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Synopsis:

The work conducted during this thesis is
focused on the development of a model de-
scribing broiler growth based on climate
parameters and trajectory tracking con-
trol. The modeling incorporates five dif-
ferent structures where multiple parame-
ter estimations are conducted in a Monte
Carlo fashion. The system identification
result in a model deemed acceptable for
control use.
The reference tracking model predictive
control structure is specified for a batch
environment and incorporates a Kalman
filter for state estimation. Elements from
iterative learning control are included thus
memory is introduced in the controller.
The control structure is implemented and
tested in a simulation environment and
additionally applied on a broiler house
where a live test is conducted. The live
test is however inconclusive due to unusual
weather conditions.
In the end, a discussion reflects on the re-
sults of the simulation and live test com-
bined with a conclusion that sums up the
thesis.
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Preface

This work covers a Master thesis in Control and Automation at Aalborg University,
Department of Electronic Systems. The project is produced by group CA10-936.
The goal of this project is to do model predictive control of batch production in livestock
stables

The report starts with a small introduction to the problem, how it is modeled and
how parameters are estimated. This is followed by the derivation of the controller and
implementation. On top of this is the implementation tested both during simulation and
a live test. A discussion about ideas for improvement leads up to the final conclusion.

The reader can find a nomenclature at the beginning of the report which includes
acronyms, a symbolic list, and a notation list. In the appendix, detailed derivation,
in-depth descriptions and relevant measurements used for this project can be found.

Aalborg University, June 13, 2018

Daniel Bähner Andersen Nicolaj Vinkel Christensen
dban13@student.aau.dk nvch13@student.aau.dk
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Nomenclature

Acronyms

API Application Programming Interface
ARX Autoregressive Exogenous
BMPC Batch Model Predictive Control
FCR Feed Conversion Ration
IID Independent and Identically Distributed
ILC Iterative Learning Control
MET Meterologisk Institutt
MLP Multilayer Perceptron
MPC Model Predictive Control
NRMSE Normalized Root Mean Square Error
OECD Organisation for Economic Co-operation and Development
RNN Recurrent Neural Network
RTC Ready To Cook
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Group CA10 - 936 Nomenclature

Symbols
Symbol Description Unit
A System matrix of the broiler model [·]
AN Extended system matrix [·]
Ae System matrix of the error model [·]
b Linear part of the minimization problem [·]
B Input matrix of the broiler model [·]
Bd Input disturbance matrix of the broiler model [·]
Be Input matrix of the error model [·]
c Constant part of the minimization problem [·]
c A row vector of centroid positions [·]
C Output matrix of the broiler model [·]
Ce Output matrix of the error model [·]
D Feedforward matrix of the broiler model [·]
Dd Feedforward disturbance matrix of the broiler model [·]
dk Disturbance vector of the controller model [·]
d′ Unknown dynamics in batch error model [·]
Dk Disturbance sequence [·]
∆Dk Change in the disturbance sequence [·]
∆D̂k Predicted change in disturbance sequence [·]
ek Error sequence [·]
ẽk Error contribution from the applied input because of the dynamics [g]
edk Error contribution from ū− ˆ̄u, disturbances etc. [g]
ēk The part of edk that repeats itself from batch to batch [g]
e′k Output of time-wise error model [g]
êk Estimated error sequence [g]
Hy Humidity [%]
H Output matrix of time-wise error model [·]
k Batch index [·]
K Kalman gain [·]
m Prediction horizon [·]
N Batch length [·]
Q1 Weighting matrix for the state [·]
Q2 Weighting matrix for change in input [·]
Pk Covariance matrix [·]
R Quadratic part of the minimization problem [·]
Rm Measurement variance [g2]
Rs State variance [g2]
Rw Biased batch variance of the covariance matrix [g2]
Rv Batch specific variance of the covariance matrix [g2]
t Time index [·]
Tout Outside temperature [◦C]
uk Applied temperature [◦C]
ūk Reference temperature sequence [◦C]
ˆ̄uk Best estimate of ū [◦C]
Uk Temperature trajectory [◦C]
ˆ̄Uk Input sequence [◦C]
∆Uk Change in temperature trajectory [◦C]
∆Ûk Predicted change in temperature trajectory [◦C]
∆Ulb Lower bound of the temperature trajectory [◦C]
∆Uub Upper bound of the temperature trajectory [◦C]
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Symbol Description Unit
vk Batch specific input disturbance [·]
w Input disturbance in broiler model [·]
wk Batch repetitive disturbance [·]
W◦ RNN model output weights [·]
Wh

y,a RNN model delayed output weights [·]
Wh

b RNN model input weights [·]
x State in state-space model [·]
x̂ Estimated state [·]
yk Output trajectory [g]
ŷk Estimated output trajectory [g]
ȳ Reference output trajectory [g]
ȳ Mean of the weight measurement [g]
z A row vector of Z [·]
Z Data matrix for the k−means algorithm [·]
γ Initial scaling parameter of covariance matrix [·]
Γ Extended input matrix [·]
Ψ Extended disturbance matrix [·]
θ PParameters in system identification [·]
θh RNN model hidden layer bias [·]
θ◦ RNN model output bias [·]
Υ(·) Cost function of the MPC [·]
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Glossary of Mathematical Notation

This section sums up the mathematical notation and terminology used in this report.

Upper and lower bounds of a variable

x < x < x (1)

Where x ∈ R and x and x are the upper and lower bounds, respectively.

Intervals

[a, b] = {x ∈ R|a ≤ x ≤ b|} (2)

Where a and b are the start and end points of the interval, respectively.

Vectors and matrices

Vectors and matrices are noted with bold fonts, such that v is a vector:

v =


v1
v2
...
vn

 ∈ R(n×1) (3)

and M is a matrix:

M =


m11 m12 . . . m1p
m21 m22 . . . m2p
...

... . . . ...
mn1 mn2 . . . mnp

 ∈ R(n×p) (4)

Continuous vector variables are noted with v(t) such that:

v(t) =


v1(t)
v2(t)
...

vn(t)

 ∈ R(n×1) (5)

While discrete vector variables are referred to as sequences and noted with v[t], such that:

v[t] =


v1[t]
v2[t]
...

vn[t]

 ∈ R(n×1) (6)

is a sequence, where t is the time step between two entries.
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Introduction 1
Amain source to fulfilling the world’s demand for meat is the poultry industry, in which the
flesh of mainly chickens and other domestic fowl are processed as food. The average yearly
production of poultry meat during 2014-16 was 113.8 billion kg of ready to cook (RTC).
According to the 2017 OECD 10 year outlook, poultry meat production is predicted
to reach 131.6 billion kg RTC in 2026. Corresponding to an expansion of roughly 13%
compared to the levels of 2017. Based on the outlook, poultry meat production is predicted
to exceed pig meat during 2017 and thus become the worlds main meat production type,
compared to global output levels [1].

The global consumption of meat is by the same outlook predicted to increase accordingly.
The annual growth rate of meat consumption is predicted to be 1,09% as a global average.
The main contribution to the annual consumption growth arises from an expanding
population, which for the outlook period is predicted to increase from 7.3 billion to 8.2
billion people. This amounts to an annual increase of 0.83%, where the remaining 0.26%
is attributable to an increase in per capita consumption [1].
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Figure 1.1: Projection of global poultry and pig meat productions according to the OECD
10 year outlook [1].

The focus of this thesis is concentrated upon meat production from chickens which are
known as broilers, as these are estimated to make up 83% of poultry meat consumption
per capita in 2017 [2]. Modern broilers are raised in large open houses with flock sizes
ranging from 30 to 40 thousand broilers. The broilers arrive at the farm shortly after
being hatched where each broiler at arrival weighs in around 40 grams. When placed in
their house, the broilers are introduced to a preheated house with switching lines of feed
and water across the house width, spanning the length of the house floor. The hatched
broilers are incapable of regulating their own body temperature during the first 10 to 14
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Group CA10 - 936 1. Introduction

days, thus the house is heated to approximately 34 degrees ensuring a body temperature of
40-41 degrees. As the broilers grow and depending on their weight gain is the temperature
lowered to 20 degrees. The feed and water supply are unlimited and provided as needed,
thus the consumption is only dependent on the broiler behavior. The broilers are on
average staying in their house 34 days and reach a weight of approximately 2050 grams,
achieved with approximately 3100 grams of feed [3].

Figure 1.2: The Ross 308 broiler, present at all the farms that provide data to this thesis.

The broiler behavior is in modern broiler stables controlled by the climate and
environment. The broilers are highly sensitive to temperature which is a key component
to both regulate the behavior and monitor the well being of the broilers. Further climate
factors that influence the broiler behavior are air humidity, CO2 level, and wind chill
effects if the ventilation is working aggressively. For the remaining environment, the light
control is an important factor. Broiler houses do not incorporate windows, thus the day
and night cycle is determined fully by the indoor lighting control scheme. These climate
factors are described in [4].

The evolution of broiler houses has followed the general modernization of all industries and
thus are modern broiler houses closely monitored and feature redundant measurements
of a large number of environmental parameters. This data is stored and thus production
data for a large number of houses, spanning across multiple years is available for further
analysis. The existence of such data creates the basis for this project and allows for a
data-driven modeling of real-world broiler behavior. It is thus possible to analyze the
effect of environmental parameters on the broiler behavior and performance metrics such
as growth and food consumption. As of today’s standard, modern broiler houses feature
measurements of all vital parameters, but the use of this is not utilized beyond day to day
monitoring purposes of the individual house. Environmental parameters such as lighting
schemes and climate control set points e.g heat and humidity, are all adjusted by the
farmer manually.
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Figure 1.3: Inside of a broiler house with young broilers. The alternating food and water
lines throughout the house are visible on the floor.

Considering the extent and growth prediction for modern broiler farming combined with
the evolution and integration of modern data acquisition technology, it is desirable
to investigate the use of new approaches within the fields of broiler managing and
optimization of vital performance metrics. Solutions can range from aiding the farmer in
selecting appropriate set points for optimal climate control or complete control structures
optimizing specific performance metrics. It is believed that this can be used to aid the
farmer, leading to optimized production as advanced control techniques such as model
predictive control (MPC) can be applied.

Most literature focuses elsewhere as e.g optimal feeding by changing the broiler
feed composition or control of the broilers heat generation thus conflicts between
environmental, financial, and welfare aspects can become compatible [5, 6]. Only recent
studies by Simon V. Johansen focus on the dynamic interconnection between broiler weight
and broiler house environmental conditions. These studies focus on obtaining a nonlinear
model with the purpose of forecasting the broiler weight by the use of neural network
models [7]. As this field of study is new and no additional prior studies exist it is desirable
to investigate the results of an approach using only linear models can achieve.

The thesis is written in collaboration with the Danish company SKOV A/S which
specializes in climate and farm management solutions for poultry and pig farming. The
company was founded in Denmark and provides monitoring components, management
platforms, ventilation components and complete solutions for poultry houses. Due to
their specialization, they are able to provide insight into practices and challenges of
poultry farming and knowledge of modern solutions for climate control and management
for poultry farms.
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System Identification 2
This chapter addresses the modeling conducted during the project. Thereby including a
presentation of the provided broiler house data and the chosen model structure. This is
followed by a presentation of the data-driven model estimation method used and a model
verification. Leading to a final model, suitable for control purposes.

2.1 Data Description

The data provided for this project originates from ten broiler houses placed at three
locations. At the beginning of the project, data from four houses were made available
and later additional data from six houses. For each house and its corresponding dataset,
production data covering between 24 and 33 batches is found. A batch represents between
30 to 40 thousand broilers, depending on the size of the house. Each of these batches found
in a dataset contains measurement data and system references from the corresponding
house during the batch, which stretches across the broilers growth period of approximately
34 days. The available data is in most cases recorded both prior to the stocking of new
broilers and subsequent to them being displaced from the house, thus most data sets
contain data corresponding closer to 36 days.

Prior to making the data accessible for this project the raw data has been processed.
As the raw data is extracted from each house it is corrected such that per bird units are
adjusted according to mortality of the broilers. Furthermore, sensor readings are processed
and an average value across the specific sample interval is provided. This is necessary as
the raw data is created by a sampling method where a new sample is only taken if the
value has changed significantly compared to the last sampled value. There is due to this
method no specific sample time only an upper limit. In order to convert this raw data into
suitable data for modeling and control purposes, is the raw data processed prior to being
accessible for this project. During this process, is a linear interpolation between all sample
points made. The desired samples are generated by performing integrals where the span
of the limits corresponds to the desired sample interval, this is conducted throughout the
entire dataset.

The data is available with a sample interval of either 1, 3, 6, 12 or 24 hours. During the
system identification, it is chosen to use the sample interval of 1 hour, in order to utilize
as much information as possible and as this will make faster control possible.

Each dataset of a batch contains a large amount of different and redundant measurements,
containing information about all vital climate parameters, status and set points of
the ventilation system, light intensity measurements, broiler weight, food and water
consumption, etc. Only a limited number of parameters will be used in the model and
the selection of these will be explained throughout the following section. The desired
measurements are extracted from the dataset and divided into their respective categories,
either input, output or disturbance. An example of the available data for a few variables
and the chosen sample interval during a batch is shown in Figure 2.1.
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Figure 2.1: Specific example of the available broiler house batch data originating from
house six, batch nine.

The data in Figure 2.1 presents the system behavior during a typical batch. The weight of
the broiler rises as desired and the daily weight gain increases slightly as a bigger broiler
is capable of a greater weight gain. The broiler house temperature is closely monitored
and regulated by the farmer, thus a clear descending trend is visible. The temperature is
approximately set at 34 degrees for the newly hatched broilers, depending on the specific
conditions. This allows their body to focus the energy use on growth instead of maintaining
body temperature as they still have an insufficient feather coat [3]. The temperature is
constantly adjusted to the bird behavior but will in general during the batch period be
lowered towards 20 degrees at day 34, according to standard farming practice for the
specific broiler type [8]. The humidity in the broiler house increases throughout the batch
period. This is predominantly caused by an increasing biomass in the broiler house. The
outside temperature varies according to day, night and season thus reflecting the climate
in the region where the broiler house is located.

Regarding the presented data, a sample mean is created for each measurement, a special
case is the measured broiler weight where not only the sample mean is calculated but also
a time depended factor is added. This is due to the measured broiler weight becoming
increasingly negative biased as the broilers grow [9]. The broiler weight is measured by a
scale the broilers jump onto, thus as they grow, heavier broilers will tend to stay off the
scale where lighter broilers have a higher tendency to visit the scale. Further explanation
of this problem can be seen in [4].

For some batches, the desired measurement data is unavailable or incomplete during the
batch period. A possible reason being that data logging in some of these houses is in
an experimental phase. Due to this fact, batches which do not provide the desired data
measurement or quality are discarded. Furthermore, the batch data is shortened if it
extends beyond the period of broilers being in the house. This data sorting results in 161
batches which contain the desired measurements and thus are suitable for further use.
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2.2. Model Structure Aalborg University

2.2 Model Structure

Modeling and control of broiler batch production by the use of climate control variables is
a new area for control design. Previous work is very limited and what exists, is based on
a nonlinear modeling approach. It is thus relevant to explore the capabilities of a linear
approach. The system is modeled with a linear model, as these are well known and there
exists a wide variety of suitable control techniques.

The goal of the model design in this project is to create a model, suitable for control
purposes, which has the growth behavior of a broiler, based on climate conditions in
a broiler house. By achieving a model of this type, it is possible to develop a controller
which can aid the farmer, by finding the optimal reference trajectory, leading to optimized
production as advanced control techniques such as MPC can be applied.

The selection of inputs, outputs, and disturbances used in the model is based on the
work done by Simon V. Johansen where the effect of different environmental conditions
in broiler houses with respect to broiler growth are investigated [4]. From the set of
significant conditions found, the inputs, outputs, and disturbances used in the model are
chosen.

Temperature

Humidity
Weight

Outside temperature

Broiler
Figure 2.2: Block diagram showing the modeling approach.

The model structure shown in Figure 2.2 is centered around the growth of a single broiler,
based on knowledge and measurements from broiler batches. From a control perspective,
the broiler growth behavior is represented as the system. Inputs to the system are variables
that affect the growth and behavior of the broiler directly, it is desirable that these are
independent and can be controlled. The temperature and humidity in the broiler house are
variables that come close to this definition and are thus selected as inputs to the system.

The outputs of the system are defined as entities that the broiler can effect. In the
studied broiler production, feed and water are unlimited and supplied as needed, thus the
consumption is determined by the broiler. Feed and water consumption are outputs of
the system but it is chosen not to use these, instead, the broiler weight will be the used
output of the system. This is chosen as the broiler weight is strongly correlated with the
feed consumption, naturally caused by the growth behavior of the broiler, requiring more
energy as it grows. Likewise is the water consumption also strongly correlated with both
growth and feed consumption. Therefore to keep the model simple as a starting point,
only the broiler weight is chosen as the output of the system.

A disturbance that affects the broiler house and the broilers is the outside temperature.
Depending on how the houses are isolated and the amount of air renewal, the outside
temperature will affect the temperature in the broiler house, especially during cold
winters or warm summers. The humidity in the broiler house will furthermore always
be affected by the changing seasons, weather type and, the outside temperature. The
outside temperature is therefore added as an input disturbance to the model.
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When considering the growth curve of a broiler, the weight at the next time step is strongly
dependent on the weight at the current time step. An approach to modeling this behavior
is with the system matrix being a pure integrator. In order to realize such a system a
discrete time, first order, state-space representation is used. The general model structure
is shown in Equation: (2.1).

x[t+ 1] = Ax[t] + Bu[t] + Bdw[t]
y[t] = Cx[t] + Du[t] + Ddw[t]

(2.1)

Where
x[t]
u[t]
w[t]
y[t]
A
B
Bd

C
D

and Dd

∈ R(1×1)

∈ R(2×1)

∈ R(1×1)

∈ R(1×1)

∈ R(1×1)

∈ R(1×2)

∈ R(1×1)

∈ R(1×1)

∈ R(1×2)

∈ R(1×1)

is the state at time t,
is input vector at time t,
is input disturbance at time t,
is the output at time t,
is the system matrix,
is the input matrix,
is the input desturbance matrix,
is the output matrix,
is the input feedforward matrix,
is the input disturbance feedforward matrix.

te [g]
te[◦C, %]
te [◦C]
te [g]
te [·]
te [·]
te [·]
te [·]
te [·]
te [·]

To determine if this is the best approach three estimations will be made. This allows a
comparison and the best model structure can be chosen. The three models structures:

1. Estimation of only B and Bd, without feedforward and leaving A and C as unity.
2. Estimation of B, Bd, D and Dd, thus leaving A and C as unity.
3. Estimation of A, B, Bd, D and Dd, with C as unity, to evaluate on the initial

choice of the system being a pure integrator.

These model structures will all be used throughout the model design and based on these
the final model structure and parameters are chosen.

2.3 Individual Estimations

In this section, the estimation procedure for the unknown elements in the state-space
matrices is explained. The method and results are based on the model, described in
Section 2.2: Model Structure, and the data, described in Section 2.1: Data Description.
All results shown in this section are based on data from the first four houses, consisting
of 55 batches, as only they were available at the time. The presented results in this
section originate from model structure two, defining the system matrix as an integrator
and including feedforward. Estimation of the two other model structures, mentioned in
Section 2.2: Model Structure, is carried out in the same way. A block diagram of the
general parameter identification method is shown in Figure 2.3.
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ŷ̂ŷy
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Figure 2.3: The measurements from the system, yyy, are compared to the output of the
model simulation, ŷ̂ŷy, while introducing the same input for both systems. θθθ denotes the
model parameters, which is adjudge to minimized the error.

The estimation is done using three different strategies of splitting up the data. For each
strategy, the individual datasets, corresponding to a batch, are lumped in sets differently.

1. Gather datasets from the same house in the same set.
2. Gather datasets of approximately equal length in the same sets.
3. Handle all datasets as one set.

The first two steps in the estimation procedure are the same for all three strategies and
will, therefore, be explained only once.

The first step is to define the datasets as being either a training set or a test set. The
training set is used to estimate the unknown elements in the matrices and the test set is
used to check how well the estimated model performs. The datasets are for each strategy
split up by randomly selecting 70% of the batches, using these as the training set, leaving
the remaining 30% as the test set. An important note is that, for the first two strategies,
the performance of each model is checked by a test set comprised of 30% randomly selected
batches from each house or sets according to batch length. This is done to ensure that
the estimated model is not biased towards one of the houses or batch length. An overview
of the full data splitting process can be found in Appendix F: Estimation Flow Graphs
Figure F.2.

The second step is to set initial guesses on the elements in the input and feedforward
matrices and initial conditions of the system state. To clarifying, the state-space model is
stated below:

x[t+ 1] = x[t] + [B11B12]
[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t] + [D11D12]
[
u1[t]
u2[t]

]
+ [Dd]w[t]

(2.2)

The unknown parameters, B11,B12,Bd,D11,D12 and Dd are initialized by defining them
as uniform random variables in the interval [−0.1, 0.1], and the state, x[t] as a normally
distributed random variable with a mean of 40 grams and variance of 10 grams. The
initial condition of the state is chosen positive as this results in a positive weight increase
of the broiler, which cannot from a physical perspective be negative. Selecting the initial
conditions according to a random variable allows an insight into the sensitivity of the
estimation procedure and performance of the used solver. If different estimations arrive
at roughly the same results, this suggests that the chosen solver is adequate and the
estimation problem is no more sensitive to initial condition than the solver can overcome.

As written earlier the performance of all models is checked using the test set. This is done
by simulating the growth of a broiler using the estimated model parameters and the inputs
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of the test sets, which is then compared with the output of the test set as shown in Figure
2.3. The measured output and simulated output are compared using Normalized Root
Mean Square Error (NRMSE) according to Equation: (2.3), which gives a fit percentage
for each batch in the test set. The mean fit percentages of the test set are considered the
fit percentages for the estimated model.

fit = 100
(

1− ||y − ŷ||
||y − ȳ||

)
(2.3)

Where
y
ȳ

and ŷ

is the vector of weight measurements,
is the mean of the weight measurements,
is the vector of outputs from the model.

te [g]
te [g]
te [g]

The use of NRMSE as performance function results in fit percentages within the interval
[−∞, 100]. A fit of 0% implies that the compared model output has the correct average
value but the trend is incorrect. If the fit is negative both average value and trend are
incorrect.

2.3.1 Estimation Based on Houses

The first strategy is based on estimating a model for each house and then measure the
performance, of all created models, on test data from all houses. This results in four
training sets and one test set. As mentioned earlier, the test set is created by gathering
the remaining 30% of batches from each house where 70% are selected randomly as training
data. The procedure of splitting the data is illustrated in Figure 2.4 where the number of
training and test sets are displayed in green and red respectively.

Houses
70% 30%

H112 6

70% 30%

H218 9

70% 30%

H33 2

70% 30%

H43 2

H1-train H2-train H3-train H4-train H-test

Model parameter
estimation

Simulation with
H-test data

19 Batches

..
.

..
.

..
.

Figure 2.4: An overview of the model estimation process where the data is separated
according to the associated house. In green, the number of training batches for each
house and in red the number of test batches.

The four training sets, each comprised of data from the same house, are shown as H1-
train, H2-train, H3-train and H4-train respectively. The test set used to evaluate the
performance of each of the four models is shown as H-test. The complete parameter
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estimation and simulation procedure is conducted for each training set, thus four models
are obtained.

The estimation is done using the Matlab grey box estimator greyest. The grey box
estimator is a gradient-based estimator that uses a linear idgrey model, an initial model
that defines the model structure, and a dataset as input. The output is the model with
the estimated parameters. For all three estimations, the initial model is the linear state-
space model described in Section 2.2: Model Structure and for this strategy, the data is
the training set based on houses as mentioned earlier. The output is the model with
the estimated elements of the input and feedforward matrices that provide the best
performance using the training set. Further explanation of the greyest estimator is
found in Appendix B: Matlab Estimation Toolbox. The result of the greyest estimator is
compared to the test set, this is done by simulation. In Figure 2.5 the two best and two
worst results from one estimation is presented.
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Figure 2.5: A simulation based on the estimated model parameters is conducted and
the model output, shown as dashed lines, is compared with the measurements, shown as
solid lines. From the complete test set the two best and two worst simulation results are
presented.

The performance of the four models is evaluated with the use of the 30% selected test set.
The test data consist of data from all four houses, this adds up to 19 batches corresponding
to 19 test sets and simulations.

The presented results in Figure 2.5 are based on house four. The training set of this
estimation consists of three batches and the test set consists of 19 batches, where four of
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these and their corresponding simulations are presented. The fit percentages for B16, B1,
B3 and B4 are 92.93%, 91.39%, 64.59% and 43.53% respectively.

The presented results show that the model for batch B1 and B16 are capable of reproducing
the correct behavior with the residual contained below a margin of 15 and 75 grams
respectively. For the two remaining batches, B4 and B3, the residual indicates that the
model is incapable of reproducing the correct behavior within a reasonable margin of
error. It is, furthermore, seen that all models, even the good ones, start with a negative
initial broiler weight even though the initial state is set positive during the simulation.
It is also seen that the residual of B1 and B16 are negative at the start, then becomes
positive and towards the end converges to the correct broiler weight. However, from a
single estimation, it is not possible to determine if this is caused by an odd behaving
test set or if some dynamics of the broiler are simply not described by this simple model
structure.

2.3.2 Estimation Based on Batch Length

The second strategy is considered because the batches are of different length. This could
be caused by measurements being stopped too early of running too long. This results
in the last samples of the longer batches being cut off in order to make them the same
length, which Matlab requires to allow estimation using the greyest estimator. This
results in lost data which is not included in the estimation process and information are
lost. Therefore this strategy is to separate the data into clusters according to the batch
length, or sample size. In this process, the origin of the dataset, in other words, which
house the batches are from, is not considered.

To avoid cutting off long batches, first, the question of how to split up the data must be
answered. The task is to maximize the number of samples included in the estimation.
This should be done such batches of approximately same length are placed in the same
cluster. To achieve this a cluster search algorithm is used. A cluster search algorithm
finds a number of center points and separates the data points according to the closest
center point, where each data point is representing a batch. The more clusters that are
used in this process the more data will be used, but for each cluster, an estimation must
be made, and therefore each cluster result in a model with a new set of estimated model
parameters. Furthermore if eg. a cluster is made for each dataset, the estimations are
based on very little data, which would likely result in a model which is bad at reflecting
other behavior than that of the dataset used to create the model. These argument implies
that an optimal number of clusters can be found. This problem is considered in Appendix
A: Cluster Search, where it is concluded that four clusters are appropriate.
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Figure 2.6: A plot of the length of batches to illustrate how they are distributed. The
cluster search algorithm has split the data into four clusters which gives the maximum
number of samples in the estimations.

The result shown in Figure 2.6 is for the 55 batches which were first available, in Appendix
A: Cluster Search, the result for all 161 batches is shown. As described in the start of
Section 2.3: Individual Estimations and as done for the first strategy, the data is now split
into training and test sets. In this case, it results in four training sets and one test set.
An overview of the process is presented in Figure 2.7.

Cluster
70% 30%

C118 9

70% 30%

C25 3

70% 30%

C37 4

70% 30%

C46 3

C1-train C2-train C3-train C4-train C-test

Model parameter
estimation

Simulation with
C-test data

19 Batches

..
.

..
.

..
.

Figure 2.7: An overview of the model estimation process where the data is separated
according to the associated cluster. In green, the number of training batches for each
cluster and in red the number of test batches.
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The estimation is again done using the Matlab grey box estimator greyest, explained
in Appendix B: Matlab Estimation Toolbox. The four state-space models are used in a
simulation, using the inputs and outputs from the test set, which results in a simulation
output that can be compared to the measured output. A result of the estimation for one
of the models related to one cluster can be seen in Figure 2.8 where the two best and two
worst results are presented.
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Figure 2.8: A simulation based on the estimated model parameters is conducted and the
model output, shown as dashed lines, is compared with the measurement, shown as solid
lines. From the complete test set the two best and two worst simulations results are
presented.

The result seen in Figure 2.8 is based on the second largest batches, seen as the red dots
in Figure 2.6 and cluster three in Figure 2.7. The training set of this estimation consists
of seven batches and the test set consists of 19 batches, where four of these and their
corresponding simulations are presented. The fit percentages for B8, B6, B7 and B4 are
92.21%, 92.02%, 75.07%, and 76.25% respectively. The residual of the two best fits is 71
and 109 gram, respectively. As for the estimation based on houses, it is seen that the
initial values of all models are negative even though the initial states are selected positive.

2.3.3 Estimation with all Data at Once

The concept of the third strategy is to perform the estimation using all available data
at once. This is done based on the idea that, the more data used in the estimation, the
better will the model reflect a wide variety of scenarios. Furthermore training on a set
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with data from all four houses could help to ensure a generic model which would fit the
weight gain in all four houses, where different house dependent climate conditions could
have an effect on the growth. An overview of the data splitting procedure is presented in
Figure 2.9.

All Batches
70% 30%

38 17

Training Test

Model parameter
estimation

Simulation with
test data

Figure 2.9: An overview of the model estimation process where the data is not separated.
In green, the number of training batches and in red the number of test batches.

As for the first two strategies, the batches are split into a training and a test set by the
same method. Afterward, the training set is used in the estimation, a model with a set
of estimated parameters is again achieved. The model and the test set is used to perform
the simulation which is again used to measure the performance of the model. These steps
are all done in the same way as explained for the first two strategies.
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Figure 2.10: A simulation based on the estimated model parameters is conducted and the
model output, shown as dashed lines, is compared with the measurements, shown as solid
lines. From the complete test set are the two best and two worst results presented.

The results shown in Figure 2.10 indicate some of the same behavior as seen in the two
previous estimation strategies. All initial states are negative and even B15 and B17, the
two best batches, are behaving a bit too linear to catch all dynamics of the broiler growth.
The fit percentages for B15, B17, B12 and B8 are 94.37%, 90.18%, 78.08%, and 74.03%
respectively. Because of the good fit percentages for the best batches, the model structure
is deemed good enough to continue with.

As this estimation is based on all the data at once, the training set consists of 38 batches
and the test set consists of 17 batches. The number of batches in the test set is smaller
in this strategy due to rounding.

2.3.4 Estimation Considerations

A successful estimation has now been made for each of the four houses, each of the four
clusters and all the data at once. This results in 9 different models that can be chosen
between.

All results shown in Section 2.3.1 to 2.3.3 are results obtained with random bounded
initial conditions and random selection of training and test sets. Therefore the results
vary a lot and one estimation is not sufficient to determine which model is the best. In
other words, the fit percentage of one estimation does not tell how well the model fits
all data in general. A solution to this could be to run the estimation multiple times to
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investigate which model gives the best result during multiple trails as the test set will be
different at each iteration. This dilemma will be covered in the next section, Section 2.4:
Monte Carlo Estimations.

A concern about the different estimation strategies is the number of batches included in
each estimation. The first strategy, estimation for each house, results in four models.
However, dividing the batches in this way results in large size variation of the number of
batches in each training set. The training sets consist of 12, 18, 3 and 3 batches for house
1-4 respectively. For the second strategy the, estimating according to batch length, the
number of batches in the training sets are 5, 13, 7 and 11 batches.

It is desirable to obtain a model that fits the behavior of a wide variety of scenarios. To
ensure this is the case, parameter estimation should be conducted using several batches.
The data splitting strategy based on batch length naturally ensures this if the number of
clusters is selected reasonably. However, this is not the case for the data splitting strategy
base on houses, where the number of batches used for estimation depends on the provided
data. As described in Section 2.1: Data Description data was made available in two
stages, for the additional houses added at a later stage the number of batches provided in
each dataset is strongly varying. The added datasets would for the data splitting strategy
based on houses result in an additional number of models corresponding to the number of
added houses. As some of the added houses only contain very few batches, it is no longer
possible to ensure that estimations are based on a wide variety of batches. Due to this
fact is the strategy abandoned and will not be used in the further research.

The presented model simulations show a mix of well fitted and poorly fitted results.
This indicates that the model and estimation procedure in some instances is incapable
of catching the true system dynamics. In order to ensure that the full potential of the
currently selected model structure is explored, the structure is kept and will be evaluated
further as multiple estimations are conducted.

2.4 Monte Carlo Estimations

The models described in Section 2.3: Individual Estimations are obtained with initial
conditions of the model parameters selected from random distributions and random
selection of test and training sets. Due to stochastic behavior included in the estimation
method, further research has to be made in order to determine which model performs the
best. As mentions in Section 2.3.4: Estimation Considerations only the models based
on batch length and the model using all data at once, estimation strategy two and three
from Section 2.3: Individual Estimations, will be considered. As described in Section 2.1:
Data Description extra data became available during the modeling process. Therefore all
results shown in this section are based on 161 batches.

In Section 2.3.4: Estimation Considerations it is concluded that only estimating once does
not provide a clear picture of which model performs the best. Therefore an estimation,
that estimates multiple times in order to clarify which model converges to the best fit
percentage, is performed. Each iteration gives a fit percentage for all five models and as
more and more estimations are performed the average fit percentages across all models
will converge.

This Monte Carlo simulation iterates the single estimation presented earlier, 500 times
as this is deemed enough for the fit percentages to converge. At every iteration of the
Monte Carlo approach, the single estimations are initialized at new, thus the random
70/30 splitting of training and test set as well as the random initialization of parameter

19 of 113



Group CA10 - 936 2. System Identification

values is conducted. As for the individual estimations, the performance of every generated
set of model parameters is tested on a test set which originates from batches across all
clusters.

This Monte Carlo estimation procedure is carried out for all three model structures
described in Section 2.2: Model Structure. An overview of the results is presented in Table:
2.4 where an average fit of the 500 iterations for all combinations of model structures and
estimation methods is shown. The three model structures are:

Structure 1:
x[t+ 1] = x[t] + [B11B12]

[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t]
(2.4)

Structure 2:
x[t+ 1] = x[t] + [B11B12]

[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t] + [D11D12]
[
u1[t]
u2[t]

]
+ [Dd]w[t]

(2.5)

Structure 3:
x[t+ 1] = [A1]x[t] + [B11B12]

[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t] + [D11D12]
[
u1[t]
u2[t]

]
+ [Dd]w[t]

(2.6)

Model: Cluster 1 Cluster 2 Cluster 3 Cluster 4 All Data

Structure 1 77.62% 78.68% 78.86% 75.24% 78.68%
Structure 2 79.95% 80.78% 80.81% 77.63% 80.74%
Structure 3 63.74% 64.96% 63.80% 57.26% 64.74%

The results indicate that model structure two yields the best results as the highest average
fit percentages are obtained with this model, further explanation of the complete results
is found in Appendix C: Choosing Integrator Model Structure. As model structure two is
deemed the best structure only it is further reviewed in the main report, the converging
fit percentages for the five models of structure two are shown in Figure 2.11.
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Figure 2.11: The fit percentages of the five models as they converge.

From this, it can be seen that "Cluster 3", shown as the red cluster in Figure 2.6 converges
to the highest fit percentage, 80.81%. However, as the estimation is a numerical process
with random initial condition some estimations are, as seen in Section 2.3: Individual
Estimations, sentenced to go wrong. This is not desirable as an incorrect model will drag
the overall fit percentage in the wrong direction. Figure 2.12 shows the first 100 iterations
for the estimation, "Cluster 3", and it shows how some of the estimations are diverging
significantly from the mean.
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Figure 2.12: The fit percentages for each of the first 100 iterations.

It would be desirable to remove models with low fit percentages, keeping only the best
model with the highest fit. This will, however, due to the design of the Monte Carlo
simulation not ensure that the selected model is best at reflecting the variety of scenarios
as originally desired. The model could originate from a lucky match between training
and test set and thus have an artificially high fit percentage. In order to explain this
issue fictional batches are described and shown only with the purpose of explaining this
issue. The issue originates from the random division between the training and test data,
some combinations will naturally cause better results than others. In Figure 2.13 and
2.14, six fictional batches are displayed in two scenarios where they are randomly divided.
The batches are colored in pairs that behave the same way. In other words, pairs of the
same color have the same biased behavior, which could be caused by a bias toward the
houses, the season etc. It should be stressed that this is only a fictional example and the
difference between batches, e.g. spikes or deviation in weight at the end of a batch, is only
an expression of an anomaly.
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Figure 2.13: Case 1: The test data and
training data are almost identical which
would result in a good fit.
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Figure 2.14: Case 2: The test and
training data are split up so they to some
extent are different.

For case 1 test and training sets are almost identical which would result in a good
estimation. For case 2, the faster behavior of the blue batches will not be included in
the estimation and therefore the model would be slower than desired which will affect
the fit percentages. The opposite can be said if the data is to be divided such that
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the batches in the training and test data are swapped. These considerations lead to
the question of which estimation to keep and which to discard. This problem is solved
by using Grubbs test for outliers, which from a statistic perspective determines whether
a result is an outlier or not. If an estimation is categorized as an outlier, it is removed.
Removing the outliers changes the average fit percentages slightly, however, the conclusion
is the same as previously written. The number of outliers that are removed from each
estimation process of 500 iterations ranges from zero to four. This clearly indicates that
the estimation is successful in the vast majority of the iterations. The Grubbs test and
the complete result for all three model structures after outliers are removed are shown in
Appendix C: Choosing Integrator Model Structure.

2.5 Integrator Model Estimation

In Section 2.4: Monte Carlo Estimations it is concluded that model structure two, see
Equation: (2.2), yields the best results out of the three different structures. Structure
two has the system matrix as an integrator and the input and feedforward matrices are
estimated. For this model structure five estimations with 500 iterations were performed,
resulting in a total of 2500 models. The focus of this section is to determine which of the
2500 sets of parameters to use.

Based on the five Monte Carlo estimations, using the four clusters and the total dataset,
three models are selected from each estimation. This results in 15 models, which in order
to evaluate their performance are used in 15 simulations that are carried out on all 161
batches. The three different models, or rather the parameters contained in the models for
the simulations, are selected between the results from all 500 iterations of each estimation,
as follows:

1. The parameter set, of all 500, that yields the highest fit percentage, during
estimation.

2. The average of all 500 parameter sets.
3. The parameter set, of all 500, that yields the lowest fit percentage, during estimation.

The following simulations are conducted with all results, including potential outliers.
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Figure 2.15: The fit percentages of the three different models for all five estimations.

In Figure 2.15 the results of all 15 simulations are plotted. For cluster 1 and 4, it is
seen that the parameters from the model with the highest fit percentage in the estimation
also was the highest fit percentage when used on all batches. This observation is not in
line with the statement concerning unfavorable separation of test and training set, from
Section 2.4: Monte Carlo Estimations. The statement suggests that the highest or lowest
fit percentages for the test set might not necessarily be the highest or lowest overall fit
percentage due to the scrambling of training and test set. However, for cluster 2 and
3, it is seen that the models based on the average of all parameters have the highest fit
percentage. This is to be expected as the Monte Carlo estimation of the parameters is
cycling through various training and test set combinations, thus the average based models
are exploiting more information across all batches. It is, furthermore, seen that the model
based on averaged parameters from cluster 3 has the overall highest fit percentage. The
same behavior was seen during the Monte Carlo simulation, see Figure 2.11 where cluster
3 likewise yielded the highest results.

For the last estimation, based on all data at once, it is seen that the model based on
parameters from the iteration with the lowest fit percentage is actually the best performing
when used on all batches. This is probably due to an unfavorable combination of training
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and test data which gives the low initial fit percentage. However the estimation still
managed to reproduce the dynamics of most of the batches. This supports the statement
at the end of Section 2.4: Monte Carlo Estimations, that an artificial low fit can occur
and the Monte Carlo estimation is necessary.

However, as stated earlier these simulations are using all results including the outliers
detected by the Grubbs test, see Appendix C: Choosing Integrator Model Structure. As
the estimation process is numerical, it can not be guaranteed that all iterations find an
optimal solution.

The same procedure is now tried for the results of the Monte Carlo estimation, but without
outliers, as this might change some of the unexpected results.
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Figure 2.16: The fit percentages of the three different models for all five estimations
without outliers.

The fit percentages of the 15 models when outliers are removed, Figure 2.16, are
approximately the same as when outliers are included. This implies that the most
iterations of the estimation are successful and few outliers exist. This is also seen in
Appendix C: Choosing Integrator Model Structure, as very few results are categorized as
outliers and removed. However, as the three best results in Figure 2.16 are only separated
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by 0.2%, it is hard to argue why one is better than the other. Therefore the parameters
of the three models with the highest fit percentages are investigated further.

As the models perform almost the same, it could be caused simply by the models being
approximately the same set of parameters. To recap, the model structure and the
estimated parameters are stated here:

The estimated parameters are B11,B12,Bd,D11,D12, and Dd. To realize whether the
parameters are actually the same, the six parameters are plotted for all iterations in
Figure 2.17. The three sets of parameters extracted from the total of 15, named model
A to C, are the average parameters from cluster 3, cluster 2 and all batches at once
respectively, as they are the three best performing average parameter sets.
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Figure 2.17: The parameters for all iterations, from the three best performing average
models. The values shown in the legends are the mean of all iterations.

As it is seen in Figure 2.17 the parameters in the input matrix are almost the same. The
feedforward parameters are slightly different. Where D11, the feedforward coefficient of
the temperature, is positive for cluster 3, but negative for the two other models. However,
the values of Dd are all positive but vary a lot, which seems to cancel out the difference
in D11, as all models perform similarly.
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The best performing model from Figure 2.16, "All batches, parameters from lowest fit",
is not included as it is only one set of parameters. For the sake of convenience, this is
named model D. However, this model might also be interesting to compare with the best
performing set of average parameters. Therefore model D is stated in Equation: (2.7).

x[t+ 1] = x[t] + [−0.0273 0.05637]
[
u1[t]
u2[t]

]
+ [−0.014]w[t]

y[t] = x[t] + [−0.1691 − 2.838]
[
u1[t]
u2[t]

]
+ [0.6614]w[t]

(2.7)

As it is seen the parameters are again almost the same, compared to model A, B, and C.
The feedforward parameters are however more in line with the result from model B and
C, as D11 is also negative. The fact that three out of the four selected models indicate
the same parameters, implies that this is a more likely model structure.

The three models that indicate the same parameters are basically the same. However, to
get an idea of the performance, besides the fit percentages, the three models are simulated
and shown together with the mean and standard deviation of all available 161 batches.
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Figure 2.18: The mean of all batches, the standard deviation, and the three best models.
A relative short batch period is represented, as a mean for all batches only exits for the
length of the shortest batch.

As it is seen in Figure 2.18 the three models behave very similar. However, the models
do not truly reflect the dynamics of the data, as the models seem to follow a more linear
trajectory. Furthermore, it is seen that the models start at approximately -160 grams

27 of 113



Group CA10 - 936 2. System Identification

which is highly undesired as the weight of a broiler cannot be negative. These simulations
are conducted with the initial state value set to 40 grams.

The linear trajectory indicates that the current model structure is not sufficient to describe
the growth of a broiler. Signs of this where seen in Section 2.3: Individual Estimations,
however because of the separation of training and test data, as well as the different quality
of the data it was not possible to fully determine if the model structure was sufficient at
that time.

From a physical perspective, the almost linear trajectory, suggests that the broiler gains
the same weight during the first days as the last days of the batch. Looking at the mean
of all data this is not true. In other words, according to the provided data is the average
broiler gaining around 140 grams in weight the first week and approximately 150 gram
the last day during a batch. The dynamics of this clear difference in absolute weight gain,
from day to day, is not caught by the model.

The models are not able to describe all dynamics of the broiler. However, these models are
believed to be the best performing when considering a first-order model structure with a
pure integrator and estimating the input and feedforward matrices. In order to determine
if these results can be improved the models should be compared with models of other
structures and optionally other estimations strategies.

2.6 Unstable Model Estimation

In this section, it is attempted to improve the previous modeling results, found in Section
2.5: Integrator Model Estimation, which models a broilers weight during a batch, based
on temperature and humidity as inputs and outside temperature as a disturbance. The
improvement is attempted by utilizing a different design approach for the first order model
originally presented in Section 2.2: Model Structure. The parameters of the model are
estimated by the same method as presented in Section 2.4: Monte Carlo Estimations.

The best result from the previously conducted model design consists of parameter
estimation for first order models with an integrator design. This model structure is
proven incapable of sufficiently following the desired growth dynamics of a broiler with
the current selected inputs, temperature and humidity. An approach that estimated the
system matrix, instead of selecting it as an integrator was also tried. This provided results
with a significantly lower fit and higher variation among the individual estimations.

In order to obtain an acceptable model, it is thus necessary to explore models with different
characteristics. The previous models are all stable models, and with the selected inputs,
they provide a dynamic behavior that is not as exponential growing as required. It is due
to this finding, desirable to investigate unstable models as they, with the same inputs, will
allow an exponential behavior due to the unstable nature of such a model. The instability
of the model should be limited an thus only be slightly unstable as it otherwise could
cause the system equations to blow up within a short time.

Finding the optimal pole placement of the system matrix is done with the help of the
same estimation toolbox as previously used. Only a slightly unstable model is desired,
thus the pole placement is constrained to the interval [1.0001, 1.100] within the z-domain.
Based on this constraint, parameters of two model structures will be found by estimation
and compared by the exact same methods used in the previous model estimation.

The two model structures contain an estimation of:
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4. A constraint to [1.001, 1.100], B and Bd, thus leaving C as unity and D, Dd as zero.
5. A constraint to [1.001, 1.100], B, Bd, D and Dd, thus leaving C as unity.

The estimation procedure is identical to the one presented in the Section 2.4: Monte
Carlo Estimations. The full in-depth results for both model structures are presented in
Appendix D: Choosing Unstable Model Structure, the mean fit percentages obtained for
both structures and all estimation methods are presented in Table: 2.6 together with the
results from the previous model structures.

Model: Cluster 1 Cluster 2 Cluster 3 Cluster 4 All Data

Structure 1 77.62% 78.68% 78.86% 75.24% 78.68%
Structure 2 79.95% 80.78% 80.81% 77.63% 80.74%
Structure 3 63.74% 64.96% 63.80% 57.26% 64.74%
Structure 4 83.19% 86.78% 86.79% 84.21% 85.92%
Structure 5 85.57% 88.68% 88.65% 86.39% 88.25%

It is based on the results, found that model structure five yields the highest fit percentages
out of the two additional structures. This follows the results in the Section 2.4: Monte
Carlo Estimations where it is found that the model structure incorporating an estimation
of the feedforward matrix D, yields the highest fit percentages. The previous best result,
shown in Section 2.5: Integrator Model Estimation, yielded a fit percentage of 80.81% the
new design approach with a pole placed outside the unit circle is showing significantly
higher results for both model structures. These results indicate that representing the
system with an unstable model is more correct and reflects the system dynamics to a
greater extent.

The best performing models for each of the additional structures are:

Structure 4:
x[t+ 1] = [1.0024]x[t] + [0.019900 2.6000 · 10−3]

[
u1[t]
u2[t]

]
+ [−2.9221 · 10−4]w[t]

y[t] = x[t]
(2.8)

Structure 5:
x[t+ 1] = [1.0021]x[t] + [0.028800 4.2423 · 10−4]

[
u1[t]
u2[t]

]
+ [−4.7552 · 10−4]w[t]

y[t] = x[t] + [−3.0780 0.32120]
[
u1[t]
u2[t]

]
+ [5.6000 · 10−3]w[t]

(2.9)

A comparison of the two different model structures is presented in Figure 2.19. The
presented models are the final models for each structure that are chosen according
to Appendix D: Choosing Unstable Model Structure based on their performance and
structure.
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Figure 2.19: The mean of all batches, the standard deviation, and the two best models.

The presented simulation is conducted with an average of all 161 batches. Comparing the
two model structures some significant differences are visible due to the inclusion/exclusion
of the feedforward matrix. During the estimation of structure five, the overall effect
of the feedforward matrix is found to be negative. The impact of this result is visible
during simulation as structure five yields a significantly lower weight during the first days,
compared to structure four. The higher fit percentage of structure four is thus also a result
of the added feedforward matrix as the weight output is generally closer to the desired
output compared to structure four.

Overall it can be concluded that the approach of mowing the system pole outside the unit
circle has significantly improved the accuracy of the models. Leading to models that follow
the desired trajectory closer and thus minimizing the residual and obtaining significantly
higher fit percentages.

2.7 Model Validation

The purpose of this section is to validate the previous found broiler models with respect
to both their performance and behavior. The validation is based on new data that has
not been used throughout the system identification.

The models found in the previous sections are all based on data-driven parameter
estimation. The estimation process is conducted in a Monte Carlo like method as described
in Section 2.4: Monte Carlo Estimations. During the estimation process, all available data
is used. As a consequence, when analyzing and comparing model performance, the results
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are based on data that previously has been used in the parameter estimation process.

The new data originates from the same broiler farm locations as previously used. As
data from these farms are constantly gathered, new data is obtained since the modeling
procedure started, thus data from these additional batches is now used to validate the
models. The validation data is created as a mean of all the new available batches.
Furthermore, the standard deviation is shown in the same way as in previous model
performance comparisons. In total there are 30 new batches originating from 8 houses.

The comparison of the different model structures is presented in Figure 2.20, where also
the residual of the broiler weight is shown.
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Figure 2.20: The mean weight of all 30 batches, the standard deviation, and the three
best models.

The comparison includes only the best model found in Section 2.5: Integrator Model
Estimation as the remaining behave and perform almost identically. The different
modeling approach taken in Section 2.6: Unstable Model Estimation is clearly visible
as the two models, structure four and five behave significantly different than the pure
integrator model, represented as structure 2. The integrator model does not reflect the
true broiler dynamics as the model behavior is close to a true ramp. The challenges of this
model structure seem persistent as the same behavior was experienced when the averaged
test data is used to validate the model structures performance.

The behavior shown by the two unstable model structures is very similar to the results
found during the usage of the averaged test data, as shown in Figure 2.19. Apart from
the higher fit percentages compared to structure two, is the behavior of the two new
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structures closer to reflecting the true broiler dynamics. Comparing the results found
during the usage of test data and the new results obtained by the validation data reveals
that the fit percentages across all three model structures have increased significantly. The
best-obtained fit with the test data and the new results, based on the validation data, are
shown in Table: 2.7

Model: Validation data Test data

Structure 2 85.31% 80.81%
Structure 4 88.71% 86.79%
Structure 5 90.06% 88.68%

The increased fit percentages could be caused by the smaller amount of batches used to
generate the averaged validation data. Since only 30 new batches are available compared
to the 161 in the previous performance evaluation, this implies that the new batches
represent a much smaller spread in time. As the spread is smaller, it is likely that the
batches are more identical as long time changes in eg. broiler genetics, food composition
or similar factors that slowly evolve over time, cannot yet make an impact on the batches.
Some dynamics might have been diluted by the averaging procedure of the 161 batches
thus not reflecting all of the true input and output dynamics seen during a batch, thus
artificially lowering the fit percentages.

The results show a significant performance gain for the pure integrator, structure two,
whereas the remaining structures also gaining fit percentages but within a more reasonable
range. It is furthermore noticeable that the performance gap between model structure four
and five is close to maintained.

The simulation based on the newly obtained validation data shows for all three model
structures that the previously reported performance is valid and even shows a performance
gain for all structures. Furthermore are the displayed model structure dynamics and
behaviors similar to the previously found, which indicates that the previously discovered
model structure properties are valid.

For further use during the development of a controller, one model needs to be selected to
center the control structure around. Based on both the results found during validation
and as described in Section 2.5: Integrator Model Estimation, does the pure integrator
structure not perform as desired and will thus not be used for control purpose. Model
structure four and five show similar performance, though structure five has a slightly
higher fit percentage as this model structure incorporated a feedforward term.

The controller development will be based on model structure four, as this structure
yields good fit percentages and does not incorporate a feedforward term and thus can
be implemented in more advanced control structures without additional considerations.
The explicit model structure that will be used originates from Equation: (2.8) and is
repeated here:

Structure 4:

x[t+ 1] = [1.0024]x[t] + [0.019900 2.6000 · 10−3]
[
u1[t]
u2[t]

]
+ [−2.9221 · 10−4]w[t]

y[t] = x[t]
It is deemed important that the model structure is rather simple, such that the focus can
be shifted towards more advanced control options. Model structure four is a good match
between simplicity and performance and is thus chosen to be used for control purpose.
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Controller 3
In this chapter, the design of the controller structure is explained. The chosen control
approach includes a batch-wise error model, a time-wise error model, a Kalman filter and
a model predictive controller.

3.1 Control Problem

A general introduction to the control strategy will be given throughout this section. Thus
covering the main idea behind the chosen approach and explaining the general control
structure.

As earlier described in Section 2.2: Model Structure is the goal of the controller
development to design an MPC structure that aids the farmer in selecting the optimal
climate conditions in order to achieve the desired broiler weight. The models found
throughout the previous chapters are models describing the weight of a broiler based
on temperature and humidity as inputs and the outside temperature as a disturbance. In
a real-world practical situation will it not be possible to control both the temperature and
humidity fully independently as relative humidity is affected by the specific temperature.

When considering the model from a control perspective it is chosen only to use the
temperature as the input, where both humidity and the outside temperature are regarded
as disturbances. Considering the model from this aspect represent a scenario in line with
the farmer’s main climate focus which is the house temperature. The two disturbances
are controlled internally by the ventilation system, the humidity is kept within a specified
bound and the outside temperature is actively accounted for by the temperature control.
Rearranging the model structure to a form with one input and two disturbances implies
that the MPC structure will consist of one manipulated variable and two measured
disturbances. A block diagram presenting an overview of the general structure is shown
in Figure 3.1.

Controller SKOV A/S Broiler

Broiler House

∑ȳ
+

−

y
e u

ToutHy

Figure 3.1: Block diagram of the general control structure.

The general control structure is centered around the broiler house which represents the
existing system. The broiler block inside the broiler house represents the rearranged model
with temperature as the input, weight as output and humidity and outside temperature as
disturbances. The block named SKOV A/S inside the broiler house represents the existing
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broiler management platform, including all process control parameters as climate control,
food supply, light scheduling etc. The MPC developed throughout the following sections
will according to the block diagram act as a high-level controller. The controller applies a
desired temperature reference for the existing climate control system in order to achieve a
reference broiler weight. Additionally, are the two disturbances actively handled through
the internal model of the controller.

The described controller design is based on regular MPC design which is applicable for a
wide range of systems. The current system can be viewed as a batch production process
due to the characteristics described in Section 1: Introduction. This property can be
utilized to design a controller that is tuned towards a batch-specific application. An
MPC designed towards batch operation will be the focus of the controller development.
The design incorporates shrinking the control and prediction horizons to the batch length
such that the horizons are always equal to the remaining batch length. This approach is
called shrinking horizon MPC or Batch-MPC (BMPC) and takes advantage of the batch
structure of the broiler production [10].

Further specialization of the BMPC is possible by incorporating element from iterative
learning control (ILC), where information from previous batches is stored and used to
improve future batches [11]. The introduction of elements from ILC also imposes the
introduction of two different time measures. These consists of a short- and long-term time
scale where the short-term scale is defined as the sample time applied in a batch and the
long-term as the batch count. An illustration of these properties is presented in Figure
3.2.
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Figure 3.2: A 3 dimensional plot of the short- and long-term time scales used under ILC.
The green area is the archived broiler growth and the red is the residual from the reference
trajectory. As batches are completed the residual gets smaller.

As two-time scales are defined due to the introduction of ILC, two control objectives are
considered. The short-term objective is handled by the BMPC as the focus is reference
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tracking and thus minimizing the tracking error across the batch horizon is defined as a
cost function inside the BMPC.

The long-term objective is to drive the error towards zero as the batch count increases
towards infinity. This long-term objective can be achieved by the use of ILC as this control
type is capable of monotonically decreasing the error towards zero [12].

Due to the repeating characteristics of the broiler growth process the available broiler
model and the trajectory tracking objective it is obvious to combine both ILC and BMPC
into one control strategy. Different combinations are successfully used for a wide variety of
systems and use cases. These are spanning from temperature tracking in an experimental
batch reactor [13] to control of a boiler-turbine power plant [14] and more [15] [16].

Combining the two control methods allows compensating some of the undesirable
properties each method has. A classic implementation of pure ILC will not be capable of
canceling real-time disturbances as the tracking error is only decreasing across complete
batch iterations. Trough the use of BMPC it will be possible to handle real-time
disturbances. Including elements of ILC in the BMPC design benefits the BMPC operation
as it will enable a decrease in the tracking error across both time scales. A pure BMPC
will conduct sequential reference tracking, thus not being able to guarantee that long-term
disturbances are handled desirably.

As the goal of both the short and long-term objective function is to minimize the residual
from the reference trajectory, a model describing the error is needed. In the next section,
this will be derived.

3.2 Batch-wise Error Model

Considering the system as a batch process, for which a mathematical description of the
residual from the reference trajectory is needed. A generic model describing the broiler
growth can be stated as:

y = N(u, d′) (3.1)

Where
y ∈ R(N×1)

N
u ∈ R(N×1)

d′ ∈ R(N×1)

and N ∈ R(1×1)

is the broiler weight,
is the function describing the real system,
is the applied temperature,
is the unknown disturbances,
is the length of the batch in samples.

te [g]
te [·]
te [◦C]
te [·]
te [·]

The nominal reference is then defined as:

ȳ = N(ū, 0) (3.2)

Where
ȳ ∈ R(N×1)

and ū ∈ R(N×1)
is the reference weight trajectory,
is the input required to obtain the reference weight trajectory.

te [g]
te [◦C]

From Equation: (3.1) and (3.2) an expression for the error trajectory can be defined:

e ∆= ȳ− y = N(ū, 0)−N(u, d′) (3.3)
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Where
e ∈ R(N×1) is the error sequence across the batch horizon. te [g]

The theoretical optimal input trajectory ū, is unknown. However ˆ̄u, the best estimate of
ū, can be determined using data from previous batches, the handbook[17] or simply by
experience. By defining both ū and ˆ̄u it is possible to formulate an expression describing
the error contribution from both the applied input because of the dynamics and the error
due to ū− ˆ̄u, disturbances and model errors:

e = G(u, 0) + G(ū−ˆ̄u, d) = ẽ + ed (3.4)

Where
G
ẽ ∈ R(N×1)

and ed ∈ R(N×1)

is a function describing the error in broiler weight,
is the error contribution from the applied input because
of the dynamics,
is the error contribution from ū− ˆ̄u, disturbances etc.

te [·]
te [g]

te [g]

Both ẽ and ed are error sequences for a specific batch, therefore an index is needed to
separate error sequence batch-wise. As shown Figure 3.2 are batches indexed as k resulting
in the error sequences being indexed as ẽk and edk.

A mathematical description of both ẽk and edk should be found, this is conducted in the
following. The error contribution ẽk is described first, this contribution will be based on
the linear model found in Section 2.7: Model Validation. The additional error part, edk is
unknown for now, though it will be modeled subsequently to ẽk.

3.2.1 Modeling of ẽk
The first term from Equation: (3.4), ẽk, contains the model of the known system.
Assuming a perfect model, ū− ˆ̄uk = 0, and no disturbances the error contribution is
defined as:

ẽk = ȳ− yk (3.5)

The broiler growth yk is described by model structure four, see Equation: (2.8). As
discussed in Section 3.1: Control Problem the model is rearranged such that temperature
is the only input and thus both humidity and outside temperature are disturbance entries
of the model. The final model used for control purpose is stated below for convenience:

xk[t+ 1] = [1.0024]︸ ︷︷ ︸
A

xk[t] + [0.019900]︸ ︷︷ ︸
B

u1[t]︸ ︷︷ ︸
uk

+ [−2.9221 · 10−4 2.6000 · 10−3]︸ ︷︷ ︸
E

[
Tout[t]
Hy[t]

]
︸ ︷︷ ︸

dk

yk[t] = xk[t]

(3.6)

Equation: (3.6) is then substituted into Equation: (3.5) for time t.

ẽk[t+ 1] = ȳ[t+ 1]−
(
Axk[t] + Buk[t] + Edk[t]

)
(3.7)

The same expression is now set up for [t+ 1].

ẽk[t+ 2] = ȳ[t+ 2]−A
(
Axk[t] + Buk[t] + Edk[t]

)
+ Buk[t+ 1] + Edk[t+ 1] (3.8)
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This is repeated for the batch length N to obtain an expression describing the error
sequence of an entire batch.

ẽk[t]
ẽk[t+ 1|t]
ẽk[t+ 2|t]

...
ẽk[t+N−1|t]


︸ ︷︷ ︸

ẽk

=


ȳ[t]

ȳ[t+ 1]
ȳ[t+ 2]

...
ȳ[t+N−1]


︸ ︷︷ ︸

ȳ

−


1
A
A2

...
A(N−1)


︸ ︷︷ ︸

AN

xk[t]

+


0 0 . . . 0
B 0 . . . 0

AB B . . . 0
...

... . . . ...
A(N−1)B A(N−2)B . . . 0


︸ ︷︷ ︸

Γ



ˆ̄uk[t|t]
ˆ̄uk[t+ 1|t]
ˆ̄uk[t+ 2|t]

...
ˆ̄uk[t+N−1|t]


︸ ︷︷ ︸

ˆ̄Uk

+


0 0 . . . 0
E 0 . . . 0

AE E . . . 0
...

... . . . ...
A(N−1)E A(N−2)E . . . 0


︸ ︷︷ ︸

Ψ


dk[t|t]

dk[t+ 1|t]
dk[t+ 2|t]

...
d[t+N−1|t]


︸ ︷︷ ︸

Dk

(3.9)

The extended system is denoted:

ẽk = ȳ−ANxk[t] + Γ ˆ̄Uk + ΨDk (3.10)

Where
ẽk
ȳ
ˆ̄Uk

Dk

AN

Γ
and Ψ

∈ R(N×1)

∈ R(N×1)

∈ R(N×1)

∈ R(2N×1)

∈ R(N×1)

∈ R(N×N)

∈ R(N×2N)

is the error sequence calculated for the whole batch,
is the reference trajectory of the broiler weight,
is the input sequence,
is the disturbance sequence,
is the extended state matrix,
is the extended input matrix,
is the extended disturbance matrix.

A model for ẽk is now described and as the model is based on the lifted system dynamics
it is describing the error contribution along the entire batch length.

3.2.2 Modeling of edk
Returning to Equation: (3.4), it was found that a model for edk is needed. As edk is unknown
and affected by disturbances the error contribution from this part could be modeled as a
state-space system with random inputs. The output of the system will have the property
that it is specific for the kth batch, thus being batch-wise varying. A state-space model
describing this behavior is defined, with random inputs below:

xek+1 = Aexek + Bewk

edk = Cexek + vk
(3.11)
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Where
wk and vk are batch index wise zero mean and independent identically

distributed (i.i.d.) random vectors.
te [·]

It is chosen to model the random inputs as an i.i.d. processes, however this might leave
some room for improvement as a higher deviation in weight is to be expected as the broiler
grows. Because the error ēdk does not evolve from batch to batch if no input or disturbances
are changed, it is chosen that Ae = I. Furthermore it is chosen that Be = I and Ce = I.
This choice is made both to simplify the model and as no information regarding the
state-space matrices is known. The result simplifies to the state-space model below:

ēdk+1 = ēdk + wk

edk = ēdk + vk
(3.12)

The state ēdk can be interpreted as the part of edk that repeats itself from batch to batch,
whereas the contribution from the noise vk is specific to the kth batch and is thus only
expected to appear during the specific batch. The input noise wk is considered as the
part of the noise that repeats itself from batch to batch and is thus contributing to the
repeating part of the error for the batch edk+1.

As for edk the part of ek that repeats itself is defined as ēk. Assuming that the input ˆ̄uk
and ˆ̄uk+1 is the same, then ēk and ēk+1 is defined as:

ēk = ẽk + ēdk (3.13)

and:
ēk+1 = ẽk+1 + ēd

k+1 (3.14)

Subtracting Equation: (3.13) from Equation: (3.14) and using the definitions of Equation:
(3.10) yields an expression describing how a change in input affects the error.

ēk+1 − ēk = ȳ−ANxk+1[t] + Γ ˆ̄Uk+1 + ΨDk+1 − (ȳ−ANxk[t] + Γ ˆ̄Uk + ΨDk)
+ēdk+1 − ēdk

This can be rewritten as:

ēk+1 = ēk − Γ( ˆ̄Uk+1 − ˆ̄Uk)−Ψ(Dk+1 −Dk) + wk

= ēk − Γ∆Uk+1 −Ψ∆Dk+1 + wk

(3.15)

The output equation can be stated in the same way as for Equation: (3.12)

ek = ēk + vk (3.16)

If no previous batches exist, a vector of zeros, ē0 is used as the initial state and the best
available estimate of U0 used as temperature curve.

A state-space system describing the change in error from batch to batch is now obtained.
This model is however not suitable for control purposes within the individual batches.
Therefore adapting the model to include time dependency is necessary, this will be
conducted in the next section.

3.3 Time-wise Error Model

For control purposes a time depending model is necessary. In this section, a time-wise
error model, that can be used for real-time prediction, is formulated using the batch-wise
model.
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The batch-wise model found in Section 3.2: Batch-wise Error Model describes the long-
term system evolution, that is along iterations of the batch count, thus complete sequences
of each property, input, output, error etc. are described. This long-term time scale
is depicted in Figure 3.2 as the axis labeled "Iterations". In order to obtain a model
suitable for ordinary time-wise control it is necessary to reformulate the model such that
it represents both the long-term and short-term time scales, thus reflecting both axes
labeled "Iterations" and "Time" according to Figure 3.2.

First the matrices describing the dynamics along an entire batch, Γ and Ψ, are partitioned
according to time:

Γ ∆=
[
Γ[0] Γ[1] · · ·Γ[N − 1]

]
∈ R(N×N) (3.17)

Ψ ∆=
[
Ψ[0] Ψ[1] · · ·Ψ[N − 1]

]
∈ R(N×N) (3.18)

Where
Γ[t], Ψ[t] are the columns of Γ and Ψ describing the impulse response

for the remaining batch at time t.
te [·]

A time dependent error sequence, starting at time t, is defined as:

ek[t]
∆= ek where ∆Uk[t] = · · · = ∆Uk[N − 1] = 0 (3.19)

Using the system equation from the error model, Equation: (3.15) and (3.16), and the
new definitions the error sequence can be written as:

ek[t] = ēk−1[t]− Γ(0)∆Uk[0]−Ψ[0]∆Dk[0]− · · · − Γ[t− 1]∆Uk[t− 1]
−Ψ[t− 1]∆Dk[t− 1] + wk−1 + vk

(3.20)

Similar an expression for ek[t + 1] can be formulated. Subtracting these, exactly like
done in Equation: (3.15), an expression describing the dynamics from ek[t] to ek[t+ 1] is
obtained.

ek[t+ 1] = ek[t]− Γ[t]∆Uk[t]−Ψ[t]∆Dk[t] , t = 1, · · · ,N (3.21)

Furthermore the initial error sequence at t = 0 is defined. As information from last batch
is available after the first batch this is utilized and ek[0] is therefore defined as:

ek[0]= ēk−1[N ] + wk−1 + vk (3.22)

As the initial condition ek[0] depends on ēk−1[N ], an expression describing the dynamics
from ēk[t] to ēk[t+ 1] is also needed. This is obtained in the same way as for ek.

ēk[t+ 1] = ēk[t]− Γ[t]∆Uk[t]−Ψ[t]∆Dk[t] , t = 1, · · · ,N (3.23)
ēk[0] = ēk−1[N ] + wk−1 + vk (3.24)

Combining Equation: (3.21) and Equation: (3.23) a state-space system model suitable
for control design is obtained.
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[
ēk[t+ 1]
ek[t+ 1]

]
=
[
I 0
0 I

] [
ēk[t]
ek[t]

]
−
[
Γ[t]
Γ[t]

]
∆Uk[t]−

[
Ψ[t]
Ψ[t]

]
∆Dk[t] (3.25)

e′k[t] =
[
0 H[t]

] [ēk[t]
ek[t]

]
, t = 1, · · · ,N (3.26)

For real time control the output e′k[t] should be minimized. The state ēk[t] seems to be
redundant, however, ēk[t] which repeats itself batch-wise is set as the initial condition of
the states:[

ēk[0]
ek[0]

]
=
[
I 0
I 0

] [
ēk−1[N ]
ek−1[N ]

]
−
[
I
I

]
wk−1 −

[
0
I

]
vk (3.27)

H[t] defines which errors to use as outputs. The goal is to minimize the error at all times
in the batch, but it is of course not possible to change the error at time t − 1 when that
time has passed, due to causality. This results in time a varying structure and therefore
H[t] is defined as:

H[t] = [ 0︸︷︷︸
R(1×t−1)

I︸︷︷︸
R(1×N−t)

] ∈ R(1×N) (3.28)

For real-time control ēk[t] is stored for the next batch. In reality, only the element of ek[t]
representing the current time step can be measured. Therefore a state estimator is needed
to estimate the complete error sequence. In the next section design of a Kalman filter is
explained.

3.4 Kalman Filter

In Section 3.3: Time-wise Error Model a state-space system describing the dynamics of
two error sequences, ēk[t] and ek[t], is defined. It is, however, only possible to measure
the error at the current time step and therefore a state observer is required. It is chosen
to use an optimal state observer, called a Kalman filter. A Kalman filter estimates a state
using a model of the system, an initial state, measurement variance and a measurement.
According to a weighting factor, the Kalman gain, the Kalman filter determines how much
to trust the model versus the measurement. As more measurements become available the
estimate will converge towards the real state value, assuming all noises are Gaussian. The
Kalman filter is a recursive filter and it consists of two steps, a prediction step which
calculates a prior estimate and an update step which updates the estimate using the
measurement, the posterior estimate.

3.4.1 Prediction Step

The dynamic of the error sequences, is used to predict the error. This is called the prior
estimate and is defined as:

x̂k[t|t−1] = Ax̂k[t−1|t−1] + Buk[t−1] (3.29)

Where
x̂k[t|t−1]

and x̂k[t−1|t−1]
is the prior state estimate,
is the posterior estimates from last sample.

te [g]
te [g]

42 of 113



3.4. Kalman Filter Aalborg University

Using the system model, defined as Equation: (3.26), the prior state estimate can be
written as:[

ˆ̄ek[t|t−1]
êk[t|t−1]

]
=
[
I 0
0 I

] [
ˆ̄ek[t−1|t−1]
êk[t−1|t−1]

]
−
[
Γ[t−1]
Γ[t−1]

]
∆Uk[t−1]−

[
Ψ[t−1]
Ψ[t−1]

]
∆Dk[t−1] (3.30)

Where:[
ˆ̄ek[0|0]
êk[0|0]

]
=
[
ˆ̄ek−1[N |N ]
ˆ̄ek−1[N |N ]

]
As the system matrix is the identity matrix the error will remain the same as long as
the input and disturbance are not changed. Furthermore, the initial error sequence is
defined as the final estimated error sequence from the last batch. This is done to utilize
the information from the last batch in order to improve the long-term performance of the
controller, thus allowing the controller to iteratively learn.

The variance of the states are defined as a covariance matrix. The prior covariance matrix
is updated each time step and defined as:

Pk[t|t−1] = ATPk[t−1|t−1]A + Rs (3.31)

Where
Pk[t|t−1]
Pk[t−1|t−1]

and Rs

is the prior estimate of the covariance matrix,
is the posterior estimates from last sample,
is the state noise.

te
[
g2]

te
[
g2]

te
[
g2]

The definition and Equation: (3.26) can be used to describe the covariance matrix:[
P11
k [t|t−1] P12

k [t|t−1]
P21
k [t|t−1] P22

k [t|t−1]

]
=
[
I 0
0 I

] [
P11
k [t−1|t−1] P12

k [t−1|t−1]
P21
k [t−1|t−1] P22

k [t−1|t−1]

] [
I 0
0 I

]
+Rs (3.32)

Again the system matrix is the identity matrix, so the covariance matrix is only changed
by the state noise, Rs. As for the prior state estimate, it is desirable to utilize information
from last batch. Therefore the initial condition of the covariance matrix for the current
batch is defined as the variance of ēk−1 at the final time N :[

P11
k [0|0] P12

k [0|0]
P21
k [0|0] P22

k [0|0]

]
=
[
P11
k−1[N |N ] + Rw P11

k−1[N |N ] + Rw

P11
k−1[N |N ] + Rw P11

k−1[N |N ] + Rw + Rv

]
(3.33)

Where
Rw and Rv are random variables describing the batch-wise variance of

the covariance matrix.
te

[
g2]

Rv is only added to P22 as this noise is specific for the current batch. If there are no
previous batches, k = 1, the covariance matrix is defined as:[

P11
1 [0|0] P12

1 [0|0]
P21

1 [0|0] P22
1 [0|0]

]
=
[
γI γI
γI γI

]
(3.34)

Where
γ is a positive scalar and fairly large. te

[
g2]

By choosing γ large, the initial variance is big and therefore the model is not trusted as
much. A prior estimate of both the state and the covariance matrix is now obtained. In
the next section, the information from the measurement is included.
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3.4.2 Update Step

The update step uses the prior estimates and the measurement of the current error to
update both the estimated states and the covariance matrix. The updated estimates are
called the posterior estimates. How much the prior estimate and measurement can be
trusted is determined by a weighting factor, called the Kalman gain. The Kalman gain is
defined as:

Kk[t] = Pk[t|t−1]CT [t] ·
[
C[t]Pk[t|t−1]CT [t] +Rm[t]

]−1
(3.35)

Where
Kk[t]
C[t]

and Rm[t]

∈ R(2N×1)

∈ R(2N×1)

∈ R(1×1)

is the Kalman gain,
is the output equation for the system,
is the variance of the measurement at time t.

te [·]
te [·]
te

[
g2]

By substituting the covariance and output matrix with their definitions from Equation:
(3.26) and Equation: (3.32) the Kalman gain is defined by:

Kk[t] =
[
P12
k [t|t−1]

P22
k [t|t−1]

]
HT [t] ·

[
H[t]P22

k [t|t−1]HT [t] +Rm[t]
]−1

(3.36)

The Kalman gain is now used to update the state estimate according to:

x̂k[t|t] = x̂k[t|t−1] + Kk[t] ·
[
yk[t]−C[t]x̂k[t|t−1]

]
(3.37)

Which result in:
[
ˆ̄ek[t|t]
êk[t|t]

]
=
[
ˆ̄ek[t|t−1]
êk[t|t−1]

]
+Kk[t] ·

[
ek[t]− [0 H[t]]

[
ˆ̄ek[t|t−1]
êk[t|t−1]

] ]
, t = 1, · · · ,N (3.38)

The posterior state estimate is the output of the Kalman filter and this is used for real
time control. However the covariance matrix is needed for the next iteration and therefore
it is updated according to:

Pk[t|t] =
(
I−Kk[t]C[t]

)
·Pk[t|t−1] (3.39)

Again this can be setup for the dynamics of Equation: (3.26):

[
P11
k [t|t] P12

k [t|t]
P21
k [t|t] P22

k [t|t]

]
=
(
I−Kk[t] · [0 H[t]

) [P11
k [t|t−1] P12

k [t|t−1]
P21
k [t|t−1] P22

k [t|t−1]

]

=
[
P11
k [t|t−1] P12

k [t|t−1]
P21
k [t|t−1] P22

k [t|t−1]

]
−Kk[t]H[t]

[
P21
k [t|t−1] P22

k [t|t−1]
]

(3.40)

Implementing Equation: 3.30, 3.32 to 3.34 and Equation: 3.36, 3.38 and 3.40 recursively
will result in the optimal estimate of the states, assuming all disturbances are Gaussian
distributed.

An estimate of both error sequences is now obtained for the entire batch length. In the
next section, this is used to set up an optimizations problem for which an input sequence
that minimizes the error is found.
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3.5 Model Predictive Control

The previous Section 3.4: Kalman Filter defines an optimal observer that at time t predicts
both the batch-wise repeating error sequence and the non-repeating error sequence up to
time N . This can, however, be adjusted such that the error sequence at time t is calculated
until time t+m, wherem is a prediction horizon. Furthermore, a control horizon is defined,
this horizon determines how far into the future the optimal control input is calculated.
The length of the control horizon is defined to be equal to the length of the prediction
horizon.

Extracting a part of the Kalman filters output such that the length matches the prediction
horizon m, permits the use of MPC, which is an advanced control method that uses an
internal model to predict the systems future behavior and thus the future inputs. The
structure of the MPC algorithm can be seen in Figure 3.3:

Plant

Model

Optimizer

Obj-function Constraints

ê[t+1|t+1]

∆Ûk[t+m−1|t]

êk[t+m|t]

∆Ûk[t+1|t]

MPC

Figure 3.3: A block diagram of MPC algorithm [18].

Due to the time-varying nature of the system, the horizon m must be shrunk as t
approaches N .

Allowing the MPC to predict the error sequences at time t+m requires that the system is
extended. In Section 3.2: Batch-wise Error Model the system was extended for the entire
batch length and this will be reused for the MPC resulting in:

êk[t+m|t]= êk[t|t]−Γ[t+m−1|t]∆Ûk[t+m−1|t]−Ψ[t+m−1|t]∆D̂k[t+m−1|t] (3.41)

where:
Γ[t+m−1|t] =

[
Γ[t], · · · , Γ[t+m−1]

]
∈ R(N×m)

Ψ[t+m−1|t] =
[
Ψ[t], · · · , Ψ[t+m−1]

]
∈ R(N×2m)

∆Ûk[t+m−1|t] =


∆Uk[t]

∆Ûk[t+ 1]
...

∆Ûk[t+m−1]

∈R(m×1)

∆D̂k[t+m−1|t] =


∆Dk[t]

∆D̂k[t+ 1]
...

∆D̂k[t+m−1]

∈R(2m×1)

To keep the notation easy to read the extended signals are redefined while setting up the
MPC:
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Γ[t+m−1|t] = Γm[t]
Ψ[t+m−1|t] = Ψm[t]

∆Ûk[t+m−1|t] = ∆Ûm
k [t]

∆D̂k[t+m−1|t] = ∆D̂m
k [t]

The dynamics of the error sequence, described by Equation: (3.41), from time t to t+m−1
is very similar to the approach in Section 3.2: Batch-wise Error Model. The columns of
both Γm[t] and Ψm[t] are defined as in Equation: (3.9).

To minimized both positive and negative values of êk[t + m|t] a quadratic expression is
set up. Furthermore, a term that punishes ∆Ûm

k [t] is added, to punish changes in the
control signal separately.

min
∆Ûm

k [t]
Υ(∆Ûm

k [t]) = min
∆Ûm

k [t]

1
2
{
êTk [t+m|t]Q1êk[t+m|t] + ∆ÛmT

k [t]Q2∆Ûm
k [t]

}
(3.42)

Where
Q1

and Q2

is the weighting matrix for the state,
is the weighting matrix for change in input.

te [·]
te [·]

The first term, punishing êk[t+m|t], does not depend on ∆Ûm
k [t] and can therefore not be

minimized straight away. To enable minimization Equation: (3.42) must be rewritten to
a form that depends on ∆Ûm

k [t]. This is done by applying the definition from Equation:
(3.41).

min
∆Ûm

k [t]
Υ(∆Ûm

k [t], ∆D̂m
k [t]) = min

∆Ûm
k [t]

1
2

{(
êk[t|t]− Γm[t]∆Ûm

k [t]−Ψm[t]∆D̂m
k [t]

)T
Q1
(
êk[t|t]− Γm[t]∆Ûm

k [t]−Ψm[t]∆D̂m
k [t]

)
+ ∆ÛmT

k [t]Q2∆Ûm
k [t]

} (3.43)

Multiplying the terms of Equation: (3.43) together result in:

min
∆Ûm

k [t]
Υ(∆Ûm

k [t], ∆D̂m
k [t]) = min

∆Ûm
k [t]

1
2

{
êTk [t|t]Q1êk[t|t]− êTk [t|t]Q1Γm[t]∆Ûm

k [t]

− êTk [t|t]Q1Ψm[t]∆D̂m
k [t]−∆ÛmT

k [t]ΓmT [t]Q1êk[t|t]

+ ∆ÛmT
k [t]ΓmT [t]Q1Γm[t]∆Ûm

k [t] + ∆ÛmT
k [t]ΓmT [t]Q1Ψm[t]∆D̂m

k [t]

−∆D̂mT
k [t]ΨmT [t]Q1êk[t|t] + ∆D̂mT

k [t]ΨmT [t]Q1Γm[t]∆Ûm
k [t]

+ ∆ÛmT
k [t]Q2∆Ûm

k [t] + ∆D̂mT
k [t]ΨmT [t]Q1Ψm[t]∆D̂m

k [t]
}

(3.44)

Rearranging from Equation: (3.42) to Equation: (3.44) result in an objective function
that consists of a quadratic, linear and constant part. A function of this structure can be
put on the from:

min
∆Ûm

k [t]
Υ(∆Ûm

k [t]) = min
∆Ûm

k [t]

1
2

{
∆ÛmT

k [t]R∆Ûm
k [t] + b∆Ûm

k [t] + c

}
(3.45)

Where
R ∈ R(m×m)

b ∈ R(1×m)

c ∈ R(1×1)
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Separating Equation: (3.44) into a quadratic, a linear and a constant part result in R, b
and c parameters defined as:

R = ΓmT [t]Q1Γm[t] + Q2 (3.46)

b =− êTk [t|t]Q1Γm[t]− êTk [t|t]QT
1 Γm[t] + ∆D̂mT

k [t]ΨmT [t]QT
1 Γm[t]

+ ∆D̂mT
k [t]ΨmT [t]Q1Γm[t]

(3.47)

c = −êTk [t|t]Q1Ψm[t]∆D̂m
k [t]−∆D̂mT

k [t]ΨmT [t]Q1êk[t|t]

+∆D̂mT
k [t]ΨmT [t]Q1Ψm[t]∆D̂m

k [t] + êTk [t|t]Q1êk[t|t]
(3.48)

The above minimization problem is however subject to constraints. To ensure that the
change in temperature from batch to batch is not too big, ∆Ûm

k [t] should be bounded.
An upper and lower bound for ∆Ûm

k [t] can be written as the following affine inequality:[
I
−I

]
∆Ûm

k [t] ≥
[
∆Uub

∆Ulb

]
(3.49)

Where
∆Uub

and ∆Ulb

is the allowed positive change in the temperature trajectory
from batch to batch,
is the allowed negative change in the temperature trajectory
from batch to batch.

te [◦C]

te [◦C]

Equation: (3.45) and (3.49) is a quadratic problem which is easily solved if it is convex.
To guarantee this the next section will examine the convexity of the problem.

3.5.1 Convexity

A mathematical description of the deviations in broiler weight has now been set up on a
quadratic form. Solving Equation: (3.45) will, however, become significantly easier if the
problem is convex. Furthermore, the solution is guaranteed to be the optimal solution if
Equation: (3.45) is a convex problem. A convex surface is illustrated in Figure 3.4, as it
is shown a global minimum exists. In Figure 3.5 a non-convex surface is illustrated, which
does not have a unique global minimum.

Figure 3.4: Quadratic convex surface. Figure 3.5: Quadratic non-convex sur-
face.

If the minimization problem is convex, the global minimum can be found by taking the
derivative of the function. The minimization problem is only convex if the objective
function is convex and a feasible solution exists within the set formed by the constraints.
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To ensure convexity the objective function must have a positive semi-definite Hessian
matrix. Therefore the Hessian of Equation: (3.45) is found:

Υ(∆Ûm
k [t]) = 1

2
(
∆ÛmT

k [t]R∆Ûm
k [t] + b∆Ûm

k [t] + c
)

(3.50)

∂Υ(∆Ûm
k [t])

∂∆Ûm
k [t]

= 1
2
(
R∆Ûm

k [t] + b
)

(3.51)

∂2Υ(∆Ûm
k [t])

∂(∆Ûm
k [t])2

= 1
2R (3.52)

Equation: (3.52) shows that convexity is ensured if:

R ≥ 0 (3.53)

R is defined in Equation: (3.46) as R = ΓmT [t]Q1Γm[t] + Q2. As Γm[t] is a quadratic
term R is positive semi-definite if Q1 ≥ 0 and Q2 ≥ 0. Q1 and Q2 are control parameters
of the MPC, meaning that they can simply be chosen to fit this criteria, hence the problem
is convex.

The constraint Equation: (3.49) is an affine inequality which defines a half-space of
the quadratic problem. Any half-space of the quadratic problem will be convex as the
quadratic problem is convex. Furthermore, the intersection of convex sets is convex,
hence the constraints are also convex.
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Control System Implementation 4
This chapter explains how the controller designed in Chapter 3: Controller is implemented
in a simulation environment.

4.1 Controller Implementation

The control algorithm developed in Section 3: Controller consists of multiple components
that work together. In addition, the controller should be implemented along with a plant
as close to the real-world behavior as possible. It is thus chosen to utilize a plant model
that is based on a recurrent neural network (RNN) model made by Simon V. Johansen
[7].

The dynamics of the broiler are slow, and as the control strategy is furthermore partitioned
in both a long and short-term objective the long-term objective allows an implementation
method where multiple simulations of batches in a row are conducted. Thus simulating
the long-term objective beforehand and thereby preparing the controller for real-world
implementation.

In both a simulation environment and a genuine stable, the controller only encounters
disturbances present at the current time step. However the quadric problem from Section
3.5: Model Predictive Control depends on ∆D̂k[t+m−1|t], the predicted disturbance
sequence for the whole batch length. Therefore a disturbance estimator, predicting the
outside temperature and humidity along the entire batch length is needed.

Recalling Figure 3.1 and including the components just mentioned, the implemented
structure can be visualized as Figure 4.1.

Kalman MPC

Disturbance
estimator

Plant

Time delay

Time delay

∑ ∑ ∑
∑

ȳ[t] ek[t] êk[t+m−1|t]

Rm1

Rm2Uk−1[t]

Uk[t]

Dk[t+1]Dk[t]

∆Uk[t]

yk[t+1]

yk[t]

∆D̂k[t+m−1|t]∆Dk[t]

+
−

+
+

+
+

++

Figure 4.1: Block diagram of the algorithm implemented.

The implemented control structure consists of a Kalman filter, disturbance estimator
and, MPC. As this structure is implemented in simulation additional noises are added
in order to represent real-world behavior. These noises are measurement noise, Rm1,
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and disturbance noise, Rm2, where only the measurement noise is nonzero for now as
a functional, rather basic, implementation is desirable at first to ensure correct working
principle.

In addition to the noises is the input from the previous batch added to the small signal
output from the MPC. This is in line with the definition of the error model used in the
MPC, originating from Equation: (3.15), where it is stated that the current error depends
on the error in previous batch and the change in input and disturbance. Due to this model
structure, it is necessary to store the complete input and disturbance sequence from the
previous batch. The previous disturbance sequence is applied internally in the disturbance
estimator.

The RNN model utilized in the simulation environment as plant model is originally
specified with a sample time of 24 hours. The model chosen as a base for the control
structure is formulated with a sample time of one hour. In order to secure compatibility
between the two models is a change in sample time for at least one necessary. The RNN
model can be trained to fit a specific sample time, and this affects the computational
demand. It is trough test of different combinations found that a sample time of three
hours is optimal to ensure the validity of both models and keep the computational demand
reasonable. The final model found in Section 2.7: Model Validation is resampled to an
equivalent three-hour model using zero order hold on the inputs. The resampled model is
applied in the internal model of the MPC. The RNN plant model is adjusted and trained
such that it fits the three hour sample time. Due to these changes are all time steps from
this point on given as three-hour samples.

The block diagram presented in Figure 4.1 provides an overview of the implemented
control structure. However to fully visualize the ILC components included in the control
structure the following extended block diagram is introduced.

In addition to the previous block diagram, the extended diagram includes batch delays
and the initial conditions for the Kalman filter.
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Time delay
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Figure 4.2: Extended block diagram of the implementation structure.

The extended block diagram presented in Figure 4.2 reflects the same working principle
as the previous diagram, Figure 4.1. The batch delay affects both the control signal and
the disturbance, these are stored and the delayed sequences are utilized to restore the full
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signal plant input and create the small signal disturbance for the MPC.

The internal components of the Kalman filter are also stored, thus effectively exposed to
a batch delay as indicated in the block diagram. This particular batch delay only occurs
if t = N , that is, if the process is at terminal time N , which is indicated by the diamond
in the diagram. The stored matrices at the terminal time are the upper left corner of
the covariance matrix, P11

k , and the repeating part of the error sequence, ēk. These are
used as the prior estimate of the covariance matrix and the error sequence respectively.
Utilizing this iterative process yields an ongoing convergence of the Kalman filter as the
progress obtained through a specific batch is stored and further improvement can be made
throughout the following batch.

Based on these additional components are both the general MPC structure and the ILC
inspired concepts visualized by the extended block diagram. Trough the next sections
further explanation of the plant model and the disturbance estimator is given.

4.1.1 Plant Model

The purpose of the plant model is to reflect a broiler house during simulation as the control
structure is tuned and verified. It is desirable to utilize a plant model that is as close to
real-world behavior as possible. Using such a model minimizes the risk of performance
mismatch between simulation and real-world behavior. As MPC is used, will using a
proper plant model also reveal any mismatches between the internal model and the plant
model. Besides the desire to utilize a close to real-world behaving model, it is necessary
that the model incorporates the in- and outputs used throughout the control structure.

The selected plant model originates from the work by Simon V. Johansen and consists
of an RNN model structure [7]. A specific RNN model is trained with the use of data
from 12 batches originating from the same house and identified by the batch count of the
house at the time of training. The model is based on a widely used multilayer perceptron
(MLP) model, where the specific type is described as a nonlinear ARX model. The model
is structured with one hidden layer and a hyperbolic tangent activation function for this
layer. Furthermore, is a linear function used for the output layer. The model structure is
represented by the following equation:

ŷ[t+ 1|W] = W◦tanh(X ) + θ◦ with

X =
j∑

a=1
Wh

y,aŷ[t−ma + 1|W] +
i∑

b=1
Wh

u,bu[t− nb + 1] + θh
(4.1)

Where
W◦

Wh
y,a

Wh
b

θh

and θ◦

∈ R(Ny×Nh)

∈ R(Nh×Ny)

∈ R(Nh×Nu)

∈ R(Nh)

∈ R(Ny)

is the output weights
is the delayed output weights,
is the input weights,
is the hidden layer bias,
is the output bias.

te [·]
te [·]
te [·]
te [·]
te [·]

Nu is the input dimension, Nh is the dimension of the hidden layer, and Ny is the output
dimension. For the use case of the ongoing control design, is the RNN model specified
such that it fits the three hour sample time and the input to the model is the broiler
house temperature and the provided output is the broiler weight. Furthermore is the
broiler weight output accompanied by sequences of the two disturbances, humidity and
outside temperature for the whole batch. These disturbance sequences originate from the
disturbance measured during the batch associated with the specific RNN model. As a
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result are the disturbances batch-wise invariant and thus constant for the specific RNN
model.

4.1.2 Disturbance Estimator

The disturbance affecting the system should be known along the entire batch in order to
take it into account when minimization the error trajectory. The change in disturbance,
∆D̂k[t+m−1|t], is defined as D̂k−1[t+m−1|t]− D̂k[t+m−1|t] and is a R(2m×1) sequence,
however only ∆Dk[t], the first element, is known. In other words, the humidity and outside
temperature can only be measured at the current time step. Therefore an estimation of
both humidity and outside temperature during a batch should be developed.

Outside Temperature
Estimating the future outside temperature is basically a weather forecast, which is already
available from various national meteorological institutes. As the batch is 34 days long,
a corresponding length temperature forecast is desirable. It is, however, unrealistic to
obtain a 34-day forecast that is fully trustworthy. The longest public available temperature
forecast from a meteorological institute with an Application Programming Interface (API)
originates from the Norwegian national meteorological institutes, Meteorologisk Institutt
(MET), and it is nine to ten days long [19]. A nine-day prediction makes it possible
to determine the change in outside temperature from the last batch and thus define the
outside temperature the next nine days.

The API allows the user to enter a geographical position, by specifying latitude and
longitude. A file, containing temperature, wind speed, humidity, cloudiness etc. is
displayed on a web page. To read out the data needed for this project, a Matlab script
has been made. The script reads the web page, sorts out the data and localizes the
temperature forecast with a corresponding time stamp. The first approximately two and
a half days of the forecast contains a sample time of one hour, however, any forecast
dated further on is given in six-hour intervals. The simulation environment, however, uses
a three hour sample time. This change in sample times is handled by applying a cubic
interpolation [20]. The temperature forecast for the first nine days, with both the original
data and the three-hours resampled version, is presented below:
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Figure 4.3: A nine-day temperature forecast. The blue forecast is the original forecast
directly from MET and the red forecast is the three-hours resampled version.

The process stretches across 34 days and the farmer uses time in between batches to clean
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the stable etc..

Because of this, is the outside temperature batch-wise affected by the changing seasons.
Therefore the seasons affect the outside temperature from batch to batch.

The expected temperature from month to month can be estimated using historical data.
Table: 4.1 describes the mean temperature across a year, month by month [21].

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Temp day 3.2 3.1 6.6 11.9 15.5 18.4 21.8 20.8 17.3 12.6 8.2 4.9
Temp mean 1.4 1.1 3.5 7.7 11.3 14.3 17.4 16.7 13.7 9.8 6.3 3.0
Temp night -0.9 -1.2 0.4 3.7 7.2 10.1 13.0 12.9 10.3 6.8 4.0 0.7

Table 4.1: Day, mean and night temperatures for each month of the year in Denmark.
The data is an average of the historical temperature from the years 2006-2015.

Using the same interpolation strategy as earlier a model, with three-hour sample intervals,
describing the temperature of an average day in a given month can be made. This will,
however, result in a model where the expected mean temperature of all days in eg. May
are 11.3 ◦C and then at the transition to June, the expected mean temperature will jump
to 14.3 ◦C in a discrete manner. To take this into account the temperature for a specific
day is calculated by weighting the temperature curve from the current month and next
month, depending on which day in the month it is. A code snippet below shows the
algorithm as pseudocode.

1 day = 1; % The current day of the year
2 for m = 1:12 % Counter that keep tracks on the month
3 q = 0; % Counter to keep track on the weighting factor
4 for d = 1: lastday % Number of days in the month
5 temp_tmp (day )= temp_m (m)+(q/ lastday )*( temp_m (m+1)- temp_m (m));
6 day = day + 1;
7 q = q + 1;
8 end
9 end

10 temp_y = shift_half_month ( temp_tmp ); %

Temp_y() is the created temperature curve describing an entire year. temp_m() is the data
describing the average temperature curve for a given month. The variable m is the current
month such that January = 1, February = 2 and so forth. The temperature of the current
and next month are weighted with the factor q/lastday and then saved as temp_tmp().
However, because temp_tmp() result in the first day of the month having the average
temperature of the specific month, it needs to be shifted forwards half a month, which
is done by shift_half_month(temp_tmp). Now a forecast for the first nine days and a
model for historical data for every day of the year is available. To obtain an estimated
temperature forecast for the next 34 days these should be gathered. However, in order
to ensure that the transition phase between the two parts is smooth, an algorithm very
similar to the code above is used again. This results in a forecast as presented below.
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Figure 4.4: The final 34 day forecast of the outside temperature and the elements it is
composed of.

Day one through eight in Figure 4.4, the green part, is based on the forecast from MET.
Day nine, or as long as the MET forecast continues, is a weighted average of the forecast
and historical data. This is the section between the two dotted black lines. From day 10
and forward the forecast is pure historical data.

With the temperature forecast it is now possible to find the outside temperature
component of ∆D̂k[t+m−1|t] and apply it in a real-time control scenario.

Humidity
The humidity is only measured at the current time step and thus future humidity values
should be estimated. This is preferably conducted in a manner similar to the estimate of
the future outside temperature, however, such an approach is not viable. A forecast for
the humidity inside the broiler house is not existing and thus a different approach must
be taken. It is possible to obtain a forecast of the outside humidity however this does not
provide any valuable information of the humidity inside the broiler house.

The humidity inside the broiler house is mainly affected by the amount of biomass in the
broiler house, furthermore are factors as the particular litter type and volume strongly
affecting the humidity. Finally, it is possible to apply humidity set points through the
ventilation system, similar to the temperature set points. Different farmers are thus able
to run different humidity profiles trough batches, serving their specific needs. Due to these
factors should a humidity model include both the amount of biomass, litter type, litter
condition and finally the humidity bounds stated by the farmer.

Due to these factors, it is, for now, most reasonable to base the humidity forecast on
historical data, that is the humidity data recorded in the previous batches. It is chosen
to base the prediction on the humidity through the previous 10 completed batches.
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Figure 4.5: The predicted humidity, based on the previous 10 batches.

The sample vise average humidity across a batch, estimated by the use of the 10 previous
batches is shown in Figure 4.5. The sample vise upper and lower bounds are also presented
to indicate the possible deviation in the prediction. This averaged historical data based
humidity is utilized as the humidity prediction for the next batch. This process is repeated
when a new batch is started, thus always using the 10 most recent batches.

Based on this prediction is the humidity component of the disturbance estimator now
determined. Both disturbances can now be predicted across the length of the batch, thus
also enabling implementation of the control structure on a real broiler house.
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Simulation and Results 5
During this chapter is the controller tuned, such that the optimal performance is achieved.
Furthermore are results from both simulation and live test presented and explained.

5.1 Simulation

The implemented control structure is tested in a simulation environment such that the
performance can be verified prior to any real-world testing. In order to obtain the best
possible performance is the controller tuned by the use of the simulation environment.

The main focus of the controller tuning is centered around the performance of the MPC.
The tuning parameters in the MPC originate from the weighting matrices, Q1 and Q2 used
in the cost function. Both matrices are chosen to be time-independent, thus consisting of
the same amount of punishment for the specific term, regardless of the time. Due to this
choice is the tuning procedure a matter of scaling the ratio between the two weighting
matrices. For simplicity is the weighting matrix for the state, Q1, chosen as identity
and only the weighting matrix for the change in input, Q2, scaled to achieve the best
performance. The MPC tuning is conducted by increasing the diagonal elements of the
weighting matrix for the change in input, from zero until 300 in steps of two. For each
value of the weighting matrix are 15 batches simulated. This allows the algorithm to
converge and it is thus possible to study how the long-term control objective is handled.
The fit percentage is calculated for each batch and plotted according to the batch and the
weighting factor. The sweep across the described weighting factor is presented in Figure
5.1, it is chosen only to present the results for a weighting factor between 100 and 300 as
the fit drops significantly for lower values and thus blurs the significant findings.
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Figure 5.1: Performance based on weighting factor and batch count.
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The sweep indicates that there exists an optimal weighting factor that ensures both higher
fit percentages and thus also a steeper learning curve. Both of these characteristics are
desirable as the higher fit percentages reflect the short-term performance goal and the
steeper learning curve reflects the long-term performance goal. The optimal weighting
factor is by closer inspection determined to 164 with an uncertainty of ±2 as the sweep is
conducted in steps of two.

The optimal weighting factor is now determined and further investigation of the long- and
short-term performance is presented in Figure 5.2. The tracking error is presented with
respect to both sample time and batch count.
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Figure 5.2: Performance across 15 batches as the weighting factor is chosen to 164.

The tracking error across batches shows a significant improvement. Looking at the error
at the end of the first batch reveals a deviation of approximately -60 grams. Considering
the error at the end of the last batch shows that it is reduced to approximately -8 grams.

As the optimal weighting parameters are determined is the algorithm simulated across 90
batches to ensure that it continues to learn and to investigate if the control input and
fit percentages converge. During simulation, is the implementation described in Section
4.1: Controller Implementation followed, however, the use of the disturbance estimator
is omitted. Under simulation conditions are the control algorithm fully centered around
the RNN plant model. As described earlier in Section 4.1.1: Plant Model is the weight
output from the RNN model accompanied by a batch-wise static disturbance sequence.
This sequence corresponds to the disturbances experienced during the batch associated
with the deployed RNN model.

The references concerning both weight and temperature are chosen based on recommen-
dations provided by the broiler handbook of the utilized broiler type [17]. The weight
reference is based on the handbook as it is important to apply a reference that is ob-
tainable. The temperature is chosen as a simple line with constant slope based on the
handbook, however, this is of less significance as the controller is able to adjust the tem-
perature sequence iteratively.
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The fit percentage across 90 batches is presented in Figure 5.3.
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Figure 5.3: The fit percentage of the simulated output weight according to the reference.

The fit percentage obtained as a result of the 90 batches long simulation verifies that the
algorithm constantly learns and improves across batches. This property is also visible in
Figure 5.4 as the simulated weight output is getting closing to the reference trajectory as
the batch count increases. The results in Figure 5.4 only presents the development during
the first 30 batches in order to maintain the figure readable. The blue color is the first
batch, and as more batches are simulated the color turns green. The change in weight
across all 30 batches is most significant from day 25 and onwards. This is shown in the
right part of Figure 5.4 where an enlargement of the weight trajectory from day 30 to 34
is presented.
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Figure 5.4: The blue color is the first batch, and as more batches are simulated the color
turns green. Left: Reference weight trajectory and simulated weight across 30 batches.
Right: A zoom of the growth curve the last four days.

The batch-wise increasing behavior generally corresponds to the changes in input
temperature where the greatest changes likewise occur from day 25 and onwards. An
exception is the change in temperature across batches for the first three days. These
changes are not particularly visible in the output weight, it is, however, most likely just
a numerical issue as a temperature change early in the batch only results in a minor
numerical weight change compared to an equal change on a later stage in the batch. The
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first 30 weight trajectories obtained by the simulation are presented in Figure 5.5 and
accompanied by enlargements of the initial and final sections.
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Figure 5.5: The blue color is the first batch, and as more batches are simulated the color
runs green. Left: A zoom of the temperature curve the first three days. Middle: Initial
temperature trajectory and the iterated trajectories across 30 batches. Right: A zoom
of the temperature curve the last six days.

The iterated temperature curve in Figure 5.5 reveals how the input sequence is changing
as the algorithm learns and thus evolves along batches. Considering the temperature curve
for the last couple of batches the behavior indicates a slight ripple tendency during the last
three days. Compared to the fit percentage and output, it does not indicate any problem
but this behavior would likely be considered undesirable in a real-world control scenario
as the broilers are sensitive to rapid temperature changes. It is in a real-world scenario
likely that the output weight might respond differently as changing disturbances are to be
expected and thus will the input temperature behave differently. It is also significant to
consider that a batch count of 30 batches represents approximately three and a half years
of run time, therefore will a simulation under the same conditions for such a period not
necessarily reflect the true real-world conditions as the disturbance, broiler genetics, and
house specific conditions are likely to vary during such a period.

The simulation results show that the algorithm operates desirably, this is indicated by the
output weight closing in on the reference and minimizing the error trajectory. The input
temperature is generally within an acceptable range. Finally, the iterative fit percentages
indicate a converging behavior as expected and thus the performance gain reduces, as the
batch count increases.

5.2 Live Test Results

Throughout this section will the real-world controller test and the obtained results be
presented. The control algorithm is tested on a real-world broiler house equipped with a
state of the art SKOV A/S climate control system and located in northern Denmark.

It is prior to implementing the control algorithm on the broiler house desirable that the
controller acquires knowledge about the specific house. The learning procedure of the
control algorithm is presented in the previous Section 5.1: Simulation and consists of
batch-wise learning based on simulation. The RNN model is during simulation selected
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such that it originates from the house that the control algorithm is to be implemented
on. It is through the use of this procedure possible to prepare the controller for a specific
house.

Conducting real-world tests on livestock stables requires a number of precautions as the
health of animals are at stake. It is due to this fact not allowed to implement the controller
directly on the livestock stable. The implementation sequence is initialized by the off-
line calculation of a temperature reference determined with the simulation environment.
Applying the reference requires a sampling process as the climate system only facilitates
eight temperature set points throughout the 34 day batch period. This reference undergoes
a sanity check and approval process from both a broiler application expert at SKOV A/S
and the farmer. After approval is the reference applied to the broiler house climate control
system.

It is in agreement with the farmer allowed that a weekly update of the temperature
reference is possible. However, any changes must undergo the implementation process
mentioned earlier. Due to this structure is the remaining of this section divided into stages
where first an initial temperature reference is described followed by the weakly updates.
Additional measurements not presented during the weekly updates as well as the complete
weight and temperature measurements can be found in Appendix E: Peripheral Live Test
Results.

5.2.1 Initial Adaption

Generating the initial temperature reference for the live test is conducted in the
previously described simulation environment. The control structure is simulated across 90
batches, which corresponds to approximately 11 years of production time. The iterated
temperature sequence obtained after 90 batches is chosen and the implementation process
described earlier is commenced.

The new temperature sequence, compared to the original reference, suggest a lower initial
temperature and lower final temperature as well. Furthermore is the temperature slightly
higher between day four and day 20, compared to the original reference. This behavior
minimizes the tracking error and thus increases the fit percentage as discussed in Section
5.1: Simulation.

The sampling process determines eight points throughout the temperature curve. These
points are placed by the use of an algorithm that utilizes free-knot splines to fit one-
dimensional data [22] [23]. The algorithm is however only able to select floating point
coordinates, therefore a rounding procedure is necessary as the climate system only allows
integers. The adjusted and implementable temperature is presented in Figure 5.6.
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Figure 5.6: The temperature curve after 90 batches, with corresponding set points. The
yellow line is the initial reference at k = 0 and the dashed red line from day 0 to 5 is the
correction requested by the farmer.

An implementable temperature sequence is now determined, and the last step before actual
implementation is the approval of the sequence. The suggested temperature sequence is
assessed and the initial temperature is considered to low compared to the broilers that are
inserted during the specific batch. It is, therefore, demanded that the initial temperature
is raised from 32.5 ◦C to 34.0 ◦C, this change is shown in Figure 5.6. The final temperature
sequence is determined and implemented on the broiler house. The internal climate control
unit placed in the broiler house is now fully responsible for following the newly designed
temperature reference.

5.2.2 Week One

It is possible to update the temperature sequence for the remaining runtime of the batch
as one week of the live test has passed. Recorded data during the week from the broiler
house is utilized to determine if any temperature changes should be made. The data is
updated on a daily schedule and features all relevant measurements. The data is imported
into the simulation environment that is used to recreate an online control scenario, and
thus simulate the batch as if it was an online control task. The data is, in other words,
feed to the simulation environment in order for the controller to learn. The recreating of
the online control scenario in the simulation environment and the subsequent simulation
is split up according to Figure 5.7.

Day 1 Day 34
Tlive

Data Simulation

Figure 5.7: An illustration that shows when and where the measured data is utilized in
the simulation, such that the controller learns.

Measured data is available until time Tlive and up to this point are the signals, yk[t],
∆Uk[t] and ∆Dk[t] from the block diagram in Figure 4.2 consisting of measured data as
the simulation is conducted. From Tlive and onwards is the output of the MPC again
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applied to the RNN plant model and the simulation is conducted as originally described.
It is therefore not possible to recreate a perfect scenario as the outputs of the MPC
cannot be applied as long as measured data is available. The simulation is effectively
conducted in an open-loop fashion until no more measurements are available as it is
desired to utilize all weight measurements and thus obtain the correct error sequence. The
algorithm is provided with the recorded measurements concerning temperature, weight,
and disturbance. This procedure allows the Kalman filter to commence a converging
behavior as recorded live measurements are provided. When no more live measurements
are available is the loop closed and the simulation environment is utilized to determine the
future temperature sequence based on the RNN plant model. The recorded temperature
data, the implemented reference, and the previously described simulation are presented
in Figure 5.8.
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Figure 5.8: A gathered temperature curve that consists of the measured temperature,
until the black dashed line, and the following simulation.

The split between measured data and simulation results is indicated by both a black
vertical line and the brackets at the top of the figure. To investigate the details of Figure
5.8 three magnified sections of the figure are presented in Figure 5.9. The labeling scheme
will be kept during the live test and are therefore omitted in the following magnified
figures.
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Figure 5.9: Left: The reference and the measured temperature curve. Middle: A zoom
of the ripples which are present the first four weeks of the simulation. Right: A zoom at
the end of the simulation.

To the left in Figure 5.9 are the measured temperature and reference presented. The
measured temperature is generally close to the desired reference, the initial deviation is
very likely to be caused by the broiler insertion as it requires the house to be open during
the procedure thus a loss in temperature is inevitable. During the remaining time of the
week, form approximately day one is the reference followed in a satisfying manner.

In the middle of Figure 5.9 is a section of the simulation enlarged and presented in
order to clarify the behavior of the MPC. Within the figure four plots are presented,
these are the temperature reference U90, ref, a simulation with disturbances U91, ∆D, a
simulation without disturbances U91, ∆D=0, and an averaged version of the simulation with
disturbances U91, ∆D. To explain the different simulation types a recap of the simulation
environment is given. The simulation is originally defined with a disturbance estimator as
shown by the block diagram in Figure 4.2, this estimator is however not utilized during
the tuning and controller simulation presented in Section 5.1: Simulation. The omission
of the disturbance estimator is chosen due to the usage of the RNN plant model as this
model is designed to a specific batch and thus the measured disturbances from the specific
batch are utilized. The controller structure is however based on batch-wise variations and
thus also batch-wise disturbance variations, see Equation: (3.15). During the tuning and
the initial simulation, this combination leads to the usage of a constant disturbance that is
zero as previously mentioned. As the live test is commenced the disturbance estimation is
utilized to predict the future humidity and outside temperature. This change to a nonzero
disturbance has resulted in an unexpected behavior of the MPC where a rippling effect
occurs in the suggested temperature. The MPC implementation specifies the upper and
lower constraints imposed on the batch-wise temperature change as ±0.2◦C. It is chosen to
stay loyal to the implemented control structure such that valid conclusions can be drawn
and thus not implement structural changes as the test evolves. It is however not possible
to implement the rippling control signal directly due to technical limitations and concern
about animal health. Utilizing the eight-point sampling procedure would smooth out the
ripples, this is however not the desired way to handle the behavior. A compromise is found
by applying a moving average thus obtaining a smooth temperature curve that reflects
the overall tendencies of the MPC output. The rippling and the smoothed temperature
curves are both presented in the middle and to the right in Figure 5.9 as a blue line and
a blue dashed line respectively.

As comparison is the simulation also conducted without the disturbance estimator,
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which is shown as U91, ∆D=0, thus reflecting the conditions utilized during the controller
tuning. The behavior without disturbances is generally close to both the reference and
the smoothed temperature curve. Throughout the following result description will the
temperature curve without disturbances be omitted as it does not contribute with a
significantly different trajectory and it is desired to keep the chosen model structure
utilizing the disturbance estimator.

To the right in Figure 5.9 an enlargement of the behavior between day 28 and 34 is
presented. The enlargement shows that the rippling behavior diminishes and the suggested
temperature becomes smooth as a consequence. Considering the temperature changes, it
is clear that the algorithm desires to let the temperature follow the same trajectory as
initially found. The temperature aspect of the algorithm during week one is now widely
covered and a natural progression is an investigation of the broiler weight which is the
main focus of the control task. The measured weight, the reference trajectory, and the
simulation outputs are presented in Figure 5.10.
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Figure 5.10: Weight reference and measured weight combined with the simulation output.

The measurements obtained during the first week reveal that the broiler weight is
significantly lower than expected, as shown in Figure 5.10. Even though the weight is not
at the desired level is the obtained growth trajectory close to the reference trajectory when
disregarding the weight offset. This indicates that the broilers are growing as expected
and the weight offset could be caused by a false initial weight. This weight offset could
further be affected by the time of broiler insertion and weighting delay. The newly inserted
broilers do not wander around the delay is like to be caused by the

To determine whether the current implemented temperature reference should be updated,
the simulation results presented in Figure 5.8 and Figure 5.10 are considered. These reveal
that the future broiler weight will be close to the reference and this will be obtained
by following the current temperature reference. No apparent temperature changes are
therefore desired and thus the currently implemented temperature reference is retained.
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5.2.3 Week Two

The decision of updating the temperature curve during week two is evaluated in the
same manner as for week one. However, will the data and results for this and future
weeks only be presented as the magnified versions, with focus on the week specific events.
The measured temperature Umeas, the implemented reference U90, ref, the simulation with
disturbances U91, ∆D, and the averaged version of the simulation with disturbances U91, ∆D
are presented in Figure 5.11.
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Figure 5.11: Left: The reference and the measured temperature curve. Middle: A zoom
of the ripples which are present until approximately day 21 of the simulation. Right: A
zoom at the end of the simulation.

Considering the measured temperature displayed on the left in Figure 5.11, it reveals that
the week is initialized with temperatures sufficiently close to the reference. However on day
10 and onwards it is visible that the climate control is struggling to maintain the reference
temperature. The temperature deviations are highly periodic with a clear dip at midnight
on day 11. A contributing cause to the deviations might arise from the measured outside
temperature, which on both day 10 and 11 peaks at 25 and 28 degrees ◦C respectively,
see Appendix E: Peripheral Live Test Results. The enlarged section of the MPC output
presented in the middle of Figure 5.11 reveals that the suggested temperature of the MPC
still ripples undesirably. As the rippling behavior vanishes is the lower constraint that is
imposed on the MPC activated, and thus is the learning effectively saturated. This split in
trajectory occurs approximately at day 21 where the new smoothed version of the control
sequence maintains a slightly lower trajectory than the implemented temperature curve
throughout the remaining of the batch, as presented in the magnified section to the right.

The third enlargement of the final section of the three temperature sequences is presented
to the right in Figure 5.11. This magnification reveals that the control algorithm desires
to lower the temperature slightly compared to the implemented reference.

This weeks weight measurement presented in Figure 5.12 shows that the deviations
experienced in the previous week are diminishing and the weight generally approaches the
reference. However, during the last day of the week is the weight increasingly deviating
from the reference yet again. This behavior could be caused by the delayed effect of the
temperature fluctuations presented to the left in Figure 5.11 as the broilers are still highly
temperature sensitive due to their young age.
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Figure 5.12: Weight reference and measured weight combined with the simulation output.

The effect of the simulated temperature curve is also visible in Figure 5.12 and shows that
the broiler weight throughout the simulation follows the reference trajectory as expected.
The deviation present from approximately day 22 and until the end of the batch is largely
a result of the limitation caused by the model utilized internally inside the MPC. This
behavior is in line with the fit percentages and error trajectories described in Section 5.1:
Simulation.

Summing up the week, the measured temperature has revealed some deviations during the
end of the week whereas the weight generally tends to approach the reference as desired.
The simulation is suggesting a slightly lower temperature from approximately day 21 and
onwards. The next temperature update will take place on day 21 and the simulations
suggest to follow the implemented reference until day 21. No changes to the temperature
are necessary throughout the following week, it is therefore chosen to retain the currently
implemented temperature sequence.

5.2.4 Week Three

The progress of the batch throughout week three is described in the following. The
measured temperature, the temperature reference and the temperature suggested by the
simulation are presented in Figure 5.13.
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Figure 5.13: Left: The reference and the measured temperature curve. Middle: A zoom
of the ripples which fade away. Right: A zoom at the end of the simulation.

The measured temperature data reveals some deviation for the first day of the week
and thereafter huge and highly periodic deviations. The deviations measured, are by
far extending beyond what is expected to be reasonable and stretch to a peak to peak
difference of almost two degrees at the end of the week. The measured peak outside
temperatures from day 15 to 20 range from 23.5, 27.9, 22.5, 24.7, 25 and 24.8 degrees ◦C
respectively, see Appendix E: Peripheral Live Test Results. It is thus in combination with
the increasing biomass likely that the climate control system is challenged and operates
close to the limit as the reference temperature is rather close to the outside temperature.

The simulation results reveal a continued desire to lower the temperature slightly. The
magnified section presented in the middle of Figure 5.13 shows that the rippling within
the MPC output diminishes quicker than experienced in previous weeks and follows the
implemented trajectory with an offset. This behavior continues until the end of the batch
apart from a minor temperature increase at the end of the batch, see Figure 5.13.

This weeks weight results presented in Figure 5.14 reveal that the deviation that ended last
weeks measurement is diminishing. Furthermore, it is visible that the measured weight
follows the trajectory highly accurately until approximately day 19. From day 19 a minor
deviation is appearing, this deviation is however within an acceptable range.
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Figure 5.14: Weight reference and measured weight combined with the simulation output.
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Summing up this week, large temperature deviations are experienced, however, the broiler
weight reveals the desired progress and is close to the reference. It is due to these
observations and the absent effect of the temperature deviations chosen to retain the
implemented temperature reference. Even if the change is implemented is any effect on
the broiler weight doubtful as the implementable temperature change is limited compared
to the experienced deviations.

5.2.5 Week Four

The progress throughout the fourth week of the batch is described in the following.
The implemented temperature reference, the measured temperature and the temperature
obtained by simulation are all presented in Figure 5.15.
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Figure 5.15: Left: The reference and the measured temperature curve. Right: A zoom
at the end of the simulation, which this week is the reamining of the batch.

Compared to the previous week are the experienced deviations increasing even further and
at day 27 is the peak to peak temperature difference close to five degrees. The measured
temperatures at day 24 and 25 are somewhat satisfying and the deviations are greatly
reduced during these days due to lower outside temperatures, see Appendix E: Peripheral
Live Test Results.

The simulation result reveals that the MPC desires to constantly lower the temperature
during the remaining of the batch period compared to the implemented reference. The
suggested temperature change reveals that the simulated output follows the bounds
imposed on the MPC.

The enlargement presented to the right in Figure 5.16 reveals that the measured weight
throughout this week is increasingly deviating from the desired reference. The trajectory
of the measured weight is smooth which indicates that the growth is normal, the broilers
are however growing faster than expected.
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Figure 5.16: Weight reference and measured weight combined with the simulation output.

Summing up the week, the measured temperature reveals increasing deviations compared
to the reference but indicate no significant effect on the measured broiler weight. The
temperature sequence obtained by simulation desires to lower the temperature along the
entire remaining timeline of the batch. It is chosen not to implement the new trajectory as
it is highly doubtful that the suggested change of 0.2 degrees ◦C can achieve any significant
weight change. This assessment is based on the previously described observations that
the increasing temperature variations of up to 5 degrees peak to peak, tend to have no
effect on the weight at this stage of the broilers growth.

5.2.6 Week Five

Week five is the final week of the batch and it is thus not possible to apply any temperature
change. The measured temperature and the reference are presented in Figure 5.17 with a
magnification of this weeks temperature placed to the right.
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Figure 5.17: Left: The reference and the measured temperature curve for the entire batch.
Right: A zoom of week five.
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The measured temperature during this week reveals that the climate control system
continues to struggle with the heat as large temperature deviations are measured. The
measured outside temperature reveals that the peak daytime temperatures between day
28 and 32 are ranging from 24.5 up to 30.7 degrees ◦C, see Appendix E: Peripheral Live
Test Results. The present cooling system consists of vents and fans which this week is
an insufficient cooling method for these high temperatures combined with a temperature
reference below ambient.

The measured weight presented in Figure 5.18 reveals a continuation of the trend observed
during the previous week. The measured weight is thus steadily increasing and a further
deviation from the desired weight reference is revealed.
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Figure 5.18: Left: The weight reference and the measured weight curve for the entire
batch. Right: A zoom of week five.

The results obtained during week five complete the batch and the final broiler weight is
measured to 2128 grams, which is 78 grams above the desired reference of 2050 grams.
The slaughter weight reveals an average of 2090 grams which is 38 grams lower than the
measured weight and thus indicates the reliability issues concerned with the broiler weight
during the last stage of a batch as earlier mentioned, see Section 2.1: Data Description.

5.2.7 Live Test Discussion

The conducted live test is stretching across 34 days and the designed control algorithm is
thus tested under real-life conditions during a complete batch.

During the batch progression, it has become visible that the climate control system is
struggling to maintain the desired temperature reference. This behavior occurs the first
time during week two and becomes very significant during week three to five due to both
the constantly lowering of the reference and high outside temperatures.

The conducted simulations reveal that the MPC for the remaining weeks after week one
consistently desires to lower the temperature, this occurs from approximately day 21 and
continues during the remaining of the batch. The decreased temperature suggestion reveals
that the lower constraint imposed on the MPC is activated as the temperature decrease
is specified as 0.2 degrees ◦C lower than the implemented reference. The activation of
the constraint effectively saturates the learning of the MPC and as presented during the
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simulation results will it be possible to lower the temperature further during the next
batch and thus improve further. This learning process is proven to be functional during
simulation, however, to improve the ability of the MPC to reject live disturbances could
it make sense to cast the constraint in a different manner.

During the test it was possible to update the temperature curve four times, this was
however not utilized. During week one was there no desire to update the temperature
reference as the simulation yielded the same result as initially found. During week two was
the desire to lower the temperature first occurring on day 21, it was therefore postponed
to the following week. During the remaining two weeks where the large deviations in
temperature encountered and as the climate control struggled was it assessed that the
implementation of a 0.2 degree ◦C lower temperature would not have the desired effect.

The result of the live test generally reveals that the final weight during week four and five is
too high compared to the desired reference. This weight increase and thus also the struggle
to maintain the reference could be caused by different factors. The weight reference
obtained from the broiler handbook [17]. This reference is selected such that a realistic
reference is utilized, however, could it be the case that this reference is too conservative
and it, therefore, required excessive temperature changes to retain the reference which
is made inaccessible due to the imposed constraints. It is also possible that the model
utilized internally in the MPC is too simple and it is necessary to incorporate additional
control variables in order to manage the task of reference tracking by the use of climate
parameters.

The test is in general inconclusive as multiple factors have affected the final result, this
should be seen in combination with the large disturbances encountered. These have
thereby further complicated the analysis of the effect imposed by the potential temperature
changes suggested by the MPC. The MPC has in general shown that it acts as anticipated,
it is however not possible to verify the impact of this behavior by the obtained test
results. The handling of the short-term objected is therefore partially verified as the MPC
suggested temperature changes, these were however not implemented. The long-term
learning objective is not verified by the live test as it requires running additional batches,
this objective is only verified during the iterative simulations in the adaption phase.

72 of 113



Part III

Discussion and Conclusion

73





Discussion 6
The approach taken to model the growth of a broiler by the use of climate parameters
resulted in both an integrator model type and an unstable model type. The parameter
estimation of these models is conducted with the use of measured data. The ideal
operation of a broiler house is achieved by following the smooth descending temperature
reference closely, due to this can it be argued that the data should be considered as steady
state measurements. It is desirable to excite the system sufficiently during a typical
parameter estimation process, this is however not possible due to the health concerns of
the broilers. The usage of this data could thus lead to, that the optimal performance
of a given model structure is not revealed. It is however not possible to utilize different
data, but important to consider when judging the general performance of a given model
structure. Instead of a procedure where a general model structure is casted and a data-
driven parameter estimation is conducted to improve the model could another approach
be based on constructing the initial model from a biologic point of view and thus rely on
modeling the biologically related dynamics.

The performed live test revealed that the MPC output ripples undesirably. The MPC
did, however, avoid infeasible solutions and thus remained in an operational state. The
behavior occurred as the non zero disturbances where included. If any future live tests
are to be conducted should this issue be addressed. Conducting an additional live test
would also be beneficial in order to verify the controller performance, desirably under
more normal circumstances. The outside temperature during the live test reveals that a
temperature above 25 degrees ◦C is measured in 17 of the 34 days. A "summer day" is
by meteorological standards categorized as a day where the temperature national-wide is
above 25 degrees ◦C. During an average year in Denmark are approximately 10 "summer
days" present, the measured outside temperature cannot be categorized as an official
measurement but illustrates that the warm weather is rather unusual [24].

The current model utilized internally in the MPC is based on a linear model structure
with a limited number of in- and outputs. The simple structure allows the model to
capture the overall process dynamics and eases the computational costs due to the limited
complexity. A drawback of such a model is the possibility that the simple linear model
structure limits the capabilities of the controller. An indication of this effect can be
the reason for the results obtained in Section 5.1: Simulation where the simulation
never reaches fit percentages higher than approximately 97.5%, which is beneath the
capabilities of the more advance RNN model. A more advanced model structure might
be capable of converging to 100% or at least improve the obtained fit percentage further.
Utilizing an advanced and possibly nonlinear model structure requires consideration of the
implementation process. This is necessary as the implemented MPC structure only handles
linear models, it is thus necessary to linearize any nonlinear model. The linearization will
change the operating point of the system during the process. This linearization could
be conducted online in order to ensure a representative model is utilized at every time
step. This procedure is deemed possible as the sampling time of the process is slow. Even
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though a more advanced model might increase the fit percentage, will any disagreement
between the system model, used for the controller, and the RNN model, used as the plant
result in a deviation of the fit percentage.

The current implemented MPC design features a set of constraints imposed on the control
variable. These constraints are casted as a limitation on the change in temperature,
∆Uk(t) and are implemented as constraints from batch k to batch k + 1. As ∆Uk(t) is
not constrained from time t to t+ 1, is the system allowed to start rippling uncontrolled
throughout the curse of multiple batches, as seen in Figure 5.5 on page 60. As this is not a
desirable behavior will a constraint imposed on the system that attenuates these ripples be
desirable. An additional constraint, implemented as a maximum temperature change from
time t to time t+ 1, could limit the ripples in a more suitable manner, while still allowing
the controller to iteratively learn from batch to batch. Furthermore, could this constraint
be made time variant, by increasing the allowed temperature variance from t to t+1 as the
batch progresses and the broilers grow to become less receptive to temperature variations.
Furthermore, cloud the interval specified by the original constraints be increased such that
the batch-wise learning can be progressed quickly as the temperature variations concerning
broiler health are handled by the new constraint.

Future work within the subject of optimizing the broiler production could be based on
the previously mentioned considerations, but other aspects could also be included. The
developed structure is centered around temperature as a manipulated control input and
the broiler weight as the outcome. This model could be improved by including more
manipulated variables and possibly in combination with more advanced model structures.
Another option is to change the control objective from the broiler weight to the feed
consumption and especially the feed conversion ration (FCR) which indicates the efficiency
of the broilers. Considering this performance metric instead of the broiler weight has a
number of positive aspects. One of the largest expenses in broiler farming is the cost
of feed [25]. Improving the FCR will, therefore, reduce the production cost and utilize
the resources in the best possible manner. As the broiler weight is connected to the
feed intake will it additionally be possible to affect the broiler weight by feed and FCR
control. Furthermore is the measurement of feed intake much more reliable as these are
not biased in any kind compared to the weight measurements which rely on the average
broiler visiting the scale.
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The work conducted during this thesis is focused on the development of a model described
broiler growth based on climate parameters and trajectory tracking control. The modeling
incorporates five different structures where multiple parameter estimations have been
conducted in a Monte Carlo fashion. The reference tracking control structure has been
specified for a batch environment and incorporates a Kalman filter for state estimation.
The control structure has been implemented and tested in a simulation environment and
additionally applied on a broiler house where a live test has been conducted.

Modeling
The broiler growth has been described by the use of first-order linear state-space models
which are based on inputs from climate parameters and include climate based disturbances.
The modeling has been attempted by the use of both an integrator based model and an
unstable model structure. Parameter estimation for both structures has been carried
out with the use of measurement data originating from ten different broiler houses. The
parameter estimation has been conducted by dividing the data into four clusters and a set
containing all data. Furthermore, have these been divided into training and test sets by a
ratio of 70% and 30% respectively. This estimation process has been conducted in a Monte
Carlo fashion and the best models have been validated with additional data. During the
modeling process has it been determined that the unstable model structure is superior in
comparison to the integrator structure. The unstable model structure achieved validation
fit percentages of 90.06 % and 88.71 % with and without feedforward respectively.

Controller
The control structure has been based on MPC, this is however adapted to operate in
batch-wise fashion and elements from ILC are incorporated into the design. The batch
operation of the MPC has been achieved by shrinking the prediction horizon according to
the batch progress such that the prediction horizon always corresponds to the remaining
batch duration. The internal cost function of the MPC has been specified as the tracking
error of the desired weight trajectory, based on the developed model. The internal model
utilized within the MPC has been formulated such that it describes the tracking error
trajectory based on batch-wise changes of the input and disturbances. The incorporated
elements from ILC has introduced two-time scales and thus two control objectives have
been considered. The short-term control objective has been specified as the minimization
of the tracking error during a batch, where the long-term control objective has been
specified as the minimization of the tracking error across batches. In addition to the
MPC has a Kalman filter been implemented as this allows to estimate the complete error
trajectory. The Kalman filter has been implemented such that it estimated the shrinking
error trajectory corresponding to the prediction horizon specified within the MPC.

Simulation and live test
The control structure has successfully been implemented in a simulation environment
and the weighting matrices within the MPC have been tuned to obtain the optimal
performance. The simulation has been conducted across 90 batches and during these
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iterations has it been proven that the control structure minimizes the tracking error. It
has furthermore been proven that the error is constantly minimized as the fit percentage
increases across batch iterations which indicates that the long-term control objective
has been fulfilled. In addition to the achieved simulation results has a live test been
conducted. The conducted live test stretched across 34 days and at the end of each week,
it has been possible to update the implemented temperature reference. The live test
has revealed some undesired behavior by the MPC, it has however been solved by the
implementation of a moving average filter such that the suggested temperature changes
have been implementable. Throughout week one and two is the measured weight lower
than desired, the gap is however reducing during week two. During week three is the
measured weight almost identical to the desired reference, however, are the broilers growing
significantly faster and thus is the measured weight increasing above the reference during
week four and five. The live test is affected by large temperature variations and high
outside temperatures. Due to these external disturbances is the temperature reference
at some time instances during the batch specified lower than the ambient temperature.
The climate control system is therefore insufficient for retaining the desired temperature.
Due to the large disturbances are no updates to the implemented temperature sequence
made. The capabilities of the controller are therefore not truly tested and verified by the
live test as the test remains partly inconclusive. The implemented temperature reference
is however based on the conducted simulation. This reference achieved a deviation of 78
grams between the desired and measured weight reference and a deviation of 40 grams
between the desired and the slaughter weight.

78 of 113



Part IV

Appendices

79





Cluster Search A
In this appendix, the cluster search algorithm is explained. Furthermore, it is considered
how to choose an appropriate number of clusters.

A.1 K-means Algorithm

The batches in the data provided by SKOV A/S are of different length and in order to
allow estimation based on these, Matlab requires batches to be of the same length. To
solve this all batches are shortened to fit the length of the shortest batch, thus the last
samples of the longer batches are lost. In order to use more data during the estimation,
it is decided to split up the data into clusters. A cluster search algorithm finds a number
of center points and separates the data points according to the closest center point, where
each data point is representing a batch. The cluster search is done using the Matlab
function kmeans(Z, k) where Z is the data matrix and k is the number of clusters. The
underlying algorithm is called the k-means algorithm [26]. More specific the algorithm
consists of the following five steps:

1. Place k initial centroids.
2. Compute the distance from all data points to all k centroids.
3. Assign all data points to their closest centroid.
4. Compute an average for all data points within each of all k clusters and assign this

average as the new k centroid position.
5. Go through step 2 to 4 until the centroids position converges.

The Matlab function kmeans(Z,k) leaves multiple options for the user to decide which
setting the algorithm should use. Placing the initial centroids in step 1, the placement
can be specified in multiple ways. In the case of this project, the initial centroid position
is chosen randomly from a uniform distribution within the range of Z. Computing the
distance from data points to centroids, step 2, can be done by different distance measures
as squared euclidean distances or sum of absolute distances. Because all variations, both
positive and negative, in batch length are undesired the squared euclidean distance is
chosen. The distance from one data point to a centroid is calculated as seen in Equation:
(A.1):

d(z, c) = (z− c)(z− c)T (A.1)

Where
z ∈ R(1×n)

c ∈ R(1×n)

and n

is a data row of Z,
is a centroid row vector,
is the row length.

te [·]
te [·]
te [·]

The last option used decides the number of replicates which makes it possible to repeat
the cluster search using new initial centroids. The cluster search is repeated 50 times to
ensure that the optimal centroid placement is found [27].

81 of 113



Group CA10 - 936 A. Cluster Search

A.2 Choosing Number of Clusters

As mentioned earlier the algorithm works by placing centroids and then assigning the data
points to the closest centroid.

The more clusters that are used in this process the more data will be used, but as explained
in Section 2.3: Individual Estimations for each cluster an estimation must be made, and
therefore each cluster result in a model with a new set of estimated model parameters.
Furthermore, if e.g a cluster is made for each dataset, the estimations are based on only
one batch, which would likely result in a model which is bad at reflecting other behavior
than that of the batch, originally used to create the model. All of these arguments imply
that an optimal number of clusters can be found.

There are no perfect methods to choose the number of clusters, but according to Andrew
Ng, Adjunct Professor at Stanford University, there are three general approaches [26].
The first is to look at visualizations of the data. It might be clear that data is split into
groups. In the case of this project, no clear separation in the batch length can be seen,
see Figure A.1.

32 33 34 35 36 37 38 39 40
32

33

34

35

36

37

38

39

40

Batch length [Days]

Ba
tc
h
le
ng

th
[D

ay
s]

Batches

Figure A.1: A plot of the length of all 161 batches to illustrate how they are distributed.

The second approach is to consider the cost or sum of distances from all data point to the
centroids. If the cost declines quickly by adding the first number of clusters but the cost
then converges as more clusters are added it might be clear what the appropriate number
of clusters is. This is called the "elbow effect" as a plot of the cost would look like an
elbow. However often the curve is a lot softer and it is not possible to clearly see an elbow
joint.

The third approach is to choose based on a physical property. An example of this is to
determine how many different t-shits sizes to produce based on data describing the size
of a population. Here it is clear that one size might not fit everyone and 7XS to 7XL,
a total of 17 different sizes, might be an overestimate of the necessary range of sizes. It
should be stressed that this approach does not give a clear answer of how many clusters
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to chose. However, it might give an idea of which magnitude the number should be.

For this project the same considerations are relevant. It is hard to specify a final optimal
number of clusters. However, the batches are of different length and this could be caused
by some measurements halted prematurely and some measurement continued even though
there are no broilers within the house. Therefore a minimum of three clusters will ensure
that all batches with too few or too many samples are placed in two of the clusters and
therefore the third cluster might have a better chance of resulting in a realistic model.

In Figure A.2 the sum of distances is plotted as a function of the number of clusters, as
the orange graph. However, in the case of this project, it is also relevant to consider the
average number of batches in each cluster, as an estimation based on very little data would
likely result in a model with bad overall behavior. The number of batches per cluster is
plotted as the blue graph.
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Figure A.2: The left y-axis is the sum of distances from all points to the centroids, the
right y-axis is the number of batches per cluster and the x-axis is the number of clusters,
using all 161 batches setting aside 30% as test set. Decrease in the summed distances, as
clusters are added, is expressed in percentage as the orange number in the top row of the
graph.

As it is seen inFigure A.2 the cost decades a lot by adding the first clusters, cluster two
and three. The benefit of adding cluster four and five are not as severe. Considering
the number of batches per cluster, three clusters result in 37 batches per cluster and four
clusters result in 28 batches per cluster.

All in all, it is a matter of judgment, however choosing four clusters will reduce the sum
of distances by 91.6% and still on average leave 28 batches per cluster. Therefore four
clusters are deemed appropriate for this project.
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A.3 Cluster Search Results

Using four clusters as determined in Section A.2: Choosing Number of Clusters, the cluster
search yields the result seen in Figure A.3.
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Figure A.3: The batches according to sample length now colored according to how they
are split into clusters.

The cluster search is conducted on all 161 batches, described in Section 2.1: Data
Description, and afterward, the cluster is split into a test and a training set. This leaves
an average of 28 batches in each training set.

The data is now split up into four clusters which will make it possible to estimate four
new models.
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Matlab Estimation Toolbox B
In this chapter, the grey box estimator used for estimation is described.

The estimation is conducted using the Matlab grey box estimator greyest. The grey box
estimator is a linear based estimator that uses an idgrey model, an initial model that
defines the model structure, and a dataset as input, in the case of this project the training
set. The output is the model with estimated parameters. The initial model is the linear
state-space model described in Section 2.2: Model Structure. The output is the model
with the estimated elements that yields the best performance on the training set.

It is beside the mentioned input and output possible to set options as a numerical
search method, initialization choice of states and modeling disturbances using the function
greyestOptions [28]. The initial states can be chosen in several ways. The InitialState
setting contains the options zero, estimate and Vector of doubles. The option zero
simply sets the initial states to zero, estimate works by handling the initial state values as
another parameter to estimate and Vector of doubles makes it possible to set the initial
states to a specific value. In this project the initial states are set as a random variable
normally distributed with a mean of 40 grams and variance of 10 grams, using the Vector
of doubles setting. This is done to get a positive broiler growth, as the output matrix
is also chosen as one.

The search method is set using the setting SearchMethod, which has multiple options to
chose between. Multiple of these search methods were tried and from this, it was clear
that the search method called fmincon is the fastest for this specific estimation problem.
Therefore fmincon is chosen to proceed with.

The search method fmincon is a gradient-based nonlinear solver, which works on problems
where both the objective function and the first derivative of the objective function are
continuous [29]. As described in Section 2.3: Individual Estimations is the objective to
minimize the difference between the measurements and the simulation. This is done by
minimizing the sum of the squared error, which can be expressed as:

V (ŷ̂ŷy,θθθ) = 1
N

N∑
i=1

(yyyi − ŷyyi(θθθ))T I (yyyi − ŷyyi(θθθ)) (B.1)

Where
yyy ∈ R(j×1)

ŷ̂ŷy ∈ R(j×1)

θθθ
N
III ∈ R(j×j)

and j

is the measurements,
is the simulation,
is the model parameter
is the number of samples,
is the identity matrix,
is the number of outputs.

te [g]
te [g]
te [·]
te [·]
te [·]
te [·]

Equation: (B.1) is a quadratic function and therefore is the derivative a linear expression,
which means that both the objective function and its derivative are continuous. The
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identity matrix in Equation: (B.1) could have been chosen as a weighting matrix if some
outputs are deemed more important then others. However in the case of this project, there
is only one output, the weight of the broiler, and therefore as j = 1 the identity matrix III
will be reduced to unity.

Minimizing Equation: (B.1) with the use of fmincon leaves multiple underlying algorithms
to choose between. The interior-point algorithm is chosen as this is recommended by
Matlab [30]. As the name of the algorithm indicates, is the interior-point algorithm
trying to approach the global minimum of the original problem from within the interior of
the feasible set [31] [32]. To ensure that all iterations stray within the interior of the feasible
set a barrier function is used. Furthermore the original problem is not solved directly but
instead, an approximate dual problem is solved. For the constrained optimization problem
all inequality constraints are embedded with a slack variable, resulting in improved
feasibility.
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Choosing Integrator Model
Structure C

In this section, the results of each estimation using the three different model structures is
shown. Furthermore, the processes of deleting outliers are explained.

As described in Section 2.2: Model Structure the general model structure is written as
seen in Equation: (C.1).

x[t+ 1] = [A]x[t] + [B11B12]
[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t] + [D11D12]
[
u1[t]
u2[t]

]
+ [Dd]w[t]

(C.1)

The complete structure of the model leaves multiple choices of which of the model
parameters to incorporate. As described in Section 2.2: Model Structure the structure
is chosen by conducting multiple estimations for multiple structures and then comparing
how well the model structures fit the data. An estimation is done for the following three
structures.

1. Estimation of only B and Bd, in other words without feedforward and leaving A and
C as unity.

2. Estimation of B, Bd, D and Dd, thus leaving A and C as unity.
3. Estimation of A, B, Bd, D and Dd, with C as unity, to evaluate on the initial choice

of the system being a pure integrator.

The output matrix (C) is chosen as unity for all three structures because estimating C
will not add any information, as there is only one state.

The estimations are done as described in Section 2.4: Monte Carlo Estimations, which
results in five models for each structure. Afterward, the results are checked for outliers
and if any are found they are removed. This is done because a part of the estimation
is to randomize initial guesses, randomize division of training/test sets and because the
estimation is a numerical process. Detecting and deleting outliers is done using the Grubbs
test for outliers, this is also called maximum normed residual test [33]. Grubbs test is used
for detecting single outliers in a dataset of only one variable. An iterative implementation
allows detection of multiple outliers within the same dataset.

Grubbs test is a hypothesis test that checks if no outliers exist, by checking if a sample
falls within a critical region with a specified significance level. The test calculates a ratio
G, which indicate how far each sample is from the others, for each sample. Furthermore, a
critical region, describing when a sample is an outlier, is calculated, see Equation: (C.3).

The ratio G is calculated for each sample by:

Gi = |Yi − Ȳ |
σ

(C.2)
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Where
Gi
Yi
Ȳ

and σ

is the ratio describing how far the ith sample is from the others,
is the value of the ith sample,
is the mean of all samples,
is the standard deviation of the dataset.

te [·]
te [%]
te [%]
te [%]

The hypothesis that the ith sample is not an outlier, is rejected if Gi is bigger then the
critical region, seen in Equation: (C.3).

Gi >
N − 1√
N

√√√√ (tα/(2N),N−2)2

N − 2 + (tα/(2N),N−2)2 (C.3)

Where
N
α

and tα/(2N),N−2

is the number of samples,
is the significance level,
is the critical value of the t-distribution, where the t-distribution
is used to set a confidence interval.

te [·]
te [·]
te [·]

The used t-distribution is a continuous probability distribution closely related to the
normal distribution and these will be almost indistinguishable at high degrees of freedom
which for this implementation is given as two minus the sample size. The t-distribution
can be interpreted as an estimation of a normal distribution. The t-distribution is often
used with small sample sizes or if the standard deviation of the data is unknown. The
Grubbs test assumes a normal distributed dataset, therefore this should be checked. In
practices, the Grubbs test is conducted using an implementation by Brett Shoelson, [34],
and a significance level of 0.05.

C.1 Structure 1: Estimate B

As previously described, the Grubbs test assumes that the data is normally distributed.
Therefore this should be checked. In Figure C.1 is the distribution of 500 estimations, for
the four clusters and all batches at once shown. Furthermore, is a normal distribution
fitted to the data and shown in red. Here it is seen that the results are close to normal
distributed, as desired.
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Figure C.1: The distribution of the estimations, when only estimating B. The x-axis shows
fit percentage and the y-axis shows number of estimations within the histogram interval.

Now the Grubbs test is used to remove outliers. The Grubbs test for outliers is used in
the estimations, leaving only the estimations not categorized as outliers. The remaining
estimation results can be seen in Figure C.2.
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Figure C.2: The fit percentages of all estimations not classified as outliers and the mean
fit percent for each of the five models.

For the models in Figure C.2 is the number of removed estimations four, one, four, one
and zero respectively.

C.2 Structure 2: Estimate B and D

When estimating both the input and feedforward matrix is the procedure the same.
Therefore it is investigated if the estimation fit percentages are normally distributed and
then outliers are removed using the Grubbs test for outliers.
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Figure C.3: The distribution of the estimations, when estimating both B and D. The x-
axis shows fit percentage and the y-axis shows number of estimations within the histogram
interval.

Figure C.3 shows the distribution of 500 estimations, for the four clusters and all batches
at once. Here it is seen that the results again are close to normal distributed, as desired.
The Grubbs test is again used to remove outliers. The remaining estimation results are
seen in Figure C.4.
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Figure C.4: The fit percentages of all estimations, not classified as outliers and the mean
fit percent for each of the five models.

For the models in Figure C.4 are two, zero, four, two and one estimations removed
respectively.

C.3 Structure 3: Estimate A, B and D

When estimating both the system, input and feedforward matrix the procedure is the same.
Therefore it is investigated if the estimation fit percentages are normally distributed and
then are outliers removed using the Grubbs test for outliers.

The initial condition of the system matrix is set to a random variable in the interval
[0.01, 1]. This is chosen as the output matrix is positive and then a positive system matrix
will result in a positive growth of the broiler, which corresponds to the correct behavior.
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Figure C.5: The distribution of the estimations, when estimating both A, B and D. The x-
axis shows fit percentage and the y-axis shows number of estimations within the histogram
interval.

Figure C.5 shows the distribution of 500 estimations, for the four clusters and all batches
at once. Here it is seen that the results again are close to normal distributed, as desired.
The Grubbs test is used to remove estimations outside the specified significance level. The
remaining estimation results can be seen in Figure C.6.
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Figure C.6: The fit percentages of all estimations not classified as outliers and the mean
fit percent of the five models.

For the models in Figure C.6 are one, one, one, zero and zero estimations removed
respectively.

C.4 Model Structure Conclusion

Estimating both the system, input and feedforward matrix resulted in fit percentages in
the range of 57 to 65 %. Estimating only the input matrix resulted in fit percentages in
the range of 75 to 79 % and estimating the input and feedforward matrix resulted in fit
percentages in the range of 77 to 81 %.

From this, it can be concluded that the best model structure is model structure two. The
better fit when using feedforward could be caused by the slow sample times, resulting in
some of the dynamics of the input matrix being delayed.
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Choosing Unstable Model
Structure D

In this section, the results of each estimation using two different model structures is shown.
This section utilizes the exact same procedure as in Appendix C: Choosing Integrator
Model Structure. As described in Section 2.2: Model Structure the general model structure
is written as Equation: (D.1).

x[t+ 1] = [A]x[t] + [B11B12]
[
u1[t]
u2[t]

]
+ [Bd]w[t]

y[t] = x[t] + [D11D12]
[
u1[t]
u2[t]

]
+ [Dd]w[t]

(D.1)

It is deemed desirable to investigate unstable version of the current model structure.
Such models could improve the results found in Appendix C: Choosing Integrator Model
Structure as they, with the same inputs, will allow a more exponential behavior due to
their unstable nature. The instability of the model should be limited an thus only be
slightly unstable as it otherwise could cause the system equations to blow up within a
short time.

Finding the optimal pole placement of the system matrix is done with the help of the
estimation toolbox. As only a slightly unstable model is desired, is the pole placement
constrained to the interval [1.0001,1.100] within the z-domain. Based on this constraint,
parameters for two model structures will be found by estimation.

The two model structures contain the estimation of:

1. A constraint to [1.001, 1.100], B and Bd, thus leaving C as unity and D and Dd as
zero.

2. A constraint to [1.001, 1.100], B, Bd, D, and Dd, thus leaving C as unity.

The estimations are conducted as described in Section 2.4: Monte Carlo Estimations,
which corresponds to the procedure used in Appendix C: Choosing Integrator Model
Structure. The method results in five models for each structure. The results are checked
for outliers and if any are found they are removed. This is done because a part of the
estimation is to randomize initial guesses, randomize division of training/test sets and
because the estimation is a numerical process. Detecting and deleting outliers is done using
the Grubbs test for outliers [33]. Grubbs test is applied in an iterative implementation thus
allowing detection of multiple outliers within the same dataset. The full process is found
in Appendix C: Choosing Integrator Model Structure. The results presented throughout
this section are all treated with Grubbs test and do not include outliers.

D.1 Structure 1: Estimate A and B

The average fit for each of the five estimations is calculated and leads to a converging fit
percentage. The converging fit percentages for each estimation is presented in Figure D.1.
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Figure D.1: Converging fit percentages for each of the five models estimated.

Across all estimations, the fit percentages have converged after roughly 300 iterations. The
choice of running 500 iterations is reused from the previous procedure. The converging fit
shows that the 500 iterations should be enough to reveal the full potential of the model
structure, even with the randomized selections of training and test batches.

The results are, as the previous estimations, obtained by five estimations with each 500
iterations, resulting in a total of 2500 models. To determine which of the 2500 sets of
parameters to select, the strategy used previously will be used again. From each of the
five estimations, three models are selected. To recap the procedure, the models are selected
as follows.

1. The parameter set, of all 500, that yields the highest fit percentage, during
estimation.

2. The average of all 500 parameter sets.
3. The parameter set, of all 500, that yields the lowest fit percentage, during estimation.

Evaluating the performance of the selected 15 models is done by simulating each model
with all 161 batches and comparing the fit. The performance of the 15 models across all
batches is shown in Figure D.2.
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Figure D.2: The fit percentages of the three different models for all five estimations without
outliers.

The comparison reveals that the highest overall fit, 87.12%, is achieved by the model that
is based on the parameters that yielded the highest fit during estimation from cluster
three. The overall second best model yielding a fit of 87.10% is based on an average of all
parameter sets from cluster three. The third overall best model yields a fit of 87.03% and
is based on the parameter set that provided the highest fit during estimation from cluster
two.

Further investigation of the best performing models is conducted by comparison of the
parameters throughout the 500 estimations. Parameters contained in the three best
models based on average parameters are compared. These are named model A to C
and originate from the average parameters from cluster 2 with a fit of 87.02%, average
parameters from cluster 3 with a fit of 87.10% and average parameters from all batches
with a fit of 86.10%, respectively. The compared parameters are shown in Figure D.3
where each element in the system, input, and disturbance matrices are shown, according
to iteration number and originating model.
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Figure D.3: The parameters for all iterations, from the three best performing average
models. The value shown in the legends is the mean of all iterations.

The average value of the parameters across the three model is within a small span, thus
the models obtain similar fit percentages. The variations of the parameters for each model
throughout the 500 estimations seem to differ. The parameters of model B vary the most
whereas the parameter variation of model C is the smallest. Despite this fact is model
C still the worst performing of the three models. Overall are the three models behaving
similarly and they all agree on the sign of each parameter.

The overall best performing model is based on the parameters from cluster three that
yielded the highest fit. This model is named model D and the parameters are:

x[t+ 1] = [1.0024]x[t] + [0.019900 2.6000 · 10−3]
[
u1[t]
u2[t]

]
+ [−2.9221 · 10−4]w[t]

y[t] = x[t]
(D.2)

The overall third best performing model is based on the parameters from cluster two that
yielded the highest fit. This model is named model E and the parameters are:

x[t+ 1] = [1.0024]x[t] + [0.019100 3.2000 · 10−3]
[
u1[t]
u2[t]

]
+ [1.0000 · 10−3]w[t]

y[t] = x[t]
(D.3)
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Comparing the parameters of model D and E with the parameters of the average based
model shown in Figure D.3 shows that they feature parameters with similar values. The
only greater difference is that model E has a positive Bd11 entry, whereas the other
investigated models contain a negative value. As the fit percentages of model B and E are
very similar is model E discarded and model B is kept due to the sign structure being in
line with the other compared models.

A comparison of the three overall best performing model for this structures, that is model
A, B, D, is conducted and each model is simulated with an average of all batches. This
comparison is shown in Figure D.4
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Figure D.4: The mean of all batches, the standard deviation, and the three best models.
A relative short batch period is represented, as a mean for all batches only exits for the
length of the shortest batch.

The simulation shows similar performance across the three models, but model D performs
slightly better and is thus stated as the resulting model for model structure four.

D.2 Structure 2: Estimate A, B and D

The average fit for each of the five estimations is calculated and leads to a converging fit
percentage. The converging fit percentages for each estimation is presented in Figure D.5.
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Figure D.5: Converging fit percentages for each of the five models estimated.

To determine which of the 2500 sets of parameters to select, three models are selected
from each of the five estimations and compared. To recap, the models are selected as
follows.

1. The parameter set, of all 500, that yields the highest fit percentage, during
estimation.

2. The average of all 500 parameter sets.
3. The parameter set, of all 500, that yields the lowest fit percentage, during estimation.

The performance evaluation of the 15 selected models is conducted by simulating each
of the models with all 161 available batches and comparing the obtained simulation fits.
The following simulations are conducted with results where outliers are removed. The
performance of the 15 models across all batches is shown in Figure D.6.
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Figure D.6: The fit percentages of the three different models for all five estimations without
outliers.

These results have shown that the overall highest average fit, 89.05%, is obtained by the
model that is based on an average of all parameters from the 500 models belonging to
cluster three. The second overall best model with an average fit of 88.98% is obtained
by a model based on average parameters from cluster two. The third overall best model
with an average fit of 88.89% is obtained by the model that had the highest fit within the
estimations from cluster two. The third best model based on average parameters is based
on the estimation of all data and achieves an average fit of 88.45%.

Further investigation of the best performing models is conducted by comparison of the
parameters throughout the 500 estimations. Parameters contained in the three best
models based on averaging parameters are compared. These are named model A to C and
originate from the average parameters from cluster 2, average parameters from cluster
3 and average parameters from all batches respectively. The compared parameters are
shown in Figure D.7 where each element in the system, input, feedforward and disturbance
matrices are shown, according to iteration number and originating model.
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Figure D.7: The parameters for all iterations, from the three best performing average
models. The value shown in the legends is the mean of all iterations.

The comparison reveals variations throughout all parameters but an agreement of the
signs, thus the models agree on which parameter entry should be negative and which are
weighed positive. Investigation of the individual model parameters has shown that apart
from the parameter variations are the models closely related, which correlates with the
similar behavior and fit percentages during simulation.

The previous parameter comparison does not include the third overall best performing
model, as it is based on only one parameter set, that is the best performing model from
cluster two. This model is for convenience called model D and the parameters are shown
in Equation: (D.4).

x[t+ 1] = [1.0021]x[t] + [0.028800 4.2423 · 10−4]
[
u1[t]
u2[t]

]
+ [−4.7552 · 10−4]w[t]

y[t] = x[t] + [−3.0780 0.32120]
[
u1[t]
u2[t]

]
+ [5.6000 · 10−3]w[t]

(D.4)

The parameters of model D follow the same sign convention as the three best average
parameter based models. The parameter values of model D deviate slightly, compared to
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the average values shown in Figure D.7. The entries B12, Bd11 and D13 are significantly
lower than the values for the three average based models. Despite the parameter, variations
are model D still the third best performing model overall for this structure.

The three overall best models, that is model A, B, and D, are simulated with an average
of all batches and their performance is compared.
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Figure D.8: The mean of all batches, the standard deviation, and the three best models.
A relative short batch period is represented, as a mean for all batches only exits for the
length of the shortest batch.

Based on the conducted simulation are all three models performing very similar. However,
model D yields a marginally higher fit and is thus stated as the resulting model for model
structure five.

D.3 Model Structure Conclusion

The estimation of the system and input matrix resulted in a maximum fit percentage
of 92.04 % based on the final performance comparison. Estimating the state, input and
feedforward matrix resulted in a maximum fit percentage of 95.47 % based on the final
performance comparison.
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Peripheral Live Test Results E
In this appendix, the peripheral results obtained during the live test are presented.
Furthermore are the obtained results compared to a batch average generated by the 10
most recent batches.

E.1 Temperature

The temperatures presented in Figure E.1 consist of the implemented reference during the
live test, the measured temperature and the average temperature based on the 10 most
recent batches.
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Figure E.1: The implemented reference in comparison with the actual measurement and
a 10 batch average temperature.

The comparison between the measured temperature and the ventilation amount is
presented in Figure E.2.
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Figure E.2: The comparison of the measured temperature and the ventilation demand.

The figure indicates that the ventilation demand can exceed 100 % which is non-intuitive,
the results are however correct and the reason for the slightly different use of a percentage
scale is due to the specific implementation and reporting system utilized by SKOV A/S.

E.2 Weight

The weight presented in Figure E.3 consists of the desired weight trajectory, the measured
weight and the average measured weight based on the 10 most recent batches.
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Figure E.3: The reference weight compared to the measured weight and a 10 batch average.

E.3 Disturbances

The measured disturbances are presented in Figure E.5, these are the humidity inside the
broiler house and the measured outside temperature.
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Figure E.4: The measured humidity and outside temperature.

The difference in disturbance from the last to the current batch is presented as small signal
values in Figure E.5
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Figure E.5: The small signal difference in humidity and outside temperature compared to
the simulation.
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Figure F.1: Describing the final estimation flow with all 161 batches.
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Figure F.2: Describing the initial estimation flow with the first 55 available batches.
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