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Abstact

The wind energy sector has, in recent decades, been expanding by multiple or-
ders of magnitude due to a global desire of replacing �nite energy sources with
renewable and clean alternatives. The maturity of wind technology, its stable
infrastructure and the cost-e�ectiveness are factors that motivate engineers to re-
search and develop innovative solutions leading to overall improvements. While
the volume of installations, power capacities, physical sizes and o�shore place-
ments are all increasing, it is obvious, that the ability to ascertain and ensure
the structural integrity of wind turbines is becoming more challenging and more
valuable. A demand for a more sophistical approach, with higher capability as
well as reliability than conventional visual inspection, is clari�ed. This project
focuses on a research to facilitate the development of a remote structural health
monitoring system for wind turbines, of which, particularly, wind turbine blades
are evaluated to be the preferred candidate of interest.
One major issue, prohibiting the development and implementation of a health
monitoring system for wind turbine blades, is the confounding in�uences of en-
vironmental e�ects upon the sensitivity to identify the occurrence of damage. A
reliable SHM system must be able to distinguish between changes caused by am-
bient variations, such as temperature �uctuations, and those caused by damage.
This problem of data normalization, which can be ascertained by singling out a
damage-sensitive feature from latent environmental in�uences, is the main focus
point to be addressed in this particular thesis context. The employed approach,
to remove environmental e�ects in SHM data, is based on a technique originating
from the �eld of econometrics, namely cointegration. Non-stationary time series
with common trends are considered as cointegrated if a linear combination of the
series exists to be stationary. This residual linear combination will be purged from
all common trends, thus, from an engineering perspective, this technique can be
used to analyze whether or not, the environmental e�ects will be removed in the
process of cointegration.
An experimental campaign of a full-scale operational Vestas V27 wind turbine has
provided a substantial amount of empirical data. Over approximately a period of
three months, this turbine was monitored and subjected to �ve di�erent structural
states including arti�cially introduced damages. Simultaneously, meteorological
data from a nearby weather mast were collected. Hence, this campaign and its
results provide the opportunity for the author of this thesis, to perform analyses
and validate the inherent algorithms. The damage detection technique, which will
be used to validate the robustness of the developed feature against environmental
variations, is established by means of outlier analysis based on Mahalanobis metric.





Preface

This report represents the product of a master thesis of 30 ECTs, in the time pe-
riod from 05-02-2018 to 07-06-2018. The thesis is written during fourth semester of
the master programme in Mechanical Engineering at Aalborg University, Esbjerg
Department. With the underlying theme to be 'Structural Health Monitoring',
the project addresses one major issue prohibiting the implementation of a reli-
able health monitoring system for wind turbines: the confounding in�uences of
environmental e�ects upon the sensitivity to identify the occurrence of damage.
The concept of cointegration, originating from the �eld of econometrics, will be
adapted to process structural health monitored data, with the intention to purge
out environmental e�ects, and provide robust features for damage identi�cation.

The theoretical principles and methods elaborated and applied in this report,
which at some level are in accordance with the study curriculum, are elements
within the formal subjects such as structural dynamics, �nite element analysis,
signal processing, statistics, calculus and linear algebra. It will be an advantage
for the reader to have a certain degree of literacy concerning these subjects. Fur-
thermore, the algorithms created during the project are in the format of Matlab-
scripts, i.e. '.m'-�les, one might have to gain access to the software, in order to
open and review the mathematical procedures in this speci�c programming lan-
guage. An enclosed CD is attached on page VII, in which the scripts as well as a
PDF-version of the report is included.

A great extent of monitored data, collected from an experimental campaign
of a full-scale operational Vestas V27 wind turbine in 2015, have prompted the
opportunity for the author of this thesis, to perform numerical analyses based on
empirical data. The author would like to express gratitude to; Lars Damkilde
(project supervisor), Martin D. Ulriksen (project supervisor), Dmitri Tcherniak
and Lasse L. Moelgaard all whom have been among the responsible of the cam-
paign and authors of associated papers containing signi�cant information regard-
ing the experimental details. Furthermore, the project supervisors deserves to be
acknowledged for their guidance throughout the project.

References to secondary sources such as research papers, books and websites
are indicated with a simple numbering system and marked with square brackets,
e.g. [1], which refers to the 1st position and can be found in the "Bibliography"
section, starting from page 61. Relevant information such as the author(s), title,
publisher, edition and year of publication will be informed, and for website ref-
erences, the url-link and accessed date will be included. Figures from secondary
sources be referenced in the associated caption text, thus, �gures without refer-
ences are produced by the author. Figures and equations are similarly numbered
for convenience and reference purposes, where equations are marked with round
brackets, e.g. (1.1), in which case the equation is to be found in chapter 1.
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Chapter1

Introduction

The attention to renewable energy sources has been prevailing in recent decades
because of an increasing awareness and concern of environmental problems and
climate change issues induced by traditional energy sources. Due to the global
desire of replacing �nite energy sources with renewable alternatives as well as the
industrial development and population growth, the demand of clean energy has
been emerging rapidly. The European Union seeks to cover 20 % of its energy
needs from renewable alternatives by 2020 [1]. Wind energy, among other renew-
able energy sources, is considered as one of the most substantial source and as
a strong contender due to the maturity of the technology, the relative cost com-
petitiveness and the stable infrastructure. In order to comply with the demand,
and to harvest wind energy more e�ciently due to cost-e�ective considerations,
the numbers of wind turbines have been increasing as well as the sizes have be-
come physically larger, making maintaining and repairing more challenging and
expensive. In addition to these progressing developments, the installation sites
for wind farms have been expanding from onshore to o�shore, in deeper waters
further from shore where the wind speeds are likely greater and more bene�cial
while the limitations as well as space and transport issues are less constricted.

For now, the world's currently most powerful wind turbine in serial produc-
tion is the latest version of the MHI Vestas V164 [2] [3] with the blade length of
80 meters and power production capacity of 9.5MW. This is an impressive boost
considering that many modern o�shore turbines in use today are in the range of
4 to 6 MW. Originally, the V164's rated capacity was 7 MW in 2011, before its
prototype was revealed in 2014 at Oesterild, northern Denmark, where the rated
output capacity increased to 8 MW. Later that year, a remarkable event occurred
due to favorable winds that allowed the turbine to sustain its rated capacity for 24
hours continuously: the one-day energy production record was set with the mag-
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1. Introduction

nitude of 192 MWh [4]. Last year, in 2017, an upgraded version of the turbine
with increased capacity, the V164-9MW, yet again, proved to sustain its rated
capacity and set the record with an energy production of 216 MWh in 24 hours
[5]. Notice, that only considerable turbines, in terms of tested, in serial production
and industrialized, have been included in this context. It is known, that larger
and potentially more e�cient turbines are in advancement, such as the Halidade-
X 12MW from GE renewable energy with blade lengths of 107 meters [6], or the
most extreme-sized turbine found to date, the Segmented Ultralight Morphling
Rotor (SUMR) Turbine of 50 MW and 200-meter blades from Sandia Lab (USA)
[7] [8] [9]. As the size of power and wind turbines grow, the value of turbines cor-
respondingly increase, the cost of interruptions and failures are likewise becoming
greater whereas structural integrity inspections to ensure the reliability become
more challenging. The bottom line is, that the ability of detecting upcoming as
well as ongoing failures are becoming more necessary and more valuable, making
the development of automated structural health monitoring systems particularly
attractive in this industry.

1.1 Wind Turbine Related Accidents

According to accident statistics, collected from documented cases of worldwide
wind turbine related accidents, by Caithness Windfarm Information Forum (CWIF)
[10], in the time span of approximately 22 years, from 1996 to the 31st of March
2018, it is indicated that the biggest amount of incidents included was accounted
and marked as blade failure. A number of 381 separate incidences, marked as
blade failure, out of a total number of 2199 accidents, i.e. 17.3 % of the accidents
were accounted as blade failure. A histogram illustrating the annual accident
statistics of all included accidents and the blade failure number of accidents, is
presented in Figure 1.1.

The second most common accident cause was �re with 316 counts correspond-
ing to 14.4 % and the third most common was structural failure, which includes
storm and lightning damages, poor quality control, lack of maintenance and com-
ponent failure, with 197 counts corresponding to 9.0 %. Other categories of acci-
dent types are fatal accidents, human injury, human health, ice throw, transport,
environmental damage and miscellaneous. It is important to keep in mind, that
the categorizations do not duplicate in numbers except for the category of fatal
since some accidents have caused multiple fatalities. Hence, the category of blade
failure only refers to situations with failures directly and obviously connectable
to the blade, meaning that accidents or failures that have been initiated by, for
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1.1. Wind Turbine Related Accidents

Figure 1.1: Annual histogram plot of wind turbine related accidents from 1996 to
31st of March 2018

instance, blade imbalances creating undesired vibrations to the gearbox or the
whole structure leading to a complete collapse, or a blade failure leading to a
human injury, might respectively fall under the category of structural failure and
human injury instead of blade failure. An example of this is one structural failure
included in the CWIF statistics about one year ago: A normally working turbine
collapsed surprisingly on the 11th of May 2017 in Kansas with no obvious reason,
despite the fact of an inspection procedure was performed the morning of the same
day, see Figure 1.2, [11] [12]. Since no apparent reasons for the cause of collapse
were concluded, CWIF marked it as an accident due to a structural failure. It
might as well could have been a damageon the blade leading to the collapse. This
means, hypothetically, that the percentage of blade failure most likely would be
greater if all blade in�uenced accidents could be included in the category.

As more turbines are built, more accidents occur. This statement is supported
by the statistical data summarized in the presented histogram, Figure 1.1. No-
tice that the data only ranges to the 31st of March 2018 Meaning that the last
9 months of 2018 is not accounted for in the histogram. The trend of increasing
accidents underlines the fact of a need for a more reliable method to monitor the
structural health of wind turbines, and thereby minimizing the consequences and
ultimately prevent premature structural failures and associated accidents from
happening.

Keep in mind that the statistical data provided by CWIF do not represent the
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1. Introduction

Figure 1.2: Premature Wind Turbine Collapse in Kansas 11th of May 2017 [11]
[12]

.

entire history of worldwide wind turbine accidents. Only published and well doc-
umented accidents chosen by CWIF are included. The countries involved consist
of the USA, Canada, Mexico, Puerto Rico, Nicaragua, Brazil, Afrika, UK, Ire-
land, Faroe Islands, Denmark, Norway, Sweden, Finland, Germany, Netherlands,
Belgium, France, Spain, Portugal, Italy, Austria, Switzerland, Romania, Bulgaria,
Turkey, Greece, Crete, China, Japan, Taiwan, Philippines, India, Australia and
New Zealand. A full list of the accidents and the associated data including the
origin country, date, description and details, info sources and website references
can be found in the compendium compiled by CWIF [13].

A secondary source, GCube, provider of renewable energy insurance services,
has in 2013 published a report summarizing the most common wind energy in-
surance claims made in the United States in 2012. The report shows that blade
damage and gearbox failure were the two most common issues, accounting for
respectively 41.4 % and 35.1 % of the cases and the top two causes were cited as
poor maintenance with 24.5 % and lightning strikes with 23.4 % [14]. In 2015,
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1.2. Visual Inspection of Wind Turbines

an article published by Windpower Monthly referred to a research presented by
the same company, GCube, which estimated that wind turbine rotor blades are
failing at a rate of around 3.800 a year [15].

The two independent sources, CWIF and GCube, implicate that blade failures
constitute as the most common concern regarding accidents of wind turbines.
In addition to that, an experimental study from 2005 conducted by Khan MM,
Iqbal MT and Khan F [16], has provided a reliability analysis of the respective
components of a small scale wind turbine, i.e estimates of the reliability and failure
rate of the tip break, yaw bearing, blades, bolts, hub, generator, gearbox, parking
brakes, tower and anchor bolts. The results of the study show that the blades
were among the most sensitive components with lowest reliability and subjected
to potential failures. Taking the accident statistics as well as the experimental
study into account, it can be concluded, that wind turbine blades are the most
vulnerable component requiring attention, therefore, an excellent candidate to be
investigated and monitored more frequently. Thus, the main components of focus
in the upcoming chapters throughout the report will be wind turbine blades.

1.2 Visual Inspection of Wind Turbines

Conventional approaches to inspect the structural integrity of wind turbine blades
typically consist of periodic visual inspections carried out by rope, platform, sky
climber, drone, crane or lift access which demands temporarily interruptions of
the turbine, i.e. temporarily stopping the production of electricity. The aim of
visual inspection is to detect deterioration at a stage early enough to guarantee
adequate safety and low costs of reconstruction. Obviously, performing inspection
and repair is known to be more pro�table than demolition and total replacement.
An example of the approach, is for instance an inspection team from LM Power
using ropes is presented in Figure 1.3.

These inspection methods require special equipments and highly trained tech-
nicians with proper expertise. Despite the fact of scheduling during low- or even
non-productive seasons, this traditional process of visual inspection is still, both
time demanding, risky in terms of safety issues and extremely costly. The un-
certainties due to human errors, issues such as inaccessible areas and decreased
vision due to the angle of perspective, fog and weather etc. are all factors that
in�uence the quality of this type of inspection. Large surface damages, leakings
and corrosion defects are likely visible and therefore detectable, whereas, for in-
stance, subsurface and minor cracks induced by long term fatigue propagation
can be almost impossible to be discovered by the human eye or by means of
high resolution cameras and associated drones and image analysis software. In
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Figure 1.3: Visual inspection of wind turbine performed by specially trained rope
team from LM Wind Power [17]

fact, according to published reports of the o�shore wind as well as the o�shore
oil industry, some wind turbine and platform accidents have occurred relatively
a short time after the period of scheduled inspection. It has been discovered in
some cases, that existing cracks, which led to total failure, were present during
the scheduled visual inspection prior to these accidents, i.e. fatal cracks remained
unnoticed during inspection. An example of this is the accident in Kansas, where
the turbine passed inspection the morning of the collapse [11] [12]. This implicates
inaccuracies and incomprehensiveness of the traditional visual inspection methods
which emphasizes the concern, that there is a need for a more reliable alternative
to continuously monitor the structural health of wind turbines.

1.3 Overview of Blade Design

In general, detailed information regarding the material, geometrical design and
manufacturing processes of speci�c blades are kept con�dential and not publicly
available, due to rivalry among wind turbine manufacturers. The information pre-
sented in this present section, and the following section, 1.4, are based on studies
concerning wind turbine materials as well as studies with wind turbines subjected
to structural testing, referring to [18], [19] and [20].

Wind turbine blades and nacelles are generally made of �ber-reinforced com-
posite materials, whereas generators and towers are manufactured from metals.
The most important composite based parts of a turbine are the blades which also
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constitute to the highest cost among all components [21]. The airfoil geometry of
a blade plays a major role, since it is responsible to capture and transmit aero-
dynamic forces into rotational torque in order for the generator to convert the
energy and produce power. Thus, the high complexity and requirements for the
blade material and design. A typical blade consists of webs in between two shells
as illustrated in Figure 1.4.

Figure 1.4: Illustration of the main sub-components of a wind turbine rotor blade,
consisting of two aerodynamic shells and two shear webs [18]

.

The aerodynamic shells are the largest sub-components of a blade and is often
primarily designed against elastic buckling. In order to reduce the weight, the
shells are made of sandwich composite structures, i.e. composite sheets enclosing
a sandwich core which is made from light-weight material such as polymer foam.
The webs (sometimes one web, several webs, or a beam structure) inside of the
blade, are the main load-carrying sub-component which are made with relatively
high load capacity and fatigue resistant composite material such as glass- or carbon
�ber. The surfaces of a blade are usually referred to as the upwind-/pressure side
and the downwind-/suction side, whereas the edges are namely the trailing- and
the leading edge. The root is located at the inner end of the blade, where the
shape is more circular than the rest in order to �t and be mounted on the nacelle.
The opposite end is referred as the tip of the blade. A cross-section of a general
blade is depicted in Figure 1.5

7



1. Introduction

Figure 1.5: Cross-sectional view of the inner sub-components of a blade [18]

.

Wind pressure during operation causes loads on the faces, referred as �ap-
wise load in Figure 1.5. The type of the loads are, respectively, compression-
compression and tension-tension on the upwind side and on the downwind side,
i.e. the reason for the terminology of pressure and suction sides. As for the
edges, the load cycles between tension-compression, which is mainly caused by
gravitational forces and torque loads. Other possible loads during operation are
for instance temperature variations, rain erosion or more extraordinary; lightning
strikes and extreme wind loads. Due to these various types of cycling loads at
di�erent locations on the blade, it is often realized, that di�erent types of material
for di�erent parts of the blade could be advantageous. For ensuring the erosion-
resistance of the blades, coating is essential, and the materials conventionally used
for this purpose include epoxy and polyurethane gelcoats, polyurethane paint sys-
tems and tapes.

The power, size and volume of wind turbines are growing extensively and the
current developments allow location sites further o� shore than ever. Capacities
above 10 MW (over 10.000 households), rotor blades exceeding 100 meters in
length, and wind farms consisting of several hundred individual turbines, and yet,
the trend of increasing is still ongoing. Due to this trend of increase in size and
o�shore placements, leading to the processes of upscaling and optimization the
components, the material requirements are correspondingly increasing. Currently,
a lot of active research are put in the development of alternative materials which
are more damage resistant with higher strength, faster to produce, more favorable
to the environment and recyclable. The sti�ness, tensile and compression strength
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of the composite are controlled by the material properties of the reinforced �bers
and their volume content. Alternative materials, other than glass- and carbon �ber
composites, that potentially could be applicable are natural composites, nano-
engineered composites even hybrid composites, however, the �nancial concerns
as well as the maturity of the manufacturing procedures still favor the typical
glass-�ber solution in general. As mentioned, gravitational loads are a design
parameter of high importance, which becomes more critical as size and weight of
rotor blades increase. Additionally, longer blades de�ect more, i.e. the structural
sti�ness to ensure allowable de�ection and tip clearance becomes more signi�cant.
Thus, for the material, the sti�ness-to-weight ratio is a major design driver as well
as the high cycle fatigue behavior of the material interface, given the 20-25 years
of designed lifetime which exceeds 100 million load cycles.

1.4 Structural Damage of Wind Turbine Blades

As previously stated, an operational blade is subjected to a complex combination
of operational and environmental loads, such as wind pressure, gravitational forces,
rain erosion, temperature variations etc. Inevitably, structural damages will accu-
mulate on the blade during its lifetime. Although the inner webs constitute to the
main load-carrying sub-components of the blade, it is still the surrounding shells
and its surfaces that are most vulnerable and where damages are likely to occur.
This is due to the direct exposure of the shells with the surrounding environment.
Unaccountable factors, in combination with the operational and environmental
loads, such as scratches, impacts and lighting strikes etc. during manufacturing,
installation as well as operation, in�uence damage initiation and growth and can
lead to critical, even complete failure of the structure posing fatal economical as
well as safety threats.

The main indicators of undesired irregularities and deterioration on rotor
blades are discoloration, holes/penetrations and cracks. These can typically be
discovered by visual inspection, cf. 1.2, since they occur on the outer surface of
the blade. However, as previously emphasized, minor defects such as sub-surface
cracks and delamination failures, those in several layers deep, are di�cult, if not
impossible, to detect visually. To clarify, delamination is a term used widely in
material science to describe a failure mode for composites. In laminated compos-
ite materials of which turbine blades are comprised, delamination can occur due
to the weak adhesive bonding between �bers and the polymer matrix. An impact
event from debris-, bird- or lightning strikes can cause delamination and cracks in
the resin, greatly reducing the structural health of the composite structure. Even
low velocity impacts can cause damage that may propagate into critical failures
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[22].

Most manufacturing processes involve separate production of the multimate-
rial sub-components. The common approach to bond the parts are by means
of adhesives and it is known, that adhesive joints represent weak links for the
structural integrity. Particularly, the trailing edge joints are notorious for its sus-
ceptibility to damage [23]. Empirical sources [20], involving structural testing of
turbine blades, indicates that adhesive joints in blades often do not endure their
expected lifetime, which consequently leads to considerable expenses because of
repair or blade replacement.

1.5 Summary

In present chapter, an outline of the subject of interest has been presented. Firstly,
from a wide perspective, the enlarging wind energy sector has been introduced.
Secondly, it has been emphasized, that there is a need for a more sophisticated
approach to ensure the structural integrity of wind turbines, based on statistical
data of related accidents and outdated inspection techniques that lacks a degree
of reliability. Thirdly, the speci�c component of interest has been narrowed down
to particularly, the rotor blades. Lastly, the composition, design and conventional
materials of the blade component have been elaborated and di�erent types of
structural damages have been highlighted, where the attention lays especially on
trailing-edge cracks.

From this point, the component of interest has been identi�ed and the project
perspective is to facilitate the development of an integrated health monitoring
system that potentially will enhance the integrity and reliability of wind turbine
blades, leading to an overall decrease in operation-, planning- and maintenance-
costs.

10



Chapter2

Literature Review

The current development state of the technologies, within the �eld of struc-
tural health monitoring (SHM), is outlined, by reviewing some of the most fre-
quently used methods available for damage identi�cation. Substantive �ndings,
theoretical- as well as methodological contributions from secondary sources of this
particular topic will be reviewed. Although damage identi�cation techniques of-
ten are application speci�c, an attempt to review the topic in a general manner is
proceeded. Firstly, a brief summary describing the intuition, purpose and bene�ts
of installing a SHM system is presented. Secondly, an overview of di�erent types
of techniques is categorized and presented, including a classi�cation system intro-
duced by Rytter, 1993 [24]. Lastly, a list of relevant techniques for wind turbine
blades are elaborated with the intention to discard irrelevant methods and select
an appropriate approach and focus point for this thesis context.

2.1 Intuition of Structural Health Monitoring

Normally, it is economically bene�cial to invest in precautionary arrangements to
ascertain the structural integrity of a valuable structure in operation, e.g. the
visual inspection approach, cf. 1.2, or a more modern approach involving remote
health monitoring equipments. Logically, and as mentioned previously, it is usu-
ally less costly to reconstruct and perform maintenance of structures compared to
demolition or total replacement.

Structural health monitoring systems can potentially identify damage and pro-
vide information to ascertain the condition of a structure so that decisions can be
made with regard to the need for remediation. The purpose is to detect, locate
and quantify the occurrence, development and severity of structural damages, so
that they can be mitigated and vital failures of the structural components can ul-
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timately be prevented. A structure can typically be exposed to a variety of loads,
such as wind, gravity, earthquakes, corrosion, rain erosion, thermal gradients etc.,
a SHM system does not necessarily trace back to, or address, the initiating source
of the damage, which likely is a complex combination of more than one load. The
SHM system only concerns the actual damage and its signi�cance when it exceeds
the preset limitation of a healthy condition. Of course, it is expected that a proper
system does not include destructive methods for interrogating the structural in-
tegrity, which is why, only non-destructive methods is included in this report.

The potential bene�ts include enhancing the safety and reliability of the struc-
tures with warnings of damage and impending failures, prompting more e�cient
use of maintenance resources and plan making. An additionally, by monitoring
the responses of a structure, information regarding the design current could po-
tentially be provided, so that adjustments can be made resulting in improvements
of future structures.

Bridges, satellites, aerospace structures etc. are, among other key structures,
potential candidates for SHM applications. A common fact among these struc-
tures, as well as for wind turbines, is that they constitute to high-value structures
that, in operation, are di�cult to access and to perform manual condition assess-
ment of. Automated real-time applications on, for instance, bridges are already
in process, see for example the Tamar Bridge in England, [25] and [26].

2.2 Overview of SHM Techniques

The main ability of SHM systems is to identify damages. A slightly modi�ed
version of Rytter's (1993) frequently used classi�cation system among SHM lit-
erature, to de�ne and categorize the di�erent levels of damage identi�cation, is
presented as follows [24]:

Level 1 - Detection: Determine if damage is present in the structure

Level 2 - Localization: Localize the geometric site of the damage

Level 3 - Assessment: Quantify the severity of the damage

Level 4 - Prognosis: Estimate the future progress of damage and
predict the remaining service life of the structure

The classi�cation system structurizes the di�erent phases in the process of
damage identi�cation. This system is useful when a comparison between di�erent
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methods is desired. The system is accumulative, which refers to the fact, that
level 1 has to be accomplished before one can move on to level 2 and so fourth.

In general, modern methods include sensors and automated reasoning tech-
niques that provide empirical data of the structural health can be inferred from
empirical data derived from the structure's response. The types of data that may
be used for this purpose are numerous, and the categories of SHM techniques are
usually de�ned by the chosen feature. Several literature, e.g. L. Cartz (1995) [27],
T. Uomoto (2001) [28] and B. Raj et al. (2002) [29] have summarized extensive
amounts of damage identi�cation techniques, notably chain drags, half-cell poten-
tial readings, radiography, ultrasonics, liquid penetrants, magnetic particles, eddy
currents, acoustic emissions etc. The equality among these techniques is, that they
are non-destructive and their purpose is to detect, locate and characterize defects
in di�erent types of structures, referring to the classi�cation system. However,
most of these techniques are considered as localized techniques, that in general
only are capable of interrogating small areas at a time whereas the region to be
inspected must be easy accessible.

From a larger perspective, to interrogate larger areas, global SHM techniques
use changes in the overall response of a structure as indicators of damage. These
global methods, which also are summarized in several literature, e.g. Schulz et al.
(1995) [30], in which semi-static �eld tests are considered, Jenkins et al. (1997)
[31], in which static �eld tests are considered, and Doebling et al. (1996), in
which vibration-based methods are considered. The obvious advantages of these
global methods are, that the condition of the entire structure can be assessed at
once, and there are less limitations due to inaccessible components. However, the
ability of global techniques to locate and quantify the extent of damage is largely
unproven to date unless applied to very simple structures.

2.3 SHM Techniques for Wind Turbines

In theory, a wide range of potential techniques can be applied to monitor the health
condition of wind turbines. C.C. Ciang et al. (2008) [32] have summarized a list
of damage identi�cation techniques for particularly wind turbines. The included
methods are namely acoustic emission, thermal aging, ultrasonic, modal-based,
�bre optics, laser Doppler vibrometer, electrical resistance, x-radioscopy, strain
memory alloy and eddy currents. Among these techniques, the two most recog-
nized methods in active research are notably the acoustic emission method and the
modal-based method (also known as vibration-based). Studies have shown, that
both of these approaches are capable of detecting and localizing damage processes
in wind turbine blades under controlled laboratory tests as well as for operational
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in-service turbines. For instance, in [33] and [34], where promising results were
reported from in-service testings applying acoustic emission techniques to identify
damage. The latter approach, namely the vibration-based damage identi�cation
technique, is currently advancing in a great amount of studies with promising re-
sults. This approach is chosen to be the fundamental basis for the present thesis
and its main principles will be elaborated in the following section.

2.4 Vibration-based Damage Identi�cation

The concept of vibration-based damage identi�cation is based on the fact, that
modal parameters, notably eigenfrequencies, mode shapes, and modal damping,
are functions of the physical properties such as mass, damping, and sti�ness.
Therefore, changes in the physical properties due to damages, e.g. crack propa-
gation or delamination of bindings, will be detectable by observing the change in
modal parameters [32]. The procedure is to prepare and compose a baseline ref-
erence model of a healthy con�guration focusing on a damage-sensitive vibration
feature. By employing this, a structural damage can be detected upon testing of
the chosen feature, for instance the mode shapes, exceed or deviate signi�cantly
from a certain threshold based on the baseline model. An ideal solution could be
to exploit the dynamic responses from a structure induced by operational condi-
tions, however, for wind turbines, studies have shown that the higher frequency
responses from a secondary source tend to provide better resolution of damage
signatures. For instance in [35], where an actuator has been used to excite dy-
namic responses upon wind turbine blades.

As previously mentioned, studies have shown, that the vibration-based ap-
proach is capable of detecting and localizing damage processes for in-service wind
turbines. For instance, the paper by the authors: D. Tcherniak and Lasse L. Moel-
gaard, [35], demonstrates on a Vestas V27 wind turbine, that trailing edge damages
(150 to 450mm openings/arti�cial introduced damage), were detectable using the
vibration response data. More speci�cally, they used the distinct covariance val-
ues obtained upon calculating the covariance matrix of the cross-acceleration data
from a number of sensors. In another paper [36], by the authors M. D. Ulriksen,
D. Tcherniak and L. Damkilde, damages of the same wind turbine scenario, were
con�rmed detectable using minor principle components, obtained upon processing
and reducing the vibration response data, as damage features. In [37], by the same
authors of [35] and [36] except L. L. Moelgaard plus L. M. Hansen, R. J. Johansen
and L. Froeyd, demonstrates for same the wind turbine in idle condition, that
the trailing edge damages can be localized. Furthermore, [36] reports, that the
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actual size of the damage can be assessed fairly accurate, hereby promoting an
additional level of damage identi�cation, referring to conventional classi�cations,
cf. section 2.2 on page 12.

One common concern mentioned in the papers employing structural health
monitoring data from the Vestas V27 wind turbine, which as well is controversial
among other SHM applications, is the level of sensitivity that the acquired data
have to the varying environmental conditions. This particular issue is chosen
to be the main focus point of the present thesis. Further details and potential
approaches to ascertain this issue is presented in the following section.

2.5 Damage Detection of Wind Turbines under

Varying Environmental Conditions

In contrary to laboratory tests, an in-service wind turbine will expectedly be
subjected to varying operational- as well as environmental conditions, which typi-
cally will induce non-stationary and quasi-static responses to the structure. These
e�ects have an in�uence for the ability of conventional vibration-based damage
identi�cation schemes to detect damage. Temperature �uctuations, rain variations
and di�erent wind speed attitudes tend to have an e�ect that disrupts the detec-
tion scheme by masking important information in the data and prompting false
alarms. Temperature is found to be the most dominant factor a�ecting structural
response as it directly a�ects the sti�ness, the structure can for instance become
frozen. See for instance [38], where the temperature e�ects upon modal parame-
ters have been investigated for a bridge.

Theoretically, if a model can predict the value of a monitored feature given
the conditions a�ecting it, the error of the model could be taken account for or
even be suitable as a damage-sensitive feature. However, this approach demands
a speci�c and precise understanding of the condition parameters, which also con-
sequently demands, that these parameters have to be monitored i.e. an additional
amount of sensing equipments and data. The problem of unavailability of en-
vironmental data for wind turbines is a huge restriction for this approach. The
economical aspect due to limitations of equipment and data processing procedures
will also playa a major role. Another approach could be to monitor the structural
responses on a whole-year basis, where the structure have been subjected to the
entire range of environmental variations. Logically, this approach requires storage
of a large amount of data and an additional drawback is, using a large amount of
data to represent a healthy baseline condition may reduce the models sensitivity
to damage [39].
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A research team from University of She�eld, UK, has conducted a series of
papers regarding structural health monitoring techniques and tests of composite
plates plates and bridges (e.g. Tamar Bridge [26]) in both laboratory environments
as well in-service environments. This team, consisting of K. Worden and E. J.
Cross, among others, have in [40], [41] and cross [42], been focusing on the removal
of environmental trends in structural health monitoring data. They are believed
to be the �rst to propose the application of cointegration, originating in the �eld
of econometrics, to SHM data. Another, more popular technique to address the
environmental e�ects, is for instance, using principal component analysis (Also
used in [36]), to extract features that are sensitive to damages but less sensitive to
the e�ects of the changing environmental condition [43]. This approach has also
been employed by the research team from UK in [40] and [42].

The concept of cointegration, elaborated further in chapter 4 on page 28, in-
volves a cross-test of two ore more non-stationary variables. If a linear combination
of the non-stationary series exists to be stationary, the relation between the series
will be designated as a cointegration relationship [44]. Traditionally, econome-
tricians employ this cointegration test to determine whether or not a statistical
signi�cant relation between two or more variables is present. The purpose could
for instance be detrending variables for common trends, or as a tool to establish
forecasting predictions. In this engineering context of SHM, the stationary lin-
ear combination, found during the cointegration process, could be employed as a
feature to detect damage that are insensitive to environmental e�ects, since this
residual will be purged from all common trends [45].

In the �eld of process engineering, cointegration has been successfully em-
ployed to deal with the problem of environmental and operational variability as
demonstrated in [45]. The concept of cointegration appears promising and as an
applicable technique for the purpose of addressing environmental variations in
wind turbine SHM data. Take for instance temperature, which is known to be
a dominant factor a�ecting modal properties of a structure, cf. [38], it is almost
completely safe to say, that temperature has a global e�ect on the entire wind
turbine structure. In other words, all monitored data will be subjected to the
same temperature and its variations, i.e. be a common trend among the data.
This means, that cointegration relationships among the data most likely will ex-
ist, and the residual linear combinations can be featured as damage identi�cation
parameters. This thesis will pursue to adapt the cointegration technique in order
to facilitate the development of a SHM system applicable to wind turbine blades.
The decision is made considering, that no other approach, to the authors knowl-
edge, has employed this technique to address environmental e�ects in structural
health monitoring data of particularly wind turbine blades.
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Project Speci�cation

An alternative method, to ascertain the structural integrity of wind turbine blades,
is considered to be necessary in the industry of harvesting wind energy. This is
due to the conventional antiquated methods consisting of visual inspections, and
the increasing volume of turbine installations in more exposed and inaccessible
locations. A real-time integrated health monitoring system is potentially able en-
hance the overall integrity as well as reliability of the wind turbine structure while
decreasing labor-, operation-, planning- and maintenance costs.

This project aims to facilitate the development of a structural health moni-
toring system for wind turbines. The particular component to be focused on is
chosen to be wind turbine blade, considering that this candidate is evaluated as the
component of highest value and with the highest probability of failure. The theo-
retical basis, of which the system algorithms are built upon, is a vibration-based
damage identi�cation technique. One major issue, prohibiting the development
and implementation of a health monitoring system for wind turbine blades, is the
confounding in�uences of environmental e�ects upon the sensitivity to identify
the occurrence of damage. A reliable SHM system must be able to distinguish
between changes caused by ambient variations, such as temperature �uctuations,
and those caused by damage. This problem of data normalization, which can be
ascertained by singling out a damage-sensitive feature from latent environmen-
tal in�uences, is the main focus point to be addressed in this particular thesis
context. The technique of cointegration will be employed to establish damage
identi�cation features that are in-sensitive to environmental variations. As pre-
viously elaborated, cf. section 2.5 on page 15, the stationary linear combination,
found during a cointegration process, will be purged from all common trends in
the tested data series, i.e. be purged from environmental e�ects. To the author's
knowledge, this speci�c issue has not been addressed to any applicable extent in
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current literature, for wind turbines in operation.

The experimental campaign of the V27 wind turbine provides an outstanding
opportunity to conduct experimental tests, due to the extraordinary extent of
acquired data including, simultaneously, collected meteorological data. Veri�ca-
tions of the proposed methodologies, throughout the report, will be pursued by
numerical models with inputs of empirical data collected from this experimental
campaign of a full-scale operating wind turbine, which was subjected to trailing
edge openings/arti�cial introduced damage.

3.1 Problem Statement

This present section aims to outline decomposed problem descriptions of the main
issue to be addressed: to remove environmental e�ects in structural health moni-
toring data.

� Data preprocessing
The acquired empirical data are expected to include noise, delay issues and
a conservatively large amount of samples. In this context, preprocessing
refers to the necessary operations which are needed to cleanse, align and
truncate the data. A visual inspection of the data before preprocessing will
help clarifying this particular problem.

� Extraction of featuring parameters before cointegration
The nature of the acquired data can for instance be strains or accelerations,
in this case, accelerations. An extraction of the modal properties might
be of imperialinterest, if the chosen feature for damage identi�cation is e.g.
eigen frequencies or eigenmodes. This can be achieved by use of appropriate
software or, of course, numerically by means of modal analysis, which typ-
ically include eigenvalue-problems, FRFs and PSDs. This feature selection
problem can be solved by trial and error: multiple features can be employed
and compared.

� Damage detection
An appropriate method for damage detection has to be chosen. For this
purpose, a well-established scheme is considered appropriate. The produced
algorithm has to be validated by, for instance, simple numerical simulations
using the �nite element method or by reproduction of reliable analyses based
on the original experimental studies.

� Reveal the issue due to environmental e�ects (if possible)
In the possession of a well-established damage detection algorithm, one
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might be able to reveal the issue of environmental e�ects upon the sen-
sitivity to identify damage processes.

� Determine whether or not cointegration relationships exist
In order for the residual linear combination to be the �nal damage-feature
in-sensitive to environmental e�ects, it is imperative, that the data series
have cointegration relationships.

� Comparison of di�erent cointegration techniques
Due to the fact that cointegration is a matured technique within the �eld
of econometrics, one might have to compare di�erent types of cointegration
techniques, and chose a technique that can be adapted and applied properly
to SHM data.

� Construct features in-sensitive to varying environmental e�ects
and evaluate the results
In the completion of the respective points presented above, the results can
be evaluated. Questions such as the sensitivity of the residuals to identify
damage can be answered. The inherent information and signatures when
damage is present in the structure might have been removed in the process.
Whether or not cointegration is applicable for the removal of environmental
e�ects can be revealed.
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Chapter4

Methodology

The theoretical principles, all of which are applied in the inherent phases of this
thesis, are presented in this chapter of methodologies. The essential principles as
well as the mathematical methods are explained in a general manner, whereas the
actual application will be presented in Chapter 5.

4.1 Modal Analysis

Monitoring the dynamic response of a structure is the primary function of vibration-
based SHM systems. Subsequently, potential damage induced changes in the phys-
ical properties, i.e. sti�ness, mass and damping, can be detected by an appropriate
damage identi�cation model. This typically, involves a comparison between the
undamaged response data acquired in the healthy state of the structure, and the
damaged response data after the occurrence of an eventual damage. The moni-
tored dynamic response can are in general represented by strains or accelerations
(e.g. by means of strain-gauges or accelerometers) generated from a source of
excitation. In the possession of these response data, a modal analysis can be
employed to extract the modal parameters of the structure, i.e. eigenfrequencies
mode shapes and modal damping. This process of extraction is conducted by , for
instance, solving a generalized eigenvalue problem or by computation of frequency
response functions. Further elaboration and analytical examples of modal anal-
ysis, for both free-response and forced-response, will be presented in the current
section. For a more comprehensive extent of the analysis, the reader is referred to
the widely used book for engineering and educational purposes regarding dynamic
vibration theory, cf. "Engineering Vibrations" [46].

First, a formal introduction of the governing discrete time-invariant equation,
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widely known as the equation of motion, forming the mathematical foundation:

Mẍ+ Cẋ+Kx = f (4.1)

where M ,C and K, respectively represent the mass-, damping- and sti�ness
matrix. ẍ, ẋ and x are the respective vectors of acceleration, velocity and dis-
placement. The right-hand-side, vector f , is the external force vector.

The system matrices in (4.1) can be derived using, for instance, �nite element
method, which is based on degrees of freedom at the element nodes, hence, the
displacements, velocities and accelerations at any given point in a structure, can
be described by an interpolation of the nodal degrees of freedom. For modal anal-
ysis, the displacements, velocities and accelerations are expressed by modeshapes,
also referred to as eigenmodes, of the structure and. The total number of eigen-
modes and eigenfrequencies equal the total number of DOFs and the number of
equilibrium equations. Further details about the eigenvalues and the transforma-
tion between physical values for each DOF and so-called, modal coordinates, will
be elaborated in the following sections.

4.1.1 Eigenvalue Problem of a Free-Response System

In order to present the essence of the fundamental principles in an explanatory
manner, the assumptions of time invariance and linearity are considered. For non-
linear modal analysis, the reader is referred to [47]. In case of time-invariance,
it is assumed that the output of the system is explicitly independent of changes
in time. For linearity, it is assumed that the displacements are small, within the
region of elasticity, and that the damping matrix can be expressed as a linear
combination of the mass- and sti�ness matrix. This condition, since both M and
K are symmetrical matrices, dictates, that the matrix of C also will be symmetric.
However, let it �rstly be assumed, that there is no damping, C=0, and no external
force, in order to derive the generalized eigenvalue problem, in the condition of a
free-response undamped system. The equation for this system can be expressed
as:

Mẍ+Kx = 0 (4.2)

Since, in (4.2), in contrary to (4.1), does not include any damping. The solution
to this homogenous di�erential equation will be oscillatory and yields:

x = Φcos(ωt− ϕ) ∨ ẍ = −ω2Φcos(ωt− ϕ) (4.3)
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where cos(ωt−ϕ) is a cosine wave with the angular frequency of ωa and phase
ϕ. By substituting the solutions into (4.3) into (4.2) yields the following:

−ω2MΦcos(ωt− ϕ) + ΦKcos(ωt− ϕ) = 0 (4.4)

With few steps of algebraic manipulation, it is obvious, that the equation
constitute to an eigenvalue problem as follows:

(K − λM) Φ = 0 (4.5)

where λ represents the squared eigenvalues, λ = ω2 and Φ represents the
eigenvector.

4.1.2 Modal Decoupling

Upon solving the eigenvalue problem of (4.5), the eigenvectors will form a fully-
ranked orthonormal set which can be used to decouple the undamped equations
of motion, cf. (4.2). In other words, the modeshapes are orthogonal, which is
due to the assumption of linearity, and can be exploited to decouple the equilib-
rium equations by expressing one equation for each degree of freedom in modal
coordinates.

The equation of motion in modal coordinates, i.e. q̈, q̇ and q, is expressed as
follows:

mq̈ + cq̇ + kq = p (4.6)

where the modal mass matrix, m, modal damping matrix, c, modal sti�ness
matrix, k and modal force vector p, can be transformed by use of the original
physical system matrices and equal:

m = STMS ∨ c = STCS ∨ k = STKS ∨ p = STf (4.7)

The coordinate transformation procedure:

x(t) = [Φ1 Φ2 ... Φn]


q1(t)
q2(t)
...
qn(t)

Sq(t) (4.8)

In essence, the modal mass, -damping and -sti�ness matrices depend on the
eigenmodes:

m = [Φ1 Φ2 ... Φn]TM [Φ1 Φ2 ... Φn]

c = [Φ1 Φ2 ... Φn]TC[Φ1 Φ2 ... Φn]

k = [Φ1 Φ2 ... Φn]TK[Φ1 Φ2 ... Φn]

(4.9)
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Due to orthogonal conditions, the modal mass, -sti�ness and -damping matri-
ces becomes diagonal, also known as lumped matrices, i.e.:

m =


m1

m2

...
mn

 , c =


c1

c2
...

cn

 , k =


k1

k2
...

kn

 (4.10)

The idea of modal decoupling is to reduce the original MDOF system to a
number of independent SDOF systems. By doing this, the equilibrium equation
for each SDOF system can be solved where contributions are added to the system
in order to obtain the MDOF solution. The requirements include, as statet pre-
viously, that the system has to be linear. The eigenmodes must be independent
and special properties must be ful�lled by the damping matrix C.

4.1.3 Frequency Domain Solution for Forced-Response

System

In cases of forced-response, the modal parameters cannot simply be extracted by
solving the eigenvalue problem. Forced-response is used in experimental cases, e.g.
the experimental study in this thesis cf. chapter 5. The modal parameters can
be obtained by exploiting the force induced response and subsequently transform
it into frequency domain, in which the parameters can be extracted, [48]. The
frequency response function, can be derived by a Laplace transformation of the
equation of motion, (4.1) on page 22. Assuming the initial conditions to be zero
yields:

(Ms2 + Cs+K)X(s) = F (s) (4.11)

Rearranging (4.11) yields:

X(s) = (Ms2 + Cs+K)−1F (s) (4.12)

where the matrix inverse, H(s) = (Ms2 + Cs + K)−1, is referred to as the
transfer function matrix with complex values of s. The basic formula of a frequency
response function can be based on the input X(s) and the output F (s) in the
frequency domain, as follows:

H(s) =
F (s)

X(s)
(4.13)
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The frequency response function is derived by evaluating the transfer function
along the imaginary axis, i.e. s = jw:

H(jw) = (−ω2M + jwC +K)−1 (4.14)

The physical meaning of the frequency response function is now apparent in
(4.14) and the assumption of linearity is not violated since the operation of Laplace
is linear.
Since the input, in the experimental study, is in the form of accelerations, each
frequency function, h(jw), must be expressed on the kinematic quantities as fol-
lows

Hac(jω) = −ω2H(jω) (4.15)

4.1.4 Spectral Analysis

Fundamentally a frequency response function is a mathematical representation of
the relationship between the input and the output of a system. An approach based
on spectral analysis is appropriate to derive the frequency response function, in
cases where the system matrices M , C and K are unknown, which is relevant
for the experiment in this thesis context. The �rst step of spectral analysis is
to determine the correlation functions of the displacement response, x(t) and
the impulse load f(t). This can be determined by following equation of cross-
correlation function, Cxf , of x and f , [48]:

Cxf(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)f(t+ τ)dt (4.16)

where T represents the signal period and τ the time increment. The cross-
spectral densities can be derived by Fourier transformation of (4.16), which yields:

Sxf (ω) =
1

2π

∫ ∞
−∞

C(τ)e−jωτdτ (4.17)

Now, the frequency response function can be derived by exploiting the spectral
density functions. To do this, a selection between di�erent models is necessary,
since some are more appropriate than others depending on the expected noise of
the respective input and output. Two common models, often referred to as H1
and H2, are used, respectively, in situations where the output of the system is
expected to be noisy (compared to its counterpart, the input) in H1, and where
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the the input is expected to be relatively noisy in H2. Other possible models
exists but not elaborated in this context. The two transfer function models yields:

H1(jω) =
Sxf (ω)

Sxx(ω)
∨ H2(jω) =

Sff (ω)

Sxf (ω)
(4.18)

where the Sxf is the cross-spectral density function of the input x and output
f , as elaborated in (4.17). The Sxx and Sff represent the auto-correlated spectral
density functions of the respective input and output.
A method, to ascertain the consistency of of Hjω, is to calculate the coherence
function γ2:

γ2 =
|Sxf (ω)|2

Sxx(ω)Sff (ω)
(4.19)

Total consistency, i.e. a perfect relationship, is achieved if γ2 = 1, in contrary,
a complete unrelated relationship between the input- and the output signal when
γ2 = 0. In a third case, if the squared value is γ2 ∈]0 : 1[, the coherence func-
tion indicates that there exists some undesired external noise in the signals, or a
nonlinear relationship between the signals.

4.2 Damage Detection

The imperative foundation of a structural health monitoring system is the scheme
to accurately detect the occurrence of a structural damage, cf. the classi�cation
system in section 2.2 on page 12. The procedure and the inherent details of a well-
established outlier analysis for damage identi�cation are presented The method
to detect damage is based on the concept of discordancy from the statistical dis-
cipline of outlier analysis [49]. More particularly, the outlier discordancy test for
multivariate data used in this context is based on the Mahalanobis squared dis-
tance measure, also known as the general squared interpoint distance, and is given
by (4.20). Examples of this approach for SHM application are presented in for
instance [35], [36] and [42].

D2 = (y − x̄)TS−1(y − x̄) (4.20)

where D is the Mahalanobis distance, y is a vector to be tested for discordancy,
i.e. the current state potentially constituting to outlying squared distances, x̄ is
the mean vector of the baseline data, x, and S is the covariance matrix of x. An
example on the dimensions is given as follows:

x ∈ Rsl×nt ∨ x̄ ∈ R1×nt ∨ y ∈ Rsl×nd ∨ S ∈ Rsl×sl (4.21)
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where nt and nd refer to the amount of sequences to be included in the respec-
tive baseline- and current (potentially damaged) state and sl refers to the length
of the signal. Notice, that the dimensions presented in (4.21) is of general con-
text. The dimensionality might di�er depending on the particular applied feature.

In order to label an observation as an outlier, or an inlier, a threshold value
must be de�ned. This value can be exclusively determined using the baseline
training data. A straight-forward way to determine the threshold, is to assume,
that all data in the training set are in normal healthy condition, yielding that the
maximum D2 distance of this region to be the threshold. However, this solution
will neglect possible outliers indicating anomalies in the training set. Depending
on whether an inclusive or an exclusive threshold is required, one can make a
proper choice.

To demonstrate this outlier analysis based on Mahalanobis metric, an example
achieved by means of �nite element analysis employing Bernoulli Euler's beam
theory can be found in Appendix A on page I, where one of the results is shown
in �gure 4.1

Figure 4.1: Semi-logarithmic plot of outlier analysis based on Mahalanobis squared
distance D2.

The dashed horizontal line indicates the threshold value, ϑ, and the dashed
vertical line separates two di�erent structural states. As it can be observed in
�gure 4.1, the tests from [1 : 100], representing a healthy state of the �nite element
model, are within the region of inliers whereas the tests from [101 : 200], exceeds
the threshold value, i.e. outliers which indicate that some change in the physical
properties has been detected. This, "damage", is introduced by reducing Young's
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modulus, i.e. reducing magnitudes of the parameters in sti�ness matrix of the
model.

4.3 Cointegration

The theory of cointegration is aimed to be introduced in this current section in
a rigorous manner. Firstly, a general introduction of its origination and applica-
tion in the �eld of economics, is considered relevant and will be presented. This
part is referred as the fundamentals of cointegration, where the background and
original purpose will be presented. Examples of where and how cointegration can
be applied will also be demonstrated brie�y. Secondly, the mathematical and
theoretical foundation will be presented, where some of the most common meth-
ods within cointegration will be elaborated. These methods will be compared in
section 5.5.2 on page 52.

4.3.1 The Fundamentals of Cointegration

Cointegration is an analytical technique in the category of statistical time series
analysis and originated in the �eld of econometrics. The purpose of applying
this technique is to test the hypothesis concerning the existence of a statistically
signi�cant connection between two or more series of data, i.e. testing for com-
mon trends in multivariate time series. The conventional method to address the
relationship between non-stationary time series, before the introduction of the
cointegrating approach by Clive Granger and Robert Engle in 1987 [50], consisted
of using linear regressions, which has been shown to be a dangerous approach that
might provide misleading results, [51][44]. For example, regressing on two inde-
pendent non-stationary series of data, that are not causally related to each other,
by means of ordinary least squares, might nonetheless result in high R-squared
values, implying a signi�cant correlation, even though it is completely nonsense.
This phenomenon, of misleading statistical evidence of a linear relationship be-
tween independent non-stationary variables, is known as a spurious regression or
as a spurious correlation between the two series of data. By checking upon the
existence of a cointegrated combination of two data series, the problem of spurious
correlation will be eliminated, and whether or not a genuine relationship between
the series is real, can be determined.

Basically, econometricians are often interested in expressing one series accord-
ing to another and to model their long-run economic relations. Cointegration can
be employed to identify common characteristics from which conclusions about
their behavior can be drawn. Examples of cointegration relationships in econo-
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metrics can for instance be consumption and income, short and long term rates,
imports and exports, prices and wages, stock prices and dividends etc.

4.3.2 The De�nition of Cointegration

Two or more non-stationary time series are de�ned as cointegrated if a linear
combination of them exists to be stationary. In order to explain this de�nition
formally, a simple case of two time series xt and yt is presented in the following
equation:

The time series xt and yt is considered to be cointegrated if there exists a
parameter α such that the residual ut is stationary :

ut = yt − αxt (4.22)

One important restriction of the principle, is that all time series must be in-
tegrated of the same order. If a non-stationary process xt becomes stationary
after di�erencing d times, it is said to be integrated of order d, which is denoted
as xt ∼ I(d) [45]. By employing a stationary test, the order of integration of a
time series is ascertained, which is often the same as testing for a unit root in
a time series model since non-stationarity is con�rmed if a unit root is present.
Popular unit root testing models can for instance be a Phillips-Perron test or a
Dickey-Fuller test, of which the last one is demonstrated in the follow section.
Subsequently, when the orders of integration been ascertained, the cointegration
vector with the most stationary combination can be found. Further elaboration
of the inherent steps of cointegration analysis will be described more comprehen-
sively in the upcoming section.

4.3.3 Dickey-Fuller Stationarity Test

The Dickey-Fuller approach tests the null hypothesis of a unit root in an autore-
gressive (AR) model [52], against the alternative of no present unit root. An AR
model, is one that describes the evolution of a time series by a combination of its
previous values and a stochastic term. It is a representation of a type of random
process, so that it can be used to desrcibe time-varying processes in nature [45].
An AR model of order p is presented as follows:

yt = a1yt−1 + a2yt−2 + ...+ apyt−p + εt (4.23)

where yt is the time series, p is the model order also known as the lagged value,
a1...ap are the coe�cients that de�nes the root characteristics, i.e. the stability and
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εt is an error term of white noise process with zero mean and constant variance,
i.e. a stationary process. To explain a unit root, a simple AR model of �rst order,
AR(1) is considered:

yt = a1yt−1 + εt (4.24)

Depending on the value of a1, three di�erent times serie can be distinguished:
|a1| < 1 will yield a stationary process, a1 > 1 will yield a non-stationary process,
and a1 = 1 will yield a unit root, which is non-stationary where its �rst di�erence
will be stationary, since the error term is stationary. This is easily shown, assuming
a1 = 1 in (4.24):

yt = yt−1 + εt ⇒ ∆yt = εt (4.25)

Basically, a time-series can be �tted into an AR model, and then, information
on the stationarity of the process is obtained from the parameters de�ning the
characteristic root. This can normally be done by testing a null hypothesis of
a1 = 1 using a standard t-test on the parameter. However the leat-squares esti-
mate of the parameter will not be distributed around unity, due to the assumption
of non-stationarity and an asymtotic distribution of the t-statistic if a1 = 1 [42].
Hence, Dickey and Fuller have constructed critical values of the t-statistic to be
compared [52], known as the DF-statistics, cf. (4.27).

For larger and more complicated set of time series, an augmented version of
the Dickey-Fuller Test can be employed. The procedure follows the same premise
as the previously elaborated DF-test, however, the model in the ADF-version is
more complex and presented as follows [42]:

∆yt = ρy−1 +

p−1∑
j=1

bj∆yt−j + εt (4.26)

in which case a unit root will be present if ρ = 1. The unit root is here,
carried out under the null hypothesis of ρ = 1 against the alternative of ρ < 0.
Futhermore, two optional parameters can be included in (4.26), i.e. vt and µ
which respectively represent a deterministic trend and a shift. Once a value for
the test-statistic is determined. It can be compared to the relevant critical value
of the DF-statistic:

DFt =
ρ̂

σρ
(4.27)

where DFt denotes the DF statistic, σρ the variance of the parameter ρ and
the hat, in ρ̂ is used to indicate an estimation of the parameter.
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Once the degrees of non-stationarity for the series have been ascertained, a sta-
tionary residual can be created through combination of those variables integrated
to the same order. For this purpose, two popular techniques will be outlined in
the following section.

4.3.4 Cointegration Analysis Techniques

In econometrics, the two most common approaches for cointegration analysis are
�rstly the Engle-Granger procedure (1), which is often employed for individual
relationships, i.e. when only two process variables are included in the analysis.
The second approach is the Johansen Procedure(2.), which is a more complex
maximum-likehood multivariate estimation procedure that allows for more than
one cointegration relationship. Further details of the mathematical procedures are
elaborated as follows:

1. The Engle-Granger Procedure

This approach tests the null hypothesis of no cointegration among the time
series of interest against the alternative of a cointegration relationship. Engle
and Granger recommend a two-step, (i) and (ii), procedure [50]. This approach
only concerns individual relationships between, normally, two variables, i.e. the
number of variables n = 2, in which case the maximum number of cointegrating
relationship is one, r = 1. It involves a regression of one series upon another and
then testing for a unit root.

In order to give an outline of the Engle-Granger procedure and provide the
possibility for understanding the inherent processes, a simple bivariate case con-
sisting of xt and yt is considered. Followed by the previously elaborated DF/ADF
test, the two series can be considered as non-stationary time series integrated of
order I(1), i.e. one integration away from being stationary as well as they are
unit root processes. In accordance with the de�nition of cointegration, referring
to (4.22), the relationship is considered as cointegrating is there exists a linear
combination which is stationary, i.e. the residual sequence is I(0).

(i) The �rst step is to estimate the static regression, also known as the long-run
equilibrium equation [50]:

yt = α0 + α1xt + ut (4.28)

where the residual ut is must be a stationary process if the relationship be-
tween xt and yt is cointegrating. Running an ordinary least squares regression of
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(4.28), the residual sequence can be estimated. Again, a hat is used to denote the
estimated value, ût and α̂, the of linear combination yields as follows:

ût = yt − α̂0 − α̂1xt (4.29)

Now, by testing for a unit root of this residual, in a similar manner such as
the DF/ADF test 4.3.3, it can be con�rmed whether or not the residual process
is stationary. In case the hypothesis of a unit root has been rejected for the resid-
ual sequence, one can move on to the second step of the Engle-Granger procedure:

(ii) The second step is to estimate the error correction model (ECM).

The regression parameters estimated in (i) can then be used to construct an
ECM which takes the form [41].:

∆yt = ρy−1 +

p−1∑
j=1

bj∆yt−j + µ+ vt+ εt (4.30)

Theoretically, the error correction model are an approach useful for estimat-
ing both short-term and long term e�ects between two time series. The term
error-correction relates to the fact that last-period's deviation from a long-run
equilibrium, the error, in�uences its short-run dynamics. Thus ECMs directly
estimate the speed at which a dependent variable returns to equilibrium after a
change in other variables [50].

2. The Johansen Procedure

Traditionally, the Johansen Procedure is employed to test multiple numbers
of I(1) processes for cointegration. In case the null hypotheses of cointegration
relationships, have been failed to be rejected, a number of cointegrating vectors
can be established. In contrary to the Engle-Granger procedure, the Johansen
procedure provides the ability to determine which cointegrating vectors that create
the most stationary linear combination of the analyzed time series. Firstly, this
approach utilizes a maximum-likelihood estimation of the parameters of a vector
error correction model (VECM) which takes the form [53]:

∆yi = Πyi−1 +

p−1∑
j=1

βj∆yi−j + φD(t)) + εi (4.31)

where yi represents a vector including n variables with the subscript i relating
to time, Π is the parameter matrix describing the long-run equilibrium. Π can
be decomposed into two matrices: Π = ABT . Where B is the cointegrating
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vector of interest in the context og SHM. βj is a parameter matrix that accounts
for the short-run adjustments needed to return the process to equilibrium. The
vector D(t) is a term describing a deterministic trend and εi represents white noise
process as stated previously, but in a vector form in this model. The premise of
the Johansen procedure is to use maximum likelihood of observing the correct εi
to estimate the parameters of Π. The probability density function yields [53]:

p(εi) =
1√

(2πn)|Σ|
exp(−1

2
εTi Σ−1εi) (4.32)

where |Σ| is the determinant of the estimated covariance of εi. By employ-
ing (4.32), the maximum-likelihood parameter estimates will correspond to the
parameters that maximize |Σ|. Upon solving this equation, which eventually in-
volves a generalized eigenvalue problem, the cointegrating vectors will be obtained
[54]. A more comprehensive explanation of the inherent steps is to be found in
[40]. This approach is also referred to as maximum eigenvalue solution in other
literature.

Additionally, after the cointegrating vectors have been found, the Johansen
Procedure provides the opportunity to perform a trace-statistic, which determines
the solution with most, r cointegration vectors, i.e. most stationarity. This �nal
step in the Johansen Procedure determines whether or not cointegrating relation-
ships are present for the times series. The trace test are presented as follows
[40]:

λtrace = 2logQ(H(r)|H(n)) =
n∑

i=r+1

log(1− λ′i) (4.33)

where Q is the likelihood ratio test which takes the form [40]:

Q(H(r)|H(n)) =
|Σ(Brank=r)|
|Σ(Brank=n)|

=
£
−2/N
MAX(rank=r)

£
−2/N
MAX(rank=n)

=

∏r
i=1(λ

′
i + 1)∏n

i=1(λ
′
i + 1)

(4.34)

For econometricians, the key of cointegration procedures is often to establish
a signi�cant statistic determining that the variables in consideration are cointe-
grated or not. From an engineering point of view, the relationship between a set of
monitored variables are usually much better understood. The fact that the data
are acquired from di�erent spots of the same structural component, and that the
surrounding environmental e�ects have in�uences on the entire structure, makes
the question of cointegration or not less important. The interesting part is the
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residuals found during the process of testing for cointegration.

The Johansen procedure addresses many of the limitations of the Engle-Granger
procedure. It avoids two-step estimators and provides comprehensive testing in
the presence of multiple cointegrating relationships. Its maximum likelihood ap-
proach incorporates the testing procedure into the process of model estimation,
avoiding conditional estimates. At the core of the Johansen method is the rela-
tionship between the rank of the impact matrix Π = ABT in (4.31) and the size
of its eigenvalues. The eigenvalues depend on the form of the VEC model, and
in particular on the composition of its deterministic terms. The method infers
the cointegration rank by testing the number of eigenvalues that are statistically
di�erent from 0, then conducts model estimation under the rank constraints.

In this thesis context, it is obvious, that the Johansen Procedure is more
appropriate than the Engle-Granger procedure, due to the amount of monitored
variables, which is greater than two. The Engle-Granger procedure can, in fact,
consider more than two variables, however, it will only provide one cointegrating
relationship, i.e. one residual and whether or not it is the most stationary linear
combination will not be elaborated, whereas the Johansen Procedure provides
the ability to �nd the most cointegrating relationship. The parameter in impact
parameter Π, and its rank determine the amount of cointegration relationships.
Π must be rank de�cient if the error-correction model is to hold true. In case Π
has a full rank, the variables in question will not be cointegrated.
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Chapter5

Experimental Study

A research team from Technical University of Denmark (DTU), has during a
period of approximately 3.5 months from November 2014 to March 2015, held
a measurement campaign on an operating full-scale Vestas V27 wind turbine,
with the rated power of 225 kW and rotor diameter of 27 m. This campaign has
provided substantial extents of measurement data which provide the opportunity
for the team as well as other researchers to conduct tests and analyzes on, so
that hypotheses and analytical models, associated to damage identi�cation, can
be evaluated experimentally. More comprehensive descriptions of the original
campaign details is to be found in [35], written by the authors Dmitri Tcherniak
and Lasse L. Moelgaard, and in [36] by Martin D. Ulriksen, Dmitri Tcherniak and
Lars Damkilde.

5.1 Experimental Setup

The idea is to identify damage on the blade by monitoring how the vibrations prop-
agate throughout the blade. The vibrations are initiated by hits of an actuator
plunger, whereas accelerometers captures the induced vibrations along the blade.
During the campaign, �ve di�erent states were fabricated: A normal (healthy)
state, three gradually increased damage states arti�cially created by trailing edge
openings and a repaired state at last.
The health monitoring system, consisting of an electromechanical actuator and an
array of accelerometers, was mounted on one, out of the three possible, turbine
blades. A sketch illustrating how the monitoring equipments are distributed along
the blade is presented in Figure 5.1.
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Figure 5.1: Placements of the installed equipment: the actuator (green dot), ac-
celerometers (red dots) with associated enumerations, and the introduced damages
(shaded boxes) [55]. All dimensions are in mm.

The signi�cant technical details regarding the instrumentation of the monitor-
ing system are listed in Table 5.1.

Table 5.1: Speci�cations of the monitoring equipment and instrumentation

Number of Actuators 1
Type of Actuator Electromechanical, B & K Type 4507B
Number of Accelerometers 12
Type of Accelerometers Monoaxial piezoelectric, B & K
Nominal Sensitivity #5 to #15 10 mV/ms−2 Type 4507B-004
Nominal Sensitivity #16 1 mV/ms−2 Type 4507B-001

Notice, that the employed sensors are monoaxial accelerometers and these are
mounted on the downwind side of the blade. The measurement direction was
aligned normal to the blade, which is also the direction of the force induced by
the actuator plunger hit. The sensor of number #16 is actually mounted on the
upwind side of the blade and its sensitivity is unique due to the location near the
actuator, cf. Figure 5.1. Other means to protect and secure the instrumentation
on the turbine blade consist of a waterproof lid, to cover the actuator, mounted
with a strap, helicopter tape and silicon to provide smooth surfaces as to adhere
the sensors and associated cables to the blade.

The data acquisition system, of which the accelerometers were connected to,
consists of Bruel & Kjaer Type 3660- C with two LAN-XI modules, a 12-channel
input module Type 3053-B-120 and 4-channel input/output module Type 3160-A-
042. Additionally, the pitch angle and rotor azimuth (to ascertain the rotational
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speed of rotor) were measured, the latter was achieved by two piezoresistive DC
accelerometers type 4574-D. This data acquisition system and its electronics were
mounted to the inner surface of the spinner and protected inside a waterproof
box. The source of power, with the voltage of 24 V, was from the nacelle via a
slip ring. The software, Bruel & Kjaer PULSE LabShop, was used to control the
system.

5.2 Data Acquisition

As already mentioned, the duration of the measurement campaign was approx-
imately 3.5 months. More accurately, it was 104 days, from 28th of November
2014 to 12th of March 2015. The acquisition software was programmed to ac-
quire 12 sequences of data per hour, i.e. 12 actuator hits per hour. 1 actuator
hit corresponds to 16 di�erent signals sampled with 16384 Hz. The duration of
1 sequence was set to 30 seconds: 10 s before the actuator hit and 20 s after the
hit. The pause between each sequence, to ensure response independency between
the respective sequences, was 4.5 minutes, thus the number of 12 hits per hour
and corresponding 12 data sequences per hour. A total number of 24655 actuator
hits and corresponding data sets were recorded during the campaign (not 29952
due to the reduced recordings in the period between Christmas and New Year).
The turbine was mostly in normal power production regime with the exception
of nights, weekends and holidays, in the period of damaged states. It was set
to idling when visual surveillance was unavailable, to secure the condition of the
turbine when damage was introduced. Although the turbine during that period
switched between operating and idling, the monitoring system was still performing
and collecting data. Table 5.2 presents the collection of the data sets.

Table 5.2: Acquired data sets from the experiment campaign.

Structural State Collected sequences Period of recording
Normal/healthy Nu = 3065 28-11-14 to 09-12-14
Damaged: 150 mm Nd15 = 1769 09-12-14 to 15-12-14
Damaged: 300 mm Nd30 = 3407 15-12-14 to 06-01-15
Damaged: 450 mm Nd45 = 3722 06-01-15 to 19-01-15
Repaired Nrep = 12692 19-01-15 to 12-03-15

The acquired database are stored in hard drives and believed to be physi-
cally forwarded around to relevant students and researchers of interest. The data
format is compatible with the programming language, Matlab, i.e. ".mat"-�les
(matrices). References to the data of this state, throughout the rest of the report
will be carried out using terms such as original or non-manipulated data, since
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these data forms the baseline data input. In addition to the empirical data, a few
matlab-scipts were included in the hard drive of which the author received. These
scripts, presumably created by the authors of [35], namely "FindAccordingly.m"
and "Rec.mat", provide the ability for the user to �nd and return data in accor-
dance with an optional search criteria.

The common signal properties of the acquired data sets, such as sampling
frequency and signal length are summarized in Table 5.3

Table 5.3: Common signal properties of the acquired data sets.

No. of signals Sampling frequency Time period Signal Length
Ns = 16 FS = 16384 Hz T = 30 s SL = 491520

For each test sequence, 16 signals were sampled, where 12 of them, [5:16]
cf. Figure 5.1, constitute to time-variant acceleration data series from the 12
accelerometers. In addition to the vibration data: rotor data, power production
data, yaw angle and a great extent of meteorological data were also included. The
latter are collected simultaneously from a weather mast nearby, which consist of
wind speed, wind direction, temperature, atmospheric pressure, precipitation etc.
For the sake of comprehensiveness, convenience and to create an overview of the
available data, all operational wind turbine related- and meteorological data types
available are listed in Table 5.4.

Table 5.4: A summary of all the available in the experimental database.

Data type Notation Unit
Acceleration a m/s2

Generator G Binary parameter, on/o�
Power production P kW
Rotor rotation DC1 and DC2 rpm
Rotor azimuth Aazi °

Yaw angle Ayaw °

Pitch angle Apitch °

Wind speed Ws m/s
Wind direction Wd °

Temperature TC °C
Precipitation R m
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5.3 Interpretation of Available Data

The empirical data, acquired from the experimental campaign of the Vestas V27
wind turbine, are �rstly and most interestingly, the vibrations captured by the
sensors, i.e. data in the form of accelerations, m/s2. These data are the main
monitored parameters to preprocess, input and analyzed by means of the damage
identi�cation model.Firstly, one sequence of non-manipulated data, including 1
excitation sequence and 11 acceleration sequences from sensor #5−#15, cf. �gure
v5.1, is presented in Figure 5.2.

Figure 5.2: Interpretation of available data for each actuator plunger hit. Notice,
#16 is excluded. First column: sensors in the middle region (except for the
excitation sequence). Second column: sensors along the leading edge. Third
column: sensors along the trailing edge. Position from actuator excitation point:
Top ↓ Bottom = Closest ↓ Farthest.

In order to illustrate the nature the acceleration data, representing the dynamic
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response of the wind turbine blade, one typical sequence among the acceleration
data is displayed in Figure 5.3, and a highlighted region to provide better resolu-
tion of the interval of interest, i.e. the period after the peak due to the actuator
predominant impulse, is displayed in Figure 5.4.

Figure 5.3: A graphical illustration of a randomized acceleration sequence.

Figure 5.4: A zoomed in graphical illustration of a typical acceleration sequence,
highlighting the predominant vibrations induced by the actuator.
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The intention of these graphical illustrations in present section is only for il-
lustration purposes of the original data without any processing. Further details
regarding preprocessing, postprocessing etc., of the acceleration data will be pre-
sented in the upcoming sections.

The main perspective of the thesis is to ascertain the e�ects of the varying
environment of which the wind turbine is subjected to. Fortunately, for this case,
a list of meteorological data has been provided. Keep in mind, that these data
are assumed to represent the environmental conditions of the Vestas V27 turbine
and that possible biases and uncertainties due to the distance between the actual
measurement point and the structure itself, are not and will not be considered
in this context. These data will be presented in their original form by means
of graphical plots of the respective data as a function of sequences. Note, that
the acceleration data, presented in �gure 5.3 represents 1 single sequence as a
function of time, whereas the meterological data plottet in 5.5 represent multiple
sequences throughout a longer period. The meteorological sequences of the healthy
state sequences and the most damaged state (450mm) sequences are respectively
presented in Figure 5.5 and Figure 5.6.

Figure 5.5: Meteorological data capturing during the period from 28-11.14 to
09-12-14, i.e. during the healthy state of the V27 turbine.
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Logically, and as observed in Figure 5.5, the Vestas V27 turbine was subjected
to di�erent magnitudes of wind speed, temperature �uctuations, varying load
conditions due to the wind direction and varying humidity e�ects caused by pre-
cipitation. These environmental properties are evidently in�uence factors to the
structural dynamic behavior of the turbine blade, see for instance, [38], where the
temperature e�ects upon modal parameters have been investigated. In essence,
the necessity to account for these environmental e�ects upon the sensitivity to
identify damage, would not be an issue if they were varying consistently, which is
why studies in laboratory environments have shown promising results. In order
to highlight, that there is di�erence between the varying condition in the healthy
state and the damaged state, the meteorological data collected simultaneously
during the latter state, is presented in Figure 5.6

Figure 5.6: Meteorological data capturing during the period from 06-01.15 to
19-01-15, i.e. during the damaged state (450mm) of the V27 turbine.
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The wind speed- and temperature variations for both structural states, are
summarized in Figure 5.7, in order to make it more convenient for a comparison.

Figure 5.7: Wind speed- and temperature variations for the two respective struc-
tural states: Undamaged- (black) and damaged (red) state.

Evidently, the environmental conditions of the two respective structural states
are di�erent. This, emphasizes the need for a method to account for these latent
in�uences upon structural health monitoring data. A damage detection test, to
emphasize these e�ects are elaborated further in section 5.5.1 on page 48.

5.4 Data Pre-Processing

This section refers to the signal processing procedures of which the acquired data
are subjected to, before implementation and performing numerical tests of coin-
tegration analysis and to identify damage. The intention is to extract damage-
sensitive features based on the original acceleration data. Notice, that all data,
i.e. in both the healthy and damaged states will be subjected to the similar pro-
cedure of preprocessing in order to perform a proper outlier analysis. Due to the
similarity in procedure and the large extent of data, only some examples will be
presented. To begin with, a visual inspection is performed.

5.4.1 Visual Inspection in Time- and Frequency-domain

In order to evaluate the received data and enhance the �rst impression of what to
be dealt with, a transformation of the signal from time domain into a frequency-
domain signal was executed. The reason for this, is that time domain signals
only provide information regarding the value of the signal at the given instances.
They do not directly interpret information regarding the rate at which the signal
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is varying. The frequency domain representation of a signal carries information
about the signal's intensity and phase at each frequency. To obtain this, a fast
Fourier transformation of the original acceleration signal is conducted.

Figure 5.8: Graphical illustrations of an acceleration sequence captured by means
of sensor #5, cf. �gure 5.1 on page 36, represented in both time-domain (left) and
frequency-domain.

Firstly, by looking at the acceleration signal in time-domain, a unique peak
at 10.09s can be observed. As described in 5.2 on page 37, the actuator was pro-
grammed to release its plunger and induce an impact force on the blade 10s after
the beginning of each recording. The observation indicates, that a delay/shift is
present and it di�ers in between the sequences. This is perfectly normal, since
the sensors along the blade are located with di�erent distances from the wave
propagation starting point. Removing the mean and this alignment issue might
have to be taken account for, depending on the speci�c application approach. The
sensor located closest to the actuator, i.e. #16 cf. 5.1 on page 36, can be used
for alignment. Furthermore, di�erent orders of periodic oscillatory processes can
be recognized in the signal, which con�rms, that the turbine is in operation dur-
ing the data acquisition. Secondly, by looking at the amplitude spectrum in the
frequency-domain, it can be observed, that the dominating frequency, i.e. highest
peak in amplitude, represents the frequency of the rotor rotation of 0.70 Hz, i.e.
42 rpm. Another high peak in the amplitude spectrum is for instance present
at 0.23 Hz, which is a third of the dominating frequency, and most likely due
to the fact that the turbine is three-bladed. Furthermore, and as expected, a
great amount of external noise is present in both �gures. The interesting part
of the signal is the actuator-induced vibrations and since it is known, that the
applied electromechanical actuator, normally, only excites vibration frequencies
around and below 1 kHz, it can be concluded, that the higher frequencies can be
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discarded. To sum it up, it can be concluded, that the signal has to be aligned
properly, truncated to the speci�c region of interest and �ltered to reduce noise
and other undesired processes, all of which depending on the application approach.

5.4.2 Frequency Response Function

Frequency response functions can be employed directly as a damage-feature or in
order to extract the modal parameters. A matrix of frequency response functions
will be estimated based on the input signal as well as the output signal, i.e. the ex-
citation force sequence and acceleration sequences. For this particular estimation
purpose, a model using Welch's method has been chosen.

Figure 5.9: Frequency response functions obtained from excitation and acceler-
ation data. To the left, one sequence from sensor #5 has been demonstrated,
whereas results from 11 sensors #5 − #15 is shown to the right. The data is
obtained during operation condition of the wind turbine with the rotor speed of
42 rpm in this partular illustration.

The length of the original acceleration sequences, which is within the actuator
predominant region of the entire signal, is T = 0.25s corresponding to 4097 sam-
ples. Notice, that this is the case for the illustrated FRF results in 5.9, alterations
of the e�ective signal length has been used in some of the analyses presented in
the upcoming sections. Due to the interest in the high-energy actuator induced
frequencies, which is known to be at a medium range around 1 kHz, it has been
decided to �lter the data from secondary frequencies potentially induced by other
sources such as the low-frequencies due to the operation condition as well as high-
frequencies with low energy content. The bandpass �lter, chosen on basis of a
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desired bandwidth of 500 Hz and the medium range of 1 kHz yields 1000 Hz ±
250 Hz, i.e. an interval of [750:1250] Hz. For competitiveness, the �ltered FRFs,
which are conceivably will provide smoother signals, are presented in �gure 5.10

Figure 5.10: Bandpass �ltered frequency response functions.

5.4.3 Power Spectral Density

A convenient representation of the strength or energy of a signal can be achieved
by estimation of its PSD function. The magnitude of the mean square value
of the signal, refers to the power. In for instance [36], principal components of
PSDs has been successfully employed for the purpose of damage detection. Figure
5.11 demonstrates PSD functions of the acceleration signal. To demonstrate the
energy/power of the induced actuator signal, a PSD outside the actuator region
has been estimated as well to create the possibility for a comparison.
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Figure 5.11: Power spectral density functions of two regions within the signal: a
region inside the actuator excitation region (blue) and a region outside (black) of
the actuators in�uence, hence the di�erence in power magnitude.

Obviously, the energy content is higher in the region of actuator excitation and
it makes sense to focus on this region.

For competitiveness, an estimation of the power spectral densities of a total of
11 sensors are illustrated in Figure 5.12. Still, the conditions remains in operation
with 42 RPM, and the acceleration signal length is T = 0.25s corresponding to
4097 samples.

Figure 5.12: Power spectral density functions of a total of 11 sensors, #5−#15.
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5.4.4 Distinct Covariance Parameters

The authors of the paper [35], demonstrated that distinct values in the covariance
matrix (DCM), could be used to detect damage V27 wind turbine. The same
premise has been reproduced by the author of this thesis, in order to have a solid
and comparable foundation for damage detection. The covariance matrix can
simply be calculated and is a square diagonal matrix with the size of [K × K],
where K is the number of sensors. This yields the dimension of [11 × 11] in this
context. Due to the symmetric condition of the matrix, a number of distinct values
can be extracted, simply by taking the symmetric half of the matrix including the
values in the diagonal. This yields the following a vector of distinct covariance
parameters with the size of K(K + 1)/2. In other words, a vector of the with the
length of 66 are constructed in this thesis context, using 11 sensors. The contents
in this vector equal covariance values of the variables as well as variance (the
diagonal) values of the variables.

5.5 Data Post-Processing

Upon the extraction of a set of features which are considered as secondary repre-
sentations of the original acquired data, the cointegration analysis can be employed
to remove the environmental e�ects. The original data as well as secondary data,
which are in possession after the pre-processing, are in the form of accelerations
(A), frequencies obtained from frequency response functions (FRF), power spec-
tral densities (PSD) and distinct covariance parameters (DCM). These parameters
have been extracted and stored in matrices, i.e. "-mat"-�les, to safe computation
time. Before the cointegration analysis is conducted, a demonstration of damage
detection analysis is presented, in order to enlighten the issue of environmental
e�ects upon the sensitivity to detect damage processes. For this purpose, the
DCM is employed, since the results in [35], indicate that this feature is applicable
for damage detection.

5.5.1 Damage Detection using DCM

The damage detection algorithm is based on an outlier analysis based on Maha-
lanobis metric. For convenience purposes, the formulation presented in section 4.2
on page 26, is recalled as follows, and altered with a subscript D to indicated the
particular feature using DCM values:

D2
D = (yD − x̄D)TS−1D (yD − x̄D) (5.1)
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5.5. Data Post-Processing

where D2
D is a vector of squared Mahalanobis distances and yD is a matrix

containing the input test parameters potentially outlying. x̄D and SD are, respec-
tively, the mean vector and the covariance matrix of the baseline training matrix
xD.

Upon inputting randomized (in healthy state region) DCM values in the base-
line matrix xD, and similarly in yD (First 100 sequences semi-randomized from
healthy state, and last 100 semi-randomized from the damaged state), the results
can be obtained. The semi-randomization refers to the fact, that the sequences
are sorted based on their condition, but randomized within these criteria. Notice,
only the healthy state and the damaged state of 450mm is considered.

Figure 5.13: Semilogratihmic plot of outlier analysis of Mahalanobis metric for
damage detection using DCM values. (reproduction attempt of [35]).

Obviously, the DCM approach is capable of distinguishing a signi�cant di�er-
ence between the two di�erent states. The test numbers from [1:100] represent
the healthy state and [101:200] represent a damaged state. Due to the simultane-
ously collected meteorological data as well as operation data, it has been possible
to single out the sequences and sort them based on their condition. However, if
the availability of these data was absent, it would not be possible for the DCM
approach to detect damage as robust as presented in �gure 5.13. This will be
illustrated by a full randomization without any sort of restriction of the input
sequences.
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5. Experimental Study

Figure 5.14: Left hand side: Semilogratihmic plot of outlier analysis of Maha-
lanobis metric for damage detection using DCM values. Right hand side: plot of
the respective temperatures for each tested sequence.

In �gure 5.14, it can be observed that the DCM approach, in this particular
analysis, were unable to detect the damage in the test sequences of [101:200]. No
constraints regarding the conditions have been speci�ed in the results of 5.14.
The plot of temperature variations highlights, that the temperature during the
two states were varying di�erently and with di�erent magnitudes. This can be an
indication of the environmental e�ects upon the ability to detect damage using
DCM. Hence, a method to increase the robustness of the detection algorithm, to
be insensitive to environmental e�ects is desired. This issue is also mentioned in
[35].

The reader is referred to the actual algorithm, which can be found in the
attached CD in Appendix B on page VII.
Under the �le of :"'DETECTION_DCM_REPRODUCTION.m"'.
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5.5.2 Cointegration Analysis

As stated in chapter 3 on page 17, the main focus of this particular thesis context
is to ascertain the environmental e�ects on SHM data. It is believed, that in
the process of determining the cointegration relationship between the variables of
interest, residual sequences will be provided in which all common trends, such as
the environmental e�ects, will be purged.

Test for Stationarity

The �rst step of cointegration analysis is to address the order of integration of the
variables. The de�nition of cointegration implies, that all variables are restricted
to be integrated of same order, preferably the order of I(1), which means that it
is one di�erentiation away from being stationary. Unit root processes are non-
stationary processes which will be stationary after one di�erentiation, meaning
that a test for unit root will be su�cient to address this restriction. ADF-tests
will be employed for this purpose of unit root testing. The ADF unit root testing
approach, tests a null hypothesis of a unit root against the alternative of no unit
root.

Recalling the autoregressive model of for an ADF-test, presented in section
4.3.3 on page 29 yields:

∆yt = ρy−1 +

p−1∑
j=1

bj∆yt−j + εt (5.2)

where the null hypothesis of a unit root against the alternative of no unit root
can be presented formally as follows:

H0 : ρ = 0

H1 : ρ < 0
(5.3)

Due to the knowledge regarding the variables, they are expected to be inte-
grated of same order, and expected to be non-stationary processes (at least the
accelerations). It is unnecessary to test all data series, since it is obvious, that
each type constitute to the same order of integration, however, all parameters is
to be tested and be safe, more than one sequence of each type of variable has been
tested, where the results yield the same. The results are sumerized in table 5.5.

The results shown in 5.5, indicates that the accelerations and PSDs consti-
tute to unit root processes, since the ADF-test fails to reject the hypothesis of a
unit root for these variables. The respective large pvalue indicates how weak the
evidence are against the null hypothesis. Regarding the frequencies of FRF and
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Table 5.5: Results of unit root testing based on ADF

A DCM f(FRF) PSD
H 0 1 1 0
pvalue ∼ 0.300 < 0.003 < 0.003 ∼ 0.944

DCM values, the ADF-test rejects the null hypothesis of a unit root, i.e. station-
ary processes, and the small values of pvalue indicate strong evidence against the
null hypothesis. This means, that the frequencies and DCM values will not be
suitable for cointegration. The algorithm, providing the results in table 5.5, is
provided, referring to Appendix B on page VII, under the �lename 'ADFtest.m'.

Demonstration of the Cointegrating Residual based on Accelerations

In order to make an example of a residual sequence, which is the feature expected
to be purged from environmental e�ects, a simple 3-variable case based on pre-
sumably, relateable data, in the form of accelerations are used. The acceleration
signals have been con�rmed as unit root processes, which means that they are
suitable for cointegration analysis. The purpose of this is only to demonstrate
the trick of employing cointegration analysis, which is why only 3 variables are
included. The chosen signals are based on 3 sensors located along the leading
edge, namely sensor #5,#8 and #11, cf. �gure 5.1 on page 36. The length of the
signals are for illustrative purposes chosen to be 5s, starting from the actuator
excitation region.
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5.5. Data Post-Processing

Figure 5.15: Simple plot of 3 acceleration signals located along the leading edge
og the wind turbine blade.

Figure 5.16: The corresponding residual sequence found in the process of cointe-
gration analysis. The result from Engle-Granger (blue) to the left and the result
from Johansen (black) to the right.

The residual sequence, which is a linear combination of the acceleration sig-
nals, is a stationary process in contrary to its counterparts: the non-stationary
acceleration sequences. An additional example, of the same three sequences with
a shorter signal length is presented as well, in order to be able to examine the
sequences in higher resolution.
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5. Experimental Study

Figure 5.17: Demonstration of the residual sequence based on 3 acceleration se-
quences. The top plot, middle plot and bottom plot, respectively, represent the ac-
celeration signals, the corresponding residual sequence obtained by Engle-Granger
approach and the residual sequence obtained by Johansen approach.

The length of the signals in �gure 5.17 are T = 1/16s, which provides must
higher resolution for further inspection of the residual sequence. This residual se-
quence is purged from common trends among the acceleration data, i.e. regardless
of the environmental condition, the residual will become stationary and consti-
tute to a feature which can be used for damage detection, that are in-sensitive to
environmental e�ects. The reader is referred to the actual algorithm, providing
the results in �gure 5.16 and 5.17, which can be found in the attached CD in
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5.6. Demonstration of Damage Detection Results based on Residual Sequences

Appendix B on page VII. Under the �le of :'RESIDUAL_PLOT_DEMO.m'.

This procedure of estimating the residual linear combination, will be performed
including all sensors in the �nal analysis, i.e. 11 time series with the possibility
of 10 cointegration relationships. The Engle-Granger approach only provides the
possibility of estimating 1 cointegration relationship, i.e. one residual sequence,
and it depends how the variables are positioned upon estimation. The Johansen
procedure provides the ability to estimate the most stationary residual, which is
obviously more appropriate, and the reason why this particular method will be
used in the upcoming sections.

5.6 Demonstration of Damage Detection Results

based on Residual Sequences

The results presented in this section, are based on a discordancy tests between
two structural states of the V27 wind turbine. Since the particular perspective of
this thesis is to ascertain the environmental e�ects, only the healthy state and the
damaged state of 450 mm trailingedge openings will be considered. The capability
regarding whether or not the sensitivity of the damage identi�cation method to
detect relatively small scale damages is already considered in [35] and [36]. Tem-
perature variations have been elaborated as the environmental parameter with the
highest e�ects upon structural health monitoring data, which is why this partic-
ular parameter is included in the following presentation of the results.

Firstly, results obtained by acceleration residuals will be presented, for this
purpose 3 separate analysis, representing 3 attempts on detecting damage is pre-
sented in �gure 5.18. Note, that the sequences is randomized among the 3065
possibilities for the healthy state at 3722 possibilities for the damaged state. In
those particular results, no restriction critiria has been de�ned, since the purpose
is to develop features which robust regardless of its condition.

Secondly, the results obtained by PSD residuals will be presented, cf. 5.19. In a
similar manner as previously stated, no search criteria restriction and randomized
among the available sequences within the structural state of healthy as well as
damaged (450 mm).

The reader is referred to the actual algorithms, which can be found in the
attached CD in Appendix B on page VII. Under the �les of:
'COINTEGRATION_DETECTION_ACC.m' and
'COINTEGRATION_DETECTION_PSD.m'.

55



5. Experimental Study

Figure 5.18: Semilogarithmic plot result of 3 separate attempts to detect damage
based on outlier analysis using Mahalanobis, where the featured input is residuals
of cointegrated acceleration data.
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5.6. Demonstration of Damage Detection Results based on Residual Sequences

Figure 5.19: Semilogarithmic plot result of 3 separate attempts to detect damage
based on outlier analysis using Mahalanobis, where the featured input is residuals
of cointegrated PSDs.
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Chapter6

Conclusion

As stated in the chapter of Project Speci�cation, cf. chapter 3 on page 17, the
present project aims to facilitate the development of a reliable health monitoring
system for wind turbines. One imperative requirement, before SHM systems can
be implemented in practical, is the ability to detect damage regardless of the en-
vironmental condition that the turbine is subjected to. It is well-known that, for
instance, temperature variations have considerable e�ects on the modal param-
eters of a structure. This is a concern that to be addressed, since conventional
methods to identify damage are based on monitoring changes in the modal pa-
rameters.
In order to address this particular issue, a statistical analysis technique from the
�eld of econometrics have been employed, namely cointegration. The principles
of this concept is that two (or more) time series, are considered as cointegrated,
if a linear combination of them is found to be stationary. Basically, if such com-
bination exists, the two time series must have some level of common behavior
and tendencies. Upon the process of establishing cointegrating relationships, this
residual linear combination will be found and will be purged from all common
trends. Usually, From an engineering point of view, structural response data,
which are used for damage identi�cation, are more tangible and more predictable
since they represent the behavior of physical objects. Due to the fact, that moni-
tored data are, at least for this case, obtained from the same structure, it can be
presumed, that they have common trends, since they are subjected to the same
environmental condition. This project has, based on this assumption, utilized the
residual linear combinations obtained during the process of cointegration analysis,
to be featured as damage identi�cation parameters, where environmental e�ects
have been removed. The capability of cointegration residuals to be featured as
damage identi�cation parameters have been explored based on inputs of experi-
mental data collected from a full-scale operating Vestas V27 wind turbine.
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6. Conclusion

A recall of the inherent processes is summarized as follows: Firstly, the empirical
data, obtained from the experimental campaign of a Vestas V27 wind turbine,
were pre-processed. In this phase, the data were subjected to truncation, align-
ment and bandpass �ltering, and subsequently, the frequencies upon estimating
frequency response functions, power spectral density functions and distinct co-
variance parameters, were, respectively, extracted from the original data sets.
Secondly (post-processing), the extracted parameters were subjected to a unit
root test, based on an augmented Dickey-Fuller test, where the results indicated,
that the parameters suitable for cointegration analysis were notably: the original
acceleration data and the power spectral density functions. A simple case with
3 acceleration signals was then demonstrated to highlight the results of residual
sequences found during the process of cointegrating. These residual sequences,
which is stationary linear combinations of the input data (for instance accelera-
tions and PSDs) are expected to be purged from all common trends. The same
premise, as demonstrated for the simple case of acceleration signals, were then
numerically applied for both the acceleration data and the data of PSDs, i.e. two
parameters were subjected to cointegration analysis. For both types, the analysis
provided a number between 1 to 10 residual sequences for each actuator excita-
tion, due to the employment of 11 sensors. The di�erent ranks of the resulting
impact matrices Π, indicates the amount of cointegrating relationships, which was
found to be inconsistent. This is expected, since the sensors closer to one another
tend to have higher probability for common trends, i.e. the distance between the
sensors will play a role on whether or not they are cointegrating. The majority of
the sequences had approximately 5 cointegration relationships. This information
is gained through experience upon developing and estimating the residual linear
combinations.
Upon the possession of the residual linear combinations of respectively accelera-
tions and PSDs, damage detection analyses were then conducted based on outlier
analyses of Mahalanobis squared distances. By observing the results, it can �rstly
be concluded that the residuals of acceleration data can not be used to identify
damage. This is on some level expected in advance, since it is mainly the modal
parameters that constitute as damage-features with signatures of damage. The
features such as frequencies and distinct covariance values, were, in fact, also
attempted to be implemented as inputs in numerical algorithm, however, the re-
sults indicated that these parameters were unsuitable for cointegration analysis,
and therefore discarded. Lastly, regarding the most successful parameter among
the extracted features, the PSD residuals: According to the results presented in
5.6 on page 55, one can get the impression, that this feature is robust against
environmental variations and is capable of detecting damage.
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AppendixA

Appendix - Supplementary

Analyses

A.I Initiation by means of Finite Element

Algorithms

Due to the author's novelty regarding structural health monitoring techniques in
the beginning phase of the project, it has been decided, that the creation of nu-
merical damage identi�cation algorithms, has to be initiated based on solid and
reliable ground where the author is con�dent. This can be achieved by construct-
ing codes representing simple �nite element scenarios, where the input parameters
as well as the introduced damage are completely controllable. Everything is �c-
tional and therefore, the outcome will be predictable veri�able. By doing this, the
possibilities of errors in all processes will be narrowed down/eliminated and the
theories of which the codes are built on, can be con�rmed valid.

The objective of the upcoming cases, is to detect introduced damage based on
outlier analyses using Mahalanobis metric, referring to section 4.2 on page 26. As
stated the intention is to establish a solid foundation so that this, well-established
detection scheme, can be processed and con�rmed valid for the author in order to
continue employing it. The challenge here, is to fabricate at least two sets of data,
of which the Mahalanobis distance can be calculated and compared. One set of
data to form the baseline model representing a healthy state and another set of
data representing a damaged state. Due to the experience of the author regarding
�nite element analysis in previous projects, cases based on �nite element theory
are numerically fabricated and analyzed. The parameter to be investigated, in
order to resemble the experimental study of the V27 turbine, is chosen to be ac-
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A. Appendix - Supplementary Analyses

celeration data which is achieved by time integration. Classical beam theory and
damping, i.e. Bernoulli Euler's Beam Theory and Rayleigh Damping, have been
implemented. The speci�c composition of these �nite element cases such as the
implemented physical properties, element topology, the boundary conditions, the
applied time integration scheme etc. are summarized in the following section.
The underlying fundamental concepts of �nite element analysis, for instance the
Bernoulli Euler's Beam Theory, the discretization strategy, and the construction
and assembly of sti�ness-, mass-, and damping matrices, are assumed being in
familiar to the reader, hence the details of these are not elaborated in this thesis
context. In a contrary case, the reader is recommended to read one of the author's
previous reports with the topic of �nite element analysis: referring to [56] and [57],
or, of course, the reader can read the widely used textbook for engineering as well
as educational purposes, namely "Concepts and Applications of Finite Element
Analysis" authored by Cook et al. (2002) [58].

Three independent codes with gradually increased complexity, i.e. with in-
creasing degrees of freedom (DOF) per node namely, 1-DOF elements, 2-DOF
elements and 3-DOF elements, have been created, referring to Figure A.1 and the
actual codes can be found in appendix B, in the folders of "MATLAB"→ "FEA",
named as "FEA1D.m", "FEA2D.m" and "FEA3D.m". The �rst code only con-
siders 1 degree of freedom (DOF) per node; the axial displacements u, the second
code considers 2 DOFs per node; the axial u and the rotational θ displacements,
and the third code considers 3 DOFs per node; the axial u, transversial v and the
rotational θ displacements.

Figure A.1: Illustration of the element types and the respective degrees of freedom
for each code. a) FEA1D, b) FEA2D, c) FEA3D.

.

The approach is to apply an initiating force, inducing vibrational response in
the structure, for each type of degree of freedom. In other words, an axial force
u, a transverse force v and a rotational force θ has been initiated respectively in
the three respective codes. A cantilever beam system consisting of 5 elements is
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composed as illustrated in Figure A.2, in all three cases.

Figure A.2: Illustration of the nodal and elemental topology for all three cases.

.

Node 1 is �xed against displacement in all three cases, and the initial force is
applied on Node 6. The material properties is chosen according to conventional
steel, i.e. Young's Modulus, E = 210GPa and density, ρ = 7.850kg/m3.

The �rst set of "undamaged" data, forming the baseline training data, is cal-
culated with the boundary conditions as stated without any further adjustments.
The "damage", to be detected by outlier analysis, is introduced by reducing
Young's Modulus. Subsequently, white Gausian noise is added respectively to
the two data sets, in order to achieve variational data for visual purposes as well
as to mimic and represent random natural processes in practical cases. The results
of these fabricated cases, in form of semi-logarithmic plots, are presented in Figure
A.3. The actual numerical codes can be found in the attached CD, referring to
Appendix A in the folders of "MATLAB" → "FEA" and named as "FEA1D.m",
"FEA2D.m" and "FEA3D.m".
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Figure A.3: Semi-logarithmic plots of outlier analysis results of the three FEA
cases. The horizontal dashed lines mark the threshold, ϑ, and the vertical dashed
lines separate the two states of healthy and damaged, after 100 number of tests.

.

Based on the results in Figure A.3, it can be observed, that the Mahalanobis
metric provides the capability to distinguish between healthy and damaged states.
The �rst 100 test numbers represent the healthy state, and the test numbers of
100-200, represent the damaged state. For all three cases, the D2distance within
the damage state exceeds the threshold.
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In addition to the three 5-element cantilever beam cases, a fourth case con-
sisting of 11 elements is constructed. This case is composed as a truss structure
as illustrated in Figure A.4.

Figure A.4: The truss structure including boundary conditions, nodal number and
location of initial force.

.

The purpose of this case is to eliminate errors in the code such as errors in the
assembly of sti�ness matrices or in the coordinate orientation and transformations,
since, the truss structure includes angular rotations of elements as well as joints
with 3 elements instead of 2. The boundary conditions are depicted in Figure
A.4, where the transversial force, f0, is implemented to induce response of the
structure. In a similar manner as the previous cases, the approach here, is to �rstly,
calculate the responses of the structure, and secondly, reduce Young's modulus
and recalculate the responses. The two sets of data can subsequently be inputs
for the damage detection scheme. The results of the outlier analysis based on
Mahalanobis metric is presented in Figure A.5. The actual code is to be found in
Appendix B, named "FEA3Dtruss.matlab".
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Figure A.5: Nodal deformation plot (scaled) and Semi-logarithmic plot of outlier
analysis results for the truss case. The horizontal dashed line marks the threshold,
ϑ, and the vertical dashed line separates the two states of healthy and damaged,
after 200 number of tests.

.

The nodal deformations as well as the outlier analysis are presented and the
results are evaluated as acceptable. As observed, the scheme is capable of de-
tecting a change in the physical properties, resulting in outlying values between
the test numbers 200-400, where "damage", i.e. reduction of Young's modulus,
is present. These results were expected in advance, hence, the FEA codes are
con�rmed acceptable for now and the detection scheme can be used and improved
further.
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AppendixB

Appendix - Attached CD

Including Developed Algorithms

Contents of digital data and related formats stored in the attached disc:

� Complete report in .pdf-format

� 'MATLAB'. Folder with numerical Matlab algorithms including following
subfolders:

� 'FEA'
Finite element algorithms in .m-format

� 'DETECTION'
Damage detection algorithms based on Mahalanobis metric in .m-format

� 'COINTEGRATION'
Cointegration algorithms in .m-format

� 'EXPERIMENT'
Algorithms employing experimental data providing results in .m-format

� 'FILES FOR LOADING'
Files with empirical data etc. in .mat-format
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