 can be rewritten as

q̈i (t) + w2
i qi (t) = Qi (t) , i = 1, 2, ..., n (2.41)

As it can be seen from equation 2.41, the original coupled equation of motion is now
transferred to a set of uncoupled equations. Thus, it is equivalent as solving a number of
single degree of freedom system. The solution can be found by the same method described
in section 2.1. The initial conditions for generalized coordinates are given as

~q (0) = [X]T [m]~x (0)

~̇q (0) = [X]T [m] ~̇x (0)
(2.42)
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2.3 Plate Vibration

The previous sections 2.1 and 2.2 only introduced the vibration of discrete system. That is,
the system is only modeled by simple mass, damper and spring elements. In this section,
one of the continuous vibration system, namely plate vibration, is presented. Details re-
garding another commonly seen continuous system, beam, can be found in appendix A.

The fundamental difference between discrete and continuous system is that the previ-
ous one had finite degree of freedom, while the later one has infinite degree of freedom.
Additionally, the governing equation for discrete system is ordinary differential equation,
on the other hand, it is partial differential equation for continuous system. Despite the
equations for discrete system seems easier to solve, it may not give the accurate solution
compare to the continuous solution.

The equation of motion of plate is firstly given and followed by a description of various
boundary conditions in this section. The boundary condition is not introduced in the
previous sections since it only influences the discrete system in an indirect way. Finally,
the analysis of free and forced vibration of plate is demonstrated. The plate considered in
this project follows the assumptions made in classical plate theory, Kirchhoff–Love plate
theory. The assumptions are summarized as follows

1. The thickness of plate h is small compared to plate length and width

2. The transverse deflection w is small compared to thickness h

3. The middle plane is neutral plane and does not experience in-plane deformation

4. The effect of transverse shear deformation and rotary inertial are neglected, that is,
the lines normal to the middle plane remains normal after deformation

It can be seen from the assumptions that the classical plate theory is very similar to
Bernoulli-Euler beam theory. While in plate theory, the transverse deflection w depends
not only on x but also on y, that is, the transverse deflection of plate is expressed as
w (x, y, t).

2.3.1 Equation of Motion and Boundary Condition

Figure 2.7 shows the stresses, forces and induced moment in a plate element.
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The equation of motion for plate is given by

D
✓

∂4w
∂x4 + 2

∂4w
∂x2y2 +

∂4w
∂y4

◆
+ rh

∂2w
∂t2 = f (x, y, t) (2.43)

or

Dr4w (x, y, t) + rh
∂2w (x, y, t)

∂t2 = f (x, y, t) (2.44)

where

D =
Eh3

12 (1 � n2)
(2.45)

For a plate with damping, the equation of motion is given as

Dr4w (x, y, t) + c
∂w (x, y, t)

∂t
+ rh

∂2w (x, y, t)
∂t2 = f (t) (2.46)

E, n, r, c and h represents the plate Young’s modulus, Poisson’s ratio, mass density,
damping coefficient and thickness, respectively. r4 is also known as biharmonic operator
in Cartesian coordinate. The equation of motion for free vibration can be obtained by as-
suming f (x, y, t) = 0 in equation 2.44.

Instead of using two boundary conditions to solve equation of motion in beam vibra-
tion, four boundary conditions are needed in plate vibration. Consider a plate with four
edges, x = 0, x = a, y = 0 and y = b. The commonly used boundary conditions are listed
below. It should be noted that the examples below are taken for the edge x = a, while for
the other edges of plate such as y = b it should be adjusted accordingly.

1. Free end :

(a) Bending moment : Mx = �D
⇣

∂2w
∂x2 + n ∂2w

∂y2

⌘
|x=a = 0

(b) Shear force : Vx = Qx +
∂Mxy

∂y = �D
h

∂3w
∂x3 + (2 � n) ∂3w

∂x∂y2

i
|x=a = 0

2. Simply supported (pinned) end :

(a) Deflection : w|x=a = 0

(b) Bending moment : Mx = �D
⇣

∂2w
∂x2 + n ∂2w

∂y2

⌘
|x=a = 0

3. Fixed (clamped) end :

(a) Deflection : w|x=a = 0

(b) Slope (angle) : ∂w
∂x |x=a = 0
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2.3.2 Free and Forced Vibration of Plate

Free Vibration

Consider a plate with edges at x = 0, a and y = 0, b. The equation of motion for plate in
free vibration is given as

Dr4w + rh
∂2w
∂t2 = 0 (2.47)

The solution can be assumed as

w (x, y, t) = W (x, y) · T (t) (2.48)

Substitute equation 2.48 into 2.47 and rearrange it, the equation becomes

d2T (t)
dt2 + w2T (t) = 0

r4W (x, y) � l4W (x, y) = 0
(2.49)

where

l4 =
rhw2

D
(2.50)

The general solution of equation 2.49 is given as

T (t) =A cos (wt) + B sin (wt)

W (x, y) =C1 sin (ax) sin (by) + C2 sin (ax) cos (by) +

C3 cos (ax) sin (by) + C4 cos (ax) cos (by) +

C5 sinh (qx) sinh (fy) + C6 sinh (qx) cosh (fy) +

C7 cosh (qx) sinh (fy) + C8 cosh (qx) cosh (fy)

(2.51)

where A, B and Cn, n = 1, 2, ..., 8 are constants to be determined by initial and boundary
conditions. Additionally,

l2 = a2 + b2 = q2 + f2 (2.52)

For a plate with all boundaries simply supported, equation 2.51 yields

sin (aa) = 0

sin (bb) = 0
(2.53)

In addition, only C1 is not zero. Equation 2.53 is known as frequency equation, the
solution is given as
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ama = mp, m = 1, 2, ...

bnb = np, n = 1, 2, ...
(2.54)

Take the results of equation 2.50, 2.52 and 2.54, the natural frequency wmn can be ob-
tained as

wmn = l2
mn

s
D
rh

= p2
⇣m

a

⌘2
+
⇣n

b

⌘2
�s

D
rh

(2.55)

while the normal modes Wmn (x, y) are

Wmn (x, y) = C1mn sin
⇣mpx

a

⌘
sin
⇣npy

b

⌘
, m, n = 1, 2, ... (2.56)

Thus, the complete solution can be expressed as

w (x, y, t) =
•

Â
m=1

•

Â
n=1

sin
⇣mpx

a

⌘
sin
⇣npy

b

⌘
[Amn cos (wmnt) + Bmn sin (wmnt)] (2.57)

Figure 2.8 shows the first few modes of a simply supported plate.
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Figure 14.5 Mode shapes of a rectangular simply supported plate. Dashed lines denote nodal
lines other than the edges.

or both are satisfied. Equations (14.114) can be satisfied only by the trigonometric
functions

{
sin αmx
cos αmx

}
or

{
sin βny
cos βny

}
(14.115)

with

αm = mπ

a
, m = 1, 2, . . . , βn = nπ

b
, n = 1, 2, . . . (14.116)

We assume that the plate is simply supported along edges x = 0 and x = a. This
implies that

Xm(x) = A sin αmx, m = 1, 2, . . . (14.117)

Figure 2.8: Mode shapes of a rectangular simply supported plate. Dashed lines denote nodal lines other than
the edges. [10]
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Figure 2.9 shows frequency equations and mode shapes of rectangular plate with other
boundary conditions. It should be noted that in the boundary conditions mentioned below,
x = 0 and x = a are simply supported. In the figure, SS, C and F denote simply supported,
clamped and free end respectively. Additionally, d1 =

p
l2 � a2

m and d2 =
p

l2 + a2
m.

Table 14.1 Frequency Equations and Mode Shapes of Rectangular Plates with Different Boundary Conditionsa

Case
Boundary
conditions Frequency equation

y-mode shape, Yn(y) without a multiplication factor, where
Wmn(x,y) = CmnXm(x) Yn(y), with Xm(x) = sin αmx

1 SS-SS-SS-SS sin δ1b = 0 Yn(y) = sin βny

2 SS-C-SS-C 2δ1δ2(cos δ1b cosh δ2b − 1) − α2
m sin δ1b sinh δ2b = 0 Yn(y) = (cosh δ2b − cos δ1b) (δ1 sinh δ2y − δ2 sin δ1y)

−(δ1 sinh δ2b − δ2 sin δ1b) (cosh δ2y − cos δ1y)

3 SS-F-SS-F sinh δ2b sin δ1b {δ2
2[λ2 − α2

m(1 − ν)]4 Yn(y) = −(cosh δ2b − cos δ1b) [λ4 − α4
m(1 − ν)2]

−δ2
1[λ2 + α2

m(1 − ν)]4} {δ1 [λ2 + α2
m(1 − ν)] sinh δ2y

−2δ1δ2[λ4 − α4
m(1 − ν)2]2 (cosh δ2b cos δ1b − 1) = 0 +δ2 [λ2 − α2

m(1 − ν)] sin δ1y} + {δ1 [λ2 + α2
m(1 − ν)]2 sinh δ2b

−δ2 [λ2 − α2
m(1 − ν)]2 sin δ1b}{[λ2 − α2

m(1 − ν)] cosh δ2y

+[λ2 + α2
m(1 − ν)] cos δ1y}

4 SS-C-SS-SS δ2 cosh δ2b sin δ1b − δ1 sinh δ2b cos δ1b = 0 Yn(y) = sin δ1b sinh δ2y − sinh δ2b sin δ1y

5 SS-F-SS-SS δ2[λ2 − α2
m(1 − ν)]2 cosh δ2b sin δ1b Yn(y) = [λ2 − α2

m(1 − ν)] sin δ1b sinh δ2y

−δ1[λ2 + α2
m(1 − ν)]2 sinh δ2b cos δ1b = 0 +[λ2 + α2

m(1 − ν)] sinh δ2b sin δ1y

6 SS-F-SS-C δ1δ2 [λ4 − α4
m(1 − ν)2] + δ1δ2[λ4 + α4

m (1 − ν)2] Yn(y) = {[λ2 + α2
m(1 − ν)] cosh δ2b + [λ2 − α2

m(1 − ν)] cos δ2b}
· cosh δ2b cos δ1b + α2

m[λ4(1 − 2ν) − α4
m(1 − ν)2] ·(δ2 sin δ1y − δ1 sinh δ2y) + {δ1[λ2 + α2

m(1 − ν)] sinh δ2b

· sinh δ2b sin δ1b = 0 +δ2[λ2 − α2
m (1 − ν)] sin δ1b} (cosh δ2y − cos δ1y)

Source: Refs. [1] and [2].
a Edges x = 0 and x = a simply supported.

480

Figure 2.9: Frequency equations and mode shapes of rectangular plate with other boundary conditions [10]

Forced Vibration

The response of forced vibration of plate can be assumed as

w (x, y, t) =
•

Â
m=1

•

Â
n=1

Wmn (x, y) hmn (t) (2.58)

where Wmn (x, y) is mnth the mode shape given by equation 2.56 and hmn (t) is general-
ized coordinate. If the mode shape if normalized such as

Z a

0

Z b

0
rhW2

mn dy dx = 1 (2.59)

then the coefficient C1mn is obtained as 2/
p

rhab. Substitute equation 2.58 into equation
of motion and premultiply it with mode shape, thereafter integrate the equation over the
domain with the orthogonality condition, it yields to

ḧmn (t) + w2
mnhmn (t) = Nmn (t) , m, n = 1, 2, ... (2.60)

where Nmn is the generalized force and is given by

Nmn (t) =
Z a

0

Z b

0
Wmn · f (t) dy dx (2.61)

Take the natural frequency wmn from equation 2.55, the solution for hmn (t) can be
expressed as

hmn (t) = hmn (0) cos (wmnt)+
ḣmn (0)

wmn
sin (wmnt)+

1
wmn

Z t

0
Nmn (t) sin [wmn (t � t)] (2.62)

Finally, the response w (x, y, t) can be found by equation 2.58.



Chapter 3 Probability Theory

The basic concept of probability is to define a space with all possible outcomes (i.e.
events or sets) and the probability of each event. If aj is denoted as the jth possible
outcome in the space W, an event is defined as a collection of some possible outcomes
which meet a certain criteria. For example, event A = {a : displacement  0.1 (mm)} or
event B = {a : displacement inzdirection}. The events must be Boolean so that A [ B,
A \ B, Ac and Bc are also events, where A [ B = {a : a 2 A, or 2 B, or both}, A \ B =
{a : a 2 A and 2 B}, Ac = {a : a /2 A} and Bc = {a : a /2 B}.

P (·) is denoted as the probability measure of an event. That is, P (A) � 0 for any event
A and P (W) = 1. The conditional probability is defined as the probability of the intersec-
tion of two events divided by the probability of the condition or given event. Equation 3.1
shows the conditional probability of A given B, where P (AB) = P (A \ B) is a commonly
used simplification both in other literature and throughout this project.

P (A|B) =
P (AB)
P (B)

(3.1)

While the product rule is shown in equation 3.2

P (AB) = P (B) P (A|B) = P (A) P (B|A) (3.2)

and event A and B are said to be independent if

P (AB) = P (A) · P (B) (3.3)

When considering a random vibration problem, the input or excitation is often a ran-
dom variable. That is, every measurement of the same input can have different result. This
is often observed within natural environment such as wind load or wave, which can not
be expressed as a simple time-dependent function. The considered random input in this
project is the force that solar panels would experience during rocket launching.

Therefore, instead of finding a deterministic solution for vibration problem as shown in
the previous chapter, it is necessary to bear the idea of "probability" in mind when dealing
with random vibration problem. In this chapter, the concept of probability and random
variable are introduced. Thereafter, time domain analysis of random vairable is shown. Fi-
nally, the analysis in frequency domain, which is primarily used in the following analysis,
is presented. The content of this chapter, including theory and equation, is mainly based
on [6].

21
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3.1 Random Variable

Consider a random variable X (t), then a family of random variables is known as stochas-
tic process and can be expressed as {X (t)}. For a given time t0, X (t0) can have different
result every observation. That is, X(1) (t0), X(2) (t0), X(3) (t0), ... can all be different, where
X(j) (t) is the jth sample time history observed and X(j) (t0) is the jth sample time history
observed at time t0. If there is a sufficient number of observations, the characteristic of this
stochastic process such as expected value or probability can be obtained.

Figure 3.1 shows a collection of sample time histories also known as ensemble. A
section across this ensemble at time t0 gives a statistical sample for the random variable
corresponding to that t0 value.104 Random Vibrations

is simply a number from the set of possible values of Y. After a sufficient number
of such observations, one will get an idea of the likelihood of various outcomes
and can estimate the probability distribution of Y and/or expected values of functions
of Y. For the stochastic process { ( )}X t , each observation will give an observed
time history rather than simply a number. Again, a sufficient number of observations
will allow us to estimate probabilities and expected values related to the process. A
collection of time histories for a stochastic process is typically called an ensemble.

Figure 4.1 illustrates the idea of a statistical sample, or ensemble, from a
stochastic process, using the notation X tj( )( )  for the jth sample time history
observed for the process. Of course, the ensemble shown in Fig. 4.1 is for illustration
only and is too small (i.e., it has too few time histories) to allow one to estimate
probabilities or expected values with any confidence. It shows six time histories
observed in separate, independent observations of the particular { ( )}X t  process. A
“section” across this ensemble at any particular time gives a statistical sample for
the random variable corresponding to that t value. Thus, we have observed a sample
of six values for X( )10 , a sample of six values for X( )20 , and so forth. The plot
illustrates the fact that there is a sort of “orthogonality” between the idea that a
stochastic process is characterized by an ensemble of time histories and the idea
that it is a family of random variables. A time history is a single observation including

Figure 4.1 Ensemble of time histories of {X( t)}.
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Figure 3.1: Ensemble of time histories of {X (t)} [6]

A common way to describe the probability of a given random variable X is the cumu-
lative distribution function FX (·), which is shown in equation 3.4.

FX (u) ⌘ P (X  u) (3.4)

where u is a arbitrary chosen real number and P (X  u) is the probability of X  u.
For example, if

P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = 0.25 (3.5)

then
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FX (u) = 0, for � • < u < 1

FX (u) = 0.25, for 1  u < 2

FX (u) = 0.5, for 2  u < 3

FX (u) = 0.75, for 3  u < 4

FX (u) = 1, for 4  u < •

(3.6)

In the above example, the cumulative distribution function is not continuous. How-
ever, in other cases, the random variable X and cumulative distribution function such as
FX (u) = 0.1 · u are continuous. If the cumulative distribution function is continuous and
differentiable everywhere, the probability density function pX (·) can be defined as

pX (u) =
d

du
FX (u) (3.7)

Thus, the probability that X lies within the interval [a, b] is given by the integral of pX
over the interval as

P (a < X  b) =
Z b

a
pX (u) du = FX (b) � FX (a) (3.8)

3.1.1 Expected Values

In order to describe the characteristic of a random variable, quantity that is the average
over all possible outcomes is commonly used. One of such quantity is expected value
which defined as

E (X) ⌘
Z •

�•
u · pX (u) du (3.9)

As it can be seen from equation 3.9, an expect value is a weighted average over all pos-
sible values of X, where the weighting function is probability density function pX (u). That
is, u represents a value of X and pX (u) du is the probability of X being in the vicinity of u.

It should be noted that equation 3.9 should be normalized by an integral of weight-
ing function for common approach, however the integral is found to be unity when the
weighting function is probability density function. Therefore, the normalization integral
is omitted in equation 3.9. Additionally, the expected value is also known as expectation
or mean value of a random variable, which shows that expected value is not a value with
highest probability, but a weighted average value.

For a function of random variable g (X) such as X2 or sin (3X), the expected value is
given as

E [g (X)] ⌘
Z •

�•
g (u) · pX (u) du (3.10)
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3.1.2 Moments of Random Variable

The moments of random variable are other characteristics of random variable and are
actually special cases of expected value. The jth moment of X is defined as E

�
Xj�, where

Xj can be viewed as a function of X and expressed as g (X). The first moment of random
variable, also known as mean value, is exactly the same as expected value but with a
different notation µX and name. That is,

First moment or mean value : µX ⌘ E (X) =
Z •

�•
u · pX (u) du (3.11)

For two random variables X and Y, the cross moment of order (j, k) is defined as
E
�
XjYk�. The most common one is the cross product of random variables E (XY). In

addition to the moments defined above, there is also central moment which subtracts the
mean value of random variable. The central moment is defined as E

h
(X � µX)j

i
or for

two random variables E
h
(X � µX)j (Y � µY)k

i
. The three special central moments that are

commonly used in analysis are

Variance : s2
X ⌘ E

h
(X � µX)2

i
= E

�
X2�� µ2

X

Covariance : KXY ⌘ E [(X � µX) (Y � µY)] = E (XY) � µXµY

Root-mean-square (RMS) value : sX ⌘
⇥
E
�
X2�⇤ 1

2

(3.12)

while the normalized form of covariance known as correlation coefficient is defined as

Correlation coefficient : rXY ⌘ KXY
sXsY

= E

(X � µX)

sX

(Y � µY)
sY

�
(3.13)

For two random variables from the same stochastic process X (t) and X (s), the cross
product known as auto-correlation function is defined as

Auto-correlation function: fXX (t, s) ⌘ E [X (t) X (s)]

=
Z •

�•

Z •

�•
uvpX(t)X(s) (u, v) dudv

(3.14)

The auto-correlation function is defined in a two-dimensional space with t and s varying
over the index set of {X (t)}. On the other hand, for two random variables from different
stochastic process X (t) and Y (s), the cross product known as cross-correlation function is
defined as

Cross-correlation function: fXY (t, s) ⌘ E [X (t) Y (s)]

=
Z •

�•

Z •

�•
uvpX(t)Y(s) (u, v) dudv

(3.15)

Similarly, cross-correlation function is also defined in a two-dimensional space with t
varying over the index set of {X (t)} and s varying over the index set of {Y (t)}.
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Follow the same idea from auto-correlation and cross-correlation functions, the auto-
covariance and cross-covariance functions are defined as

Auto-variance : KXX (t, s) ⌘ E ([X (t) � µX (t)] [X (s) � µX (s)])

= fXX (t, s) � µX (t) µX (s)
(3.16)

Cross-covariance : KXY (t, s) ⌘ E ([X (t) � µX (t)] [Y (s) � µY (s)])

= fXY (t, s) � µX (t) µY (s)
(3.17)

where can be seen that variance function is actually a special case of auto-variance func-
tion that t = s.
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3.2 Time Domain Analysis

In time domain analysis of a general linear system, the input or excitation history can be
considered as a combination of impulses. If the excitation f (t) is a Dirac delta function
d (t), then the response x (t) is defined as impulse response function hx (t). A brief in-
troduction of Dirac delta function can be found in appendix C. In addition, the system
considered is a casual system, which means hx (t) ⌘ 0 for t < 0. That is, the response to an
excitation does not start until time t = 0. Thus, for a general linear system, the excitation
can be expressed as a superposition of Dirac delta functions multiplied by their amplitudes

f (t) =
Z •

�•
f (s) d (t � s) ds

=
Z •

�•
f (t � r) d (r) ds

(3.18)

Similarly, the response can be expressed as

x (t) =
Z •

�•
f (s) hx (t � s) ds

=
Z •

�•
f (t � r) hx (r) ds

(3.19)

where equation 3.19 is known as Duhamel convolution integral. Figure 3.2 shows the
schematic of time domain analysis for general linear system.Random Vibrations168

x t f s h t s ds f t r h r drx x( ) ( ) ( ) ( ) ( )= − ≡ −
−∞
∞

−∞
∞∫ ∫ (5.2)

Either of the integrals in Eq. 5.2 is called the Duhamel convolution integral for
the linear system, and the function h tx ( )  is called the impulse response function
for response x of the system.

It should be noted that the definition of h tx ( )  as the x t( )  response to
f t t( ) ( )= δ  includes the condition that h tx ( )  is the response when there has never

been any other excitation of the system except the pulse at time t = 0 . In
particular, h tx ( )  is the response when the initial conditions on the system are
such that x t( )  and all of its derivatives are zero at time t → −∞ . A system is said
to be causal if h tx ( ) ≡ 0  for t < 0 . This simply means that the response to an

Figure 5.1 Schematic of general linear system.
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Figure 3.2: Schematic of general linear system [6]
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It should be noted that the linear system stated above is a time-invariant system. That
is, the system depends only indirectly on time domain, where the relationship between
input and output is constant with respect to time t. In another word, for given input with
time delay f (t + t), the response is x (t + t).

If the system is a time-varying system, then the response should be expressed as

x (t) =
Z •

�•
f (s) hx f (t, s) ds (3.20)

where hx f (t, s) is a function of two time parameters.

Since the linear system considered in plate vibration is an ordinary differential equation,
it is necessary to find the impulse response function for such system. A general form of
nth order linear ordinary differential equation is given as

n

Â
j=0

aj
djx (t)

dtj = f (t) (3.21)

Thus, the corresponding impulse response function must satisfy

n

Â
j=0

aj
djhx (t)

dtj = d (t) (3.22)

There are several difficulties encountered when solving equation 3.22. A brief review of
the difficulties and solution can be found in appendix C.2. The result is shown in equation
3.23.

✓
dn�1hx (t)

dtn�1

◆

t=0+

= a�1
n

✓
djhx (t)

dtj

◆

t=0+

= 0 for j  n � 2
(3.23)

For the stochastic analysis, simply replace the deterministic excitation f (t) and re-
sponse x (t) with stochastic process F {t} and X {t} as

X (t) =
Z •

�•
F (s) hx (t � s) ds

=
Z •

�•
F (t � r) hx (r) ds

(3.24)

The other characteristic functions such as mean value and auto-correlation function can
also be found based on equation 3.24. However, since the frequency domain analysis is
primarily used in this project, the other characteristic functions are not presented here.
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3.3 Frequency Domain Analysis

By making use of Fourier transform, a time-dependent function can be decompose to its
frequency component. The Fourier transform of a time-dependent function f (t) is denoted
by f̃ (w) and defined as

f̃ (w) =
1

2p

Z •

�•
f (t) e�iwtdt (3.25)

while the inverse relation is

f (t) =
Z •

�•
f̃ (w) eiwtdw (3.26)

Equation 3.26 shows that the original time-dependent function is actually a summa-
tion of harmonic terms where f̃ (w) dw is the amplitude. However, since the amplitude
in generally complex, it is necessary to consider the absolute value when determining the
contribution from frequency w to f (t).

For a stochastic process {X (t)}, the Fourier transform is given by

X̃ (w) =
1

2p

Z •

�•
X (t) e�iwtdt (3.27)

Other characteristic functions such as mean value and moments are also shown in the
following equations. It should be noted that since X̃ (w) is complex, several terms are
modified with complex conjugate denoted by X̃⇤ (w).

Mean value : µX̃ (w) =
1

2p

Z •

�•
µX (t) e�iwtdt (3.28)

Second moment : fX̃X̃ (w1, w2) = E
⇥
X̃ (w1) X̃⇤ (w2)

⇤
(3.29)

=
1

(2p)2

Z •

�•

Z •

�•
fXX (t1, t2) e�i(w1t1�w2t2)dt1dt2 (3.30)

Auto-covariance : KX̃X̃ (w1, w2) = E
⇣⇥

X̃ (w1) � µX̃ (w1)
⇤ ⇥

X̃ (w2) � µX̃ (w2)
⇤⇤⌘ (3.31)

=
1

(2p)2

Z •

�•

Z •

�•
KXX (t1, t2) e�i(w1t1�w2t2)dt1dt2 (3.32)

Sometimes the auto-variance function KXX (t1, t2) is also written as

KXX (t1, t2) = GXX (t1 � t2) = GXX (t) (3.33)
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3.3.1 Power Spectral Density

It should be noted that for a stationary stochastic process, the expressions shown above may
not exist. Therefore, it is necessary to define other function that is applicable for stationary
stochastic process. The function known as auto-spectral density function or power spectral
density SXX (w) is defined as

SXX (w) =
1

2p

Z •

�•
GXX (t) e�iwtdt (3.34)

while the inverse relation gives

GXX (t) =
Z •

�•
SXX (w) eiwtdw (3.35)

Similarly, the cross-spectral density is defined as

SXY (w) =
1

2p

Z •

�•
GXY (t) e�iwtdt (3.36)

There are three important properties of power spectral density function listed as follows

1. SXX (w) is always real for all values of w

2. SXX (w) is greater or equal to 0 for all values of w

3. SXX (w) is equal to SXX (�w) for all values of w

Another important feature is the special case when setting t = 0 in equation 3.35 as

s2
X = GXX (0) =

Z •

�•
SXX (w) dw (3.37)

which shows the area under power spectral density is equal to the variance of a random
variable.

Furthermore, the derivatives of power spectral density can also be found as

SẊẊ (w) = w2SXX (w) (3.38)

and

SẌẌ (w) = w4SXX (w) (3.39)

Thus, if a displacement power spectral density is given, the corresponding velocity and
acceleration spectral density can also be found based on equation 3.38 and 3.39 and vice
versa. Additionally, the Grms value is a very common expression known as root-mean-
square acceleration. It can be obtained by calculating the square root of the area under
an acceleration PSD curve such as SẌẌ . Similarly, the root-mean-square displacement,
referred as Drms in this project, is the square root of the area under an displacement spectral
density curve SXX as shown in equation 3.40.

Drms =

sZ fh

fl

Sww d f (3.40)
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The root-mean-square acceleration (or displacement) is also called one-sigma accelera-
tion (or displacement), which is related to the statistical properties of the acceleration time
history. That is,

• Within 66.8 % of time, the acceleration (or displacement) would not be exceed the
range of ±1 sigma acceleration (or displacement)

• Within 95.4 % of time, the acceleration (or displacement) would not be exceed the
range of ±2 sigma acceleration (or displacement)

• Within 99.7 % of time, the acceleration (or displacement) would not be exceed the
range of ±3 sigma acceleration (or displacement)

3.3.2 Frequency Response Function

In section 3.2, the idea of impulse response function hx (t) is introduced. The equivalent
form in frequency domain analysis is known as frequency response function Hx (w) and
given as

x̃ (w) = Hx (w) f̃ (w) (3.41)

where x̃ (w) and f̃ (w) is the Fourier transform of response x (t) and excitation f (t),
respectively.

For the stochastic process response {X (t)} and excitation {F (t)}, the equation simply
becomes

X̃ (w) = Hx (w) F̃ (w) (3.42)

Furthermore, the power spectral density is given as

SXX (w) = Hx (w) H (�w) SFF (w) = |Hx (w) |2SFF (w) (3.43)

Thus, the variance can be found by equation 3.37. One advantage for frequency domain
analysis is that for a general nth order system as in time domain analysis

n

Â
j=0

aj
djx (t)

dtj = f (t) (3.44)

If f (t) = eiwt and x (t) = Hx (w) eiwt, the equation gives

Hx (w) =

 
n

Â
j=0

aj (iw)j

!�1

(3.45)

which is relatively easy to solve compare to the initial condition and differential equa-
tions in time domain analysis. Based on equation 3.45, it can be seen that the frequency
response function is highly related to the system characteristic. That is, the shape of re-
sponse spectral density can be modified by adjusting the frequency transfer function (i.e.
system characteristic). This makes the frequency transfer function can act in a way similar
to a signal filter and produce the desire output spectral density.
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This chapter focuses on building an analytical model for random vibration of a deploy-
able solar panel. Beam models are used as a starting point in this project since they are
relatively easy to analyze, the result can be seen in appendix B. Thereafter, plate models
are considered in order to have a better representation of a solar panel. The equations used
in this chapter are based on the previous chapters 2 and 3. Additionally, the approaches
from [11], [1] and [5] are also adopted, a simple verification of [1] can be found in section
4.1. Some equations from the previous chapters are rewritten here to maintain the line of
thought.

Recall the the detail of problem formulation in section 1.1, the solar panel system is
divided into two subsystem and the one with random excitation is primary focus in this
project. If the resultant force caused by random excitation is larger than pretension force,
the support pins might loss contact and the system needs to be adjusted. Figure 1.4 is
shown again here.

Random excitation

Plate model

System response 
(Resultant force)

(b) Random subsystem(a) Pretension subsystem

Pretension force

Compare (a) pretension force 
and (b) resultant force 

(a) is larger. The system stays 
in contact 

(b) is larger. The system may 
loss contact

Power spectral density 
(PSD) is given by NASA. 

Random vibration analysis

Excitation/Input PSD

Frequency response 
function of system

Response/Output PSD

Frequency response function 
is the link between excitation 
and response PSD, which can 
be found through modal 
analysis of the system.

Response PSD can be 
converted to root-mean-
square acceleration, velocity 
and displacement for further 
analysis, such as finding the 
resultant force.

Figure 4.1: Illustration of approach

Random vibration analysis include three important elements, excitation, frequency re-
sponse function and response. The excitation input used in this project is studied in section
1.1.1. The frequency response function of plate model based on the formulation in section
1.1 is studied in the following section 4.3. Section 4.3 presents three different studies in-
cluding study of mode shape, location, damping and material. The resultant force from
random excitation is found by multiplying plate mass with root-mean-square acceleration
and compare with the pretension force. Finally, a short summary and discussion is given
in section 4.4.

In addition, all analytical results are in company with numerical calculations, produced
and plotted by commercial program Matlab and Maple, in order to give a better under-
standing of the system response. The data sheet used for numerical computations is shown

31



32 Chapter 4. Analytical Analysis

in table 4.1. It should be noted that the material property in data sheet is not the actual
property of solar panel but an aluminum plate due to confidentiality concern.

Table 4.1: Data sheet for numerical calculations

Symbol Value Unit

Young’s modulus E 70 GPa

Poisson’s ration n 0.33

Mass density r 2700 kg
m3

Excitation frequency f 20 - 2000 Hz

Damping ratio x 0.05

Length in X direction of plate a 0.4 m

Length in Y direction of plate b 0.2 m

Thickness of plate h 0.002 m

4.1 Verification of Previous Study

In [1], Chen, Zhou and Yang present several methods to evaluate response of thin plate
subjected to random excitation. The article aims to accurately and efficiently achieve the
benchmark solutions of stationary stochastic responses for rectangular thin plate. The ap-
proach is then adopted in this project since the problem considered is very similar. Before
the approach is actually used, a simple verification is done through the same input data
given in the article. A summary of the article is presented in the following paragraph. The
approach detail and idea can be found in the complete article in appendix D.

The considered problem in the article is a rectangular thin plate subjected to white
noise random excitation. The plate has length a, b and h along X, Y and Z coordinate,
respectively. The differential equation of forced vibration of rectangular thin plate is given
by

Dr4w (x, y, t) + c
∂w (x, y, t)

∂t
+ rh

∂2w (x, y, t)
∂t2 = p (x, y, t) (4.1)

where

D =
Eh3

12 (1 � n2)

r4 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4

(4.2)

If the boundary condition has a couple of simply supported on the opposite edges, the
mode shape are expressed as
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f (x, y) = (A1 cos l1y + A2 sin l1y + A3 cosh l2y + A4 sinh l2y) sin µx (4.3)

where

µ = mp/a

l1 =

r
µ2 �

q
rhw2/D

l2 =

r
µ2 +

q
rhw2/D

(4.4)

The constants A1 to A4 can be determinate according to the boundary condition. The
transverse deflection w (x, y, t) is then expressed as

w (x, y, t) =
•

Â
m=1

•

Â
n=1

fmn (x, y) hmn (t) (4.5)

where fmn is the mnth mode shape. The so-called pseudo random excitation p̃ (x, y, t)
is used to replace the force p (x, y, t) in the governing equation, where

p̃ (x, y, t) =
q

Spp (x, y, t) exp (iwt) (4.6)

and Spp = 0.5
�

g2/Hz
�

is the excitation PSD. By substituting above equation into gov-
erning equation and making use of the orthogonality of mode shape, it yields

˜̈hmn (t) + 2xmnwmn ˜̇hmn (t) + w2
mnh̃mn (t) = Pmn · exp (iwt) (4.7)

where

Pmn =
1

gmn

Z a

0

Z b

0

q
Spp (x, y, t)fmn (x, y) dy dx

gmn =
Z a

0

Z b

0
rhfmn (x, y)2 dy dx

(4.8)

The relation between output and input is the frequency response function Hmn (w).
That is, h̃mn (t) = Hmn (w) Pmn exp (iwt). For SDOF system it can be expressed as

Hmn =
�
w2

mn � w2 + 2ixmnwmn
��1 (4.9)

Thus, the pseudo transverse deflection can be written as

w̃ (x, y, t) =
•

Â
m=1

•

Â
n=1

fmn (x, y) h̃mn (t)

=
•

Â
m=1

•

Â
n=1

fmn (x, y) Hmn (w) Pmn exp (iwt)
(4.10)
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Finally, the transverse deflection response PSD can be obtained as

Sww (x, y, w) = w̃ (x, y, t)⇤ w̃ (x, y, t)

=

 
•

Â
m=1

•

Â
n=1

fmn (x, y) Hmn (w) Pmn

!⇤ •

Â
m=1

•

Â
n=1

fmn (x, y) Hmn (w) Pmn

!

(4.11)

where w̃ (x, y, t)⇤ is the complex conjugate value. The velocity and acceleration response
PSD can also be obtained as

Sẇẇ = ˜̇w (x, y, t)⇤ ˜̇w (x, y, t) = w2 · Sww

Sẅẅ = ˜̈w (x, y, t)⇤ ˜̈w (x, y, t) = w4 · Sww
(4.12)

With the same input data including the plate geometry, material property and excitation
PSD ... etc, the result can be seen in figure 4.2.G. Chen et al. Probabilistic Engineering Mechanics 50 (2017) 17–24

Fig. 2. Acceleration response PSD at the central point for (a) SSSS; (b) SSSC; (c) SCSC; (d) SFSF; (e) SSSF; (f) SCSF boundary condition within 20–2000 Hz.

5.1. Example 1

5.1.1. Verification of accuracy and efficiency
A rectangular thin plate [6] with � = 0.4 m, � = 0.2 m, � = 0.002 m,

elastic modulus � = 70 GPa, Poisson’s ratio � = 0.33, � = 2700 kg/m3

and modal damping ratio � = 0.05 is considered, which is subjected
to a band-limited white noise excitation of base acceleration with PSD
�0 = 0.5 g2/Hz within [20,2000] Hz. In this example, the FEM is also
performed by ANSYS software. To ensure relatively accurate results for
FEM, the plate is divided to 5000 (100 � 50) elements.

Fig. 2 indicates the PSD curves of acceleration response at the
central point of thin plate with 6 boundary conditions, respectively.
It is observed that, the PSD curves of acceleration responses obtained
by DAM are in good agreement with the analytical solutions, but the
results by FEM appear large errors even if the mesh number reaches to
5000. As a result, FEM cannot predict accurately the PSD of acceleration

response of rectangular plate due to its numerical error resulting from
the approximate discretization of spatial domain.

On the other hand, for the 6 boundary conditions the acceleration
response of plate is dominated by the first mode, and the higher
order modes also present remarkable contribution as shown in Fig. 2.
Moreover, the rms of the deflection, velocity, acceleration and normal
stress along � direction are listed in Table 1. The root mean square of
random stationary responses by the DAM is well consistent with the
counterparts of the analytical method, while FEM produces errors for
various boundary conditions compared to the analytical solutions as a
reference in Table 1.

In addition, the CPU time taken by the three methods is also
displayed in Table 1. For the convenience of comparison, the same
number of points is adopted for computation with DAM and FEM, but
just one point is selected to calculate its analytical responses owing to its
inefficiency. Therefore, the CPU time is real for the analytical method,

21

Figure 4.2: Result comparison

It can be seen that the results are the same and therefore this approach by [1] can be
used in the following analysis.
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4.2 Preliminary Study

To have a general idea of the plate vibration, a brief preliminary study is done in this
section. The model is shown in figure 4.3. The harmonic base excitation is assumed to be
P cos (wt).

x

y

a

bSimply 
supported

Simply 
supported

Harmonic 
base excitation

Harmonic 
base excitation

Figure 4.3: Model for preliminary study

For harmonic base excitation, it is equivalent to consider the excitation as boundary
condition in free vibration. The differential equation for plate in free vibration is

Dr4w (x, y, t) + rh
∂2w (x, y, t)

∂t2 = 0 (4.13)

where the solution can be assumed as

w (x, , y, t) = W (x, y) T (t)

= X (x) Y (y) cos (wt)
(4.14)

By substituting it in the differential equation, it yields

X0000Y + 2X00Y00 + Y0000 � l4XY = 0 (4.15)

where

l4 =
w2

b2
1

=
rhw2

D
(4.16)

If the boundary condition is simply supported along x = 0 and x = a as shown in the
model, X (x) can be obtained as

X (x) = A sin (amx) (4.17)

where A is a constant and am = mp/a. While the equation becomes

Y0000 (y) � 2a2
mY00 (y) �

⇣
l4 � a4

m

⌘
Y (y) = 0 (4.18)
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Assuming Y (y) = expsy, it gives

s4 � 2s2a2
m �

⇣
l4 � a4

m

⌘
= 0 (4.19)

By solving above equation, Y (y) can be obtained as

Y (y) = C1 sin d1y + C2 cos d1y + C3 sinh d2y + C4 cosh d2y (4.20)

where

d1 =
q

l2 � a2
m

d2 =
q

l2 + a2
m

(4.21)

and the constants C1 to C4 can be obtained by the following boundary conditions

1. W (x, 0) = P

2. W (x, b) = P

3. My (x, 0) = �D
⇣

∂2W
∂y2 + n ∂2W

∂x2

⌘���
(x,0)

= 0

4. My (x, 0) = �D
⇣

∂2W
∂y2 + n ∂2W

∂x2

⌘���
(x,b)

= 0

Once the constants C1 TO C4 are obtained, Y (y) can also be obtained and hence the
displacement w (x, y, t). To compare the force caused by harmonic excitation, the accelera-
tion is calculated by taking the second derivative of w (x, y, t) and multiply with the plate
mass. That is,

F =
∂2w (x, y, t)

∂t2 · Mplate (4.22)

Finally, the result can be seen in figure 4.4. It should be noted that all the numerical
data are the same in table 4.1, while the amplitude of harmonic excitation P is take as 0.01
(mm) in the analysis.

Figure 4.4: Harmonic excitation
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Noted that the figure is shown in absolute value with the pretension force line so it is
easier to find the admissible range of frequency. It can be seen that the harmonic excitation
does not cause much force to most of the frequency. However, when the excitation fre-
quency gets closer to the resonance frequency (in this case, it is 152 Hz for the first mode),
the force becomes really large and will most likely to make the support pins loss contact
with solar panel since the pretension force is only 40 Newtons. It can also be seen that the
result with damping is very similar to the one without it, the only change is the resonance
frequency is slightly shifted to the other one. From the above results, it can be concluded
that if the plate is subjected to the harmonic excitation only instead of random excitation,
the support pins will indeed loss contact near the resonance frequency.

4.3 Plate Model

In order to find the frequency response function of the plate model, modal analysis need
to be performed first. The equation of motion of plate is shown in equation 4.23.

Dr4w (x, y, t) + c
∂w (x, y, t)

∂t
+ rh

∂2w (x, y, t)
∂t2 = f (t) (4.23)

where

D =
Eh3

12 (1 � n2)

r4 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4

(4.24)

In the above equations, E, r,n, c and h are the Young’s modulus, mass density, Pois-
son’s ration, damping coefficient and thickness of the plate, respectively. The transverse
displacement of plate at location (x, y) and time t is w (x, y, t), while f (t) represents the
time-varying force applied on the plate.

As explained in section 1.1, the plate model used is a simply supported aluminum plate
subjected to random excitation. Follow the same procedure described in section 2.3, it can
be assumed that equation 4.23 has the solution in the form of

w (x, y, t) =
•

Â
m=1

•

Â
n=1

Wmn (x, y) hmn (t) (4.25)

where Wmn (x, y) is the mode shape and hmn (t) is generalized coordinate. The mode
shape is normalized in order to satisfy orthogonality as follows

Z a

0

Z b

0
rh · W2

mn dydx = 1 (4.26)

Consider the boundary condition of plate as simply supported plate along four edges,
the mode shape and natural frequency are given as
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Wmn =
2p
rhab

· sin
⇣mpx

a

⌘
sin
⇣npy

b

⌘

wmn = p2

s
D
rh

·
⇣m

a

⌘2
+
⇣n

b

⌘2
� (4.27)

Substitute equation 4.25 into equation 4.23 and integrate it over the surface domain, a
series decoupled equations can be obtained as shown in equation 4.28.

ḧmn (t) + 2xmnwmnḣmn (t) + w2
mnhmn (t) = Nmn · f (t) (4.28)

where

Nmn =
Z a

0

Z b

0
Wmn (x, y) dydx (4.29)

By making use of frequency response function H (w), the solution for equation 4.28 is
assumed to be

h̃mn (w) = Hh,mn (w) · Nmn · f̃ (w) (4.30)

Furthermore, according to equation 3.45, the frequency response function Hh,mn for
damped plate can be found as

Hh,mn (w) =
1

w2
mn + 2iwxmnwmn � w2 (4.31)

Finally, substitute equation 4.30 into 4.25, the solution of w (x, y, t) or w̃ (x, y, w) can be
expressed as

w (x, y, t) =
•

Â
m=1

•

Â
n=1

Wmn (x, y) hmn (t)

w̃ (x, y, w) =
•

Â
m=1

•

Â
n=1

Wmn (x, y) h̃mn (w)

=
•

Â
m=1

•

Â
n=1

Wmn (x, y) Hh,mn (w) Nmn · f̃ (w)

= Hw (w) · f̃ (w)

(4.32)

The displacement response power spectral density (PSD) Sww of the plate model with
an acceleration excitation PSD Sf f can be found by

Sww = |Hw|2 · Sf f (4.33)

while the velocity and acceleration PSD are given by
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Sẇẇ = w2 · Sww

Sẅẅ = w4 · Sww
(4.34)

Once the acceleration PSD is found, the root-mean-square acceleration Arms can be
calculated through the area under the PSD curve as shown in equation 4.35. Thereafter
the resultant force caused by random excitation Frandom can be found by multiplying the
mass of plate Mplate with Arms. It should be noted that normally the acceleration PSD has
an unit of g2/Hz and hence the root-mean square acceleration has an unit of g, which is
commonly referred as Grms value. However in order to find out the resultant force, the unit
of acceleration should be m/s2. Thus the root-mean-square acceleration here is referred as
Arms for the unit is different from Grms. It can be seen that the relation is Arms = Grms · 9.81.

Arms =

sZ fh

fl

Sẅẅ d f · 9.81

Frandom = Mplate · Arms

(4.35)

The following analysis is categorized as four studies, namely the study of mode shape,
location, damping and material. Each study focus on one variable only in order to have a
better understanding on the system behavior.

4.3.1 Study of Mode Shape

In equation 4.32, the upper limit of summation for modes m and n are infinity, however it
is not necessary to find a convergent result. The study of mode shape focuses on determine
the system response with different number of mode shape. By making use of this study,
it can be seen that how many mode shapes should be included for the following analysis.
Thus, the upper limit for mode m and n are set to be M and N, respectively. That is, M
and N are the number of modes included. The location chosen for analysis is the middle
of the plate. The result can be seen in figure 4.5.

Figure 4.5: Acceleration response PSD - Designed random excitation
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The Arms values of different number of mode shape is shown in table 4.3.

Table 4.2: Arms value of different condition

Number of mode shape Arms
�
m/s2� Frandom (N)

M = N = 1 66.31 28.64

M = N = 3 70.69 30.54

M = N = 5 70.69 30.54

M = N = 10 70.69 30.54

M = N = 20 70.69 30.54

It can be seen from the result above, the resultant force does not change above M =
N = 3. Therefore, to be more conservative, the number of mode shapes for following stud-
ies is chosen as M = N = 5.

4.3.2 Study of Location

The study of location focuses on determine the system response in different location of
the plate. The most relevant location in this project is the center of the plate, where the
pretension force is applied. The location chosen for analysis can be seen in figure 4.6.

x

y

a

b

Figure 4.6: Location chosen for analysis

The result can be seen in figure 4.7.
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Figure 4.7: Acceleration response PSD - Designed random excitation

The Arms values of different location (x, y) is shown in table 4.3.

Table 4.3: Arms value of different condition

Location Arms
�
m/s2� Frandom (N)

x = a
2 , y = b

2 70.69 30.54

x = a
4 , y = b

4 39.57 17.09

x = a
10 , y = b

10 10.79 4.66

x = a
20 , y = b

20 3.04 1.31

x = a
40 , y = b

40 0.78 0.34

It can be seen from the result above, the resultant force caused by random excitation at
center of the plate is 30.54 (N). The resultant force is smaller than the pretension force and
hence the support pins should remain contact. However, it should be bear in mind that
the Arms used here is one sigma value as explained in chapter 3. It means that the result is
assumed to be valid only within 68% of time. If three sigma value (i.e. 99.7%) is taken into
account, the resultant force would be 91.7 (N). Therefore, it is recommended to increase
the pretension force for keeping the support pins in contact.

The other result from above study is that the Arms value decreases when the location
is closer to the edge. This is a reasonable result since the boundary condition is set to
be simply supported. That is, the boundaries do not have any displacement and hence
acceleration.
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4.3.3 Study of Damping

The study of damping focuses on determine the system response with different damping of
the plate. The location is chosen at the middle of the plate, where the largest resultant force
is. Since the real damping of the system is difficult to measure, a damping ratio 0.05 is used
as a start point. However, it can be seen from the study of location that the pretension force
is not enough if three sigma acceleration is used. Thus, a study of damping is essential and
also offer a general idea when adjusting the system. The result can be seen in figure 4.8.

Figure 4.8: Acceleration response PSD - Designed random excitation

The Arms values of different damping ratio x is shown in table 4.4.

Table 4.4: Arms value of different damping ratio

Location Arms
�
m/s2� Frandom (N)

x = 25% 36.33 15.69

x = 15% 44.06 19.03

x = 10% 52.04 22.48

x = 5% 70.69 30.54

x = 2.5% 97.66 42.19

If three sigma acceleration is used, the resultant force should be lower than 13.34 (N)
for a pretension force of 40 (N). However, it can be seen from the result above, even a
25% damping ratio is not enough to reach it. A 25% damping ratio is not very realistic in a
common system. Thus, an increase of pretension force is recommended more than increase
the damping ratio to a very high value in order to keep the support pins in contact.
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4.3.4 Study of Material

Due to confidentiality concern, the previous studies are done with the property of alu-
minum plate. However, the influence of material property is also helpful in order to find
out the deviation between the analysis here and the real system. According to the result in
[8], the overall Young’s modulus of the Al-Si solar cells is estimated to be 43 GPa. The mass
density is not changed in this study since the mass density of silicon is close to aluminum.
The result can be seen in figure 4.9.

Figure 4.9: Acceleration response PSD - Designed random excitation

The Arms values of different damping ratio x is shown in table 4.5.

Table 4.5: Arms value of different Young’s modulus

Location Arms
�
m/s2� Frandom (N)

E = 70GPa 70.69 30.54

E = 53GPa 68.84 29.74

It can be seen from the result that the resultant forces are close. Thus the influence for
the contact is not obvious. However, it can also be noticed that the frequency of amplitude
peaks are changed. That is, the system behavior (i.e. frequency response function) and
resonance frequency are changed slightly.

4.4 Summary and Discussion

Consider all the results presents in section 4.3, a brief summary and discussion is presented
here. The figures of response spectral density contain several information, one of which is
the peaks that distributed along the frequency. The peaks show the resonance frequencies
of the system. When a system is excited by its resonance frequency, the response would
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be much greater than it being excited with other frequency. It can also be seen that the
number of peaks is related to the number of mode shapes included in the analysis. As the
number of mode shape included increases, more peaks appear.

Moreover, it can be seen from the results that the number of mode shape does not have
a great effect on the Arms value. On the other hand, the location has larger influence. The
center part of the plate has the largest Arms value and the vicinity of plate edge has much
lower one. This is a reasonable result since the boundary is simply supported, which means
there should be no transverse deflection at the end of plate. In other words, the acceleration
should be very small compare to other part of the plate given the same probability (one
sigma value, see detail in section 3.3).

Another result worth noticing is the effect of damping. The Arms values are lower in
the plate model with larger damping ratio. That is, the damping indeed reduces the ac-
celeration. It should be noted that the fundamental difference between the plates with
different damping ratio during random vibration analysis takes place in the frequency re-
sponse function H (w). Since other component of equation 4.32 are the same, the frequency
response function is the critical part where the difference appears. This result is also corre-
sponding what was mentioned in section 3.3 that the frequency response function can be
used to manipulate system response.

Additionally, the effect of damping can also be seen directly from the figure, especially
in the range where excitation PSD is constant (50Hz to 800Hz). Since the excitation PSD is
only a constant, the response spectral density is essentially the plot of |Hw|2. Thus, due to
the correlation between damping and frequency response function, the damping effect can
also be seen directly from the figures. To be more clear, the width of each peak appears to
be wider when damping is larger.

Finally, the problem regarding if the pretension force is enough to hold the solar panels
in random excitation needs to be addressed. It can be clearly seen from the results that the
resultant force (30.54N) caused by random excitation is smaller than the presention force
(40N) for one sigma value (68%). However, if three sigma value (99.7%) is considered, the
resultant force (91.7N) would be larger than pretension force. It results that the support
pins should remain in contact within only part of the time during launching. Therefore,
it is recommended to increase the pretension force to a level such that it is larger than 91.7N.

It should be emphasized that the results are only valid for the given conditions. That is,
the solar panels are made of aluminum and the boundaries are simply supported. However,
neither of these conditions are completely true for the real solar panels on nano-satellite.
This result only gives the basic understanding of how the system would behave and should
not be used directly in design. Instead, the result can be adopted for further analysis in
order to build a more realistic analytical model.
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The deployable solar panels attached on nano-satellites are folded into several layers
during the launch of a rocket. Afterwards, they will unfold when the correct orbit is
reached. Consider the forces originated from rocket, the folded solar panels would indeed
experience random vibration during launching. Therefore, it is necessary to understand
the characteristic of a solar panel subjected to random vibration in order to build a better
design. This project focuses on providing a basic understanding of random vibration and
analytical solutions of several relevant models.

The random vibration analysis consists in two major parts, namely the analysis of vi-
bration and random variable. Firstly, the theory of vibration is reviewed in chapter 2,
including single degree of freedom model, multiple degree of freedom model and plate
vibration. The associate topic modal analysis is also reviewed and plays an important role
in the following analysis. Beam vibration can also be found in appendix A. Secondly, the
theory of probability regarding random variable analysis is introduced in chapter 3. In
random vibration, the excitation can not be modeled as a single time function and needs
to be expressed by random variable. Thus, the idea of probability and corresponding time
and frequency domain analysis method are introduced. Finally, the analytical analysis of
several models based on the theories stated above is presented in chapter 4.

In analytical analysis, a verification of previous study and a preliminary study are con-
ducted first. It verifies the approach used and provides the general idea of harmonic base
excitation of plate. Thereafter, four plate studies are utilized for a better representation of
a solar panel. Beam models subjected to base excitation and white noise random excitaion
can also be found in appendix B, in the beginning of the project they served as a starting
point since they are relatively simple to analyze.

The four studies include study of mode, location, damping and material. Each of them
focuses on changing one variable only and determine change of system response. The re-
sults of above studies are summarized and discussed in section 4.4. Several notes are given
on how the characteristic of the system is changed when adjusting the analysis settings.
The figures of response spectral density contain several information. For instance, the re-
sponse spectral density gives some rough estimation regarding how large is the damping
of the system and where the resonance frequencies are. The root-mean-square accelera-
tion Arms results serve as a important factor when determining if the contact would loss
between solar panels and support pins. Compare the maximum force in the middle of the
plate (30.54 Newtons) with the pretension force (40 Newtons), it is thereafter concluded
that the pretension force can hold the solar panels from losing contact with support pins
for one-sigma value.

45
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For future analysis on this topic, more boundary conditions and material property are
recommended to consider. Due to the lack of time, the scope of this project is very lim-
ited. Since the solar panels are actually supported by only four to six support pins, the
boundary condition considered in this project may not be accurate enough. More bound-
ary conditions of the models could be utilized and try to simulate the actual condition the
best possible way. Additionally, the material property used should be adjusted to the one
of solar panels. Another commonly used estimation tool known as Mile’s equation is also
worth noticing. [11]
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Appendix A Beam Vibration

The equation of motion of beam is firstly derived and followed by the description of
various boundary conditions in this section. The boundary condition is not introduced in
the previous sections since it only influences the discrete system in an indirect way. Finally,
the analysis of free and forced vibration of beam is demonstrated.

A.1 Equation of Motion and Boundary Condition

Consider a beam subjected to distributed load f (x, t) as shown in figure A.1. M (x, t),
V (x, t) and w (x, t) represents the bending moment, shear force and lateral deflection of
the beam, respectively.
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By writing

and disregarding terms involving second powers in dx, Eqs. (8.70) and (8.71) can be written as

(8.72)

(8.73)

By using the relation from Eq. (8.73), Eq. (8.72) becomes

(8.74)

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or

thin beam theory), the relationship between bending moment and deflection can be

expressed as [8.8]

(8.75)

where E is Young s modulus and I(x) is the moment of inertia of the beam cross section

about the y-axis. Inserting Eq. (8.75) into Eq. (8.74), we obtain the equation of motion for

the forced lateral vibration of a nonuniform beam:

(8.76)
0

2

0x2
 cEI(x) 

0
2w

0x2
  (x, t) d + rA(x)  

0
2w

0t2
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0
2w

0x2
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-  

0
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0x2
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FIGURE 8.14 A beam in bending.
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Figure A.1: (a) A beam subjected to distributed load. (b) Free body diagram of the beam [9]

By making use of force and moment equilibrium with the relation between shear force
and moment V = ∂M/∂x , it gives

� ∂2M
∂x2 (x, t) + f (x, t) = rA (x)

∂2w
∂t2 (x, t) (A.1)

where r and A (x) are the mass density and cross section area of the beam, respectively.
The moment M can be found by Euler-Bernoulli thin beam theory

M (x, t) = EI (x)
∂2w
∂x2 (x, t) (A.2)

where E and I (x) are the Young’s modulus and moment of inertia of the beam. Substi-
tute equation A.2 into A.1, it yields

∂2

∂x2


EI (x)

∂2w
∂x2 (x, t)

�
+ rA (x)

∂2w
∂t2 (x, t) = f (x, t) (A.3)

For a uniform beam, which I (x) = I and A (x) = A, equation A.3 becomes
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EI
∂4w
∂x4 (x, t) + rA

∂2w
∂t2 (x, t) = f (x, t) (A.4)

or for free vibration

c2 ∂4w
∂x4 (x, t) +

∂2w
∂t2 (x, t) = 0 (A.5)

where

c =

s
EI
rA

(A.6)

There are three commonly used boundary conditions, namely free end, simply sup-
ported and fixed, for beam vibration as listed below

1. Free end :

(a) Bending moment : EI ∂2w
∂x2 = 0

(b) Shear force : ∂
∂x

⇣
EI ∂2w

∂x2

⌘
= 0

2. Simply supported (pinned) end :

(a) Deflection : w = 0

(b) Bending moment : EI ∂2w
∂x2 = 0

3. Fixed (clamped) end :

(a) Deflection : w = 0

(b) Slope (angle) : ∂w
∂x = 0

A.2 Free and Forced Vibration of Beam

A.2.1 Free Vibration

The response for free vibration of beam can be obtained by making use of the method
separation of variables, that is

w (x, t) = W (x) · T (t) (A.7)

where W (x) is known as mode shape or normal mode and T (t) is a time dependent
function. Substitute equation A.7 into A.5 and rewritten as

c2

W (x)
d4W (x)

dx4 = � 1
T (t)

d2T (t)
dt2 = w2 (A.8)

Since each part of the equation depends on different variable, they much equal to a
constant, which is assumed to be the square of natural frequency w2. Thus, equation A.8
can be rewritten as
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d2T (t)
dt2 + w2T (t) = 0

d4W (x)
dx4 � b4W (x) = 0

(A.9)

where

b4 =
w2

c2 =
rAw2

EI
(A.10)

The solution of the first part of equation A.9 can be assumed as

T (t) = A cos (wt) + B sin (wt) (A.11)

where A and B are constants and can be found with initial condition. While the solution
of the second part of equation A.9 can be assumed as

W (x) = C · esx (A.12)

where C and s are constants. By substituting equation A.12 into A.9, the normal mode
W (x) and frequency w can be found as

W (x) = C1 cos (bx) + C2 sin (bx) + C3 cosh (bx) + C4 sinh (bx)

w = b2

s
EI
rA

(A.13)

where C1, C2, C3 and C4 are constants and can be determined by the boundary condi-
tions. For a fixed-simply supported uniform beam with length l, equation A.13 becomes

C1 [cos (bl) � cosh (bl)] + C2 [sin (bl) � sinh (bl)] = 0

�C1 [cos (bl) + cosh (bl)] � C2 [sin (bl) + sinh (bl)] = 0
(A.14)

In order to find a non-trivial solution, the determinant of equation A.14 must be zero.
Thus,

cos (bl) sinh (bl) � sin (bl) cosh (bl) (A.15)

or

tan (bl) = tanh (bl) (A.16)

Equation A.16 is known as frequency equation, since the roots of this equation bnl gives
the natural frequencies wn. Equation A.10 is now rewritten as

wn = b2
n

s
EI
rA

(A.17)
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Therefore, the corresponding lateral displacement wn (x, t) can be expressed as

wn (x, t) = Wn (x) [An cos (wnt) + Bn sin (wnt)] (A.18)

Finally, the complete solution of w (x, t) is given by

w (x, t) =
•

Â
n=1

Wn (x) [An cos (wnt) + Bn sin (wnt)] (A.19)

It should be noted that the normal mode Wn also has the property orthogonality for the
domain (i.e. from 0 to l) as shown in equation A.20.

Z l

0
rAW2

i dx = 1 (A.20)

Additionally, figure A.2 by [9] shows the common boundary conditions, frequency
equations and mode shapes for the transverse vibration of a beam.726 CHAPTER 8 CONTINUOUS SYSTEMS

End Conditions
of Beam

Frequency
Equation Mode Shape (Normal Function)

Pinned-pinned

Free-free

Fixed-fixed

Fixed-free

Fixed-pinned

Pinned-free

Value of bnl

sin bnl  0

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

tan bnl  tanh bnl  0

tan bnl  tanh bnl  0

Wn(x)  Cn[sin bnx] b1l  p

b2l  2p
b3l  3p
b4l  4p

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    1.875104
b2l    4.694091
b3l    7.854757
b4l  10.995541

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768

(bl    0 for rigid- 
body mode)

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768
(bl    0 for rigid- 
body mode)

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]

Wn(x)  Cn[sinh b nx nx  sin bnx

 an (cosh bnx  cos bnx)]

where

where

an 
sin bnl  sinh bnl

cosh bnl  cos bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cosh bnx  cos bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  an sinh bnx]

where

an 
sin bnl

sinh bnl

an 
sinh bnl  sin bnl

cos bnl  cosh bnl

FIGURE 8.15 Common boundary conditions for the transverse vibration of a beam.

8.5.5
Orthogonality 
of Normal
Functions

The normal functions W(x) satisfy Eq. (8.83):

(8.101)

Let and be the normal functions corresponding to the natural frequencies 

and , so that

(8.102)c2 

d4Wi

dx4
- vi

2Wi = 0

vj(i Z j)

viWj(x)Wi(x)

c2  

d4W

dx4
 (x) - v

2W(x) = 0

M08_RAO08193_5_SE_C08.qxd  8/21/10  6:03 PM  Page 726

Figure A.2: Common boundary conditions for the transverse vibration of a beam. [9]
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A.2.2 Forced Vibration

The analysis of forced vibration of beam follows very similar procedure as described earlier.
The deflection w (x, t) is assumed as

w (x, t) =
•

Â
n=1

Wn (x) qn (t) (A.21)

where Wn is taken from the second part of equation A.9 with wn from equation A.17.
qn is the n-th generalized coordinate. Substitute equation A.21 into A.4, it becomes

EI
•

Â
n=1

d4Wn (x)
dx4 qn (t) + rA

•

Â
n=1

Wn (x)
d2qn (t)

dt2 = f (x, t) (A.22)

or rewritten as

•

Â
n=1

w2
n Wn (x) qn (t) +

•

Â
n=1

Wn (x)
d2qn (t)

dt2 =
1

rA
f (x, t) (A.23)

Premultiply equation A.23 by Wm (x) and integrate it from 0 to l, i.e. the domain, and
use the orthogonality condition shown in equation A.20, it yields to

d2qn (t)
dt2 + w2

nqn (t) =
1

rAB
Qn (t) (A.24)

where Qn (t) is the generalized force and b is a constant given by

Qn (t) =
Z l

0
f (x, t) Wn (x) dx

B =
Z l

0
W2

n (x) dx
(A.25)

It can be seen from equation A.24 that it is essentially the same as undamped single
degree of freedom vibration system. Thus, the solution is given by

qn (t) = An cos (wnt) + Bn sin (wnt) +
1

rAB wn

Z t

0
Qn (t) sin [wn (t � t)] dt (A.26)

It should be noted that the first two terms of equation A.26 resulting from initial condi-
tions give transient state of the system. On the other hand, the last term gives the steady-
state solution of the system.





Appendix B Analytical Beam Model

The equation of motion of beam is shown in equation A.4 and rewritten here. The
boundary conditions can be found in appendix A.

EI
∂4w
∂x4 (x, t) + rA

∂2w
∂t2 (x, t) = f (x, t) (B.1)

where E, I, r and A are Young’s modulus, moment of inertia of the beam, mass density
and cross section area of the beam, respectively. The data used for numerical calculations
are shown in table B.1.

Table B.1: Data sheet for numerical calculations

Symbol Value Unit

Young’s modulus E 70 GPa

Poisson’s ration n 0.33

Mass density r 2700 kg
m3

Frequency range of excitation f 20 - 2000 Hz

Damping ratio x 0.05

Length of beam L 0.4 m

Moment of inertia of beam I 1 · 10�9 m4

Cross section area of beam A 0.01 m2

B.1 Harmonic Base Excitation

A harmonic base excitation beam model with length L is shown in figure B.1 and can be
used in comparison with other models. Since there is no external force acting on the beam,
f (x, t) becomes 0 in equation B.1.

Base excitation
P · cos (� · t)

Simply supported

Figure B.1: Sketch of harmonic base excitation beam model

The boundaries are simply supported at x = 0 and x = L while the harmonic base
excitation is at right hand boundary x = L as
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w (L, t) = P · cos (wt) (B.2)

where the amplitude P is taken from 0.1 to 0.5 (mm). Substitute equation B.2 into the
equation of motion with other boundary conditions and apply separation of variables as
w (x, t) = W (x) T (t), it becomes

W (x) = C1 (cos (bx) � cosh (bx)) + C2 (sin (bx) � sinh (bx))

T (t) = cos (wt)
(B.3)

where b is given by equation A.10 and

b4 =
rAw2

EI

C1 =
P
2

· � sin (bL) + sinh (bL)
sinh (bL) cos (bL) + sin (bL) cosh (bL)

C2 =
P
2

· cos (bL) + cosh (bL)
sinh (bL) cos (bL) + sin (bL) cosh (bL)

(B.4)

Thus, the solution of w (x, t) can be found as shown in equation B.5.

w (x, t) =
P
2

· 1
sinh (bL) cos (bL) + sin (bL) cosh (bL)

·

[ (sin (bL) � sinh (bL)) · (cos (bx) � cosh (bx)) +

(cos (bL) + cosh (bL)) · (sin (bx) � sinh (bx)) ] · cos (wt)

(B.5)

The results are shown in figure B.2 and B.3. In the following figures, the only time-
dependent part of solution cos (wt) is taken as 1 in order to find out the maximum dis-
placement (or shear force). Additionally, the figures also show the influence from different
amplitude P and location of beam x.
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Figure B.2: Harmonic base excitation beam model result with various amplitude P and location x

Figure B.3: Harmonic base excitation beam model result with various frequency f and location x

B.2 White Noise Random Excitation

Consider a simply supported beam subjected to a white noise random excitation. A sketch
of such model is shown in figure B.4.

Simply supported
Random excitation

Figure B.4: Sketch of random excitation beam model
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Recall modal analysis and forced vibration of beam described in chapter 2. The trans-
verse deflection can be expressed as

w (x, t) =
•

Â
n=1

Wn (x) qn (t) (B.6)

where the mode shape Wn (x) is given by

Wn (x) = Cn [sin (bnx)]

bn =
np

L
, n = 1, 2, ...

(B.7)

Substitute equation B.6 into the equation of motion with the orthogonality of mode
shapes, it becomes

d2qn (t)
dt2 + w2

nqn (t) =
1

rAB
Qn (t) = Nn (t) (B.8)

where

Qn (t) =
Z L

0
Wn (x) dx · f (t)

B =
Z L

0
W2

n (x) dx

wn =b2
n

s
EI
rA

(B.9)

Recall the frequency domain analysis in chapter 3 and the definition of frequency re-
sponse function H (w) for a general nth-order linear system. If the general nth order linear
system is expressed as

n

Â
j=0

aj
djx (t)

dtj = f (t) (B.10)

then frequency response function H (w) is given as

H (w) =

 
n

Â
j=0

aj (iw)

!�1

(B.11)

Thus, in this case, the frequency response function can be found as

Hq,n (w) =
1

w2
n � w2 (B.12)

Take the above results and substitute into equation B.6, it yields
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w (x, t) =
•

Â
n=1

Wn (x) qn (t)

=
•

Â
n=1

Wn (x) Hq,n (w) Nn (t)

= Hw (w) f (t)

(B.13)

The acceleration response power spectral density (PSD) Sẅẅ of the beam model with
an acceleration excitation PSD Sf f can be found by

Sẅẅ = |Hw|2 · Sf f (B.14)

while the velocity and displacement PSD are given by

Sẇẇ =
1

w2 · Sẅẅ

Sww =
1

w4 · Sẅẅ

(B.15)

The root-mean-square(RMS) displacement is thereafter calculated from the area below
displacement response PSD curve.

Drms =

s
Z 2000

20
Sww d f (B.16)

If the beam is subjected to a white noise 0.1(g2/Hz) from 20 to 2000 Hertz as described
in section 1.1.1, the acceleration response results are shown in figure B.5 and B.6. It should
be noted that the figures are semi-log plot. In addition, the location x is L

2 in figure B.5 and
B.7 and the number of mode shape n is taken as 5 in figure B.6 and B.8.

Figure B.5: White noise beam model result with various frequency f and number of mode shapes n
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Figure B.6: White noise beam model result with various frequency f and location x

The displacement response results are shown in figure B.7 and B.8.

Figure B.7: White noise beam model result with various frequency f and number of mode shapes n

Figure B.8: White noise beam model result with various frequency f and location x

The Drms values of different location x and number of mode shape n are shown in table
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B.2.

Table B.2: Drms value of different condition

Location n Drms (mm)

x = L
2

1 0.0510

3 0.0509

5 0.0509

10 0.0509

20 0.0509

Location n Drms (mm)

x = 0.9 L

5

0.0158

x = 0.7 L 0.0413

x = 0.5 L 0.0509

x = 0.3 L 0.0413

x = 0.1 L 0.0158





Appendix C Dirac Delta Function

Dirac delta function was introduced by the physicist Paul Dirac for modeling the den-
sity of an idealized point mass or point charge. It is equal to zero everywhere except at
zero as shown in figure C.1.

0 1-1

Figure C.1: Schematic representation of the Dirac delta function

C.1 Properties of Dirac Delta Function

Dirac delta function can be thought as a a function on the real line which is zero everywhere
and infinite at zero, that is

d (t) =

8
><

>:

+• t = 0

0 t 6= 0
(C.1)

while the integration is defined as
Z •

�•
d (t) dt = 1 (C.2)

Dirac delta function also follows translation property as
Z •

�•
f (t) d (t � T) dt = f (T) (C.3)
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C.2 Solution to Ordinary Differential Equation

Equation 3.22 is rewritten here as

n

Â
j=0

aj
djhx (t)

dtj = d (t) (C.4)

As stated in section 3.2, hx (t) is zero for t < 0, the problem left is the situation that time
is equal or greater than zero. For the time greater than zero, the equation becomes

n

Â
j=0

aj
djhx (t)

dtj = 0 for t > 0 (C.5)

To have a unique solution for a nth order ordinary differential equation such as equa-
tion C.5, n initial conditions or boundary conditions are needed. The values used are the
initial value of hx (t) and its first derivatives at time t = 0+.

Reconsider equation C.4, it shows that the left hand side of equation should have at
least one term to be infinity since Dirac delta function is infinity at time t = 0. Assume the
jthe order term is infinity as

djhx (t)
dtj = bd (t) (C.6)

where b is an arbitrary value and the first derivative is

dj+1hx (t)
dtj+1 = b

dd (t)
dt

= bd0 (t) (C.7)

Figure C.2 shows the possible approximations for the Dirac delta function and its
derivative. As it can be seen from the figure, |d0 (t) |/d (t) ! • as D ! 0.Random Vibrations172

d h t
dt

b d t
dt

b t
j

x
j

+

+
= ≡ ′

1

1
( ) ( ) ( )δ

δ

As explained in Appendix A, the precise definition of δ( )t  is in terms of
the limit of a sequence involving bounded functions. For example, if we consider
δ( )t  to be the limit as ∆ → 0  of [( | | / ) / ] ( | |)1− −t U t∆ ∆ ∆ , as shown in Fig. 5.2,
then we have ′δ ( )t  as a limit of [ ( ) / ] ( | |)− −sgn t U t∆ ∆2  so that | ( ) | / ( )′ → ∞δ δt t
as ∆ → 0 . This same result holds true for any sequence that we might consider as
tending to ′δ ( )t . Thus, we must consider the magnitude of ′δ ( )t  to be infinitely
larger than that of δ( )t , so we cannot satisfy Eq. 5.8 in the neighborhood of the
origin if the jth derivative of h tx ( )  is like δ( )t  and the ( )j +1 st  derivative also
appears in the equation. On the other hand, if we say that the n th derivative of
h tx ( )  in the neighborhood of the origin is b tδ( ) , then all the other terms on the
left-hand side of Eq. 5.8 are finite, so the equation can be considered satisfied at
the origin if b an= −1. Using

d h t
dt

a t t
n

x
n n
( ) ( ) | |= −1δ      for very small (5.10)

now gives us the initial conditions for Eq. 5.9 at time t = +0 . In particular, the
integral of Eq. 5.10 gives

d h t
dt

a U t t
n

x
n n

−

−
−=

1

1
1( ) ( ) | |     for very small 

Figure 5.2 Possible approximations for the Dirac delta function and its derivative.
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Figure C.2: Possible approximations for the Dirac delta function and its derivative. [6]

It indicates that the magnitude of d0 (t) is infinitely larger than that of d (t). Therefore,
if the jth order derivative of hx (t) is equivalent to d (t) and the (j + 1)th order derivative
of hx (t) also appears in equation C.4, then the boundary condition can not be satisfied.
However, if the nth order derivative of hx (t) in the vicinity of origin is bd (t), then all other
terms in left hand side of equation C.4 would be finite. That is, the equation would be
satisfied at the origin if b = a�1

n as
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dnhx (t)
dtn = a�1

n d (t) for very small |t| (C.8)

which gives the initial condition for equation C.5 at time t = 0+ and the integral gives

dn�1hx (t)
dtn�1 = a�1

n U (t) for very small |t| (C.9)

where U (t) is unit step function. Thus,
✓

dn�1hx (t)
dtn�1

◆

t=0+

= a�1
n (C.10)

and the integral gives
✓

djhx (t)
dtj

◆

t=0+

= 0 for j  n � 2 (C.11)

Finally, equation C.10 and C.11 give the initial conditions that are necessary to find the
solution of hx (r).





Appendix D Reference Article

The article primary used in this project is "Benchmark solutions of stationary random
vibration for rectangular thin plate based on discrete analytical method" [1] by Guohai
Chen, Jilei Zhou and Dixiong Yang. The complete article can be seen in the following
pages.

67



Probabilistic Engineering Mechanics 50 (2017) 17–24

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Benchmark solutions of stationary random vibration for rectangular thin
plate based on discrete analytical method
Guohai Chen a, Jilei Zhou b, Dixiong Yang a,*
a State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational
Mechanics, Dalian University of Technology, Dalian 116024, China
b School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China

a r t i c l e i n f o
Keywords:
Stationary random vibration
Rectangular thin plate
Discrete analytical method
Benchmark solutions
Pseudo excitation method

a b s t r a c t
This paper aims to accurately and efficiently achieve the benchmark solutions of stationary stochastic responses
for rectangular thin plate. Firstly, the exact solutions of free vibration for thin plate with SSSS, SSSC, SCSC,
SFSF, SSSF and SCSF boundary conditions are introduced to random vibration analysis. Based on pseudo
excitation method (PEM), the analytical power spectral density (PSD) functions of the transverse deflection,
velocity, acceleration and stress responses for thin plate under random base acceleration excitation are derived.
Subsequently, to enhance computational efficiency, the discrete analytical method (DAM) that realizes the
discretization for the modal coordinates and frequency domain is proposed. Finally, the efficiency of DAM and the
accuracy of benchmark solutions are scrutinized by comparison with the analytical solutions and finite element
solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As a basic structural member, the plate is widely applied to prac-
tical engineering. Usually, the plate structure is subjected to various
excitations such as the earthquakes, winds, waves, turbulent boundary
and jet noise, etc., which commonly present the randomness both in
temporal and spatial domain. Random vibration analysis for a plate
structure involves two types of model. The first is the continuous model
based on the high-order partial differential equation, from which the
analytical solution of random vibration response may be achieved.
The second is the discrete model in which the continuum structure
with infinite degrees of freedom is discretized to a multiple degrees of
freedom (MDOF) system, by means of the numerical technique such as
the popular finite element method (FEM). The discrete model can be
utilized to approximately obtain the stochastic dynamical responses of
structure. However, the continuous model can describe accurately its
mechanical behavior, and is suitable to achieve the credible benchmark
solutions of structures for verifying the discrete model and associated
numerical methods. This work attempts to address the problem that
there is a lack of benchmark solutions of random vibration responses,
especially the stress solutions of thin plate.

In the past fifty years, the progresses on random vibration anal-
ysis based on the continuous model have been made. By virtue of

* Corresponding author.
E-mail address: yangdx@dlut.edu.cn (D. Yang).

normal mode method and the time domain Green function method,
Lin [1] investigated the transient displacement responses for continuous
structures subjected to stationary random excitations. Crandall and his
colleagues [2,3] pointed out that, with exception for enhanced response
in small zones and narrow lanes, the mean square velocity response
of plate under stationary wide-band point random excitation presents
uniform spatial distribution. Rosa and Franco [4,5] carried out the
random vibration analysis for the rectangular thin plate subjected to
the turbulent boundary layer excitation. However, only the simple sup-
ported edges for the beam or plate was tackled in their works. In fact, the
boundary condition has considerable effect on the stochastic response of
the structure, because its frequencies and mode shapes are completely
different under different boundary conditions. Hosseinloo et al. [6] ex-
amined the effects of modal damping and excitation frequency range on
the root mean square (rms) of acceleration response and the maximum
deflection of thin plates with CCSS, SCCC, CCCC boundary conditions
subjected to the base acceleration random excitation, and indicated that
these responses decrease with the increasing of the modal damping
ratio and the excitation frequency range. Nevertheless, it is difficult to
achieve the benchmark solutions in their study, since the approximate
frequencies and modal shapes were adopted. Moreover, the complete
quadratic combination (CQC) based analytical approach might require

https://doi.org/10.1016/j.probengmech.2017.10.006
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the large computational efforts with the widening of frequency band of
random excitation.

On the other hand, to balance the computational accuracy and
efficiency, the significance of the modal cross-correlation was also
intensively investigated. Crandall et al. [2,7–9] examined the effects
of modal overlap ratio on the mean square response for various
structures, and pointed out that the bandwidth of random excitation
and the damping ratio of structures are the main influence factor on
stochastic response, as well as suggested the modal-sum and image-sum
approaches to decrease the approximate evaluation error of the sum of
a large number of integral [10]. Elishakoff et al. [11–14] performed
a series of researches on different structures such as curved panel and
shell, to elaborate the dramatic effects of modal cross-correlation on the
mean square responses. Meanwhile, the similar works for discrete MDOF
systems were also conducted. In order to decrease the computational
effort of stochastic dynamical analysis, an approximate square root
of sum square (SRSS) method was applied by omitting modal cross-
correlation terms [15]. Wilson et al. [16] developed a CQC method to
reduce the numerical errors of SRSS rule, but at the expense of effi-
ciency. Accordingly, Lin et al. [17–20] proposed a highly efficient and
accurate algorithm named as pseudo excitation method (PEM), which
promotes the engineering application of random vibration theory. The
extensive application of the PEM is dependent on the development
of finite element method. It is well known that the numerical errors
of FEM will nonlinearly increase with the increasing frequency [21].
For obtaining the benchmark solutions, the analytical solutions of free
vibration can be adopted to eliminate the errors in the band-wide
random vibration analysis for the plate. In this paper, the benchmark
solutions are achieved efficiently, when the plate is subjected to band-
wide random excitation up to 20 kHz with the proposed PEM-based
discrete analytical method.

For the free vibration analysis of plates, Leissa, Leissa and
Qatu [22,23] reviewed the free vibration for rectangular thin plate
with various boundary conditions, and pointed out that there are exact
solutions of free vibration for only the 6 Lévy boundary conditions
(SSSS, SSSC, SCSC, SFSF, SSSF, SCSF) with two opposite edges simply
supported among 21 cases, which involve the possible combinations of
clamped (C), simply-supported (S), and free edge (F) condition. Due to
the difficulty of solving the fourth-order partial differential governing
equation, the other 15 cases must be solved by the approximate ap-
proaches, such as FEM [24], finite difference method [25], finite strip
method [26], boundary element method [27], differential quadrature
method [28], Rayleigh–Ritz method [29], superposition method [30],
symplectic superposition method [31,32] etc.

In this paper, the analytical PSD functions of stationary stochastic
responses for rectangular thin plate with the 6 Lévy boundary conditions
(SSSS, SSSC, SCSC, SFSF, SSSF and SCSF) are obtained. Therein, the
exact solutions of free vibration of thin plate are introduced, and the
pseudo excitation method based on the continuous model is employed.
Through integrating the corresponding PSD functions, the rms of the
displacement, velocity and acceleration responses as well as the stress
components are achieved, whose results are also termed as benchmark
solutions. Moreover, the discrete analytical method (DAM) is developed
to improve computational efficiency without reducing the precision by
discretizing the modal space coordinate and frequency domain.

The remainder of this paper is organized as follows. Section 2 revisits
the exact Lévy solutions of free vibration for rectangular plate under
6 boundary conditions, which provides a foundation of benchmark
solutions of stationary random responses. In Section 3, the analytical
response PSD functions are derived by employing the PEM-based ana-
lytical method and discrete analytical method. Moreover, an approach
to calculate the rms of stationary random response of thin plate is
presented in Section 4. Then, two examples in Section 5 illustrate
the benchmark solutions of stationary random vibration for the 6
cases under base wide-band white noise excitation and filtered white
noise excitation. Comparison between the analytical solutions and finite
element solutions verifies the high accuracy and efficiency of DAM.
Section 6 draws some conclusions.

2. Exact solutions of free vibration of rectangular thin plate

2.1. Differential equation of forced vibration of rectangular thin plate

The differential equation of forced vibration for rectangular thin
plate is given by [22,23]

D(4
w(x, y, t) + c

)w(x, y, t)
)t

+ ⇢h
)
2
w(x, y, t)
)t2

= p(x, y, t) (1)

where D = Eh
3_12(1 * ⌫

2) is the bending rigidity of the plate; E the
Young’s modulus and v the Poisson’s ratio; (4 = )

4

)x4
+2 )

4

)x2)y2
+ )

4

)y4
is the

bi-harmonic operator; w(x, y, t) is the transverse deflection; c indicates
the viscous damping coefficient of the plate; ⇢ is the volume density of
the plate; h indicates the plate thickness; p(x, y, t) is an excitation.

As shown in Fig. 1, the three classical boundary conditions for the
rectangular plate, namely simply supported (S), clamped (C) and free
(F) can be described by

Simply supported (S):w = 0, M
x
= 0

Clamped (C):w = 0, )w
)x

= 0

Free (F):M
x
= 0,V

x
= Q

x
+

)M
xy

)y
= 0

(2)

where )w

)x
is the rotation angle in the xz plane; M

x
denotes the bending

moment in the xz plane; Q
x
represents the shear force; M

xy
is the

torsional moment in the yz plane; V
x
is the equivalent shear force.

2.2. Exact solutions of free vibration under 6 boundary conditions

The undamped free vibration differential equation of thin plate is
formulated as [22]

D(4
w(x, y, t) + ⇢h

)
2
w(x, y, t)
)t2

= 0 (3)

The transverse deflection in Eq. (3) is expressed as w(x, y, t) =
�(x, y) exp(i!t), in which ! indicates the angular frequency of free vibra-
tion, and �(x, y) represents the corresponding modal shape. Substituting
the transverse deflection formulation w(x, y, t) into Eq. (3) can yield the
differential equation about the modal shape function

D(4
�(x, y) * ⇢h!

2
�(x, y) = 0 (4)

For the 6 cases with a couple of simply supported boundary condi-
tions on the opposite edge in Fig. 1(b), the Lévy solutions [22,23] of
modal shape are expressed as

�(x, y) =
�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sin h�2y
�

sin�x (5)

where � = m⇡_a, and m is the number of half-wave; a is the length
of plate along the y coordinate; �1 =

t

�2 *
˘

⇢h!2_D, and �2 =
t

�2 +
˘

⇢h!2_D can be calculated according to the corresponding fre-
quency equations (see Table A in Appendix); A1ÌA4 will be determined
in terms of the boundary conditions.

Note that an assumption
˘

⇢h!2_D > �
2 is taken in Eq. (5), and

frequency equations are listed in Table A. If
˘

⇢h!2_D < �
2, it must be

replaced sin�1y and cos�1y with sinh�1y and cosh�1y, respectively.

3. Discrete analytical method for stationary random responses

In this section, at first, the analytical procedure of stationary random
vibration responses for rectangular thin plate is derived by combining
the mode superposition method with the pseudo excitation method.
Actually, it is not restricted by the form of random excitation, such as
the point excitation, the distributed excitation or the base acceleration
excitation.
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Fig. 1. Rectangular thin plate (a) subjected to various random excitations; (b) with boundary conditions.

3.1. Analytical method based on PEM

Herein, the pseudo excitation method is introduced briefly, and a
more detailed description of PEM is referred to [17–20]. There is a
2D elastic thin plate subjected to stationary random excitation with
a power spectral density S

pp
(x, y, !). S

uu
(x, y, !), S

vv
(x, y, !) and

S
uv
(x, y, !) denote the auto-PSD and the cross-PSD of two arbitrary

stationary response u(x, y, t) and v(x, y, t) at location (x, y), respectively.
Assume the following pseudo harmonic excitation [17,19,20] to replace
the Gaussian random excitation p(x, y, t) in Eq. (1)

õp(x, y, t) =
t

S
pp
(x, y,!) exp(i!t) (6)

Subsequently, the pseudo responses u(x, y, t) and v(x, y, t) can be
calculated as

õu(x, y, t) =
t

S
pp
(x, y,!)H

u
(x, y,!) exp(i!t)

õv(x, y, t) =
t

S
pp
(x, y,!)H

v
(x, y,!) exp(i!t)

(7)

where H
u
(x, y, !), H

v
(x, y, !) is the corresponding frequency response

function at location (x, y). Multiplying the pseudo response õu(x, y, t) or
õv(x, y, t) by its conjugate quantity õu(x, y, t)<orõv(x, y, t)<, the corresponding
auto-PSD and cross-PSD functions can be obtained

S
uu
(x, y,!) = õu(x, y, t)<õu(x, y, t) = H

u
(x, y,!)2S

pp
(x, y,!)

S
uv
(x, y,!) = õu(x, y, t)<õv(x, y, t) = H

u
(x, y,!)<S

xx
(x, y,!)H

v
(x, y,!) (8)

It is seen from Eqs. (7) and (8) that the stationary random vi-
bration analysis for elastic thin plate is simplified to a deterministic
harmonic vibration analysis. Actually, the pseudo excitation method is
also termed as fast CQC method [17]. The reason is that its accuracy is
consistent with CQC, but it is unnecessary to explicitly calculate the
modal cross-correlation coefficient. Consequently, the computational
efficiency of PEM is enhanced significantly, say to two or three orders of
magnitude [19,33]. Hence, the PEM is incorporated into the following
analytical methods to achieve the benchmark solutions of stationary
random response for rectangular thin plate efficiently and accurately.

3.1.1. Analytical PSD functions of deflection and acceleration responses
In this section, the exact response PSD functions are derived by the

analytical method. In Eq. (1), the right-hand item about the external
load is considered to be randomwith respect to the time t. The transverse
deflection w(x, y, t) of the plate is expressed as

w(x, y, t) =
ÿ
…

m=1

ÿ
…

n=1
�
mn
(x, y)⌘

mn
(t) (9)

where �
mn
(x, y) is the mnth modal shape of the plate, m, n denotes the

half-wave number in x and y direction, respectively; ⌘
mn
(t) is the normal

coordinate corresponding to the mnth mode.
The orthogonality of modal shapes is written as follows

 
a

0  
b

0
⇢h�

mn
(x, y)�

kl
(x, y)dxdy = �

mn
�
mn,kl

(10)

 
a

0  
b

0
c�

mn
(x, y)�

kl
(x, y)dxdy = c

mn
�
mn,kl

(11)

where

�
mn

=  
a

0  
b

0
⇢h�

mn
(x, y)2dxdy (12)

indicates the mnth modal mass; c
mn
=c�

mn
_⇢h for homogeneous plate is

modal damping, or is expressed as c
mn

= 2⇣
mn
!
mn
�
mn
by introducing the

mnth modal damping ratio ⇣
mn
; �

mn,kl
= 1 (mn=kl) or �

mn,kl
= 0 (mnëlk)

is the Kronecker delta function.
Eq. (9) is substituted to Eq. (1) and the orthogonality (Eqs. (10) and

(11)) of modal shapes is introduced. Then multiplying the lkth modal
shape �

lk
(x, y) in the two sides of equation, and integrating it over the

surface domain ⌦ of the plate yields

á⌘
mn
(t) + 2&

mn
!
mn

Ü⌘
mn
(t) + !

2
mn
⌘
mn
(t)

= 1
�
mn

 
a

0  
b

0
p(x, y, t)�

mn
(x, y)dxdy

(13)

Then, assuming the pseudo harmonic excitation shown in Eq. (6) and
substituting into Eq. (13), the random vibration analysis for rectangular
thin plate is transformed into the deterministic stationary vibration
analysis of a series of uncoupled SDOF systems

áõ⌘
mn
(t) + 2&

mn
!
mn

Üõ⌘
mn
(t) + !

2
mn
õ⌘
mn
(t) = P

mn
exp(i!t) (14)

P
mn

= 1
�
mn

 
a

0  
b

0

t

S
pp
(x, y,!)�

mn
(x, y)dxdy (15)

in which, P
mn

means the amplitude of generalized harmonic exci-
tation. There is a relationship between output and input: õ⌘

mn
(t) =

H
mn
(!)P

mn
exp(i!t) for a SDOF system subjected to harmonic excitation,

andH
mn
(x, y,!)=(!2

mn
*!2+2i!⇣

mn
!
mn
)*1 is themnth frequency response

function. According to Eq. (9), the pseudo transverse deflection can be
written as

õw(x, y, t) =
ÿ
…

m=1

ÿ
…

n=1
�
mn
(x, y)õ⌘

mn
(t)

=
ÿ
…

m=1

ÿ
…

n=1
�
mn
(x, y)H

mn
(!)P

mn
exp(i!t)

(16)

According to the PEM, the exact auto-PSD functions of transverse
deflection responses can be obtained as

S
ww

(x, y,!) = õw(x, y, t)< õw(x, y, t)

=
H ÿ
…

m=1

ÿ
…

n=1
�
mn
(x, y)H

mn
(!)P

mn

I<

ù
H ÿ
…

k=1

ÿ
…

s=1
�
ks
(x, y)H

ks
(!)P

ks

I

(17)

Also, the auto-PSD functions of velocity and acceleration response
can be formulated by

S Üw Üw
(x, y,!) = Üõw(x, y, t)< Üõw(x, y, t) = !

2
S
ww

(x, y,!) (18)

S áw áw
(x, y,!) = áõw(x, y, t)< áõw(x, y, t) = !

4
S
ww

(x, y,!) (19)

where the superscript (÷)* denotes the complex conjugate of concerned
quantity (÷).
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3.1.2. Analytical PSD function of stress components
For the elastic thin plate, the relationships between strain and

deflection are given by

"
x
= *z )

2
w

)x2
, "

y
= *z )

2
w

)y2
, �

xy
= *2z )

2
w

)x)y
(20)

By introducing the constitutive relationship between stress and
strain, one can obtain the pseudo stresses of plate

õs
x
(x, y, t) = *zE exp(i!t)

1 * ⌫2

ù
ÿ
…

m=1

ÿ
…

n=1

0

)
2
�
mn
(x, y)

)x2
+ ⌫

)
2
�
mn
(x, y)

)y2

1

H
mn
(!)P

mn

õs
y
(x, y, t) = *zE exp(i!t)

1 * ⌫2

ù
ÿ
…

m=1

ÿ
…

n=1

0

)
2
�
mn
(x, y)

)y2
+ ⌫

)
2
�
mn
(x, y)

)x2

1

H
mn
(!)P

mn

õs
xy
(x, y, t) = *zE exp(i!t)

1 + ⌫

ÿ
…

m=1

ÿ
…

n=1

)
2
�
mn
(x, y)

)x)y
H

mn
(!)P

mn

(21)

Similarly, the exact PSD functions of stress responses are calculated by

S
s
(x, y,!) =

`

r

r

r

p

S
sxsx

S
sxsy

S
sxsxy

S
sysx

S
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x
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x
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(22)

where the principal diagonal elements denote auto-spectral density of
normal stress s

x
, s

y
and shear stress s

xy
, and other elements indicates

cross-spectral density of stress components.
In above analysis, a series of analytical PSD functions of stationary

random responses are achieved by introducing the exact frequencies
and modal shape functions of thin plate and using the PEM-based
analytical method with the aid of MATLAB Symbolic Math Toolbox. In
fact, however, such an analytical method may take much computing
time, particularly for the case of the wide-band excitation.

3.2. Discrete analytical method

To improve the computational efficiency of the analytical method
without losing the accuracy, the discrete analytical method is suggested
by discretizing the modal space coordinate and the frequency domain
to transform symbol operations into matrix operations.

By adopting discretization treatment, the vector form of transverse
deflection can be written as

w = �⌘ =

b

f

f

f

f

f

f

d

�
1
1 �

1
2 5 �

1
NF

�
2
1 �

2
2 5 �

2
NF

4 4 7 4

�
NG

1 �
NG
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NG

NF
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g

g

g

g

g

g

e

h

n

n

l

n

n

j

⌘1
⌘2
4

⌘
NF

i

n

n

m

n

n

k

(23)

where w
NGù1 indicates the transverse deflection matrix; �

j

i
is the

ith mode shape at jth node; ⌘
NFù1 is the normal coordinate vector;

NG represents the number of nodes; NF is the number of modes
participating in vibration. Therefore, according to Eq. (6), the pseudo
excitations are written as a vector form

õp =
$t

S
p,1(!)

t

S
p,2(!)5

t

S
p,NF

(!)
%T

exp(i!t) (24)

in which S
p,j
(!) denotes the input PSD in the jth SDOF system.

According to Eq. (16), the vector form of pseudo transverse deflection
can be expressed as follows

õw = �õ⌘ = �HP exp(i!t) (25)

where �
NGùNF

is the modal shape matrix; H
NFùNF

means the fre-
quency response function matrix; P

NFù1 is the amplitude matrix of

generalized harmonic excitation. The pseudo stress response vectors of
the plate are reformulated from Eq. (21)

õsx = �
�

�
,xx

HP + ⌫�
,yy
HP

�

exp(i!t) (26)

õsy = �
�

�
,yy
HP + ⌫�

,xx
HP

�

exp(i!t) (27)

õsxy = 
�

�
,xy

HP
�

exp(i!t) (28)

where �
,rs

= )
2
�

)r)s
(r, s = x or y), which can be obtained by taking

derivatives of the closed-form modal shape function �(x, y) in Eq. (21)
with respect to x or y, then substituting the coordinates of nodes into
the derivatives functions realizes the discretization; � = *zE/(1*⌫2),
 = *zE/(1+⌫), z is the coordinate along the direction of thickness
from the middle plane of rectangular plate. Obviously, the maximum or
the minimum of the stress components in Eqs. (26)–(28) occurs in the
upper or lower surface of the plate (z =±h/2), respectively.

Furthermore, the auto-PSD matrices of the stationary random re-
sponse for the plate can be obtained as

Sww(!) = õw
<
õw
T = (�HP)<(�HP)T (29)

Ssx ,sx
(!) = õs

<
x
õs
T

x
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,xy
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�T (32)

In Eqs. (29)–(32), the PSDmatrices of the transverse deflection, stress
responses are achieved accurately and efficiently at given nodes in the
rectangular thin plate by the discrete analytical method. Moreover, the
accuracy of DAM is independent on the mesh number of plate structure,
because the exact modal shape �(x, y) and its analytical derivative are
adopted directly before the discretization.

4. Root mean square of stationary responses of rectangular thin
plate

By integrating the response PSD curve over the interested frequency
range and taking square root, the root mean square (i.e., standard devi-
ation �

u
(x, y)) of arbitrary stochastic response u(x, y, t) (e.g., deflection

or stress components) of the rectangular thin plate can be calculated

�
u
(x, y) =

v

 
!U

!L

G
uu
(x, y,!)d! =

y

x

x

x

w

NF
…

j=1
G

(i,j)
uu �! (33)

where!
L
,!

U
denotes the lower or upper cutoff frequency;G

uu
(x, y,!) is

the one-sided PSD of response u(x, y, t). By means of MATLAB Symbolic
Toolbox, the analytical integral of PSD function with respect to ! can be
easily carried out. Nevertheless, a numerical integration shown in Eq.
(33) must be implemented for the DAM, because the formula of PSD is
vector form instead of analytic form. Actually, the results in the next
section indicate that the precision of the DAM is still high as long as the
interval �! is small enough.

5. Numerical examples for benchmark solutions of stationary ran-
dom responses

This section demonstrates the high accuracy and efficiency of DAM
by two examples under the band-limited and filtered white noise
random excitation. As benchmark solutions, the rms of the deflection,
velocity, acceleration and stress responses are exhibited for the rectan-
gular thin plate with the 6 boundary conditions, respectively.
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Fig. 2. Acceleration response PSD at the central point for (a) SSSS; (b) SSSC; (c) SCSC; (d) SFSF; (e) SSSF; (f) SCSF boundary condition within 20–2000 Hz.

5.1. Example 1

5.1.1. Verification of accuracy and efficiency
A rectangular thin plate [6] with a = 0.4 m, b = 0.2 m, h = 0.002 m,

elastic modulus E = 70 GPa, Poisson’s ratio v = 0.33, ⇢ = 2700 kg/m3

and modal damping ratio ⇣ = 0.05 is considered, which is subjected
to a band-limited white noise excitation of base acceleration with PSD
S0 = 0.5 g2/Hz within [20,2000] Hz. In this example, the FEM is also
performed by ANSYS software. To ensure relatively accurate results for
FEM, the plate is divided to 5000 (100 ù 50) elements.

Fig. 2 indicates the PSD curves of acceleration response at the
central point of thin plate with 6 boundary conditions, respectively.
It is observed that, the PSD curves of acceleration responses obtained
by DAM are in good agreement with the analytical solutions, but the
results by FEM appear large errors even if the mesh number reaches to
5000. As a result, FEM cannot predict accurately the PSD of acceleration

response of rectangular plate due to its numerical error resulting from
the approximate discretization of spatial domain.

On the other hand, for the 6 boundary conditions the acceleration
response of plate is dominated by the first mode, and the higher
order modes also present remarkable contribution as shown in Fig. 2.
Moreover, the rms of the deflection, velocity, acceleration and normal
stress along x direction are listed in Table 1. The root mean square of
random stationary responses by the DAM is well consistent with the
counterparts of the analytical method, while FEM produces errors for
various boundary conditions compared to the analytical solutions as a
reference in Table 1.

In addition, the CPU time taken by the three methods is also
displayed in Table 1. For the convenience of comparison, the same
number of points is adopted for computation with DAM and FEM, but
just one point is selected to calculate its analytical responses owing to its
inefficiency. Therefore, the CPU time is real for the analytical method,
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Table 1
The rms of responses under 6 boundary conditions within 20*2000 Hz.

Boundary condition Modes a Nodes b Method Root mean square of responses CPU Time (s)
Def. c (m) Vel. d (m/s) Acc. e (m/s2) s

x

f (MPa)

SSSS

20 1 Analytical 5.966 ù 10*4 0.591 929.13 7.207 22.071

20 5151 DAM 5.966 ù 10*4 0.591 929.13 7.207 0.003
"DAM

g (%) 0.000 0.000 0.000 0.000 —

20 5151 FEM 5.970 ù 10*4 0.591 929.07 7.216 0.003
"FEM

h (%) 0.067 0.000 0.006 0.126 —

SSSC

17 1 Analytical 3.523 ù 10*4 0.491 989.22 5.122 24.176

17 5151 DAM 3.523 ù 10*4 0.491 989.22 5.122 0.003
"DAM (%) 0.000 0.000 0.000 0.000 —

17 5151 FEM 3.523 ù 10*4 0.491 989.12 5.131 0.003
"FEM (%) 0.020 0.000 0.010 0.166 —

SCSC

17 1 Analytical 2.320 ù 10*4 0.447 1220.66 4.284 23.907

17 5151 DAM 2.320 ù 10*4 0.447 1220.66 4.284 0.003
"DAM (%) 0.000 0.000 0.000 0.000 —

17 5151 FEM 2.320 ù 10*4 0.447 1220.26 4.294 0.005
"FEM (%) 0.000 0.022 0.029 0.212 —

SFSF

30 1 Analytical 5.290 ù 10*3 1.004 478.53 22.597 101.119
30 5151 DAM 5.290 ù 10*3 1.004 478.53 22.597 0.005

"DAM (%) 0.000 0.000 0.000 0.000 —
30 5151 FEM 5.290 ù 10*3 1.004 478.76 23.901 0.004

"FEM (%) 0.000 0.000 0.048 5.772 —

SSSF

25 1 Analytical 1.931 ù 10*3 0.631 600.96 10.144 75.754
25 5151 DAM 1.931 ù 10*3 0.631 600.96 10.144 0.006

"DAM (%) 0.000 0.000 0.000 0.000 —
25 5151 FEM 1.931 ù 10*3 0.631 601.03 10.146 0.003

"FEM (%) 0.000 0.000 0.011 0.025 —

SCSF

24 1 Analytical 8.629 ù 10*4 0.405 702.84 3.279 110.299
24 5151 DAM 8.629 ù 10*4 0.405 702.84 3.279 0.007

"DAM (%) 0.000 0.000 0.000 0.000 —
24 5151 FEM 8.629 ù 10*4 0.405 703.48 3.281 0.003

"FEM (%) 0.000 0.000 0.091 0.040 —

a Modes denotes the number of modes participating in vibration;
b Nodes indicates the number of nodes need to be calculated;
c Def. means the transverses deflection response;
d Vel. denotes the velocity response;
e Acc. means the acceleration response;
f
s
x
indicates the normal stress along x direction;

g
"DAM = rmsDAM*rmsAnalytical 

rmsAnalytical
ù 100% denotes the error of the DAM solution;

h
"FEM = rmsFEM*rmsAnalytical 

rmsAnalytical
ù 100% denotes the error of the FEM solution.

while it is average for DAM and FEM by dividing the total CPU time
to the number of nodes. It is seen that, the CPU time taken by DAM is
close to that by FEM, but far less than that of analytical method. Thus,
the DAM is not only a high precision method compared to FEM but an
efficient method to the analytical method and FEM.

5.1.2. Effect of excitation bandwidth on acceleration PSD
In practice, the thin plate may be excited by wide-band random

loads, such as the acoustic loads during launch of the spacecraft, which
result in high frequency random vibration in a broad frequency spec-
trum from 20–10000 Hz [34]. In such a situation, the FEM is difficult
to calculate exactly all of the natural frequencies. Fig. 3 illustrates that
the error of the acceleration response PSD increases as the frequency
increases gradually. Meanwhile, the rms of random responses by DAM
and FEM are exhibited in Table 2. It is found that the results of FEM are
close to DAM as the number of nodes increases from 861 (41 ù 21) to
5151 (101 ù 51).

Note that the CPU time increases rapidly with the increasing of node
number and frequency bandwidth. The above analysis indicates that the
accuracy and efficiency of DAM is superior to those of FEM. Moreover, it
is seen from Table 2, the frequency bandwidth has a remarkable effect
on the rms of acceleration response for SSSS edge case, followed by
the velocity response. Whereas, it presents little influence on the rms of
deflection response, which is coincide with the observation in [6]. The
main reason is that the acceleration PSD has a higher order effect on the
frequency than velocity PSD, followed by deflection PSD, as shown in
Eqs. (18) and (19).

5.2. Example 2

In Section 5.1, the rectangular plate is subjected to the band-limited
white noise random excitation. Nevertheless, the stationary random
excitation is generally not this case, such as the Kanai–Tajimi spectrum
and the modified Kanai–Tajimi spectrum with a high-pass filter, and its
PSD function is expressed as

S(!) = !
2N

!2N + !
2N
h

!
4
g + 4!2

!
2
g⇣

2
g

⇠

!2 * !2
g

⇡2
+ 4!2!2

g⇣
2
g

S0 (34)

To present the benchmark solutions of stationary response under
filtered white noise excitation by the analytical methods, another ex-
ample is illustrated for the rectangular thin plate with 6 mù4 mù0.12
m, E = 36.2 GPa, ⌫ = 0.2, ⇢=2400 kg/m3, and ⇣ = 0.05. The base
acceleration excitation is also considered with the input PSD (see Fig.
4(a)) as shown in Eq. (34), which is parameterized by !g = 2.41 rad/s,
⇣g = 2.47, !h = 1.18 rad/s, N = 2, S0 = 3.03 m2/s3 [35] and over the
frequency range [0, 25] Hz.

Herein, the SCSF plate is considered to be subjected to a filtered
white noise base acceleration excitation as shown in Fig. 4(a). In Fig.
4(b), the PSD curves of the acceleration response at central point of thin
plate are illustrated. Note that DAM can obtain the coincident results
with the analytical method, while the PSD values nearby the input PSD
peak frequency solved by FEM have remarkable errors. Further, the
maximum rms of acceleration responses are listed in Table 3. According
to the discussion in Section 5.1, the maximum rms of the deflection,

22



G. Chen et al. Probabilistic Engineering Mechanics 50 (2017) 17–24

Fig. 3. Acceleration response PSD at the central point for (a) SSSS; (b) SCSF boundary condition within 20–20000 Hz.

Fig. 4. PSD of (a) input acceleration of filtered white noise excitation; (b) acceleration response at central point of plate with SCSF boundary condition.

Table 2
The rms of responses for the SSSS plate under excitation with different frequency band-width.

Frequency range (Hz) Modes Nodes Method Root mean square of responses CPU Time (s)
Def. (m) Vel. (m/s) Acc. (m/s2)

20–2000

20 1 DAM 5.966 ù 10*4 0.591 929.13 1.323
20 861 FEM-1 5.969 ù 10*4 0.591 928.95 7.828
20 3321 FEM-2 5.967 ù 10*4 0.591 929.07 13.047

20 5151 FEM-3 5.967 ù 10*4 0.591 929.09 17.078
"FEM*3 (%) 0.067 0.000 0.006 —

20–20000

237 1 DAM 5.966 ù 10*4 0.592 1702.08 9.992
248 861 FEM-1 5.969 ù 10*4 0.592 1685.70 66.484
247 3321 FEM-2 5.967 ù 10*4 0.592 1697.00 210.953

247 5151 FEM-3 5.967 ù 10*4 0.592 1698.80 334.766
"FEM*3 (%) 0.017 0.000 0.193 —

Table 3
The maximum rms of stationary responses of plate under filtered white noise excitation
with SCSF by the analytical method, DAM and FEM.

Method Maximum root mean square of responses

Def. (a_2,b) (m) Vel. (a_2,b) (m/s) Acc. (a_2,b) (m/s2)

Analytical method 5.266 ù 103 0.286 19.053
DAM 5.266 ù 103 0.286 19.053
"DAM (%) 0.000 0.000 0.000
FEM 5.230 ù 103 0.287 19.297
"FEM (%) 0.684 0.367 1.280

velocity and acceleration occur at the point (a_2, b) in free edge (F). As
can be seen from Table 3, the results calculated by DAM are consistent
with the analytical ones, but FEM produces greater errors because of
its inaccurate representation for input PSD. Consequently, the proposed
DAM is flexibly applicable to stochastic excitations with more complex
PSD function.

6. Conclusions

The exact analytical benchmark solutions of random vibration for
rectangular thin plate with simply supported, clamped and free bound-
ary conditions are not available in the literature to the authors’ knowl-
edge. In this paper, firstly, the analytical PSD functions of stationary
random vibration for rectangular plate are derived. The analytical
method incorporates the exact solution of free vibration of the 6 cases
with one opposite simply supported boundary condition (e.g., SSSS,
SSSC, SCSC, SFSF, SSSF and SCSF) and performs a large number of
symbol operations based on PEM which takes a lot of computing time.
Further, by discretizing the modal coordinate and frequency domain,
the discrete analytical method is proposed to efficiently obtain the exact
solutions of stochastic responses for rectangular thin plate subjected
to stationary random excitation. Those exact solutions can be taken as
benchmark solution to verify numerical methods.

Numerical examples are performed to demonstrate the high preci-
sion and efficiency of the proposed DAM. In addition, the influences
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Table A
Exact frequency equations and the modal shape functions of rectangular plate under 6 boundary conditions (

˘

⇢h!2_D > �
2).

Boundary condition Frequency equation Mode shape function

SSSS sin �1b = 0 �(x, y) = sin �1y sin�x

SCSC 2�1�2(cos �1b cosh �2b * 1)
+(�21 * �

2
2) sin �1b sinh �2b = 0

�(x, y) =
�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sinh �2y
�

sin�x
A1 = �1 sinh �2b sin �1b ; A2 = �2

�

cos �1b * cosh �2b
�

A3 = *A1; A4 = *�1_�2A2

SSSC �2 tan �1b = �1 tanh �2b
�(x, y) =

�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sinh �2y
�

sin�x
A1 = A3 = 0; A2 = * sinh �2b; A4 = sin �1b

SFSF
{�22[(k_�)

2 * (1 * ⌫)]4

*�21[(k_�)
2 + (1 * ⌫)]4} sin �1b sinh �2b

= 2�1�2[(k_�)4 * (1 * ⌫)2]2(cos �2b cosh �1b * 1)

�(x, y) =
�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sinh �2y
�

sin�x
A1 = {�1[(k_�)2 + (1 * ⌫)]2 sinh �2b * �2[(k_�)2*
(1 * ⌫)]2 sin �1b}[(k_�)2 + (1 * ⌫)]
A2 = *�2(cosh �2b * cos �1b)[(k_�)4 * (1 * ⌫)2][(k_�)2 * (1 * ⌫)]

A3 = (k_�)2 * (1 * ⌫)
(k_�)2 + (1 * ⌫)

A1; A4 =
�1
�2

(k_�)2 + (1 * ⌫)
(k_�)2 * (1 * ⌫)

A2

SSSF �2[(k_�)2 * (1 * ⌫)]2 tan �1b
= �1[(k_�)2 + (1 * ⌫)]2 tan h�2b

�(x, y) =
�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sinh �2y
�

sin�x
A1 = 0; A2 = [(k_�)2 + (1 * ⌫)] sinh �2b
A3 = 0; A4 = (k_�)2 * (1 * ⌫)

SCSF

2�1�2[(k_�)4 * (1 * ⌫)2]
+2�1�2[(k_�)4 + (1 * ⌫)2] cos �1b cosh �2b
+(�22 * �

2
1) sin �1b sinh �2b

ù[(k_�)4(1 * *2⌫) * (1 * ⌫)2] = 0

�(x, y) =
�

A1 cos �1y + A2 sin �1y + A3 cosh �2y + A4 sinh �2y
�

sin�x
A1 = *�1[(k_�)2 + (1 * ⌫)] sinh �2b + �2[(k_�)2 * (1 * ⌫)] sin �1b;
A2 = �2[(k_�)2 + (1 * ⌫)] cosh �2b + [(k_�)2 * (1 * ⌫)] cos �1b;
A3 = *A1; A4 = *A2�1_�2

of boundary conditions and frequency range of excitation on the ac-
celeration response PSD and the rms of the responses are investigated.
Computational results show that the first-order mode dominates the
acceleration response. For stationary filtered white noise excitation
called as the modified Kanai–Tajimi spectrum model, DAM also obtains
the exact benchmark solutions identical with the analytical solutions
and possesses good applicability, while FEM presents some numerical
errors.

Finally, it is pointed out that, the proposed DAM can be extended
to obtain the benchmark solutions of the thin or middle-thick plate
subjected to the point and surface stationary random excitation or the
non-stationary random excitation, which will be studied in future.
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