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Abstract 
The present thesis explores a newly proposed 

method, the Shaped Damage Locating Input 

Distribution (SDLID) scheme, for vibration-

based damage identification localisation. The 

premise of the method is as follows: Given a 

structure is suffering from any type of damage, 

the steady-state vibration response, when 

applying the same load distribution, will be 

identical to that of the undamaged structure if 

the damage is rendered dormant. Based on this 

principle, the SDLID method operates by 

designing shaped inputs, which suppress 

certain steady-state vibration quantities. 

Damage is localised when the vibration 

signature from a damaged and undamaged 

structure, induced by the same shaped inputs, 

corresponds. Besides a numerical validation of 

the method, an examination regarding practical 

implementation is made by introducing 

experimental analyses of a six-story frame 

structure. 
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PREFACE 

This master thesis is made by group BM3-3-E17 on the M.Sc. programme in Mechanical 

Design at Aalborg University Esbjerg, in the period from September 1st, 2017 to June 7th, 

2018.  

Detecting and localising damages in structures are of major interest, primarily of 

economic and safety reasons. Consequently, damage detection and localisation methods 

have been developed and tested through time. It is the opinion of the authors that 

sufficient evidence exists to promote the use of vibration data for damage detection, 

whereas damage localisation yet must be proven on real-life-problems. Most localisation 

methods rely on system identification, which for real-life problems often can be hard to 

obtain with sufficient accuracy. The purpose of this master thesis is to investigate a newly 

proposed method utilizing shaped damage locating input distribution (SDLID) for 

localising structural damages, without the use of system identification. The idea and 

theory behind the SDLID method will be described and validated. This includes 

experiments on a frame structure in a laboratory environment.  

This master thesis has been made under the supervision of Professor Lars Damkilde, 

Ph.D. fellow Martin D. Ulriksen and Research Assistant Bilal A. Qadri, whom the authors 

would like to thank. The authors would also like to thank Jan Á. Nikolajsen and Peter R. 

Lauridsen for their guidance during the project and to Jan E. Andersen for help with the 

laboratory setup.  

A 3D finite element method (FEM)-program has been developed in MATLAB to 

establish and calibrate a mathematical model of the frame structure and designing shaped 

inputs used to localise damage in experimental work. It is presumed that the reader is 

familiar with the FEM and vibration analysis. 

References and appendices are indicated with respectively [#] and Appendix X. An 

overview of the references can be found at the end of the report. 
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1 INTRODUCTION 

This chapter describes the motivation for structural health monitoring (SHM), followed 

by a brief description of existing approaches and a newly proposed method for damage 

localisation.  

1.1 MOTIVATION FOR MONITORING STRUCTURAL INTEGRITY 
In engineering societies, monitoring structures to detect, localise and assess damage has 

always been of interest, since it can increase safety and reduce maintenance costs by pin-

pointing when and where to search for damages. A long-term perspective is ongoing 

monitoring of a structure’s integrity, thereby preventing sudden failures. If the monitoring 

provides sufficient preventive safety, it could lead to lower consumption of materials by 

reducing design safety factors.        

When designing structures ensuring functionality and integrity during normal operation 

is crucial. This includes adding safety factors in various parts of the design process such 

as material parameters and loads. Structures’ legal requirements, and usually also specific 

industry standards (i.e. DNVGL standards), must be fulfilled. These requirements are 

continuously being modified, sometimes due to experiences from accidents like the 

collapse of Alexander Kielland, illustrated in Figure 1-1, which supposedly collapsed due 

to human errors [1]. These errors are believed to have resulted in crack initiating in brace 

D-6, see Figure 1-1, that lead to collapse of the remaining five braces and thereby leg D, 

resulting in the capsize and sinking of the platform [1].  

 

Figure 1-1: Illustrating steps in the sinking of platform Alexander Kielland [2]. 

The economic perspective in designing structures is to fulfil above mentioned 

requirements and giving the best compromise between functionality, expected lifetime 

and total cost. Even though a structure is designed according to above requirements, 

avoiding damages in practice is often troublesome and, in some cases, almost impossible, 

since damage occur from accidents, environmental conditions and human errors. In 

present thesis damage is defined as a change (perturbation) in a system’s mass or stiffness. 

Stiffness damages often develop in locations where stress concentrations accumulate, for 

example from geometry changes or weldings, and will in worst case scenarios result in 
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cracks and structures collapsing. An example of a mass-related damage could be an 

offshore structure exposed to marine growth, see Figure 1-2b. The extra mass contribution 

from marine growth will lower the eigenfrequencies of the structure.  

 

Figure 1-2: Example of stiffness and mass damage. a) Crack in wind turbine blade resulting in a stiffness 

damage [3]. b) Marine growth on an offshore structure resulting in a mass damage [4]. 

An early detection of a damage improves the possibility for repairing to avoid 

catastrophes, like Alexander Kielland. One way of reducing failure rates is done by a 

more thorough follow-up on the production processes. This is resource demanding and 

still leaves the risk of eventual interferences occurring after each production/installation 

process.  

The oil industry has since the 1970’s been eager on developing a method for monitoring 

structures, and thereby detecting damages, through vibration-based damage detection 

methods [5]. For offshore structures this could lower costs and minimise the need for 

visual inspections. In the early 1980’s the oil industry largely abandoned the search of a 

vibration-based damage detection method, due to practical problems like changing mass 

from varying fluid levels, marine growth and the inability to excite higher modes [5].  

Since the late 1970’s the aerospace community has had focus on vibration-based damage 

detection and localisation methods [5]. This could be for use in aeronautics, where visual 

inspections can be very difficult or even impossible since cracks can develop in the inner 

plates of a wing [5].  

The civil engineering community also has interest in vibration-based damage detection 

and localisation methods. One example is bridges, where non-visible damages can be 

detected at an early stage or for securing the structural integrity of the bridge [5].  

In the mechanical engineering societies, besides detection, the task of locating damages 

has also been of major interest. Damage localisation methods, without resource-

demanding visual inspections, have been sought for many years. Many industries, and 

especially the offshore industry, has focus on operation time and maintenance costs. 

Therefore, many studies, using different methods, have been performed in the attempt to 

facilitate remote structural health monitoring [5]. 

The safety and economic perspective when designing structures leaves it desirable to find 

a method for detecting and localising damages, with a low demand on resource and cost. 
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1.2 STRUCTURAL HEALTH MONITORING 
SHM stands as an alternative method to perform non-destructive testing that could 

prevent accidents by identifying structural damage before it leads to failure. One of the 

major advantages using SHM is that it can search for damage globally on the structure, 

where manual inspection is a local procedure.  

As stated in Section 1.1, using SHM to detect, and locate, damages at its earliest possible 

stage is of interest in many industries. Since this can contribute to increasing safety 

against failure and prolonging the lifetime of structures, by giving relatively safe 

estimates of their ongoing integrity. Using SHM provides the ability to detect and locate 

damage at inaccessible areas, for example; internal voids or cracks, damage beneath 

surface treatment or marine growth. From an overall point of view vibration-based 

damage identification analysis can be categorised into the four levels stated below, where 

each new level presumes the previous is fulfilled [6]: 

1 Detection of the damage 

2 Localisation of the damage  

3 Quantification of the damage 

4 Assessment of consequence from the damage 

Detection and localisation can be done in several ways, where two commonly used 

methods are manual (visual) or vibration-based analysis. Visual inspection can be a 

reasonable method to inspect for damage, if the structure has a relatively small, simple 

and open geometry. Since drones with attachable cameras have become easily accessible, 

visual inspection has become less resource demanding [7]. Though this method still 

leaves the lack of detecting hidden damages, for example cracks beneath corrosion 

protection or in the inner parts of a structure, hence this method is not discussed further 

in present thesis. 

1.2.1  Basic Principles of Damage Detection and Localisation 

To present the field of SHM, the following section elaborates on some existing damage 

detection and localisation methods. 

It is believed that visual inspection for damages always has existed, whereas acoustic-

based detection of damage in its most simple, and probably earliest, form is sound 

recognition. An example is checking for defects via a “hollow sound” when knocking on 

tiles, and it is believed to have existed since man has used tools [5].  

1.2.2 Changes in Frequencies 

Vandiver proposed a method for damage detection by looking at the changes in the 

eigenfrequencies of the structure when suffering from damages [8]. The experiments 

showed that when introducing damage to their structures, almost all scenarios showed a 

change in eigenfrequency. Although damages can be detectable in looking at the changes 

in a structure’s eigenfrequencies, this method heavily relies on relatively large damages. 

This was proven by Kenley and Dodds [8] who stated that before damage detection was 

possible using the eigenfrequencies, the damage, in this case, must produce at least 5% 

change in overall stiffness to overcome changes from environmental conditions. 
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Furthermore, they pointed out the importance in looking at the mode shapes belonging to 

the respective eigenfrequencies when trying to locate damages [8].  

1.2.3 Changes in Mode Shapes 

Yuen [8] proposed a damage localisation method using the changes in mode shapes: 

 
𝝓𝑖

∗ =
𝝓𝑖

𝑑

𝜔𝑖
𝑑 −

𝝓𝑖
𝑢

𝜔𝑖
𝑢 

(1.1) 

Where: 

 𝝓∗ the change in mode shapes 

 𝝓𝑑, 𝝓𝑢 mode shapes for the damaged and undamaged state  

𝝎𝑑, 𝝎𝑢 eigenfrequencies for the damaged and undamaged state 

These changes were computed introducing stiffness perturbation in each structural 

element for a numerical model, and later compared with measured changes to determine 

the damage location [8]. The method requires system identification1 since the mode 

shapes for the damaged and undamaged state must be computed. Osegueda also 

performed a study [8], examining changes in dynamic properties of an offshore structure 

introduced to damage. In this study mode shapes could not be corelated with damage. 

1.2.4 Stiffness Error Matrix 

This method is based on the computation of an error matrix, between an undamaged and 

damaged system, where flexibility perturbation is introduced. For this method the 

flexibility matrix is calculated using following formula: 

 𝑮𝒇 = 𝑲−1 (1.2) 

Where: 

 𝑲 stiffness matrix 

He and Ewins [8] presented the stiffness error matrix for damage identification, where 

the changes in the flexibility matrix could work as a damage detection/localisation 

method, hence: 

 𝑬 = 𝑲𝒖∆𝑮𝒇𝑲
𝒖 (1.3) 

Where: 

 𝑬 stiffness error matrix 

𝑲𝒖 undamaged stiffness matrix 

∆𝑮𝒇 difference in flexibility of a damaged and undamaged system 

                                                 
1 System identification is a method for constructing a mathematical model of dynamical systems based on 

measured data.  
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Furthermore, the research showed that the stiffness error matrix contained more 

information than the mass error matrix when localising stiffness damages, hence Eq. (1.3) 

is more widely used [8]. 

1.2.5 Dynamic Damage Locating Vector 

Bernal [9] proposed a theorem that connects changes in the transfer matrix to locate 

stiffness related damages. The theorem states that the null space of ∆𝐺, which is the 

change in the transfer matrix, contains vectors that are Laplace transforms of dynamic 

excitations, which will create zero stresses at the damaged region. Given the physical 

domain 𝛺𝐷 and a history of loads, 𝑓(𝑡), acting on specific coordinates, 𝑞, with 𝜎𝐷(𝑡) 

being the associated stress field over 𝛺𝐷. The dynamic damage locating vector (DDLV) 

method states that if 𝑓(𝑡) is such that the stress field 𝜎𝐷(𝑡) ≡ 0 then following equation 

is valid: 

 ℒ(𝑓(𝑡)) = 𝑁𝑢𝑙𝑙(∆𝑮) ∙ 𝜈 (1.4) 

Where: 

 ∆𝑮 change in the transfer matrix 

 𝜈 is arbitrary 

The DDLV method does not forbid zero stresses over undamaged elements, hence this 

could be problematic when localising damages. Furthermore, the DDLV method does not 

circumvent system identification. 

Aforementioned methods, regarding damage detection and localisation, have their pros 

and cons. In the next section, the Shaped Damage Locating Input Distribution (SDLID) 

method will be introduced as a new alternative for damage localisation avoiding system 

identification, which, in some cases, is troublesome to achieve with sufficient accuracy 

in an experimental context. 

1.3 THE SHAPED DAMAGE LOCATING INPUT DISTRIBUTION METHOD 
This thesis investigates the SDLID method for localising structural damages, assuming 

damage detection has taken place a priori [10].  

The idea behind the method is to shape inputs at certain locations, such that specific 

steady-state vibration quantities are suppressed one location at a time. The damage is 

located when the vibration signature of the damaged structure corresponds with the 

vibration signature of the undamaged/reference structure, providing the merits of:  

• circumventing system identification  

• robustness against noise2 

• low demand on sensors 

                                                 
2 Since the SDLID method circumvents system identification robustness against signal noise increases. 
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The advantage of circumventing system identification is achieved, since only the 

vibration signatures (output) are compared. This is a relatively large advantage, since 

accurate system identification can be hard to obtain in practice [5].  

The drawback of the SDLID method is primarily the demand for applying multiple 

controllable shaped inputs. Secondly, it is highly dependent on an accurate finite element 

(FE)-model of the undamaged/reference structure, which is used to design the shaped 

inputs [10]. A more thorough explanation of the theory behind the method is given in 

Section 2.4. 

Since the SDLID method only has been tested using simple numerical examples, this 

thesis’ main contribution is: 

• Numerical and experimental exploration of the SDLID scheme 

To realise this contribution, the following secondary contributions have been established: 

• Erection of a 3D frame structure in the laboratory for static and dynamic testing 

• Development of a 3D beam finite element method (FEM)-program in MATLAB 

with an optimization algorithm for model calibration and updating 

The frame structure, which the experiments are performed on, is illustrated in Figure 1-3. 

For the purpose of this thesis the frame structure is constructed from aluminium beam 

elements and the joints are constructed with the components depicted in Figure 3-2 and 

further elaborated in Section 3.2. All components are from MakerBeam [11], except the 

treaded rods which are made in the laboratory at Aalborg University Esbjerg. 

1.4 THESIS OUTLINE 
The aim of present thesis is to conduct vibration-based damage identification on the frame 

structure, depicted in Figure 1-3, and numerical exploration of stiffness and mass 

perturbation localisation using the SDLID method. Due to project limitations the damage 

identification only includes level 1 and 2, namely detection and localisation, and the frame 

structure will only be subjected to mass perturbations in various locations.  
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Figure 1-3: Frame structure on top of I-profile used for fixation. 
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2 BACKGROUND THEORY 

This chapter elaborates on the different theories used in this thesis regarding linear 

vibration analysis, finite element analysis, basic principles of damage localisation, the 

SDLID method and implementation of perturbations in an FE-model. 

2.1 LINEAR VIBRATION THEORY 
This section presents the fundamental theory of linear vibration analysis of multiple-

degrees-of-freedom (MDOF) systems. The governing equation used to express a linear 

and time invariant system is known as the equation of motion: 

 𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) =  𝒇(𝑡)   (2.1) 

Where 𝑴, 𝑪 and 𝑲 are the mass, damping and stiffness matrices of the system while 𝒙̈, 
𝒙̇ and 𝒙 are the acceleration, velocity and displacement response with respect to time, 𝑡, 

and 𝒇 is the force vector.  

2.1.1 Modal Analysis 

When describing a system’s dynamic behaviour, the modal parameters, eigenfrequencies, 

mode shapes and damping ratios, are of major interest. Here the eigenfrequencies are an 

important parameter to establish, since they control which load frequencies the system 

can be exposed to without entering a resonance state. To obtain these modal parameters, 

the eigenvalue problem of an undamped system (𝑪 is assumed to be 0) is solved: 

 (𝑲 − 𝜔0,𝑖
2 𝑴)𝝓𝒊 = 𝟎 (2.2) 

Since det(𝑲 − 𝜔0,𝑖
2 𝑴) = 𝟎, only non-trivial solutions are selected (𝝓𝑖 ≠ 𝟎), the 

eigenfrequency, 𝜔0,𝑖, and eigenvector, 𝝓𝑖, can be computed for each ith mode, 

respectively [12].  

2.1.2 The Laplace Domain 

This thesis includes experimental analysis of a structure’s responses generated by 

harmonic loads from actuators. Various integral transforms exist to solve for,  𝒙̈, 𝒙̇ and 𝒙 

in Eq. (2.1), for harmonic loaded MDOF systems. Following section presents a brief 

elaboration of the transformation into the Laplace domain used in present thesis. 

The Laplace transform is an integral transform for solving linear differential equations 

[12]. The definition of a Laplace transform of a function 𝑓(𝑡) is: 

 
ℒ(𝑓(𝑡)) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡

∞

0

 
(2.3) 

The Laplace transform changes the domain of 𝑓 from the time domain to the complex 

domain, where 𝑠 is a complex variable consisting of a real and imaginary part: 

 𝑠 = 𝑎 + 𝑗𝜔 (2.4) 
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Where: 

𝑎  is the real part  

𝜔  frequency  

𝑗  imaginary unit  

This domain can also be illustrated visually, with the real part following the first axis, and 

the imaginary part along the second axis, see Figure 2-1. 

Solving the roots for the homogenous part of Eq. (2.1) and assuming classical damping 

yield: 

 𝜆𝑖,𝑖+1 = −𝜁𝑖𝜔0,𝑖 ± 𝜔𝑑,𝑖𝑗 (2.5) 

Where (for the ith mode): 

 𝜁𝑖 damping ratio 

 𝜔𝑑,𝑖 damped eigenfrequency 

 𝜔0,𝑖 undamped eigenfrequency 

 

Figure 2-1: Location of roots of the equation of motion in the complex domain for an under-critically 

damped system. 

The real part, 𝑎, produces exponential functions depending on its value. When the roots 

of a system have a positive real part, the system becomes unstable and will be located at 

the right side of the imaginary axis. Correspondingly, the system will become stable when 

𝑎 < 0.  

Taking the Laplace transformation of Eq. (2.1) turns the differentiation and integration 

into division and multiplication. As illustrated in Figure 2-2, the system 𝑔(𝑡) provides a 

linear mapping between the input, 𝑓(𝑡), and output, 𝑥(𝑡).  

𝜆𝑖 

𝜆𝑖+1 

𝐼𝑚(𝑠) 

𝑅𝑒(𝑠) 
−𝜁𝑖𝜔0,𝑖 

𝜔𝑑,𝑖𝑗 

−𝜔𝑑,𝑖𝑗 
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Figure 2-2: Illustration of the linear relationship between the input and output of a LTI-system in the time 

and complex domain respectively. 

Taking the Laplace transform of Eq. (2.1) with zero initial conditions yields [12]: 

 (𝑴𝑠2 + 𝑪𝑠 + 𝑲)𝑿(𝑠) = 𝑭(𝑠) (2.6) 

Where: 

 𝑿(𝑠) complex response vector 

 𝑭(𝑠) complex force vector 

Reworking Eq. (2.6) yields the transfer function 𝑮(𝑠): 

 𝑿(𝑠) = (𝑴𝑠2 + 𝑪𝑠 + 𝑲)−1𝑭(𝑠) = 𝑮(𝑠)𝑭(𝑠) (2.7) 

Here it is obvious that instead of operating with a second order ordinary differential 

equation, using the Laplace transformation allows to compute a solution to the response 

using simple multiplication. When the desired response, 𝑿(𝑠), is obtained, the inverse 

Laplace transformation is used to bring the solution back to the time domain, hence if this 

is necessary: 

In present thesis, the SDLID scheme is formulated in the Laplace domain to ease the 

computation of the shaped inputs used for the numerical and experimental analyses. 

2.2 FINITE ELEMENT METHOD 
The frame structure used for the laboratory test is constructed of MakerBeam aluminium 

beam elements and is illustrated in Figure 2-3. The relative slender and open profile of 

the individual beam elements leads to the assumption that shear forces are negligible, 

hence a FE-model on basis of Bernoulli-Euler beam theory is chosen. Detailed modelling 

of the connection, depicted in Figure 3-1b, is omitted in present thesis. Alternatively, 

rotational springs are incorporated into the FE-model to compensate this, which is 

elaborated in Section 4.3. 

This section presents the fundamental theory behind the FEM. Further elaboration on the 

principles of a Bernoulli-Euler beam element in 2D is found in Appendix B [13]. 

 ℒ−1(𝑿(𝑠)) = 𝒙(𝑡) (2.8) 

𝑔(𝑡) 

𝐺(𝑠) 

𝑓(𝑡) 

𝐹(𝑠) 

𝑥(𝑡) 

𝑋(𝑠) 
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Figure 2-3: a) Frame structure.  

b) Magnification of the upper floor, illustrating beam length vs. cross section size.         

c) Blueprint of beam. d) Blueprint of beam cross section [14].  

 

2.2.1 FE-Modelling of Real-Life Structure 

The three steps in representing a real-life structure as an FE-model are: 

• Classification 

• Modelling 

• Discretization  

These steps are performed to convert the real-life characteristics into a mathematical 

model. 

Classification is identifying if the problem can be treated as static, dynamic, linearly and 

time dependent. It also involves the trade-off between requested accuracy and 

consumption of resources.  

Modelling is converting the essentials of the real-life structure/system into a 

mathematical model. Examples of assumptions: simplifying into 2D, determining 

boundary conditions and deciding element type. 

Discretization is dividing the mathematical model into a finite number of elements and 

deciding element type. Choosing number and type of elements is a trade-off between 

accuracy and resources.  
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Converting the frame structure into a mathematical model is done by implementing a 

node at the fixations and each connection. Furthermore, each MakerBeam, apart from the 

braces, is divided into two elements, giving a discretized model as depicted in Figure 

2-4a.  

 

Figure 2-4: a) Discretization of frame structure with corresponding node numbers.  

b) Magnification of a MakerBeam with node no. 9, 10 & 11, with respective DOF.  

c) Section of global stiffness matrix showing DOF from node no. 9. 

In Figure 2-4b, a single MakerBeam is magnified showing its respective degrees-of-

freedom (DOF). A part of the global stiffness matrix is depicted in Figure 2-4c, where the 

DOF from node no. 9 are implemented. The global stiffness matrix is constructed by 

assembling local stiffness matrices which are rotated into a global coordinate system. A 

brief derivation on calculation of local stiffness, mass and rotation matrices and 

assembling into global matrices are in Appendix B.  

2.3 Implementation of Perturbation in FE-model 
To conduct a numerical exploration of the SDLID scheme, a perturbation must be 

implemented in an FE-model to facilitate damage localisation. This section explains how 

the stiffness and mass perturbation of the structure are implemented in the numerical 

model and the assumptions that have been made.  
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2.3.1 Mass Perturbation 

To simulate an added mass, for example marine growth on offshore structures, a 

perturbation must be implemented in the mass matrix. In this thesis, a consistent mass 

matrix is used for the FEM-program, since this is proven to be more accurate than a 

lumped mass matrix [13]. To illustrate the procedure in implementation of a mass 

perturbation, the system in Figure 2-5 is used as an example, where the perturbation is 

located in node 1. 

 

Figure 2-5: 2D beam elements with a fixed support. 

The mass perturbation implementation of a size 𝜓 is done for the vertical and horizontal 

DOF in the mass matrix for node 1. In Eq. (2.9) an example of implementation for the 

system depicted Figure 2-5 is shown: 

 

𝑴 =

[
 
 
 
 
𝑚11 + 𝜓 𝑚12 𝑚13

𝑚21 𝑚22 + 𝜓 𝑚23

𝑚31 𝑚32 𝑚33

⋯

𝑚1𝑗

𝑚2𝑗

𝑚3𝑗

⋮ ⋱ ⋮
    𝑚𝑖1       𝑚𝑖2    𝑚𝑖3 ⋯ 𝑚𝑖𝑗 ]

 
 
 
 

 

 

(2.9) 

Where: 

 𝜓 extra mass contribution 

 𝑖  row number 

 𝑗 column number 

As it can be seen from Eq. (2.9), assuming 𝑴 is reduced to account for the boundary 

conditions, a mass perturbation for the translational DOF in node 1 is implemented. 

2.3.2 Stiffness Perturbation 

To implement a stiffness perturbation in a beam element of the structure, the local 

stiffness matrix for the element must be adjusted. This can be done by modifying the 

modulus of elasticity in the local stiffness matrix for the corresponding element. The 

implementation of a stiffness perturbation in the FEM-program is exemplified in Eq. 

(2.10): 
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(2.10) 

Where: 

 𝑲  global stiffness matrix 

 𝑲𝑏𝑒𝑎𝑚,𝑖   local stiffness matrix 

In this example, a stiffness perturbation is introduced to the second element. The modulus 

of elasticity for this local stiffness matrix is then modified, by a factor 𝛾, as illustrated in 

Eq. (2.11): 

 

𝑲𝑏𝑒𝑎𝑚2 =

[
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐸𝐴𝛾

𝐿
0 0

0   
12𝐸𝐼𝛾

𝐿3
   
6𝐸𝐼𝛾
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0  
6𝐸𝐼𝛾

𝐿2
   
4𝐸𝐼𝛾

𝐿

−
𝐸𝐴𝛾

𝐿
0 0

0 −
12𝐸𝐼𝛾

𝐿3

6𝐸𝐼𝛾

𝐿2

0 −
6𝐸𝐼𝛾

𝐿2

2𝐸𝐼𝛾

𝐿

−
𝐸𝐴𝛾

𝐿
0 0

    0 −
12𝐸𝐼𝛾

𝐿3
−

6𝐸𝐼𝛾

𝐿2

    0
6𝐸𝐼𝛾

𝐿2

2𝐸𝐼𝛾

𝐿

𝐸𝐴𝛾

𝐿
       0 0

  0   
12𝐸𝐼𝛾

𝐿3
−

6𝐸𝐼𝛾

𝐿2

  0 −
6𝐸𝐼𝛾

𝐿2

4𝐸𝐼𝛾
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(2.11) 

Where: 

 𝐸  the modulus of elasticity 

 𝐴 area of cross-section 

 𝐼  moment of inertia 

 𝐿  length of element 

 𝛾 ∊ [0; 1] multiplying constant for stiffness perturbation 

2.4 THE SDLID METHOD   
The primary idea behind the SDLID method is it operates on the premise of postulated 

damage patterns, comparing the responses generated by shaped inputs from a reference 

and a damaged system, as mentioned in Section 1.3. First step in the SDLID scheme is to 

establish an FE-model of the system being investigated to generate the so-called shaped 
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inputs, which render the perturbation dormant. These inputs are computed using Eq. 

(2.12): 

 𝒖(𝑠)𝑖 = 𝑻𝑖𝑮•,𝜏 (𝑠)𝒇𝜏𝑖
(𝑠) = 𝟎 (2.12) 

Where: 

subscript "•" denotes all rows 

 subscript "𝜏" denotes DOF locations of shaped inputs 

 𝑻𝑖  interrogation matrix 

 𝒖(𝑠) complex response 

 𝒇𝜏𝑖
(𝑠) complex shaped inputs 

The interrogation matrices, 𝑻𝑖, are used in Eq. (2.12) to render the accelerations or strains 

dormant, depending on what type of damage one interrogates for. The shaped inputs, 

𝒇𝜏(𝑠), are generated for each interrogation "𝑖", by finding the null space for 𝑻𝑖𝑮•,𝜏 (𝑠), 

suppressing certain steady-state vibration quantities. For a harmonic load distribution, the 

amplitude and phase angle are directly computed as the moduli and arguments of the 

complex shaped inputs. Reusing the shaped inputs on the damaged structure, leads to 

responses from the reference and damaged structure, which are calculated in Eq. (2.13) 

and (2.14):  

 𝑿𝑢(𝑠) = 𝑮𝑢(𝑠)𝒇𝜏(𝑠)     (2.13) 

 𝑿𝑑(𝑠) = 𝑮𝑑(𝑠)𝒇𝜏(𝑠) (2.14) 

When responses from the reference and damaged system are similar, damage is located, 

expressed in Eq. (2.15): 

 𝑿𝑢,𝑖(𝑠) = 𝑿𝑑,𝑖(𝑠)   (2.15) 

Comparing two responses can be done in several ways, in this thesis the Euclidian 

distance is used. 

 
𝑀𝑖 = √∑(|𝑿𝑑,𝑖(𝑠)| − |𝑿𝑢,𝑖(𝑠)|)2 

(2.16) 

In practice, the responses from the reference and damaged structure will not be exactly 

the same, due to noise in the signal and inaccuracies in the FE-model. Hence, the smallest 

deviation between the responses will indicate the location of the perturbation. If the 

responses show no clear indication of where the damage is present, engineering 

judgement will decide if further tests are needed.  

Following sections elaborate the construction of the interrogation matrices, 𝑻𝑖, for 

localisation of a mass and stiffness perturbation. Both examples are based on the systems 

depicted in Figure 2-6 and Figure 2-8. 
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2.4.1 Interrogation Matrices – Mass Perturbation Localisation 

This section describes the interrogation matrices for the system illustrated in Figure 2-6, 

where a mass perturbation is located at node 3 and shaped inputs placed in node 1, 2 and 

4, respectively.   

 

Figure 2-6: Schematic representation of the system for the example case in present section. 

To suppress a mass perturbation in a node, the accelerations must be rendered dormant, 

as illustrated in Eq. (2.1). Since the accelerations are the second derivative of the 

displacements, suppressing the displacements will also suppress the accelerations. The 

mass contribution from the rotational DOF is neglected due to the mass perturbation being 

a point mass. 

𝑥(𝑡) = 0                 𝑥̈(𝑡) = 0 

This removes the mass contribution for the specific node. The transfer matrix, 𝑮(𝑠), for 

the system depicted in Figure 2-6 becomes:  

 

𝑮(𝑠) =  

[
 
 
 
𝐺1,1 𝐺1,2 ⋯ 𝐺1,12

𝐺2,1 𝐺2,2 ⋯ 𝐺2,12

⋮ ⋮ ⋱ ⋮
𝐺12,1 𝐺12,2 ⋯ 𝐺12,12]

 
 
 
 ∊  ℂ𝑛⨯𝑛 

 

(2.17) 

Choosing shaped inputs, "𝑓", and their location, denoted by subscript "𝜏", the transfer 

matrix 𝑮(𝑠) is for present example reduced to: 

 

𝑮•,𝜏 (𝑠) =

[
 
 
 
𝐺1,2 𝐺1,5 𝐺1,11

𝐺2,2 𝐺2,5 𝐺2,11

⋮ ⋮ ⋮
𝐺12,2 𝐺12,5 𝐺12,11]

 
 
 
 ∊  ℂ𝑛⨯𝑝 

 

(2.18) 

It is important to notice that the number of shaped inputs (𝑝) must be larger than the 

number of perturbated DOF (𝑞) being investigated for, (𝑝 > 𝑞), to ensure rank 

deficiency and that a null space exists. 

The interrogation matrices, 𝑻𝑖, are used to render each set of DOF being investigated 

dormant. It is noticed that due to the mass perturbation being a point mass, the matrices 

only have two rows, extracting the translational DOF from the transfer matrix. 

 𝑻1 = [
1 0 0 0 0 0 ⋯ 0
0 1 0 0 0 0 ⋯ 0

]            ∊  ℝ𝑞⨯𝑛   

 𝑻2 = [
0 0 0 1 0 0 ⋯ 0
0 0 0 0 1 0 ⋯ 0

]            etc., up to 𝑻𝑛  

1 2 3 4 

𝑓𝑠1,𝑖 𝑓𝑠2,𝑖 𝑓𝑠3,𝑖 

1 m 1 m 1 m 1 m 

𝑥 

𝑦 
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Hereby, taking the null space for 𝑻𝑖𝑮•,𝜏 (𝑠) for each interrogation, sets of shaped inputs 

are created corresponding to the number of nodes being rendered dormant. Damage is 

localised when the vibration signature from the damaged state, generated by the shaped 

inputs, corresponds with the vibration signature from the reference state, using Eq. (2.16). 

Figure 2-7 shows a damage pattern plot of the compared responses for the system depicted 

in Figure 2-6, where the value of 𝑀 is normalised with respect to the maximum 𝑀 value.  

 

Figure 2-7: Damage pattern plot of mass perturbation example. 

As it can be seen from Figure 2-7, the mass perturbation is located at node 3, since the 

responses between the reference and perturbated systems has the lowest deviation. 

2.4.2 Interrogation Matrices – Stiffness Perturbation Localisation 

The difference between localising a mass and stiffness perturbation is the construction of 

the interrogation matrices, 𝑻𝑖. As explained in Section 2.4.1, to render the mass 

perturbation dormant the interrogation matrix suppresses the translational DOF removing 

the mass contribution for each node respectively. To remove the stiffness contribution 

from an element, we look at the strain energy for the system, given the structural domain 

Ω = Ω𝐻 ∪ Ω𝐷, where Ω𝐻 and Ω𝐷 are the healthy and damaged subdomain [10]:  

 
𝑈Ω =

1

2
∫ 𝝐𝑇𝑬𝝐 𝑑𝑉
Ω

 
(2.19) 

Where:  

 𝝐  strain vector   ∊  ℝ𝑛×1 

 𝑬  constitutive matrix  ∊  ℝ𝑛×𝑛 

Introducing a stiffness perturbation to the system we get following expression: 

 
𝑈̃Ω =

1

2
∫ 𝝐̃𝑇𝑬𝝐̃ 𝑑𝑉
Ω𝐻

+
1

2
∫ 𝝐̃𝑇𝑬̃𝝐̃ 𝑑𝑉
Ω𝐷

 
(2.20) 
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Where:  

 𝝐̃ strain vector for perturbated system 

 𝑬̃ constitutive matrix for perturbated system 

To obtain the same strain energy from the reference and damaged system, then 𝑈̃Ω = 𝑈Ω 

and 𝝐̃ = 𝝐 must be true. With this knowledge, following expression can be written: 

1

2
∫ 𝝐𝑇𝑬𝝐 𝑑𝑉
Ω𝐻

+
1

2
∫ 𝝐𝑇𝑬̃𝝐 𝑑𝑉
Ω𝐷

=
1

2
∫ 𝝐𝑇𝑬𝝐 𝑑𝑉
Ω𝐻

+
1

2
∫ 𝝐𝑇𝑬𝝐 𝑑𝑉
Ω𝐷

 

This can be reduced to: 

 1

2
∫ 𝝐𝑇𝑬̃𝝐 𝑑𝑉
Ω𝐷

=
1

2
∫ 𝝐𝑇𝑬𝝐 𝑑𝑉
Ω𝐷

 

 

(2.21) 

and since 𝑬 ≠ 𝑬̃ then 𝝐 = 0 in Ω𝐷. 

Eq. (2.21) shows that the interrogation matrices must suppress the strains for an element 

to render the stiffness perturbation dormant. To do this, the strain interpolation matrix is 

used: 

 𝝐 = 𝑩𝒙 (2.22) 

Where: 

 𝑩 strain interpolation matrix  ∊ ℝ𝑞⨯𝑛 

 𝒙 displacement vector  ∊ ℝ𝑛⨯1 

As shown in Eq. (2.22) the strain interpolation matrix gives a linear relation between the 

displacements and strains. Using this linear relationship, the interrogation matrices can 

be constructed to render the stiffness contribution dormant for each element. The strain 

interpolation matrix for a single beam element from the system depicted in Figure 2-8 is 

given in Eq. (2.23): 

 

𝑩 = [
−

1

𝐿
0 0

0 −
6

𝐿2
+

12𝑥

𝐿3

6𝑥

𝐿2
−

4

𝐿

    

1

𝐿
0 0

0
6

𝐿2
−

12𝑥

𝐿3
−

2

𝐿
+

6𝑥

𝐿2

] 

 

(2.23) 

Where: 

 𝑥 location along the element 

Letting 𝑥 = 0 and 𝑥 = 𝐿 yields the strain in each node of the element, respectively. This 

results in two solutions giving us following interrogation matrix: 
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𝑻1 =

[
 
 
 
 
−1 0 0

0 −
6

𝐿2
−

4

𝐿

0
6

𝐿2

2

𝐿

    

1 0 0   ⋯ 0

0
6

𝐿2 −
2

𝐿
⋯ 0

0 −
6

𝐿2

4

𝐿
   ⋯ 0

     

]
 
 
 
 

  ∈  ℝ𝑞⨯𝑛 

 

(2.24) 

The values inside the matrices shift regarding which element’s strains must be 

suppressed. For stiffness perturbation localisation the interrogation matrices from Eq. 

(2.24) is implemented in Eq. (2.12). Accounting for the orientation of each element we 

get following expression:  

𝑻1 =

[
 
 
 
 

−cos(𝜃) − sin(𝜃) 0
6

𝐿2
sin(𝜃) −

6

𝐿2
cos(𝜃) −

4

𝐿

−
6

𝐿2
sin(𝜃)

6

𝐿2
cos(𝜃)

2

𝐿

     

cos(𝜃) sin(𝜃) 0      ⋯ 0

−
6

𝐿2
sin(𝜃)

6

𝐿2
cos(𝜃) −

2

𝐿
  ⋯ 0

6

𝐿2
sin(𝜃) −

6

𝐿2
cos(𝜃)

4

𝐿
      ⋯ 0]

 
 
 
 

 

 

(2.25) 

Using Eq. (2.12), replacing 𝑇1 with Eq. (2.25), the different shaped inputs are computed 

for stiffness perturbation localisation. Notice, the required shaped inputs needed are 𝑝 >

3 ensuring rank deficiency. A similar example as in previous section is used for numerical 

validation of stiffness perturbation localisation. 

 

Figure 2-8: Schematic representation of the example with a stiffness perturbation introduced in element 3. 

Figure 2-9 shows a damage pattern plot of the system in Figure 2-8 by use of Eq. (2.16). 

 

Figure 2-9: Damage pattern plot of SDLID responses. 
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As Figure 2-9 indicates, the perturbation is located in element 3. 

2.4.3 Numerical Simulation 

The analytical approach in Section 2.4.1 and 2.4.2 validated the SDLID method 

theoretically. To simulate a real-life scenario, where white Gaussian noise is introduced, 

numerical time integration is implemented where extraction of vertical displacements for 

each node are used for damage localisation.  

Mass and Stiffness Perturbation Localisation 

Numerical simulation is performed on the same example as presented in Section 2.4.1 

and 2.4.2, using the amplitude and phase angle by taking the moduli and argument from 

the computed shaped inputs used in pervious examples. The timestep used is 0.01s and 

the total simulation time is 120s to ensure that the transient part is damped out.  

 

Figure 2-10: Vertical displacement for node 3 from numerical simulation. 

As illustrated in Figure 2-10 the transient part is present to approximately 20s. To ensure 

only steady-state vibration is present, data from 105-120s are used when comparing the 

healthy and perturbated response for damage localisation. 

Figure 2-11a shows clearly how the implemented mass perturbation affects the dynamic 

behaviour of the system depicted in Figure 2-6. Figure 2-11b shows how damage pattern 

3 renders node 3 dormant. 
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Figure 2-11: Numerical simulation. a) Vertical displacement for healthy and perturbed example. b) 

Vertical displacement for healthy example. 

In Section 2.4, the complex responses are compared by taking the Euclidean distance, but 

since the responses from the numerical simulations are represented in the time domain 

we look at the shift in energy from the reference and perturbated response. A further 

elaboration can be found in Chapter 5. Since the responses illustrated in Figure 2-10 and 

Figure 2-11 are made under ideal conditions, white Gaussian noise with a signal to noise 

ratio of 60dB is implemented to simulate real-life measurement. 

 

Figure 2-12: Numerical simulation. a) Perturbed response with white Gaussian noise for node 3 from 

damage pattern 1. b) FFT plot of perturbed response. 

Using Eq. (5.3), comparing the peak amplitudes for each damage pattern response allow 

us to analyse the energy shift between the healthy and perturbated system. 



  

22 

 

 

Figure 2-13: Damage pattern plot from numerical simulation of the system depicted Figure 2-6. 

As it can be seen from Figure 2-13 the SDLID method is able to localise the mass 

perturbation in node 3 with white Gaussian noise introduced. To construct a numerical 

simulation for localisation of a stiffness perturbation same procedure is used. 

 

Figure 2-14: Damage pattern plot from numerical simulation of the system depicted in Figure 2-8. 

As illustrated in Figure 2-14 damage localisation of the implemented stiffness 

perturbation in element no. 3 is successful. 
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2.5 FLOW DIAGRAM OF THE SDLID METHOD 
To provide a better understanding of the SDLID approach a flow diagram is constructed 

which contains the steps for damage localisation, see Figure 2-15.  

 

Figure 2-15: Flow diagram for localisation of damage using SDLID. 

2.6 SUMMARY 
Chapter 2 presents a general introduction to linear vibration theory and modal analysis, 

which are used for investigating the dynamic behaviour of the frame structure, depicted 

in Figure 3-1a, and the numerical model. A formulation of the SDLID scheme in the 

Laplace domain is introduced to ease the computation of the shaped inputs used for the 

numerical and experimental analyses. Furthermore, numerical implementation of a mass 

and stiffness perturbation into an FE-model is performed to validate the SDLID method.  

•Thereby establishing 𝑀,𝐶 𝑎𝑛𝑑 𝐾 matrices 𝑀,𝐶,𝐾 ∊ ℝ𝑛⨯𝑛

1) Establish FEM model of reference structure                           

•Use Laplace transformation to establish transfer matrix 𝐺(𝑠) 𝐺 𝑠 ∊ ℂ𝑛⨯𝑛

2) Transform into complex domain

•Location of 𝑝𝑖 is indexed by 𝜏𝑖 𝑝 > 𝑞 𝑤ℎ𝑒𝑟𝑒: 𝑞 = 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑂𝐹

3) Define location (DOF) of shaped inputs 𝑝𝑖

•Consists of all 𝑝 indexed colums from 𝐺(𝑠) 𝐺•,𝜏 ∊ ℂ𝑛⨯𝑝

4) Establish 𝐺•, 𝜏(s)

• Used in step 6 to interrogate one node or element at the time 𝑇 ∊ ℝ𝑞⨯𝑛

5) Establish 𝑛 number of interrogation matrices 𝑇𝑖

•Find null-spaces for 𝑓𝜏 𝑠 by Eq.: 𝑇𝐺•, 𝜏 𝑠 𝑓𝜏 𝑠 = 0 𝑓𝜏 𝑠 ∊ ℂ𝑝⨯(𝑝−𝑞)

6) Define shaped inputs - 𝑓𝜏(𝑠) - rendering each node domant

•X(s) = 𝐺•, 𝜏 𝑠 𝑓𝜏 𝑠 𝑋𝑢 𝑠 ∊ ℂ𝑛⨯(𝑝−𝑞)

7) Find responses - 𝑋(𝑠) - from shape inputs applied to the reference structure 

• Repeat step 7 for the damaged structure.

8) Establish response of damaged structure from shaped inputs

•Damage is located where response from reference and damaged structure are similar

9) Compare responses from reference and damaged structure
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3 EXPERIMENTAL WORK 

The SDLID method’s capabilities of localising damages have, so far, been validated 

theoretically in articles and present thesis [10]. To validate the SDLID method’s 

capabilities of localising damages in practice, experimental tests are conducted. 

To conduct reliable experimental tests for validation of the SDLID method, minimising 

uncontrolled external influences is desired, hence following are sought: 

- A stable test environment  

- A structure easy to assemble and dissemble  

- High precision excitation and measurement equipment  

The following sections elaborate the solutions chosen for fulfilling the mentioned 

objectives. 

3.1 TEST ENVIRONMENT 
The Mechanical Laboratory at Aalborg University Esbjerg is chosen as test environment 

since it provides a controlled environment with regard to temperature, wind and other 

external influences. 

3.2 TEST STRUCTURE 
The frame structure used for the experimental work is depicted in Figure 3-1a. The 

diagonal braces restrict movement into the in-plane axis, indicated by the green arrows in 

Figure 3-1a. To ease the assemble/disassemble process of the frame structure, welded 

connections are not considered. Separable homogenous connections, in combination with 

well-defined elements, are sought. 

It is chosen to assemble the frame structure using MakerBeam’s aluminium beam 

elements, due to their simplicity, versatility and low cost. Separable homogeneous 

connections are obtained with corner cubes, screws and threaded rods, as illustrated in 

Figure 3-1b, with the individual parts depicted in Figure 3-2. All components are from 

MakerBeam [11], except the treaded rods which are made in the laboratory. 
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Figure 3-1 a) Frame structure including fixation on I-profile as boundary condition.  

Green arrow indicating in-plane excitation, applied on the 2nd floor.  

1) Frame structure. 2) I-profile connecting frame structure to laboratory floor, shown in Figure 3-3.  

3) Fixation to laboratory floor.  

b) Magnified illustrations of 4-way connection between profiles.  

Blue arrow illustrates threaded rod connecting MakerBeams through corner cube.  

Yellow arrows illustrate screws connecting beams to corner cube. Brace connections are not magnified. 

.     

 

 

Figure 3-2: Different components used in the structure. From left to right: Straight bracket, self-locking 

nut, cube-screw, wing-type-bolt, threaded rod and corner cube. 
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Furthermore, the different elements are reusable for other structure configurations and 

future projects. Properties of the MakerBeam beam elements are presented in Table 3.1.  

Table 3.1: MakerBeam element properties. 

Parameter Symbol Value Unit 

Cross sectional area A 49.091∙10-6 [m2] 

Density ρ 2900 [kg/m3] 

Modulus of elasticity E 68.9∙109 [Pa] 

Poisson ratio  0.33 [-] 

Shear modulus G 25.9∙109 [Pa] 

Second moment of inertia  Iy & Iz 495.6∙10-12 [m4] 

Polar moment of inertia Ix 991∙10-12 [m4] 

 

The measured masses of the individual parts and total mass of the assembled structure are 

presented in Table 3.2.  

Table 3.2: Measured masses of individual parts and assembled structure. 

Part [-103 kg/pcs] No. in structure [-103 kg] 

MakerBeam profile (200x10x10 mm) 25.0 48 1200 

MakerBeam profile (diagonal brace) 33.8 12 405 

Corner cube (10x10x10 mm) 1.30 24 31 

Screw (corner cube) 0.39 52 20 

Threaded rod (corner cube) 1.05 20 21 

Straight bracket      6.00 24 144 

Self-locking nut (bracket) 0.42 70 29 

Wing type bolt (bracket) 0.34 70 24 

Sensors  4.8 9 43 

Total mass    1918 

 

To minimise the transmission of vibration from the frame structure to the surroundings, 

the boundary conditions must be fixed. Bolting the structure directly into the laboratory 

floor requires drilling into the floor, which is not an option. A rigid connection between 

the rails in the laboratory floor and frame structure is found via a HEB260 profile. Due 

to practicalities, regarding floor railings, limited space and concurrent experiments in the 

laboratory, the excitation must be in the HEB260 profile’s weak axis, as seen in Figure 

3-1. To conclude how much the flexibility from the I-profile will influence the 

eigenfrequencies, a study of a simplification of the frame structure into a beam is 

performed. 

Simulating Fixed Boundary Conditions  

To ensure that the assumption of a fixed boundary condition in the FE-model is 

appropriate, rough pre-calculations of the flexibility contribution from the I-profiles weak 

axis is performed with a simplification of the frame structure into a beam element. The 
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calculations indicate that the flexibility contribution from the weak axis of the HEB 

profile will affect the eigenfrequencies of the simplified structure as seen in Table 3.3 

Table 3.3: Deviation of the first three in-plane eigenfrequencies regarding flexibility contribution from I-

profile. 

Eigenmode Difference in eigenfrequency [%] 

1 0.059 

2 0.104 

3 0.159 

 

Though the difference in eigenfrequencies in Table 3.3 is relatively small, two 

reinforcement plates are welded on each side of the profile, as shown in Figure 3-3, to 

minimise the deviations even further. Steel shims are positioned between floor and 

HEB260 to level the boundary conditions for the frame structure, as shown in Figure 3-3. 

 

Figure 3-3: Practical accomplishment of relative rigid boundary condition. 

After assembling the frame structure, connecting it to the HEB260 and fixating it to the 

laboratory floor, an experimental stiffness test is performed as illustrated in Figure 3-4.  
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Figure 3-4: Experimental stiffness test performed at the top of the frame structure. 

The test is performed by applying different horizontal forces at the top point centre of the 

frame structure’s weak axis and measuring each displacement. The averaged result in 

weak axis displacement is shown in Table 3.4.  

Table 3.4: Displacement of frame structure. 

Assembled frame structure properties - experimental & FEM 

Displacement, weak axis, 𝐹ℎ𝑜𝑟𝑖𝑠𝑜𝑛𝑡𝑎𝑙 = 20N 

Experimental 4.50∙10-3 [m] 

Displacement, weak axis, 𝐹ℎ𝑜𝑟𝑖𝑠𝑜𝑛𝑡𝑎𝑙 = 20N  

FEM (before tuning) 1.87∙10-3 [m] 

 

Table 3.4. displays the difference between displacement in the FE-model and the frame 

structure. The extra flexibility in the frame structure is assumed to be caused by lower 

stiffness in connections, which will be addressed in Chapter 4. 

3.3 TEST EQUIPMENT 
The measurement and excitation equipment from Brüel & Kjær used for the experimental 

work are depicted in Figure 3-5 with selected configurations stated in Table 3.5 - Table 

3.7. The initial test setup includes one actuator and nine accelerometers, and their 

respective locations are seen in Figure 3-5. The cabling connected to the accelerometers 

were lead upwards on to an aluminium beam, depicted in Figure 3-6, to reduce the 

influence from gravity and damping. 

Harmonic Excitation 

The excitation mechanism, which is depicted part by part in Figure 3-5c, transfers and 

measures force from an actuator to the frame structure. The path of this is described below 

with reference to Figure 3-5c: The actuator is attached to a sturdy steel column via 

brackets (1) providing a steady ground. The actuator (2) produces vibrations that are 

transferred via the stinger (3), to the force transducer (4) which measures the input to the 

structure.  



  

29 

 

 

Figure 3-5: Excitation and measurement equipment.   

 a) Red circle: placement of actuator on 2nd floor. Red number: distribution of accelerometers. 

b) Accelerometer and section of MakerBeam beam 

c) 1) Brackets connecting actuator to steady column. 2) Actuator. 3) Stinger. 4) Force transducer.  

5) Force transducer and MakerBeam beam. 6) Section of MakerBeam beam.   

 . 

 

Figure 3-6: Test setup with steel column and reinforcement brace. 1) Frame structure. 2) Actuator.  

3) Upwards cabling from accelerometers. 4) Steel column. 5) Reinforcement brace. 
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The steel column used as boundary condition for the actuator is not sufficiently steady 

when exciting the frame structure in the interval of approximately 22-37Hz. This was 

concluded after audio inspection of the steel column, where indication of resonance was 

present. This lead to reinforcement with a steel brace, as depicted in Figure 3-6, providing 

extra stiffness and raising the steel columns first eigenfrequency to approximately 80Hz. 

This is close to the frame structure’s third eigenfrequency, which is seen from the 

disturbances in the third eigenfrequency in Figure 3-9. The test setup is still evaluated as 

acceptable, since the shaped inputs are to be applied beneath the frame structure’s first 

eigenfrequency. 

Selected data for the actuator are seen in Table 3.5 [15]. 

Table 3.5: Brüel & Kjær, Mini shaker Type 4810 selected data. 

Characteristic Value 

Force rating 10 [N] 

Frequency range < 18∙103 [Hz] 

 

Harmonic inputs from the actuator are measured by the force transducer, depicted in 

Figure 3-5c, no. 4. The force transducer measures the compressive and tensile forces 

uniaxially, at the point right before contact with the structure in question. Meaning that 

flexibility, and other sources of error, from the stinger and backwards are minimised from 

the measurements. Selected data for the force transducer are in Table 3.6 [16].  

Table 3.6: Selected data for DeltaTron Force Transducer Type 8230-001. 

Characteristic Value 

Full scale force range compression 220 [N] 

Full scale force tension 220 [N] 

Mounted resonance frequency 75∙103 [Hz] 

Linearity error at full scale < ± 0.01 

  

Measuring Responses 

The response from the frame structure is measured by uniaxial accelerometers depicted 

in Figure 3-5b with selected configuration in Table 3.7 [17]. The out of plane (OOP) and 

twisting eigenmodes affect the measured in-plane accelerations, resulting in small peaks 

in the frequency response function (FRF), as seen in Figure 3-9. Determination of the 

OOP and twisting eigenfrequencies are performed via impulse excitation equipment and 

is elaborated in Appendix A. 

Table 3.7: Selected data for DeltaTron Accelerometer Type 4507 B. 

Characteristic Value 

Frequency range 0.3 to 6000 [Hz] 

Mounted resonance frequency 18∙103 [Hz] 

Transverse sensitivity < 0.05 
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The data from each accelerometer is transferred to the acquisition software, where the 

accelerations are processed, saved or withdrawn for further analysis. 

3.4 EXPERIMENTAL MODAL ANALYSES 
The FE-model’s modal parameters are computed using Eq. (2.2) as elaborated in Chapter 

2. To obtain the frame structure’s actual modal parameters experimental modal analyses 

(EMA) are conducted. Present section will discuss how the frame structure’s modal 

parameters are obtained, namely: 

- Modal frequencies 

- Modal damping ratios 

- Mode shapes 

Experimental analyses of a structure can be done in several ways. Basically, they consist 

of excitation of the structure and data acquisition from one or several points at the 

structure. The type of input could be:  

- Harmonic excitation  

- Impulse 

- Pull-and-release of the structure – decaying free vibration 

With acquired input and output data the modal parameters can be estimated by use of the 

FRF, elaborated in Section 3.4.2. A flow chart of the process for acquiring the modal 

parameters is illustrated in Figure 3-7. 

 

Figure 3-7: Flow chart of working process for acquiring experimental modal parameters. 

3.4.1 Experimental Setup 

Experimental data for the frame structure is obtained by harmonic and impulse excitation 

and the respective forces and accelerations are extracted from the data acquisition 

software PulseReflex. The initial laboratory test setup is depicted in Figure 3-8. It is 

noticed that the actuator is applying force on the 2nd floor, which is evaluated as suitable 

for activating the first three in-plane eigenmodes. 

It is chosen to place accelerometers in pairs on each floor, giving the possibility of plotting 

mode shapes for both front and rear side of the frame structure. The data collection 

equipment available restricts the use of accelerometers to a maximum of nine. Based on 

visual inspection of the numerical mode shapes, it is evaluated that accelerometers on the 

5th floor and rear side of the 3rd floor would contribute the least, hence they are omitted.  
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Since the loading frequency of the shaped inputs is beneath the first eigenfrequency of 

the frame structure, see Chapter 5, only the first three in-plane eigenmodes are estimated 

by conducting sine sweeps.  

 

Figure 3-8: Experimental setup of frame structure. 

3.4.2 Sine Sweep Excitation 

Performing sine sweeps on the frame structure are done with the setup of harmonic 

actuator, force transducer and accelerometers as depicted in Figure 3-8. When conducting 

a sine sweep test, the frequency of the harmonic input is increased stepwise. To ensure 

consistency ten sine sweeps are conducted and the resulting FRFs are illustrated in Figure 

3-9. When the loading frequency is near the structure’s eigenfrequencies resonance 

occurs, making the response oscillate with greater amplitude, which causes the peaks as 

illustrated in Figure 3-9.  
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Figure 3-9: Plot of the resulting ten FRFs from the conducted sine sweeps with calculated averaged 

values for the first three in-plane eigenmodes. 

By use of the frequency response function shown in Eq. (3.1), the modal parameters are 

obtained.  

 𝑭(𝜔) 𝑯(𝜔) = 𝑿(𝜔) (3.1) 

Where: 

 𝑯(𝜔) frequency response function 

 𝑿(𝜔) complex output 

 𝑭(𝜔) complex input 

As seen from Eq. (3.1), the FRF operates as the transfer function depicted in Figure 2-2.  

Curve-Fitting – Rational Fractional Polynomial Z-Method 

To estimate the modal parameters from the data depicted in Figure 3-9, a curve-fit is 

implemented. Curve-fitters transform a data set into a mathematical function, enabling 

estimation of modal parameters from measured data. They can be divided into single-

degree-of-freedom (SDOF) and MDOF curve-fitters, where SDOF is used for lightly 

coupled modes and MDOF for heavily coupled modes [18]. 

The PulseReflex software contains several curve-fitters of which present thesis uses the 

rational fractional polynomial z-method [18]. Figure 3-10 shows an FRF from 0 - 400Hz, 

where the eigenfrequencies of interest are between 7 – 90Hz (yellow area). Extracting 

modal parameters from the first three eigenmodes is performed by implementing a SDOF 

curve-fit illustrated in Figure 3-10. 
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Figure 3-10:  Curve-fitting in PulseReflex of FRF from conducted sine sweep. Yellow area shows the 

frequency band of interest where the first three in-plane eigenmodes are located. Green area shows the 

SDOF curve-fit for approximation of modal parameters for second eigenmode.   

Results obtained from the ten sine sweeps are presented in Table 3.8 and averaged values 

plotted in Figure 3-9. 

Table 3.8: Modal parameters acquired from curve-fitting of ten sine sweeps. 

Test no Eigenfrequency [Hz] Damping ratio [%] 

 1. 2. 3. 1. 2. 3. 

1 11.4 39.1 77.1 1.18 1.05 0.960 

2 11.4 39.1 77.1 1.10 1.03 1.05 

3 11.4 39.1 77.0 1.06 1.03 1.24 

4 11.4 39.1 77.0 1.13 1.01 1.03 

5 11.4 39.1 77.0 1.11 1.00 1.01 

6 11.3 39.0 77.3 1.20 1.02 0.920 

7 11.4 39.1 77.4 1.16 1.01 0.610 

8 11.4 39.1 77.4 1.09 0.980 1.20 

9 11.4 39.1 77.0 1.05 0.970 1.10 

10 11.4 39.1 77.0 1.14 0.960 1.06 

μ (Mean) 11.4 39.1 77.1 1.12 1.01 1.02 

σ (Standard deviation) 0.0316 0.0246 0.175 0.0480 0.0271 0.173 

 

As it can be seen from Table 3.8 the eigenfrequencies and damping ratios from all 

experiments are relatively consistent. Furthermore, it is noticed that the standard 

deviations increase at the third eigenmode, indicating less consistency in the data, though 

still evaluated as sufficiently accurate. Also, we see great uncertainty associated with 

damping estimates. 
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3.5 SUMMARY 
This chapter gives a description of the EMA conducted on the frame structure to establish 

the first three in-plane eigenmodes, depicted in Figure 3-9, where the important aspects, 

such as fixation of the frame structure, are evaluated. Furthermore, the apparatus used for 

conducting the experimental tests are presented.  

The first three in-plane eigenmodes are seen in Figure 3-9, where irregularities in the 

curves around 57Hz and 69Hz are noticed. The irregularities are caused by a twisting and 

the first OOP bending mode which are elaborated in Appendix A. Since the in-plane 

eigenfrequencies obtained from the EMA deviates from the numerical FEM-program, as 

shown in Table 4.1, tuning of the FE-model is required.  
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4 DEVELOPMENT OF FE-MODEL 

As explained in Chapter 3, the SDLID method is tested on a frame structure which is 

illustrated in Figure 3-1. To ensure that the computed shaped inputs are designed 

correctly, the structure’s parameters (stiffness and mass) in the FEM-program must 

resemble the frame structure. This is done by implementing extra mass contributions from 

the corner connections and accelerometers into the FE-model and reduce joint stiffness.  

4.1 INITIAL COMPARISON 
To ensure that the FE-model corresponds with the experimental modal parameters, the 

FE-model’s eigenfrequencies are compared with the eigenfrequencies obtained from the 

EMA, elaborated in Section 3.4.2. It should be noted that comparison of the 

eigenfrequencies is performed for the first three in-plane eigenmodes. 

 

Figure 4-1: Excited in-plane mode shapes from the FEM-program in MATLAB. 

Figure 4-1 shows the mode shapes of the first three in-plane eigenmodes used for tuning 

of the FE-model in accordance to the frame structure.  

Table 4.1: Eigenfrequencies from untuned FE-model and experimental modal analysis on frame structure. 

Eigenmode FEM [Hz] Experiment [Hz] Deviation [%] 

Mode 1 19.6 11.4 71.9 

Mode 2 61.9 39.1 58.3 

Mode 3 112 77.1 45.3 

 

As Table 4.1 indicates, the eigenfrequencies from the experimental modal analysis are 

lower than the computed eigenfrequencies in the FEM-program. This indicates that the 

mass and stiffness for the FE-model do not correspond with the experimental setup in the 
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laboratory. To ensure that the computed shaped inputs will render certain steady-state 

vibration quantities dormant, the FE-model is tuned regarding the mass and stiffness. 

4.2 MASS TUNING 
As explained in Section 3.2, the frame structure is constructed using components from 

MakerBeam. To obtain a reduction in eigenfrequencies of the FE-model the mass 

contribution from the different components used to assemble the structure, illustrated in 

Figure 3-2, is implemented in the mass matrix at the translational DOF, corresponding to 

the location of the corner-connections and accelerometer placement, see Figure 4-2. The 

mass from the cables and force transducer are neglected, and the mass tuned 

eigenfrequencies are shown in Table 4.2. 

 

 

Figure 4-2: Corner-connections (black circle) of the structure and placement of accelerometer (red circle).  

Table 4.2: Eigenfrequencies for the FE-model after mass tuning. 

Eigenmode FEM [Hz] Experiment [Hz] Deviation [%] 

Mode 1 17.5 11.4 53.5 

Mode 2 55.2 39.1 41.2 

Mode 3 100 77.1 29.7 
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The mass tuning of the FE-model changed the eigenfrequencies with an average of 41.5% 

for all eigenmodes. Though the mass tuning lowered the eigenfrequencies of the FE-

model, the deviation is still too high.  

4.3 STIFFNESS TUNING 
The results presented in Table 3.4 and Table 4.2 indicate a demand for reduction in 

stiffness in the FE-model. A visual inspection of the frame structure is performed to see 

if any obvious stiffness related deviations are present. 

 

Figure 4-3: Corner connections of frame structure. 

It is noticed that the corner-cubes, which connect the beams, are hollow, where in the FE-

model the elements are assembled as they were attached to each other (no corner-cube). 

This indicates that the computed stiffness in the corners for the FE-model is larger than 

the actual stiffness, which is countered by implementing rotational springs.  

4.3.1 Implementation of Rotational Spring 

Implementing a rotational spring at each corner of the frame structure allows us to reduce 

the stiffness from rotation for each corner, hereby reducing the eigenfrequencies of the 

FE-model. To introduce a rotational spring, a decoupling of the DOF regarding rotation 

is performed. Implementation of a rotational spring is elaborated below using following 

example:   

Example 

 

Figure 4-4: Simple example of a beam with a charnier joint. 

𝐿 

1 𝑁 

𝑥 

𝐿 
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The example, illustrated in Figure 4-4, is fixed supported on the left side, and simply 

supported on the right with a charnier located in the middle. To introduce a charnier in 

the FEM-program, the rotation from the two elements must decouple. 

 

Figure 4-5: Implementation of charnier in the FEM-program. 

As shown in Figure 4-5, an additional rotational DOF has been introduced in the charnier-

node. Hereby, the rotation from both elements are decoupled, and only the translational 

DOF in the charnier are shared. The stiffness matrix for the system depicted in Figure 4-5 

becomes: 

 𝑢1  𝑤1  𝜃1   𝑢2  𝜃2  𝜃3

𝑲 =

𝑢1

𝑤1

𝜃1

𝑢2

𝜃2

𝜃3 [
 
 
 
 
 
 
𝑘1,1 0 0 𝑘1,4 0 0

0 𝑘2,2 𝑘2,3 0 𝑘2,5 𝑘2,6

0 𝑘3,2 𝑘3,3 0 0 0

𝑘4,1 0 0 𝑘4,4 0 0

0 𝑘5,2 0 0 𝑘5,5 𝑘5,6

0 𝑘6,2 0 0 𝑘6,5 𝑘6,6]
 
 
 
 
 
 

 

 

 

 

(4.1) 

The additional rotation DOF, 𝜃3, is placed at the end of the matrix for the corresponding 

row and column to ease the computations, programming wise. Notice the “zero-locations” 

in Eq. (4.1) which shows the decoupling between the different DOF. Validating the 

implementation of rotational spring is performed by comparing vertical displacement at 

the charnier node in the FEM-program with an analytical calculation for the example 

shown in Figure 4-5. 

 𝑤𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑥) =
𝑃𝑥3

6𝐸𝐼
(−3𝐿 + 𝑥)   for  0 ≤ 𝑥 ≤ 𝐿 (4.2) 

Where: 

 𝑃 point force 

 𝑥 defines the location on the beam 

The vertical displacement at the charnier-node from Eq. (4.2) and FEM becomes: 

 𝑤𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝐿 = 2 𝑚) = −7.81 ∙ 10−2m 

 𝑤1 = −7.81 ∙ 10−2m 

𝜃1 𝜃3 

𝑤1 

𝑢1 
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The results above show a successful implementation of the charnier in the FEM-program, 

which enables the possibility for implementing a rotational spring. This is done by 

coupling the two rotations, 𝜃1 and 𝜃3, in Eq. (4.1) with a 2 ⨯ 2 matrix: 

 
𝑲𝑠𝑝𝑟𝑖𝑛𝑔 = [

𝐾𝑟 −𝐾𝑟

−𝐾𝑟 𝐾𝑟
] 

(4.3) 

Where: 

 𝑲𝑠𝑝𝑟𝑖𝑛𝑔 stiffness matrix representing the rotational spring 

 𝐾𝑟 stiffness contribution from the rotational spring 

Eq. (4.3) can then be implemented in Eq. (4.1) to couple 𝜃1 and 𝜃3: 

 

𝑲 =

[
 
 
 
 
 
 
𝑘1,1 0 0 𝑘1,4 0 0

0 𝑘2,2 𝑘2,3 0 𝑘2,5 𝑘2,6

0 𝑘3,2 𝑘3,3 + 𝐾𝑟 0 0 −𝐾𝑟

𝑘4,1 0 0 𝑘4,4 0 0

0 𝑘5,2 0 0 𝑘5,5 𝑘5,6

0 𝑘6,2 −𝐾𝑟 0 𝑘6,5 𝑘6,6 + 𝐾𝑟]
 
 
 
 
 
 

 

 

 

(4.4) 

In theory, when the value of 𝐾𝑟 becomes high enough for the given example, it will 

simulate a beam without a charnier, coupling the two rotations as illustrated in Figure 4-6. 

 

Figure 4-6: Vertical displacement of charnier node from previous example. 

Rotational springs are implemented at each corner-cube of the frame structure, where 𝐾𝑟 

is tuned until the modal parameters of the FE-model correspond to those obtained 

experimentally.  
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Table 4.3: Eigenfrequencies from the tuned FE-model, with Kr = 400N ∙ m, compared with the 

experimental modal analysis. 

Eigenmode Tuned FE-model [Hz] Experiment [Hz] Deviation [%] 

Mode 1 11.7 11.4 2.63 

Mode 2 39.3 39.1 0.512 

Mode 3 77.8 77.1 0.908 

 

As illustrated in Table 4.3, the deviations between the eigenfrequencies from the tuned 

FE-model and the experimental modal analysis are relatively small. To ensure that the 

mode shapes between the FE-model and frame structure resemble with one another, the 

modal assurance criterion (MAC) value is computed. 

4.3.2 Modal Assurance Criterion 

When tuning the frame structure, it is not sufficient to evaluate the results regarding the 

eigenfrequencies for validation. The mode shapes must also correspond with each other 

to ensure the dynamic behaviour for the FE-model resembles the frame structure. The 

MAC is one of the most popular tools to compare mode shapes. The MAC value is the 

square of correlation between two modal vectors and is defined as [19]: 

 
𝑀𝐴𝐶(𝑟, 𝑞) =

|𝝓𝐴𝑟
𝑇  𝝓𝐵𝑞

∗ |
2

𝝓𝐴𝑟
𝑇  𝝓𝐴𝑟

∗  𝝓𝐵𝑞
𝑇  𝝓𝐵𝑞

∗  
(4.5) 

Where:  

 𝑟, 𝑞 compared eigenmodes 

 𝝓𝐴 experimental modal vector 

 𝝓𝐵 FEM modal vector 

 𝝓∗ complex conjugate of 𝜙 

From Eq. (4.5), the MAC will take a value between 0 and 1 showing the correspondence 

between the two modal vectors. Where 0 indicates no correlation between the mode 

shapes, and 1 representing full correlation [19]. The MAC results for the tuned FE-model 

are presented by a colour plot in Figure 4-7, visualizing the correlation between the 

different eigenmodes from the initial tuning, where 𝐾𝑟 = 400N ∙ m. 
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Figure 4-7: MAC values when comparing mode shapes from the tuned FE-model to the experimental. 

Figure 4-7 shows the correlation between the different eigenmodes from the tuned FE-

model and from the experimental modal analysis. The diagonal of Figure 4-7 illustrates 

almost full correlation between the first three in-plane eigenmodes from FE-model and 

experiment. To optimise the correlation of the eigenfrequencies and mode shapes between 

the FE-model and frame structure, an optimization is cast that searches by means of a 

genetic algorithm (GA).  

4.3.3 Genetic Algorithm 

Genetic coding is applied to obtain an FE-model which best resembles the modal 

parameters of the frame structure.  

The Principle of Genetic Algorithm  

The GA is a powerful optimization and search tool inspired by evolution [20] that enables 

the fittest candidates (solutions) to survive and reproduce based on random information 

search, imitating natural selection. The production of a new solution in the following 

generation uses information from the initial candidate, keeping the fittest candidates and 

hereby improving the search process [20], see Figure 4-8.  

The GA provides a type of convergence, but not necessarily optimality, meaning multiple 

successive runs of GA will not necessarily produce the same solution for each run. The 

converged solution depends on which search space is chosen [20]. Some of the 

advantages of using GA are it allows the user to quickly scan for a solution through a 

solution set. As explained above, bad initial guess for a solution will not affect the result 

negatively since the bad solutions in the converging process are discarded. Also, since 

the GA searches for a solution through the entire model space, it is more likely to 

converge for a global solution, contrary a local optimization technique [20].  
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Figure 4-8: Activity diagram of GA process. 

Implementation of GA 

Using the integrated GA software in MATLAB as an optimization tool, the fittest tuning 

of the FE-model can be obtained. The GA software in MATLAB will use its converging 

methods to minimise a given function, 𝐽, with respect to the variable 𝐾𝑟. The challenge 

of using MATLAB’s GA is to generate a function that minimises when the 

eigenfrequencies and mode shapes from FE-model and the experiment correlate. Using 

the MAC values from Eq. (4.5) and eigenfrequencies from Eq. (2.2) and EMA, a function 

𝐽 can be generated with respect to 𝐾𝑟. 

In Eq. (4.6) the variable 𝐻1 and 𝐻2 express the correlation between the modal parameters 

from the FE-model and EMA, and the objective is to define 𝐻1 and 𝐻2 such as the 

correlation increases when their value decreases. 

 
𝐻1 = ∑

|𝜔𝑖 − 𝜔̃𝑖|

𝜔̃𝑖

𝑛

𝑖=1

 
(4.7) 

Where: 

𝜔𝑖, 𝜔̃𝑖 are the eigenfrequency from the FE-model and experiment for 

ith mode 

The correlation between the three eigenfrequencies from the experiment and FE-model 

becomes higher when 𝐻1 → 0. A similar expression regarding the MAC values is made: 

 𝐽(𝐾𝑟) = 𝐻1 + 𝐻2 (4.6) 
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𝐻2 =

1

∑ 𝑀𝐴𝐶(𝑖, 𝑖)𝑛
𝑖=1

 
(4.8) 

Where: 

𝑀𝐴𝐶(𝑖, 𝑖) refers to the MAC value for ith mode from the FE-model and 

experiment 

It is clear to see from Eq. (4.7) and (4.8) that when the values of 𝐻1 and 𝐻2 become 

smaller, the correlation between the eigenmodes from the experiment and FE-model 

increases.  

Choosing a search space, by defining a lower and upper limit3, for the variable 𝐾𝑟, the 

GA function in MATLAB will then reduce the value of Eq. (4.6) as much as possible. 

Table 4.4: Comparison of J-values regarding stiffness tuning using GA. 

 Initial tuning 

𝐾𝑟 = 400N ∙ m 

GA tuning 

𝐾𝑟 = 336N ∙ m 

Deviation [%] 

Value of function 𝐽 0.439 0.356 23.3  
 

As it can be seen from Table 4.4 the value of 𝐽 is reduced after implementation of GA. 

Using the new value for 𝐾𝑟 should increase the correlation of the modal parameters 

between the FE-model and frame structure. 

Table 4.5: Modal parameters obtained from initial tuning, GA tuning and EMA. 

 Eigenfrequency [Hz] MAC value [-] 

Initial tuning 11.91 40.06 79.27 0.989 0.964 0.977 

GA tuning 11.39 38.66 77.37 0.988 0.960 0.974 

EMA 11.39 39.09 77.14 - - - 

 

As it can be seen from Table 4.5 the GA and initial tuning show a good correlation in 

mode shapes between the FE-model and frame structure, but the deviation in 

eigenfrequencies between the FEM-program and EMA is smaller after implementation 

of GA. Using the new 𝐾𝑟 value for the stiffness tuning applicable shaped inputs are 

computed. 

4.4 SUMMARY 
To compute shaped inputs for experimental damage localisation, the modal parameters 

of the FE-model must correspond with the results obtained from the EMA in Section 

3.4.2. This is done by implementing the extra mass contributions from the corner 

connections and accelerometers and introducing a GA optimization algorithm for 

stiffness tuning of the FE-model. This results in a higher correlation in modal parameters 

between the FE-model and frame structure, as illustrated in Table 4.4 and Table 4.5. 

                                                 
3 The upper and lower limit for the genetic algorithm are chosen based on engineering judgement of 

previous examinations. 
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5 EXPERIMENTAL DAMAGE LOCALISATION 

This section elaborates the experimental work conducted on the frame structure in regard 

to localise a mass perturbation using the SDLID method.  

5.1 DATA ACQUISITION 
The term data acquisition refers to the process of obtaining experimental data for further 

processing via acquisition software. For present thesis acceleration data are transferred to 

the Brüel and Kjær software LabShop, where the numerical data can be extracted or 

interpreted in time, frequency or Laplace domain. 

When operating with data acquisition, an essential element to consider is the process of 

capturing the behaviour of the system, which is controlled by the sampling rate of the 

signal. The sampling rate indicates how many samples per second are measured by the 

software. To ensure adequate information is obtained from the accelerometers, the 

sampling time increment, defined in Eq. (5.1), must be sufficiently low. 

 
𝛥𝑡 =

1

𝑓𝑠
 

(5.1) 

Where: 

 𝑓𝑠 sampling frequency 

As it shows from Eq. (5.1) the sampling frequency, 𝑓𝑠, must be sufficiently high to capture 

the behaviour of the system.  

 

Figure 5-1: Force signal from an actuator with different sampling rate. 
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An example of a bad sampling rate is illustrated in Figure 5-1, where the same signal is 

plotted with two different time increments. It is clearly seen that setting the time 

increment to 1.96·10-2s reduces the amount of information extracted from the signal. The 

total measurement time controls the frequency resolution, defined in Eq. (5.2). 

 
𝛥𝑓 =

1

𝑇
=

𝑓𝑠
𝑁

 
(5.2) 

Where: 

 𝑇 total measurement time 

 𝑁 number of measurements  

As illustrated in Figure 5-1, setting the time increment to 3.91·10-3s ensures that no 

valuable information is lost in the signal processing/data acquisition. 

5.2 REFERENCE RESPONSE FOR DAMAGE LOCALISATION 
This section elaborates how the response from an undamaged system (reference response) 

is obtained for the frame structure and then used for damage localisation.  

 

Figure 5-2: FE-model and experimental setup. a) Numerical model of the experimental setup with 

corresponding node numbers where the black arrows indicate location of shaped input. b) Experimental 

setup. 
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As it is depicted in Figure 5-2 only two actuators, or two shaped inputs, are present in the 

test setup, which in theory are not enough to suppress a node consisting of three 

translational DOF. The restriction against OOP bending from the braces results in only 

the translational DOF in the x-axis, defined in Figure 5-2, must actively be rendered 

dormant. To ensure that the frame structure will not enter a resonance state, the loading 

frequency for both actuators is chosen to be 70% of the first eigenfrequency (7.97Hz). In 

theory, every node in the structure should, and could, be rendered dormant. For present 

thesis six damage patterns are interrogated.  

 

Figure 5-3: Location of damage patterns and the corresponding nodes. 

The damage patterns are located at the front and rear side of the frame structure for each 

floor as illustrated in Figure 5-3. Using the tuned FE-model, obtained in Chapter 4, the 

shaped inputs, 𝒇𝜏𝑖
(𝑠), from each damage patterns are computed by finding the null space 

of 𝑻𝑖𝑮•,𝜏 (𝑠) in Eq. (2.12). The amplitude and phase angle are configured for each 

actuator by computing the moduli and arguments of  𝒇𝜏𝑖
(𝑠).  



  

48 

 

 

Figure 5-4: Screenshot of programming the lowest positioned actuator for damage pattern 1 in LabShop. 

Each actuator is configured in LabShop, such that all damage patterns are created by 

rendering the DOF in all specified nodes dormant. As it can be seen from Figure 5-4, the 

ratio between the amplitudes is controlled by adjusting the signal level for each actuator. 

To ensure that the transient part has damped out in the response, each test will last 64 

seconds. 

 

Figure 5-5: Accelerations from accelerometer 2 and 8 for damage pattern 1 (steady-state). 

In Figure 5-5, an example of acceleration data from two sensors are shown, to illustrate 

that the data used for damage localisation only originates from steady-state. It is noticed 
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that the response from accelerometer 2 is lower than accelerometer 8, this caused by the 

shaped inputs trying to render node 12 dormant, which is positioned on the same location 

as accelerometer 2. 

In Section 2.4, the comparison between the reference and damaged response is done by 

taking the Euclidean distance between the two complex responses, but since the 

acceleration results are described in the time domain, the energy from the different 

responses are analysed instead by use of Fourier transformation.  

 

Figure 5-6: Accelerations and FFT plot of accelerometer 8 for damage pattern 3. 

By describing the acceleration data in the frequency domain, the amplitude located at the 

loading frequency from the reference and damaged response are compared. Notice in 

Figure 5-6 that multiple peaks are present, besides the peak located at the loading 

frequency. These disturbances are due to imperfections in the actuator, amplifier and data 

processing. Only the amplitude peak located at the loading frequency (7.97Hz) is used 

for comparison with a response from a perturbated structure. 

5.3 IMPLEMENTATION OF MASS PERTURBATION 
In Section 2.3, numerical implementation of a mass perturbation is performed to validate 

the SDLID method. This section elaborates on how a mass perturbation is implemented 

on the frame structure and the considerations made.  

Implementation of a mass perturbation for the experimental analysis is relatively straight 

forward. To show the robustness of the SDLID method the mass perturbation is 

implemented at five different locations on the frame structure. To localise the mass 

perturbations, using reference responses from Section 5.2 only the damage pattern’s 

locations are interrogated. 
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Figure 5-7: Implemented mass perturbation on frame structure for damage localisation in node 76, see 

Figure 5-2a. 

As depicted in Figure 5-7, the mass perturbation is implemented using insulation tape to 

ensure that the mass is located as close to the node corresponding with the damage pattern 

as possible. Furthermore, the mass must be implemented firmly on the structure to 

minimise non-linear contributions during the tests and thereby corrupting test data. The 

implemented mass perturbation of 0.121kg is approximately 6.31% of the total mass of 

the frame structure.  

5.4 DAMAGE DETECTION 
Sine sweeps are conducted to see the effect the mass perturbation has on the modal 

parameters of the frame structure after damage implementation. The frequency interval 

used for the sine sweeps on the undamaged structure, described in Section 3.4.2., are 

reused.  

 

Figure 5-8: FRFs from damaged and undamaged structure. 
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As illustrated in Figure 5-8, the eigenfrequencies have clearly been reduced due to the 

mass perturbation in node 76. In practice analysing the shifts in eigenfrequencies can also 

be used as a damage detection method, as elaborated in Section 1.2. Table 5.1 shows 

relatively large eigenfrequency shifts between the undamaged and damaged structure, due 

to the large mass perturbation. 

Table 5.1: Difference in eigenfrequencies of healthy and damaged structure. 

Eigenmode Damaged [Hz] Undamaged [Hz] Deviation [%] 

Mode 1 10.7 11.4 6.54 

Mode 2 37.2 39.1 5.11 

Mode 3 73.0 77.1 5.62 

 

5.5 DAMAGE LOCALISATION 
Previous analysis indicated that damage is present on the structure, hence the SDLID 

method can be used for damage localisation in the same fashion as in Section 2.4. The 

same tests, conducted in Section 5.2, are performed on the damaged structure. 

Acceleration data are extruded from LabShop and presented in the frequency domain to 

compare the energy shift from the two structural states.  

 

Figure 5-9: FFT plot of acceleration data from accelerometer 4, damage pattern 2. 

From Figure 5-9 a clear change in amplitude is present when comparing the damaged and 

undamaged structure. This is caused by the energy shift from the mass perturbation.  
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Comparing the peaks at the loading frequency and summing up deviations from each 

accelerometer for each damage pattern, damage is localised, see Eq. (5.3), (5.4) and (5.5). 

 ∆𝜰(𝑖) = 𝚼𝑑
(𝑖)

− 𝚼𝑢
(𝑖)

 (5.3) 

 

𝐵(𝑖) = ∑∆𝜰𝑗
(𝑖)

η

𝑗=1

 

(5.4) 

 

𝑩 = [

𝐵(1)

𝐵(2)

⋮
𝐵(𝑑)

] 

(5.5) 

Where: 

 𝑩 damage indicator for ith damage pattern 

𝜰𝑑  , 𝜰𝑢 vector containing peak amplitude of all accelerometers for 

damaged and undamaged state  

 𝑑 number of damage patterns 

 η number of accelerometers 

The lowest value in the damage indicator vector, 𝑩, should correspond with the damage 

pattern that renders the mass perturbation dormant. Thus, a damage pattern plot is made 

based on the results obtained using Eq. (5.5). 

 

Figure 5-10: Damage pattern plot of damage located in node 76. 

As depicted in Figure 5-10, the damage pattern plot clearly indicates the lowest deviation 

at damage pattern no. 6, which corresponds to node 76. Based on this result damage 
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localisation in node 76 is possible. To test the robustness of the SDLID method, mass 

perturbations are implemented in node 12, 36, 52 and 60. 

 

Figure 5-11: Damage pattern plot of various locations for mass perturbation. 

As illustrated in Figure 5-11, all damage localisations are successful, except damage 

localisation in node 12. The plot shows the mass perturbation is located in node 52, which 

is not the case. This might be due to the location of the two actuators. To analyse if the 

location of shaped inputs is the explanation of the error-localisation, another test is 

performed where the actuators is placed in the 1st and 5th floor.  
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Figure 5-12: a) New location of shaped inputs. b) Damage pattern plot of mass perturbation in node 12.  

From Figure 5-12b, there is an indication of a mass perturbation located in damage pattern 

1 (node 12) despite the bad resolution. The results show that the placement of shaped 

inputs is important regarding damage localisation. The poor resolution in Figure 5-12 

might be caused by the placement of the mass perturbation. Since it is located close to the 

boundary condition, the vibration signature, from the 1st floor, is not high enough to 

indicate the damage. Thereby, the measured responses from the highest placed 

accelerometers are similar to the reference response, giving an error in the localisation 

process. 

5.5.1 Mass Magnitude Study  

The previous damage localisation results are obtained with an added mass of 0.121kg, 

which is considered a relatively large mass perturbation, since it is 6.31% of the total 

mass of the frame structure. Therefore, a mass magnitude study regarding damage 

localisation is performed. 

 

Figure 5-13: Damage pattern plots for different mass perturbations located in node 76. 

0.019 kg 0.042 kg 0.062 kg 
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Using the same procedure as in Section 5.5 damage localisation in node 76 is performed 

with various masses. As illustrated in Figure 5-13, damages localisation is successful for 

all mass configurations.  

5.6 SUMMARY 
This chapter performs experimental analyses of the SDLID method. Damage localisation 

of a mass perturbation is performed on various locations on a frame structure to 

investigate the robustness of the SDLID method. Damage localisation in node 36, 52, 60 

and 76, with the same shaped inputs placement, were successful. Based on the results 

presented in this chapter, localisation of a mass perturbation in node 12 showed 

complications, but a change in placement of the shaped inputs resulted in damage 

localisation, but with poor resolution.    
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6 DISCUSSION 

This chapter discusses experiences and results from the conducted work during present 

thesis. Initially the advantages and drawbacks of the SDLID method are treated followed 

by a discussion of the experiences and results obtained from the experimental SDLID 

analyses. Assuming damage detection has taken place a priori, the method operates on 

postulating damage patterns and comparing responses from a reference and damaged 

structure. 

Advantages  

Operating on the premise of postulated damage patterns provides the merit of avoiding 

system identification, which is the largest merit of the SDLID method. Other advantages 

are robustness towards signal noise and that the method, in principle, can operate with 

only one well-placed output sensor. Robustness regarding damage localisation increases 

when implementing multiple sensors.  

Drawbacks  

Since the SDLID method operates on postulating damage patterns, steady-state responses 

from a reference and damaged structure must be obtained. This can be rather time 

consuming since the structure must be excited in a sufficient time period to ensure only 

steady-state responses are present. A complete search for mass and stiffness perturbations 

in the frame structure, discretised as in Figure 2-4, requires 360 responses. However, the 

practical necessity of performing every test can be argued, since interrogating for 

perturbation close to the damaged location will be noticeable in the nearby responses. 

Thereby the location of a damage can be indicated with fewer tests. 

For the frame structure tested in present thesis, it is observed that the placement of 

actuators has a considerable influence regarding perturbation localisation. A further study 

of this behaviour is not discussed in present thesis. 

6.1.1 Experimental Work Conducted with the SDLID Method 

Following sections elaborate on error sources revealed by the experimental work, which 

showed to have a considerable influence on the ability to localise damage. 

Calibrating the FE-model to Frame Structure 

Experimental damage localisation is highly depended on an accurate FE-model of the 

structure in question, to create sufficiently accurate shaped inputs. An inaccurate FE-

model can result in a low resolution or inability to localise the damage.  

The deviation in the displacements presented in Table 3.4 is presumed to be caused by 

joint flexibility from the frame structure, which the initial FE-model does not take into 

consideration. Implementation of rotational springs, as described in Section 4.3, enables 

calibration of the FE-model to resemble the modal parameters for the frame structure. It 

is evaluated as a reasonable approximation to assign all rotational springs the same 

stiffness value, although physical differences are present. Calibration of rotational spring 

stiffness in the FE-model is performed with a GA against the experimentally measured 

first three in-plane eigenfrequencies and eigenmodes, which is evaluated as sufficient 
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since the loading frequency, used for the experimental damage localisation tests, is 

beneath the first eigenfrequency of the frame structure. 

Modelling the boundary conditions of the FE-model as fixed is evaluated as acceptable 

even though the connection between the frame structure and I-profile contains flexibility 

from the M3 threaded rod, washers and MakerBeam aluminium profile. 

Damage Localisation 

The experiments conducted show that mass damage localisation is possible. However, 

difficulties were revealed when interrogating for damage in node 12 on the frame 

structure, see Figure 5-11. It is presumed to emerge from the inability to “activate” the 

damage, caused by being located close to the fixation. 

Mass Magnitude Study 

The mass magnitude study, described in Section 5.5.1, investigates the influence for 

damage localisation when the size of the mass perturbation is reduced. As seen from the 

results in Figure 5-13, localisation of a mass perturbation of 0.019kg is performed, which 

is equivalent to approximately 1% of the frame structure’s total mass and is evaluated as 

satisfying regarding practical implementation of the SDLID method.  

Location of Shaped Input 

The importance of consistency in location of the shaped inputs was revealed during a set 

of tests, where the transducer-tip was re-mounted at the same floor, but presumably not 

the exact same position. This lead to differences in the reference responses, where those 

obtained before the re-mounting became unusable for damage localisation, hence new 

reference responses had to be obtained.  

Real-life Implementation 

Tests for present thesis are performed in a laboratory environment, which is considered 

well controlled. Performing tests on real-life structures, such as wind turbines and 

offshore foundations, includes taking several other factors into account such as: wind, 

temperature, sun/shade, which are expected to create challenges for the commercial 

implementation of the SDLID method. 
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7 CONCLUSION 

This thesis presents a newly proposed method, Shaped Damage Locating Input 

Distribution (SDLID), for vibration-based damage localisation analysis by use of 

numerical analyses and experimental work.  The first approach is performed to validate 

the damage localisation capabilities of the SDLID method by incorporating numerical 

models to simulate real-life conditions. The second approach is performed by conducting 

experimental tests of the SDLID method to investigate the validity for practical 

implementation of the method. Multiple tests are performed with various damage 

locations on a six-story frame structure to validate the SDLID method’s capability in 

localising damages.  

The idea behind the newly proposed SDLID method is to shape inputs at certain locations, 

such that specific steady-state vibration quantities are suppressed at one location at a time. 

Damage is located when the vibration signature from the damaged and undamaged 

structure correspond. The shaped inputs for the experimental tests are generated using the 

FE-model, which is tuned such it shares the same modal parameters as the frame structure.  

The conclusion of this report is based on the numerical calculations and experimental 

work performed on the frame structure. The numerical analyses validated the premise of 

the SDLID method by use of 2D and 3D FE-models. The experimental work showed that 

implementation of shaped inputs facilitates acceptable damage localisation, when 

applying a harmonic load, with a frequency equal to 70% of the frame structure’s first 

eigenfrequency. Despite inaccuracy in the FE-model tuning and uncertainties regarding 

the fixation of the frame structure, it is accomplished to localise mass perturbations 

between 0.019-0.121kg (where 0.019kg being approximately 1% of the frame structure’s 

total mass). Damage localisation in 1st floor showed complications, which is presumed to 

arise from the small dynamic impact from the mass perturbation on to the frame structure. 

Moving the shaped inputs/actuators resulted in more satisfying localisation results but 

with relatively poor resolution.  
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9.1 APPENDIX A - MODAL ANALYSIS: OUT OF PLANE & TWISTING 
Since only in-plane eigenmodes are of interest in present thesis, it is tested if any twisting 

and/or out of plane (OOP) eigenmodes are present beneath 100Hz. Two impulse tests are 

performed, one with the Brüel & Kjær equipment and another with a LoggerLite 3-axis 

accelerometer, depicted in Figure 9-4. Advantages and disadvantages are listed below, 

regarding impulse testing, followed by a description of the equipment used. 

Advantages using impulse excitation: 

- No additional mass is added to the structure 

- Faster to conduct, portable and easy setup compared to sine sweep 

- Often low signal to noise ratio  

Disadvantages using impulse excitation: 

- Large structures require a larger impulse, which can be hard to obtain without 

damaging the structure (locally) 

- Risk for double impacts  

- Not suitable for non-linear problems 

Since the actuators are difficult to move into OOP excitation, impulse test is used to 

establish modal parameters for OOP bending and twisting of the frame structure. 

9.1.1 Out of Plane Impulse Excitation - Brüel & Kjær 

Impulse excitation of the frame structure is done with an impulse hammer, depicted in 

Figure 9-1, which measures the impulse applied to the frame structure and hereafter 

transfers it to the PulseReflex software.  

 

Figure 9-1: Impulse excitation equipment. a) Three hammer tips with different hardness. b) Brüel & Kjær 

Impact Hammer Type 8206 [21]. 

The impulse hammer is supplied with three different hammer tips: aluminium, plastic and 

rubber, depicted in Figure 9-1a, where a harder tip can excite higher frequencies, which 

are illustrated in Figure 9-2.  
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Figure 9-2: Associated bandwidth for impact on an aluminium-plate [21]. 

Since the frame structure’s third eigenfrequency is approximately 77Hz, see Figure 3-9, 

the rubber tip is used.  

The advantages of impulse excitation, in contrast to harmonic excitation, is that no 

additional damping is applied to the structure in question and that the signal to noise ratio 

(SNR) usually is satisfying due to the nature (free decay) of the output.  

Table 9.1: Impact Hammer Type 8206 selected data [21]: 

Characteristic Value 

Maximum force 220 [N] 

Linear error at full scale <± 0.01 

Measuring Impulse Force & FRF 

The impulse applied to the structure by the impact hammer is measured inside the hammer 

head and transferred to the PulseReflex software for processing. In combination with 

output from the accelerometers, the frequency response functions are calculated and 

depicted in Figure 9-3. 

 

Figure 9-3: OOP impulse test with uniaxial Brüel & Kjær accelerometers. 
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Figure 9-3 indicates an OOP eigenfrequency at approximately 69Hz. The bump in the 

curve around 57Hz is evaluated as interference from the first twisting and in-plane mode 

respectively. 

9.1.2 Out of Plane Impulse Excitation - LoggerLite 

The LoggerLite 3D-BTA accelerometer [22], depicted inFigure 9-4, is positioned on the 

frame structure as depicted in Figure 9-7a. The experiment is not taking the extra mass of 

0.020kg into account of the LoggerLite accelerometer, which is evaluated as negligible 

in this context. 

 

Figure 9-4: 3-axis accelerometer model “LoggerLite 3D-BTA”. 

The frame structure is given an impulse with a hammer in the OOP direction, to excite 

the OOP and twisting eigenmodes. Due to the braces contributing to extra stiffness in the 

OOP axis, the impulse excitation will initially excite the frame structure in the OOP 

direction, before the energy transfer will cause the vibrations to become primarily in the 

weaker in-plane direction, hence this requires less energy. This is also seen from the blue 

(in-plane) and red (OOP) curves in Figure 9-6.  

 

Figure 9-5: Section of acceleration data from OOP impulse excitation.  

Blue line: in-plane accelerations. Red line: OOP accelerations (vertical accelerations omitted).  
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Eigenfrequencies – Out of Plane and Twisting 

From the red curve in Figure 9-6, it is seen that the first OOP eigenfrequency is 

approximately 69Hz. As expected, the blue curve peaks at the in-plane eigenfrequencies 

and together with the red curve at the twisting eigenfrequency, see Section 3.4.2. 

 

Figure 9-6: FFT plot from impulse excitation. Blue line: in-plane eigenfrequencies. Red line: OOP 

eigenfrequencies. 

Eigenfrequency - Twist 

Determining a twisting mode for the frame structure is illustrated in Figure 9-7b, where 

it is seen the x- and y-distances from origo to the accelerometer are equal, giving that 

when their accelerations are similar, it is a twisting mode.  

 

Figure 9-7: a) Side/top view of frame structure with LoggerLite accelerometer fixed on top corner.  

b) Top view of frame structure with coordinate system. Green arrow indicating twisting mode. 
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The eigenfrequency for the first twisting eigenmode is approximately 57Hz, as seen in 

Figure 9-6. Based on the results presented in Appendix A, it is concluded that the frame 

structure’s first twisting and OOP eigenfrequency are at approximately 57Hz and 69Hz, 

respectively, which explains the small peaks in the curves in Figure 3-9 presented in the 

thesis.  
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9.2 APPENDIX B - FINITE ELEMENT METHOD  
The frame structure used for the laboratory test is constructed of MakerBeam aluminium 

elements as illustrated in Figure 2-3c and d. The relative slender and open profile of the 

MakerBeam elements leads to the assumption that shear forces are negligible. Detailed 

modelling of the beam connections, depicted in Figure 3-1, where the M3 threaded rods 

are considered as differently pretensioned springs, is omitted. This leads to following two 

assumptions: 

- A FE-model on basis of Bernoulli-Euler beam theory. 

- Handling the divergent properties of the connections, by implementation of rotational 

springs into the FE-model, are elaborated in the thesis in Section 4.3. 

Following sections gives a brief description on calculation of local stiffness, mass and 

rotation matrices and assembling into a global matrix in 2D [13]. 

Local Stiffness Matrix 

A local stiffness matrix consists of values for each DOF in an element of the numeric 

model. The DOF for a single 2D Bernoulli-Euler beam element are illustrated in Figure 

9-8. It consists of two nodes where the interaction to neighbouring elements is transferred 

to the three DOF at each node. 

 

Figure 9-8: Illustration of a 2D beam element and its associated DOF. 

Where:  

 𝑢𝑥 , 𝑣𝑥, 𝜃𝑥   represent translational and rotational DOF 

The values for each DOF represents the stiffness towards translational and rotational 

displacement. The values for translational and rotational displacement are derived from 

the constitutive law in Eq. (9.1):  

 𝜕2𝑣(𝑥)

𝜕𝑥2
=

𝑀(𝑥)

𝐸𝐼
 

 

(9.1) 

Where:  

 𝐸, 𝐼 modulus of elasticity and moment of inertia 

 𝑀(𝑥) curvature with respect to 𝑥 

The transverse stiffness value at node 𝑣1 is obtained by giving it a displacement of one 

and the other DOF a displacement of zero, as illustrated in Figure 9-9.  
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Figure 9-9: Transverse displacement set to 1. All others DOF are set to 0. 

𝑣1 = 1 substituted into Eq. (9.1) gives: 

 
𝜃(𝑥) =

𝜕𝑣(𝑥)

𝜕𝑥
= ∫

−𝑀1 + 𝑉1𝑥

𝐸𝐼
𝑑𝑥 = −

𝑀1𝑥

𝐸𝐼
+

𝑉1𝑥
2

2𝐸𝐼
+

𝑐1

𝐸𝐼
 

(9.2) 

 

 
𝑣(𝑥) = ∫∫

−𝑀1 + 𝑉1𝑥

𝐸𝐼
𝑑𝑥 = −

𝑀1𝑥
2

2𝐸𝐼
+

𝑉1𝑥
3

6𝐸𝐼
+

𝑐1𝑥

𝐸𝐼
+

𝑐2

𝐸𝐼
 

(9.3) 

 

Boundary conditions are implemented: 

𝜃1 = 𝜃(0) =
𝑐1

𝐸𝐼
= 0 → 𝑐1 = 0  

𝑣1 = 𝑣(0) =
𝑐2

𝐸𝐼
= 1 → 𝑐2 = 𝐸𝐼  

Substituting above into Eq. (9.2) and Eq. (9.3), results in expressions for 𝑘22,

𝑘23 𝑎𝑛𝑑 𝑘32. The remaining values are computed with the same approach. The local 

stiffness matrix with all stiffness contributions are shown in Eq. (9.4): 

 

[𝑲𝑙𝑜𝑐𝑎𝑙] =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3
 

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
 −

6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
 −

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

(9.4) 

Rotation Matrix 

Modelling elements rotated relative to the global x-axis requires a rotation matrix to adjust 

the values in the local stiffness matrix accordingly, which is illustrated in Figure 9-10. 

x  

𝑦  

v2 = 0  v1 = 1  

u1 = 0  

θ1 = 0 θ2 = 0  

u2 = 0  

L 



  

IX 

 

 

Figure 9-10: Rotation of a 2D beam element. Local DOF: ux‘, vx‘. 

Global DOF: ux, vx. 

To obtain a global stiffness matrix that operates on DOF referred to global coordinates, a 

rotational coordinate transformation to 𝑲𝑙𝑜𝑐𝑎𝑙 is applied, shown in Eq. (9.7). 

 
𝑹𝑛𝑜𝑑𝑒 = [

𝑐 𝑠 0
−𝑠 𝑐 0
0 0 1

]   𝑐 = 𝑐𝑜𝑠(𝛽)  ∧  𝑠 = 𝑠𝑖𝑛(𝛽) 
(9.5) 

𝑅𝑛𝑜𝑑𝑒 is inserted into the 𝑅 matrix as in Eq. (9.6): 

 
𝑹 = [

𝑅𝑛𝑜𝑑𝑒 0
0 𝑅𝑛𝑜𝑑𝑒

] 
(9.6) 

  

Implementation to global coordinates is done by applying 𝑹 to 𝑲𝑙𝑜𝑐𝑎𝑙 as in Eq. (9.7): 

 𝑲𝑏𝑒𝑎𝑚,𝑖 = 𝑹𝑇𝑲𝑙𝑜𝑐𝑎𝑙,𝑖 𝑹 (9.7) 

Global Stiffness Matrix 

Local stiffness matrices, 𝑲𝑙𝑜𝑐𝑎𝑙, computed for each beam, 𝑲𝑏𝑒𝑎𝑚,𝑖, are assembled into a 

global stiffness matrix, 𝑲𝑔𝑙𝑜𝑏𝑎𝑙, that represents the stiffness of the entire FE-model, as 

depicted in Figure 9-11. 

 

Figure 9-11: Principle in assembling several local matrices into one global matrix. 

If a node is connecting with several elements, the values from the local stiffness matrices 

are summed in the global stiffness matrix at the corresponding DOF. 

 



  

X 

 

Local Mass Matrix 

For the frame structure a consistent mass matrix is chosen giving each element at local 

mass matrix as shown in Eq. (9.8):  

 

[𝑴𝑙𝑜𝑐𝑎𝑙] =
𝜌𝐴𝐿

420

[
 
 
 
 
 
140 0 0 70 0 0
0 156 22𝐿 0 54 −13𝐿
0 22𝐿 4𝐿2 0 13𝐿 −3𝐿2

70 0 0 140 0 0
0 54 13𝐿 0 156 −22𝐿
0 −13𝐿 −3𝐿2 0 −22𝐿 4𝐿2 ]

 
 
 
 
 

 

 

(9.8) 

Where: 

 𝜌, 𝐴, 𝐿 density, cross section area and element length 

Thereby representing the total mass of each element. 

Global Mass Matrix 

Assembly of local mass matrices into a global mass matrix is similar to assembling the 

global stiffness matrix. 

9.2.1 FEM 3D 

The same principles for 2D FEM are used for 3D FEM, where the number of DOF are 

expanded to 6 for each node, thereby changing the rotation matrix and expanding local 

matrices 𝑴,𝑲 and 𝑪 into 12x12 matrices. For a thorough elaboration on 3D FEM is 

referred to [13]. 

 


