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Summary in Danish

Dette speciale er skrevet som en del af kvalifikationseksamenen i forbindelse

med 4+4-PhD-forløbet. Det indeholder derfor en dybdegående redegørelse for

forskningsresultaterne frembragt i løbet af de første to år af uddannelsen. Specialet

præsenterer tre artikler, hvoraf to er indsendt til videnskabelige tidsskrifter eller

konferencer med peer-review, og én forventes indsendt få måneder efter aflevering.

Den første artikel, ‘On one-round reliable message transmission’, omhandler

det problem, der kaldes reliable message transmission. Her er en afsender og

en modtager forbundet af et antal kanaler, hvoraf nogle er kontrolleret af en

modpart. Målet er at sikre, at en besked sendt af afsenderen når pålideligt frem

til modtageren, selv hvis modparten ændrer informationen sendt over de kanaler,

modparten kontrollerer. Baseret på arbejde af Bishop m.fl. og Patra m.fl. præsenteres

to protokoller, der opnår den optimale transmissionsrate for passende størrelser af

meddelelser. Forbedringerne i forhold til de tidligere protokoller er, at man enten

kan sende større beskeder, eller bruge et legeme med færre elementer. Derudover

illustreres forskellene mellem de to protokoller gennem konkrete eksempler.

‘Actively Secure OT-Extension from q-ary Linear Codes’ er skrevet i samarbejde

med Ignacio Cascudo og Jaron S. Gundersen. Emnet er oblivious transfer (OT), som

er en grundsten i mange kryptografiske protokoller. Mere specifikt handler artiklen

om, hvordan et lille antal OT’s kan udvides til et langt større antal OT’s, hvilket har en

lavere omkostning samlet set. I artiklen generaliseres en eksisterende protokol, så det

er muligt at benytte koder over Fq frem for binære koder. Det vises, hvordan denne

ændring fører til en reduktion i antallet OT’s, der er nødvendige, for at kunne udvide

til et bestemt, ønsket antal. Prisen for denne reduktion er, at protokollen samlet set

kræver at flere bits sendes. En række eksempler illustrerer dog, at denne stigning kan

være acceptabel i forhold til forbedringen i antallet af OT’s.

Slutteligt behandles det endnu ikke afsluttede manuskript ‘On nested code pairs

from the Hermitian curve’, der bruger indlejrede kodepar til at konstruere både

asymmetriske kvantekoder og såkaldte secret sharing schemes. Dette manuskript

er skrevet i samarbejde med Olav Geil, og de forbedrede kodepar stammer fra det

Hermitiske funktionslegeme. De er konstrueret sådan, at deres relative afstande

er lig en givet designafstand. Først præsenteres grænser for dimensionerne af

de enkelte koder givet deres designafstande, og hernæst præsenteres formler for,

hvornår to koder af denne type er indeholdt i hinanden. Desuden præsenteres en
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anden konstruktion fra [CG18], hvor almindelige etpunkts-Hermitkoder benyttes.

Ved at udnytte forbedrede grænser for afstandene, viser det sig, at kodeparrenes

relative afstand overgår én af de ikke-relative afstande. Dette kan være ønskeligt i

forbindelse med kvantekodning. De kvantekoder, der fremkommer af begge de nye

typer af indlejrede kodepar, sammenlignes også med allerede kendte konstruktioner

af asymmetriske kvantekoder.

Specialet afsluttes med en kort optegnelse over planerne for de resterende to år af

PhD-forløbet. Dette indebærer både fremtidige forskningsprojekter og forventninger

omkring det kommende udlandsophold.
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CHAPTER 1Preliminaries

This chapter contains a minimal introduction to some of the theory that serves as

foundation for my research. The presentation contains no proofs and is merely

meant to establish the notation and terminology used in the later chapters.

1.1 Linear codes

A q-ary linear code C is a linear subspace of Fn
q . For x ∈ Fn

q , we define its Hamming

weight as wH(x) = | suppx |, where suppx denotes the set of non-zero indices of x.

This induces the Hamming distance defined as

dH(x,y) = wH(x− y), x,y ∈ Fn
q .

One of the most important properties of a linear code C is its minimal distance,

d(C). As the name suggests, this is the minimal distance between any two distinct

codewords in C. The linearity of the code, however, implies that the minimal distance

is also given by

d(C) = min
c∈C\{0}

wH(c).

If C ⊆ Fn
q is a subspace of dimension k and minimal distance d , it is referred to as an

[n, k, d]q code.

The use of a linear code can counteract two types of data corruption: errors and

erasures. Errors occur when the symbol in an unknown position of a codeword is

altered. Erasures occur if a position is known to be altered. It may be shown [HP03;

Thm. 1.11.6] that a word containing e erasures and t errors can be decoded to the

original codeword if e+ 2t < d(C). In particular, when no erasures occur, decoding

to the original codeword can only be guaranteed if t < d(C)/2. Otherwise, there may

be several candidate corrections, or we may even correct to a different codeword.

A well-known class of codes is the Reed-Solomon codes, which are based on

polynomial evaluation. For these, [Sud97] showed that it is possible to correct beyond

half the minimal distance by relaxing the requirement that the decoding algorithm

returns a single codeword. Instead, it returns a list of potential codewords, and

for this reason the method is called list-decoding. This procedure, however, only

works for Reed-Solomon codes up to a certain rate. Later, [GS98] improved the
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1.1. Linear codes

decoding algorithm, and this allows list-decoding of Reed-Solomon codes of higher

rates. When using these algorithms, there is a trade-off between the parameters of

the code and the maximal size of the list of candidate codewords. In particular, we

shall be interested in lists of constant size in Section 2.1, and this restricts the possible

code parameters.

Algebraic geometry codes

In Section 2.3, we consider a class of codes constructed from an algebraic function

field. A field extension F/K is said to be an algebraic function field if F is a finite

algebraic extension of K(x) for some x ∈ F that is transcendental over K . To such

a function field, we associate a set of so-called places, which are in some sense

generalizations of evaluation points. That is, for each element z ∈ F , we can speak of

z(P), the evaluation of z in the place P . We may also consider zeros and poles of z,

and the orders of these.

When working with algebraic function fields, we use the concept of divisors,

which are formal sums of places with integer coefficients. To each divisor D, we

associate its Riemann-Roch space, L(D) ( F . The general definition of such spaces

may be found in [Sti09], but in this work we shall only need Riemann-Roch spaces

of the form L(λQ) for a single place Q. This space contains the elements in F , that

have a pole of order at most λ in Q, but no other poles.

For the construction of algebraic geometry codes, we use function fields of

the form F/Fq. Additionally, we only consider the so-called rational places since

evaluation in these places is guaranteed to give an element of Fq. Let P1, P2, . . . , Pn,Q

be distinct rational places of F , and define the divisor D = P1 + P2 + . . .+ Pn. For each

λ ∈ Nwe define the algebraic geometry code

CL(D,λQ) =
��

z(P1), z(P2), . . . , z(Pn)
�

| z ∈ L(λQ)
	

.

One may show that this is indeed a linear code over Fq. In addition, its dual is another

algebraic geometry code CΩ(C,λQ). For the details, see [Sti09; Chap. 2].

Nested code pairs

If C1,C2 are q-ary codes such that C2 ( C1 ⊆ Fn
q , we call them a pair of nested codes, or

equivalently a nested code pair. For such a pair, we define its relative distance as

d(C1,C2) = min
c∈C1\C2

wH(c).

Given a nested code pair C2 ( C1, the duals C⊥1 ( C⊥2 form a nested code pair as

well. Subsequently, the relative distance d(C⊥2 ,C⊥1 ) can also be considered. From the

definition, it follows immediately that the relative distances can be bounded by

d(C1,C2)≥ d(C1) and d(C⊥2 ,C⊥1 )≥ d(C⊥2 ), (1.1)

2



1. Preliminaries

but these are not always tight. In some cases, one of the relative distances exceeds

the corresponding non-relative distance.

As will become evident from the following sections, the pairs of nested codes

and their relative distances provide critical information when dealing with certain

types of problems.

1.2 Secret sharing

Secret sharing is the concept of distributing information about a secret among a

number of participants in such a way that only prescribed sets of participants can

reconstruct the secret. The information given to each participant is called a share,

and a method describing how to construct such shares is called a secret sharing

scheme. When using a secret sharing scheme, it is necessary to determine the ability

or inability of a set of participants to learn information about the shared secret. If a

set of participants can reconstruct the secret, it is called a reconstructing set. On the

other hand, if their pool of shares reveals nothing about the secret, the set is called

a privacy set. As such, two important properties of a secret sharing scheme are the

reconstructing number, r , and the privacy number, t . The former is defined as the

minimal integer r such that any r participants form a reconstructing set, and the

latter is the greatest integer t such that any t participants form a privacy set.

Nested code pairs lend themselves to a particularly nice construction of secret

sharing schemes. Consider C2 ( C1 ⊆ Fn
q , and denote by ki the dimension of Ci .

Additionally, let ℓ = k1 − k2 denote the codimension. By fixing bases {b1,b2, . . . ,bk2
}

of C2 and {b1, . . . ,bk2
,bk2+1, . . . ,bk1

} of C1, we can share the secret (s1, s2, . . . , sℓ) among

n participants by constructing the codeword

c=
k2
∑

i=1

aibi +
ℓ
∑

i=1

sibk2+i ,

where ai ∈ Fq are chosen uniformly at random. The share of the i’th participant

is then ci . When using this construction, [KUM12] showed that the reconstruction

number is given by r = n− d(C1,C2) + 1, and the privacy number by t = d(C⊥2 ,C⊥1 )− 1.

1.3 Secure multiparty computation

The name secure multiparty computation covers a wide variety of problems where

a number of participants wish to compute the output of some function without

revealing their individual inputs. In a “yes”/“no”-vote for instance, the participants

are required to learn the total number of “yes”-votes, but the individual votes

must remain private. In other words, each participant has an input x i ∈ {0,1}
corresponding to either “yes” or “no”, and they wish to compute the value of the

function f (x1, x2, . . . , xn) =
∑n

i=1 x i .

In an ideal world, participants could agree on some third party that they all trust.

They could then send their inputs to this trusted third party, who could perform the

3



1.4. Quantum codes

computation and reveal only the result to the participants. In reality, however, it may

not be possible to agree on a third party that is deemed trustworthy by all participants.

Additionally, this system has a single point of failure. If the third party is in some way

compromised, this will reveal every single input.

Protocols for secure multiparty computation aim to offer the same functionality

as sending the inputs to a trusted third party, without actually doing so.† Instead

the participants perform a number of steps consisting of both local computations

and communication between participants. This allows them to reach the result

themselves. Intuitively, we say that a protocol is secure if it reveals no more than

the third party would have done. Proving such a claim formally is done by providing

a simulator, which will – loosely speaking – simulate the output of the protocol using

only the output of an ideal third party. No simulators are presented in this work, but

more details may for instance be found in [CDN15].

Models for multiparty computation contain the concept of an adversary, which

will control a number of the participants and attempt to gain information about the

inputs of the remaining participants. Depending on the type of adversary, it may

also attempt to skew the results in some way. An adversary is called passive if the

participants under its control follow the steps of the protocol, but all the information

seen during the protocol is pooled in an attempt to extract knowledge about the

unknown inputs. A more powerful and nefarious adversary is active, meaning that

it may deviate from the protocol specification if this helps in extracting information.

Based on this, we call a protocol passively or actively secure depending on the type

of adversary it offers protection against.

1.4 Quantum codes

With the advent of quantum computing, interest in quantum error-correcting codes

has increased. Where classical information is susceptible only to bits being flipped,

information encoded in a quantum system has to withstand both bit flips and

phase shifts, but also combinations hereof; see for instance [CRSS97; CRSS98; NC10].

Mathematically, a q-ary linear asymmetric quantum error-correcting code is a k-

dimensional subspace of Cqk
, and the possible errors can be represented using the

unitary operators X and Z . These represent a bit flip and a phase shift, respectively. If a

q-ary linear quantum error-correcting code is capable of correcting ⌊(dz−1)/2⌋phase

shift errors and ⌊(dx−1)/2⌋ bit flip errors, the code is said to be an [[n, k, dz/dx]]q code.

Traditionally, the two types of errors were treated equally, and for this reason only

the smallest of the distances dz , dx was associated with the code. As shown in [IM07],

however, most quantum systems experience phase errors much more frequently

than bit flips. Hence, it is beneficial to seek asymmetric quantum codes with dz > dx

since this allows better correction of the more common type of errors.

†Some protocols may still rely on a trusted third party for some steps.

4



1. Preliminaries

In this setting, nested code pairs play a vital role as well. The CSS-construction

named after Calderbank, Shor and Steane transform such a code pair into an

asymmetric quantum code, whose distances depend on the relative distances of

the codes and their duals.

1.4.1 Proposition (SKR09; Lem. 3.1):
Let C2 ( C1 ⊆ Fn

q be a nested pair of codes, and let ℓ= dimC1−dimC2. Then there exists

an [[n,ℓ, dz/dx]]q asymmetric quantum code with dz = d(C1,C2) and dx = d(C⊥2 ,C⊥1 ).

If the bounds in (1.1) are equalities, the associated quantum code is called pure.

Otherwise, it is impure, and it can in fact be desirable for a quantum code to be

impure [AKS06].
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CHAPTER 2Contributions

This chapter contains an overview of the research I have done during the first two

years of the PhD-study. This has resulted in two papers, both of which have been

submitted to a peer-reviewed scientific journals and a peer-reviewed conference,

respectively. These are ‘On one-round reliable message transmission’ [Chr17], and

‘Actively Secure OT-Extension from q-ary Linear Codes’ [CCG18]. The latter is written

in collaboration with Ignacio Cascudo and Jaron S. Gundersen. Additionally, the

chapter contains results from an as of yet unpublished manuscript called ‘On nested

code pairs from the Hermitian curve’ [CG18]. This is written in collaboration with

Olav Geil, and we expect to submit it to a peer-reviewed journal in the near future.

The two papers and the manuscript are treated in three separate sections, each of

which is concluded by discussing the expected implications of the presented results.

Rather than repeating the proofs and detailed analysis from each paper, the aim

of the following sections is to recap the overall results, and in some cases to elaborate

on some of the details that were left out of the submitted versions. Naturally, this

exposition will contain material which is largely a facsimile from each of the three

papers. In some instances, the layout and notation have been altered to ensure a

unified treatment throughout this chapter, but in any case a reference to the original

source is clearly specified.

Although the three topics may seem quite different, the results within all rely

heavily on techniques from coding theory. Sections 2.1 treats a problem that is

not strictly within the area of secure multiparty computation, but its results may

be used as part of a multiparty computation protocol. The topic of Section 2.2,

extension of oblivious transfer, is one of the classical problems from the area of

secure multiparty computation. Finally, the contents of Section 2.3 are in some sense

purely coding theoretic, but the presented results may be applied to both secret

sharing and asymmetric quantum codes.

2.1 Reliable message transmission

Initially inspired by the concept of robust distributed storage presented in [BPRW16],

I started work on reliable message transmission. This is a model where a sender

and a receiver are connected via a number of channels, and some subset hereof is

6



2. Contributions

controlled by an adversary. The objective is to allow the sender to transmit some

message to the receiver within a certain number of rounds. This type of problem was

first introduced by [DDWY93] under the name secure message transmission. This

initial setting requires the transmission to be perfectly private† and perfectly reliable

in the sense that no information is leaked to the adversary, and that the receiver will

always recover the correct message. Continuing in the footsteps of [FW00], where

these conditions were relaxed to allow some positive probability of failure, reliable

message transmission does not provide privacy, but only reliability. That is, we will

fix a desired upper bound δ on the probability that the receiver recovers a wrong

message or no message at all.

In [FW00] it was shown that an adversary controlling t out of n= 2t +1 channels

is the maximal corruption that we can hope to counteract by a reliable message

transmission protocol. In this setting, a straightforward, naïve solution is to simply

broadcast the message across each channel. Since the majority of the channels are

honest – i.e. not controlled by the adversary – the receiver can recover the correct

message by a majority vote. This leads to perfect reliability, but the number of bits

transmitted is n times the message length. Another simple solution could be to use a

Reed-Solomon code of length n, and send each symbol of the codeword across the

corresponding channel. But in order to have any hope of correcting errors introduced

by the adversary, it must be the case that t < d/2= (n− k+ 1)/2. From this it is seen

that this approach fails for n= 2t + 1, unless k = 1 – which is exactly broadcast.

In general, the performance of a message transmission protocol is assessed by

its transmission rate, which is the number of bits transmitted in total divided by the

number of message bits. Thus, broadcast has a transmission rate ofΘ(n), and a lower

transmission rate is better. In [PCRS10], it was shown that the transmission rate is at

least Ω(1), and provided a protocol attaining this rate under certain circumstances.

Hence, the bound is tight, and a protocol that attains this bound is called optimal.

Note, however, that the optimality is understood in an asymptotic sense. Even tough

a protocol is optimal, it may still be possible to improve its performance, for instance

by lowering the constants hidden by theΘ-notation, or by allowing smaller field sizes.

The improved protocols

In [Chr17], I propose two protocols for reliable message transmission, which are

optimal for sufficiently large messages. Both use only a single round to transmit the

message, and they are included as Protocols 1 and 2 on page 8. The protocols are

based on [BPRW16] and [PCRS10], respectively, and allow larger messages or smaller

field sizes than the originals. These improvements stem from a careful analysis of

the underlying coding theory, which allows improved choices of parameters. In both

cases, the protocols rely on an integrity check based on a family of hash functions.

More precisely, I use ϵ-almost universal hash families as introduced by [Sti94]. If

†In the usual terminology, this is called secure rather than private.

7



2.1. Reliable message transmission

Protocol 1: One-round RMT (using list-decoding) [Chr17]

This protocol allows a sender S to reliably send a symbols ofFq to a receiver R by using
n= 2t + 1 channels, t of which may be controlled by an adversary. The parameter a
must be sufficiently small such that applying the Guruswami-Sudan algorithm on an
[n, a] Reed-Solomon code C allows correction of t errors with a list of size L =O(1).
The protocol relies on an ϵ-AU hash family H = {hk : Fa

q → F
η
q | k ∈ F

η
q }.

1. The message m ∈ Fa
q is encoded using C, yielding the codeword (s1, s2, . . . , sn).

2. For i = 1, 2, . . . , n, S samples a random key ki ∈ F
η
q , and computes vi = hki

(m).

3. Across the i’th channel, S transmits {si ,ki ,vi}.
4. R receives the possibly modified values {s′i ,k

′
i ,v
′
i} for i = 1,2, . . . , n. It uses

the Guruswami-Sudan algorithm on the word (s′1, s′2, . . . , s′n) to obtain a list of L
potential messages m1,m2, . . . ,mL .

5. For each of the L messages, R checks that mi agrees with at least t + 1 of the hash
values v′j . If not, it removes mi from the list.

6. If only a single mi remains, R outputs this message. Otherwise, the protocol has
failed.

Protocol 2: One-round RMT-protocol (using erasure-decoding) [Chr17]

This protocol allows a sender S to reliably send ab symbols of Fq to a receiver R in
one round by using n= 2t+1 channels, t of which may be controlled by an adversary.
Beforehand, S and R have agreed upon a parameter e ∈ N, which satisfies e ≤ t+1− b.
Additionally, they agree on an ϵ-AU hash family H = {hk : Fa

q → F
η
q | k ∈ F

η
q }.

1. The message is represented as a matrix M ∈ Fa×b
q and each row is encoded using

an [n, b] Reed-Solomon code over Fq. Denote by Σ the matrix whose rows are
given by the corresponding codewords.

2. For each column si of Σ, S samples uniformly and independently n keys
(ki1,ki2, . . . ,kin), where ki j ∈ F

η
q , and computes the tag vi j = hki j

(si) for each
j ∈ {1, 2, . . . , n}.

3. Across the i’th channel, S transmits {si} ∪ {k ji ,v ji} j=1,2,...,n.

4. R receives the possibly modified values {s′i}∪{k
′
ji ,v

′
ji} j=1,2,...,n for i = 1, 2, . . . , n. For

each i, it compares the tag v′i j received from the j’th channel to the hash value
hk′i j
(s′i). If these disagree for more than t channels, R will mark si as modified.

5. For each row in Σ′, R computes the syndrome to check if it contains errors.
Depending on the result, it proceeds with one of the three following steps.

a) The syndrome is zero: Σ contains no errors, meaning that R can simply use
polynomial interpolation to recover the message.

b) The syndrome is nonzero, and Σ contains at least t − e erased columns: R
uses a decoding algorithm for Reed-Solomon codes to correct the erasures
and errors, hereby recovering the message.

c) The syndrome is nonzero, and Σ contains less than t − e erased columns:
Too many modified channels have passed the integrity checks. The protocol
has failed.

8



2. Contributions

H is a family of functions from a message set M to a tag set T , it is called ϵ-almost

universal, or ϵ-AU for short, if

Pr
h←H
[h(m) = h(m′)]≤ ϵ,

whenever m, m′ ∈ M, and m ̸= m′. That is, when sampling a function from H
uniformly at random we have an upper bound on the risk of a hash collision

happening.

As a specific instantiation, I consider the following family based on polynomial

evaluation, which is a generalization of the family used in [BPRW16].

2.1.1 Definition (Chr17; Def. 2.2):
Consider the finite field Fq, and let K ⊆ Fq. For every pair of positive integers η ≤ a,

define the map PEvalη : Fa
q ×Kη→ Fηq by

PEvalη(m,k) = ( fm(k1), fm(k2), . . . , fm(kη)),

where fm(x) =
∑a

i=1 mi x
i . We use the notation PEvalηk (m) = PEvalη(m,k).

This means that the hash function PEvalηk produces its tags by evaluating the message

in the points specified by k. Throughout this work, the key space K will always be

taken as the full field, Fq.

The first protocol is merely the robust distributed storage from [BPRW16]

translated into the setting of reliable message transmission. However, whereas

Bishop, Pastro, Rajaraman and Wichs were primarily interested in asymptotic

performance, and used the list-decoding algorithm by Sudan [Sud97], I apply the

improved algorithm by Guruswami and Sudan [GS98]. This increases the possible

message size from ⌊n/8⌋+ 1 to ⌊n/5⌋+ 1, while still retaining a constant list size. The

idea of the protocol is to use a Reed-Solomon code to encode the message on the

sender side, and let the receiver use list-decoding to correct any errors introduced

by the adversary. Since this gives a list of possible messages, the sender will also use

an almost universal hash-family to create tags for the message. The receiver can then

use these tags to reduce the list of potential messages to a single message, which is

in fact guaranteed to be the correct one. As shown in [Chr17; Sec. 4.3], when using

the hash family from Definition 2.1.1, the protocol is optimal as long as the message

is of size Θ(n). If only a single evaluation point is used in the hash functions – that

is, η = 1 – the field size depends quadratically on n. Choosing a greater value of η

will allow smaller field sizes, but this comes at the cost of sending additional field

symbols.

The properties of Protocol 1 are summarized in the following propositions based

on [Chr17; Prop. 4.2 and Sec. 4.2–4.3].‡

‡The presentation in [Chr17] is more general, and omits the assumption that K = Fq .
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2.1. Reliable message transmission

2.1.2 Proposition:
Let n = 2t + 1, the parameter a be as in Protocol 1, and H be an ϵ-AU hash family. If

an adversary controls t out of n channels, Protocol 1 allows reliable transmission of

a elements of Fq in a single round. The probability of failure is at most nLϵ, where L

is the maximal list size.

If H is the hash family of Definition 2.1.1, the protocol sends a total of n(1+ 2η)
elements of Fq, and the probability of failure is at most nL(a/q)η.

Remark:
The robust distributed storage from [BPRW16] is a special case of Protocol 1. It is

recovered by setting (i) the field size to be a power of 2, (ii) H to be the hash-family

from Definition 2.1.1 with η = 1, and (iii) by using Sudan list-decoding rather

Guruswami-Sudan.

The second protocol is based on the work of [PCRS10], which in essence relies on

erasure decoding of Reed-Solomon codes. Much like Protocol 1, the first step of the

protocol is to use a Reed-Solomon code to encode each row of the message. Now,

rather than hashing the message itself, the sender will hash the codeword entries sent

across each channel. The receiver can use this information to identify some of the

channels controlled by the adversary. The information delivered by these channels

can then be treated as erasures when recovering the message.

In the original protocol by [PCRS10], the choice of parameters requires the

receiver to identify all the corrupt channels during the integrity checks since the

protocol will otherwise fail. What I propose in [Chr17] is to adjust the size of the

message to allow some number of corrupt channels to pass the integrity checks,

and then use a combination of erasure and error correction to recover the message.

More precisely, [PCRS10] use b = t + 1, whereas I introduce the error parameter e,

and require b ≤ t + 1− e. An erroneous channel might pass the integrity check by

chance, and e describes the maximal number of such channels that we are willing to

tolerate. By choosing the parameters appropriately, this yields an optimal protocol

for messages of size Θ(n2), when using the family defined in Definition 2.1.1. This

is the same as [PCRS10], but where they require the field size to be cubic in n in

order to obtain δ-reliability, my proposed protocol lowers this requirement to a

quadratic dependence for η= 1. Again, greater values of η allow smaller field sizes,

but increases the number of symbols transmitted.

Similar to Proposition 2.1.2, the results in [Chr17; Prop. 5.2 and Sec. 5.2–5.3] can

be collected in a single proposition, summarizing the properties of Protocol 2.

2.1.4 Proposition:
Let n = 2t + 1, the parameters a, b, and e be as in Protocol 2, and let H be an ϵ-AU

hash family. If an adversary controls t out of n channels, Protocol 2 allows reliable

transmission of ab elements of Fq in a single round with probability of failure at most

t(t + 1)ϵ/(e+ 1).

10
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If H is the hash family of Definition 2.1.1, the protocol sends a total of 2ηn2 + an

elements of Fq, and the probability of failure is at most t(t + 1)aη/((e+ 1)qη).

Remark:
Although [PCRS10] has a more fine-grained adversary structure, the original protocol

can be considered as a special case of Protocol 2. This is seen by setting (i) the error

parameter e = 0, (ii) the message dimensions to a = n and b = t + 1, and (iii) H to be

the hash-family from Definition 2.1.1 with η = 1. It is worth mentioning, however,

that [PCRS10] use a systematic Reed-Solomon encoding, but that this is equivalent to

the one used in Protocol 2.

In both cases, the proposed protocols are only optimal as long as the message has a

certain size. In the light of this, it is natural to ask if the optimal transmission rate of

Θ(1) can be achieved for any message size. In [Chr17; Prop. 3.2], I answer this in the

negative by proving that any protocol for reliable message transmission requires a

transmission rate of at least Θ(n)when transmitting messages of constant size. This

result not only holds true for one-round protocols, but protocols using any number

of rounds.

Concrete examples

Since the above considerations apply to the asymptotic performance, [Chr17] also

includes a number of concrete examples, which may be found in Tables 1–4 on

page 12. Due to the number of parameters in the construction, the shown examples

were found using a computer search, the source code of which may be found in

Appendix A. Given the number of corrupt channels and the message size in bits,

the program will search through the possible parameter values for each protocol to

determine the ones leading to the lowest transmission rate. This is not an exhaustive

search since it for instance only considers fields of sizes 22k
for Protocol 2. This is

enough, however, to illustrate the differences between the two protocols. Studying

the tables reveals that Protocol 1 is suited for relatively small messages, whereas

Protocol 2 performs better for larger message sizes. It is also worth noting that

Protocol 1 often uses a very large field. This is caused by the dimension restrictions

imposed by the list decoding algorithm.

The code in Appendix A also includes a method beatBroadcast, which was

not used directly in the construction of the examples. Instead, the output of this

function is the reason why t = 1 and 2048 bits was considered; this is the smallest

example where Protocol 2 has a lower total transmission cost than the naïve solution

of broadcasting.

Implications

Message transmission protocols are important in secure multiparty computation

since any such computation requires the participants to communicate. Depending

11



2.1. Reliable message transmission

on the context, this communication may not need to be secure, but merely reliable.

The relevance of reliable message transmission is also witnessed by the strong

connections to the reliable distributed storage used in [BPRW16]. Here, the method

is used as a sub-procedure for creating a robust secret sharing scheme. As such, it is

not inconceivable that these techniques and their improvements may be applicable

in other problems of secret sharing and secure multiparty computation.

Protocol Field size
Message

dimension
Parameters Bits transmitted

Percent of
broadcast

1 22048 1 η= 1 18432 300.0%
2 264 (16,2) η= 2, e = 0 5376 87.5 %
2 232 (32,2) η= 3, e = 0 4800 78.1 %
2 216 (64,2) η= 9, e = 0 5664 92.2 %

Table 1. [Chr17] Examples of performance of Protocols 1 and 2 when sending a message
consisting of 2048 bits in the case t = 1. All protocols achieve a reliability of 2−80.
Broadcast costs 6144 bits.

Protocol Field size
Message

dimension
Parameters Bits transmitted

Percent of
broadcast

1 28,000,000 1 η= 1 72,000,000 300.0%
2 264 (62500, 2) η= 2, e = 0 12,002,304 50.0 %
2 232 (125000, 2) η= 6, e = 0 12,003,456 50.0 %

Table 2. [Chr17] Examples of performance of Protocols 1 and 2 when sending a 1 megabyte
message (8,000,000 bits) in the case t = 1. All protocols achieve a reliability of 2−80.
Broadcast costs 24,000,000 bits.

Protocol Field size
Message

dimension
Parameters Bits transmitted

Percent of
broadcast

1 226 10 η= 4 47,034 91.4 %
2 216 (1,101) η= 6, e = 0 7,760,208 1508.1 %
2 28 (1, 62) η= 11, e = 39 7,112,184 1382.2 %

Table 3. [Chr17] Examples of performance of Protocols 1 and 2 when sending a 256 bit
message in the case t = 100. All protocols achieve a reliability of 2−80. Broadcast
costs 51,456 bits.

Protocol Field size
Message

dimension
Parameters Bits transmitted

Percent of
broadcast

1 2195,122 41 η= 1 117,658,566 7.3 %
2 264 (1238,101) η= 2, e = 0 26,268,288 1.6 %
2 232 (2476,101) η= 5, e = 0 28,853,952 1.8 %
2 216 (5000,100) η= 25, e = 1 48,400,800 3.0 %

Table 4. [Chr17] Examples of performance of Protocols 1 and 2 when sending a 1 megabyte
message (8,000,000 bits) in the case t = 100. All protocols achieve a reliability of 2−80.
Broadcast costs 1,608,000,000 bits.
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�2
1

�

-OT
m0

m1

b

mb

S R

Figure 1. Diagram representing the oblivious transfer-functionality. The receiver R inputs
b ∈ {0, 1}, and receives the corresponding message mb .

2.2 Extending oblivious transfer

Multiparty computation relies on several so-called primitives, which can be used

to implement larger, more complicated protocols. One such primitive is oblivious

transfer, and in its simplest form it allows a sender to input two messages m0 and m1,

and a receiver to learn a message mb of his choice. This must be done in such a way

that the receiver learns nothing about m1−b, and the sender nothing about b. More

generally, the sender will input N messages, and the receiver will choose K of these.

In this case, we call the primitive a K out of N-oblivious transfer, which is denoted

by
�N

K

�

-OT. Figure 1 illustrates the OT-primitive in the case of 1 out of 2.

As a simple motivational example for the use of OT, consider the following. The

sender and receiver each hold a value in F2, say x and y , respectively. By using the

OT-primitive, the participants can compute the product x y in a secure manner. In

particular, if the sender inputs m0 = 0 and m1 = x , and the receiver b = y , the OT will

output m0 = 0 · x or m1 = 1 · x , depending on the input of the receiver. In either case,

the receiver has learned x y . By changing this procedure slightly, the OT can also be

used to construct a secret sharing of the product. Namely, if the sender inputs m0 = r

and m1 = r + x for some random r ∈ F2, then the receiver will learn the share r + x y .

When combined with the sender’s share r , the product can be recovered.

Oblivious transfer is among the most important primitives in multiparty compu-

tation, and finds use in well-known protocols such as Yao’s garbled circuits [Yao82]

and the GMW-compiler [GMW87]. Perhaps surprisingly, [Kil88] even showed that

the OT-primitive is enough to implement any cryptographic protocol. Using OT, how-

ever, comes at a price; the work of [IR89] suggests that any implementation of OT is

highly likely to require expensive public key cryptosystems.

In order to reduce the cost of OT, [Bea96] showed that a relatively small number

of base OT’s can be ‘extended’ to produce the same output as a much larger number

of OT’s, and [IKNP03] presented the first efficient protocol for doing so. Via this

procedure, the computational cost is reduced to the cost of the base OT’s, and hence

we aim to reduce the number of base OT’s as much as possible. This procedure is

called OT-extension.

A q-ary protocol

As part of a course on Cryptographic Computing at Aarhus University, Jaron S.

Gundersen and I did a course project on OT-extension using q-ary codes. More
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2.2. Extending oblivious transfer

precisely, we considered the actively secure OT-extension protocol from [OOS17],

and showed that the use of q-ary codes allows a significantly smaller number of base

OT’s than in the binary case. Afterwards, we pursued this further in collaboration

with Ignacio Cascudo, which lead to [CCG18]. In this paper, we propose the protocol

included as Protocol 3 on page 15, which implements m
�N

1

�

-OT’s using n
�2

1

�

-OT’s.

Both sets of OT’s have string length κ, which is also one of the security parameters.

The protocol relies on several components. First of all, it requires a functionality

which implements the n base OT’s with string length κ as mentioned above. This

functionality is denoted by Fκ,n
2-OT. Similarly, the resulting OT-functionality is denoted

by Fκ,m
N-OT. In addition, the protocol uses a pseudorandom generator, PRG, which

takes a seed as input and produces a string of field elements that are indistinguishable

from a uniformly sampled string. Finally, the protocol relies on a hash function with

certain properties, H. The details of this function and its properties are not essential

for this exposition. These may be found in [CCG18]. Note also that we use the notation

∆b, where b ∈ {0,1}n. This denotes the diagonal matrix, whose i’th diagonal entry is

given by bi .

The following theorem captures the main result of our paper.

2.2.1 Theorem (CCG18; Thm. 3.1):
Given security parameters κ and s, let C be an [n, k, d]q linear code with k = logq(N)
and d ≥ max{κ, s}. Additionally, let PRG: {0, 1}κ → Fm+2s

q be a pseudorandom

generator and let H: Fn
q → {0,1}κ be a t-min-entropy strongly C-correlation robust

function for all t ∈ {n− d + 1, n− d + 2, . . . , n}. If we have access to C, the functions

PRG and H, and the functionality Fκ,n
2-OT, then Protocol 3 on page 15 implements the

functionality Fκ,m
N-OT.

The protocol is computationally secure against an actively corrupt adversary.

Assuming for a moment that neither participant is actively corrupt, the basic idea of

the passive protocol is to use the base OT’s in such a way that the sender learns

a subset of randomness chosen by the receiver. The receiver will then encode

his selection inputs via a linear q-ary code, and mask the actual values using the

randomness unknown to the sender. Combining the encoded inputs and the outputs

of the base OT’s, the sender is able to construct a set of vectors, only one of which

the receiver can compute. By applying the hash function H to this set of vectors, the

sender obtains bit-strings suitable as one-time pads of his inputs. He can then send

these to the receiver, who can decode only the ones corresponding to his inputs.

In a little more detail, the purpose of the first two phases can be seen as giving

the sender one out of two shares for the matrix C containing the encoding of the

receivers inputs. That is, at the end of Phase II, each column of Q = T0+C∆b contains

either (T0)i or (T0 + C)i , where the subscript denotes the i’th column. In Phase IV, S

can then construct all possible matrices T0 that agree with his set of shares. One of

these matrices – the true T0 – is known by R since he sampled it, and this allows him

to compute the messages corresponding to his selection inputs.
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Protocol 3: OT-Extension [CCG18]

This protocol implements the functionality Fκ,m
N-OT having access to Fκ,n

2-OT. The
security of the protocol is controlled by the security parameters κ and s.
The sender S and the receiver R have agreed on a linear code C ⊆ Fn

q with generator
matrix G of dimension k = logq(N) and minimum distance d ≥ max{κ, s}. The
protocol uses a pseudorandom generator PRG: {0, 1}κ → Fm+2s

q and a function
H: Fn

q → {0,1}κ, which is t-min-entropy strongly C-correlation robust for every

t ∈ {n − d + 1, n − d + 2, . . . , n}. R has m inputs w1,w2, . . . ,wm ∈ Fk
q , which act as

selection integers. S has inputs vw,i ∈ {0, 1}κ, indexed by i ∈ {1,2, . . . , m} and w ∈ Fk
q .

I. Initialization phase

1. S chooses uniformly at random b ∈ {0,1}n.

2. R generates uniformly at random two seed matrices N0, N1 ∈ {0,1}κ×n and
defines the matrices Ti = PRG(Ni) ∈ F(m+2s)×n

q for i = 0,1.

3. The participants call the functionality Fκ,n
2-OT, where S acts as the receiver

with input b, and R acts as the sender with input pair (N0, N1). S receives
N = N0+(N1−N0)∆b, and by using PRG, he can compute T = T0+(T1− T0)∆b.

II. Encoding phase

1. Let W ′ ∈ Fk×m
q be the matrix which has wi as its columns. R generates a

uniformly random matrix W ′′ ∈ Fk×2s
q , and defines the (m + 2s) × k-matrix

W = [W ′ |W ′′]T .

2. R sets C =W G, and sends U = C + T0 − T1.

3. S computes Q = T + U∆b. This implies that Q = T0 + C∆b.

III. Consistency check

1. S samples a uniformly random matrix M ′ ∈ F2s×m
q and sends this to R. They

both define M = [M ′ | I2s].
2. R computes the 2s × n-matrix T̃ = M T0 and the 2s × k-matrix W̃ = MW and

sends these matrices to S.

3. S verifies that MQ = T̃ + W̃ G∆b. If this fails, S aborts the protocol.

IV. Output phase

1. Denote by qi and ti , the i’th rows of Q and T0, respectively. For i = 1,2, . . . , m
and for all w ∈ Fk

q , S computes yw,i = vw,i ⊕H(qi −wG∆b) and sends these to
R. For i = 1,2, . . . , m, R can recover vwi ,i = ywi ,i ⊕H(ti).

If the receiver R is actively corrupt, however, it cannot be guaranteed that the

matrix C sent in step 2. of phase II consists of codewords. As was argued in [IKNP03;

Sec. 4], an adversary who has obtained additional knowledge – for instance via a

side-channel attack – can send non-codewords to extract information about the

sender’s inputs. Therefore, it is necessary to include a consistency check such as

the one in phase III. Here, the receiver is asked to open a linear combination of his

inputs, which allows the sender to verify that the rows of C are indeed codewords.

To ensure the privacy of the inputs, R must also encode a number of random dummy

inputs – contained in W ′′ – which are used to mask his actual inputs.
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2.2. Extending oblivious transfer

In order to reduce the cost of the protocol, we show in [CCG18; Sec. 4] that our

proposed protocol is still secure, even if the matrix M ′ used in the consistency check

is chosen uniformly over a subfield. The benefit of doing so is twofold: the number

of bits required to transmit M ′ is reduced by a factor equal to the extension degree,

and the consistency check can be performed using the cheaper subfield operations.

Comparison with the binary protocol

Comparing the performance of the q-ary protocol against the binary in a precise

manner is difficult. The computational cost depends heavily on the number of base

OT’s, but the literature does not contain good estimates on the cost of a single OT-

instance. Such an estimate is also difficult because of the many different known

constructions. Analysing the computational cost of our protocol is impeded by the

number of parameters involved. In an attempt to still obtain a useful comparison,

we argue in [CCG18] that the greatest difference in communication cost between the

two protocols arises from the encoding phase. This is dominated by the term mn′

in the binary case and mn log2 q in the q-ary, where n′ and n denote the number of

base OT’s. This leads us to consider the relative reduction in base OT’s, n′/n, and the

relative increase in communication cost log2 q · n′/n. In the most extreme example,

the use of q-ary codes more than halves the number of base OT’s, while increasing

the communication cost by only 33%. Table 5 shows all the examples presented in

[CCG18].

Relation to reliable message transmission

In some sense, the techniques of Protocols 2 and 3 are very similar. In both cases, the

input is encoded using what is essentially an interleaved code.§ In both protocols, an

interleaved codeword is sent together with additional information that can be used

to determine the correctness of the codeword. In the case of Protocol 2 this extra

information is the tags produced by the hash functions, and in the case Protocol

3 it is the encoding of the dummy inputs. Yet, the way the information is used to

check correctness differs. Since Protocol 2 uses only a single round, the receiver can

check the integrity of the interleaved codeword by performing local computations.

In Protocol 3, on the other hand, the consistency check can be seen as an interactive

zero-knowledge proof, thus requiring multiple communication rounds.

Implications

As already mentioned, the proposed protocol provides a trade-off between the

number of base OT’s used, and the total number of bits transmitted. Presumably, the

binary logic in computer circuits of today is the main reason that binary arithmetic

– and hence binary codes – is often considered in the literature. Theoretically, there

§If C ⊆ Fn
q is a code, the interleaved code C⊙m is the space of m × n-matrices whose rows are

codewords of C
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Comparison

Code N n (Base OT’s) d n CC

Walsh-Had. [KK13] 256 256 128
Juxt. simplex code over F4 256 170 128 ÷ 1.51 × 1.33
Punct. Walsh-Had. [OOS17] 512 256 128
Juxt. simplex code over F8 512 146 128 ÷ 1.75 × 1.71
[511, 76,≥ 171]2-BCH [OOS17] 276 511 ≥ 171
[455, 48,≥ 174]4-BCH over F4 296 455 ≥ 174 ÷ 1.12 × 1.78
[1023,443,≥ 128]2-BCH [OOS17] 2443 1023 ≥ 128
[455,154,≥ 128]8-BCH over F8 2462 455 ≥ 128 ÷ 2.25 × 1.33

Table 5. [CCG18] Comparison of using binary and q-ary codes for OT-extension. In the last
two columns we consider the decrease in the number of base OT’s and increase in
the dominant term of the communication complexity in the encoding phase when
we consider a q-ary construction.

is no reason to steer clear of q-ary codes and restrict the theory to a computational

model based on binary.

Additionally, it may be noted that even though the code used in Protocol 3 is q-ary,

the used base OT’s are still binary, and they are used in a black box-way. Hence, there

are already a wide variety of existing constructions that can be used to implement

them.

2.3 Construction of nested code pairs

As mentioned in the preliminaries, the nested code pair construction C2 ( C1 ⊆ Fq has

proved useful both in secret sharing and in the construction of asymmetric quantum

codes. In both cases, the relative distances of the codes themselves, d(C1,C2), and

of their duals, d(C⊥2 ,C⊥1 ), determine the properties of the associated secret sharing

scheme and quantum code.

In [CG18], Olav Geil and I present two constructions of nested code pairs similar

to the ones presented in [GGHR18]. In the latter paper, codes are defined from a

Cartesian product of points, whereas our proposed construction is based on the

Hermitian codes. We show that our new constructions lead to nested codes, whose

parameters are better than previous, comparable constructions. This will become

evident from Tables 6 and 7 later in this section. Bear in mind that [CG18] is a

manuscript in progress, and that given references apply to its current, unfinished

state. Hence, the specific proposition numbers or given examples may change in the

published version.

The Hermitian codes are defined from the Hermitian function field H , whose

rational places can be written as P1, P2, . . . , Pn,Q, where n= q3. Let D = P1+P2+ · · ·+Pn

be the divisor consisting of all rational places except Q, and define the evaluation map

evD : H → Fq2 by ev( f ) = ( f (P1), f (P2), . . . , f (Pn)), which is Fq-linear. Given λ ≥ 0, the

17
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associated Hermitian code is given by

CL(D,λQ) = {evD( f ) | f ∈ L(λQ)},

where L(λQ) is the Riemann-Roch space associated to the divisor λQ.

The codes constructed in [CG18] are defined from a certain subset of the

Weierstraß semigroup of Q denoted by H(Q). This subset is given by

H∗(Q) = {λ ∈ H(Q) | CL(D,λQ) ̸= CL(D, (λ− 1)Q)},

and it may be shown†† that in fact

H∗(Q) =
�

iq+ j(q+ 1) | 0≤ i < q2, 0≤ j < q
	

. (2.1)

By the Weierstraß gap theorem [Sti09; Thm. 1.6.8], the dimensions of the Riemann-

Roch spaces L((λ − 1)Q) and L(λQ) can differ by at most one. Additionally, the

dimension grows if and only if λ ∈ H(Q). Hence, for each λ ∈ H∗(Q) it is possible

to fix an element fλ ∈ L(λQ) \L((λ− 1)Q), which will, when combined with a basis

for L((λ− 1)Q), span L(λQ) as a vector space over Fq2 . By the definition of H∗(Q) it

now follows that the set

{evD( fλ) | λ ∈ H∗(Q)} (2.2)

is linearly independent, and since |H∗(Q)|= n, it forms a basis of Fq2 .

Using the results from [Gei03], we define the mappings σ : H∗(Q)→ {1, 2, . . . ,q3}
and µ: H∗(Q)→ {1,2, . . . , q3}, given by

σ
�

iq+ j(q+ 1)
�

=

⎧

⎨

⎩

q3 − iq− j(q+ 1) if 0≤ i < q2 − q

(q2 − 1)(q− j) if q2 − q ≤ i < q2
,

and µ
�

iq+ j(q+1)
�

= σ
�

(q2 − 1− i)q+ (q− 1− j)(q+ 1)
�

. These can be used to bound

the distances of the codes CL(D,λQ), and their duals CΩ(D,λQ). More precisely, the

order bound for primary and dual codes [DP10; HLP98] imply that

d(CL(D,λQ))≥min{σ(γ) | 0≤ γ≤ λ,γ ∈ H∗(Q)}, (2.3)

and

d(CΩ(D,λQ))≥min{µ(γ) | λ < γ,γ ∈ H∗(Q)}. (2.4)

Now, letting λ1,λ2 ∈ H∗(Q) with λ1 > λ2, we can use the bounds above to gain

information about the relative distances of the codes:

d
�

CL(D,λ1Q),CL(D,λ2Q)
�

≥min{σ(γ) | λ2 < γ≤ λ1,γ ∈ H∗(Q)}

d
�

CΩ(D,λ2Q),CΩ(D,λ1Q)
�

≥min{µ(γ) | λ2 < γ≤ λ1,γ ∈ H∗(Q)}.
(2.5)

It turns out, however, by the results in [Gei03] that the inequalities in (2.3), (2.4), and

(2.5) are in fact equalities in the Hermitian case, meaning that we can determine

††For instance by combining [Sti09; Lem. 6.4.4(e)] with [Sti09; Prop. 8.8.3(a)]
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the relative and non-relative distances explicitly, without checking each individual

codeword.

The way we construct the codes in [CG18] is to decide on a designed distance δ,

and then only choose those codewords whose weights are guaranteed to be at least

δ. Thus, the improved codes are given by

Ẽ(δ) = spanFq2

�

evD( fλ) | σ(λ)≥ δ
	

C̃(δ) =
�

spanFq2

�

evD( fλ) | µ(λ)< δ
	

�⊥
.

The results in [Gei03; Sec. 6] imply that the two codes Ẽ(δ) and C̃(δ) are, in fact, equal.

This means that we can consider the codes both from a primary perspective using

the values from σ and from a dual perspective via the values from µ.

Dimension of the codes

Since (2.2) is a basis of Fq2 , the dimension of the code Ẽ(δ) – and hence also C̃(δ) – is

exactly the number of λ ∈ H∗(Q) satisfying σ(λ)≥ δ. This number, however, cannot

always be determined immediately from the value of δ, whence we present the

following bounds on the dimension.

2.3.1 Proposition (CG18; Prop. 14):
Given q < δ ≤ q2 − q, write

q3 −δ = q3 − q2 + aq+ b(q+ 1),

where −q < a < q and 0≤ b < q. If a ≥ 0, then

dim(Ẽ(δ))≥ q3 −δ− g + 1−
a+b
∑

s=0

(s+ 1) + a+ q2 − ⌊δ+δ ln(q2/δ)⌋.

If a < 0 then

dim(Ẽ(δ))≥ q3 −δ− g + 1−
a+b
∑

s=0

(s+ 1) + q2 − ⌊δ+δ ln(q2/δ)⌋.

2.3.2 Proposition (CG18; Prop. 15):
Given 1≤ δ ≤ q, the dimension of the code Ẽ(δ) satisfies

dim(Ẽ(δ))≥ q3 − ⌊δ+δ ln(δ)⌋.

In the remaining cases, the code Ẽ(δ) coincides with the usual Hermitian codes, and

the dimension is well-known; see for instance [Sti09].

Pairs with large codimension

Using the improved codes from above, we can construct a pair of codes C2 ( C1 ⊆ Fn
q

such that C1 is the code Ẽ(δ1) of designed distance δ1, and C2 is C̃(δ2)⊥. That is, C2 is
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2.3. Construction of nested code pairs

the dual of a code of designed distance δ2. In this way, we obtain a pair C2 ( C1 of

nested codes with relative distances

d
�

Ẽ(δ1), C̃(δ2)
⊥�≥ δ1 and d

�

C̃(δ2), Ẽ(δ1)
⊥�≥ δ2 (2.6)

by the bounds in (2.5). Furthermore, the observations below (2.5) imply that equality

occur in (2.6) whenever δ1,δ2 ∈ σ(H∗(Q)). However, not all pairs (δ1,δ2) of minimal

distances are suitable since we must ensure that C̃(δ2)⊥ is indeed contained in Ẽ(δ1).
Determining such pairs is not a trivial exercise, and complicated formulae are needed.

In [CG18], we prove such formulae.

2.3.3 Proposition (CG18; Prop. 18–22):
Consider the Hermitian curve, and let 2≤ δ1 ≤ q3. Then C̃(δ2)⊥ ⊆ Ẽ(δ1) if and only if

one of the following cases occur.

(i) 2≤ δ1 ≤ q, and δ2 ≤ q3 − (δ1 − 2)(q+ 1)

(ii) q < δ1 ≤ q2 − q, and

δ2 ≤

⎧

⎨

⎩

q3 − q2 + q−δ1 + 2 if 0≤ b ≤ a

q3 − q2 − a(q+ 1) if b > a
,

where δ1 − (q+ 1) = aq+ b.

(iii) q2 − q < δ1 ≤ q3 − 2q2 + 2q, and δ2 ≤ q3 − q2 + q+ 2−δ1

(iv) q3 − 2q2 + 2q < δ1 ≤ q3 − q2, and

δ2 ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a+ 1)q+ b+ 2 if b < a

(a+ 2)q if a ≤ b < q− 1

(a+ 2)q+ 1 if b = q− 1

,

where q3 − q2 −δ1 = aq+ b.

(v) q3 − q2 ≤ δ1 ≤ q3, and

δ2 ≤

⎧

⎨

⎩

a+ 1 if b < a

a+ 2 if b ≥ a
,

where q3 −δ1 = aq+ b.

We can summarize this construction by the following proposition.

2.3.4 Proposition:
Let δ1,δ2 ∈ H∗(Q) satisfy one of the cases in Proposition 2.3.3. Then C̃(δ2)⊥ ⊆ Ẽ(δ1)
is a nested code pair with relative distances

d
�

Ẽ(δ1), C̃(δ2)
⊥�= δ1 = d
�

Ẽ(δ1)
�

and

d
�

C̃(δ2), Ẽ(δ1)
⊥�= δ2 = d
�

C̃(δ2)
�

.

The codimension is given by the cardinality of {λ ∈ H∗(Q) | σ(λ)≥ δ1,µ(λ)≥ δ2}.
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2. Contributions

2.3.5 Example:
To illustrate the construction of Proposition 2.3.4, consider q = 4, and set δ1 = 12 and

δ2 = 5. The nested code pair C̃(5)⊥ ( Ẽ(12) then has codimension 40, see Figure 2. By

(2.6), the relative distances are 12 and 5, respectively, meaning that the corresponding

quantum code has parameters [[64,40, 12/5]]16. This code is pure since the relative

and non-relative distances agree when using this construction.

The corresponding secret sharing scheme has secrets of size 40, and the

reconstructing and privacy numbers are r = 64− 12+ 1= 53 and t = 5− 1= 4. Ê
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Figure 2. The nested codes from Example 2.3.5. The upper grid showsσ(H∗(Q)), and the lower
µ(H∗(Q)). The dark shaded region shows the elements included in C̃(5)⊥, and Ẽ(12)
includes the lightly shaded region as well.

Pairs with small codimension

In [CG18], we also present a second construction of nested code pairs, which is in

essence based on the same technique as found in [GGHR18; Sec. IV]. Rather than

using the improved codes Ẽ(δ) and C̃(δ) as in the previous section, this construction

is based on the usual one-point Hermitian codes CL(D,λQ) and CΩ(D,λQ). The trick is

to choose these in such a way that the relative distance exceeds the minimal distance

of one of the codes. In this way, the associated quantum codes are impure. For

ease of notation, the codes CL(D,λQ) and CΩ(D,λQ) will be denoted by Cλ and C⊥
λ

,

respectively.

2.3.6 Proposition (CG18; Prop. 27):
Let λ1 = iq+ j(q+ 1) ∈ H∗(Q)where i ≤ j < q, and define λ2 = jq+ i(q+ 1)− 1. Then

Cλ2
( Cλ1

is a nested code pair with codimension ℓ= j− i+1, whose relative distances

satisfy

d(Cλ1
, Cλ2

) = q3 −λ1 = d(Cλ1
),

and

d(C⊥λ2
, C⊥λ1

) = (i + 1)( j + 1)≥ d(C⊥λ2
). (2.7)

The inequality in (2.7) is strict if and only if i ̸= 0 and j ̸= q− 1.
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2.3. Construction of nested code pairs

In terms of the rectangular structure of H∗(Q) given in (2.1), the above proposition

considers codes in the “bottom left corner” of H∗(Q). In general, this gives

d(Cλ1
, Cλ2

) ≥ d(C⊥
λ2

, C⊥
λ1
), and hence it is primarily this result that is of interest to

quantum coding. Yet, the same technique can be applied at the other end of H∗(Q)
as well, which may be beneficial for constructing secret sharing schemes.

2.3.7 Proposition (CG18; Prop. 28):
Let λ1 = (q2 − 1 − i)q + (q − 1 − j)(q + 1) ∈ H∗(Q) where i ≤ j < q, and define

λ2 = (q2 − 1− j)q + (q − 1− i)(q + 1)− 1. Then Cλ2
( Cλ1

is a nested code pair with

codimension ℓ= j − i + 1, whose relative distances satisfy

d(Cλ1
, Cλ2

) = (i + 1)( j + 1)≥ d(Cλ1
), (2.8)

and

d(C⊥λ2
, C⊥λ1

) = q3 − jq− i(q+ 1) = d(C⊥λ ).

The inequality in (2.8) is strict if i ̸= 0 and j ̸= q− 1.

2.3.8 Example:
As an example of the construction defined in Proposition 2.3.6, let q = 4 and

λ1 = 1q + 2(q + 1) = 14. This implies λ2 = 2q + 1(q + 1)− 1 = 12, and the associated

code pair is C12 ( C14. As is seen in the top grid of Figure 3, the elements in C14\C12 lie

along a line of slope −1. Starting at the midpoint of this line segment and moving in

either direction, the value of µ decreases. The idea of the construction is that as long

as the segment corresponding to C14\C12 does not stretch to the edges of H∗(Q), there

is an element outside C14 with a lower value of µ than any element inside C14 \ C12.

In the current example, this value is 4, implying that d(C12) = 4 < 6 = d(C14, C12).
The corresponding quantum code has parameters [[64, 2,50/6]]16, and by the above

observations it is impure.

In the secret sharing perspective, we can share a secret of size 2 such that any

r = 64− 50+ 1= 15 participants can reconstruct, and any set of at most t = 6− 1= 5

participants have no information. Ê

Comparison with existing codes

In [CG18], we also compare the two construction with existing codes from the

literature. Instead of using the bounds in Propositions 2.3.1 and 2.3.2, we have

computed the actual dimensions. For the first construction, we compare it with

a construction from [LaG12] which gives asymmetric quantum generalized Reed-

Solomon codes. The results of this comparison are seen in Table 6. For each quantum

code created from the construction of [LaG12], we give up to two comparable

quantum codes from the construction of Proposition 2.3.4. For the first, we fix the

dimension of the code and the distance dx , and present the code with the maximal
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Figure 3. Nested codes from Example 2.3.8. The upper grid shows H∗(Q), and the two below
show σ(H∗(Q)) and µ(H∗(Q)), respectively. The dark shaded region shows the
elements included in C12, and C14 includes the lightly shaded region as well.

value of dz . For the second, we fix both of the distances, and seek to maximize the

dimension. A dash indicates that our construction cannot be used to obtain a code

under the given restrictions. It may however be possible to construct a better code.

For instance, we cannot construct a code with minimal distances 5/4 to compare

with the code [[27,6, 5/4]]9. Instead, our construction can for instance be used to

obtain a [[27, 15,6/4]]9 code, which still beats the parameters of the original.

Another set of comparable asymmetric quantum codes can be found in [EJS15].

The constructions in Propositions 2.3.4 and 2.3.6 do not improve on the parameters

of these, but in almost all cases, they match the parameters in [EJS15].

Since the nested code pairs of Propositions 2.3.6 and 2.3.7 have a relative distance

that exceeds one of the non-relative distances, these can be used to illustrate the

advantage of analysing relative distances rather than relying on the bounds in (1.1).

Construction of
[LaG12]

Ours,
same dimension

Ours,
same distances

[[27, 3,8/2]]9 [[27,3, 21/2]]9 [[27,16, 8/2]]9
[[27, 3,7/3]]9 [[27,3, 19/3]]9 [[27,15, 7/3]]9
[[27, 6, 7/2]]9 [[27,6, 18/2]]9 [[27,17, 7/2]]9
[[27,3, 6/4]]9 [[27,3, 17/4]]9 [[27,15, 6/4]]9
[[27,6, 6/3]]9 [[27,6, 16/3]]9 [[27,17, 6/3]]9
[[27,9, 6/2]]9 [[27,9, 15/2]]9 [[27,19, 6/2]]9
[[27,6, 5/4]]9 [[27,6, 14/4]]9 -
[[27,9, 5/3]]9 [[27,9, 13/3]]9 -
[[27, 12,5/2]]9 [[27,12, 12/2]]9 -
[[27, 12,4/3]]9 [[27,12, 10/3]]9 [[27,19, 4/3]]9
[[27, 15,4/2]]9 [[27,15, 9/2]]9 [[27,21, 4/2]]9
[[27, 18,3/2]]9 - [[27,23, 3/2]]9

Table 6. [CG18] Asymmetric quantum codes of length 27 over F9. The constructions in
columns two and three stem from Proposition 2.3.3.
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2.3. Construction of nested code pairs

This can be done in the following way [EJS15; GGHR18]. First, fix a length n, a

codimension ℓ, and a minimal distance δ1. Then use the tables of best known

codes [Gra07; SS15] to find codes C′,C ⊆ Fn
q with dimC − dimC′ = ℓ, d(C) ≥ δ1, and

d(C′⊥)≥ δ2. Denote the largest such δ2 by g(ℓ,δ1). For a nested code pair C2 ( C1 ⊆ Fn
q

of codimension ℓ, we can compare d(C⊥2 ) to the value g(ℓ, d(C1)) in order to see how

it compares against the best known codes – even though these codes are in no way

guaranteed to be nested. Remarkably, the construction in Proposition 2.3.6 will in

most cases match the parameters of the hypothetical code pairs. By analysing the

relative distances, it may even exceed the parameters of the best known codes which

use only information about the non-relative distances.

Table 7 shows the possible asymmetric quantum codes from Proposition 2.3.6 and

the comparison with g(ℓ,δ1) as described above. The tables of [Gra07] only contains

alphabets up to F9, meaning that we have to rely on [SS15] for any larger field sizes.

The codes in the latter, however, are usually not as optimized as the ones found

in [Gra07]. For this reason, it is not clear whether the examples with dx > g(ℓ,δ1)
indicate a true improvement, or whether the tables are deficient. Yet, in either case

even matching the best parameters and ensuring inclusion of the codes highlights

the power of using Proposition 2.3.6 and its information on relative distances.

Implications

As mentioned in Sections 1.2 and 1.4, pairs of nested code give rise to secret sharing

schemes and asymmetric quantum codes, where the reconstruction and privacy

numbers or the minimal distances are determined by the relative distances of the

used codes. The constructions given in [CG18] provide good pairs of nested codes

with designed relative distances. Subsequently, the results can be applied in both of

the above settings, and as shown in the previous paragraphs, the resulting quantum

codes compare favourably against other known constructions.

Field (i, j) Parameters g(ℓ,δ1)

q = 3

(2,2) [[27,1, 13/9]]9 9
(1,1) [[27,1, 20/4]]9 4
(1,2) [[27,2, 16/6]]9 6
(0,1) [[27,2, 23/2]]9 2
(0,2) [[27,3, 19/3]]9 3

q = 4

(3,3) [[64, 1,37/16]]16 16
(2,2) [[64, 1, 46/9]]16 8
(1,1) [[64, 1,55/4]]16 4
(2,3) [[64, 2, 41/12]]16 11
(1,2) [[64, 2,50/6]]16 6
(0,1) [[64, 2,59/2]]16 2
(1,3) [[64, 3, 45/8]]16 7
(0,2) [[64, 3,54/3]]16 3
(0,3) [[64, 4,49/4]]16 5

Field (i, j) Parameters g(ℓ,δ1)

q = 5

(4,4) [[125,1, 81/25]]25 25
(3,3) [[125, 1, 92/16]]25 14
(2,2) [[125,1, 103/9]]25 –
(1,1) [[125,1, 114/4]]25 –
(3,4) [[125, 2, 86/20]]25 19
(2,3) [[125, 2, 97/12]]25 10
(1,2) [[125,2, 108/6]]25 –
(0,1) [[125,2, 119/2]]25 –
(2,4) [[125, 3, 91/15]]25 13
(1,3) [[125,3, 102/8]]25 –
(0,2) [[125,3, 113/3]]25 –
(1,4) [[125,4, 96/10]]25 10
(0,3) [[125,4, 107/4]]25 –
(0,4) [[125,5, 101/5]]25 6

Table 7. [CG18] In the case q = 3, [Gra07] is used to determine g(ℓ,δ1), whereas [SS15] is used
for other values of q. Note that the codes marked with bold have δ2 > g(ℓ,δ1).
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CHAPTER 3Future Plans

3.1 Research stay abroad

In the spring of 2019, I am scheduled to do a research stay at a university abroad.

Although it is still too early to make specific arrangements, we are hoping to find

an agreement with Associate Professor Ryutaroh Matsumoto at Nagoya University in

Japan. Matsumoto, who is also an adjunct professor of our department, is a long-time

collaborator of the “Reliable and Secure Communication”-research group. With his

expertise on quantum information processing, a collaboration with him is a good

way to proceed with the work on quantum error correcting codes.

3.2 Research ideas

Within the near future, I expect to conclude the work on [CG18], the initial results of

which were presented in Section 2.3. This may include a comparison between the

codes in Tables 6 and 7 and a recent bound on the threshold gap found in [CGR18].

This bound gives information on secret sharing schemes, but since secret sharing

schemes and quantum codes are related via pairs of nested codes, the bound may

help to quantify how close the codes in [CG18] are to being optimal. After submitting

[CG18], Olav Geil and I have discussed some further ideas within the area of quantum

error correcting codes that are worth exploring. It is, however, still too early to reveal

the details of this endeavour.

In recent work [CCXY18], Cascudo et al. have considered a coding theoretic

alternative to the hyperinvertible matrices defined in [BTH08]. A matrix M ∈ Fn×n
q is

hyperinvertible if all s× s-submatrices are invertible for 1≤ s ≤ n. Such a matrix has

the property that if y = Mx for x,y ∈ Fn
q , and a, b ∈ N such that a + b = n, then any

set containing a components of x and b components of y uniquely determines the

remaining components of x and y. What is proposed in [CCXY18] is that a code of

length 2n and dimension n can be used to obtain a weaker, yet similar, construction

over a smaller field than allowed by hyperinvertible matrices. This requires that

the distance of the code, d , and that of its dual, d⊥, satisfy certain properties. One

candidate for finding such codes over small fields is the class of Hermitian codes,

and Ignacio has suggested that some of the techniques from [CG18] may be relevant

in this setting.
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3.2. Research ideas

Before Diego Ruano became a ‘Ramón y Cajal’-fellow at the University of

Valladolid, we had started a joint work with Ignacio Cascudo on the topic of

multicyclic codes and their squares. In multiparty computation, there is an interest in

multiplicative secret sharing schemes since these allow the participants to multiply

shared secrets, without revealing their values. If a scheme is constructed from a code

C, it is possible to determine if it is multiplicative or not by considering the span of all

componentwise products of codewords in C; see for instance [CCCX09; CCX11]. This

span of componentwise products is what is called the square of C. Especially, we are

interested in codes, whose dual and whose square both have high minimal distances

[CCCX09; Cor. 2]. The hope is to combine the insights in multicyclic codes from

[GGHR17; GHR15] with the ideas of [Cas17] to obtain codes with the aforementioned

distance properties. As of now, however, the research project initiated with Olav Geil

is my main focus, and Diego, Ignacio, and myself have agreed that I shall treat the

squares of multicyclic codes as a side project. In the future, time may be devoted to

this research topic again.
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APPENDIX ASource Code for Parameter Search

The following pages contain the source code used to find the examples given in Tables

1–4. It is written in the Go language [Go18]. The parameters of the two protocols 1

and 2 are implemented as two separate structs, bprwProtocol and pcrsProtocol,

respectively.

1 package main
2

3 import "fmt"
4 import "math"
5 import "flag"
6

7 // The maximal field size considered. Expected to be a power of 2
8 const maxFieldSize = uint(128)
9

10 // logCeil returns ceil(log[2](a)). Essentially, the number of bits needed to store a
11 func logCeil(a uint) (res uint) {
12 for a != 0 {
13 res++
14 a >>= 1
15 }
16 return res
17 }
18

19 // Compute the smallest q such that qb>=a
20 func quoCeil(a, b uint) (q uint) {
21 q = a / b
22 if a%b != 0 {
23 q++
24 }
25 return q
26 }
27

28 // Class defining the basic RMT-problem and its parameters.
29 type rmtInstance struct {
30 t uint // Number of corrupt channels
31 n uint // Total number of channels
32 messageSize uint // Message size in bits
33 relParam uint // -log2 of reliability parameters. Eg. 80 gives reliability 2^(-80)
34 }
35

36 func newRmtInstance(t, messageSize, relParam uint) *rmtInstance {
37 obj := new(rmtInstance)
38 obj.t = t
39 obj.n = 2*obj.t + 1
40 obj.messageSize = messageSize



41 obj.relParam = relParam
42 return obj
43 }
44

45 func (obj *rmtInstance) broadcastCost() uint {
46 return obj.n * obj.messageSize
47 }
48

49 // Compute the maximal dimension using the bound from Chr17. This also implies
50 // a list size of 5
51 func (obj *rmtInstance) bprwMaxDim() uint {
52 return obj.n/5 + 1
53 }
54

55 // Container for parameters of the BPRW16-protocol
56 type bprwProtocol struct {
57 problem *rmtInstance // The parameters of the problem
58 fieldSize uint // log_2 of field size
59 dim uint // Message length
60 eta uint // Number of evaluation points in hash
61 }
62

63 // minEta computes the minimal eta needed to achieve the desired
64 // reliability when using the protocol by BPRW16
65 func (obj *bprwProtocol) computeEta() {
66 // Using that list size is 5
67 numerator := float64(obj.problem.relParam) + math.Log2(float64(obj.problem.n*5))
68 denominator := float64(obj.fieldSize) - math.Log2(float64(obj.dim))
69 obj.eta = uint(math.Ceil(numerator / denominator))
70 }
71

72 // Returns the minimal k such that BPRW16 can encode the message
73 // using symbols from F_(2^k)
74 func (obj *bprwProtocol) fieldNeeded() (res uint) {
75 res = quoCeil(obj.problem.messageSize, obj.dim)
76 // Ensure that the field size is greater than n
77 if i := logCeil(obj.problem.n); res < i {
78 res = i
79 }
80 return
81 }
82

83 // Compute the cost of running a bprwProtocol
84 func (obj *bprwProtocol) bitsTransmitted() uint {
85 return obj.problem.n * (1 + 2*obj.eta) * obj.fieldSize
86 }
87

88 // Determine if the given parameters are likely to cause overflow in bitsTransmitted()
89 func (obj *bprwProtocol) overflowSafe() bool {
90 if logCeil(obj.problem.n)+logCeil((1+2*obj.eta))+logCeil(obj.fieldSize) >= 64 {
91 return false
92 }
93 return true
94 }
95

96 func (obj *bprwProtocol) print() {
97 fmt.Printf("F_(2^%d)\tDimension: %d\tEta: %d\tTransmits %d bits\n",
98 obj.fieldSize, obj.dim, obj.eta, obj.bitsTransmitted())
99 }
100



101 // Construct a BPRW16-instance. Returns abort if overflow is likely
102 func newBprwProtocol(problem *rmtInstance, dim uint) (_ *bprwProtocol, abort bool) {
103 obj := new(bprwProtocol)
104 obj.problem = problem
105 obj.dim = dim
106 obj.fieldSize = obj.fieldNeeded()
107 obj.computeEta()
108 if !obj.overflowSafe() {
109 return obj, true
110 }
111 return obj, false
112 }
113

114 // Search for possible parameter choices when using a bprwProtocol to
115 // reliably send a message. Will attempt increasing the field size until
116 // the overflows occur
117 func (obj *rmtInstance) getCostsForBprw(verbose bool) *bprwProtocol {
118 best, abort := newBprwProtocol(obj, obj.bprwMaxDim())
119 if verbose {
120 fmt.Println("BPRW16:")
121 defer best.print()
122 }
123 if abort {
124 return best
125 }
126 for i := obj.bprwMaxDim() - 1; i > 0; i-- {
127 contender, abort := newBprwProtocol(obj, i)
128 if contender.bitsTransmitted() < best.bitsTransmitted() {
129 *best = *contender
130 }
131 if abort {
132 break
133 }
134 }
135 return best
136 }
137

138 // Container for PCRS10-protocols
139 type pcrsProtocol struct {
140 problem *rmtInstance // The parameters of the problem
141 fieldSize uint // log_2 of field size
142 dimA uint // Number of message rows
143 dimB uint // Number of message columns
144 eta uint // Number of evaluation points in hash
145 e uint // Correctable errors
146 }
147

148 // Compute the eta necessary to achieve the desired reliability
149 func (obj *pcrsProtocol) computeEta() {
150 numerator := float64(obj.problem.relParam) +
151 math.Log2(float64(obj.problem.t*(obj.problem.t+1))/float64(obj.e+1))
152 denominator := float64(obj.fieldSize) - math.Log2(float64(obj.dimA))
153 obj.eta = uint(math.Ceil(numerator / denominator))
154 }
155

156 // Computes the dimension A needed to transmit the message given
157 // the desired dimension B and field size. Returns false if the computed
158 // dimension is greater than the field size.
159 func (obj *pcrsProtocol) computeDimA() bool {
160 symbolsNeeded := quoCeil(obj.problem.messageSize, obj.fieldSize)



161 dimA := quoCeil(symbolsNeeded, obj.dimB)
162 if logCeil(dimA) >= obj.fieldSize {
163 // Ensure that dimA is smaller than the field. Otherwise, the hash family
164 // provides no security
165 return false
166 }
167 obj.dimA = dimA
168 return true
169 }
170

171 // Construct a PCRS10-instance. Return ok=false if the number of message rows
172 // is greater than the field size
173 func newPcrsProtocol(
174 problem *rmtInstance,
175 fieldSize uint,
176 dimB uint,
177 ) (_ *pcrsProtocol, ok bool) {
178 obj := new(pcrsProtocol)
179 obj.problem = problem
180 obj.fieldSize = fieldSize
181 if dimB > obj.problem.t+1 {
182 // Decrease dimB if it exceeds the maximal value
183 obj.dimB = obj.problem.t + 1
184 } else {
185 obj.dimB = dimB
186 }
187 obj.e = obj.problem.t + 1 - dimB
188 ok = obj.computeDimA()
189 if !ok || !obj.overflowSafe() {
190 // Either dimA is greater than n, or bits transmitted risks overflowing uint64
191 return obj, false
192 }
193 obj.computeEta()
194 return obj, true
195 }
196

197 func (obj *pcrsProtocol) bitsTransmitted() uint {
198 return obj.problem.n * (obj.dimA + 2*obj.problem.n*obj.eta) * obj.fieldSize
199 }
200

201 // Determine if the given parameters are likely to cause overflow in bitsTransmitted()
202 func (obj *pcrsProtocol) overflowSafe() bool {
203 if logCeil(obj.problem.n)+logCeil((obj.dimA+2*obj.problem.n*obj.eta))+
204 logCeil(obj.fieldSize) >= 64 {
205 return false
206 }
207 return true
208 }
209

210 func (obj *pcrsProtocol) print() {
211 fmt.Printf("F_(2^%d)\tDimension: (%d, %d)\te: %d\tEta: %d\tTransmits %d bits\n",
212 obj.fieldSize, obj.dimA, obj.dimB, obj.e, obj.eta, obj.bitsTransmitted())
213 }
214

215 // Compares the transmission rates of different parameter choices
216 // in the protocol by PCRS10
217 func (obj *rmtInstance) findBestPcrs(fieldSize uint) (_ *pcrsProtocol, ok bool) {
218 // Start with the greatest possible value of dimB
219 best, ok := newPcrsProtocol(obj, fieldSize, obj.t+1)
220 if !ok {



221 return best, false
222 }
223 for dimB := obj.t; dimB > 0; dimB-- {
224 contender, ok := newPcrsProtocol(obj, fieldSize, dimB)
225 if !ok {
226 break
227 } else if contender.bitsTransmitted() < best.bitsTransmitted() {
228 *best = *contender
229 }
230 }
231 return best, true
232 }
233

234 func (obj *rmtInstance) getCostsForPcrs(verbose bool) (_ *pcrsProtocol, ok bool) {
235 if verbose {
236 fmt.Println("PCRS10:")
237 }
238 best, ok := obj.findBestPcrs(maxFieldSize)
239 if !ok {
240 return best, false
241 }
242 if verbose {
243 best.print()
244 }
245 for i := maxFieldSize >> 1; i >= logCeil(obj.n); i >>= 1 {
246 contender, ok := obj.findBestPcrs(i)
247 if !ok {
248 break
249 } else if contender.bitsTransmitted() < best.bitsTransmitted() {
250 *best = *contender
251 }
252 if verbose {
253 contender.print()
254 }
255 }
256 return best, true
257 }
258

259 func (obj *rmtInstance) runComparisons() {
260 fmt.Printf(
261 "\nRunning RMT-comparisons with parameters\n"+
262 "\tParticipants: %d\n"+
263 "\tMessage size: %d\n"+
264 "\tReliability: %d\n\n",
265 obj.n, obj.messageSize, obj.relParam,
266 )
267 fmt.Printf("Cost of broadcasting: %d bits\n\n", obj.broadcastCost())
268 obj.getCostsForBprw(true)
269 fmt.Println("")
270 obj.getCostsForPcrs(true)
271 }
272

273 // Compute the message size needed for the two protocols to
274 // beat broadcast
275 func beatBroadcast(
276 t, reliability uint,
277 ) (bprw, pcrs uint, bprwProt *bprwProtocol, pcrsProt *pcrsProtocol) {
278 bprwProt = new(bprwProtocol)
279 pcrsProt = new(pcrsProtocol)
280 // Loop over all possible message sizes. To avoid overflow in broadcastCost(),



281 // we need n*messageSize<2^64
282 for m := uint(1); m <= uint(1)<<(64-logCeil(2*t+1)); m <<= 1 {
283 obj := newRmtInstance(t, m, reliability)
284 if bprw == 0 {
285 bestBprw := obj.getCostsForBprw(false)
286 if bestBprw.overflowSafe() && bestBprw.bitsTransmitted() <= obj.broadcastCost() {
287 bprw = m
288 *bprwProt = *bestBprw
289 }
290 }
291 if pcrs == 0 {
292 bestPcrs, ok := obj.getCostsForPcrs(false)
293 if !ok {
294 break
295 }
296 if bestPcrs.overflowSafe() && bestPcrs.bitsTransmitted() <= obj.broadcastCost() {
297 pcrs = m
298 *pcrsProt = *bestPcrs
299 }
300 }
301 if bprw != 0 && pcrs != 0 {
302 break
303 }
304 }
305 return
306 }
307

308 func main() {
309 // Define and handle command line arguments
310 tPtr := flag.Uint("t", 0, "Number of corrupt channels")
311 mPtr := flag.Uint("message", 0, "Size of the message (in bits)")
312 relPtr := flag.Uint("reliability", 80, "Reliability parameter")
313 beatPtr := flag.Bool("beat", false, "Compute message size where the protocols"+
314 "outperform broadcast")
315 flag.Parse()
316 if *tPtr == 0 {
317 fmt.Print("Please specify a parameter t.")
318 return
319 }
320 if !*beatPtr && *mPtr == 0 {
321 fmt.Print("Please specify message size when flag -beat is not given. ")
322 return
323 }
324 if *beatPtr {
325 bprw, pcrs, bprwProt, pcrsProt := beatBroadcast(*tPtr, *relPtr)
326 fmt.Printf("BPRW16: %d\nPCRS10: %d\n\n", bprw, pcrs)
327 fmt.Println("The protocol parameters are")
328 if bprw == 0 {
329 fmt.Printf("BPRW16 did not outperform broadcast (for messages up to 2^%d bits)\n",
330 63-logCeil(2**tPtr+1))
331 } else {
332 bprwProt.print()
333 }
334 if pcrs == 0 {
335 fmt.Printf("PCRS10 did not outperform broadcast (for messages up to 2^%d bits)\n",
336 63-logCeil(2**tPtr+1))
337 } else {
338 pcrsProt.print()
339 }
340 return



341 }
342 problem := newRmtInstance(*tPtr, *mPtr, *relPtr)
343 problem.runComparisons()
344 }
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