
Intelligent Machines in
Economics

- A macroeconomic application of the LSTM neural network

Master Thesis

Rasmus Schier
- 20136441 -

Aalborg University
MSc Economics

Economics

Aalborg University

http://www.aau.dk

Title:
Intelligent Machines in Economics -
A macroeconomic application of the
LSTM neural network

Author:
Rasmus Schier

May 30, 2018

Supervisors:
Roman Jurowetzki
Hamid Raza

Page Numbers: 66

Acknowledgement

Thanks to my supervisors Roman Ju-
rowetzki and Hamid Raza for helping
and guiding me through this thesis.

http://www.aau.dk

0.1 Abstract

Macroeconomic data often consist of datasets with a large amount of variables
containing only relatively few observations. This is disadvantageous when dealing
with statistical consistency and degrees of freedom in complex models requiring
lots of explanatory variables.
The arrival of so-called "big data" has created a surge of new and different types
of data that makes more information available to those who can extract it. With
econometric models often being asymptotically estimated, the marginal informa-
tion gain does, however, decrease when the sample size grows to a certain size.
The decreasing econometric efficiency for large datasets makes more powerful ex-
traction methods interesting. This has raised the popularity and general interest
for machine learning methods, as these are able to extract information somewhat
automatically and efficiently. The Long Short-Term Memory neural network is one
of these models. It imitates the biological brain function of synaptic activity in an
artificial neural network. With this it is able to form patterns based on input data.
This type of network solves problems of earlier types, by including the ability to
retain information, but also forgetting it when it becomes irrelevant. The patterns
learned are used to produce predictions based on inputs. Common usages of this
network is for classification purposes of different inputs, often to extract informa-
tion. By classifying inputs the network can essentially be used as data generating
machines.

Economic applications of these learning networks are scarce and often limited to
univariate financial time series.
The LSTM in this thesis is fed 19 different danish macro indicators in an attempt
to predict the continuous value of growth in danish GDP. The indicators are com-
mon to GDP predictions and selected manually based on economic literature of
GDP "nowcasting". For benchmarking purposes a principal component regression
factor model with five latent factors is constructed. The validation methodology
follows the supervised machine learning approach of splitting the dataset into a
train- and test-set. The models are trained and estimated on the train-split, while
the test-split is used for out-of-sample prediction accuracy. The LSTM show better
performance in the setup presented, with a lower squared error, RMSE and MAE.
The Diebold-Mariano forecast test does however suggest that none of the models
predicts significantly better than the other.
The results suggest that the LSTM may improve accuracy with more available data,
and that the network can be used in a macroeconomic setup. It does however have
limited structural inference capabilities, which hurts the trustworthiness of the pre-
dictions and limits the networks forecasting capabilities. The networks provide no
real benefit over the principal component regression presented. This places the

0.1. Abstract iii

LSTM as a powerful predictive tool, but still a tool that is best used right now as a
powerful data generating method, allowing econometrics to handle the economic
interpretation.
Exciting possibilities does however exists for the networks in economic applica-
tions. Better predictive accuracy may be possible with the variational auto-encoder,
where a LSTM encodes information into a condensed representation of the inputs
received. The goal is to reconstruct the inputs as closely as possible from the
condensed information. Much like the latent factors in the factor models. The con-
densed information can be used for prediction, but structural inference is still not
possible.
The LIME framework allows for transparency in the networks by providing local
interpretations of inputs. In theory opening for the possibility of structural infer-
ence. The framework is mainly developed and tested in classification applications,
so further research is necessary to conclude the usefulness in the macroeconomic
regression setup.

Contents

0.1 Abstract . ii

1 Intelligent Learning and Economic Predictions 2
1.0.1 Econometrics combined with Machine Learning 2
1.0.2 Econometrics versus Machine Learning 4
1.0.3 The Macroeconomic Problem 8

2 Machine Learning Approach 10
2.1 Overview of Artificial Intelligence . 10
2.2 Machine Learning Methodology . 11
2.3 The Biological Motivation For Artificial Neural Networks 14
2.4 Artificial Neural Networks . 17

2.4.1 A Modular Network Architecture 18
2.4.2 Activation Functions . 22
2.4.3 Backpropagation . 25
2.4.4 Notes on Back-propagation . 28
2.4.5 Long Short-Term Memory (LSTM) 30
2.4.6 Summary . 34

3 Benchmark Dynamic Factor Model 35
3.1 Dynamic Factor Models . 35

3.1.1 Principal Components Regression 36

4 Data and Models 38
4.1 Data . 38
4.2 LSTM for Danish GDP . 41

4.2.1 Training The Network . 41
4.2.2 Parameters . 42

4.3 Benchmark Factor Model . 43
4.4 Results . 44

iv

Contents 1

5 The Machine Learning Contribution to Economics 49
5.1 Downsides of the Neural Network . 49
5.2 Posibilities of the Neural Network . 50

5.2.1 Nowcasting . 50
5.2.2 Local Interpretable Model-Agnostic Explanations (LIME) . . 51
5.2.3 Variational Auto-Encoders (VAE) 51

5.3 Data Generation . 53
5.3.1 Overconfidence in data . 53

6 Conclusion 55

References 58

A R code 61
A.1 LSTM for forecasting competition analysis 61
A.2 Initialization for macroeconomic analysis 63
A.3 LSTM for macroeconomic analysis . 64
A.4 Principal Component Regression . 65

Chapter 1

Intelligent Learning and Economic
Predictions

While the idea of "Artificial Intelligence" has been around since it was first dis-
cussed in 1943 (McCulloch & Pitts, 1943), it has recently experienced a surge of
popularity. With a significant increase in the amount and quality of all kinds of
data, the buzzword "big data" has emerged to describe a new plethora of informa-
tion available. This new kind of data consists not only of numbers, but all sorts
of information like tracked behaviour, images and text. It has allowed computer
scientists to imitate seemingly "intelligent" learning in machines, with the use of
powerful neural networks, squeezing even more information out of available data.
The Long Short-Term Memory (LSTM) is such a network, for example driving
the "brain" behind self driving cars and face- and voice recognition. While older
feed-forward neural networks can learn underlying patterns in data, the LSTM in-
troduces memory to the networks allowing it to selectively remember earlier useful
patterns.
In economics different attitudes exists towards the use of data. Many nuances and
increments exists, but in general there are those who use it descriptively to sup-
port theory and those who "let the data speak". For those actively relying on data
and model estimation, this advancement in data and technology provides inter-
esting opportunities in an econometric context. The usefulness and relevance is
however heavily reliant on the actual goal of the application. Two main directions
arise when discussing machine learning and econometrics; econometrics versus
machine learning, and econometrics combined with machine learning.

1.0.1 Econometrics combined with Machine Learning

The approach of combining machine learning and econometrics is essentially a two
step process: 1) Machine learning is used to extract as much relevant data as pos-

2

3

sible, which can then 2) be fed to any desired model.
The general disregard for the type of data in machine learning has some clear ad-
vatages in extracting and clustering data. The network in this thesis is presented
sequences of data in which it has to find patterns. The sequences does not neces-
sarily have to be of economic nature. A typical application of this type of network
is in image recognition, where the network categorise a sequence of pixels based
on predefined labels. (Henderson et al., 2012) used satellite images in an econo-
metric framework, where changes in emitted light captured by satellites is used to
reflect economic activity and growth in GDP. This is highly relevant for low-income
countries with poor data. The intensity of light is measured from the images in
seven levels of intensity and is combined with density of income holding popula-
tion; low density areas will have a lot more unlit pixels than high density areas.
The premise is therefore that high density areas with lower intensity, experience
less growth than high density areas with high intensity. The framework presented
requires lots of manual data processing to fit the data. Implementation of an auto-
matic method of generating economically categorized image data, would be highly
useful in this case.
Another use of satellite images is presented in (Lobell, 2013), where satellite im-
ages of crops are used to explain and predict crop yield and deviation. The article
is again suffering from manual extraction of useful information, in which the au-
tomatic extraction would be useful.
Another way to implement the automatic data generation is in language process-
ing, both spoken and text. By automatically labelling the attitude of headlines
and comments on different subjects, sentiment analysis can be incorporated into
prediction of stock movement. (Antweiler & Frank, 2004) applies this idea in a
regression framework to model volatility based on attitude. The difficulties of this
is, again, labelling data. With the LSTM’s ability to capture long term dependen-
cies by for example connecting words appearing different places in a sentence, the
attitude of the message can be extracted. By presenting the network with different
sequences of words, the attitude can be categorized as i.e. "positive", "negative"
or "neutral". This method can be extended to classify not only messages directly
addressing specific subjects, but also volatility appearing after messages from influ-
ential agents. All these examples are classification problems, which is then applied
to a continuous problem.

Automatic generation and extraction of relevant information is useful in a data
driven economic context. But when applying the machine learning algorithms as
data generating methods, the discussion of implementation quickly becomes about
the capabilities of the algorithms. The economic interpretation is added by the sur-
rounding econometric problem and structure. Exploring machine learning capa-
bilities in a framework like this changes the nature of the discussion to a computer

4

science problem of classifying data most efficiently. The economic value added by
extracting even more information, is simply the increase in available data.

1.0.2 Econometrics versus Machine Learning

The other main implementation is to test whether machine learning methods can
outperform econometric methods in prediction. An application like this utilises
machine learning methods to solve the econometric problem, instead of solving
what is essentially data problems happening to be of an economic character. In
this way, the discussion is kept in the economic domain. This approach is dis-
cussed and applied in this thesis.
Explicitly trying to solve econometric problems with "intelligent learning machines"
in the form of neural networks, and the LSTM in particular, is a relatively new en-
deavour. (Herbrich et al., 1999) discussed economic applications of neural networks
in 1999 and the subject evolved up through the 2000’s, where it was also discussed
in prominent econometric textbooks (Enders, 2015) as an alternative non-linear
method. It did, however, never gain much traction because of the limited amount
of relevant economic data. No significant improvements where made over already
existing econometric methods on available data. Partly because the search algo-
rithm behind the networks require lots of observations, which limits applications
to financial series containing many observations.
(Enders, 2015) discusses a standard neural networks in a univariate financial ap-
plication in his textbook. (Zhang et al., 2010) used a feed-forward network in a
multivariate prediction of the possibility of recession in China, based on leading
indicators. (Varian, 2014) talked about different machine learning approaches from
tree structures to LASSO-regressions. (Fischer & Krauss, 2017) applied the LSTM
to multivariate financial time series in an exploration of its performance compared
to many of these methods mentioned by (Varian, 2014) in an economic context.
The network showed better performance in predicting time series movement com-
pared to both the popular Random Forest method, LASSO-regression and simple
feed-forward neural networks.
The constructed bibliographic network of clustered keywords in Figure 1.1, shows
a separation of machine learning and economics in the literature. It also suggest a
lack of literature connecting macroeconomics to neural networks. The map is cre-
ated by linking keywords in multiple layers of references1, starting from (Kuang
et al., 2017). This article discuss the use of a modified neural network to forecast
different financial series, but also inflation rate. In this sense the article provides
a good starting point for exploring the links in the literature revolving around the
problems and methods of using neural networks to solve econometric problems.
A link between two keywords suggests use of both keywords in the articles. The

1Created with Web Of Science v.5.29

5

size of clusters grows with the number of occurrences. Distance between clusters
is a signal of which type of article the keywords are used in.
The problems and methods in the left cluster have an economic character, while the
right is concerned with machine learning methods and problems. The red cluster
is focused around forecasting, while the yellow moves into keywords related to
the details of econometric methodology. The green cluster revolves around neu-
ral networks, while the blue is keywords used in discussion of machine learning
methodology. The relevant keywords are those specific to the field it is used in, for
example "network" and "forecast". Keywords such as "problem" or "information" is
less relevant as they are too general, only connected to a cluster because of a higher
number of mentions.

Figure 1.1: Bibliographic Network Clustered by Keywords and Linked by Common References

Source: Web of Science v.5.29

Looking at the links of the "Network" keyword in Figure 1.2 the connection to eco-
nomic literature is focused on financial forecasting of exchange rates, volatilty and
return. Following the keyword "Indicator" in Figure 1.3 it does have some ties to
"algorithm", but primarily connects to other economic keywords. The "GDP" and
"recession" keywords connects only to economic keywords.
So while the neural networks have been applied to financial time series, this overview
suggests that macroeconomic applications are limited.

This thesis therefore contributes with an application of the more powerful LSTM in a tradi-
tional multivariate macroeconomic perspective. The goal is to explore how well the LSTM
predicts growth in GDP, based on macroeconomic indicators for the danish economy.

6

Figure 1.2: Links for "Network" Keyword

Source: Web of Science v.5.29

Figure 1.3: Links for "Indicator" Keyword

Source: Web of Science v. 5.29

7

A showcase of the pattern learning ability of the LSTM is presented in Figure
1.4, where it predicts four univariate time series. The series are unnamed daily
series, randomly chosen from Spyros Makridakis M4 Forecasting Competition
(Makridaki, n.d.). The networks are constructed in a sliding window fashion, cre-
ating sequences of 50 observations. The first 50 observations are used to predict
observation 51 and the window is then moved one-step ahead, using observation
[2 : 51] to predict observation 52, and so on. The tuned parameters are shown
under the figures, but explanation of these are saved for later. The data is split

Figure 1.4: LSTM of M4-Competition Time Series

a) First series

0 200 400 600 800 1000

-1
0

1
2

3

Index

dt
e_

sc
[,

d_
se

rie
s]

b) Second series

0 200 400 600 800 1000

-2
-1

0
1

2

Index

dt
e_

sc
[,

d_
se

rie
s]

c) Third series

0 200 400 600 800 1000

-1
0

1
2

3

Index

dt
e_

sc
[,

d_
se

rie
s]

d) Fourth series

0 200 400 600 800 1000

-2
-1

0
1

2

Index

dt
e_

sc
[,

d_
se

rie
s]

50 Units, ReLU activation, 0.4 Dropout, MSE loss, ADAM optimizer

into a training- (blue) and test-set (red) for the series. The network is only fed the

8

training set, and then has to predict the out-of-sample red part, based on the pat-
terns learned from the training. As it can be seen, the network shows good fitment
in both training and prediction. No specific tuning of parameters is done for the
individual series. This is why the prediction of some series are better than others,
as the network configuration works better for some series. This seemingly strong
ability to extract patterns, is what this thesis applies to a multivariate macroeco-
nomic setup.

1.0.3 The Macroeconomic Problem

"Taking the temperature" of an economy is highly useful in decision making. It can,
however, also be a complex task to perform. Growth in GDP reflects the cyclical
movements in an economy, but the information is ultimately retrospective. This
is a disadvantage to those using this information, so prediction of GDP growth is
useful.
A simple univariate autoregressive forecast with the ARIMA model could be used,
but in the case of GDP, a multivariate approach has its benefits. Mainly because it
opens for the possibility of modelling the complex system that an economy is and
basing the prediction on leading indicators for the economy. Vector autoregressive
models can create such structural equations, but allows only for a limited num-
ber of indicators to be included. They are therefore useful for impulse response
analysis between variables, but not necessarily predicting GDP from a large vector
of indicators. Furthermore macroeconomic data is often "wider" than it is "long",
meaning that a lot of different variables exists but each containing relatively few
observations. The econometric solution are Dynamic Factor Models, which solves
some of these problems, as they allow for many indicators to be included in the
prediction. A principal component dynamic factor model is used as benchmark
for the LSTM.
The method of applying an LSTM to macroeconomic data with many indicators
is somewhat straight forward, as the structure and method of the network simply
maps multiple inputs to an output. In theory it should be as simple as plugging in
a number of indicators and a desired output, such as key economic indicators and
GDP. In a sense this thesis therefore also explores if many series with relatively few
observations, can be used in place of long time series, when using the LSTM.

The thesis is divided into six chapters:

• The first chapter constitutes this introduction.

• The second chapter places machine learning in the "Artificial Intelligence" ter-
minology, presents the biological motivation for constructing artificial neural
networks in the first place and discusses the methodology behind training

9

and validation in machine learning. The chapter further introduces neural
networks in detail ending in the LSTM. An economic context is provided
where possible.

• The third chapter presents a quick run down of the theory behind the Prin-
cipal Component Dynamic Factor Model used for benchmarking and why it
can handle high-dimension dataset with many macroeconomic indicators.

• The fourth chapter compares the results of GDP growth prediction, from both
models.

• The fifth chapter discusses some exciting possibilities for the LSTM in an
economic context.

• The sixth chapter provides a conclusion.

Chapter 2

Machine Learning Approach

For the sake of clarity this chapter starts out with an overview of the key elements
associated with the term "Artificial Intelligence". This is mainly done because this
thesis only relates to the discipline of machine learning and ultimately the applica-
tion of the LSTM in an economic context. This is necessary because machine learning
and artificial intelligence often are used interchangeably. A biological motivation for
using artificial neural networks is presented, and the field of machine learning is
visualized.
Next the evolution of artificial neural networks is presented in detail in a modular
framework ending in a presentation of the Long-Short-Term Memory (LSTM) net-
work. The aim is to introduce neural networks to those unfamiliar with machine
learning. This covers the mathematical method behind the networks, the arising
problems of the method used and a presentation of the LSTM, that solves some of
the complications earlier network algorithms suffered from.

2.1 Overview of Artificial Intelligence

As stated in the introduction the term artificial intelligence is far from new. The
idea of modelling artificial computational learning started in 1943 (McCulloch &
Pitts, 1943), but the term "Artificial Intelligence" is said to have emerged from a
Darthmouth workshop in 1956, participated by several prominent researchers. It
was concluded that true artificial intelligence only exists when "A self-improving
machine (or program) is created. When computers are able to learn by reading existing
natural language text and when an AI has problem solving capacity equivalent to the com-
puter science community" (Hall, 2011, p. 174). In other words a machine that mimics
the abilities of the human brain.
Ray J. Solomonoff, one of the attendees at the Darthmouth Workshop, later dis-
cussed flaws in developed "learning machines" and associated computational al-

10

2.2. Machine Learning Methodology 11

gorithms, which excludes them from reaching human like learning- and problem
solving capabilities. These algorithms, even though highly useful tools and es-
sential to machine computation, still needs a sourrounding cognitive architecture.
This architecture has to call upon instances of machine learning algorithms, in or-
der to be classified as true "artifical intelligence" (Solomonoff, 2009) (Hall, 2011).
The overview can therefore be presented as Figure 2.1
As it can be seen in Section 1, a functioning AI is required to mimic the collabora-
tion of different cognitive functions. It has to be able to process natural language
in text and speech, display reasoning, problem solving and planning, and be able
to represent knowledge. On a physical level it also has to mimic motoric functions
and be able to display perception, often through sensors (Desai, 2017). The term
artificial intelligence can be seen as a somewhat more theoretic and philosophical
concept, while machine learning is the practical computer science instantiation of
the concept, handling the different tasks. This is why the focus of this section of the
thesis is directed towards the application of artificial intelligence, being machine
learning, rather than artificial intelligence as a whole. The LSTM network used
in this thesis is placed in the recurrent network category trained in a supervised
fashion where both input and output is presented to the network.

2.2 Machine Learning Methodology

Tom M. Mitchell summarised the field of machine learning as "the attempt to con-
struct computer programs that automatically improve with experience." (Mitchell, 1997,
p. xv) and defined computer learning broadly with:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.
- (Mitchell, 1997, p. 2)

In short: a computer learns by experience if it improves on its performance doing a
task. A broad definition like this captures the interdisciplinary nature of machine
learning, and shows its relevancy in economics. Machines that learn underlying
patterns and improve these with experience, essentially solves optimization prob-
lems.
As Section 2 show in Figure 2.1 the plethora of different training algorithms can in
general be split into different classes. The relevant in this case being the supervised
training (Ayodele, 2010b).
During supervised training, the algorithm is presented with pairs of inputs and
outputs from a training dataset. The goal is for the learner to learn an underly-
ing function by mapping the input to output. Essentially learning that a special

2.2. Machine Learning Methodology 12

Figure 2.1: Overview of Artificial Intelligence

Source: Section 1 (Desai, 2017), Section 2 (Ayodele, 2010a), Section 3 (Mitchell, 1997),
Section 4 (Elman, 1990)

2.2. Machine Learning Methodology 13

configuration of input values results in a given output. For example macroeco-
nomic indicators to growth in GDP. With this underlying function it should be
able to correctly predict an output value from any input. A continuous problem
like predicting the growth in GDP would result in a continuous value, while a clas-
sification problem like predicting the state of a binary recession indicator would
result in an assigned state.
Supervised training requires some form of data-preprocessing to work properly, of-
ten including some sort of feature/attribute subset selection and feature/attribute
construction or transformation to reduce dimensionality of data, while still keeping
complexity (Ayodele, 2010b). This relates much to the selection of key indicators
in an econometric approach. Private consumption would in economic theory for
example be a feature of GDP, as it is assumed to explain GDP. In this sense the
selection of economic inputs to the model, relies as much on these assumptions, as
econometric approaches.
With proper data, the learning algorithm recurrently adjusts its parameters to min-
imize the error between desired output and predicted output. The specific training
algorithm is discussed in section 4.2.
The validation of machine learning models under supervised training, is based on
a train- test split of the data. The set is split into two: one training set and one
test set for out-of-sample validation of the predictions. It is further split into an
input subset containing all input series, and output subset. In this case the inputs
are the key indicators while the output data is the GDP. The result is four different
datasets: an input and output for training and an input and output for out-of-
sample validation. The argument behind using out-of-sample validation is that the
algorithm is optimized until the network produces the lowest error possible for the
prediction. Not necessarily the lowest error of fitment to training data.

Given the structure of the algorithm, and as it will become evident in the theo-
retic explanation in section 2.4.1, the neural network have one main focus: predic-
tion. This sets the methodology and philosophy behind machine learning apart
from that of econometrics. While econometrics often revolves around parameter
estimation, the machine learning approach is build around prediction of output
(Mullainathan & Spiess, 2017). In essence focusing on prediction of ŷ rather than
on estimation of β̂. This sets a limit on the relevant cases for which to apply neural
networks, as structural inference and response analysis has no direct implemen-
tation in the networks. This could be one reason for the relatively few number
of macroeconomic applications. With the missing ability for structural inference,
relevant applications are pushed towards those who do not require long run esti-
mation. Practitioners are thus not necessarily concerned with considerations such
as cointegration and error correction.
The network is however still a highly useful tool in the right applications because

2.3. The Biological Motivation For Artificial Neural Networks 14

of its high level of automation in learning and recognising patterns from data.
Econometric practitioners are aided by significance levels in the distribution of the
data, but recognizing patterns such as relevant lags or regressors are still ultimately
the choice of the practitioner. The LSTM learns these patterns on its own by pure
error minimization, ultimately removing the manual aspect of extracting relevant
information from the data by automating the process. In this sense the "intelligent
learning" is incorporated into the economic modelling.
The inner workings of the network and the automated learning is explained in the
next sections, starting with the biological inspiration for forming artificial neural
networks in the first place.

2.3 The Biological Motivation For Artificial Neural Networks

Pattern recognition is vital to the function of humans and animals. From a practical
point of view of recognizing poisonous from edible and friends from foes, but also
from a functionality perspective of, for example, categorizing sound waves into un-
derstandable language. Cognitive neuroscience describes this process as the brain
matching information from stimulus with information from memory (Eysenck &
Keane, 2005). Building on this, memory and in extension learning, is crucial to the
overall progression of the individual.
The formation of memory is in general credited to synaptic activity in the brain.
The brain consists of billions of neurons which each connect to other neurons
through neurotransmitters and receptors forming a synapse. The transfer of electri-
cal charges through synapses is what makes up synaptic activity (Bliss & Collingridge,
1993). In 1968 Atkinson and Shiffrin proposed a theoretic framework that catego-
rized this activity into three stages: sensory register, short-term store and long-
term store (Atkinson & Shiffrin, 1968). The framework is somewhat limited to the
scope of stimulus to the visual system, as it was well understood at the time while
understanding of other sensory dimensions where limited. Figure 2.2 shows the
different stages of synaptic activity, starting with an instant initial registration of
visual external input and a "serveral hundreds miliseconds decay" before it is forgot-
ten. Before the sensory registration has decayed the input is transferred to the
short-term stage, which has a longer associated decay. This stage is also referred to
as the "Working Memory", and acts as a filtering mechanism transferring only some
of the sensory input into long-term storage. Atkinson & Shiffrin argues based
on other studies, that the transfer from short-term storage to long-term storage
may in some cases be associated with conscious effort to remember and others
with involuntary repeated exposure to the input. The efficiency of recognizing
these patterns of synapse activity and decay, makes the basis for forming memory
in the brain. This efficiency may however be hard to estimate. The framework
revolves around the authors defined "auditory-verbal-linguistic" (shortened a-v-l)

2.3. The Biological Motivation For Artificial Neural Networks 15

Figure 2.2: Atkinson & Shiffrins Memory Model

Source: Recreation of Figure 1 - Structure of the memory system (Atkinson & Shiffrin,
1968)

2.3. The Biological Motivation For Artificial Neural Networks 16

storing mechanism, because one mode of sensory input may be stored in short-
term as another mode. Using the example from the framework, a written word
is initially visually registered, but may be stored in auditory short-term storage
because of phonetical association. This modal difference makes the estimation of
efficiency hard.
The specific neurological events making up the transfer from short-term storage
into long-term storage is later on discussed and improved by Beddeley & Hitch in
1974 (Baddeley & Hitch, 1974). The conceptual simplicity of the framework pre-
sented by Atkinson & Shiffrin is however relevant when applying the transfer of
input through a neural network.
The study of biological learning systems has greatly inspired computer scientists
to model artificial neural networks in order to both aid biological research, but also
recreate artificial systems making machines capable of learning.
To warrant the exploration of artificial learning systems with machines, one text-
book on machine learning presents the claim that raw computational power of
computers is superior to the power of the human brain (Mitchell, 1997). The fastest
on/off switching time of neurons in the brain is estimated at around 10−3 seconds,
while the switching time of transistors in computer processors is estimated to be
around 10−10 seconds (Mitchell, 1997, p. 82). As Mitchell however also states,
serveral problems arise from this claim. The idea of adopting a similar structure is
valid, but as Atkinson & Shriffin stated, the efficiency of the transfer function from
sensory input to working memory and long-term storage is unknown because of
modal switching between the stages. This is exactly why the a.v.l composite is cre-
ated, because it is unknown how much weight is placed on each sensory input. An
artificial neuron outputs a single value while the synapses in the brain exchange
a set of information. This invokes an epistemological problem in the assumption
that neuron activity in the brain is comparable to the simple on/off switching of
transistors in computer processors (Chalmers, 1993).
Because of this the field of machine learning can be split in two paths

• One that attempts to model and mimic the neural activity in the human brain
as accurately as possible.

• One that focuses on the computational implementation by taking advantage
of processor power, while sacrificing realism.

In the context of this thesis the latter path is chosen as focus is directed towards
the algorithmic computation with neural network and not necessarily at true to
life modelling. This is also the reason for using the structure of memory formation
proposed by Atkinson & Shiffrin, as reference when making biological analogies.

2.4. Artificial Neural Networks 17

2.4 Artificial Neural Networks

Stephen Grossberg (Grossberg, 1980) and Rumelhart & McClelland (Rumelhart et
al., 1986) are major contributors to the computational modelling of memory forma-
tion in artifical neural networks, building on the biological motivation. Rumelhart
and McClelland presented in 1986 a framework for parallel distributed processing
(PDP) taking the form of an artificial neural network. Grossberg greatly expanded
on the non-linear capabilities of the PDP networks, by implementing non-linear
activation functions.
The authors identify eight components of a PDP model:

• A set of processing units

• A state of activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns of activity through the network

• An activation function for combining inputs impinging on a unit with a cur-
rent state, to produce a new level of activation

• A learning rule whereby patterns are modified by experience

• An environment within which the system must operate

- (Rumelhart et al., 1986)
This section of the thesis presents this framework.
Secondly the general components of learning in a network is presented in-depth,
deriving the delta rule proposed by Rumelhart & McClelland, and the application
of said rule in the back-propagation algorithm. Different types of neural networks
exists. The most relevant in the context of this thesis being the feed-forward net-
work and the recurrent network.

By quickly reflecting on this framework the economic relevancy becomes clear.
The network takes a number of economic series as input and sends them through
processing units. These units are activated according to a specified rule and trans-
formed into a new output which is then send through other connected units. In
the end of the network an output is produced; the growth in GDP. Using the out-
of-sample methodology this is then compared to the real value of GDP growth,
and the connections between the neurons are then modified to produce an output
closer to the target GDP growth. The learning rule specifies how the algorithm
does this on its own, requiring minimal interference from the designer when the
data is provided.

2.4. Artificial Neural Networks 18

2.4.1 A Modular Network Architecture

The Feed-Forward Network

The most basic component of a neural network is the neuron (Rumelhart et al.,
1986).
Referring to Figure 2.3, a neuron, k takes a number of inputs xm. The input is

Figure 2.3: Representation Of A General Neuron

Source: Figure 2.1 Single-Layer Neuron

multiplied by a weight wkm, connecting the input to a summation function. A bias
is added here, (bk). This gives an input vk which is passed to an activation function
f . This produces the neuron output yk send to the next neuron. The output of a
neuron is thereby:

yk = fk(wkmxm + bk)

m refers to a specific input, k to the specific neuron in a layer of more than one
neuron. vk is a local field that will later on be filled with a gradient.
The parameters wkm and bk can be adjusted by the network according to a learning
rule, while the activation function is chosen by the designer at initial setup (Hagan
et al., 2014).
Following the biological analogy, the weight wkm is the strength of the signal com-
ing from a synapse, the summation and activation function is the body of the
neuron, while the output is the signal send to a synapse connected to another neu-
ron.
This is also how a network can have multiple layers; an input layer, a hidden layer

2.4. Artificial Neural Networks 19

and an output layer. With multiple inputs xm and multiple neurons, k, multiple
weights exists. These form the weight matrix, W, with elements of w1,1, w1,2, w2,1, w2,2..., wk,m.

W =

w1,1 w1,2 . . . w1,m

w2,1 w2,2 . . . w2,m
...

...
. . .

...
wk,1 wk,2 . . . wk,m

This weight matrix is multiplied on the inputs. The matrix also resembles a sim-
ple single-layer network with multiple inputs. The output from each neuron is
therefore given as:

yk = fk(Wxm + bk) (2.1)

A multi-layer network includes an input layer, a number of hidden layers and an
output layer. With multiple hidden layers and an output layer. k denotes neurons
in the layer to the right of neurons i, and j to the right of layer k, giving the order:

i→ k→ j

This is shown in figure 2.4 The flow of information is the same as in the simple

Figure 2.4: Multi-layer Network

Source: Figure 2.10 Multi-Layer Network

neuron. The input xm is multiplied by weight matrix W creating the local field

2.4. Artificial Neural Networks 20

vk, assuming an initial condition of bk = 1. This field vk is used by the activation
function fk. The output from the activation function, yk, is then passed to the next
layer j, acting as input to these neurons. To better show the flow of information, the
output yk from a hidden layer is referred to as net input to the next layer, denoted
as:

netk = yk

A dedicated output layer presents the final output of the network, yj.
The network presented is also known as a feed-forward network, with topology of
a directed acyclic graph, and the neuron constructed as a perceptron. This kind of
network is often used in classification problems. Take for example (Zhang et al.,
2010) as an economic application. A three-layer feed-forward network is used to
classify the probability of a recession. By mapping values of different economic
indicators to a binary recession indicator in a training period, the network can pre-
dict a probability of recession based on unseen test values of the same indicators.
The network receives the indicator values in the input layer. The recession indica-
tor, with a value of [0 or 1], is set as the output. The network iteratively updates
the weight matrix, W, transforming the values of the different indicators flowing
through the network and producing a recession probability. The out-of-sample val-
ues of the indicators are then fed to the network and transformed by the weights
to a resulting output. This output is a probability of recession between 0 and 1.

Recurrent Neural Networks

A time dimension can be added by using a recurrent network structure, that facil-
itates a Delay component to the structure (Hagan et al., 2014). This blocks makes it
possible for earlier outputs of the network, to influence future outputs and thereby
opens for the possibility of lagged dependencies in economic data.
The delay module shown in Figure 2.5 receives xm(t) as initial input. Simply mean-
ing that the delay operation does not have any influence on the output in the first
iteration. A copy of the output yk, referred to as u(t), is sent back to the net-
work and used as input for the next iteration. The copy that is sent back becomes
u(t) = yk(t− 1) opening for the possibility of basing the output of the neuron, not
only on xm(t), but also yk(t− 1).
The recurrent structure can be constructed as presented in Figure 2.6.
It is shown that the input xm(t) is send directly to the delay module, giving an
initial output yk(0) = xm. This is fed back into the recurrent layer and multiplied
by the weight matrix W where weight connections from the delay module is now
present. Summed with the bias, bk, it creates net input vk(t). The activation func-
tion receives this input and passes its output, yk(t), to the delay function that gives
the output to the next layer, this time renamed netyk. It also feeds the net input

2.4. Artificial Neural Networks 21

Figure 2.5: Delay

Source: Figure 2.11 - Delay Block (Hagan et al., 2014)

Figure 2.6: Discrete-time Recurrent Network

Figure 2.13 - Recurrent Network (Hagan et al., 2014)

2.4. Artificial Neural Networks 22

back into the recurrent layer. The output of the neuron is calculated as:

netyk(t) = fk(Wyk(t− 1) + bk)

The use of layer reference k may not immediately be evident in a recurrent net-
work, but more complex networks can combine different sub-networks, making
layer reference highly useful.
Recalling the biological memory framework presented by Atkinson and Shiffrin,
the delay module facilitates the "memory" of the computer. While the feed-forward
network can capture a pattern and reproduce it with the weight matrix, "memory"
is captured in recurrent networks. The idea of earlier synaptic activity is modelled
in the recurrent networks by feeding the output back into the model and basing
yk(t) on yk(t− 1) created by earlier output, specifically by the activation function
and output function. In this way the recurrent network learns not only patterns
in the mapping of inputs to outputs, but also how earlier patterns affect current
patterns. The weight matrix is then essentially a loading matrix much like the one
used in the dynamic factor model in section 3.1.

2.4.2 Activation Functions

The "on/off" switching of neurons in the biological analogy is imitated by activa-
tion functions in the artificial network. The functions are central to the functional-
ity of the networks because they act as gates determining the activity of a neuron.
It maps the input to a limited range, making the computation bounded, stable
and serparable in the induced local field (Hecht-Nielsen, 1992) (Mitchell, 1997)
(Haykin, 1999). Different activation functions exists, and different functions are
useful for different applications. In general three basic categories exists; Threshold-
, Piecewise-Linear- and Sigmoid functions (Haykin, 1999).

Threshold Functions: The threshold function is boolean by nature. It outputs a
value depending on the input relative to a threshold. In the example of a simple
perceptron shown in Figure 2.3 the function output can be formulated as:

f (a) =

{
1 if a > 0

−1 otherwise

In this example an antisymmetrical hard-limit activation function is used to limit
the output to [−1 or 1]. The linear combination of inputs in weight space, a =

∑k
m=0 wm,kxm + bk, has to exceed the threshold of 0 to output 1, else it outputs −1

(Mitchell, 1997). Different threshold functions exists, all mapping the net input to
output values by a boolean OR operator. Simply meaning that the function maps
output based on a "one-or-nothing" approach (Haykin, 1999). Figure 2.7 shows

2.4. Artificial Neural Networks 23

Figure 2.7: Anti-symmetrical Hard Limit Func-
tion [−1 or 1]

Source: (Mitchell, 1997)

Figure 2.8: Piece-Wise Linear [0 : 1]

Source: (Haykin, 1999)

the anti-symmetrical hard-limit activation function limit allowing negative output
values.

Piecewise-Linear Functions: The piecewise-linear function uses a mapping range,
allowing the space, a, to pass through if it stays within the boundaries of the acti-
vation function. An example function can be formulated as:

f (a) =

1 if a ≥ + 1

2

v if 1 + 1
2 > a > − 1

2

0 if a ≤ − 1
2

The piecewise-linear activation function can consists of different linear segments
with different slopes, allowing approximation to non-linear functions with simple
linear methods. If a is infinitely large the activation function reduces to a threshold
function (Haykin, 1999). Figure 2.8 shows the piecewise-linear example.

Sigmoid Functions: The sigmoid shaped activation functions are the most com-
monly used functions, because they are differentiable by nature (Haykin, 1999).
Both Grossberg (Grossberg, 1980) and Rumelhart & McClelland (Rumelhart et al.,
1986) advocates the use of sigmoid shape in non-linear networks because of the
derivatives ability to capture non-linear functions in multiple layers. The output
of the function lies within a range of [0 : 1] or [−1 : 1], depending on the function
used, giving a continuous output. Following the biological analogy the use of a

2.4. Artificial Neural Networks 24

Figure 2.9: Logistic Function [0 : 1]

Source: (Haykin, 1999)

Figure 2.10: Hyperbolic Tangent [−1 : 1]

Source: (Haykin, 1999)

range facilitates varying intensity of "firing" between neurons. This makes the class
of functions useful for continuous input and regression problems, as some previ-
ous outputs may have more impact on future outputs, than others. Two popular
sigmoid activation functions are the logistic function and the hyperbolic tangent
function.
The logistic function is shown in Figure 2.9 defined as:

f (a) =
1

1 + exp(−αa)

A slope, α, increasing to infinity, transforms the sigmoid function into a threshold
function. For all other α’s the output can take on a value from the range [0 : 1].
To allow negative output values of the activation function, the hyperbolic tangent
shown in Figure 2.10 is used, essentially just providing a rescaled and shifted
logistic function (Haykin, 1999). It is defined as:

f (a) = tanh(a) =
ea − e−a

ea + e−a

The use of antisymmetrical activation functions, like the hyperbolic tangent in
range [−1 : 1], has shown to yield better results than nonsymmetrical functions
like the logistic function in range [0 : 1] (Glorot & Bengio, 2010).

2.4. Artificial Neural Networks 25

2.4.3 Backpropagation

Up until now the flow of information presented in the PCP framework shares con-
ceptual analogies to the flow of activity in the brain. This is however also where the
analogy ends. Any deeper mechanisms of the network shifts focus from realism to
computational implementation.

In section 2.2 a learning machine was defined as one that increases its performance
at a task with experience. This is true for an artificial neural network in the way
it update weights, W, and bias b until it can predict accurately. Essentially, the
machine is solving an optimization problem of choosing the weights that provides
the lowest overall loss, compared to the target training output. This is done by the
Back-propagation algorithm with gradient descent, based on Rumelhart & McClel-
land’s "Delta Rule" (Rumelhart et al., 1986). The algorithm computes the weights
in two passes, a forward- and backwards pass.

Forward Pass In the forward pass the time series are fed through the network
and weights randomly initialized with small numbers (Mitchell, 1997). Output is
calculated neuron-by-neuron as defined in equation (2.1). A single hidden layer k
is assumed for simplicity, resulting in the output layer being j :

yj = f j(Wxm + bj)

with
vj(t) = (Wjxm + bj)

vj(t) being a weight space induced by the sum of weighted inputs plus the bias.
Input xm is output fed from the earlier layer. Furthermore, observable neurons in
the output layer produces an error signal at time t the size of the difference between
the target output, ytrg(t), and the computed output from the neuron, yj(t):

ej(t) = ytrg(t)− yj(t) (2.2)

An instantaneous error per neuron is defined as 1
2 e2

j (t) with the total instantaneous
error in the output layer thus being:

ε(t) =
1
2 ∑

j=C
e2

j (t) (2.3)

C defining the set of neurons j in the output layer, resulting in the average squared
error taking the form:

εav =
1
N

N

∑
t=1

ε(t) (2.4)

2.4. Artificial Neural Networks 26

N is the number of observations per input series, and t the time step. The average
squared error εav is the cost function of the training dataset, that the network seeks
to minimize. The forward pass ends when the error signal is computed at the
output layer (Rumelhart et al., 1986).

Backward Pass The error is sent backwards through the network starting
from the output layer. At each neuron the weight is changed to reduce the er-
ror received according to Rumelhart & McClelland’s delta rule. This updating rule
relies on a learning parameter, a local gradient in the induced weight space, and an
input value from an earlier neuron. The change that has to be made to the weight
in order to reduce the error signal is defined as:

∆wjk = ηδj(t)xm(t) (2.5)

∆wjk is the change to be made to the weight proportional to the partial derivative
∂ε

∂wjk
of the error. xm(t) is the input values. This would be netyi(t) if the neuron was

placed in hidden layer k of a multi layer network, with layer i to the left. δj(t) is
the error gradient received and η the learning rate of the network chosen by the
designer at setup.
The specification of the local gradient, δj(t) depends on the type of neuron. If the
neuron is part of the final output layer the gradient is constructed from ej and the
partial derivative as:

δj(t) = ej(t) f ′j (vj(t)) (2.6)

f ′j being the derivative of the activation function and vj(t) the induced weight
space, that the gradient δj is part of. ej is easy to calculate according to 2.1, as the
neuron is shown both yj(t) and ytrg(t).
If the neuron is part of a hidden layer no directly comparable target output is
presented, so the error signal received is determined from the error signal already
computed. This is done by:

δk(t) = f ′k(vk(t))∑
j

δj(t)wjk(t) (2.7)

With k being left of j. The local gradient δk(t) for neuron k in the hidden layer is
constructed from the sum of the already computed error gradients in the layer to
the right of the hidden neuron. This is multiplied by the corresponding weight
wkj between the neurons in the two layers. Thus giving a backwards flow of error
signals in the network (Rumelhart et al., 1986).
Intuitively, in an economic context, the value of the different indicators are there-
fore sent through the network with weights randomly chosen at initialization, and
an overall error between the GDP growth prediction of the final output layer is
compared to the real GDP growth from the training data. The error between these

2.4. Artificial Neural Networks 27

is then sent back and weights are adjusted one layer at a time. Each neuron is de-
ciding to vote for which direction to adjust their individually connected weights,
in order to bring GDP growth closer to the known target GDP growth. The amount
of adjustment is large at first and gets incrementally smaller when the neuron is
close to the target GDP. The algorithm "knows" when it is close because of the gra-
dient. When the descent becomes more and more shallow with each step in one
direction, it is a sign of the weight reaching a minimum. Figure 2.11 illustrates an
example gradient with different minimums.

Figure 2.11: Example of a 3D surface gradient

x

y

Z

-1.5

-1.0

-0.5

0.0

0.5

1.0

Source: Constructed from random simulation

Back-propagation Through Time (BPTT) In a recurrent network structure the
algorithm is modified to handle time. The result is the back-propagation through-
time algorithm. A forward pass of the training set, starting at ts and ending at tN ,
is fed through the network. All input- output pairs and weights of the network are
saved, and a single backwards pass of the network calculates the gradients as:

δj(t) = −
∂εtotal(ts, tN)

∂vj(t)
(2.8)

2.4. Artificial Neural Networks 28

Where the total loss is defined:

εtotal(ts, tN) =
1
2

tN

∑
t=ts

∑
j=Λ

e2
j (t) (2.9)

Λ denoting the index of a neuron placed in the output layer at a specific time step
i.e. neuron 1 at time 1 being index 1, 2 at time 1 being 2 and so on. Depending on
the placement of the neuron(output or hidden) the local gradient in the recurrent
configuration also depends on the iteration. For the last observation, when t = tN ,
the gradient is simply:

δj(t) = f ′(vj(t))ej(t) (2.10)

While the gradient for any observation t1 < t ≤ tN is:

δj(t) = f ′(vj(t))[ej(t) + ∑
k=Λ

wjkδk(t + 1)] (2.11)

Assuming that the activation function f chosen by the designer, is the same for all
neurons. The adjustment to the weight, when the errors are propagated back to
ts + 1, is made as:

∆wjk = η
tN

∑
t=ts+1

δj(t)xm(t− 1) (2.12)

By sending all sets of observations through the network and calculating the total
error εtotal , the error minimization is finding those minimums that reduces the
error the most in all of its history, and not only at the current step.

2.4.4 Notes on Back-propagation

Some important features to note on the back-propagation algorithm and gradient
descent is:

1. Activation function: As shown, the activation function has to be differen-
tiable. Furthermore, activation functions between [0, 1] results in ever increas-
ing adjustments to the weights, causing the gradient to saturate. Antisym-
metric activation functions like the hyperbolic tangent [−1, 1], and random
initial weights around the mean of the function, solves this to some extent.
The hyberbolic tanget has shown good performance in different recurrent
structures in the litterature (Glorot & Bengio, 2010).

2. Saturation of the gradient: Given a non-linear activation function that squashes
a linear combination of input data into a given range, saturation can happen.
Inputs having a value close to the infinite boundaries of the activation func-
tion results in relatively smooth gradients; the activation function converges
to the limit and allowed change of the weight is very limited. With only

2.4. Artificial Neural Networks 29

a limited number of steps in the gradient search, such a situation poses a
computational problem. The weights cannot adjust enough in the limited at-
tempts available. In lucky cases where the output of the network is so close
to the target output, that little has to be done to the weight, an unchanged
weight is no problem. This is, however, seldom the case, so flexibility in the
weight is desirable. The network is charchterized as somewhat too general-
ized. (Haykin, 1999)

3. Overfitting: Opposite to a saturated gradient, is a gradient with too many
different protruding points of different heights. This happens with training,
as some weights gets changed while others do not. By training too much,
too much noise is included in the gradient. This creates a decision gradient
that is too specific to the presented training data and thus too complex for
generalizing to unseen data. This is also referred to as overfitting. Follow-
ing a human analogy, the network essentially focus too much on learning
the training data, only to forget that inputs can take on other values than
those presented. The network becomes too confident in it’s ability to explain
everything, based on the training data. When presented with never before
seen input values, it tries to fit the new value to something similar it already
knows, often resulting in poor output predictions. (Mitchell, 1997)

4. Local Minimum: With non-linear activation functions the error gradient can
have multiple minimums. This poses a problem when weights are randomly
initialized, because the nearest minimum that the weight converges to, may
only be local and not global. This gives a prediction, but not necessarily the
most accurate. Identical training runs produces different predictions, with
the starting point being the only difference. The use of instantaneous error
and average instantaneous error in the back-propagation algorithm makes
it stochastic by nature. Averaging all individual gradients from all training
samples, somewhat limit the magnitude of local gradient noise (Mitchell,
1997).

5. Vanishing or exploding gradients: In non-linear recurrent networks, gradi-
ents vanish over time. The combination of non-linear functions result in a
temporal evolution of the error, that depends exponentially on the weights
(Hochreiter & Schmidhuber, 1997)(Gers et al., 1999). An input from several
time steps back produces only a limited, if any, change in the current weight
because of this exponential evolution (Haykin, 1999). The network has a
hard time learning long term dependencies because of this, and is limited to
short term memory. Mainly because the effect of the distant inputs becomes
infinitesimal relative to the recent inputs.

2.4. Artificial Neural Networks 30

2.4.5 Long Short-Term Memory (LSTM)

Sepp Hochreiter and Jürgen Schmidhuber presented a solution to this in 1997; The
Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997). This
type of recurrent network employs different memory cells: a "Constant Error Car-
rousel", or CEC, and different gates. The CEC facilitates the networks ability to
remember some information and forgetting other. A given composition of differ-
ent cells is referred to as a memory block. To ease the differentiation between the
term "cell" and "block", a composite block is simply referred to as a neuron when
confusion could arise.

The Constant Error Carrousel (CEC): Re-writing equation (2.11) for a single neu-
ron in a hidden layer, gives:

δk(t) = f ′k(vk(t))wkkδk(t + 1) (2.13)

To keep the recurrent error flow constant, instead of exponential, it is required that:

f ′k(vk(t))wkk = 1 (2.14)

The integral of the activation function f thus becomes:

fk(vk(t)) =
netyi(t)

wkk
(2.15)

Meaning that the activation has to be linear and constant:

yk(t + 1) = fk(vk(t + 1)) => fk(wkkyk(t)) => yk(t) (2.16)

The CEC is placed in the neuron. It can activate the neuron and keep it activated,
for as long as it is helpful in reducing the total error of the network. This is deter-
mined by the error signal received from other neurons. Adding another neuron is
therefore NOT without problems.

• An input weight conflict arises because one neuron with a CEC, connected
to multiple neurons by weight wkj, will receive different error signals, com-
peting for the state of the neuron. It either has to be active to keep weight
updating signals for later, or ignore the signal. In other words, neuron k may
end up receiving two signals at the same time, one which tell it to remember
its current state and one which tells it to ignore its state. The neuron k can
however only do one such thing at a time, so it has to learn when to remem-
ber and when to ignore.
When the CEC rememebers information, it is trapped inside. It can flow un-
modified through time inside the CEC and have an effect on new net inputs
netcj , but it cannot change (Hochreiter & Schmidhuber, 1997).

2.4. Artificial Neural Networks 31

In an economic context the CEC allows the network to remember lagged de-
pendencies by storing them, much in the sense of including a lagged value
in an econometric model.

• An output weight conflict exists because a neuron already activated, acts through
a weight to other neurons wki. The output weight can either send a signal to
i, asking it to remember information, or protect i from confusion by not send-
ing any information at all.

The LSTM network constructs a neuron by using different gates; an input gate and
an output gate to handle the weight conflicts.
In the 1999 paper by Gers, Schmidhuber and Cummins (Gers et al., 1999) a forget
gate, is implemented to resolve some of the problems with the naive LSTM. With
a reccurent weight of the CEC at 1.0, and a truncated weight updating approach,
the LSTM is local in space and time (Hochreiter & Schmidhuber, 1997)(Gers et al.,
1999). This means that the network is looking only at some part of the gradient
at a time, allowing errors outside to vanish or explode. Where the LSTM solves
the problem of standard recurrent networks inability to remember long term de-
pendencies, the naive LSTM has a hard time forgetting these dependencies when
they are no longer relevant. This is solved by the forget gate, as the 1.0 weight
of the self-recurrent connection in the CEC is replaced with this gate. Instead of
fixing the start value at 1.0 the forget gate starts close to 1.0 and is allowed to decay
over time as the network learns to forget, by descending on its own gradient. It is
hereby gradually "resetting" the CEC instead of trapping information and keeping
it.
In an economic analogy the CEC allows the network to remember lagged depen-
dencies by storing them, much in the sense of including a lagged value in an
econometric model. This is done by the input- and output gate when the lag ap-
pears significant. Some lags can however loose their significance by including or
excluding other lags. The forget gate helps removing these now insignificant lags
by resetting the CEC.
All gates are multiplicative in the sense that an input is multiplied by an activation
value to determine what is allowed to flow through the gate. The memory cell is
shown in figure 2.12.
A self-connected linear CEC is the center piece of the neuron. The self-connecting
aspect allows the CEC to feed the current CEC-cell state back into the itself, thus
opening for the possibility of remembering the state of (t− 1). Following the flow
of signals in Figure 2.12, the neuron k receives net input netk and corresponding
weights wk. This is squashed by a function g and multiplied by the signal from
the input gate yink . The effect of the input gate on the net input is determined by
squashing earlier gate signals gateink and their weights. This g ∗ yink is then fed

2.4. Artificial Neural Networks 32

Figure 2.12: The LSTM Memory Block

Source: Figure 2 (Gers et al., 1999)

to the CEC. The earlier state of the cell is added to g ∗ yink and the forget gate is
multiplied on, giving a current cell state of:

sku(0) = 0

and for t > 0:
sku(t) = yφk sk(t− 1) + yink(t)g(netk(t)) (2.17)

The output of the neuron is then:

yk(t) = youtk(t)h(sk(t)) (2.18)

With h being a scaling function that scales the internal state sk. This is multiplied
by the signal from the output gate, youtk(t) creating the output. The gate is evaluat-
ing if the output from the cell is relevant and should be send on to the next neuron
(Gers et al., 1999).

The Gates: The input, output and forget gates produces an output defined as:
Input:

yink = fink(gateink(t))

2.4. Artificial Neural Networks 33

Output:
youtk(t) = foutk(gateoutk(t))

Forget:
yφk(t) = fφk(gateφk(t))

With all gate inputs defined by the delayed gate outputs and weights from con-
nected neurons:

gateoutk(t) = ∑
u

woutkuyu(t− 1)

gateink(t) = ∑
u

winkuyu(t− 1)

gateφk(t) = ∑
u

wφkuyu(t− 1)

and net input received, simply calculated from earlier neurons and their weights:

netk(t) = ∑
u

wkuyu(t− 1)

u denoting any connected neuron in the network no matter layer placement.

This flow constitutes the forward pass in the LSTM network. The learning is
still happening in the backward pass when errors are adjusted. Learning follows
a modified truncated back-propagation through time-algorithm. When the error
reaches the neuron, an internal state error, εsk , is necessary. This requires knowl-
edge of how much each gate and earlier cell state influences the current state,
which is obtained by splitting the gradient. For any layer in the network with
more than one neuron, the error for the cells are given by:

εsk(t) = youtk(t)h
′(sk(t))(∑

j
wjkδj(t)) (2.19)

This is calculated for each cell in the layer. The updating of the weights for the
state cell itself relies only on the partial derivative of its own state:

∆wkm(t) = ηεsk(t)
∂sk(t)
∂wkm

(2.20)

While the weight update for each gate also relies on the sum of errors of all cells
in the given layer 1:

∆wlm(t) = η
sk

∑
k=1

εsk(t)
∂sk(t)
∂wkm

(2.21)

l noting that the change is for both input gate gateink and forget gate gateφk . m is
used as all input from another neuron u, coupled with the respective gate in l.

1See (Gers et al., 1999) for the derivative split and partial differencing that gives the weight up-
dating.

2.4. Artificial Neural Networks 34

2.4.6 Summary

Different types of neural networks exists all having their own strengths; The feed
forward network is useful in simple classification problems, and recurrent net-
works handles time series in continual problems. Regardless of network topology,
a neural network consists of neurons interacting with each other through weight
connections. Each neuron is constructed from an activation function that modifies
input to an output. The weights are adjusted according to an error calculated from
the difference between the output of the network and the target output from the
training data. The error is presented to the network, starting at the end. Each
connected neuron then votes on how to change the weight so that the overall er-
ror is reduced. This is done in each neuron by finding their own steepest descent
towards an error minimum in weight space. In recurrent networks this results in
exponential evolution leading to vanishing- or exploding gradients. The recurrent
networks is in this sense trained recurrently, but not learning long-term depen-
dencies. LSTM networks solves this by introducing memory cells contained in
memory blocks. These enable the network to store information long-term. They
do, however, not know when the information becomes irrelevant. Imagine a net-
work that thinks Q1 GDP from 20 years ago is just as relevant as GDP last quarter.
It is unlikely. This is solved by adding the forget gate to the LSTM. It allows the
LSTM to learn when to forget information. The LSTM with forget gates starts off
by receiving input from a training data set. It then sends it through a hidden layer
that produces an output. In the hidden layer several memory blocks exists, con-
sisting of different memory cells. These memory cells receive input, modifies it
and produces output. The input to these cells are multiplied by a gate value to
determine how important the input is. It is then passed through the core of the
neuron; the CEC. The CEC stores a copy of the training input and saves it for later.
The input is then multiplied by the output gate value, determining if the output
is allowed to exit the cell or not. The output allowed to pass through to the final
output layer is compared to the target output also supplied with the training data.
From this, an error term is calculated. Just like the standard recurrent network,
but with different handling of inputs in the memory block. This error is then sent
back to the earlier layer, arriving at the output gate. The goal here is to reduce the
overall error of the neuron. Since the output of the neuron depends on the input-
and forget gate, they both make adjustment to their own weights. Doing so by
their own gradient descent. By adjusting the weights recurrently and allowing the
weight of the forget gate to change with time, the network is slowly forgetting the
information it stored, depending on how much it contributes to the overall error of
the network at the current time step. The network is effectively looking at a pair of
input- and output values from training data and learning the patterns of the data.

Chapter 3

Benchmark Dynamic Factor Model

3.1 Dynamic Factor Models

Presented in (Stock & Watson, 2010), factor models provide a solution to the prob-
lem of macroeconomic data. The idea behind the models are that r number of
latent common factors Ft drive comovement between series in a vector Xt of N
variables. Each series may be subject to zero-mean idiosyncratic disturbances et

The vector Xt is given:
Xt = Λ(L)Ft + et (3.1)

and factors:
Ft = Ψ(L)Ft−1 + ηt (3.2)

Λ(L) is the dynamic factor loading matrix Xt of size (N × r), with Λi being the
loading for series Xit. ΛiFt is the common component for series i. Ψ(L) is a lag
polynomial matrix of size r× r, acting as a loading matrix for lagged values. Fac-
tors are asumed to be vector autoregressive system and all processes are assumed
to be stationary. et and ηt are assumed to be uncorrelated with all lags k such that
E[etη

′
t−k] = 0.

With a squared error loss the optimal one-step forecast is given1

E[Xit+1|Xt, Ft, Xt−1, Ft−1, ...] = β(L)Ft + δ(L)Xit + εt+1 (3.3)

Essentially opening for the possibility of basing the forecast on not only lagged
values of the series, but on more than one predictor with Lambdait.
(Stock & Watson, 2010) divides the evolution and estimation of dynamic factor
models in in three generations. The first generation is based on maximum like-
lihood, state space modelling and kalman filtering. The second generation con-
sists of non-parametric averaging methods such as principal components. The

1See (Stock & Watson, 2010, p.4) for derivation

35

3.1. Dynamic Factor Models 36

third generation is a hybrid of principal components and state space construction.
For bencmarking purposes the principal component method outlined in (Stock &
Watson, 2002) and (Giovannelli & Proietti, 2014) is followed. This is due to the
diminishing computational efficiency of parametric estimation in the state space
representation, when the number of coefficients becomes too high (Stock & Wat-
son, 2010). It is further relevant because it is focused on prediction, rather than
structural inference and feature selection, thus matching the LSTM presented. The
articles referenced in section 4 shows that the hybrid of principal components and
kalman filtering is a popular method used in nowcasting different economies be-
cause of the filters ability to handle incomplete data. This specific application of a
dynamic factor model is, however, beyond the scope of simple benchmarking.

3.1.1 Principal Components Regression

Following (Stock & Watson, 2010) predicting GDP with principal components in a
regression involves two steps:

1. Estimating common factors and principal components from an eigenvalue
decomposition of the covariance matrix, ordered according to the eigenvalue.

2. Selecting components based on cross validation, and use these as regressors
on the dependent variable.

The estimation of the components is done by transforming the dynamic factor
model into a static factor model. Equation (3.1) is kept the same:

Xt = ΛFt + et

While the predicted one step ahead dependent variable is defined:

yt+h = β′FFt + β′wWt + εt+h (3.4)

β being the regression coefficients, εt the disturbances, Ft the factors and wt the
weight matrix. et is assumed to be uncorrelated resulting in a variance matrix for
Xt:

Σ̂X = T‘−1
T

∑
t=1

XtX′t (3.5)

A matrix of eigenvalues Λ̂ with the largest values for Σ̂X is constructed with r
elements. The estimation of the principal components thus becomes a least squares
minimization problem:

minF1,...FT ,ΛVr(Λ, F) (3.6)

With:

Vr(Λ, F) =
1

NT

T

∑
t=1

(Xt −ΛFt)
′(Xt −ΛFt) (3.7)

3.1. Dynamic Factor Models 37

Normalizing N−1Λ̂′Λ̂ to indentity Ir and setting Λ̂ to the r largest eigenvector,
gives a least squares Ft estimator that is2:

F̂t = N−1Λ̂′Xt (3.8)

The factor estimate F̂t is thus a vector consisting of the scaled first r components.
Multicollinearity is then somewhat avoided, as the factor model construct factors
as linear combinations of uncorrelated indicators. An important thing to note is
however, that the constructing of the factors in this way, makes them useless for
structural inference. It is impossible to say how one indicator affects GDP in a cer-
tain way, because the factors are combinations of indicators. This is possible with
a Principal Component Analysis method, but is unnecessary for the benchmark
model in the thesis.
With factors estimatied, selection of components can be done in different ways.
(Giovannelli & Proietti, 2014) presents different methods, but cross-validation is
typically used as it works well with small datasets and provides measures against
overfitting. It is simply validating parameters in different contexts and minimizing
an error term, assuring that the parameters are generalized enough to give good
out-of-sample predictions.
The prediction of GDP growth is done with equation 3.4 and 3.8

2See (Stock & Watson, 2010) for full derivation of the minimization problem

Chapter 4

Data and Models

Implementing an LSTM to economic data is somewhat straight forward. As shown
i section 1, the LSTM performs well with univariate time series containing lots of
observations. Here the time series is split into sequences defined by a sliding
window that predicts the next observation. The window then moves to include the
next observation and predicts one observation ahead once again. In a multivariate
system, the LSTM is simply fed each series as a separate input and maps each
series to the output variable, with weights updated to define how input should be
transformed to produce the output GDP. Lagged dependencies are captured by the
LSTM network in the recurrent structure of the CEC and significance simulated by
the different gates.
The DFM achieves the results by storing transformations in eigenvectors. These
are then used with the common factors to transform out-of-sample inputs into a
GDP growth output.
This section describes the data used, the specific setup of models and the results
of the models.

4.1 Data

To compare out-of-sample prediction performance, both the LSTM network and
the (Dynamic) Factor Model (DFM) is fed the exact same data, with same train-
ing/test split. 19 indicators are used, similar to some nowcasting applications of
dynamic factor models in the litterature. The number of indicators in the refer-
ences are listed in Table 4.1.
Other articles nowcast GDP for France (Barhoumi et al., 2009), Indonesia (Luciani
et al., 2015), Ireland (D’Agostino et al., 2011). All with a number of indicators sim-
ilar to this interval; between 10 and 30. (Alvarez et al., 2016) showed that medium
sized datasets with a number of indicators around this range, performs just as well
as dynamic factor models fed over 100 indicators.

38

4.1. Data 39

Table 4.1: No. of Indicators in Different Nowcasting Applications

Country No. Indicators Article
Canada 23 (Chernis & Sekkel, 2016)
Czech Republic 28 (Rusnák, 2013)
Norway 14 (Luciani & Ricci, 2014)
Brazil 14 (Bragoli et al., 2014)
BRIC + Mexico (Dahlhaus et al., 2015)
- Brazil 35
- Russia 14
- India 29
- China 13
- Mexico 41

As stated in section 3.1 focus is not on specific applications of dynamic factor mod-
els like nowcasting, but general benchmarking. All data is therefore quarterly and not
of mixed frequency, and the underlying estimation method is different from those in the
articles, as specified in section 3.1.
Indicators are often a mix or hard and soft economic variables. Hard indicators
coverer real economic data such as production, labor and investment (Rusnák,
2013), while soft indicators includes bond rates, house prices and share prices. Key
indicators and their unit of measurements are chosen for the danish economy with
reference to Outlook For The Danish Economy - September 2017 published by the dan-
ish central bank (Nationalbank, 2017). The indicators are presented in Table 4.2.
Log transformation and differencing is done to relevant variables when necessary.

Indicators like CPI, short- and long-term interest rates, employment, consumption,
import- export and balance of trade are common components used when dealing
with GDP. These are almost all featured in the nowcast articles, and all present
in the economic outlook by the danish national bank. Oil price, total share price
and exchange rate are used as financial components. The exchange rate is against
american dollars as this currency is used internationally and can explain some of
the dynamics driving international trade. Volatile movements in the exchange rate
further poses a risk for firms dealing internationally, so the exchange rate reflects
a measure for this. The currency pair could have been against the Euro, but due to
a fixed exchange rate regime this would not provide any relevant information.
The building permits of residential housing is included as a measure for private
investment. A growing number of building permits reflects a growing amount of
private investment. Housing prices is also used to reflect this information. The
same goes for total credit to Non-financial Corporations. It reflects loans taken
by non-financial firms, showing the amount of corporate investment given the as-

4.1. Data 40

Table 4.2: Indicators for the Danish Economy

Indicator Unit Source
Gross Domestic Product Mio. of DKK FRED
Consumer Price Index
- Total All Items Pct. Growth - YoY FRED
Employed Persons
Age 15 and Over 1.000 Persons FRED
Unemployed Persons
- Total Harmonized 1.000 Persons FRED
3-Month Interbank Rate Pct. Per Annum OECD
10-Year Long-Term
Government Bond Yields Pct. Per Annum OECD
Total Share Prices Index 2010 = 100 OECD
Brent Crude Oil
- Global Price USD pr. Barrel FRED
Exchange Rate
- DKK/USD DKK to USD FRED
Building Permits
- Residential Pct. Growth - Prev. FRED
Total Credit
- Non-Financial Corporations Billions of DKK FRED
Housing Prices Index 2010 = 100 FRED
Hourly Earnings DK
- Manufacturing Pct. Growth - YoY FRED
Hourly Earnings EU
- Manufacturing Pct. Growth - YoY FRED
Government Consumption Pct. Growth - Prev. FRED
Private Consumption Pct. Growth - Prev. FRED
Import of Goods & Services Mio. of DKK DST
Export of Goods & Services Mio. of DKK DST
Balance of Trade Mio of DKK DST

YoY = Year-on-Year - The same period the previous year
Prev. = The previos period
Sources: FRED = fred.stlouisfed.org ; OECD = stats.oecd.org ; DST = statbank.dk

4.2. LSTM for Danish GDP 41

sumption that loans are used for investment purposes.
The growth in hourly wage for the manufacturing sector is included for both Den-
mark and EU, reflecting the overall national level. The growth level for EU is also
included, as this reflects a measure of international competitiveness.

Differencing is done to achieve I(0) stationary series for better prediction.
It may be the case that some series are cointegrated. Error correction terms can be
used to handle these conintegrated series (Stock & Watson, 2010). (Banerjee et al.,
2017) suggests that including such error correction term may aid the short run fore-
cast. But with a dataset of many predictors, a mix of I(0) and I(1) series is likely
to be present. It further creates a problem for the error correction term if structural
breaks are present, which is the case for this data. So while the dynamic factor
model may suffer a loss of strength by not including long term relationships and
error correction terms, the difference stationarity suffice for short run prediction.

4.2 LSTM for Danish GDP

The LSTM is programmed in R with the Keras interface for high-level interpre-
tation. Google’s Tensorflow is used as backend handling the actual computation.
This makes the development of the network relatively easy. The R code for the
LSTM and DFM is shown in appendix A.

4.2.1 Training The Network

The practical training of the LSTM network can be done in different ways. The one
outlined in this thesis is referred to as batch training.
One complete pass of a training dataset is referred to as an epoch. Weights are
updated on an epoch-by-epoch basis. Referring to the use of the interval [ts : tN] in
equation (2.8), the training data does not necessarily have to be the entire dataset.
In this sense the network in trained from batches of data. The recurrent version
of Back-propagation presented in section 2.4.3 is based on batch training. The
presentation of the ordinary feed-forward back-propagation in 2.4.3 is not. This
approach shows a sequential algorithm, in which training pairs are presented one at
a time and weights updated according to this. Essentially using a batch size of 1.
The training is stopped once the out-of-sample prediction accuracy is converging.
This provides a measure against overfitting the network, as the accuracy starts to
grow when this is happening.
The LSTM network has few, but critical, requirements to the data it is fed:

• Scaling: Given the limited range of values an activation function can operate
in, it is absolutely necessary to scale the data that is fed to the network.
To avoid a "looking ahead" bias, the scaling has to be made only on the

4.2. LSTM for Danish GDP 42

training split, and not the entire dataset. The test split can then be scaled and
normalized according to the scaling attributes of the training set.

• Shaping Input: The input to the network is required to be in three dimen-
sions; The number of features, the number of sequences in each feature and
the number of observations in each feature. In the context of the presented
data, features would be the different indicators selected.
The sequence splitting is usually done because the LSTM has a hard time
learning relatively long sequences at once (Fischer & Krauss, 2017). Time
series with length of say, a 1000 observations, has to be split into smaller
sequences of fewer observations. In the case of the data presented with 92
observations in total, and a training size of 72 observations, this is not neces-
sary.

4.2.2 Parameters

The parameters used in the LSTM network for the danish economy is tuned to
produce minimal error between network GDP growth output and target out-of-
sample GDP growth. This gives a network with parameters as follows:

• 1 LSTM block with 19 units ; 1 output layer with 1 neuron. Given the small
dataset presented, the network is kept relatively small at 19 units. Using
too many units results in faster overfitting, while too few units results in
too much generalization. The number of units is not to be mistaken for the
number of neurons in the network. Units refer to the size of the cell state; in
this case a vector of 19. Not a layer of 19 memory blocks. The one memory
block produces 19 outputs, which is the reason for also adding 1 dedicated
output neuron. The output of the network is only compared to one value of
GDP growth.

• Training for 150 epochs. The input- output pairs are presented to the net-
work 150 times, adjusting weights each time. This provides enough weight
adjustment to capture patterns, without overfitting.

• A Rectified Linear Unit (ReLU) activation function. As shown in equation
(2.16) the LSTM needs a linear constant activation function. Referring to
Figure 4.1 and the form f (x) = max(0, x), ReLU fills this requirement as a
piece-wise linear function. It is shown in (Nair & Hinton, 2010) to speed up
computation in one type of recurrent network, as it passes scaled output for
any x > 0, while also avoiding vanishing gradients by setting negative values
to 0. One effect of this is, however, that it renders negative cells useless by
locking them at 0, essentially "killing" parts of the network. Contrary to a
reasonably assumed negative effect of "dead" cells, (Glorot et al., 2011) finds
that zeroes in the gradient can help minimum convergence.

4.3. Benchmark Factor Model 43

Figure 4.1: Rectified Linear Unit Activation function [0, x]

Source: (Nair & Hinton, 2010)

• A mean squared error loss function. The minimization of fitting error at
each epoch is calculated as mean squared error. This is the error defined in
equation (2.3), with ej(t) = ytrg(t)− yj(t) defined in equation (2.2):

ε(t) =
1
2 ∑

j=C
e2

j (t)

• Stochastic Gradient Descent (SGD) Optimizer. The optimization outlined
in section 2.4.3 is the Stochastic Gradient Descent. Other optimization tech-
niques exists like the ADAM presented in (Kingma & Ba, 2015). The method
is different from SGD and provides better optimization for large datasets, be-
cause of an adaptive learning rate. Drawing parallels to SGD, the learning
rate, η, is constant. The danish data presented is small compared to time
series usually fed to the network, so SGD is chosen as it is slower to overfit.

4.3 Benchmark Factor Model

The benchmark factor model is estimated and selected by cross-validation to in-
clude 5 common components. This is evident in the plot of the cross-validation
error Figure 4.2, and Table 4.3: As it can be seen in Figure 4.2 the error "dips" three
times; at 5 components, 11 components and 18 components. The grey line indi-
cates the lowest error using 5 components. The error of the three dips are shown
in Table 4.3 to confirm that 5 principal components provides the lowest error of the

4.4. Results 44

Figure 4.2: Cross-Validation Error for No. of
components

5 10 15

0.
00

00
8

0.
00

00
9

0.
00

01
0

0.
00

01
1

0.
00

01
2

No. of Factors

C
ro

ss
-V

al
id

at
io

n
E

rr
or

Figure 4.3: Cross-Validation Error for No. of
Components

No. of components Error
5 7.292008e-05
11 7.571166e-05
18 7.513744e-05

Bold: The lowest (best) error

cross-validation. It thereby gives the DFM with the best performance. The distri-
bution of the residuals is show in Figure 4.4. With residuals normally distributed,
the estimated model is reliable. The machine learning approach of out-of-sample
prediction is done by estimating the coefficients on the training split of the data. It
is then fed the out-of-sample inputs which produce an output that is compared to
the target output from the out-of-sample data.

4.4 Results

The models ability to predict is compared with a squared error, root mean squared
error (RMSE) and a mean average error (MAE) of their predictions. RMSE and
MAE are common choices when comparing predictions. These methods are, how-
ever, prone to scale differences (Hyndman & Koehler, 2005). With the two models
fed the same dataset, this problem does not arise.
The prediction of the LSTM is presented in Figure 4.5 and the prediction of the
Principal Components Regression in 4.6.
The blue part represents the training fit of the models; the growth in log-transformed
GDP predicted by the network. The grey is the actual growth in log-transformed
GDP from the data. The vertical grey line is the training- test split of the data
set. The red part is thus the log-GDP growth predicted from the out-of-sample test
inputs. Both models are able to catch some general movements in both training-
and out-of-sample data. Figure 4.7 show both models for comparison. The LSTM

4.4. Results 45

Figure 4.4: Distribution of DFM Training Fit Residuals

-0.02 -0.01 0.00 0.01 0.02

0
10

20
30

40
50

N = 72

D
en

si
ty

Figure 4.5: Fit of LSTM: 19 & 1 units, 150
Epochs, ReLU, MSE, SGD

 Quarter / Year

di
ff(

lo
g(

G
D

P
))

1995 2000 2005 2010 2015

-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

0.
03

Blue: Fit to training inputs
Red: Prediction on Out-of-Sample inputs

Figure 4.6: Fit of Dynamic Factor Model with
Principal Components

Quarter / Year

di
ff(

lo
g(

G
D

P
))

1995 2000 2005 2010 2015

-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

0.
03

Blue: Fit to training inputs
Red: Prediction on Out-of-Sample inputs

4.4. Results 46

is blue and the DFM is red.

Figure 4.7: Fit of LSTM & DFM to GDP Growth

 Quarter / Year

lo
g(

G
D

P
)

G
ro

w
th

1995 2000 2005 2010 2015

-0
.0

2
-0

.0
1

0.
00

0.
01

0.
02

0.
03

Green: LSTM from Figure 4.5
Red: DFM from Figure 4.6

The squared error of both models is shown in Figure 4.8. The squared error is a
simple measure for the error at each time step, squared to imply distance between
the actual and predicted value. This allows tracking of the performance for each
model. The scale of the errors are very low. This is partly due to the scale of the
underlying data being contained in the interval of [0.03 : −0.03].
It can be seen that the LSTM (blue) generally shows lower error spikes. Also in the
out-of-sample prediction. Comparing this with Figure 4.7 the spikes happen at rel-

4.4. Results 47

Figure 4.8: Squared Error between model output and data values

Quarter / Year

S
qu

ar
ed

 E
rr

or
: (

pr
ed

ic
tio

n
-

da
ta

)^
2

1995 2000 2005 2010 2015

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

0.
00

03
0

0.
00

03
5

Green: LSTM from Figure 4.5
Red: DFM from Figure 4.6

4.4. Results 48

atively volatile changes in GDP, except at the crisis happening in 2008. This could
be an indication of missing indicators with explanatory power, but also a case of
reasonable generalization; the models are able to capture underlying patterns in
the data, without overfitting.
The RMSE and MAE for both models at training fit, out-of-sample prediction and
total fit is presented in Table 4.3. While squared error provides comparability, the
spikes happen at different time steps making a general conclusion of performance
difficult; Is it more important to get the direction or level correct? Take for exam-
ple the (negative) spike around 2015 in Figure 4.7. The DFM error in the small dip
after 2015 in Figure 4.7 is seen to gradually become smaller in Figure 4.8, leading
up to the two predictions being relatively close when the DFM reaches a top, while
the data reaches a bottom of a dip. The error is small, but the direction is oppo-
site. Not to conclude that the growth becomes negative, just slower than predicted.
RMSE and MAE are averaging techniques giving a general accuracy of the model.
Looking at the highlighted out-of-sample measure the LSTM performs better than

Table 4.3: Sectional RMSE & MAE for Both Models

Model RMSE MAE
LSTM 0.005584161 0.004289430
- Training 0.005584284 0.004207058
- Out-of-sample 0.005583643 0.004638299
DFM 0.007582204 0.006169701
- Training 0.007816738 0.006506790
- Out-of-sample 0.006495667 0.004742028

Bold: The lowest (best) metric

the DFM in out-of-sample predictions for this specific data. The accuracy of the
fit on training data and general fit is somewhat useless in direct comparison, as
these can be improved to near perfection by overfitting as much as possible. It
does however suggest that more available data will increase the fit of the training
data better and provide increased accuracy in out-of-sample prediction. Much like
the example of the univariate example in section 1, showing good fitment in both
training and out-of-sample prediction.
The MAE and RMSE error difference between the DFM and LSTM is relatively
small. The Diebold-Mariano forecasting accuracy test can be used on the residuals
of both series, to test for significance in predictive accuracy. A two sided test is
used on the null hypothesis that one prediction is better than the other. The re-
sult is rejection of the hypothesis with a p-value > 0.001, meaning that predictions
are equally "good". With the LSTM showing a small improvement in predictive
accuracy in this specific setup, this thesis suggest that the LSTM has the ability to
perform similar to a principal component factor model.

Chapter 5

The Machine Learning Contribution
to Economics

This thesis shows that the LSTM can be applied in a more traditional multivari-
ate economic context. It is able to map the values of input series to GDP growth,
and successfully recognize some patterns in the underlying series. The stochastic
gradient descent applied in the LSTM is, by nature, a greedy search using lots of
observations to find the minimum error in the gradient. The results of the analysis
also shows that the LSTM in this scenario is able to produce a meaningful and ac-
curate prediction, when the dataset is wide containing relatively few observations.
This makes the LSTM useful as a tool also being able to predict in a macroeco-
nomic context, even with relatively few observation. The automatic nature of the
LSTM indicates that econometric understanding is less important, and that only
economic knowledge is needed for selecting indicators. A prior selection of indi-
cators is done in this thesis to test the predictive power of the LSTM, not focusing
on selection of indicators. This is also why the Principal Component Regression
method is used, instead of a component analysis factor model with hundreds of
series.

5.1 Downsides of the Neural Network

As mentioned in section 2.2 the machine learning approach is predictive by nature,
and limits the possibilities of more traditional structural inference. This may hurt
the networks direct ability to forecast n-steps ahead, even in simple linear extru-
sions; there are no parameters to extrude. While predictions from available data
can be fitted and predicted easily, any output from the model has to be based on
input data. While this is a major downside, it still leaves some possibilities for
forecasting:

49

5.2. Posibilities of the Neural Network 50

• For univariate prediction the process is simply as presented in chapter 1.
Creating a sliding window that produces a step-ahead forecast. This can then
be extended by including the forecast as the last observation in the window.
It does however require a high number of observations.

• For multivariate applications it would be possible to forecast each series n-
steps ahead, which is then used as input for the LSTM to predict output. This
can quickly become cumbersome and unreliable when dealing with a high
number of input series, as each series has to be forecasted. Furthermore this
implies an assumption that all underlying series are unrelated, and does not
influence each other. In a macroeconomic perspective, this is highly unlikely.

• To incorporate interdependencies among the series the network could be
shaped to produce an output for each series. A sliding window with a given
number of observations and the total number of series, can then be fed to
the network, producing the next time step for each series as output. Feeding
all series at the same time allows the network to capture influence among
variables.

• A hybrid of LSTM and VAR models could be created. An underlying system
of vector autoregressive models, each consisting of relating macroeconomic
indicators, provides forecasts of the time series. The forecast of these se-
ries are then used as input to the LSTM. This also makes error correction
and impulse-response analysis possible. This is, however, essentially a fac-
tor model with an LSTM on top. Such a configuration does not necessarily
provide any real benefit over the pure principal component model.

5.2 Posibilities of the Neural Network

5.2.1 Nowcasting

A natural extension of this thesis would be a nowcast of an economy. The result
of this thesis does, however, not directly imply that such an application would be
successful. The LSTM requires series of equal dimensions, so basic methodology
includes aggregation or interpolation of series, to match each other. Constructed
monthly GDP growth can then be fed to the LSTM mapping it to monthly inputs.
The hybrid third generation models with principal components and a kalman filter
handles the mix of frequencies natively and estimates loadings for each series. This
is why it is used in the nowcasting literature in section 4. Because of this it is
not possible to suggest that the LSTM would perform on par with the DFM and
Kalman Filter, as this thesis compares the network to a principal component factor
model.

5.2. Posibilities of the Neural Network 51

5.2.2 Local Interpretable Model-Agnostic Explanations (LIME)

While the algorithm behind outputs in the LSTM is known, real-time states of the
network is hidden. The reasoning of why a specific output is produced, is un-
known. This requires a certain amount of trust and raises an important question:
how much should you trust a prediction? When no evidence or reasoning is given,
it is tough to argument as to why the prediction is useful.
The LIME technique presented in (Ribeiro et al., 2016) attempts to open up these
hidden states of the network, and explain the choices made when predicting. It
is, however, developed and tested on classification models, as these classify inputs
on probabilities. The idea behind the method is that parts of the input is removed,
and the model then has to predict based on the restricted inputs. The percentage of
classification correctness for each component can then be extracted. This provide
local prediction interpretation for each component of input, which combined, can
help assessing the trustworthiness of the overall model prediction.
The method is model-agnostic and should be applicable to regression models. It
is thereby possible to provide necessary information to determine the impact of
each regressor. In extend, this could in theory open for the possibility of structural
inference in a macroeconomic regression context. The powers of such a framework
is unknown and requires further development, but it provides an exciting direction
in which the economic relevancy of a regressive neural network could increase.
By modifying the problem in this thesis, it is possible to directly apply the LIME
method to a context much like the one presented. By replacing GDP growth with a
recession indicator for the danish economy, replacing the ReLU activation function
with a softmax classifier function and setting the loss function to cross-entropy, the
network should be able to solve classification problems. Such an application re-
quires further research to conclude its successfulness, but if the results are satisfac-
tory it would then be possible to apply the LIME method to open up the network,
and in theory give an indication of how the indicators contribute to recession.

5.2.3 Variational Auto-Encoders (VAE)

The variational auto-encoder is a newer more complex method of using the LSTM.
As the name suggest these methods are essentially encoding information into more
dense representations, much like the encoding and compression of files into differ-
ent formats. An example is the file compression and encoding of .mp3 and .jpg.
The basic idea is shown in Figure 5.1. It uses an LSTM in a inference layer to
map information in input to a more condensed format, seeking to minimize di-
mensionality while keeping as much relevant information as possible. In a sense
discarding as much as possible without loosing recreational power. This draws
parallels to the principal component method of estimating latent factors, with the
factors being the condensed information. This information is, like the factors in

5.2. Posibilities of the Neural Network 52

Figure 5.1: Variational Auto-Encoder

VAE source: Figure 1 (Kingma & Welling, 2014). Economic application is added

5.3. Data Generation 53

the principal component regression, a linear combination of inputs.
The framework is validated be decoding the condensed information back into a
representation as close as possible to the input data. This is done by another LSTM
in the generative layer, based on the latent distribution in the hidden layer. The eco-
nomic application is thus relevant with a problem much like the one in this thesis;
a scenario with many indicators used to predict one variable, like GDP as shown in
Figure 5.1. The product is a structural system of combined factors representing the
essence of the data, but inference on individual series is still not directly possible.

5.3 Data Generation

As mentioned in the introduction in section 1, two philosophies of implementation
exists. While this thesis has pitted a machine learning method against an econo-
metric method, the coexistence of both methods aiding each other is still relevant.
A discussion of data generation would however imply discussion of ways to extract
more information from data, which is not necessarily economic of nature. The VAE
and LIME is methods of extracting more information, but only gains economic rel-
evance when used to solve an econometric problem.
The supply of more and new kinds of data is presumably useful, as could be seen
in (Henderson et al., 2012) and (Lobell, 2013). Especially in a field like spatial eco-
nomics where geographic data is used.
But, when doing an asymptotic approximation such as the one performed in the
factor model, it does however imply that the effect of new data at some point be-
comes insignificant with traditional econometric methods. So while this combina-
tion of machine data extraction and econometric interpretation in theory is useful,
it could at some point loose its effectiveness. The machine learning methods on the
other hand only improves with more available data. But until more transparency
is introduced in the predictions, their trustworthiness should be evaluated based
on the specific context it is used in.

5.3.1 Overconfidence in data

While this thesis is data driven, and seeks to explore a new method of "letting the
data speak", it is also necessary to step back and reflect on the use of data in the
economic field. Computer- and natural sciences have certain laws and a degree
of predictability, which makes the LSTM useful in such a framework. It makes
sense to squeeze out an extra percent of accuracy. The predictability is somewhat
more diffuse in economics. The modelling of rational agents provides a set of
pseudo-natural laws of behaviour relying on a utility function, but the function is
ultimately individual and not necessarily constant over time. Using data to predict
and forecast is thus somewhat equal to the statement that previous behaviour is

5.3. Data Generation 54

equal to future behaviour; ex-post is equal to ex-ante. A keynesian argument would
be that this is not necessarily true, as no situation is ever the exact same. The expe-
rience gathered from a given situation would influence the thought process of the
same agent. If a future identical situation would arise, experience would make the
situation different. The LSTM is no exception to this assumption of equality, as the
overfitting scenario draws parallels to this idea. The network can only learn pat-
terns it has seen before. If the network learns previous patterns too well, predictive
power starts to deteriorate. Even though predictions are useful in reducing uncer-
tainty in real-time applications like nowcasting, the results of any model should
still be considered a guideline, no matter the amount of "intelligence" imitated.
Especially if no insight into reasoning behind the prediction is presented.

Chapter 6

Conclusion

The LSTM has gained popularity in machine learning because off its ability to in-
corporate long-term dependencies. It is able to somewhat automatically extract
information from data, and recognize underlying patterns. Economic applications
of this type of network is relatively limited in the literature.
It has shown good prediction performance on univariate time series, and is there-
fore often used in financial scenarios.

The LSTM solves some of the problems with the earlier gradient descent method,
used in the feed-forward- and recurrent backpropagation algorithms. While feed-
forward networks only handles the current time step, recurrent networks remem-
bers only short-term dependencies before gradients vanish. This is due to expo-
nential dependencies on weights, making the effect of old values miniscule with
time. By incorporating a forget gate in the LSTM, the network is able to remember
information presented, and forget it once it becomes irrelevant. This is achieved
by gating information into a memory cell, allowing the neuron to save specific
information for later. It is thereby possible for the LSTM to handle multivari-
ate macroeconomic setups, as the LSTM is able to effectively learn patterns in a
dataset, all on its own.
The LSTM is fed 19 macroeconomic indicators for the danish economy to predict
growth in GDP. Each series is quarterly data consisting of 92 observations. The
train- test-split for out-of-sample validation is done so the training is performed
on 72 observations. The network is kept relatively small, containing a single layer
of 19 units and an output layer of 1 unit. A rectified linear unit activation function
is used and a mean-squared-error loss is defined in conjunction with the stochastic
gradient descent optimization. Benchmarking is done against a principal compo-
nent factor model. Five latent factors are constructed from a linear combination of
indicators, and then regressed on GDP growth. Multicollinearity is avoided by this
approach, but structural inference about individual series is not possible. Weak

55

56

serial correlation is allowed as the model follows an approximation approach mak-
ing results asymptotically consistent.
In out-of-sample prediction the LSTM shows lower RMSE and MAE than the fac-
tor model, thus providing a better prediction in this specific scenario. The LSTM
produces smaller errors that occurs more often, while the factor model produces
fewer, but larger spikes. A Diebold-Mariano test on forecasting accuracy suggest,
however, that no model performs significantly better than the other. The conclusion
is then, that the LSTM in the scenario presented, performs similar to the principal
component regression.
This results places the LSTM as a predictive tool in an economic toolbox. Despite
the underlying greedy search algorithm, the LSTM shows that it is able to handle
macroeconomic data, which usually contains a lot of variables with few observa-
tions in each series.
One downside to this method, in the macroeconomic perspective, is the lack of
structural estimation. It limits the possibilities of directly implementing long-run
relationships and error correction into the network. It also makes impulse-response
policy analysis limited. If such terms are to be used in the prediction, prior econo-
metric modelling is necessary to produce the estimates. Forecasting then becomes
possible, as each series can be extended. Either by econometrics with ARIMA
models or VAR systems, or by machine learning with a sliding window step-ahead
forecast.
Compared to the econometric method of solving the economic problem of this the-
sis, the LSTM shows no direct advantages over the principal component regression.

The methodology of mapping sequences of input to output does have some im-
mediate strength. The LSTM is able to automatically generate new kinds of data
to be used in an economic context. Take for example news headlines. They can
be broken down into sequences of words and classified by the network in different
categories depending on attitude towards the subject. It can then be used in a sen-
timent analysis, in combination with traditional quantitative inputs.
Another example is how an image can be broken down into sequences of pixel
values, thereby allowing the network to classify what the image is showing. Pre-
diction of for example crop yield or block-development in areas with poor- or
missing data can be done with satellite images.
The emergence of new types of data does then, seem promising when machine
learning an econometrics is combined, instead of pitted against each other.
The capabilities of new methods in machine learning seems promising in bringing
more economically relevant features to the networks.
The Variational Auto-Encoder provides a machine learning translation of the fac-
tor framework, and the Local Interpretable Model-agnostic Explanation (LIME)
framework is a step in the direction of macroeconomic structural inference being

57

possible, by providing transparency.

So, while the LSTM can handle different types of data in the computer science
literature, this thesis has shown that the LSTM also have some predictive power in
a macroeconomic analysis. Some transparency is possible in classification scenar-
ios with the LIME method, but until more transparency is consistently introduced to
the regression problem, the trustworthiness of the predictions made in macroeconomic ap-
plications should be evaluated based on their context. This places the LSTM as a powerful
predictive tool in the economic toolbox, but most useful when combined with other more
transparent methods allowing for interpretation.

References

Alvarez, R., Camacho, M., & Perez-Quiros, G. (2016). Aggregate versus disaggre-
gate information in dynamic factor models. International Journal of Forecasting.

Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? the information
content of internet stock message boards. The Journal Of Finance.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and
its control processes. ..

Ayodele, T. O. (2010a). New advances in machine learning. In Y. Zhang (Ed.),
(p. 9-18). InTech.

Ayodele, T. O. (2010b). New advances in machine learning. In Y. Zhang (Ed.),
(p. 19-48). InTech.

Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and
Motivation, 8, 47-89.

Banerjee, A., Marcellino, M., & Masten, I. (2017). Structural fecm: Cointegration in
large-scale structural favar models. Journal of Applied Econometrics.

Barhoumi, K., Darné, O., & Ferrara, L. (2009). Are disaggregate data useful for
factor analysis in forecasting french gdp. Document De Travail No. 232.

Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of memory: long-term
potentiation in the hippocampus. ..

Bragoli, D., Metelli, L., & Modugno, M. (2014). The importance of updating: Ev-
idence from a brazilian nowcasting model. Finance and Economics Discussion
Series Federal Reserve Board.

Chalmers, D. J. (1993). A computational foundation for the study of cognnition. ..
Retrieved from http://consc.net/papers/computation.html

Chernis, T., & Sekkel, R. (2016). A dynamic factor model for nowcasting canadian
gdp growth. Empir Econ (2017).

D’Agostino, A., McQuinn, K., & O’Brien, D. (2011). Nowcasting irish gdp. MPRA
no. 32941.

Dahlhaus, T., Guénette, J.-D., & Vasishtha, G. (2015). Nowcasting bric+m in real
time. Bacnk of Canada Working Papers 2015-38.

Desai, R. (2017). Artificial intelligence (ai). .. Retrieved from http://

drrajivdesaimd.com/2017/03/23/artificial-intelligence-ai/

58

http://consc.net/papers/computation.html
http://drrajivdesaimd.com/2017/03/23/artificial-intelligence-ai/
http://drrajivdesaimd.com/2017/03/23/artificial-intelligence-ai/

References 59

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-221.
Enders, W. (2015). Applied econometric time series. Wiley.
Eysenck, M. W., & Keane, M. (2005). Cognitive psychology - a student’s handbook.

Psychology Press Ltd.
Fischer, T., & Krauss, C. (2017). Deep learning with long short-term memory

networks for financial market predictions. FAU Discussion Papers in Economics,
No. 11/2017.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual
prediction with lstm. Technical Report IDSIA-01-99.

Giovannelli, A., & Proietti, T. (2014). On the selection of common factors for
macroeconomic forecasting. CREATES Research Papers 2014-46.

Glorot, X., & Bengio, Y. (2010). Understanding the diffuclty of training deep feed-
forward neural networks. Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 9.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
Proceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics.

Grossberg, S. (1980). How does a brain build a cognitive code? Psychological
Review.

Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesús, O. D. (2014). Neural network
design (2nd ed.). Martin Hagan.

Hall, J. S. (2011). Algorithmic probability and friends. bayesian prediction and
artificial intelligence. In D. L. Dowe (Ed.), (p. 174 - 183). Springer.

Haykin, S. (1999). Neural networks - a comprehensive foundation (2nd ed.). Prentice-
Hall.

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. Neural
Networks for Perception, 2, 65-93.

Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring economic growth
from outer space. American Economic Review.

Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P., & Obermayer, K.
(1999). Neural networks in economics.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation 9 (8).

Hyndman, R. J., & Koehler, A. B. (2005). Another look at measures of forecast
accuracy. ..

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastich optimization.
ICLR 2015.

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes.
Kuang, Y., Singh, R., Singh, S., & Singh, P. (2017). A novel macroeconomic forecast-

ing model based on revised multimedia assisted bp neural network model
and ant colony algorithm. Multimedia Tools and Applications.

References 60

Lobell, D. B. (2013). The use of satellite data for crop yield gap analysis. Field Crops
Research.

Luciani, M., Pundit, M., Ramayandi, A., & Veronese, G. (2015). Nowcasting in-
donesia.

Luciani, M., & Ricci, L. (2014). Nowcasting norway. International Journal of Central
Banking.

Makridaki, S. (n.d.). M4-competition. Retrieved from https://www.m4.unic.ac

.cy/

McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric

approach. Journal of Economic Perspectives, 31(2), 87-106.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restriced boltzmann

machines. Proceedings of the 27th International Conference on Machine Learning.
Nationalbank, D. (2017). Outlook for the danish economy - no. 16.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "why should i trust you?" explaining

the predictions of any classifier.
Rumelhart, D. E., McClelland, J. L., & Group, P. R. (1986). Parallel distributed process-

ing - explorations in the microstructure of cognition (J. A. Feldman, P. J. Hayes, &
D. E. Rumelhart, Eds.). The MIT Press.

Rusnák, M. (2013). Nowcasting czech gdp in real time. CNB Working Paper 6/2013.
Solomonoff, R. J. (2009). Machine learning - past and future. ..
Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from

a large number of predictors. Journal of the American Statistical Association.
Stock, J. H., & Watson, M. W. (2010). Dynamic factor models.
Varian, H. R. (2014). Big data: Net tricks for econometrics. Journal of Economic

Perspective 28,2.
Zhang, D., Yu, L., Wang, S., & Xie, H. (2010). Neural network methods for fore-

casting turning points in economic time series: an asymmetric verification to
business cycles. Frontiers of computer Science China 4(2).

https://www.m4.unic.ac.cy/
https://www.m4.unic.ac.cy/

Appendix A

R code

The R code related to creation and computation of the models is shown. Data
loading, plotting, results etc. is not.
The code is divided in different sections:

1. The day-series LSTM

2. Initialization and sorting of macroeconomic data. Declaration of variables.

3. The macroeconomic LSTM

4. The macroeconomic principal component regression

A.1 LSTM for forecasting competition analysis

A sliding window approach is used

1 # Choos ing 4 s e r i e s wi th 1000 o b s e r v a t i o n s
2 ex_ s e r i e s <− (f u l l _day_ dat [7 8 2 : 7 8 6 , 2 : 1 0 0 0])
3 day_ dat <− as . data . frame (t (ex_ s e r i e s [1 : 4 ,]))
4

5 # ##### P r e p r o c e s s i n g Data
6

7 # Tra in / T e s t s p l i t t i n g − 80 / 20
8 day_ ind <− 800
9 day_ t r a i n _ dat <− day_ dat [1 : day_ ind ,]

10 day_ t e s t _ dat <− day_ dat [(day_ ind +1) : 1 0 0 0 ,]
11

12 # S c a l i n g t r a i n i n g d a t a . S c a l i n g t e s t d a t a wi th t r a i n i n g s c a l e
13 dtr _ sc <− s c a l e (day_ t r a i n _dat , c e n t e r = T , s c a l e = T)
14 dtr _b <− a t t r (dtr _ sc , " sca led : s c a l e ")
15 dtr _a <− a t t r (dtr _ sc , " sca led : c e n t e r ")
16 dte _ sc <− s c a l e (day_dat , c e n t e r = dtr _a , s c a l e = dtr _b)

61

A.1. LSTM for forecasting competition analysis 62

17

18 # S p l i t t i n g i n t o s e q u e n c e . d_ s e r i e s i s change manual ly f o r e a c h
s e r i e s

19 d_ s e r i e s <− 1
20 dw_ s <− 1
21 dw_e <− 50
22

23 ## Tra in d a t a
24 # C r e a t i n g a mat r i x with 750 s e q u e n c e s c o n t a i n i n g 50 o b s e r v a t i o n s .
25 dtr _df_ in <− matrix (0 , ncol = 750 , nrow = 50)
26 dtr _df_ in
27

28 # P l a c i n g t h e f i r s t 50 o b s e r v a t i o n s in one row , th en moving t o
o b s e r v a t i o n [2 : 5 1] , [3 : 5 2] and so on .

29 for (dtr _ c in (1 : 7 5 0)) {
30 dtr _df_ in [, dtr _ c] <− dtr _ sc [dtr _ c : (d tr _ c +49) ,d_ s e r i e s]
31 }
32 dtr _df_ in <− t (dtr _df_ in)
33

34 # The o ut pu t i s d e f i n e d as t h e nex t o b s e r v a t i o n a f t e r t h e s l i d i n g
window

35 dtr _df_ out <− dtr _ sc [5 1 : 8 0 0 , d_ s e r i e s]
36

37 ## T e s t d a t a
38 # same p r o c e d u r e
39 dte _df_ in <− matrix (0 , ncol = 200 , nrow = 50)
40

41 for (dte _ c in (1 : 2 0 0)) {
42 dte _df_ in [, dte _ c] <− dte _ sc [(dte _ c +750) : (dte _ c +799) ,d_ s e r i e s]
43 }
44 dte _df_ in <− t (dte _df_ in)
45

46 # ##### Shaping i n p u t f o r LSTM
47

48 # C r e a t e 3−Dimens iona l t e n s o r f o r b o t h t r a i n i n g and t e s t s e t .
Output d a t a i s not changed , on ly renamed t o day _ t r _y

49 day_ t r _x <− k_expand_dims (dtr _df_ in , axis = 2)
50 day_ t e _x <− k_expand_dims (dte _df_ in , axis = 2)
51

52 # Shaping i n p u t as (no . samples , no . t ime s t e p s , no . f e a t u r e s)
53 d_samples <− dim (day_ t r _x) [1]
54 d_ s teps <− dim (day_ t r _x) [2]
55 d_ f e a t s <− dim (day_ t r _x) [3]
56

57 # C o n v e r t i n g t e n s o r t o a f o r m a t u s e a b l e by k e r a s
58 dtr _x <− k_ eval (day_ t r _x)
59 dte _x <− k_ eval (day_ t e _x)

A.2. Initialization for macroeconomic analysis 63

60

61 # ###### B u i l d i n g t h e network with k e r a s
62

63 day_mod <− keras _model_ s e q u e n t i a l ()
64 l a y e r _ lstm (day_mod, u n i t s = 50 , a c t i v a t i o n = " r e l u " , input _shape =

c (d_ steps , d_ f e a t s) , r e c u r r e n t _dropout = 0 . 4 , t r a i n a b l e = T ,
return _sequence = F)

65 l a y e r _dense (day_mod, u n i t s = 1)
66 compile (day_mod, l o s s = "mse" , opt imizer = "adam")
67

68

69 # T r a i n i n g t h e network with t r a i n i n g d a t a
70 f i t <− f i t (day_mod, dtr _x , day_ t r _y , batch _ s i z e = 12 , epochs = 40 ,

verbose = 1)
71

72 # P r e d i c t i n g t h e out−o f−sample o u t p u t s from out−o f−sample i n p u t s
73 day_pred_ t <−predic t _on_ batch (day_mod, dte _x)

A.2 Initialization for macroeconomic analysis

1 l i b r a r y (keras)
2 l i b r a r y (tensorf low)
3 l i b r a r y (Metr ics)
4 l i b r a r y (plsdof)
5

6 # s e t t i n g s e e d t o e n s u r e c o n s i s t e n c y be tween mode l s and
r e p r o d u c i b i l i t y

7

8 s e t . seed (1 0 0 0)
9

10 # c o n v e r t i n g d a t a t o a t ime s e r i e s o b j e c t
11 c l a s s _ dat <− t s (raw_ dat [1 : 9 0 , 1 : 2 1] , s t a r t = c (1 9 9 5 , 1) , frequency =

4)
12

13 # Log−t r a n s f o r m i n g t h e d a t a and t a k i n g f i r s t d i f f e r e n c e s
14 dat <− cbind (
15 d i f f (log (c l a s s _ dat [, 3])) , # GDP
16 c l a s s _ dat [i : l , 4] , # c p i _ gr
17 log (c l a s s _ dat [2 : 9 0 , 5 : 6]) , #emp , uemp
18 c l a s s _ dat [2 : 9 0 , 7 : 9] , # i n t _3m, i n t _10y , d i f f (s h a r e _

y i e l d)
19 log (c l a s s _ dat [2 : 9 0 , 1 0 : 1 1]) , # o i l , ex _USD
20 c l a s s _ dat [2 : 9 0 , 1 2] , # p e r m i t s
21 d i f f (log (c l a s s _ dat [, 1 3])) , # bus _ c r e d
22 d i f f (log (c l a s s _ dat [, 1 4])) , # house

A.3. LSTM for macroeconomic analysis 64

23 (c l a s s _ dat [2 : 9 0 , 1 5 : 1 8]) , #man_com , eu _com , g_ con , hh_
con

24 d i f f (log (c l a s s _ dat [, 1 9])) , #xp
25 d i f f (log (c l a s s _ dat [, 2 0])) , #imp
26 d i f f (log (c l a s s _ dat [, 2 1])) # ca
27)
28

29

30 # C r e a t i n g g l o b a l c o n s t a n t s f o r s p l i t t i n g d a t a and s e t t i n g t h e
number o f i n d i c a t o r s

31 k = 19
32 ind <− 72
33

34 t _ len <− length (dat [, 1])
35 w_ t e <− c ((ind +1) : t _ len)
36 w_ t r <− 1 : ind

A.3 LSTM for macroeconomic analysis

Each input is one indicator. Output is GDP growth

1 # S p l i t t i n g s c a l e d d a t a with windows c r e a t e d e a r l i e r
2 t r a i n _ in <− (dat _ in [w_ t r , 1 : (k−1)])
3 t r a i n _ out <− t (t (dat _ out [w_ t r]))
4 t e s t _ in <− (dat _ in [w_ te , 1 : (k−1)])
5 t e s t _ out <− t (t (dat _ out [w_ t e]))
6

7 # C r e a t i n g 3−Dimens iona l t e n s o r s from d a t a
8 x_ t r a i n <− k_expand_dims (t r a i n _ in , axis = 2)
9 y_ t r a i n <− k_expand_dims (t r a i n _out , axis = 2)

10 y_ t e s t <− k_expand_dims (t e s t _out , axis = 2)
11 x_ t e s t <− k_expand_dims (t e s t _ in , axis = 2)
12

13 # Shaping i n p u t as (no . samples , no . t ime s t e p s , no . f e a t u r e s)
14 nsamples <− dim (x_ t r a i n) [1]
15 nsteps <− dim (x_ t r a i n) [2]
16 n f e a t s <− dim (x_ t r a i n) [3]
17

18 # C o n v e r t i n g t e n s o r s t o k e r a s d a t a
19 x <− k_ eval (x_ t r a i n)
20 y <− k_ eval (y_ t r a i n)
21 x_ t <− k_ eval (x_ t e s t)
22 y_ t <− k_ eval (y_ t e s t)
23

24 # ##### B u i l d i n g t h e LSTM f o r macroeconomic d a t a
25 mod <− keras _model_ s e q u e n t i a l ()

A.4. Principal Component Regression 65

26 l a y e r _ lstm (mod, u n i t s = 19 , a c t i v a t i o n = " r e l u " , input _shape = c (
nsteps , n f e a t s) , t r a i n a b l e = T , return _sequence = F)

27 l a y e r _dense (mod, u n i t s = 1)
28 compile (mod, l o s s = "mse" , opt imizer = " sgd ")
29

30 # F e e d i n g macroeconomic d a t a t o LSTM
31 f i t <− f i t (mod, x , t r a i n _out , batch _ s i z e = 12 , epochs = 150 ,

verbose = 1)
32

33 # P r e d i c t i n g LSTM t r a i n i n g f i t and out−o f−sample GDP growth with
out−o f−sample i n p u t s

34 pred <−predic t _on_ batch (mod, x)
35 pred_ t e s t <−predic t _on_ batch (mod, x_ t)
36

37 # D e s c a l i n g p r e d i c t i o n b a c k i n t o d i f f (l o g ()) f o r i n t e r p r e t a t i o n
38 b <− a t t r (dat _ scale , " sca led : s c a l e ")
39 a <− a t t r (dat _ scale , " sca led : c e n t e r ")
40 pred_ t o t <− c (pred , pred_ t e s t)
41 desca le <− pred_ t o t ∗b [1] + a [1]

A.4 Principal Component Regression

1 # C r e a t i n g a copy o f d a t a
2 t s _ dat <− dat
3

4 # S p l i t t i n g d a t a with windows d e f i n e d e a r l i e r
5 t s _ t r a i n _x <− t s _ dat [w_ t r , 2 : k]
6 t s _ t r a i n _y <− t s _ dat [w_ t r , 1]
7 t s _ t e s t _x <− t s _ dat [w_ te , 2 : k]
8 t s _ t e s t _y <− t s _ dat [w_ te , 1]
9

10 # Cross−v a l i d a t e d p r i n c i p a l component r e g r e s s i o n . R e g r e s s i o n
c o e f f i c i e n t s a r e computed by compute . j a c k k n i f e = T

11 pcr <− pcr . cv (t s _ t r a i n _x , t s _ t r a i n _y , compute . j a c k k n i f e = T)
12

13 # Values from t h e r e g r e s s i o n i s s a v e d
14 pcr . i n t <− pcr $ i n t e r c e p t
15 pcr . coef <− pcr $ c o e f f i c i e n t s
16 pcr . beta <− c (pcr . in t , pcr . coef)
17

18 # The model i s c o n s t r u c t e d by m u l t i p l y i n g t h e l o a d i n g ma t r ix onto
t h e t r a i n i n g s e t . R e s i d u a l can be c a l c u l a t e d

19 pcr .mod <− cbind (rep (1) , t s _ t r a i n _x) %∗%pcr . beta
20 pcr . re s <− t s _ t r a i n _y − pcr .mod
21

A.4. Principal Component Regression 66

22 # The f i t i s s a v e d
23 dfm_ f i t <− as . vector (pcr .mod)
24

25 # The t e s t i n p u t s a r e th en f e d t o t h e model and t h e f i t and out−o f
−sample p r e d i c t i o n s a r e merged . dfm_ t s i s t h e one p l o t t e d l a t e r
.

26 pcr . t e s t <− cbind (rep (1) , t s _ t e s t _x)%∗%pcr . beta
27 pcr _ t s <− t s (pcr . t e s t , s t a r t = t s . ind , frequency = 4)
28 dfm_ t s <− c (dfm_ f i t , pcr _ t s)
29 dfm_ t s <− t s (dfm_ ts , s t a r t = c (1 9 9 5 , 1) , frequency = 4)

	Front page
	English title page
	0.1 Abstract

	Contents
	1 Intelligent Learning and Economic Predictions
	1.0.1 Econometrics combined with Machine Learning
	1.0.2 Econometrics versus Machine Learning
	1.0.3 The Macroeconomic Problem

	2 Machine Learning Approach
	2.1 Overview of Artificial Intelligence
	2.2 Machine Learning Methodology
	2.3 The Biological Motivation For Artificial Neural Networks
	2.4 Artificial Neural Networks
	2.4.1 A Modular Network Architecture
	2.4.2 Activation Functions
	2.4.3 Backpropagation
	2.4.4 Notes on Back-propagation
	2.4.5 Long Short-Term Memory (LSTM)
	2.4.6 Summary

	3 Benchmark Dynamic Factor Model
	3.1 Dynamic Factor Models
	3.1.1 Principal Components Regression

	4 Data and Models
	4.1 Data
	4.2 LSTM for Danish GDP
	4.2.1 Training The Network
	4.2.2 Parameters

	4.3 Benchmark Factor Model
	4.4 Results

	5 The Machine Learning Contribution to Economics
	5.1 Downsides of the Neural Network
	5.2 Posibilities of the Neural Network
	5.2.1 Nowcasting
	5.2.2 Local Interpretable Model-Agnostic Explanations (LIME)
	5.2.3 Variational Auto-Encoders (VAE)

	5.3 Data Generation
	5.3.1 Overconfidence in data

	6 Conclusion
	References
	A R code
	A.1 LSTM for forecasting competition analysis
	A.2 Initialization for macroeconomic analysis
	A.3 LSTM for macroeconomic analysis
	A.4 Principal Component Regression

