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Preface

This thesis has been developed over the course of the 10th semester at the

physics department at Aalborg University. It is worth 30 ECTS points, and is

concerning the topic of Optical Metamaterials. Work on the thesis began on the

2nd of February and was handed in on the 7th of June.

Understanding the contents of this thesis and Optical Metamaterials in general,

the reader should be familiar with the subject of Optics. The reader should also

be experienced in Linear Algebra and Calculus.

The figures and graphs appearing throughout the report have been created in

either Inkscape or Matlab unless otherwise specified. While many of the figures

appearing in the report have been created in Matlab, external code [1] has been

used to convert these into the TikZ format. Images not taken by the authors are

properly cited.

As the thesis is exclusively theoretical in nature, all the work over the course

of the project’s creation have been in the derivation of relevant equations, and

subsequently in the making of models and simulations by implementing these

equations in Matlab. For this, the Matlab toolbox called ’Partial Differential

Equation Toolbox’ was used.

The layout of this thesis has been heavily inspired by [2].

Citations in the thesis follow the IEEE style. Thus, a citation will appear

directly in the text as a number inside square brackets. The number refers to an

entry in the list of references at the back of the report.

The thesis begins with an introduction in Chapter 1, which serves to famil-

iarise the reader with the topic of Optical Metamaterials. This chapter presents

the reader with the general concepts of Optical Metamaterials, and presents an
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example of an Optical Metamaterial in the real world. As the Finite Element

Method (FEM) has been used as the primary numerical method, the introduction

also shortly touches upon the general concept behind this method.

Chapter 2 provides the necessary groundwork to create a foundation upon which

the eventual numerical approximations are built. The length of the chapter is due

to the fact that, for almost all equations used in the thesis, a derivation has been

provided.

Since the development of a Matlab script has been such a large part of the thesis,

the authors have chosen to include Chapter 3 to cover some of the overall steps

taken in the development of the script. Excerpts of the Matlab code can be found

in Appendix B.

The results gathered from the developed script are presented in Chapter 4. Many

different situations are shown, among whom are scattering plots and a presenta-

tion of effective parameters of the attempted simulation of different metamaterials.

This is also where a discussion of the results take place.

Finally, the thesis ends with a conclusion in Chapter 5. Here, the most signifi-

cant observations are summarised. Additionally, a section covering possible future

works on this topic has been provided.

Outside the main content of the thesis is an appendix. Here, a number of different

interesting situations have been examined. However, the authors felt that these

specific situations were not directly related to the main objective of the project,

and were thus not included in the main matter of the thesis.

Lastly, we would like to thank our supervisor, Thomas Søndergaard, for the

help provided throughout the development of the project.
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Abstract

A Matlab script has been created to calculate the reflectance and transmittance co-

efficients for an array of metal cylinders, for both an s-polarised and a p-polarised

incident field. The reflectance and transmittance coefficients have been used to

calculate the effective parameters of the metamaterial. For the s-polarised case this

went well, but the p-polarised case showed that the coefficients were dependant on

the material’s thickness, meaning that the material could not be approximated as

a bulk material, and the effective parameters could therefore not be determined.

Another Matlab script was created to calculate the scattering from an array of

metal cylinders, as well as a bulk material of the same size as the array, but using

the effective parameters that were determined from the reflectance and transmit-

tance coefficients. The s-polarised case showed a reasonable agreement between

the scattering calculated from the array and the scattering calculated from the

bulk approximation.

Chapter 2 presents the relevant theory and derives the equations needed for

the Matlab scripts. Chapter 3 describes how the structures has been created in

Matlab, and how the calculations were implemented. Chapter 4 presents and

discusses the results gathered with the Matlab scripts, starting with the effective

parameters for variations on the metal array, and proceeds to test these with plots

of the scattering of a similar array.
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1. Introduction

As is true for many subjects in physics, the examination of metamaterial-

like structures first took place at some point during the 19th century. But the

term ’metamaterial’ first made its appearance in the year 2000, when Smith et al.

coined the term in their article concerning materials exhibiting negative-valued

permittivity and permeability in the microwave spectrum [4]. These materials

are also referred to as being ’left-handed’, as Snell’s law, for instance, would be

inverted.

Conceptually, metamaterials are created by placing a number of sub-wavelength

sized scatterers in a homogeneous environment, either in a periodic array or ran-

domly. As the electromagnetic wave is unable to resolve the scatterers, it sees the

collection of scatterers as an effective material with effective parameters differing

from the scatterers’ parameters. While numerous implementation methods exist

to numerically examine metamaterials, among which are Green’s Function Area

Integration Method and Finite Difference Time Domain, the one used in this re-

port is the Finite Element Method (FEM).

The FEM quantifies all areas by introducing a mesh of triangles of a predefined

size, where a larger triangle amount yields a more accurate result, but with the

added downside of a longer evaluation time. One important point to consider is

the fact that the method exhibits diminishing returns with regards to accuracy

versus triangle amount.

To rephrase: While the evaluation time will always have an approximately quadratic

increase with an increase in triangle amount, the precision of the result will not.

Thus, a balance between the two must be reached. In cases such as this, a con-

vergence test can be a useful tool to determine at which point the model produces

satisfactory results, without taking too long.

Metamaterials have the potential to be used in a lot of applications. The first

known application of a metamaterial in a man-made object was the Lycurgus Cup,

which was made in the 4th century. If the object is seen using light reflected on

the cup’s surface, it appears green in colour, while a red colour is seen if the light

is transmitted through the cup. The reason for this difference in colour was found

to be in how the cup was fabricated. The main material used was ruby glass, but

with the essential addition of gold particles. [5]

An image of the cup in different lights can be seen in Figure 1.1.
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1. Introduction

Another rather interesting potential application of metamaterials is the creation

of invisibility cloaks.

Figure 1.1: The Lycurgus Cup. (left) The reflection of the light on the cup causes it
to appear green in colour. (right) If light is transmitted through the cup,
its colour appears to be red. From [3].
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2
Theory

This chapter seeks to describe the theory and show the calculations needed

to derive the expressions used to obtain the results presented later in the

report, as well as the theory needed to analyse these results. The starting

point is Maxwell’s equations, which are used to derive a wave equation for

the relevant field. This wave equation is considered throughout the chapter

to derive an expression of the field at a given point.
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2. Theory 2.1 The Wave Equations

2.1 The Wave Equations

To describe the field throughout some structure, the wave equation for the

given field is used. These wave equation can be derived from Maxwell’s equations,

∇ · ~D = ρ (2.1)

∇ · ~B = 0 (2.2)

∇× ~E = −∂
~B

∂t
(2.3)

∇× ~H =
∂ ~D

∂t
+ ~J, (2.4)

where ∇ is the partial derivative in the spacial dimensions, ~E is the electric field,
~D is the electric displacement field, H is the magnetic field, ~B is the magnetic

induction, ρ is the charge density, ~J is the current density and ∂
∂t

is the partial

derivative in time [6]. These can often be simplified considerably, for instance

when the charge density and current density is 0, which is the case that will be

considered in this section. For an incident magnetic field polarised along a z-axis,

given as H(x, y, z) = ẑH(x, y), the wave equation can be found by considering

∇×
(
1
ε
∇×H

)
, and rewriting it first using Maxwell’s equations,

∇×
(

1

ε
∇× ~H

)
= ∇×

(
1

ε

∂ ~D

∂t

)
= ∇×

(
1

ε
iωε0ε ~E

)
= iωε0∇× ~E

= iωε0(−iωµ0µ) ~H = k2µ ~H, (2.5)

and then rewriting it by calculating the curl

∇×

1

ε
∇×

 0
0
Hz

 = ∇× 1

ε

∂Hz∂y
∂Hz
∂x

0


=

 ∂
∂z

1
ε
∂Hz
∂y

∂
∂z

1
ε
∂Hz
∂x

− ∂
∂x

1
ε
∂Hz
∂x
− ∂

∂y
1
ε
∂Hz
∂y


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2.2 The Finite Element Method 2. Theory

=

 0
0

− ∂
∂x

1
ε
∂Hz
∂x
− ∂

∂y
1
ε
∂Hz
∂y


= − ∂

∂x

1

ε

∂

∂x
~H − ∂

∂y

1

ε

∂

∂y
~H

= −∇ · 1

ε
∇ ~H. (2.6)

Combining Equation (2.5) and Equation (2.6) yields

(
∇ · 1

ε
∇+ k2µ

)
~H = 0. (2.7)

Using the same approach for the electric field yields(
∇ · 1

µ
∇+ k2ε

)
~E = 0. (2.8)

2.2 The Finite Element Method

This section is largely based on [7].

In general terms, the FEM is a numerical method used to approximate a so-

lutions for boundary value problems. The method simplifies a problem by tessel-

lating the desired geometry intro smaller geometrical shapes such as triangles or

quadrilaterals. The simplification of the problem lies in the act of treating every

element as a problem of its own, and since every element of the created mesh

contains a number of vertices (called nodes), which are often shared by multiple

elements, one simply has to find a way to relate each elements with one another.

Usually one begins with a partial differential equation which describes the situation

perfectly. As these differential equations can have an infinite amount of solutions,

and since usually a specific, unique solution is desired, one must specify a set of

Dirichlet (also known as first-type) boundary conditions. The way in which the

solution is found, is by coming up with a series of linear equation for each of the

nodes. Giving each node a unique number, one can insert these linear equations

into a matrix and find the complete solution.
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2. Theory 2.2 The Finite Element Method

The actual equations are found using the Galerkin approach, which is a weighted-

residual method. The differential equations dealt with in this report are of second

order. These are originally given in their strong form, and, along with their accom-

panying boundary conditions, they must be converted into an integro-differential

formulation. The general idea is to multiply both sides of the differential equa-

tions with a weight function, and then taking an integral over the domain of the

element in question. By using integration by parts, one will find that the function

appearing in a second order differential equation, which would otherwise have to

be twice differentiable, need only be once differentiable. The second differentia-

tion has been assigned to the weight function. Since the restriction on the shape

function has been lessened, this approach is also known as the weak formulation.

For the method to be called the Galerkin method, the weight-functions used must

be from the same set as the shape functions.

In this report, it is sought to calculate the magnetic field throughout a prede-

fined structure. Triangles are chosen as the shapes used in the tessellation of the

geometry. Thus, each element has three nodes, unless, for instance, a quadratic

shape function is used. In that case, it is necessary to introduce additional nodes

in the middle of each elemental segment. In this report, however, linear shape

functions have been used.

The size of the elements in the mesh need not be the same. This is useful in cases

where specific, rapidly numerically varying areas are known. In such areas, one

can force the mesh to have a higher resolution. Since the method finds values for

the nodes in the mesh and not the elements themselves, it is necessary to fashion

a way to find the values within the area of the elements. This can be done by

assuming that the field at any point inside an element is a linear combination of

the fields at each vertex, with the closest vertex contributing the most to the field.

One way of achieving this is by introducing a unit triangle in a (u, v) coordinate

system, described by the points (0, 0), (0, 1) and (1, 0). These 3 unit equations

have the values of 1 at one of the vertices, which then decrease to 0 as the opposite

9



2.2 The Finite Element Method 2. Theory

vertices are reached. These equations can be found in Equation (2.9).

f1(u, v) = 1− u− v, (2.9)

f2(u, v) = u,

f3(u, v) = v.

The first of these functions can be seen in Figure 2.1.

1

1

1

v

u

Figure 2.1: An example of a unit function. It has a value of 1 at (0, 0) and a value of
0 at (1, 0) and (0, 1).

Resonance in Nano Particles

We will examine the frequencies of the electric field which results in resonance

in particles that are much smaller than the wavelength of the light in some or

all directions. Generally, we can express the electric field as the gradient of some

scalar field:

~Ei = −∇φi i = 1, 2, (2.10)

10



2. Theory 2.2 The Finite Element Method

where ~E1 is the field outside the particle, and ~E2 is the field inside the particle.

Assuming there is no free charges, Gauss’s Law gives

∇ · ~E = 0 (2.11)

∇2φ = 0. (2.12)

This gives a differential equation which has to be solved. Requiring that the

component of the electric field which is tangential to the surface and the component

of the displacement field which is normal to the surface is continuous at the surface

(no surface charge) gives the following boundary conditions [6],

φ1(~p) = φ2(~p) p ∈ Ω (2.13)

ε1
dφ1(~p)

d~p

∣∣∣∣
p=q

= ε2
dφ2(~p)

d~p

∣∣∣∣
p=q

q ∈ Ω (2.14)

where Ω is the surface of the particle. In this case the particle will be a cylindrical

particle, with its ground area in the x, y-plane, and the height along the z-axis.

Additionally, the direction of the electric field will be along the z-axis, ~E(~p) =

E0(x, y)ẑ. To determine the field inside and outside the particle, we need a guess

for the two scalar fields:

φ1 (r, θ) = −E0r cos θ + A
cos θ

r
(2.15)

φ2 (r, θ) = Br cos θ (2.16)

We need to verify that these fulfill the differential equation, described by Equa-

tion (2.12). In polar coordinates, the Laplace operator is given by [8]

∇2 =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
. (2.17)

11



2.2 The Finite Element Method 2. Theory

Using this to test the guesses for the fields gives,

r
∂φ1 (r, θ)

∂r
= a = −E0r cos θ − Acos θ

r
1

r

∂a

∂r
=
−E0 cos θ

r
+ A

cos θ

r3

1

r2
∂2φ1 (r, θ)

∂θ2
=
E0 cos θ

r
− Acos θ

r3
(2.18)

From this it can be seen that φ1 satisfies Equation (2.12). The same is true for φ2:

1

r

∂

∂r

(
r
∂φ2 (r, θ)

∂r

)
=
B

r
cos θ

1

r2
∂2φ2 (r, θ)

∂θ2
= −B

r
cos θ (2.19)

Using the conditions described by Equation (2.13) and Equation (2.14) the values

of A and B can be determined. Using Equation (2.13) to get an expression for B

gives

φ1 (a, θ) = φ2 (a, θ)

−E0a cos(θ) +
A

a
cos θ = Ba cos θ

B = −E0 +
A

a2
. (2.20)

Using Equation (2.14) to get another expression for B gives

ε1
∂φ1 (r, θ)

∂r

∣∣∣∣
r=a

= ε2
∂φ2 (r, θ)

∂r

∣∣∣∣
r=a

ε1

(
−E0 cos θ − A cos θ

1

a2

)
= ε2B cos θ

B = −ε1
ε2

(
A

a2
+ E0

)
. (2.21)

12



2. Theory 2.2 The Finite Element Method

The equations Equation (2.20) and Equation (2.21) can be combined to get an

expression for A,

−ε1
ε2

(
A

a2
+ E0

)
=
A

a2
− E0

A

a2

(
1 +

ε1
ε2

)
= E0

(
1− ε1

ε2

)
A = E0a

2 ε2 − ε1
ε2 + ε1

. (2.22)

With A calculated, B can now be calculated,

B = E0

(
ε2 − ε1
ε2 + ε1

− 1

)
= E0

2ε2
ε2 + ε1

. (2.23)

By inserting the expressions for A and B, the field inside and outside the particle

can be expressed in terms of the incident field. The field outside the particle is

given as

φ1 (r, θ) = −E0r cos θ + E0
a2

r

ε2 − ε1
ε2 + ε1

cos θ = E0 cos θ

(
a2

r

ε2 − ε1
ε2 + ε1

− r
)

(2.24)

E1 (r, θ) = ∇φ1 (r, θ) = E0 cos θ

(
−a

2

r2
ε2 − ε1
ε2 + ε1

− 1

)
r̂ − E0 sin θ

(
a2

r2
ε2 − ε1
ε2 + ε1

− 1

)
θ̂.

(2.25)

The field inside the particle is given as

φ2 (r, θ) = r cos θE0
2ε2

ε2 + ε1
(2.26)

E2 (r, θ) = ∇φ2 (r, θ) = cos θE0
2ε2

ε2 + ε1
r̂ − sin θE0

2ε2
ε2 + ε1

θ̂ (2.27)

As ε2 is a function of the wavelength, there might be certain wavelengths where

ε2 ≈ ε1, which results in a small denominator in Equation (2.27), and thereby a

strong field inside the particle.

13



2.3 Calculating Reflectance and Transmittance 2. Theory

2.3 Calculating Reflectance and Transmittance

In order to calculate the reflectance and transmittance coefficients for a slab

of metamaterial, the field has to be calculated throughout the structure. For this

section the structure is a periodic array of metal cylinders, and the field is parallel

to the cylinders. Because of these restrictions, the structure can be seen as being

two-dimensional and to only be a single period wide. The structure is illustrated

in Figure 2.2. The finite element method is used, which means that the structure

H

x

y

0

0
Figure 2.2: A model of the structure considered in this section.

will be divided into triangles, and the field inside a triangle will be approximated

as

H(u, v) =
3∑
i=1

aifi(u, v), (2.28)

where ai is the field at a certain vertex, and fi is the corresponding unit function.

The following calculations are made with the help from [9]. To describe the field

throughout the structure, the wave equation for the field is considered,(
∇1

ε
∇+ k20

)
H(x, y) = 0. (2.29)
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Using the Galerkin approach [7] leads to the following integral,

∫
w(x, y)

(
∇1

ε
∇+ k20

)
H(x, y)dydx = 0 (2.30)

Using the product rule for differentiation, this can be rewritten;

∇ ·
(
w(x, y)

1

ε
∇H(x, y)

)
= ∇w(x, y) ·

(
1

ε
∇H(x, y)

)
+ w(x, y)∇ ·

(
1

ε
∇H(x, y)

)
w(x, y)∇ ·

(
1

ε
∇H(x, y)

)
= ∇ ·

(
w(x, y)

1

ε
∇H(x, y)

)
−∇w(x, y) ·

(
1

ε
∇H(x, y)

)
(2.31)

Inserting this in Equation (2.30) gives

∫
A

w(x, y)

(
∇1

ε
∇+ k0

)
H(x, y)dydx =

∫
A

∇ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dydx

−
∫
A

∇w(x, y) ·
(

1

ε
∇H(x, y)

)
dydx

+

∫
A

w(x, y)k20H(x, y)dydx

= 0 (2.32)

The first integral on the right-hand side of Equation (2.32) can be rewritten as a

curve integral using Gauss’ divergence theorem [8],∫
A

∇ · ~V (~r)dA =

∫
dA

n̂ · ~V (~r)dl (2.33)∫
A

∇ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dydx =

∮
l

n̂ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dl (2.34)

When evaluating the curve integral around a triangle element, each contribution

will be cancelled out by the contributions from the neighbouring triangles, as the

only thing that is different along the same line in the neighbouring triangle is

the sign of the normal vector. This means that the curve integral will only give

any contributions along the edges of the structure. Due to the periodic boundary
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2.3 Calculating Reflectance and Transmittance 2. Theory

conditions along the left and right edges, these contributions will also cancel out

leaving only the contributions from the top and the bottom. For an incident field

running along the y-axis in the negative direction, and with unit amplitude, the

incident field is given as H0(x, y) = e−ikon1y, and the field at a sufficiently large

distance from the metal cylinders is given by H(x, y) ≈ H0 + Ae±ik0n1y, where +

is taken for the field above the cylinders, and − is taken below. Inserting this

expression for H(x, y) in the the curve integral gives

∮
l

n̂ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dl =

∮
l

n̂ · w(x, y)
1

ε
ŷ
(
−ik0n1H0 ± ik0n1Ae

±ikon1y
)
dl

=

∮
l

∓ik0n1(x, y)
1

ε
H0(x, y) + ik0n1w

1

ε
(H(x, y)−H0(x, y))dl

=

∮
l

−ik0n1w(x, y)
1

ε
H0(x, y)(1± 1)dl +

∮
l

ik0n1w(x, y)
1

ε
H(x, y)dl

(2.35)

Inserting Equation (2.35) in Equation (2.32) gives

−
∫
A

∇w(x, y) ·
(

1

ε
∇H(x, y)

)
dydx+

∫
A

w(x, y)k20H(x, y)dydx

+

∮
l

ik0n1w(x, y)
1

ε
H(x, y)dl −

∮
l

ik0n1w(x, y)
1

ε
H0(x, y)(1± 1)dl = 0 (2.36)

With the field expressed as in Equation (2.28), and using the unit functions from

Equation (2.9) as the weight functions, the first three integrals of the left-hand

side of Equation (2.36) will be of
∑3

j=1 fj
∑3

i=1 fiai, or a derivative thereof, while

the last integral is of the form
∑3

i=1 fiai. Moving the last term to the right-hand

side, this can be expressed as an equation of 3× 3 matrices

(
−A(k) + B(k) + C(k)

)a
(k)
1

a
(k)
2

a
(k)
3

 =

b
(k)
1

b
(k)
2

b
(k)
3

 (2.37)
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where

A
(k)
i,j =

1

ε

∫
∇fi(u, v) · ∇fj(u, v)dxdy, (2.38)

B
(k)
i,j = k20

∫
fi(u, v)fj(u, v)dxdy (2.39)

C
(k)
i,j =

ik0n1

ε

∮
fi(u, v)fj(u, v)dl (2.40)

b
(k)
i = ik0n1H0(1± 1)

∮
fi(u, v)dl (2.41)

Now these four elements has to be calculated, starting with A. As the unit func-

tions f are defined on some (u, v)-coordinate system, ∇ has to be expressed

as ∇ = x̂
(
∂f
∂u

∂u
∂x

+ ∂f
∂v

∂v
∂x

)
+ ŷ

(
∂f
∂u

∂u
∂y

+ ∂f
∂v

∂v
∂y

)
. Starting with A1,1, we look at

f1(u, v) = 1− u− v, and the gradient is given by

∇f1(u, v) = x̂

(
−1

∂u

∂x
− 1

∂v

∂x

)
+ ŷ

(
−1

∂u

∂y
− 1

∂v

∂y

)
(2.42)

∇f1(u, v) · ∇f1(u, v) =

(
∂u

∂x
+
∂v

∂x

)2

+

(
∂u

∂y
+
∂v

∂y

)2

(2.43)

To calculate the derivatives of u and v with respect to x and y, we consider how

they are defined. As u and v maps the vertices of a triangle onto the vertices of a

unit triangle, we can write

~r = ~r1 + u(~r2 − ~r1) + v(~r3 − ~r1) (2.44)

~r − ~r1 = u(~r2 − ~r1) + v(~r3 − ~r1) (2.45)

x− x1 = u(x2 − x1) + v(x3 − x1) (2.46)

y − y1 = u(y2 − y1) + v(y3 − y1) (2.47)

where ~r is a point inside a triangle, and ~rn marks the n’th vertex. From this u and

v can be isolated. Multiplying Equation (2.46) by (y3 − y1) and Equation (2.47)
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by (x3 − x1), and subtracting one from the other gives

(x− x1)(y3 − y1) =u(x2 − x1)(y3 − y1) + v(x3 − x1)(y3 − y1)

(2.48)

(y − y1)(x3 − x1) =u(y2 − y1)(x3 − x1) + v(y3 − y1)(x3 − x1)
(2.49)

(x− x1)(y3 − y1)− (y − y1)(x3 − x1) =u(x2 − x1)(y3 − y1)− u(y2 − y1)(x3 − x1)
(2.50)

u =
(x− x1)(y3 − y1)− (y − y1)(x3 − x1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)
(2.51)

v =
(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
,

(2.52)

where v was obtained by instead multiplying by (y2−y1) and (x2−x1). From this

we can obtain the derivatives:

∂u

∂x
=

y3 − y1
(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

(2.53)

∂u

∂y
=

−(x3 − x1)
(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

(2.54)

∂v

∂x
=

y2 − y1
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(2.55)

∂v

∂y
=

−(x2 − x1)
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(2.56)

With this, A
(k)
1,1 can be expressed as

A
(k)
1,1 =

1

ε(k)

∫ (
∂u

∂x
+
∂v

∂x

)2

+

(
∂u

∂y
+
∂v

∂y

)2

dxdy

=
1

ε(k)

((
∂u

∂x
+
∂v

∂x

)2

+

(
∂u

∂y
+
∂v

∂y

)2
)∫

1dxdy

=
A(k)

ε(k)

((
∂u

∂x
+
∂v

∂x

)2

+

(
∂u

∂y
+
∂v

∂y

)2
)

(2.57)
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The remaining entries of A(k) can be calculated in a similar way. The full matrix

is given by

A(k) = A(k)

ε(k)


(
∂u
∂x

+ ∂v
∂x

)2
+
(
∂u
∂y

+ ∂v
∂y

)2
−
(
∂u
∂x

+ ∂v
∂x

)
∂u
∂x
−
(
∂u
∂y
− ∂v

∂y

)
∂u
∂y
−
(
∂u
∂x

+ ∂v
∂x

)
∂v
∂x
−
(
∂u
∂y
− ∂v

∂y

)
∂v
∂y

−
(
∂u
∂x

+ ∂v
∂x

)
∂u
∂x
−
(
∂u
∂y
− ∂v

∂y

)
∂u
∂y

(
∂u
∂x

)2
+
(
∂u
∂y

)2
∂v
∂x

∂u
∂x

+ ∂v
∂y

∂u
∂y

−
(
∂u
∂x

+ ∂v
∂x

)
∂v
∂x
−
(
∂u
∂y
− ∂v

∂y

)
∂v
∂y

∂v
∂x

∂u
∂x

+ ∂v
∂y

∂u
∂y

(
∂v
∂x

)2
+
(
∂v
∂y

)2


(2.58)

Note that the values of the derivatives depends on the coordinates for the vertices

of the triangle. Next is the B matrix. Looking at the B2,2 entry, it is given by

B
(k)
2,2 = k20

∫
u2dxdy (2.59)

The integral can be changed from an integral over x and y to an integral over u

and v using

dxdy =

∣∣∣∣∂x∂u ∂y∂v − ∂y

∂u

∂x

∂v

∣∣∣∣ dudv
=

A(k)

Aunit
dudv

= 2A(k)dudv, (2.60)

where Aunit is the area of the unit triangle, which is 1
2
. Inserting this in Equa-

tion (2.59) gives

B
(k)
2,2 = 2k20A

(k)

∫ 1

0

∫ 1−v

0

u2dudv

=
2

3
k20A

(k)

∫ 1

0

(1− v)3dv

=
2

12
k20A

(k) (2.61)
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The full B matrix is given by

B(k) =
k20A

(k)

12

2 1 1
1 2 1
1 1 2

 (2.62)

The C matrix is a line integral over the upper or lower edge of the main structure.

As the unit functions are defined so that they are equal to 1 at one vertex, and 0

at the opposing edge, one of the unit functions will be 0 along the edge where the

line integral is carried out. This means that all the integrals involving this unit

function is equal to 0, so only four of the nine entries in the matrix are different

from 0. Assuming that vertex one and two are the ones that are on the edge, the

entry C1,1 can be calculated as

C
(k)
2,2 =

ik0n1

ε(k)

∮
u2dl

=l(k)
ik0n1

ε(k)

∮ 1

0

u2du

=l(k)
ik0n1

ε(k)
1

3
, (2.63)

where l is the length of the edge. The full C matrix is then given as

C(k) =
l(k)

6

ik0n1

ε(k)

2 1 0
1 2 0
0 0 0

 (2.64)

The ~b(k) vector is the only part left to calculate. The (1 ± 1) part depends on

whether an edge of the triangle is on the upper or lower edge of the structure,

with + corresponding to the upper edge. This means that the only contributions

will come from the line integrals along the upper edge. Similarly to the C(k)

matrix, one of the unit functions will be 0 along the edge, meaning only two of

the entries will be different from 0. As the integral is simply a line integral over

a function which goes linearly from 0 to 1 (or 1 to 0), the value of the integral is

half the length of the line. If the two point that are placed on the edge are the
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first two points, the ~b vector is given by

~b(k) =
l(k)

2
ik0n1H0

1
1
0

 (2.65)

With these four elements, the equations for a single triangle element is described,

and the next step is to combine the equations for each triangle element, to describe

the field throughout the entire structure. The ~a vector is related to the field as

a
(k)
1

a
(k)
2

a
(k)
3

 = P(k)


H1

H2
...
HN

 . (2.66)

Adding the equations from each triangle gives

N∑
k=1

P(k),T
(
−A(k) + B(k) + C(k)

)
P(k)


H1

H2
...
HN

 =
N∑
k=1

b
(k)
1

b
(k)
2

b
(k)
3



M


H1

H2
...
HN

 =


b1
b2
...
bN

 (2.67)


H1

H2
...
HN

 = M−1~bv (2.68)

When this equation is solved, the field is known at every vertex of the triangles

throughout the structure. However, before this equation can be solved, some

boundary conditions has to be imposed. As the goal is to model the field through-

out a periodic array of cylinders, the structure is also considered to be periodic

along the x-axis. This means that for a given point on the left edge of the struc-

ture, the field should be the same at the same for the same y-coordinate on the
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right edge of the structure.

This boundary condition requires that the vertices along one edge is closely

matched in height to the vertices along the other edge. Once two edge vertices

with the same heigth has been found, M and ~bv has to be modified. Assuming

that the points numbered n and m are the ones that are paired up, the n’th row

of the M matrix should be set to 0, while the n’th and m’th entries in this row

should be set to 1 and −1 respectively. In the ~bv vector, the n’th and m’th entry

should be set to zero:

M =


...

0 . . . 0 Mn,n = 1 0 . . . 0 Mn,m = −1 0 . . .
...

 , ~bv =



b1
...

bn = 0
...

bm = 0
...


(2.69)

Inserting these corrections in Equation (2.67) will lead to the equation

Hn −Hm = 0, (2.70)

which fulfills the boundary condition for those points. Doing this for all the points

along the edges fulfills the boundary condition for the entire structure.

With this boundary condition imposed, Equation (2.68) can be calculated.

With the field calculated, the reflectance and transmittance coefficients can be

calculated, by considering the field at a point above and below the cylinder region.

The field should be taken at points that are sufficiently far away from the cylinders,

so that any evanescent waves are gone, and the reflected and transmitted waves

can be considered plane waves. Under these conditions, the reflectance coefficient
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can be found as

H(x, y) = H0(x, y) +Hr(x, y) y > y0

H(x, y) = e−ik0n1y + e−ik0n1y0reik0n1(y−y0) (2.71)

r = (H(x, y)−H0(x, y)) e2ik0n1y0e−ik0n1y, (2.72)

and the transmittance coefficient can be found as

H(x, y) = e−ik0n1(y0)tH0(x, y) y < −y0 (2.73)

t = H(x, y)eik0n1y0eik0n1(y+y0) (2.74)

2.3.1 Non-normal incidence

So far all the calculations has been done under the assumption that the light

hits the metamaterial at normal incidence. However, as metamaterials can often

be anisotropic, the effective refractive index might change depending on the angle

of incidence. Taking into account that the angle of incidence can be different from

normal incidence changes some of the equations, but only slightly. The calculations

for normal incidence used an incident field given as

H0(x, y) = e−ik0n1y, (2.75)

whereas an incident field with an angle θ (relative to the positive x-axis) is given

as

H0(x, y) = eik0n1(cos θx+sin θy) = ein1(kxx+kyy). (2.76)

Looking at Equation (2.37), the A(k) and B(k) matrices remains unchanged, while

C(k) and ~b(k), the two contributions coming from the surface integral, changes.
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Looking at Equation (2.35), with a field given as H(x, y) = H0 + Aein1kxxe±in1kyy

∮
n̂ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dl

=

∮ (
n̂ · w(ŷ(−ikyn1H0 ± ikyn1Ae

in1kxxe±in1kyy)

+ x̂(ikxn1H0 + ikxn1Ae
in1kxxe±in1kyy))

)
dl

=

∮
∓ikyn1w(x, y)H0(x, y) + ikyn1w(x, y)(H(x, y)−H0(x, y))dl

=

∮
−ikyn1w(x, y)H0(x, y)(1± 1)dl +

∮
ikyn1w(x, y)H(x, y)dl, (2.77)

it can be seen that k0 simply has to be changed to ky in C(k) and ~b(k) to account

for the angle. For the boundary conditions, the field can no longer be assumed

to be the same along both edges of the structure. However, the field along one

edge is given as the field along the other edge, multiplied by the appropriate Bloch

function,

H(x = −d
2
, y) = H(x =

d

2
, y)eikxd. (2.78)

Finally, the reflectance and transmittance coefficients are slightly different when

the angle is considered, as the propagation along the x-axis has to be added. These

are now given as

r = (H(x, y)−H0(x, y)) e2in1kyy0e−in1kyyein1kxx (2.79)

t =H(x, y)ein1kyy0ein1ky(y+y0)ein1kxx (2.80)

2.3.2 S-Polarised Light

A structure like this is highly anisotropic when different polarisations are con-

sidered, which means that the effective refractive index might vary greatly depend-

ing on the polarisation. In the case of s-polarised light, the electric field will be

parallel to the cylinders, and the calculations will therefore use the electric field
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2. Theory 2.4 Scattering of Light by a Cylinder

instead of the magnetic field. The wave equation for the electric field is given as

(
∇2 + εk2

)
E(x, y) = 0 (2.81)

Using the same approach as for p-polarised light, we get the following integral

0 =

∫
w(x, y)

(
∇2 + εk20

)
H(x, y)dydx

=

∫
∇ · (w(x, y)∇H(x, y))−

∫
∇w(x, y) · (∇H(x, y)) dydx

+

∫
w(x, y)εk20H(x, y)dydx (2.82)

From this it can be seen that A(k), C(k) and ~b(k) is no longer multiplied by a factor

of 1
ε(k)

, while B(k) is now multiplied by a factor of ε(k). The periodic boundary con-

dition, as well as the calculations of the reflectance and transmittance coefficients

remains unchanged when changing to s-polarised light.

2.4 Scattering of Light by a Cylinder

With the effective medium parameters determined, the scattering by a meta-

material might be significantly simplified by considering the metamaterial as a

bulk. In this section two approaches to calculating the field will be explored, one

using the wave equation for the total field as a basis, and one using the wave equa-

tion for the scattered field as a basis. The structure is illustrated in Figure 2.3.

2.4.1 Total Field as Basis

The scattering from a cylinder might be calculated in a similar fashion to

how the reflected and transmitted light was calculated for a metamaterial. The

calculations in this subsection were made with help from [10]. Considering the

25



2.4 Scattering of Light by a Cylinder 2. Theory

H

x

y

0

0
Figure 2.3: A model of the structure considered in this section.

wave equation (
∇1

ε
∇+ k20

)
H(x, y) = 0 (2.83)

and using the Galerkin approach, with the same changes described in Equa-

tion (2.34) and Equation (2.32), gives

−
∫
∇w(x, y) ·

(
1

ε
∇H(x, y)

)
dydx+

∫
w(x, y)k20H(x, y)dydx (2.84)

+

∮
n̂ ·
(
w(x, y)

1

ε
∇H(x, y)

)
dl = 0.

The area integrals, which yield A(k) and B(k) in Equation (2.37) remains un-

changed, while the curve integral, which yields C(k) and ~b(k) are changed due to

different boundary conditions and a change in the structure. For the case of scat-

tering from a cylinder, the total field at a large distance from the cylinder can be

expressed as

H(x, y) ≈ H0(x, y) + A(θ)
eik0n1r

√
r
, (2.85)

where A(θ) is some function giving the amplitude of the scattered field as a function

of the angle, and r is the distance from the cylinder. For an incident field on the
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form

H0(x, y) = ein1(kxx+kyy), (2.86)

the integrand for the curve integrals at the boundary can be rewritten as

1

ε
w(x, y)n̂ · ∇H(x, y) ≈ 1

ε
w(x, y)r̂ · ∇H0(x, y) +

1

ε
w(x, y)A(θ)

(
ik0n1 −

1

2r

)
eik0n1

√
r

(2.87)

≈ 1

ε
w(x, y)ik0n1 (cos θ cosφ+ sin θ sinφ)H0(x, y) (2.88)

+
1

ε
w(x, y)

(
ik0n1 −

1

2r

)
(H(x, y)−H0(x, y)) , (2.89)

where φ is the angle of r̂ relative to the x-axis, and θ is the angle of the incident

field (or more accurately, the angle of the wave vector), relative to the x-axis. The

integral over the term containing H(x, y) will be the C(k) contribution, and the

integral over the terms containing H0(x, y) will be the ~b(k) contribution. Using the

basis functions described in Equation (2.9) as the weight functions, C(k) and ~b(k)

are given by

C
(k)
i,j =

1

ε

(
ik0n1 −

1

2r

)∮
fi(x, y)fj(x, y)dl (2.90)

b
(k)
i =

∮
fi(x, y)

1

ε

(
r̂ · ∇H0(x, y)−

(
ik0n1 −

1

2r

)
H0(x, y)

)
dl

=

∮
fi(x, y)

1

ε

(
cosφkx + sinφky −

(
ik0n1 −

1

2r

))
H0(x, y)dl (2.91)

From this it can be seen that C(k) can be calculated in the same way as before, while
~b(k) needs some assumptions on H0(x, y) along the curve. As the length of the curve

is much smaller than the wavelength, the exponential will only change slightly

along the curve. This means that the field might be approximated reasonably well

as a linear function along the curve,

H(~p) = H1 +
H2 −H1

l
~p, (2.92)
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where H1 and H2 are the field at the start end the end of the curve, and p is some

point on the curve. Approximating the angle φ as constant along the curve, ~b(k)

is given by

b
(k)
i =

1

ε

(
cosφkx + sinφky −

(
ik0n1 −

1

2r

))∮
fi(~p)H(~p)dl. (2.93)

The integral calculated along the unit curve, with a unit function which goes from

0 to 1 along the curve, can be calculated as

∮
fi(~p)H(~p)dl = l

∫ 1

0

p(H1 + (H2 −H1)p)dp

= l

[
1

2
H1p

2 +
1

3
(H2 −H1)p

3

]1
0

= l
2H1 +H2

6
, (2.94)

The integral using the other unit function, which goes from 1 to 0 along the curve,

will yield the same result with H1 and H2 switched around. The last unit function

will be 0 along the curve, so that integral will also be zero. With this, ~b(k) is given

as

~b(k) =
1

ε

(
cosφkx + sinφky −

(
ik0n1 −

1

2r

))
l

6

2H1 +H2

H1 + 2H2

0

 , (2.95)

if the first to vertices are the ones placed on the curve, with the first vertex placed

at the start of the curve, and the second vertex placed at the end of the curve.

A(k), B(k), C(k) and ~b(k) can be combined in the same way as described in section

2.3 to give the total field at all points. To get only the scattered field at all points,

the incident field can be subtracted at each point.
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2. Theory 2.5 Scattered Field as Basis

2.5 Scattered Field as Basis

Instead of calculating the scattered field by considering the wave equation for

the total field, the scattered field could be calculated by considering only the wave

equation of the scattered field. Beginning with the wave equation for the total field,

and allowing the permeability to be different from 1, which might be relevant for

metamaterials, yields(
∇ 1

ε(x, y)
∇+ µ(x, y)k20

)
H(x, y) = 0. (2.96)

To express the wave equation in terms of the scattered field, the permittivity and

permeability are expressed as

1

ε(x, y)
=

1

εref (x, y)
+

1

ε(x, y)
− 1

εref (x, y)
, (2.97)

µ(x, y) = µref (x, y) + µ(x, y)− µref (x, y), (2.98)

where εref (x, y) and µref (x, y) are the reference permittivity and permeability at

a point, i.e. the permittivity and permeability of the material surrounding the

scatterers. Dividing Equation (2.96) into a part with the incident field and a part

with the scattered field, and using Equation (2.97) and Equation (2.98) in the part

with the incident field gives(
∇ 1

ε(x, y)
∇+ µ(x, y)k20

)
Hsct(x, y) +

(
∇ 1

εref (x, y)
∇+ µref (x, y)k20

)
H0(x, y)︸ ︷︷ ︸

0

+

(
∇
(

1

ε(x, y)
− 1

εref (x, y)

)
∇+ (µ(x, y)− µref (x, y)) k20

)
H0(x, y) = 0, (2.99)

Arranging Equation (2.99) so that the terms with the scattered field is on one side,

and the terms with the incident field is on the other side, and using the Galerkin

29



2.5 Scattered Field as Basis 2. Theory

approach as demonstrated in the previous sections gives∫
A

w(x, y)∇ · 1

ε(x, y)
∇Hsct(x, y)dA+

∫
A

w(x, y)µ(x, y)k20Hsct(x, y)dA

= −
∫
A

w(x, y)∇ ·
((

1

ε(x, y)
− 1

εref (x, y)

)
∇H0(x, y)

)
dA

−
∫
A

w(x, y)(µ(x, y)− µref (x, y))k20H0(x, y)dA (2.100)

The terms on the left hand are on the same form as in Equation (2.32), except that

the second term now includes the permeability. As the permeability is considered

to be constant in the triangle, and thereby constant over the integral, this simply

results in a factor of µ(k) in the integral, and so the matrices A(k) and B(k) can be

calculated in a similar fashion. This means that it is only the terms on the right

hand side that is significantly different. For the first term, the integrand can be

rewritten using

∇ ·
((

1

ε(r)
− 1

εref (r)

)
∇H0(x, y)

)
=

(
∇
(

1

ε(r)
− 1

εref (r)

))
· ∇H0(x, y) +

(
1

ε(r)
− 1

εref (r)

)
∇2H0(x, y), (2.101)

which gives the two integrals

−
∫
A

w(x, y)∇ ·
((

1

ε(x, y)
− 1

εref (x, y)

)
∇H0(x, y)

)
dA

=−
∫
A

w(x, y)∇
(

1

ε(x, y)
− 1

εref (x, y)

)
· ∇H0(x, y)dA

−
∫
A

w(x, y)

(
1

ε(x, y)
− 1

εref (x, y)

)
∇2H0(x, y)dA (2.102)

The second integral on the right hand side is the simplest to calculate. The Laplace

operator working on the incident field is given as

∇2H0(x, y) = −k20εH0(x, y). (2.103)
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Approximating the field to be constant throughout the triangle, with its value

given as the value in the centre of the triangle, as well as using the unit functions

Equation (2.9) as the weight functions gives

−
∫
A

w(x, y)

(
1

ε(x, y)
− 1

εref (x, y)

)
∇2H0(x, y)dA

=k20ε

(
1

ε(x, y)
− 1

εref (x, y)

)
H0(x̃, ỹ)

3∑
i=1

∫
A

fi(x, y)~aidA

=k20ε

(
1

ε(x, y)
− 1

εref (x, y)

)
A(k)

3
H0(x̃, ỹ)

3∑
i=1

~ai, (2.104)

where x̃, ỹ are the value of x and y at the centre. The last equality comes from

the fact that the integral of one of the unit functions over a triangle is simply one

third of the area of the triangle. To calculate the first integral in Equation (2.102),

the integrand has to be rewritten. The part in the parentheses is a step function,

and the gradient of a step function can be evaluated as

U(x, y) = U1 + (U2 − U1)Θ (x− x0(y), y − y0(x)) (2.105)

x̂
dU

dx
+ ŷ

dU

dy
=

(
x̂
dy0(x)

dx
+ ŷ

dx0(y)

dy

)
(U2 − U1)δ(x− x0(y), y − y0(x))

= n̂(U2 − U1)δ(x− x0(y), y − y0(y)), (2.106)

where Θ is the unit step function and δ is the Dirac Delta function. Inserting

Equation (2.106) into the integral yields

−
∫
A

w(x, y)∇
(

1

ε(x, y)
− 1

εref (x, y)

)
· ∇H0(x, y)dA

=−
((

1

ε2
− 1

εref2

)
−
(

1

ε1
− 1

εref1

))∫
A

wn̂ · ∇H0(x, y)δ(x− x0(y), y − y0(y))dA,

(2.107)

where ε2 and εref,2 is the permittivity and the reference permittivity of the triangle

the normal vector is pointing to, and ε1 and εref,1 is the permittivity and the

reference permittivity of the triangle the normal vector is pointing away from.
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As the integrand is only non-zero along the edge of the scatterer, this can be

converted into a curve integral along that edge. Using the unit functions as the

weight functions, and using the field at the centre of the line as the value for the

incident field gives

−
∫
A

w(x, y)∇
(

1

ε(x, y)
− 1

εref (x, y)

)
· ∇H0(x, y)dA

≈−
((

1

ε2
− 1

εref2

)
−
(

1

ε1
− 1

εref1

))
(nx cos θ + ny sin θ)H0(x̃, ỹ)

3∑
i=1

∫
l

fi(x, y)~aidl,

(2.108)

where nx and ny are the x and y components of the normal vector. For the vertices

that is on the edge of the scatterer, the curve integral over the unit function is

simply half the edge length, while it is zero for a vertex that is not on the edge.

The only remaining term to calculate is the last integral on the right hand side in

Equation (2.100). Using an incident field that is constant over the triangle, and

using the unit functions as the weigth functions, and remembering that integrating

a unit function over a triangle gives one third of the area, the integral can be

expressed as

−
∫
A

w(x, y)(µ(x, y)− µref (x, y))k20H0(x, y)dA

≈ −A
(k)

3
(µ(x, y)− µref (x, y))k20H0(x̃, ỹ)

3∑
i=1

~ai. (2.109)

Combining these terms gives a matrix equation of the form

(
−A(k) + B(k)

)a
(k)
1

a
(k)
2

a
(k)
3

 =

b
(k)
1

b
(k)
2

b
(k)
3

 , (2.110)
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where the matrices are given as

A
(k)
i,j =

1

εk

∫
∇fi(u, v) · ∇fj(u, v)dxdy, (2.111)

B
(k)
i,j = µkk

2
0

∫
fi(u, v)fj(u, v)dxdy (2.112)

and the vector ~b is the sum of Equation (2.104),Equation (2.108) and Equa-

tion (2.109),

b
(k)
i =k20ε

(
1

ε(x, y)
− 1

εref (x, y)

)
A(k)

3
H0(x̃, ỹ)

−
((

1

ε2
− 1

εref2

)
−
(

1

ε1
− 1

εref1

))
(nx cos θ + ny sin θ)H0(x̃, ỹ)

∫
l

fi(x, y)

− A(k)

3
(µ(x, y)− µref (x, y))k20H0(x̃, ỹ) (2.113)

Solving this matrix equation for each triangle, and combining the solutions as

described in Equation (2.68) gives the scattered field throughout the structure.

However, as the structure has to end somewhere, the edges of the structure will

serve as some artificial barrier, which will reflect the field. To avoid this problem,

a perfectly matched layer can be added to the edge of the structure to absorb

the field, so that there is practically no field that gets reflected. This is done by

redefining the field as

Hsct,pml = Hscte
−σ(r), (2.114)

where r is the distance from the centre of the scatterer. This is equivalent to

multiplying the exponent of Hsct by a factor (1 + iσ). σ(r) should be defined as

σ(r) =

{
0, for r < rpml

σ0(r − rpml)2 for r < rpml,
(2.115)

where rpml is the distance from the scatterer at which the PML starts, and σ0 is a

coefficient which has to be determined. Applying this ensures that the scattered
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field decreases exponentially in the PML zone. This means that the PML has to

be placed at a sufficiently large radius, as the scattered field will not be accurately

depicted in this area. σ0 should be chosen so that it is large enough that the

scattered field practically vanishes in the PML, while still being small enough that

the PML surface does not cause reflection. To achieve this balance, the thickness

of the PML layer also has to be adjusted. In terms of the matrix elements, this

will affect A, where the derivative of the field appears, and this will result in A

having to be multiplied by a factor of (1 + iσ)−2. The total field can be calculated

by adding the incident field at each point.

2.5.1 Scatterer on a Surface

Now that a method for calculating the scattered field from a free scatterer has

been described, the method could be adapted to calculate the field scattered by

a scatterer placed on some surface. Assuming that the surface is parallel to the

x-axis, and placed at a height y = 0, the reference field is given as

E0(r) =

{
E0(e

ik0n1(cos θx+sin θy) + reik0n1(cos θx−sin θy)) y > 0

E0te
ik0n2(cos θ′x+sin θ′y) y < 0,

(2.116)

where r and t are the reflectance and transmittance coefficients and θ and θ′ are

the angles of the light above and below the surface. The calculations with the

added surface are very similar to the calculations without the surface, the only

thing that changes is that the appropriate expression for the reference field has

to be selected, based on whether the triangle is above or below the surface, as

no triangle will be placed across the surface. The reflectance- and transmittance

coefficients are given by the Fresnel equations [11]

rs =
n1 cos θ − n2 cos θ′

n1 cos θ + n2 cos θ′
ts =

2n1 cos θ

n1 cos θ + n2 cos θ′
(2.117)

rp =
n2 cos θ − n1 cos θ′

n2 cos θ + n1 cos θ′
tp =

2n1 cos θ

n2 cos θ + n1 cos θ′
, (2.118)
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where rs and ts are the reflectance and transmittance coefficients for s-polarised

light, and rp and tp are the reflectance and transmittance coefficients for p-polarised

light. Note that these coefficients depend on the way the field is defined, and may

have opposite sign for field defined in another way.

2.5.2 S-Polarised Light

When the permeability is considered, the wave equation for the electric field is

given as (
∇ 1

µ(x, y)
∇+ ε(x, y)k20

)
E(x, y) = 0. (2.119)

From this it can be seen that the equations for the s-polarised light is the same as

the equations for the p-polarised light, where the permeability and the permittivity

has been exchanged, and the electric field is considered instead of the magnetic

field. This means that the approach described above can be used with very few

changes. It should be noted that when the reference field is calculated in the case

of a scatterer on a surface, the reflectance and transmittance coefficient are used,

which depends on the polarisation.

2.6 Effective Medium Theory

Effective medium theory is about treating some composite material as a bulk

material by assigning some effective parameters, such as an effective refractive

index. If these effective parameters can be assigned to the material, many calcula-

tions, such as the scattering of light by a material, can be significantly simplified, as

the composite material can now be considered a bulk material. In this section the

focus will be on assigning an effective refractive index and effective impedance, and

using these values to calculate an effective permittivity and permeability. There

are different approaches to calculating the effective parameters. One of the sim-

plest approaches, as suggested by [12], is taking some weighted average of the
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parameters of the composite materials,

neff = f1n1 + f2n2 + ...+ fknk, (2.120)

where fi is the filling factor of the i’th material, and ni is the refractive index of the

i’th material. This approach does not consider the structure of the metamaterial,

which implies that the method might not work well for metamaterials where the

structure plays a significant role. For materials consisting of some bulk materials

containing some randomly distributed particles of another material, or maybe a

structure consisting of layers of different materials, this method might be effective.

Alternatively, the effective refractive index could be calculated by considering the

reflectance and transmittance coefficients.

For light with normal incidence, these can be calculated analytically for a bulk

material, using the reflection and transmission coefficients of the interfaces. For

the reflection, the following sum is considered:

r =r12 + t12e
αr21e

αt21 + t12e
αr21e

αr21e
αr21e

αt21 + ...

=r12 + t12r
−1
21 t21

∞∑
j=1

(
r221e

2α
)j

=r12 +
t12r21t21e

2α

1− r221e2α
, (2.121)

where r12 and r21 refers to reflection in area 1 and area 2 respectively, and t12

and t21 refers to transmission from area 1 to area 2, and from area 2 to area 1

respectively, and α = ik0nd, where n is the effective refractive index of the material

and d is the thickness. Similarly, the transmission can be calculated,

t =t12e
αt21 + t12e

αr21e
αr21e

αt21 + t12e
αr21e

αr21e
αr21e

αr21e
αt21 + ...

=t12e
αt21

∞∑
j=0

(
r221e

2α
)j

=
t12e

αt21
1− r221e2α

. (2.122)
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The expressions for r and t can be rewritten using the relations

r12 =− r21 (2.123)

t12 =1− r12 (2.124)

t21 =1− r21 = 1 + r12 (2.125)

t12t21 =1− r212 (2.126)

The goal is to express r and t in term of r12 only. Starting with r,

r =
r12(1− r212e2α)

(1− r212e2α)
+
r12(r

2
12 − 1)e2α

(1− r212e2α)

=
r12 − r12e2α

(1− r212e2α)
, (2.127)

and similarly for t,

t =
(1− r212)eα

1− r212e2α
(2.128)

Equation (2.127) can be used to express r12 in term of a quadratic equation,

r(1− r212e2α) = r12 − r12e2α

−re2αr212 + r12(e
2α − 1) + r = 0

r12 =
−(e2α − 1)±

√
(e2α − 1)2 + 4r2e2α

−2re2α
. (2.129)

The same can be done using Equation (2.128),

t(1− r212e2α) = (1− r212)eα

(eα − te2α)r212 + t− eα = 0

r12 =
±
√
−4(eα − te2α)(t− eα)

2(eα − te2α)
. (2.130)
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Subtracting Equation (2.130) from Equation (2.129) gives

0 =
−(e2α − 1)±

√
(e2α − 1)2 + 4r2e2α

−2re2α
−
±
√
−4(eα − te2α)(t− eα)

2(eα − te2α)
= f(n),

(2.131)

as α is a function of n. Finding the value for n where f(n) gives 0 gives the

value of the effective refractive index. While this may not be done analytically,

it can be done numerically. Since f(n) gives a complex number, the phase of f

can be calculated. At f(n) = 0, the phase will be undefined, which leads to a

phase singularity at this point. By dividing the complex plane into rectangles, the

phase singularity can be found be calculating the phase change along each edge of

each rectangle. The rectangle containing the singularity should have a large jump

in phase along only one edge. Once the rectangle containing the singularity has

been found, the location of the singularity can be more accurately determined by

dividing the rectangle into smaller rectangles, and repeating the process, until a

satisfying accuracy has been achieved.

Alternatively, the approach presented in [13] and [14], could be applied, how-

ever this approach requires more work in analysing the data. By considering the

relations between the reflectance and transmittance coefficients and the refractive

index and impedance,

1

t
=

(
cos(nkd)− i

2

(
Z +

1

Z

)
sinnkd

)
eikd (2.132)

r

t′
= − i

2

(
Z − 1

Z

)
sinnkd, (2.133)

where t is the transmittance, t′ is what the article refers to as the normalised

transmittance, r is the reflectance, n is the refractive index, k is the wavenumber,

d is the thickness of the material and Z is the impedance [13]. Note that the

normalised transmittance is simply referred to as the transmittance coefficient in

this report, and the relation between the transmittance and normalised transmit-

tance is t′ = teikd. Inverting these equations to isolate for the refractive index and
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impedance yields [13]

Re(n) = ± 1

kd
Re

(
cos−1

(
1

2t′
(
1−

(
r2 − t′2

))))
+

2πm

kd
, m ∈ N (2.134)

Im(n) = ± 1

kd
Im

(
cos−1

(
1

2t′
(
1−

(
r2 − t′2

))))
(2.135)

Z = ±

√
(1 + r)2 − t′2
(1− r)2 − t′2

. (2.136)

These equations presents a couple of ambiguities, namely the sign of the expres-

sions and the ”branch” of the real component of the refractive index, determined

by m. Assuming that the matematerial is a passive material, the problem with

the sign can be resolved by demanding that the real component of the impedance

and the imaginary component of the refractive index are non-negative. This re-

quirement also gives the sign of the real component of the refractive index, which

has to use the same sign as the imaginary component, as the two equations come

from the same equation. All that remains is to determine the correct branch of the

real component of the refractive index. In [13] the branch is determined by calcu-

lating the reflectance and transmittance coefficients for different thicknesses of the

material, and demanding that the refractive index does not depend on the thick-

ness. Since the distance between the branches increases as the material’s thickness

decreases, it is easiest to determine the correct branch for small thicknesses.

Another problem when determining the effective medium parameters is that

the edges of the metamaterial might not be well defined, as this will effect the

material thickness, which is used for the calculation. In the case of a periodic

metamaterial which is created by repeating some unit rectangle, [14] suggests that

the effective edges of the metamaterial might be found by starting with the edges

of the first and last unit rectangle, which is then displaced by the lengths l1 and

l2 respectively. The set l1, l2 is determined by minimising the difference in the

impedance for two different thicknesses at various wavelengths, i.e. the values
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that minimises

f(l1, l2) =
1

Nλ

Nλ∑
i=1

|z1(λi, l1, l2)− z2(λi, l1, l2)|
max (|z1(λi, l1, l2)|, |z2(λi, l1, l2)|)

, (2.137)

where Nλ is the number of sample wavelengths, and z1 and z2 are the impedance

calculated for a different number of unit rectangles. In [14] the displacement

lengths are limited to half the length of a unit rectangle.
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3
Implementation

The point of this chapter is to cover, in very general terms, some of the

steps taken in the creation of the script. Specific examples are shown in an

attempt to clarify the implementation method.
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3. Implementation 3.1 Creation of Structure

Having finished the analytic and numerical foundation, the next step is the im-

plementation. A two-dimensional representation of the scatterers which make up

the metamaterial is used. For these scatterers, two shapes are chosen: completely

circular or square with rounded corners.

As professed in the introduction, the chosen numerical method is the FEM. As

such, the produced structures and situations are tessellated into a mesh of triangles

of variable sizes. The numerical calculations relate the values of these triangles

with one another as explained in Chapter 2.

The implementation of the method was done using the following overall steps:

• Creation of structure.

• Mesh generation.

• Selection of zones.

• Calculation of the scattered field.

3.1 Creation of Structure

The creation of the overall structure one wishes to examine is done by using

Constructive Solid Geometry (CSG). The general concept of CSG is to create com-

plicated structures using a combination of simple geometric shapes. The allowed

simple shapes, called ’primitives’, in two dimensions are circles, polygons, rectan-

gles and ellipses. The advanced structures are created by overlapping primitives

and by applying a Set Formula. The Set Formula contains the operations found

in set theory, which are the Union (∪), Difference (−) or Intersection (∩).

Matlab allows for the creation of primitives using the command line. The Matlab

syntax is dependant on the desired primitive. An example of such syntax can be

shown in either the creation of a simple circle:

geom = [1 , centerx , centery , radius];
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3.2 Mesh Generation 3. Implementation

or a simple rectangle:

geom = [3 , 4 , x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4];

The numbers in the first column, 1 and 3, are the indicators of the geometric shape

(circle & rectangle), and are simply part of the Matlab syntax.

Figure 3.1 shows a simple example of how CSG works. Figure 3.1(a) shows a

square being intersected by a circle. Subtracting the area of the circle from the

square yields the situation shown in Figure 3.1(b).

The function decsg is then used to decompose the CSG into minimal regions,

which are used in the generation of a mesh. Additionally, one can ask decsg for

a second output, which is an array relating the acquired minimal regions to the

original primitives.
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Figure 3.1: An example of Constructive Solid Geometry. Face and edge labels are
shown. (a) A circle overlapping a square. (b) The rectangle with the circle
subtracted.

3.2 Mesh Generation

When the desired structure has been created and the minimal regions have been

determined, the generation of a tessellating mesh can be done. A prerequisite to
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3. Implementation 3.2 Mesh Generation

mesh generation is the creation of a model container. This is simply achieved

by using the createpde function. To assign the geometric edges obtained in

the determination of the minimal regions to the model, one simply has to use

the geometryFromEdges command. With the model now containing the correct

edges, the mesh generation is done by merely using the command generateMesh

(which has options to increase or decrease the tessellation resolution). The mesh

generated by using the edges seen in Figure 3.1(b) yields the mesh seen in Fig-

ure 3.2. The information contained in the mesh can be converted for easier
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Figure 3.2: Tesselation of the CSGs found in Figure 3.1 with a Hmax of 0.05.

manipulation. This is done using the command meshToPet, and will yield three

arrays.

Every column in the p array contains the x- and y-coordinates of a single unique

point/vertex in the mesh.

The e array is more complicated. Every column represents a specific edge, and

the content of its rows can be seen in Table 3.1.

The columns of the t array correspond to all the triangles in the mesh. The first

three rows represent the three points/vertices making up the corners of the trian-

gle, and refer to column indices in the p array. The fourth row represents the face

in which the triangle resides.
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Table 3.1: The contents of the rows in the e array.

Row number Content

1 Index of first point in mesh edge

2 Index of second point in mesh edge

3 Parameter value of first point

4 Parameter value of second point

5 Edge ID

6 Subdomain on left side of edge

7 Subdomain on right side of edge

3.3 Selection of Zones

The structure in Figure 3.1(b) is very simple, and as can be seen, only one face

(area) is present. If one were to instead consider the structure in Figure 3.1(a),

one can observe the three faces created by the intersecting lines.

The calculations are done incrementally for all the triangles in the generated mesh.

Thus, one must designate which faces correspond to which elements in the struc-

ture (e.g. face 1 is the environment, face 2 is the scatterer). Then, using the fourth

row in array t, one can determine which parameters each of the triangles must

adopt.

Unfortunately, Matlab’s labelling of the structure’s faces is done seemingly ran-

domly. This makes it difficult to program a process which automatically deter-

mines whether a face belongs to the environment or to a scatterer.

While technically possible, if one was dealing with many scatterers, the process

of manually inputting which faces correspond to which materials would be very

tedious. Hence, automation of the process of zone determination is a central part

of a generalised script.

The relation array obtained by the decsg function seemed like the only way to

automate the face determination. The rows of the array represent the faces, while

the columns represent the original primitives. The array consists of 0’s and 1’s. If

a certain face is located within the area of a primitive, the number 1 will appear

at their corresponding row and column. Using this information in addition to
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the information provided by the primitives, one can automatically determine the

face-material correspondence up to a certain degree.

3.4 Calculation of the Scattered Field

Having created the mesh as well as knowing which faces correspond to which

material, the calculation of the field can now be accomplished. As every element of

the mesh has an influence, the chosen numerical approach is the create a for-loop

iterating over all the triangles in the mesh. The actual theoretical calculations are

covered in Chapter 2.

Depending on the amount of triangles present in the mesh, the M matrix, which

stores all the points’ respective values, has the potential to become quite large.

For n triangles, the result would be an n× n M matrix. It is not inconceivable to

have upwards of 50.000 triangles in the mesh, which would result in an M matrix

of 2.5 billion elements. Storing this on a PC would require 18.6 Gigabytes of RAM.

Fortunately, many of the elements of the M matrix consist of 0’s. Therefore, a

sparse matrix can be used. A sparse matrix does not explicitly store values in the

indices which contain 0 values, and thus a lot of space can be saved.

The pre-allocated sparse matrix has values placed inside it at every iteration of

the for-loop. The indices in which these values are placed are simply chosen using

the information contained in the t array of the triangle in the current iteration.

As previously stated, the indices of the triangle’s three points are located in the

first three rows of the t matrix. Using the x- and y-values of these points in the

calculations, nine values are added to the sparse matrix in indices corresponding to

the points’ indices in the p array. Since many of the points in the mesh are shared

between triangles, numerous indices in the sparse matrix are accessed multiple

times.

Once the sparse matrix has been filled, it is only a question of dividing the b vector

by the M matrix as shown in Equation (2.68).
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4
Results & Discussion

This chapter presents the results gathered with the Matlab scripts. Typically

a figure will be presented, followed by a discussion of that figure. The chapter

starts with the effective parameters for variations on the structure of the

metamaterial. If nothing else is stated, the standard for the metamaterial is

gold cylinders with a radius of 12 nm and a period of 30 nm, repeated for

10 rows, and with an s-polarised incident field. Next, the scattering figures

is presented, which was calculated using both an array of gold cylinders,

and a bulk material with the corresponding effective parameters. These are

compared. The chapter ends with a discussion on the scripts that have been

created by the authors. Some results were not considered relevant enough to

be presented in this chapter are displayed in Appendix A.
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4. Results & Discussion 4.1 Effective Parameters

4.1 Effective Parameters

When calculating the effective parameters, it was quickly seen that the method

described by Equation (2.131) was not sufficient for the metamaterials that are

examined in this section, as that method found multiple singularities, with vari-

ations in both the real and imaginary parts of the refractive index. This might

be because the expressions used did not account for the impedance, but rather

assumed that it was the inverse of the refractive index. This would also imply

that the weighted average approach, described by Equation (2.120), would be in-

sufficient. Therefore all the effective parameters presented in this section has been

calculated using the method described by Equation (2.134), Equation (2.135) and

Equation (2.136)

4.1.1 S-Polarisation
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Figure 4.1: The refractive index of a square array of gold cylinders with a radius of
12 nm and a period of 30 nm. The incident field is s-polarised, i.e. the
magnetic field component is parallel to the cylinders. The refractive index
is calculated for an array of 10 rows thickness.

In Figure 4.1 the effective refractive index of the metamaterial can be seen.

The real part is much lower than the imaginary part, and the material is expected

to behave metallic. This is consistent with Figure A.1 where it can be seen that

51



4.1 Effective Parameters 4. Results & Discussion

only a small portion of the light passes through the metamaterial. Comparing the

effective real refractive index calculated from the reflectance and transmittance

coefficients to the weighted average, as seen in Figure 4.2, shows a very poor fit.

For the imaginary component, the values calculated from reflectance and trans-

mittance seem to roughly follow the same shape as that of the bulk or weighted

average, but the actual value are somewhere between the bulk and weighted aver-

age. All the imaginary components shares a bend around 500 nm, followed by a

steep increase, but this is less pronounced for the weighted average.
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Figure 4.2: The refractive index for bulk gold and the weighed average between the
refractive index for gold and air (n=1), using for a material consisting of
50.3% gold. The refractive index of gold is calculated by linear interpola-
tion at the given wavelength, using the data file [ref].

Figure 4.2 depicts the refractive index of gold, as well as the weighted average

between gold and air, for a metamaterial with a cylinder radius of 12 nm and

a period of 30 nm. This amounts to a roughly even split between air and gold.

For air, the refractive index was set to be 1 + 0i for all wavelengths and the

refractive index for gold was found from a linear interpolation between the data

points in the data file used for the Matlab code. This data file has 15 data points

in the spectrum where the refractive index was calculated. The curves seem fairly

smooth in the spectrum, so it seems like a linear interpolation gives a sufficiently

accurate refractive index. The bulk values was used for the gold cylinders in the

script, but as the permittivity and permeability were used instead of the refractive
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index, these were set as εgold = n2
gold and µgold = 1.
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Figure 4.3: The impedance of a square array of gold cylinders with a radius of 12 nm
and a period of 30 nm. The incident field is s-polarised. The impedance
is calculated for an array of 10 rows thickness.

In Figure 4.3 the impedance of the metematerial is illustrated. A problem with

determining the impedance from the reflectance and transmittance coefficients is

that the sign of the equation is determined by requiring that the real component

is non-negative. Normally this is unambiguous, but if the real component is very

close to 0, the sign could be determined by the noise in the calculations, which

could lead to the wrong sign for the imaginary component. For the high end of the

spectrum, the real part of the impedance in close to zero, but it does not seem to

have caused any problems, as the only effect this could have on the imaginary part

is to change the sign. As the sign of the imaginary part does not change throughout

the spectrum, and the sign must be right for the low end of the spectrum, where

the real part is too far away from 0 for the sign to be determined by noise, the

sign of the imaginary part must be right throughout the spectrum.

In Figure 4.4 the relative permittivity of the metamaterial can be seen. This is

calculated from the effective refractive index and impedance. After a bend abound

500 nm the real component has a steep decline, while the imaginary part is less

dependant on the wavelength. It might be interesting to see how this changes

beyond the spectrum, but the data for the refractive index of gold, which was
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Figure 4.4: The relative permittivity of a square array of gold cylinders with a radius
of 12 nm and a period of 30 nm. The incident field is s-polarised. The
relative permittivity is calculated for an array of 10 rows thickness. The
grey dashed line marks 0 on the y-axis for easier reading.

used for the calculations, starts to become sparse beyond 900 nm, and judging by

the values at the data points, a linear interpolation might not be accurate in this

region.

In Figure 4.5, the relative permeability for a metamaterial consisting of an

array of gold cylinders can be seen. The real part increases from approximately

1 to 1.5 over the spectrum, while the imaginary part goes from positive to nega-

tive. For comparison, the relative permeability used for the calculations was 1 +

0i for both gold and air. This means that any method for calculating the effec-

tive parameters that used some weighted average, or that does not consider the

impedance (implying Z = 1/n) would not get the same result for the permeability

of the metamaterial. The rate at which the magnetic field and the electric field is

dissipated into heat in a material is proportional to the imaginary part of the per-

meability and permittivity, respectively, which becomes negative if the imaginary

parts are negative. For a passive medium, this rate must be non-negative, how-

ever, this does not mean that both imaginary parts has to be positive, but simply

that both cannot be negative at the same time. As the imaginary part of the per-

mittivity remains positive throughout the spectrum, having a negative imaginary

part for the permeability is not necessarily a problem for a passive medium [15].
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Figure 4.5: The relative permeability of a square array of gold cylinders with a radius
of 12 nm and a period of 30 nm. The incident field is s-polarised. The
relative permeability is calculated for an array of 10 rows thickness. The
grey dashed line marks 0 on the y-axis for easier reading.

Figure 4.6 illustrates the real component of the refractive index of the meta-

material for different radii of the gold cylinders. When the cylinder radius is

decreased, the period of the structure, i.e. the distance between the centres of

the cylinders, is kept constant. This means that the gap between the cylinders

increases as the radius decreases. All five curves are very close to each other, so

the real part of the refractive index is mostly independent on the cylinder radius.

In Figure 4.7 the imaginary component of the refractive index of the meta-

material can be seen for different radii of the gold cylinders. Here it can be seen

that the cylinder radius has a much larger impact on the imaginary part than it

does on the real part, with larger cylinders resulting in a much larger imaginary

part. As the metallic fraction of the metamaterial increases it is to be expected

that the imaginary part also increases. Comparing this to Figure A.2 it can be

seen that reducing the radius of the cylinders, while also reducing the period by

the same factor, i.e.scaling the structure down, has the same effect of reducing the

imaginary component of the refractive index, but to a much smaller degree.

Figure 4.8 shows a comparison between the effective refractive index for an

array of either gold or silver cylinders. The two arrays are identical excepts for

the material of the scatterers. The figure shows that the real part is mostly
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Figure 4.6: Comparison of the real component of the refractive index of a square array
of gold cylinders of varying radius. The refractive index is calculated for
a array of 10 rows thickness.

independent of the material, while the imaginary part follows the shape of the

imaginary part for the bulk material. Silver cylinders gives a larger imaginary

part than gold cylinders, which is to be expected, as this is also the case for the

bulk materials. In Figure 4.9 and Figure 4.10 the real and imaginary parts of

the refractive index can be seen for both a square array and a hexagonal array

of gold cylinders. The hexagonal array is created by shifting every other row of

cylinders half a period. This results in a hexagonal array which does not consist

of equilateral hexagons, but it means that cylinders of the same size gives the

same filling factor. From the figure is can be seen that changing the array pattern

between square and hexagonal does not matter, as the curves are so close together

that they are nearly impossible to distinguish from each other in both cases.

Figure 4.11 depicts the real part of the reflectance coefficient for a varying

number of rows in the metamaterial. For the metamaterial to behave like a bulk

material, the reflectance coefficient should be independent of the material thick-

ness, as this is used to calculate the effective parameters. In the figure it can be

seen that a single row of cylinders gives a significantly different reflectance coef-

ficient, and while the curves get closer together as the number of rows increase.

The curves showing the reflectance coefficient for 4 and 5 rows are difficult to
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Figure 4.7: Comparison of the imaginary component of the refractive index of a square
array of gold cylinders of varying radius, with a constant period of 30 nm.
The refractive index is calculated for an array of 10 rows thickness.

distinguish for the majority of the spectrum, which means that by 4 rows, the

matematerial will closely resemble a bulk material. In general it can be seen that

the curves diverges more at longer wavelengths. In [13] it was shown that a similar

matematerial, described in [16], using the same polarisation, started to behave as

a bulk material around 3 rows, although that is for a much larger structure, and

using a much longer wavelength.
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Figure 4.8: Comparison of the refractive index of a square array of either gold or silver
cylinders of radius 12 nm and a period of 30 nm. The refractive index is
calculated for an array of 10 rows thickness.
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Figure 4.9: Comparison of the real component of the refractive index of either a square
or hexagonal array of gold cylinders of radius 12 nm and a period of 30
nm. The refractive index is calculated for an array of 10 rows thickness.
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Figure 4.10: Comparison of the imaginary component of the refractive index of either
a square or hexagonal array of gold cylinders of radius 12 nm and a
period of 30 nm. The refractive index is calculated for an array of 10
rows thickness.
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Figure 4.11: Comparison of the real part of the reflectance coefficient for a varying
number of rows of a square array of gold cylinders of radius 12 nm and a
period of 30 nm.
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4.1.2 P-Polarisation
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Figure 4.12: Comparison of the real part of the reflectance coefficient for a varying
number of rows of a square array of gold cylinders of radius 12 nm and a
period of 30 nm, for p-polarised light

Figure 4.12 shows the real part of the reflectance coefficient for a varying num-

ber of rows for the matematerial, for a p-polarised incident field. At short wave-

lengths the different thicknesses gives the same reflectance coefficient, as a bulk

material should, but around 550 nm they diverge, which means that the meta-

material can not be treated as a bulk material at these wavelengths. As these

thicknesses are much greater than the thickness at which the reflectance coeffi-

cient started to converge for the s-polarised case, it seems like the material will

not converge at the longer wavelength end of the spectrum, even if the material was

made thicker. As the reflectance coefficient is roughly the same for all thicknesses

at short wavelengths, it might be possible to assign some effective parameters in

this region. Comparing this figure to the refractive index of bulk gold, it can be

seen that the reflectance coefficients starts to diverge after the imaginary refractive

index starts to increase.

In Figure 4.13 and Figure 4.14 the absolute value of the reflectance coefficient

can be seen for a varying number of rows of the metamaterial, for 12 nm and 8 nm

respectively. While the reflectance varies highly with the number of rows, it can

be seen that it is generally higher for larger cylinders, which is to be expected. For
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Figure 4.13: Comparison of the absolute value of the reflectance coefficient for a vary-
ing number of rows of a square array of gold cylinders of radius 12 nm
and a period of 30 nm, for p-polarised light

the cylinders with a radius of 12 n, the reflectance coefficient seems to converge

well at low wavelengths, but this is not the case for cylinders of 8 nm radius. In

that case the only convergence point is around 760 nm, where all three curves

shows no reflection. For an incident field to experience no reflection would imply

the the refractive index is the same above and below the interface, if the Fresnel

equations are considered. In this case it would imply that the effective refractive

index is 1 for the metamaterial.

Figure 4.15 shows the imaginary component of the refractive index for an

array of a varying number of gold cylinders. Comparing this to Figure 4.12,

shows that the imaginary part of the refractive index is the same for different

thicknesses in the region where the reflectance was also the same for different

thicknesses. Beyond this region in the short wavelengths, the different thicknesses

yields different results, which is to be expected, as a bulk material should give

the same reflectance coefficient regardless of the thickness. Comparing the figure

to Figure 4.1 it can be seen that the imaginary component is significantly lower

for p-polarisation, which is consistent with Figure A.1. Comparing the figure to

the imaginary component of the refractive index for thinner cylinders, as seen in

Figure A.5, shows that the curves seem to follow the same shape, at least for
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Figure 4.14: Comparison of the absolute of value the reflectance coefficient for a vary-
ing number of rows of a square array of gold cylinders of radius 8 nm and
a period of 30 nm, for p-polarised light

short wavelength, although the values are much lower for the thinner cylinders.

Both cylinder thickness seem to have a fairly well defined imaginary component of

the refractive index for the short wavelengths, even though it is only the thicker

cylinders that gives the same reflectance coefficient for different thicknesses in that

region. Looking at the impedance for the different thicknesses of the cylinders and

at different number of rows, Figure A.3, Figure A.4, Figure A.6 and Figure A.7, it

can be seen that the impedance follows the same trend, with the curves following

the same shape in the region where the reflectance coefficient is mostly independent

of the thickness for the 12 nm cylinders, and crossing each other around the 760

nm point for the 8 nm cylinders.

The real part of the refractive index has not been calculated for the p-polarisation.

This has been omitted because the correct branch has to be selected for the real

part, and this selection is done by requiring that the different thickness yields the

same result over a wider spectrum. This selection does not make sense when the

different material thicknesses does not yield the same results for the reflectance

coefficient.
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Figure 4.15: Comparison of the imaginary part of the refractive index for a varying
number of rows of a square array of gold cylinders of radius 12 nm and a
period of 30 nm, for p-polarised light

4.2 Scattering

When calculating the scattered field, the approach that used the wave equation

for the total field was consistently yielding poor results, with a field that did not

look as expected for a simple case of a single small cylinder. Additionally, this

approach had a higher amount of noise, even with a high resolution of the structure.

The figures in this section has therefore been calculated using the approach that

considered the wave equation for the scattered field.

Figures 4.16 and 4.17 illustrate the total and scattered field for an array of gold

cylinders, as well as the total and scattered field of a bulk material of the same

size as the array, and using the effective parameters corresponding to that array.

Assuming that a metamaterial can be considered a bulk material by assigning

some effective parameters, the figures for the bulk material should resemble those

for the array of scatterers. This also seems to be the case, although the bulk

approximation shows a lower intensity towards the top and bottom, compared to

the array. While it may look like the scattered field is weak between the cylinders,

it is due to the markers for the cylinders, and the intensity is about the same as in

the bulk approximation. In both cases the scattered field just about evens out the
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Figure 4.16: Left: The amplitude of the total electric field for a 13 by 13 array of
gold cylinders. Right: The amplitude of the total electric field for a
matematerial of the same size as the 13 by 13 array, using the effective
parameters presented earlier.

Figure 4.17: The amplitude of the scattered electric field with the same setup as in
Figure 4.16.

incident field in the centre, resulting in a very weak field. This is to be expected,

as it was seen above that the cylinder array will behave metallic.

In Figure A.8 the same figures are illustrated, but with an incident field with a

wavelength of 500 nm. Once again the plots for the bulk approximation resembles

the array fairly well. This is done to show that the bulk approximation is gener-

ally a good approximation across the spectrum, and not just accurate at a single

wavelength by coincidence.

Comparing the scattered field from an array to the scattered field from ran-

domly placed cylinders as seen in Figure A.9, it can be seen that the metamaterial

still behaves like a metal.
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Figure 4.18: Left: The amplitude of the scattered field for a given angle, calculated
for the cylinder array. Right: The amplitude of the scattered field for a
given angle, calculated with the bulk approximation.

In Figure 4.19 the total and scattered field is depicted for an array of gold

cylinders, with a p-polarised incident field. As the effective parameters have not

been calculated for the p-polarisation, the array has not been approximated as

a bulk material. Compared to Figure 4.16 and Figure 4.17, it can be seen that

a greater portion of the light is reflected upwards, towards the incident field.

The weak scattered field below the metamaterial means that the incident field

mostly passes though the metamaterial, which is consistent with the results in the

previous section. Comparing this to Figure A.9, where the cylinders are randomly

distributed within a circle, it can be seen that the metamaterial behaves roughly

the same when the cylinders are no longer placed in an array.

Figures 4.20 and 4.21 show the scattered and total fields of the metamaterial

placed on a glass surface, calculated for an array of gold cylinders, and a bulk

material with the corresponding effective parameters. The metamaterial is placed

so that half of it is above the surface and half of it is below. The refractive index

used for the glass is nglass = 1.5, and the surface is marked by the horizontal blue

line in all four figures. The centre of the scattered field for the array of cylinders

looks darker than it is due to the markers for the cylinders. Comparing this plot

to the scattered fields without the surface, Figures 4.16 and 4.17, it can be seen

that more light is scattered downwards when the surface is present. The bulk

material approximation seems to work well, even when the setup is made more
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Figure 4.19: Left: The amplitude of the total magnetic field for a 13 by 13 array of
gold cylinders. Right: The amplitude of the scattered electric field by a
the same array of gold cylinders. The plots are made with an incident
magnetic field which is a plane wave and parallel to the cylinders (p-
polarised) and has a wavelength of 700 nm. The incident magnetic field
has an amplitude of 1 and comes in from the top of the figures. The outer
blue circle marks the beginning of the PML.

complicated. In Figures 4.22 and 4.23 the same setup can be seen, but with an

incident field rotated 45 degrees counterclockwise.

In Figure 4.24 and Figure 4.25 the scattering cross section at different angles

for the incident field is depicted. This is calculated for a free metamaterial as well

as a metamaterial submerged halfway into a glass surface, as depicted in Figures

4.20 and 4.21, and it has been calculated using both an array of gold cylinders and

as a bulk approximation. The plot is made with a s-polarised incident field. For

the free metamaterial the incident field changes from an angle of 0 relative to the

y-axis, which corresponds to normal incidence on the surface of the metamaterial,

to an angle of 45 degrees, which corresponds to the direction of the light pointing

straight at the corner of the metamaterial. Changing the angle further would not

give any new results because of the symmetry in this setup. From the figure it can

be seen that the scattering cross section decreases as the angle increases, although

not by much. The same hold true for the case with the surface, but to a much

larger degree. Note that the scattering cross section has been plotted for a larger

variation in the angle, as this case only has symmetry around the y-axis, due to

the surface. The greatest angle for which the scattering cross section has been

calculated corresponds to an angle of 22.5 degrees relative to the glass surface.
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Figure 4.20: Left: The amplitude of the total electric field for a 13 by 13 array of gold
cylinders, submerged halfway into a glass surface. Right: The amplitude
of the total electric field for a matematerial of the same size as the 13 by
13 array, using the effective parameters.

Figure 4.21: The amplitude of the scattered electric field with the same setup as in
Figure 4.20.

For both cases the bulk approximation gives a lower scattering cross section.

Figures 4.16, 4.17, 4.20, 4.21 4.22 and 4.23, are made with an incident electric

field which is a plane wave and parallel to the cylinders (s-polarised) and has a

wavelength of 700 nm. The incident electric field has an amplitude of 1 and comes

in from the top of the figures. The blue circle marks the beginning of the PML.

In the figures where it is present, a horizontal blue line marks the glass surface.
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4.2 Scattering 4. Results & Discussion

Figure 4.22: Left: The amplitude of the total electric field for a 13 by 13 array of gold
cylinders, submerged halfway into a glass surface. Right: The amplitude
of the total electric field for a matematerial of the same size as the 13 by
13 array, using the effective parameters presented earlier. The incident
electric field comes in from the top left of the figures, at an angle of 45
degrees relative to the surface.

Figure 4.23: The amplitude of the scattered electric field with the same setup as in
Figure 4.22.
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Figure 4.24: The scattering cross section at different angles, for a 13 by 13 array of gold
cylinders of radius 12 nm and period 30 nm, as well as a bulk material
of same size as the array, using the corresponding effective parameters.
0 degrees corresponds to an incident field normal to the matematerial
surface. The incident field is s-polarised, with an amplitude of 1.
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Figure 4.25: The scattering cross section at different angles, for a 13 by 13 array
of gold cylinders of radius 12 nm and period 30 nm, half submerged
into a glass surface with refractive index 1.5, as well as a bulk material
of same size as the array, using the corresponding effective parameters.
0 degrees corresponds to an incident field normal to the matematerial
surface, as well as the glass surface. The incident field is s-polarised,
with an amplitude of 1.
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4.3 The Numerical Methods

The program used to calculate the reflectance and transmittance coefficients

seems to be fairly unaffected by noise in the calculations for the reflectance and

transmittance coefficient. In Figure A.10 it can be seen that the distance above

the first unit cell, for which the reflectance coefficient is calculated, has a very

little impact of the reflectance coefficient , and it has converged reasonably well to

some value by 50 nm. Note that this was measured for a wavelength of 700 nm,

and a higher wavelength might show that a larger spacing is required, but this

should not change a lot for 900 nm, which is the longest wavelength considered

in this report. In Figure A.11 it can be seen that a large maximum length for

the triangle sides still gives a fairly accurate measurement for the reflectance co-

efficient. While the reflectance coefficient seems to converge continuously for the

spacing, the reflectance coefficient as a function of hmax is discrete. This might be

explained as the number of triangles in a single cylinder remaining constant for a

while when hmax is large, and the jumps could occur at the points where the num-

ber of triangles changes. This would not be as noticeable for low values of hmax,

where the number of triangles changes with every change in the value of hmax.

The fast convergence with respect to spacing and triangle side length means that

the program takes a very short time to run, while still giving acceptable results.

This is important, as the program often has to be run a large amount of times to

give the reflectance and transmittance coefficients for a wide spectrum with a good

resolution, and for different material thicknesses, to give a good approximation for

the effective parameters.

The program used for calculating the scattered field takes a significantly higher

amount of triangles to achieve acceptable results, as can be seen in Figure A.12, and

so a compromise between time and accuracy has to be made in this case. This is to

be expected, as both the area and number of cylinders will typically be much larger

in this program. The calculations for the scattered field requires the normal vector

to the surface of the scatterers, which means that these needs a high resolution.

This also means that a good approximation for the effective parameters of the

metamaterial will greatly reduce the run time of program, as the surface area of

the scatterer will often be reduced significantly by considering the metamaterial
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as a bulk material, and the surface will often be smoother, meaning that the

resolution required to get acceptable normal vectors will be lower. Comparing

Figure A.12 to Figure A.13 shows that the variation in the scattering cross section

due to a change in hmax, is smaller with the bulk approximation.
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5. Conclusion

When calculating the effective parameters for a given metamaterial, it was

found the the simpler approaches, such as taking the weighted average, was in-

sufficient, and the approach which used the relations between the reflectance and

transmittance coefficient and the refractive index and impedance yielded the best

results.

Assigning effective parameters to a metamaterial consisting of metal cylinders

went reasonably well when the incident field was s-polarised and the metamaterial

was found to behave roughly like a metal. The effective refractive index followed

the same shape as the corresponding bulk refractive index for the metal of the

cylinders, but the actual values for the effective refractive index could be altered

by changing the parameters of the structure, particularly the imaginary part. Un-

like its constituent part, e.g. gold and air, the metamaterial was found to have a

permeability different from 1. For p-polarised light, the effective parameters was

found to be dependent on the thickness of the metamaterial, which means that

it cannot be approximated as a bulk material. It could be seen that for some re-

gions of the spectrum the reflectance coefficient was independent of the thickness of

the metamaterial, meaning that the effective parameters could be approximated to

some extent in these regions. However, due to the way the real part of the effective

refractive index was calculated, it would be difficult to get a good approximation

for this, even in those region. Another problem was that these regions were highly

dependent of the parameters of the structure, e.g. for a cylinder radius of 12 nm

the region was the short wavelength end of the spectrum, but for a cylinder radius

of 8 nm it was only in a very small area around 760 nm. This means that for the

structure we have considered, the metamaterial cannot be approximated as a bulk

material for a p-polarised incident field. The metamaterial was found to behave

much more like a dielectric when the incident field was p-polarised.

For the scattered field it was found that the metamaterial could be approxi-

mated reasonably well as a bulk material, although it was found the the scattered

field was generally weaker with the bulk approximation. When the metamaterial

was placed on a surface with a higher refractive index, in this case glass, the am-

plitude of the scattered field was stronger in under the surface, than it would have

been without the surface. For both a free square metamaterial and a square meta-
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material on a surface it was found that the scattering cross section was greatest for

an incident field normal to the metamaterial and surface, and that the scattering

cross section decreases faster with a change in the angle for the case with a sur-

face. Concerning the two methods for calculating the scattered field, the method

which used the wave equation for the scattered field was found to be better, as

the method which used the wave equation for the total field had a large degree of

noise, even at very high resolutions.

Future Works

As mentioned in Section 2.2, the shape functions used were linear polynomi-

als. As such, the triangular elements in the mesh needed only 3 nodes. Another

possibility would be to use quadratic polynomials instead. As a result, 36 dif-

ferent polynomials would have to be calculated, as there would now be 6 nodes.

It would be interesting to examine how much of a difference this change would

make. Depending on how much precision is gained, it would be possible to lower

the resolution of the mesh which, in turn, would reduce computation time. Luck-

ily, computation time was not a large factor in this project, as the developed script

had been optimised.

Additional optimisation of the script could be done. As Matlab by default only

uses one CPU core, as long as each iteration of a for-loop is independent of the

others, one could use the ’Parallel Computing Toolbox’. This toolbox includes an

alteration of the default for-loop, called parfor, and allows Matlab to assign the

iterations of the for-loop to all available cores.

In this project, the examination of metamaterials were chosen to be in two

dimensions. From a theoretical point of view, expanding this into three dimensions

could be done with the same principles. It would, however, render all the developed

code useless, and one would have to develop a script from scratch, as little common

ground can be found.

Another possible expansion would be to examine larger structures using larger

wavelengths. Larger structures are more easily produced, which would make ex-

perimental corroboration a lot more likely. A number of articles already exist
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which examine structures in the millimetre domain using wavelengths in the mi-

crowave spectrum. Unfortunately, the available date on the refractive indices of

gold and silver as a function of wavelength were limited to wavelengths between

200 and 1900 nm. The density of available data points decreased with an increase

in wavelength, and since interpolation has been used, wavelengths beyond 900 nm

have not been considered, although a Drude model for the permittivity could be

used at long wavelength.
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A
Additional Results

A.1 Effective Parameters

Figure A.1: Left: The amplitude of the electric field throughout an array of gold cylin-
ders with a radius of 12 nm and period of 30 nm. Right: The amplitude of
the magnetic field throughout the same array. In both cases the incident
field is coming in from the top and has an amplitude of 1. The circles
marks the gold cylinders.
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Figure A.2: Comparison of the refractive index, for a array of gold cylinders with a
radius of 12 nm and a period of 30 nm, and the refractive index for the
same array scaled by a factor of 0.8.
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Figure A.3: Comparison of the real part of the impedance for a varying number of
rows of a square array of gold cylinders of radius 12 nm and a period of
30 nm, for p-polarised light
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Figure A.4: Comparison of the imaginary part of the impedance for a varying number
of rows of a square array of gold cylinders of radius 12 nm and a period
of 30 nm, for p-polarised light
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Figure A.5: Comparison of the imaginary part of the refractive index for a varying
number of rows of a square array of gold cylinders of radius 8 nm and a
period of 30 nm, for p-polarised light
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Figure A.6: Comparison of the real part of the impedance for a varying number of
rows of a square array of gold cylinders of radius 8 nm and a period of 30
nm, for p-polarised light
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Figure A.7: Comparison of the imaginary part of the impedance for a varying number
of rows of a square array of gold cylinders of radius 8 nm and a period of
30 nm, for p-polarised light
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A. Additional Results A.2 Scattering

A.2 Scattering

Figure A.8: Top left: The amplitude of the total electric field for a 13 by 13 array of
gold cylinders. Top right: The amplitude of the total electric field for a
matematerial of the same size as the 13 by 13 array, using the effective
parameters presented earlier. Bottom left: The amplitude of the scattered
electric field by a the same array of gold cylinders. Bottom right: The
amplitude of the scattered field by the same metamaterial. All the plots
are made with an incident electric field with is a plane wave and parallel to
the cylinders (s-polarised) and has a wavelength of 500 nm. The incident
electric field has an amplitude of 1 and comes in from the top of the
figures.
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A.2 Scattering A. Additional Results

Figure A.9: Top left: The amplitude of the total electric field for randomly placed
gold cylinders. Top right: The amplitude of the total magnetic field for
randomly placed gold cylinders. Bottom left: The amplitude of the scat-
tered electric field by randomly placed gold cylinders. Bottom right: The
amplitude of the scattered magnetic field by randomly placed cylinders.
All the plots are made with an incident electric or magnetic field which is
a plane wave and parallel to the cylinders and has a wavelength of 700 nm,
and an amplitude of 1. The metamaterial is 100 gold cylinders of radius
12, placed randomly in a circle with a radius of 100 nm. The cylinders
are added till the circle is filled, with no cylinder being closer than 4 nm
to another.
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A.3 Convergence
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Figure A.10: The real part of the reflectance coefficients for a square array of gold
cylinders with a radius of 12 nm and a period of 30 nm, measured at
different distances above the start of the first unit square, which is de-
fined as the half a period above the centre of the first cylinder. The
measurement was made with 15 rows of gold cylinders. The y-axis goes
from -0.74 to -0.745.
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Figure A.11: The real part of the reflectance coefficients for a square array of gold
cylinders with a radius of 12 nm and a period of 30 nm, calculated for
meshes with different values for hmax, the largest allowed side length for
a triangle. The measurement was made with 15 rows of gold cylinders.
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Figure A.12: The scattering cross section for an 13 by 13 array of gold cylinders,
calculated with a mesh created for different values of hmax, the largest
allowed side length for a triangle. The cylinders had a radius of 12
nm and a period of 30 nm. The mesh inside the cylinders were ”refined”
twice, meaning that each triangle were halved twice. The initial minimal
triangle side length is one quarter of the hmax.
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Figure A.13: The scattering cross section for an 390 nm by 390 nm bulk material, using
the appropriate effective parameters, calculated with a mesh created for
different values of hmax, the largest allowed side length for a triangle.
The cylinders had a radius of 12 nm and a period of 30 nm. The mesh
inside the cylinders were ”refined” twice, meaning that each triangle were
halved twice. The initial minimal triangle side length is one quarter of
the hmax.
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B
Matlab Code

B.1 A Matrix and M Insertion

%% Calculations.

for i = 1:n tri

zone = t(end,i);

% Choose parameters depending on which zone the current

% triangle resides in.

if any(zone == obj zone.upper)

diel const = di const env;

mag const = mag const env;

elseif any(zone == obj zone.lower)
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B.1 A Matrix and M Insertion B. Matlab Code

diel const = di const surf;

mag const = mag const surf;

elseif any(zone == obj zone.scat)

diel const = di const scat;

mag const = mag const scat;

end

ref ind = sqrt(diel const);

xy val = p(:,t(1:3,i));

x1 = xy val(1,1);

x2 = xy val(1,2);

x3 = xy val(1,3);

y1 = xy val(2,1);

y2 = xy val(2,2);

y3 = xy val(2,3);

area tri i = abs((((x2 - x1) * (y3 - y1))...

- ((y2 - y1) * (x3 - x1))))/2;

du dx = (y3 - y1)/((y3 - y1) * (x2 - x1)...

- (y2 - y1) * (x3 - x1));

dv dx = (y2 - y1)/((y2 - y1) * (x3 - x1)...

- (y3 - y1) * (x2 - x1));

du dy = -(x3 - x1)/((y3 - y1) * (x2 - x1)...
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B. Matlab Code B.1 A Matrix and M Insertion

- (y2 - y1) * (x3 - x1));

dv dy = -(x2 - x1)/((y2 - y1) * (x3 - x1)...

- (y3 - y1) * (x2 - x1));

d11 = (-1*du dx - 1*dv dx) * (-1*du dx - 1*dv dx)...

+ (-1*du dy - 1*dv dy) * (-1*du dy - 1*dv dy);

d12 = (-1*du dx - 1*dv dx) * (+1*du dx + 0*dv dx)...

+ (-1*du dy - 1*dv dy) * (+1*du dy + 0*dv dy);

d13 = (-1*du dx - 1*dv dx) * (+0*du dx + 1*dv dx)...

+ (-1*du dy - 1*dv dy) * (+0*du dy + 1*dv dy);

d21 = (+1*du dx + 0*dv dx) * (-1*du dx - 1*dv dx)...

+ (+1*du dy + 0*dv dy) * (-1*du dy - 1*dv dy);

d22 = (+1*du dx + 0*dv dx) * (+1*du dx + 0*dv dx)...

+ (+1*du dy + 0*dv dy) * (+1*du dy + 0*dv dy);

d23 = (+1*du dx + 0*dv dx) * (+0*du dx + 1*dv dx)...

+ (+1*du dy + 0*dv dy) * (+0*du dy + 1*dv dy);

d31 = (+0*du dx + 1*dv dx) * (-1*du dx - 1*dv dx)...

+ (+0*du dy + 1*dv dy) * (-1*du dy - 1*dv dy);

d32 = (+0*du dx + 1*dv dx) * (+1*du dx + 0*dv dx)...

+ (+0*du dy + 1*dv dy) * (+1*du dy + 0*dv dy);

d33 = (+0*du dx + 1*dv dx) * (+0*du dx + 1*dv dx)...

+ (+0*du dy + 1*dv dy) * (+0*du dy + 1*dv dy);

% x and y coordinates of middle of triangle.

x mid tri = ((max(xy val(1,:)) - min(xy val(1,:)))/2)...

+ min(xy val(1,:));

y mid tri = ((max(xy val(2,:)) - min(xy val(2,:)))/2)...

+ min(xy val(2,:));
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B.1 A Matrix and M Insertion B. Matlab Code

fun ang = cos(theta) * x mid tri + sin(theta) * y mid tri;

E0 = exp(1i * k0 * ref ind * fun ang);

r 0 = r env;

sigma 0 = 6*log(10)/(2*pi/lambda*r PML.ˆ3);

% If the current triangle resides in the PML zone.

if any(zone == obj zone.PML)

r mid tri = sqrt(x mid tri.ˆ2 + y mid tri.ˆ2);

sigma = sigma 0/diel const * (r mid tri - r 0).ˆ2;

else

sigma = 0;

end

A = (area tri i...

* [d11 d12 d13 ; d21 d22 d23 ; d31 d32 d33])...

./ (1 + 1i * sigma).ˆ2;

switch polarisation

case 'p'
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B. Matlab Code B.2 Periodic Boundary Conditions

Mk = k0ˆ2 * B * area tri i * mag const...

- A/diel const;

case 's'

Mk = k0ˆ2 * B * area tri i * diel const...

- A/mag const;

end

M(t(1:3,i),t(1:3,i)) = M(t(1:3,i),t(1:3,i)) + Mk;

end

B.2 Periodic Boundary Conditions

%% Periodic boundary conditions

for i = 1:n tri

if any(i == ind left edge)

ind opposite = ind right edge;

% Check which two indices in xy val have

% the same x value.
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B.2 Periodic Boundary Conditions B. Matlab Code

ind same xval = logical(sum(repmat(xy val(1,:),3,1)...

== repmat(xy val(1,:)',1,3)) - 1);

% The corresponding indices in the 'p' array.

ind in p = t(ind same xval,i);

% Compare with saved indices to see check if point has

% already been considered.

if ~isempty(ind saved)...

&& any(any((ind in p...

== repmat(ind saved,length(ind in p),1))'))

% Removes an index if it has already been counted.

ind in p = ind in p(not(any((ind in p...

== repmat(ind saved,length(ind in p),1)...

)')));

end

% Check whether the exclusion of duplicate indices

% empties the variable. If so, skip iteration.

if isempty(ind in p)

continue
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B. Matlab Code B.2 Periodic Boundary Conditions

end

% Save the indices to not count them multiple times.

ind saved(length(ind saved)+1:...

length(ind saved)+length(ind in p)) = ind in p;

% Corresponding y values on current edge.

val y cur = p(2,ind in p);

% y values of all points on the opposite side along

% their indices in p. [y value index in p].

val y op = [p(2,t(1:3,ind opposite));...

reshape(t(1:3,ind opposite),...

[1 numel(t(1:3,ind opposite))])]';

% Comparing y values and finding the indices of the

% minimum values.

[~,ind min op] = min(abs(val y cur - val y op(:,1)));

% The indices in 'p' where these minimum values are

% located. (The points on the opposite edge which are

% closest in height to the selected ones on the

% current edge).

ind p close = val y op(ind min op,2);
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B.3 Calculating H ′ B. Matlab Code

k x = k0 * diel const.ˆ2 * sin(theta);

% Inserting boundary conditions.

M(ind in p,:) = 0;

M(sub2ind(size(M),ind in p,ind in p)) = 1;

M(sub2ind(size(M),...

ind in p,ind p close)) = -exp(1i*k x*area width);

bv(ind in p) = 0;

end

end

B.3 Calculating H ′

%% Contribution from all cylinder edges.

vec normal = [];

for i = 1:length(e(1,:))
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B. Matlab Code B.3 Calculating H ′

if any(ismember(e(6:7,i),obj zone.scat))

% Scatterer face on the left or right side of the

% edge.

l or r = logical(sum(e(6:7,i) == obj zone.scat,2));

vec = p(:,e(1:2,i));

vec orth = [vec(2,2) - vec(2,1);...

(vec(1,2) - vec(1,1))]...

.* (l or r - ~l or r);

vec normal = vec orth/norm(vec orth);

% If current edge is the surface edge inside a

% scatterer.

if all(l or r)

H prime = (vec normal(1)*cos(theta 2)...

+ vec normal(2)*sin(theta 2))...

* 1i * k0 * n surf * tran...

* exp(1i*k0*n surf*(cos(theta 2)...

* sum(vec(1,:))/2 + sin(theta 2)...

* sum(vec(2,:))/2));

% If the normal vector of the edge points upwards.

if vec normal(2) == 1

u or d = logical([1 ; 0]);

else
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u or d = logical([0 ; 1]);

end

switch polarisation

case 'p'

di 1 = cyl diel const(u or d);

di ref 1 = env diel const(u or d);

di 2 = cyl diel const(~u or d);

di ref 2 = env diel const(~u or d);

bk = (norm(vec orth)/2)...

* ((1/di 1 - 1/di ref 1)...

- (1/di 2 - 1/di ref 2)) * H prime;

case 's'

mag 1 = cyl mag const(u or d);

mag ref 1 = env mag const(u or d);

mag 2 = cyl mag const(~u or d);

mag ref 2 = env mag const(~u or d);

bk = (norm(vec orth)/2)...

* ((1/mag 1 - 1/mag ref 1)...

- (1/mag 2 - 1/mag ref 2)) * H prime;
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end

else

u or d = logical(sum(e(6:7,i) == obj zone.env,2));

H prime = [(vec normal(1)*cos(theta 1)...

+ vec normal(2)*sin(theta 1))...

* 1i * k0 * n env...

* exp(1i*k0*n env*(cos(theta 1)...

* sum(vec(1,:))/2 + sin(theta 1)...

* sum(vec(2,:))/2))...

+ (vec normal(1)*cos(theta 1)...

- vec normal(2)*sin(theta 1))...

* 1i * k0 * n env * refl...

* exp(1i*k0*n env*(cos(theta 1)...

* sum(vec(1,:))/2 ...

- sin(theta 1)*sum(vec(2,:))/2))...

;...

(vec normal(1)*cos(theta 2)...

+ vec normal(2)*sin(theta 2))...

* 1i * k0 * n surf * tran...

* exp(1i*k0*n surf*(cos(theta 2)...

* sum(vec(1,:))/2 ...

+ sin(theta 2)*sum(vec(2,:))/2))];

switch polarisation

case 'p'
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di 1 = env diel const(u or d);

di ref 1 = env diel const(1);

di 2 = cyl diel const(l or r);

di ref 2 = env diel const(2);

bk = (norm(vec orth)/2)...

* (((1/di 1 - 1/di ref 1)...

- (1/di 2 - 1/di ref 2))...

* H prime(u or d));

case 's'

mag 1 = env mag const(u or d);

mag ref 1 = env mag const(1);

mag 2 = cyl mag const(l or r);

mag ref 2 = env mag const(2);

bk = (norm(vec orth)/2)...

* ((1/mag 1 - 1/mag ref 1)...

- (1/mag 2 - 1/mag ref 2))...

* H prime(u or d);

end

end

bv(e(1:2,i)) = bv(e(1:2,i)) + bk;

102



B. Matlab Code B.4 Elemental Contribution to Total Field

end

end

B.4 Elemental Contribution to Total Field

%% Contribution from triangles in all scatterers on the total

% field.

% For all the scatterers in the structure.

for i = 1:length(obj zone.scat)

% All the triangles located within the current face.

tri in cyl = t(1:end-1,ismember(t(4,:),obj zone.scat(i)));

tri cyl x = p(1,tri in cyl);

tri cyl y = p(2,tri in cyl);

xy 123 vals = [1:3:length(tri cyl x) ;...

2:3:length(tri cyl x) ;...

3:3:length(tri cyl x)];

tri area = abs((tri cyl y(xy 123 vals(3,:))...

- tri cyl y(xy 123 vals(1,:)))...

.* (tri cyl x(xy 123 vals(2,:))...

- tri cyl x(xy 123 vals(1,:)))...

- (tri cyl y(xy 123 vals(2,:))...

- tri cyl y(xy 123 vals(1,:)))...
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.* (tri cyl x(xy 123 vals(3,:))...

- tri cyl x(xy 123 vals(1,:))))/2;

x avg = (tri cyl x(xy 123 vals(1,:))...

+ tri cyl x(xy 123 vals(2,:))...

+ tri cyl x(xy 123 vals(3,:)))/3;

y avg = (tri cyl y(xy 123 vals(1,:))...

+ tri cyl y(xy 123 vals(2,:))...

+ tri cyl y(xy 123 vals(3,:)))/3;

% If a triangle's mean is above the surface.

if mean(y avg) > surface y coordinate

di ref = env diel const(1);

mag ref = env mag const(1);

H0r = exp(1i*k0*(sqrt(di ref))...

* (cos(theta 1) * x avg...

+ sin(theta 1) * y avg))...

+ refl * exp(1i*k0*(sqrt(di ref))...

* (cos(theta 1) * x avg...

- sin(theta 1) * y avg));

else

di ref = env diel const(2);

mag ref = env mag const(2);
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H0r = tran * exp(1i*k0*(sqrt(di ref))*(cos(theta 2)...

* x avg + sin(theta 2)*y avg));

end

switch polarisation

case 'p'

bk = tri area * (2/6)...

.* (di ref .* (1/cyl diel const(i)...

- 1/di ref) - (cyl mag const(i) - mag ref))...

.* k0.ˆ2 .* di ref .* H0r;

case 's'

bk = tri area * (2/6)...

.* (mag ref .* (1/cyl mag const(i)...

- 1/mag ref) - (cyl diel const(i) - di ref))...

.* k0.ˆ2 .* mag ref .* H0r;

end

for j = 1:length(bk)

% Insert the values in the b vector.

bv(tri in cyl(:,j)) = bv(tri in cyl(:,j)) + bk(j);
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end

end
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